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We present a theoretical framework for immiscible incompressible two-phase flow in

homogeneous porous media that connects the distribution of local fluid velocities to

the average seepage velocities. By dividing the pore area along a cut transversal to the

average flow direction up into differential areas associated with the local flow velocities,

we construct a distribution function that allows us to not only re-establish existing

relationships of between the seepage velocities of the immiscible fluids, but also to find

new relations between their higher moments. We support and demonstrate the formalism

through numerical simulations using a dynamic pore-network model for immiscible two-

phase flow with two- and three-dimensional pore networks. Our numerical results are in

agreement with the theoretical considerations.
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1. INTRODUCTION

When two immiscible fluids compete for the same pore space, we are dealing with immiscible
two-phase flow in porous media [1]. A holy grail in porous media research is to find a proper
description of immiscible two-phase flow at the continuum level, i.e., at scales where the porous
medium may be treated as a continuum. Our understanding of immiscible two-phase flow at the
pore level is increasing at a very high rate due to advances in experimental techniques combined
with an explosive growth in computer power [2]. Still, the gap in scales between the physics at the
pore level and a continuum description remains huge and the bridges that have been built so far
across this gap are either complex to cross or rather rickety. To the latter class, we find the still
dominating theory, first proposed by Wyckoff and Botset [3] and with an essential amendment by
Leverett [4], namely relative permeability theory. The basic idea behind this theory is the following:
Put yourself in the place of one of the two immiscible fluids. What does this fluid see? It sees a space
in which it can flow limited by the solid matrix of the porous medium, but also by the other fluid.
This reduces its mobility in the porous medium by a factor known as the relative permeability,
which is a function of the how much space there is left for it. And here is the rickety part: this
reduction of available space—expressed through the saturation—is the only parameter affecting the
reduction factor or relative permeability. This is a very strong statement and clearly does not take
into account that the distribution of immiscible fluid clusters will depend on how fast the fluids are
flowing. Still, in the range of flow rates relevant for many industrial applications, this assumption
works pretty well. It therefore, remains the essential work horse for practical applications.

Thermodynamically Constrained Averaging Theory (TCAT) [5–9] is built on the framework of
relative permeability. However, it is based on a full analysis based onmechanical conservation laws,
constitutive laws, e.g., for the motion of interfaces and contact lines, and on thermodynamics at
the pore level. These are then scaled up using averaging theorems, which, loosely explained, consist
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of replacing derivatives of averages by averages of derivatives. In
principle, this approach solves the up-scaling problem. However,
as Gray and Miller point out in their book [9], each component
of TCAT involves significant mathematical manipulations. The
internal energy has contributions from the bulk liquids, the fluid-
fluid and fluid-matrix interfaces at the pore level. The averaging
process redefines the variables describing these contributions, but
does not reduce their number. This accounts for a high level
of complexity.

A further development somewhat along the same lines, based
on non-equilibrium thermodynamics uses Euler homogeneity,
more about this later, to define the up-scaled pressure. From this,
Kjelstrup et al. derive constitutive equations for the flow [10, 11].

Another class of theories is based on detailed and specific
assumptions concerning the physics involved. An example
is Local Porosity Theory [12–17]. Another is DeProf theory
which is a mechanical model combined with non-equilibrium
statistical mechanics based on a classification scheme of fluid
configurations at the pore level [18–20].

A recent work [21] has explored a new approach to immiscible
two-phase flow in porous media based on elements borrowed
from thermodynamics. That is, it is using the framework
of thermodynamics, but without connecting it to processes
involving heat. The spirit behind this approach is like that
taken in Edwards and Oakshot’s pseudo-thermodynamic theory
of powders [22]. The approach consists in looking for general
relations that transcends details of the physical processes
involved. An example of such an approach in the field if
immiscible two-phase flow in porous media is found in the
Buckley-Leverett theory of invasion fronts [23]. The Buckley-
Leverett equation is based solely on the principle of mass
conservation and on the fractional flow rate being a function
of the saturation. In the approach of Hansen et al. [21],
equations are derived that originate from Euler homogeneity
as in ordinary thermodynamics. These equations transcend the
details of the physics involved in the same way that the equations
of thermodynamics are universally applicable if a set of simple
underlying conditions are met.

Thermodynamics is a theory that is valid on scales large
enough so that the system it refers to may be regarded as a
continuum. Statistical mechanics is then the theory that makes
the connection between thermodynamics and the underlying
atomistic picture.

It is the aim of this paper to formulate a description of
immiscible two-phase flow in porous media that may form a
link between the continuum-level approach of Hansen et al.
[21] and the pore-level description of the problem—a sort of
“statistical mechanics” from which the pseudo-thermodynamics
may be derived, but which also describes the flow problem at the
pore level.

After defining the system and the variables involved in
section 2, we will in section 3 review the pseudo-thermodynamic
approach [21]. The next section 4 we introduce the central object
in the paper, the differential transversal area distribution which
corresponds to the Boltzmann distribution in ordinary statistical
mechanics, and relate it to the pseudo-thermodynamics relations.
Then follows section 5 which then moves beyond the results

of the pseudo-thermodynamics by focusing on fluctuations. In
section 6 we use the dynamic network simulator [24] first
introduced by Aker et al. [25] and then later refined [26–28] to
verify the relations derived in the earlier sections. There is also
a second goal behind this numerical work: the dynamic network
model is a model at pore level and by its use, we show how the
formalism developed here connect to the flow patterns at the pore
level. Finally, we draw our conclusions in section 7.

2. SYSTEM DEFINITION

In two-phase flow, the steady state [29–31] is characterized
by potentially strong fluctuations at the pore scale, but steady
averages at the REV (Representative Elementary Volume) scale.
As such they differ fundamentally from stationary states that
are static at the pore scale as well. Steady states have much in
common with ensembles in equilibrium statistical mechanics.
They are also by implication assumed in the conventional
descriptions of porous media flows that take the existence of an
REV for granted.

Our REV is a block of homogeneous porous material of length
L and area A. We prevent flow through the surfaces that are
parallel to the L-direction which is the flow direction. The two
remaining surfaces, each having an area A, act as inlet and outlet
for the incompressible fluids that are injected and extracted from
the REV. The porosity of the material is defined as

φ =
Vp

V
, (1)

where Vp is the pore volume and V = AL is the volume of the
REV. Due to the homogeneity of the porous medium, any cross
section orthogonal to the axis along the L-direction will have a
pore area that fluctuates around the value

Ap =
Vp

L
= φA. (2)

There is also a solid matrix area fluctuating around

As = A− Ap = (1− φ)A. (3)

The homogeneity assumption consists in the fluctuations being
so small that they can be ignored.

There is a time averaged volumetric flow rate Q through the
REV. The volumetric flow rate consists of two components, Qw

and Qn, which are the volumetric flow rates of the more wetting
(w for “wetting”) and the less wetting (n for “non-wetting”) fluids
with respect to the porous medium. They are related through

Q = Qw + Qn. (4)

In the porous medium, there is a volume Vw of the wetting fluid
and a volume Vn of the non-wetting fluid so that Vp = Vw + Vn.
We define the wetting and non-wetting saturations Sw = Vw/Vp

and Sn = Vn/Vp, so that Sw + Sn = 1.
We define the wetting and non-wetting transversal pore areas

Aw and An as the parts of the transversal pore area Ap which
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occupied by the wetting or the non-wetting fluids, respectively.
We have that

Ap = Aw + An. (5)

As the porous medium is homogeneous, we will find the same
averages Aw and An in any cross section through the porous
medium orthogonal to the flow direction. We have therefore
Aw/Ap = (AwL)/(ApL) = Vw/Vp = Sw, so that

Aw = SwAp. (6)

Likewise,

An = SnAp = (1− Sw)Ap. (7)

We define the seepage velocities, i.e., the average flow velocities in
the pores, for the two immiscible fluids, vw and vn as

vw = Qw

Aw
, (8)

and

vn = Qn

An
. (9)

The seepage velocity associated with the total flow rate Q is
defined as

vp =
Q

Ap
. (10)

We may express Equation (4) in terms of the seepage velocities,

vp = Swvw + Snvn. (11)

3. PSEUDO-THERMODYNAMIC
RELATIONS

Hansen et al. [21] derived a number of relations between the
seepage velocities defined in (8)–(10) based on the volumetric
flow rate being an Euler homogeneous function of order one with
respect to the wetting and non-wetting transversal pore areas Aw

and An. We present here a short review of the main results in that
paper for completeness. The meaning of the statement that the
volumetric flow rate is an Euler homogeneous function of order
one is that it obeys the scaling relation

Qp(λAw, λAn) = λQp(Aw,An), (12)

where λ is a scale factor. By taking the derivative of this equation
with respect to λ and then setting λ = 1, we find

Qp(Aw,An) =
(

∂Qp

∂Aw

)

An

Aw +
(

∂Qp

∂An

)

Aw

An. (13)

By dividing this expression by the transversal pore area Ap and
using Equations (5)–(7), we may write this equation as

vp = Sw

(

∂Qp

∂Aw

)

An

+ Sn

(

∂Qp

∂An

)

Aw

. (14)

The two partial derivatives have the units of velocity,
and Hansen et al. [21] name these velocity functions the
thermodynamic velocities,

v̂w =
(

∂Q

∂Aw

)

An

, (15)

and

v̂n =
(

∂Q

∂An

)

Aw

. (16)

We use Equations (6) and (7) and the chain rule to derive

(

∂

∂Aw

)

An

=
(

∂Sw

∂Aw

)

An

(

∂

∂Sw

)

Ap

+
(

∂Ap

∂Aw

)

An

(

∂

∂Ap

)

Sw

= Sn

Ap

(

∂

∂Sw

)

Ap

+
(

∂

∂Ap

)

Sw

. (17)

Likewise, we find

(

∂

∂An

)

Aw

= − Sw

Ap

(

∂

∂Sw

)

Ap

+
(

∂

∂Ap

)

Sw

. (18)

We now combine these two equations with the definitions (15)
and (16), and use that Q = Apvp, i.e., Equation (10), to find

v̂w = vp + Sn
dvp

dSw
, (19)

and

v̂n = vp − Sw
dvp

dSw
. (20)

Combining the definitions (15) and (16) with Equation (14) gives

vp = Swv̂w + Snv̂n, (21)

which should be compared to Equation (11). We see that

Swvw + Snvn = Swv̂w + Snv̂n. (22)

The seepage and thermodynamic velocities are related through
a transformation (vw, vn) → (v̂w, v̂n) defining the co-
moving velocity vm,

v̂w = vw + vmSn, (23)

and

v̂n = vn − vmSw. (24)

We now calculate
(

∂Q

∂Sw

)

Ap

=
(

∂Q

∂Aw

)

An

(

∂Aw

∂Sw

)

Ap

+
(

∂Q

∂An

)

Aw

(

∂An

∂Sw

)

Ap

. (25)
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Using Equations (6) and (7) together with Equations (19) and
(20), we transform this equation into

dvp

dSw
= v̂w − v̂n, (26)

where we have used that vp = Q/Ap, i.e., Equation (10). We now
use Equation (21) to calculate

dvp

dSw
= v̂w − v̂n + Sw

dv̂w

dSw
+ Sn

dv̂n

dSw
. (27)

Compare this equation to Equation (26) and we get an analog to
the Gibbs-Duhem equation,

Sw
dv̂w

dSw
+ Sn

dv̂n

dSw
= 0. (28)

Using Equations (23) and (24), we find that the seepage
velocities obey

dvp

dSw
= vw − vn + vm, (29)

and

Sw
dvw

dSw
+ Sn

dvn

dSw
= vm, (30)

where we have combined Equations (23) and (24) with
Equation (28).

By combining Equations (15), (16), (23), and (24), one finds

vw = vp + Sn

(

dvp

dSw
− vm

)

, (31)

and

vn = vp − Sw

(

dvp

dSw
− vm

)

. (32)

These two equations, (31) and (32), may be seen as a
transformation (vp, vm) → (vw, vn). The inverse of this
transformation, i.e., (vw, vn) → (vp, vm) are given by Equations
(11) and (29), i.e.,

vp = Swvw + Snvn,

vm = Swv
′
w + Snv

′
n, (33)

where v′w = dvw/dSw and v′n = dvn/dSw.
But, what is the co-moving velocity vm physically? We first

need to understand the thermodynamic velocities v̂w and v̂n.
These are the velocities the two fluids would have had if they
were miscible. Equation (26) then tells us that a change in the
saturation Sw leads to a change in the average seepage velocity
vp which is the difference in seepage velocities of the two fluids.
However, the two fluids are not miscible and they do get in each
other’s way. How much is dictated by the co-moving velocity
through Equation (29).

From Equation (26) onwards to the end of this sections, none
of the equations contain the size of the REV. If we now imagine

a REV associated with each point in the porous medium, we
have a continuum description. We may then add equations that
transport the fluids between these points. Assuming that the
fluids are incompressible, these equations are [1]

φ
∂Sw

∂t
= ∂φSwvw

∂x
, (34)

where t is the time coordinate and x is the spatial coordinate, and

φ
∂Sn

∂t
= ∂φSnvn

∂x
. (35)

We add the two equations and get

∂

∂x
φvp = 0. (36)

The generalization to three dimensions is straight forward.
In order to connect the equations that now have been

derived to a given porous medium, constitutive equations for
vp and vm need to be supplied, linking the flow to the driving
forces. These may in the simplest case be pressure gradient and
saturation gradient.

4. DIFFERENTIAL TRANSVERSAL AREA
DISTRIBUTIONS

In this section, we connect the pseudo-thermodynamic results
of section 3 to the properties of an underlying ensemble
distribution. This concept in the context of immiscible two-phase
flow was first considered by Savani et al. [32]. Here we generalize
this concept. In some sense, we introduce here a statistical
mechanics from which the pseudo-thermodynamics ensue.

We define a differential transversal pore area ap = ap(Sw, v)
where v is a velocity such that apdv is the pore area covered by
fluid, wetting or non-wetting, that has a velocity in the range
[v, v + dv]. Hence, ap—and the other differential transversal
pore areas that we will proceed to construct—are statistical
distributions of the pore level velocities. The new idea we are
introducing is that the velocity distribution is measured in terms
of transversal pore areas. This makes it possible to make the
connection between the flow at the pore level and the pseudo-
thermodynamic theory reviewed in the previous section.

We must have that

Ap =
∫ ∞

−∞
dv ap, (37)

where the integral runs over the entire range of negative and
positive velocities since there may be local areas where the flow
direction is opposite to the global flow. The total flow rate Q is
given by

Q =
∫ ∞

−∞
dv v ap, (38)

and the see page velocity defined in Equation (10) is then given by

vp = 〈v〉p =
1

Ap

∫ ∞

−∞
dv v ap. (39)

Frontiers in Physics | www.frontiersin.org 4 January 2020 | Volume 8 | Article 4

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Roy et al. Flow-Area Relation in Two-Phase Flow

Likewise, we define a wetting differential pore area aw and a non-
wetting differential pore area an. They have the same properties
except that they are restricted to the wetting or the non-wetting
fluids only. That is, we have

Aw =
∫ ∞

−∞
dv aw, (40)

and

An =
∫ ∞

−∞
dv an. (41)

They relate to the wetting and non-wetting seepage velocities
defined in Equations (8) and (9) as

vw = 〈v〉w = 1

Aw

∫ ∞

−∞
dv v aw, (42)

and

vn = 〈v〉n = 1

An

∫ ∞

−∞
dv v an. (43)

We have that

ap = aw + an. (44)

We now combine this equation with Equation (39) to find

vp = 1

Ap

∫ ∞

−∞
dv v (aw + an)

=
(

Aw

Ap

)

1

Aw

∫ ∞

−∞
dv v aw

+
(

An

Ap

)

1

An

∫ ∞

−∞
dv v an

= Swvw + Snvn, (45)

which is Equation (11). We have here used Equations (6) and (7).
We may associate a differential area am to the co-moving

velocity vm defined in Equation (29). By using Equations (39),
(42), and (43) in combination with Equation (29), we find

vm =
dvp

dSw
− vw + vn

= 1

Ap

∫ ∞

−∞
dv v

[

∂ap

∂Sw
− aw

Sw
+ an

Sn

]

,

(46)

so that

am =
∂ap

∂Sw
− aw

Sw
+ an

Sn

=
(

∂aw

∂Sw
− aw

Sw

)

+
(

∂an

∂Sw
+ an

Sn

)

,

(47)

where we have used Equation (44). Equation (47) may be
rewritten as

am = Sw
∂

∂Sw

(

aw

Sw

)

+ Sn
∂

∂Sw

(

an

Sn

)

. (48)

Averaging this equation over v and using Equations (42), (43),
and (46) recovers Equation (30). Hence, we note that Equations
(47) and (48) are the generalizations of Equations (29) and (30)
to the differential transversal areas.

It follows that

Am =
∫ ∞

−∞
dv am = 0, (49)

where Am is the pore area associated with co-moving velocity
vm. This is to expected as the areas Aw, An, Ap and Am are
ways to partition the transversal pore area Ap; and we have that
Aw + An = Ap + 0. This implies that there is no volumetric flow
rate associated with the co-moving velocity since

Qm = Amvm = 0. (50)

Lastly, we may associate differential transversal areas to the
thermodynamic velocities defined in Equations (19) and (20).We
use Equations (23) and (24) to find

âw = aw + SnSw am, (51)

and

ân = an − SwSn am, (52)

where am is given in Equation (48). The thermodynamic
velocities are then given by

v̂w = 1

Aw

∫ ∞

−∞
dv v âw, (53)

and

v̂n = 1

An

∫ ∞

−∞
dv v ân. (54)

We find as expected that

Âw =
∫ ∞

−∞
dv âw = Aw, (55)

and

Ân =
∫ ∞

−∞
dv ân = An. (56)

Summing the two differential transversal areas for the
thermodynamic areas gives

âw + ân = aw + an = ap. (57)

This leads us to an important remark. The differential transversal
areas are statistical velocity distributions at the pore level. We
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see that the differential transversal areas that are associated
with the thermodynamic velocities are different from those
associated with the seepage velocities. However, Equation (57)
shows that the combined differential transversal area based
upon the thermodynamic velocity distributions is the same as
that based upon the distributions giving the seepage velocities.
Hence, the two types of differential transversal areas represent
a redistribution of the pore level velocities, but in such a way
that Aw and An are preserved. We see the same from Equation
(49) showing that Am is zero and combining this Equations (51)
and (52).

We see from Equation (47) that am is only zero if aw and an
are linear in Sw and Sn, respectively, i.e., aw = Swbw where bw is
independent of Sw and an = Snbn where bn is independent of Sn.
Hence, this is the condition for the thermodynamic velocities to
be equal to the seepage velocities.

5. MOMENTS AND FLUCTUATIONS

We define the qth moment of the seepage velocity distribution as

v
q
p = 〈vq〉p =

1

Ap

∫ ∞

−∞
dv vqap. (58)

By using Equation (44) we find immediately

v
q
p = v

q
wSw + v

q
nSn, (59)

where we have defined

v
q
w = 〈vq〉w = 1

Aw

∫ ∞

−∞
dv vq aw, (60)

and

v
q
n = 〈vq〉n = 1

An

∫ ∞

−∞
dv vq an. (61)

We may work out the moments of the co-moving velocity are
given by

v
q
m = 1

Ap

∫ ∞

−∞
dv vq am =

[

dv
q
p

dSw
− v

q
w + v

q
n

]

, (62)

where we have used (47).
The thermodynamic velocity moments may be defined as in

a similar manner as the moments of the seepage velocities, (60)
and (61),

v̂
q
w = 〈v̂q〉w = 1

Aw

∫ ∞

−∞
dv vq âw, (63)

and

v̂
q
n = 〈v̂q〉n = 1

An

∫ ∞

−∞
dv vq ân. (64)

and we find

v̂
q
p = v̂

q
wSw + v̂

q
nSn, (65)

where we have used Equations (52) and (55).
We may Fourier transform ap, aw, and an,

2π ãp(ω) = Ap〈eivω〉p =
∫ ∞

−∞
dv eivω ap, (66)

2π ãw(ω) = Aw〈eivω〉w =
∫ ∞

−∞
dv eivω aw, (67)

and

2π ãn(ω) = An〈eivω〉n =
∫ ∞

−∞
dv eivω an. (68)

From Equation (44) we find

ãp(Sw,ω) = ãw(Sw,ω)+ ãn(Sw,ω), (69)

and

〈eivω〉p = Sw〈eivω〉w + Sn〈eivω〉n. (70)

We write 〈exp(ivω)〉p as a cumulant expansion,

〈eivω〉p = exp

( ∞
∑

k=1

(iω)k

k!
Ck
p

)

, (71)

where Ck
p is the kth cumulant. We define the wetting and non-

wetting velocity cumulants Ck
w and Ck

n in the same way. We also
write 〈exp(ivω)〉p as a moment expansion

〈eivω〉p =
∞
∑

m=0

(iω)m

m!
vmp . (72)

By expanding the cumulant expression in Equation (71) and
equating each power in iω with the corresponding one in
Equation (72), then repeating this for the wetting and non-
wetting cumulants, and lastly combining them through Equation
(70), we find for the term proportional to (iω)2,

C2
p + (C1

p)
2 = [C2

w + (C1
w)

2]Sw + [C2
n + (C1

n)
2]Sn. (73)

Noting that C1
p = vp, C

1
w = vw, and C1

n = vn and using that

1v2p = C2
p,1v2w = C2

w, and1v2n = C2
n, we find from this equation

1v2p = 1v2wSw + 1v2nSn + SwSn (vw − vn)
2 . (74)

We may follow this procedure for any of the cumulants.
The corresponding equation between the second cumulants of

the thermodynamic velocities is

1v̂2p = 1v̂2wSw + 1v̂2nSn + SwSn
(

v̂w − v̂n
)2
. (75)
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6. NUMERICAL OBSERVATIONS

The relations presented in sections 4, 5 provide the
bridge between the velocity distributions at the pore
level and the pseudo-thermodynamic theory outlined in
section 3. In order to test these relations, and to show
how they may be used, we use a dynamic pore network
simulator [24].

In pore network modeling, the porous medium is represented
by a network of pores which transport two immiscible fluids.
The pore-network model we consider here can be applied to
regular networks such as a regular lattice with an artificial
disorder as well as to irregular networks such as a reconstructed
network from real samples. The flow of the two immiscible
fluids is described in this model by keeping the track of
all interface positions with time. This approach of pore
network modeling was first introduced by Aker et al. [25]
for drainage displacements in a regular network. Over the
last two decades, new mechanisms have been developed to
extend the model for the steady-state flow as well as for
irregular networks. A detailed description of this model in
its most recent form can be found in Gjennestad et al. [26,
27] and Sinha et al. [28] and we therefore describe it here
only briefly.

The porous medium is represented by a network of links
that are connected at nodes. All the pore space in this model
is assigned to the links and, hence, the nodes do not contain
any volume, they only represent the positions where the links
meet. The flow rate qj inside any link j of the network at any
instant of time for fully developed viscous flow is obtained
by [33, 34],

qj = −
gj

ljµj

[

1pj −
∑

pc,j

]

(76)

where 1pj is the pressure drop across link, lj is the link
length and gj is the link mobility which depends on the cross
section of the link. The viscosity term µj is the saturation-
weighted viscosity of the fluids inside the link given by µj =
sj,wµw + sj,nµn where µw and µn are the wetting and non-
wetting viscosities and sj,w and sj,n are the wetting and non-
wetting fluid saturations inside the link, respectively. The term
∑

pc,j corresponds to the sum of all the interfacial pressures
inside the jth link. A pore typically consists of two wider pore
bodies connected by a narrow pore throat. We model this by
using hour-glass shaped links. The variation of the interfacial
pressure with the interface position for such a link is modeled
by [34],

|pc (x) | =
2γ cos θ

rj

[

1− cos

(

2πx

lj

)]

(77)

where rj is the average radius of the link and x ∈ [0, lj] is
the position of the interface inside the link. Here γ is the
surface tension between the fluids and θ is the contact angle
between the interface and the pore wall. These two Equations
(77) and (76), together with the Kirchhoff relations, that is,
the sum of the net volume flux at every node at each time

step will be zero, provide a set of linear equations. We solve
these equations with conjugate gradient solver [35] to calculate
the local flow rates. All the interfaces are then advanced
accordingly with small time steps. In order to achieve steady-
state flow, we apply periodic boundary conditions in the direction
of flow.

We construct a diamond lattice with 64 × 64 links in two
dimensions (2D) with link lengths lj = 1mm for each link.
Disorder is introduced by choosing the link radii rj randomly
from a uniform distribution in the range 0.1mm and 0.4mm.We
use 10 different realizations of such network for our simulations
in 2D. In three dimensions (3D), we use a network reconstructed
from a 1.8 × 1.8 × 1.8mm3 sample of Berea sandstone that
contains 2, 274 links and 1, 163 nodes [36]. Simulations are
performed under constant pressure drop 1P across the network.
For 2D, we have considered 3 different values for pressure drop
such that, 1P/L = 0.5, 1.0, and 1.5MPa/m. For the 3D network,
values of 1P/L are chosen as, 10, 20, 40, and 80MPa/m. The
values for surface tension γ are chosen to be 0.02, 0.03, and
0.04N/m for both 2D and 3D. Three different values of viscosity
ratios M(= µn/µw) = 0.5, 1.0, and 2.0 are considered. These
values are chosen in such a way that the capillary number,
defined as

Ca = µeQ

γAp
(78)

falls in a range of around 10−3 to 10−1. Here µe is the saturation
weighted effective viscosity of the system given by µe = Swµw +
Snµn. Specifically, we find Ca in the range of 0.004–0.074 for 2D
and 0.001–0.271 for 3D in the steady state. As the simulations are
performed under constant pressure drop, the capillary number
fluctuates. Ca is therefore calculated as functions of time by
measuring the total flow rate Q along any cross section of the
network perpendicular to the applied pressure drop. For any set
of parameters, saturations are varied in the steps of 0.05 from 0
to 1 which correspond to 21 saturation values.

The simulations are continued to the steady state which is
defined by the global measurable quantities, such as the fractional
flow or the total flow rate Q fluctuate around a steady average.
In the steady state, we calculate the seepage velocities averaged
over time. First we use direct measurements, where we measure
the global flow rates (Q, Qw, and Qn) and the pore areas (Ap,
Aw, and An) through any cross section orthogonal to the applied
pressure drop and then use Equations (8)–(10) to calculate the
seepage velocities. Next, we perform the measurements using
the differential pore areas (ap, aw, and an) and calculate the
seepage velocities using description given in section 4. We then
compare the results from the two measurements and calculate
the co-moving velocities. We then verify the relation between the
seepage velocities and their higher moments.

For the direct measurements, imagine a cross section at any
place of the network orthogonal to the overall direction of flow.
For the regular diamond lattice in 2D, all the links have the same
length. Different moments of the seepage velocities can therefore

Frontiers in Physics | www.frontiersin.org 7 January 2020 | Volume 8 | Article 4

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Roy et al. Flow-Area Relation in Two-Phase Flow

FIGURE 1 | Verification of the relations (11), (45), and (59) between the steady-state seepage velocities vp, vw, and vn, and their higher moments for the 2D regular

network. The top row represents the direct approach of measurements using Equations (79), (80), and (81). The bottom row corresponds to the velocities measured

from the differential area distributions defined in Equations (58), (60), and (61). vp has a unit mm/s. Subsequently, for q = 2 and 3, the units for v
q
p will be mm2/s and

mm3/s, respectively.

FIGURE 2 | Verification of the relations (11), (45), and (59) between the steady-state seepage velocities vp, vw, and vn, and their higher moments for the 3D Berea

network. The direct approach of measurements using Equations (82)–(84) are presented in the top row. The measurements using the differential area distributions

defined in Equations (58), (60), and (61) are presented in the bottom row. vp has a unit mm/s. Subsequently, for q = 2 and 3, the units for v
q
p will be mm2/s and

mm3/s, respectively.
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FIGURE 3 | Numerical verification of Equation (74) between the fluctuations in

the seepage velocities. 1v2p has a unit mm2/s.

be calculated by

v
q
p =

∑

j

(

qj

aj

)q

aj

∑

j

aj
, (79)

v
q
w =

∑

j

(

qj

aj

)q

ajSw,j

∑

j

ajSw,j
, (80)

and

v
q
n =

∑

j

(

qj

aj

)q

ajSn,j

∑

j

ajSn,j
, (81)

where aj is the projection of the pore area of the jth link on the
cross sectional plane. Here, all links have the same angle α = 45◦

with the direction of the overall flow. However, in case of the
irregular network in 3D, Equations (79)–(81) need to bemodified
as the links have different lengths and orientations. In such case,
the one can calculate the seepage velocities by [28],

v
q
p =

∑

j

(

qj

aj

)q

ajlx,j

∑

j

ajlx,j
, (82)

v
q
w =

∑

j

(

qj

aj

)q

ajSw,jlx,j

∑

j

ajSw,jlx,j
, (83)

and

v
q
n =

∑

j

(

qj

aj

)q

ajSn,jlx,j

∑

j

ajSn,jlx,j
, (84)

where lx,j = lj cosαj is the projection of the link length (lj) to the
direction of the overall flow.

If we consider every link having the same length lj = l
and same orientations αj = α in these equations, we retrieve
the Equations (79)–(81). For the first moment (q = 1), the
velocities v

q
p, v

q
w and v

q
n are equivalent toQ/Ap,Q/Aw, andQ/An,

respectively, in both 2D and 3D.
For the second approach, we construct the distribution of

differential transversal pore areas ap, aw, and an such that apdv,
awdv, and andv express the transversal pore areas for the total,
wetting and non-wetting fluids within the velocity range from v
to v + dv, so that they satisfy Equations (38), (40), and (41). We
therefore have,

ap(v)dv =
1

L

∑

j

ajlx,j,

aw(v)dv =
1

L

∑

j

ajlx,jSw,j,

an(v)dv =
1

L

∑

j

ajlx,jSn,j, (85)

where j runs over all the sites satisfying the condition: v < vj <

v+dv, vj being the local velocity of link j. In case of the 2D lattice,

lx,js are same for any j and given by lx,j = l/
√
2. With these,

different moments of the seepage velocities are then calculated
using Equations (58), (60), and (61), respectively.

For any saturation, the seepage velocities and their higher
moments should follow the relations (11), (45), and (59). We
plot our numerical measurements in Figures 1, 2 for 2D and
3D, respectively. The upper row in each figure corresponds to
the direct measurements and the lower row correspond to the
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FIGURE 4 | Measurement of the co-moving velocity (vm) and its higher moments for the 2D network. The top row corresponds to the calculations using Equations

(29) and (30) with the direct measurements. The bottom row shows the measurements of v
q
m using the differential area distributions with Equation (46) and compared

with the direct measurements where higher fluctuations are observed. vm has a unit mm/s. Subsequently, for q = 2 and 3, the units for v
q
m will be mm2/s and mm3/s,

respectively.

FIGURE 5 | Measurements of v
q
m for the 3D Berea network where the top row corresponds to the direct measurements using Equations (29) and (30), and the bottom

row corresponds to the measurement from the differential area distributions using Equation (46). Here, larger fluctuations in the results calculated with the differential

pore area are observed compared to the 2D network. vm has a unit mm/s. Subsequently, for q = 2 and 3, the units for v
q
m will be mm2/s and mm3/s, respectively.
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measurements from the differential area distribution. A good
agreement with the relations can be observed for first as well as
for the higher moments for both the networks.

Next we measure the fluctuations in the seepage velocities
which obey Equation (74). Numerically, 1v2p, 1v2w, and 1v2n are
calculated from the knowledge of the 1st and 2nd moments by,

1v2p = 〈v2〉p − 〈v〉2p,
1v2w = 〈v2〉w − 〈v〉2w,
1v2n = 〈v2〉n − 〈v〉2n. (86)

In Figure 3, we plot these fluctuations for the two networks
to compare with Equation (74) and good agreements is
observed. There are some deviations in the results for the Berea
network, since the results in 3D is based on only one network
configuration whereas the results for 2D are averaged over 10
different configurations.

Finally, we verify the relations between seepage velocities
and their higher moments while varying the fluid saturation as
given by the Equations (29), (30), and (62). For this, we first
calculated the co-moving velocity (vm) and its higher moments
from Equations (29) and (30) where we used the values of the
seepage velocities measured with the direct approach. This is
shown in the top rows of Figures 4, 5 for 2D and 3D, respectively,
which show good agreements with Equations (29) and (30). We
then compare these values of v

q
m with the measurements from

the differential transversal areas using Equation (46). For this,
we first constructed the histogram for the differential pore area
am corresponding to the co-moving velocity from Equation (47)
where we have used the variations of ap, aw, and an with the
saturation Sw. For this purpose, we have considered 21 different
values of saturations within 0 and 1 with an interval of 0.05.
We then integrate am from −∞ to ∞, weighted by the velocity
and normalized by the total pore area to obtain the desired co-
moving velocity with Equation (46). These results are plotted
in the bottom row of Figures 4, 5 where they are compared
with the results from direct measurements. The data points
roughly follow the diagonal straight line showing satisfactory
agreement with the theoretical formulations. However, we
observe deviations in the results that is higher compared to the
direct measurements. We believe this is due to the numerical
errors that added up from several steps in the calculation such
as the binning techniques while measuring the distributions,
taking the derivatives and calculating the integrals. Moreover, the
fluctuations for 3D are much higher compared to 2D, which is
due to the lack of averaging over different samples as we have
already mentioned earlier.

7. SUMMARY

The aim of this paper is to provide the link between the pseudo-
thermodynamic theory at the continuum level developed in
Hansen et al. [21] (see section 3) and the velocities occurring at
the pore level during immiscible two-phase flow in porousmedia.
This link is provided by defining the differential transversal pore
areas defined in section 4, which essentially correspond to the

statistical distributions of velocities at the pore level. The central
quantities are the velocity differential transversal pore area ap,
the wetting fluid differential velocity transversal pore area aw,
the non-wetting fluid velocity differential transversal pore area
an, and the co-moving velocity differential transversal pore area
am. We also consider the thermodynamic velocity differential
transversal pore areas âw and ân. The relations found by Hansen
et al. [21] for the average seepage velocities, the co-moving
velocity and the thermodynamic velocities are generalized to
the differential transversal areas here. In the following section
5, the relations are generalized to higher moments of the
velocity distributions.

The theoretical derivations are then in section 6 validated
by numerical simulations. We used dynamic pore-network
modeling where an interface-tracking model is used to simulate
steady-state two-phase flow.We used both regular pore networks
and an irregular pore network reconstructed from a Berea
sandstone for our simulations. By measuring the seepage
velocities from the differential area distributions and comparing
them with the direct measurements, we validated the essential
predictions from the earlier theoretical sections.

Both Hansen et al. [21] and the present paper are to be seen
as installments toward a theory for immiscible flow in porous
media at the continuum scale. The structure of this theory
reflects that found in thermodynamics: A set of general relations
between the macroscopic variables based on energy conservation
(i.e., the Gibbs relation) and Euler homogeneity. These general
equations then have to be complemented by an equation of
state which introduces the specifics of the system at hand. In
the immiscible two-phase flow theory we are presenting here,
Euler homogeneity and mass conservation provide the general
equations that transcend the specifics of the porous medium.
These general equations then have to be complemented by the
constitutive equations for vp and vm, which provide the specifics
of the porous medium.

The resulting set of equations may then be solved for
structured porous media where the structure are associated with
length scales larger than that set by the REV. This is e.g., seen in
the explicit appearance of the porosity φ in Equations (34)–(36).

An open question, though, is what happens when there is
non-trivial structure in the porous medium all the way from the
pore scale to the continuum scale, see [37] and [38]—or when
the saturation of the system is at a critical value, see [36]. The
fundamental Euler scaling assumption (12) would then need to
be modified, and with it, all the ensuing equations.
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