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Abstract—Maritime operations inevitably influenced by the
wind, wave, sea currents, or other perturbations at sea. Providing
decision support for these operations based on historical and
real-time data of ship status is thus of great concern in terms of
ship safety. However, it is challenging for collecting and analysis
large quantities of ship data in real operations. Moreover, the
development of an onboard decision support system (DSS) will
be a gradual and iterative process subject to extensive testing
and simulation. Consequently, the paper presents an integrated
simulation framework which provides testing and simulation
environment for the DSS development. The system enables
navigation data transmission from a well-designed simulator and
automatic determining of the safe maneuver of a ship within the
framework. The development of DSS is divided into three steps.
Firstly, we collect the ship maneuvering data from the simulator
and classify them; Then we implement an imitation learning (IL)
algorithm to learn an initial policy from the data; Finally, based
on the policy, the reinforcement learning (RL) algorithm is used
to determine the safe decision for operations. In this way, it could
speed up the learning efficiency by extracting more information
from available experience. To verify the effectiveness of the
proposed integrated simulation framework, in this study, we
implemented the proposed DSS in ship docking operation under
various environmental disturbances. It is interacted with the
simulator to obtain data. By processing these data, it provides the
shipmaster with the information about the consequences of the
ship maneuvering decisions. The simulation results demonstrate
that the proposed DSS could assist the shipmaster in deciding
policies and increase the efficiency of decision making.

Index Terms—ship docking, decision supporting system, imi-
tation learning (IL), reinforcement learning (RL)

I. INTRODUCTION

In congested sea conditions, the marine operation becomes
difficult due to much consideration of positioning and heading
requirements in a short time. Besides, the presence of uncer-
tainty, in the form of environmental disturbances like wind,
wave, and sea current, further increases maneuvering complex-
ity. Analysis based on the Norwegian Maritime Directorate
incident database shows risk influencing factors in maritime
accidents could relate to weather, geographic, visibility, tech-
nical failures, and human errors [9]. Notably, human-based
error is the main reason for that. For instance, for ship docking
application, current knowledge of practices, and risk manage-
ment on board the ships is primarily based on experience.
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Therefore, to reduce human-based errors in ship operations, a
more intelligent DSS based on fact-based knowledge and cir-
cumstances concerning the ship-environment status are needed
to increase ship safety. The DSS can be used to observe the
surrounding, predict the ship’s responsive motions and supply
the shipmaster with information on suitable control command.
There are already existing works about DSS development in
several fields such as UAV [5], and autonomous ships [6, 7].
However, the challenge in developing such a system comes
from two respects: 1) how to obtain the motions of the ship
dynamically, and 2) how to use the collected motion data to
extract the suitable control command.

To achieve this, at first, we propose a integrated simulation
framework for DSS by integrating a well-designed simulator.
The simulator can offer extensive scale data that can be
collected much faster than in the real world. Based on this, the
DSS can analyze the real-time data on sea conditions alongside
historical information about a ship’s performance to set its
optimum action. From the simulator point of view, the DSS
will be designed for use in crew training, supporting the crew
with information on how the ship will perform in real life.
From the DSS point of view, it will take advantage of the
significant amount of data available for analysis, to provide
onboard support, such as visualizing complex surroundings
and illustrating future prediction of the situation for either
achieving autonomy or remote control.

Secondly, we use these dataset as input to an RL algo-
rithm that decides what action to take. Even though RL
has been widely applied in autonomous ships and showed a
good performance in applications such as auto docking [3],
autopilot [1], collision avoidance [10], and so on, it remains
relatively limited primarily due to 1) extremely high time cost
of exploring and sampling. 2) highly rely on the problem
definition, especially the reward function design. An alter-
native data-driven method is called imitation learning (IL).
It learns an optimal policy by imitating the expert’s decision
from demonstrations data instead of learning from a specified
reward function. One of the limitations of IL is the requirement
of plenty of demonstrations data. Moreover, the obtained
policy works efficiently in specific simple applications but hard
to scale very well. Consequently, combining IL and RL can be
an efficient way for complex marine operation in the context
of shipmaster’s demonstrations are available from a simulator.



Fig. 1. Overview of integrated simulation framework for DSS.

Given such demonstrations, IL algorithm can be used to train
a policy that maps perceptual inputs to action, then use the
initial policy to fine-tuning the RL policy.

In this paper, we propose an integrated simulation frame-
work to provide the test environment for the DSS. Chapter
I introduces each component for the framework. In chapter
II, we present the implementation for ship docking operation
using the intelligence DSS, which combines the IL and RL
modules inside. The simulation result will be shown in the
next chapter. Finally, the conclusion and future works will be
discussed in the last chapter.

II. COMPONENTS FOR THE INTEGRATED SIMULATION
FRAMEWORK

This section presents the definitions and theoretical back-
ground of the integrated simulation framework. Fig. 1 illus-
trates the scheme of integrated simulation framework, which
involves a well-designed simulator and the DSS. Where the
simulator used in this study is the NTNU research simulator,
which locates on campus Ålesund; The DSS is a system
where logging data obtained from the research simulator,
make informed decisions regarding ship performance under
environmental conditions and send the control command back.

A. NTNU research simulator

As shown in Fig. 2, NTNU research simulator is a center
that aims to test technology, methodology, and procedure for
remote control of various functions on ships. The research
area is included all work stations on a ship or in a control
center for autonomous or semi-autonomous control. It includes
navigation bridge, operation bridge (aft bridge), engine room,
crane, ROVs, winch, and operation manager (on-shore and
offshore). All interfaces will be real interfaces commonly used
in the industry. In addition, all the work stations are flexible
to perform various navigation scenarios. Single controls can
be replaced for customized set-up, and workplaces will be

Fig. 2. Layout of the NTNU research simulator.

modularized, and a minimum of interfaces to simplify testing
of equipment of different makes.

The main objective of the research simulator is to simulate
the different expected conditions and train the navigators to
make decisions based on real-time data. It also provides high-
quality and updated weather forecasts to help them to under-
stand the ship’s behavior better, and take the appropriate action
due to different environmental conditions. The navigators have
to plan a route based on their experience during the training
process. At the same time, a significant amount of simulation
data could be stored.

B. Configuration of DSS

Based on the stored dataset, we use the proposed DSS to
learn a policy that will support the onboard decision making.
It contains three modules: data acquisition module, IL module,
and RL module.

1) Data acquisition module: The data acquisition module is
responsible for collecting and pre-processing demonstrations
data from the research simulator.

2) IL module: Given such demonstrations data, the IL mod-
ule can be used to learn a maneuvering policy that achieves
similar performance compared to the expert. As there already
exists the simulator platform built through system engineering
principles, we could collect the expert’s demonstrations instead
of implementing expensive real ship experiments.

Behavior cloning (BC) is one of the imitation learning
techniques, which treats imitation learning as a supervised
learning problem. In BC, we have the labeled state-action
pairs from the expert’s demonstrations, and we use the IL
to train a policy by using the loss function between the
expected output variable and the labeled target data (action).
The goal is to approximate the policy so that we can mimic the
behavior model of expert’s demonstrations. As a result, IL is
used to learn the sequential decision-making policy that maps
perceptual inputs to outputs. The learning result can either
serve for the initial policy for RL or formulate the references as
prior knowledge for prediction of future operation. However,
it is sometimes hard for adequate expert demonstrations. More



Fig. 3. Comparison of imitation learning and reinforcement learning.

importantly, the learned policy can only perform at most as
well as the guiding expert’s policy and it may have poor
performance in new unseen situations due to the a shift from
the training data distribution.

3) RL module: Unlike other approaches to machine learn-
ing such as supervised learning, where a batch of data for
training is made available for the agent, RL methods depend
on gathering this data in a process, where an agent interacts
with an environment (e.g., an autonomous ship) by following
a policy, as illustrated in Fig. 3. Note that the policy here is
always initialized stochastic.

RL aims to deal with teaching the agent the connection
in between states and actions, known as state-action pairs
{(s, a)}, with the aim of maximizing a user defined reward
r. Subsequently, with environments of strong interconnections
of such pairs and future rewards possible RL is rendered a
complex problem. In each state of the environment, it takes
action based on the stochastic policy π(a|s), and as a result,
receives a reward r and transitions to a new state. The goal of
RL is to learn an optimal policy that maximizes the long-term
cumulative rewards.

RL has shown great potential in improving system per-
formance autonomously by learning from iterations with the
environment. It has achieved significant progress in solving
this sequential decision problem, from autonomous driving
cars like Google Waymo [11], to playing video games [2].
The RL algorithm for solving these problems generally can
be categorized into model-free and model-based approaches.
Model-free RL algorithms are capable of solving a wide range
of control problems. However, it typically requires a huge
number of samples to achieve good performance. Also, it
can suffer from vast and high dimensional possible state and
action space, which can result in an insufficient exploration or
prohibitively long training time. Therefore, direct application
model-free RL is not only sampling insufficient, but costly and
dangerous in our applications. Although model-based RL may
require fewer samples, it can lead to suboptimal, potentially
unstable results [4]. Considering these limitations, we use

Fig. 4. A ship docking scenario manoeuvred by a shipmaster in the research
simulator.

the initially trained policy from the IL module to initialize
the model-free RL policy. In this way, the model-free RL
could learn complex tasks using relatively small samples when
compared to purely model-free RL. Thus we combine the
benefits of IL and model-free RL by using the initial policy
to initialize a model-free RL.

III. IMPLEMENTATION OF THE PROPOSED DSS

A. Ship docking scenarios

We firstly creating an expert’s demonstrations dataset in
the integrated simulator (see Fig. 4). The simulator offers
extensive data about the ship and environment that can be
collected much faster than in the real world. To collect expert’s
demonstrations, we assigned an experienced shipmaster to
perform ship docking operation to Ålesund harbor. Here we
assume that the human-operator performs perfectly, which
ensures that these demonstrations data could be used to learn
a good docking policy representation.

To generate a good initial policy from the IL module, we
have to make sure that the data used for training must consist
of situations with enough diversity, such as various initial
heading angles. How much the training dataset explores the
environment would play a vital role in the learned policy’s
performance. As shown in the table I, we perform the ship
docking operations from a defined starting point to the Ålesund
harbor for eight scenarios, and repeat three times for each
scenario to get more demonstrations. Here, the initial heading
angle is set from 0 degrees to 315 degrees with a 45-degree
interval. The wind direction and wind speed are set as 100
degrees and 10.5 knots respectively. After the demonstrations
collection, a dataset D including information about ship po-
sition, ship velocity, control command is saved for training a
initial policy with IL.

B. Problem definition in IL module

The goal of the imitation learning is to learn a basic policy
that imitates the behavior of the shipmaster. Given the expert’s
demonstrations dataset D of states and actions collected during
the 24 sets scenarios over T time steps, the loss function for



TABLE I
SIMULATION SETUP FOR SHIP DOCKING SCENARIOS.

Scenario num.
Wind

direction
[degree]

Wind
speed

[knots]

Initial
heading
[degree]

1 100 10.5 North/ 0
2 100 10.5 Northeast/ 45
3 100 10.5 East/ 90
4 100 10.5 Southeast/ 135
5 100 10.5 South/ 180
6 100 10.5 Southwest/ 225
7 100 10.5 West/ 270
8 100 10.5 Northwest/ 315

learning a policy parametrized by θ by supervised learning can
be written as

L(θ) = 1

2
(aπθ (st)− at)2 (1)

where aπθ (st) is the action predicted by the policy-network πθ
at state st and at is the labeled action from the demonstrations.
As a result, taking the expert’s docking policy as a supervision
signal, we can get a relatively good policy from the IL module.
Then we can use it as an initial policy for the subsequent
reinforcement learning phase, which can significantly reduce
the training time, stabilize the training process, and produce
better results than training from scratch.

C. Problem definition in RL module

1) RL setup: The sequential decision-making for the auto-
docking problem can be formulated as a Markov decision
process (MDP) in an RL framework illustrated in Fig. 3. The
decision-maker (ship), which is called an agent πθ, parame-
tered by θ at each time step t, executes an action at ∈ A, at
state st ∈ S in the environment, and the environment, in turn,
yields a new state st+1 and reward rt ∈ R. The definition of
the state, action, and reward function for the ship docking task
is described as follows:
• As illustrated in Fig 5, the ship uses the reference system

with velocities being surge u, sway v and yaw r. The ship
position Pt is saved in Universal Transverse Mercator
(UTM) coordinates in the raw dataset, and we translate it
to a Cartesian coordinate with the origin at start point
of a docking demonstration. Pgoal represents the goal
position near the port. We define a state gt as a ship’s
relative goal position, i.e. the coordinates of the goal in
the ship’s local polar coordinate frame. ψt and χt refer
to the heading angle and course angle of the ship. φ̃t is
the relative angle between the course angle of the ship
and angle pointing to the destination from the ship. θt is
the relative angle between the heading angle of the ship
and the quay. In addition, the previous predicted action
at−1 is also included in the state vector. Thus, the state
space is represented as follows:

st = [Pt, gt, ψt, χt, φ̃t, θt, at−1] (2)

• In the ship maneuvering, the shipmaster maneuvers a ship
by controlling the rudder angle. Where the rudder angel

Fig. 5. State and action space definition for the RL problem.

δ can creates a moment about the centre of gravity of
the ship, then change the ship’s orientation by giving a
drift angle correspondingly. As a result, we set the action
space as at = δ in this study.

• The reward function is computed as the sum of the
rewards accumulated in each episode. It is a measurement
of the quality of the action. At first, the reward function
can be specified to reward the ship for approaching
the destination. It is designed to constraint the ship to
reach the docking position next to the quay. The goal
reward Rgoal is designed to guide the ship to achieve the
destination. This can be expressed mathematically as:

Rgoal =


rgoal if‖Pgoal − Pt‖2 < 10.0

λg(‖Pgoal − Pt−1‖2−
−‖Pgoal − Pt‖2) otherwise

(3)
Where λg refers to a hyper-parameter. When the ship is
directly approaching the destination, the more substantial
goal reward value is imposed on the agent.
Second, the reward function can be specified to reward
the ship to arrive with the correct heading. Consequently,
Rheading will help training converge in guiding the ship
towards and parallels to the quayside. The angle error
between the heading angle of the ship and the quay θt
should be small than a predefined parameter θε.

Rheading =

{
λh(θε − θt) if‖Pgoal − Pt‖2 < 3 ∗ L
0 otherwise.

(4)

2) Training process: Given the input st and output at, we
create the a policy neural network mapping st to at and a
critic network to predict a state value function for each state.

As shown in Fig. 3, to represent the policy network, we
use a fully-connected multilayer perceptron with two hidden
layers consisting of 64 and 64 hidden units respectively with
tanh nonlinearities predicting the probability over the action
space. In the process of training, the state is transmitted to the
neural network, and the agent selects and executes an action
according to the predicted result with the highest probability.



Training of the critic and policy networks is performed by
defining the surrogate loss functions for each network. Then,
back-propagate gradients computed with the surrogate loss
function are used to update the weights of the network. We
refer to the network trained with this approach as PPO [8], as
shown in Algorithm 1. Note that the policy network training
was initialized by the policy based on expert’s demonstrations.
This enables a transition from IL to RL without performance
degradation and improves RL in terms of overall performance
and reduces training time.

Algorithm 1 Combining IL with RL for ship docking.
1: Input: Demonstrations dataset D = {(st,at)}Nt=1.
2: First: Train the policy network πθ by IL
3: for iteration = 1, 2, . . . , NIL do # imitation learning
4: Update πθ with the Equation 1 by gradient descent
5: end for
6: Second: Initialize value network Vφ(st), train πθ and
Vφ(st) by RL

7: for iteration = 1, 2, ..., NRL do
8: Run policy πθ for T timesteps, collecting {st, rt,at},

where t ∈ [0, T ]
9: Estimate advantages, Ât =

∑T
l=0(γλ)

lδt, where δt =
rt + γVφ(st+1)− Vφ(st)

10: break, if T > Tmax
11: πold ← πθ
12: for j = 1, ..., Eπ do
13: rt(θ) =

πθ(at|st)
πold(at|st)

14: LPPO(θ) =
∑Tmax
t=1 min(rt(θ)Ât, clip(rt(θ), 1 −

ε, 1 + ε)Ât)
15: Update θ with lrθ w.r.t LPPO(θ)
16: end for
17: for k = 1, ..., EV do
18: LV (φ) = −

∑T
t=1(

∑
t′>t γ

t′−trt′ − Vφ(st))2
19: Update φ with lrφ by Adam w.r.t LV (φ)
20: end for
21: end for

IV. SIMULATION RESULT FOR SHIP DOCKING OPERATION

As described in the previous sections, we collect docking
trajectories from the expert’s maneuvering in the integrated
simulation framework. We then use the dataset to train an
initial policy for RL using BC.

We train a ship from a starting position to converge to
a defined quayside. The final heading will parallel with the
quayside in 180 degrees. During the training process, the
starting position and initial heading are generated randomly.
The starting position is selected within a 5-meter range, and
the initial heading is selected within 360 degrees range. When
the ship achieves reliable performance, we save the trained
policy and test it using a defined starting position and heading
angle. Fig. 6 and Fig. 7 illustrate the simulation results of
the position and heading in the docking scenario. The initial
heading angle is set as 0 degrees and -75 degrees, respectively.

Fig. 6. Ship trajectory and heading with the 0 degree initial heading.

We can find that the final heading angle is approximately 180
degrees.

Fig. 8 shows the average reward during the training of the
RL policy. We can find that the reward function increases along
with the training process.

V. CONCLUSION AND FUTURE WORKS

In this study, we proposed an integrated simulation frame-
work, which aims to create a reliable decision support system
(DSS) that will assist the shipmaster in deciding action and
efficient ship maneuvering. We take the docking operation as
an example to verify the effectiveness of the DSS. In such sce-
narios, ships should be carefully aware of their surroundings
and make decisions based on the sensor input. Under harsh
environmental conditions, the ship docking operation mainly
relies on the human experience and knowledge of the past to
make decisions. Consequently, an intelligent DSS for docking
operation is developed. The demonstrations dataset is collected
from a research simulator then transmitted to an IL module,
which can efficiently obtain intelligence of decision making for
docking scenarios. It can be treated as guidance to accelerate
the training efficiency of RL. RL can calculate the correspond-
ing action under various environmental conditions and initial
heading. Thus combining IL and RL can be an efficient and
promising method for the ship docking application.

The experimental results show that the resulting imitation
policies perform favorably compared to those generated by
existing imitation learning approaches that do require access
to demonstrator actions. We can conclude that the DDS has



Fig. 7. Ship trajectory and heading with the -75 degree initial heading.

Fig. 8. Average reward for ship docking.

the potential to provide decision support and predictions for
the shipmaster.

The proposed DSS will validate by the real ship operation in
the future. We believe that the dataset from real ship operations
can be used to further research in this area with multiple and
complex tasks. Furthermore, it can be considered to be applied
to achieve an auto-docking operation.
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