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Abstract 

Prostate cancer is the second most common malignancy, and the fifth leading cause of cancer 

related death among men, worldwide. A major unsolved clinical challenge in prostate cancer 

is the ability to accurately distinguish indolent cancer types from the aggressive ones. 

Reprogramming of metabolism is now a widely accepted hallmark of cancer development, 

where cancer cells must be able to convert nutrients to biomass while maintaining energy 

production. Metabolomics is the large-scale study of small molecules, commonly known as 

metabolites, within cells, biofluids, tissues or organisms. Nuclear magnetic resonance (NMR) 

spectroscopy  is commonly applied in metabolomics studies of cancer. This chapter provides 

protocols for NMR-based metabolomics of cell cultures, biofluids (serum and urine) and 

intact tissue, with concurrent advice for optimal biobanking and sample preparation 

procedures. 
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1. Introduction 

Prostate cancer is the second most common malignancy, and the fifth leading cause of cancer 

related death among men, worldwide [1]. Prostate cancer is a manifested heterogeneous 

disease, ranging from slow growing and indolent to aggressive with high risk of fatal 

outcome. A major unsolved clinical challenge in prostate cancer is the ability to accurately 

distinguish indolent cancer types from the aggressive ones. This leads to substantial 

overtreatment of patients with harmless cancers, as well as undertreatment of patients with 

aggressive disease.  

Reprogramming of metabolism is now a widely accepted hallmark of cancer development [2]. 

Cancer cells must be able to convert nutrients to biomass while maintaining energy 

production, which requires reprogramming of central metabolic processes in the cells. This 

phenomenon is increasingly recognized as a potential target for treatment, but also as a source 

for biomarkers that can be used for prognosis, risk stratification and therapy monitoring. 

Metabolomics is the large-scale study of small molecules, commonly known as metabolites, 

within cells, biofluids, tissues or organisms. Collectively, these small molecules and their 

interactions within a biological system are known as the metabolome. Since metabolites not 

only represent the downstream output of the genome, but also the upstream input from the 

tumor microenvironment, they contain a rich source of information that is currently 

underexploited. Metabolomics have shown that prostate cancer cells display significantly 

altered metabolism compared to normal cells [3, 4]. It has repeatedly been shown that 

distinctive metabolites are associated with prostate cancer aggressiveness and recurrence, and 

further that these metabolites are associated with gene regulation of cancer-associated 

pathways [3, 5-9]. 
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Nuclear magnetic resonance (NMR) spectroscopy  is one of the most widely applied 

methodologies in metabolomics studies of cancer, using sample material such as cell culture 

extracts, biofluids or even intact tissue [10]. NMR spectroscopy is a robust and reproducible 

technique with safe metabolite identification, requiring limited sample preparation leaving the 

sample intact after analysis. Additionally, in conjunction with the use of stable isotope 

tracers, NMR spectroscopy is an excellent method for exploring the dynamics and 

compartmentation of metabolic pathways and networks. The major limitation compared to 

mass spectrometry (MS) is the lower sensitivity (micromolar range compared to picomolar 

range for some MS-based methods), however, metabolites from important cancer pathways 

(glycolysis, choline metabolism, amino acids) are detected by MR analysis. The aim of the 

current chapter is to provide protocols for NMR-based metabolomics of cell cultures, 

biofluids (serum and urine) and intact tissue, with concurrent advice for optimal biobanking 

and sample preparation procedures.  

2. Materials 

All work in the laboratory should be carried out wearing a lab coat and disposable gloves 

when handling chemical reagents and biological material. When handling liquid nitrogen, 

safety glasses and cryo-gloves, lab coat with long sleeves, and pants worn outside the shoes to 

prevent shoes from filling should be worn. Chloroform and methanol must be handled in a 

ventilated fume hood. 

2.1. Biobanking 

2.1.1. Biofluids collection 

1. For serum: Hypodermic needles, serum-separating tubes, pipettes, and cryo-

compatible tubes. 

2. For urine: Sterile urine containers, pipettes and cryo-compatible tubes.  
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3. Centrifuge and -80 °C freezer. 

2.1.2. Tissue 

1. Biopsy needle and scalpel or double bladed knife. 

2. Cryo-compatible container, tube or bag. 

3. Two solid metal plates (thickness ≥ 5mm), metal plate with a pit suitable for drilling, 

drill fixed to a stand, bits for drill to cut out cylinders, tweezers and styrofoam surface.  

4. Liquid nitrogen and nitrogen-compatible thermos. 

2.2. Biofluids analysis 

1. Eppendorf tubes, 3mm NMR tubes with caps, syringes with long needles (>10 cm), 

micropipette(s) (60-550µL) and tips, and ruler for serum analysis. 

2. Vortex or shaker and centrifuge.  

3. Buffer solutions for serum (See Note 1) and/or urine analysis (See Note 2). 

2.3. Polar cell extract analysis 

1. Pipette(s), T225 flasks, tubes and cell scrapers. 5 mm NMR tubes with caps. 

2. Sterile cell culture medium (See Note 3), phosphate buffered saline (PBS), D2O 

(99.8%)-based PBS solution, 70% methanol and ice. 

3. Centrifuge, vortex and -80°C freezer. 

4. Parafilm, 27G-30G needles and a lyophilizer for freeze-drying of cell extracts. 

2.4. Dual phase tissue extract analysis 

1. Cryo-comaptible tubes (2 mL and 15 mL), pipettes, ice cooled porcelain mortar and 

pestile and spatula. 5 mm NMR tubes with caps. 

2. Methanol (-20°C), chloroform (-20°C), liquid nitrogen and distilled water (ice cold). 

3. Analytical balance, vortex, centrifuge and lyophilizer. 
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2.5. Intact tissue analysis 

1. Rotors with caps, disposable inserts, plugs and screws, filling funnel and screw driver. 

2. Micropipette and tips, tweezers, weighing boats and permanent marker. 

3. 25 mM sodium formate (HCOONa) in D2O (99.8%) solution and liquid nitrogen.  

4. Analytical balance and a cooled work station (described in [11]) or ice block.  

3. Methods 

3.1. Biobanking: Collection and storage of biological material 

Human biological material is regularly collected and stored in biobanks across the world. The 

stored material may include tissue, full blood, serum, plasma and urine. This collection plays 

a crucial role in modern biomedical research. For any biobank it is of utmost importance to 

have standardized protocols for handling biological material, to ensure reproducibility in 

research projects. Biobanks also have a responsibility to strictly adhere to national and 

international ethical guidelines regarding patient consent, privacy and safety of donors and 

proper archiving of samples.  

3.1.1. Biofluids 

Biofluids include full blood, serum, plasma and urine. Blood and urine should be collected in 

the morning after a fasting night, unless the research question requires other collection 

conditions. 

Serum 

For NMR experiments, serum is preferred over whole blood and plasma, as the latter two 

contain cells, clotting factors and additives which can interact with metabolites of the sample 

[12]. Serum can be separated from whole blood through centrifugation in serum-separating 

tubes or sedimentation with EDTA. Serum separating tubes includes a gel which 
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fractionalizes and accelerates blood clotting. This method is preferred over sedimentation, as 

EDTA is a contaminant for NMR analysis (See Note 4). 

Protocol for serum 

1. Collect venous blood from the donor in a serum separating tube with a hypodermic 

needle (This step has to be performed by an official health care professional). 

2. After collection, invert the tube five times to mix the sample with the gel included in 

the serum separating tube. 

3. Leave the sample at room temperature for 30 minutes for coagulation to occur. 

4. Centrifuge the blood sample at 1800 x g for 10 minutes. 

5. Carefully transfer the top layer of supernatant to one or more cryo-compatible tubes 

using a pipette (See Note 5). 

6. The serum samples can be used immediately (continue at subheading 3.2.1, Protocol 

for serum, step 2), or placed in a -80 °C freezer. 

Urine 

Urine is a true non-invasive way of biological sampling and does not require the competence 

of a health care professional for collection. 

Protocol for urine 

1. The urine is collected by the donors themselves in a sterile urine container and closed 

with the screw lid 

2. Pipette appropriate volumes of urine from the urine container into cryo-compatible 

tubes. 

3. The urine samples can be used immediately (continue at subheading 3.2.1, Protocol 

for urine, step 2) or placed in a -80 °C freezer (See Note 6).  
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4. Before analysis, large containers may be thawed overnight in the fridge and 

centrifugation may be needed to remove precipitation.   

3.1.2. Tissue 

Prostate cancer tissue is more difficult to collect compared to biofluids due to the limited 

amount of material and the unavoidable invasiveness of the procedure. However, tissue offers 

a more direct and valuable view into the metabolism of the tumor. Tissue from the prostate 

can either be collected as transrectal needle biopsies directly from the patient, as surgical 

biopsies after radical prostatectomy or as thin tissue slices after radical prostatectomy [13]. To 

stop tissue degradation, the material has to be snap frozen as fast as possible but within 30 

minutes after blood supply is cut to  [14, 15]. 

Protocol for needle biopsies 

1. Collect the tissue with a sterile biopsy needle (This step has to be performed by a 

health care professional). 

2. Place the biopsy in a cryo-compatible tube with a clean tweezer. Drop the closed tube 

in liquid nitrogen and store the sample in either -80 °C or keep in liquid nitrogen. 

3. Before NMR analysis, place the biopsy on a plastic weighing boat on top of a metal 

plate, which has been pre-cooled in liquid nitrogen, and use a scalpel to cut off 

approximately 1 mm at each end (See Note 7). 

Tissue slice collection  

This protocol is adapted from a highly standardized biobank collection of 2 mm research 

slices from the middle of the resected prostate. A homemade drilling system is developed for 

extraction of small tissue cylinders. Details on the equipment can be found in [13].  
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Protocol for tissue slice collection 

1. After surgical removal of the prostate, extract a complete prostate tissue slice by 

placing the prostate in a holder with a double bladed knife [13]. 

2. Place the tissue slice in a pre-cooled cryo-clamp to prevent tissue bulging. 

3. Plunge the cryo-clamp with the tissue into liquid nitrogen.  

4. Transfer the frozen tissue into a cryo-compatible bag or other container and place it in 

a -80 °C freezer. 

Protocol for tissue cylinder drilling from 2 mm whole-mount tissue slices (See Note 8) 

1. Pre-cool metal plates (designed for drilling) by placing them in liquid nitrogen 

using cryo-glowes. The metal is sufficiently cooled down when the nitrogen has 

stopped boiling. 

2. Take out the metal plates from the liquid nitrogen using cryo-gloves and place 

them on the styrofoam surface. 

3. Before proceeding to subheading 3.2.4, Protocol for intact tissue, place the 

tissue slice on the metal plate. Hold the tissue stable and drill out cylinders (1-3 

mm diameters) (See Note 9). 

4. Optional: The drilled sample may be cryo-sectioned and stained to obtain a 

histopathological evaluation of the sample before using it for analyses. Use 

isotonic saltwater for fixating the sample during sectioning to avoid contamination 

of your sample (See Note 10). 

5. In order to fit the sample into the insert, cut the cylinder into smaller pieces with a 

biopsy core device or scalpel as described in subheading 3.1.2, Protocol for 

needle biopsies, step 3. 
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3.2. Sample preparation  

3.2.1. Biofluids  

Liquid biopsies are easy to access and less invasive than tissue biopsies. The metabolic 

profiles of biofluids such as serum and urine can be investigated by NMR spectroscopy in a 

quantitative, automated and high-throughput fashion.  

Protocol for serum 

1. Thaw samples at room temperature (See Note 11). 

2. Slowly invert the tubes containing the thawed serum sample a couple of times to mix. 

3. Pipette an equal volume (≥120 µL) of serum (See Note 12) and serum buffer (See 

Note 1) into an Eppendorf tube. Slowly invert the tube three times to create a 

homogenous 50:50 serum:buffer mix. 

4. Mark a 3mm NMR tube at a height of 4 cm, excluding the curved bottom from the 

measurement. 

5. Use a long needle and syringe to fill the NMR tube with the serum:buffer mix to the 4 

cm mark without air bubbles. 

6. Cap the NMR tube by pressing the cap against the tube with your index finger until a 

click is heard. 

Protocol for urine   

1. Thaw samples at room temperature (See Note 11). 

2. Centrifuge the samples at 3000 x g for five minutes to remove debris. 

3. Pipette 540 µL of urine and 60 µL of urine buffer (See Note 2) into an Eppendorf 

tube. Mix using vortex or shake. 

4. Use a long needle and syringe to fill the NMR tube with the urine:buffer mix without 

air bubbles. This should fill the NMR tubes at exactly 4 cm. 
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5. Continue at subheading 3.2.1, Protocol for serum, step 6. 

3.2.2. Cell extracts 

For in vitro metabolomics studies, extracts of cultured cancer cells can be prepared for 

analysis using high-resolution NMR spectroscopy (See Note 13). The choice of extraction 

protocol depends on the polarity and cellular concentration of the metabolites of interest. 

Below, we describe a protocol that allows analysis of culture medium and polar cell extracts 

from experiments where cells have been cultured with a 13C-enriched substrate (See Note 14) 

for targeted studies of specific metabolic reactions (See Note 15). It should be noted that the 

choice of 13C tracer, cell line, culture medium composition and experimental conditions 

depend on the objective of the experiment. It is, however, important to select the total number 

of cells, substrate concentration and incubation time so that the amount of 13C substrate 

consumed by the cells will give sufficiently high signal-to-noise ratio in the NMR spectra in 

an acceptable experiment time. 

Protocol for polar cell extraction 

1. Culture approximately 1.5 x 107 cells to roughly 70% confluency in T225 flasks. 

2. At T0, replace medium with 40 mL fresh culture medium-containing tracer of choice. 

3. Transfer 2 mL of the culture medium to a centrifuge tube and store at -80°C. 

4. At time of harvest (See Note 16), collect 2 mL spent culture medium in cryo-

compatible  tubes and immediately store in -80°C. 

5. Wash cells twice with 25 mL PBS. 

6. Place 25 mL of -20°C 70% methanol on cells. 

7. Using a cell scraper, remove cells off flask bottom, transfer them to a centrifuge tube 

and store on ice. 

8. Vortex for 5 minutes. 

9. Repeat steps 6-7, transferring to a separate cryo-compatible tube. 
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10. Repeat step 8. 

11. Centrifuge extract tubes at 18000 x g for 15 minutes at 4°C.  

12. Pool the metabolite extracts from the two tubes (for each sample) to one 50 mL tube 

and store at -80°C. Store cell debris pellets at -80°C for determination of total protein 

content (See Note 17). 

13. Additional control samples can be prepared according to steps 1-10 to compensate for 

naturally abundant 13C: 

-Extracts from cells cultured in the absence of 13C labeled tracer  

-Fresh and used culture medium (without 13C substrate) 

 

Culture medium and cell extracts should be stored at -80C until further analysis. Cell extracts 

must be freeze-dried and reconstituted in a small volume of NMR-compatible buffer before 

analysis, whereas culture media can be analyzed directly after addition of a small amount of 

NMR-compatible buffer. 

 

Protocol for freeze-drying of cell extracts 

1. Distribute cold (-80°C) cell extracts into 50 mL tubes in small volumes (5-10 mL) in 

each tube. 

2. Put parafilm on the top of each open tube and pierce/stick the parafilm 20-25 times 

with a needle.  

3. Freeze dry the sample until all liquid has evaporated (typically takes several hours). 

Store at -80°C. 

 

Protocol for NMR sample preparation of polar cell extracts 

1. Dissolve the metabolite pellet thoroughly in 700 µL PBS dissolved in D2O.  
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2. Centrifuge at 2300 x g (4°C ) for 10 minutes. On visual inspection, the reconstituted 

sample should be clear and free from particles.  

3. Using a pipette, transfer 600 µL of the supernatant into 5 mm NMR tubes for NMR 

acquisition. 

Protocol for preparation of culture medium prior to NMR acquisition 

1. Centrifuge the culture medium at 2300 x g for 10 minutes. On visual inspection, the 

sample should be clear and free from particles. 

2. Mix 500 µL of medium with 100 µL PBS in D2O 

3. Using a pipette, transfer the solution (600uL) into 5 mm NMR tubes for NMR 

acquisition. 

 
3.2.3. Tissue extracts 

Chemical extractions can be performed on prostate tissue to yield solutions enriched with 

tissue metabolites that can be analyzed with high resolution NMR spectroscopy in the same 

way as biofluids and cell extracts. The extraction method should be chosen according to the 

polarity of the metabolites of interest. For example, for extraction of polar metabolites only, 

extraction protocols based on perchloric acid can be used. Below we describe a dual-phase 

extraction procedure using methanol and chloroform. This procedure yields two fractions that 

can be analyzed with NMR separately: an aqueous (polar) phase, containing water-soluble 

low-molecular weight metabolites, and an organic phase containing non-polar lipophilic 

molecules.  

Protocol for dual-phase tissue extraction 

1. Weigh the tissue on a weighing boat with an analytical balance and register the weight 

(See Note 18). 
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2. Crush and grind the tissue into a fine powder in liquid nitrogen using a pre-cooled 

mortar and pestile. 

3. Using a pre-cooled spatula, transfer the powder into a 2mL cryo-compatible tube 

sitting on ice, which will be referred to as tube 1.  

4. Add three times the tissue weight in cold methanol into tube 1. 

5. Add ca 100 µL of water into tube 1. 

6. Add six times the tissue weight in cold chloroform into tube 1 (See Note 19). 

7. Vortex until a milky appearance is achieved. 

8. Centrifuge tube 1 at 4°C at 1800 x g for 15 minutes. 

9. Using a pipette, transfer the resulting top layer, i.e. the polar methanol phase, to a new 

cryo-compatible tube, which will be referred to as tube 2 (See Note 20). Keep tube 2 

on ice. 

10. Add six times the tissue weight in methanol, four times the tissue weight in water and 

four times the tissue weight in chloroform into tube 1 and vortex. 

11. Repeat steps 8 and 9. 

12. Add three times the tissue weight in methanol, two times the tissue weight in water 

into tube 1 and vortex. 

13. Repeat steps 8 and 9. 

14. Leave tube 1 in the fume hood so that the chloroform evaporates for subsequent total 

protein content determination (See Note 21).  

15. Add three times the tissue weight in chloroform and 20 times the tissue weight in 

water into tube 2 and vortex. 

16. Centrifuge tube 2 at 4°C at 1800 x g for 15 minutes. 
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17. Using a pipette, transfer the resulting top layer, i.e. the polar methanol phase, to a new 

cryo-compatible tube, which will be referred to as tube 3 (See Note 20). Keep tube 3 

on ice. 

18. Add six times the tissue weight in water and 1.5 times the tissue weight in methanol 

into tube 2. 

19. Repeat steps 16 and 17.  

20. Freeze tube 2 and tube 3 at -80°C.  

21. Evaporate any chloroform from tube 2 and the methanol and water from tube 3 using 

the lyophilizer as described for cell extracts in subheading 3.2.2, Protocol for freeze-

drying of cell extracts. 

22. Store tube 2, containing the organic phase, and tube 3, containing the polar phase, at -

80°C, or continue with the next steps 

23. For polar cell extracts, prepare the samples for NMR acquisition as described in 

subheading 3.2.2, Protocol for NMR sample preparation of polar cell extracts. 

Protocol for NMR sample preparation of non-polar tissue extracts 

1. Dissolve the samples in 600 µL CDCl3/CD3OD (2:1). 

2. Using a pipette, transfer the solution (600 µL) into 5 mm NMR tubes for NMR 

acquisition. 

3.2.4. Intact tissue 

Although more metabolites can be detected using NMR spectroscopy when analyzing tissue 

extracts, the metabolites detected in intact tissue are less likely to be a product of changes 

other than the innate biological processes of the tumor. The global metabolic profile has been 

found to sustain significant alterations when exposed to elevated temperatures commonly 

used in gas chromatography-mass spectrometry for processes such as derivatization, 

vaporization, and ionization [16]. The degree of chemical degradation of the tissue that the 
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extraction procedure entails, which gives rise to issues similar to the effect of thermal 

degradation, is unknown. 

NMR of solids and semisolids, such as biological tissue, exhibit nuclear interactions that are 

anisotropic, i.e. dependent on the orientation or direction of the molecules which the involved 

nuclei are part of with respect to the external magnetic field. These arise due to the lack of 

molecular mobility [17] and give broad signals that can cause overlap between metabolite 

peaks. The signals may even be so broad that the signal is completely obscured. This does not 

occur when analyzing liquids, since the rapid movement of the molecules averages out the 

anisotropic interactions. Rapid spinning of a solid sample on its axis at an angle of 54.7 

degrees with respect to the external magnetic field, referred to as the magic angle, mimics a 

liquid solution state, where the anisotropy of the interactions is averaged to zero. This method 

is called high resolution magic angle spinning magnetic resonance spectroscopy (HR MAS 

MRS) [18, 19] and produces spectra from tissue samples with resolution that is comparable to 

conventional liquid solution NMR. HR MAS MRS is a non-destructive method, leaving the 

tissue intact for subsequent RNA/DNA/protein extraction or histology [13].  

When preparing samples for HR MAS MRS, these should be kept frozen to minimize tissue 

degradation. For this, an ice block or a nitrogen-filled cooling workstation [11] can be used. 

The following procedure should not exceed five minutes. 

Protocol for intact tissue 

1. Pipette 3.0 µL of sodium formate in D2O solution (See Note 22) into a 30 µL 

disposable insert. Be careful not to make bubbles. 

2. Place the insert on the analytical balance and tare the weight 

3. Place a weighing boat on the ice block or cooling station. 
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4. Cut a frozen sample to fit the insert using a scalpel, biopsy puncher or drill [11] (See 

Section 3.1.2, Protocol for tissue cylinder  drilling from 2 mm whole-mount tissue 

slices) (See Note 23) on a weighing boat. 

5. Transfer the sample carefully into the bottom of the insert using tweezers or the biopsy 

punch. Make sure the content is evenly distributed in the insert (See Note 24).  

6. Weigh the sample in the insert and record the weight. 

7. Introduce a plug into the insert using tweezers. The plug should stay fit at the neck of 

the insert without requiring any further adjustment. 

8. Place a screw cap on the insert and screw tight using the screwdriver (See Note 25).  

9. Set the insert all the way inside a rotor, so that it is fixed and immovable. The 

tightness inside the rotor can be adjusted by tightening or loosening the screw cap with 

the screwdriver. 

10. Introduce a spinning cap upside down into the filling funnel, followed by the upside 

down rotor with the insert. Push the bottom of the rotor gently against the filling 

funnel until a click is heard. 

11. Trace half the diameter of the bottom of the rotor with a black permanent marker to 

enable spin counting.  

12. Store the rotor at -16 °C or lower until transferred into the magnet. 

13. Once NMR acquisition has been completed, the sample can be recovered by using 

liquid nitrogen to loosen the rotor cap and then remove the insert from the rotor. For a 

detailed procedure, we refer to [11]. 

3.3. NMR acquisition 

Prior to NMR spectral acquisition, temperature calibration should be performed to correct for 

any difference between the displayed probe temperature and the true sample temperature. For 

HR MAS MRS acquisition, an additional prior step is the adjustment of the magic angle to 
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optimize the spectral resolution. Although it is not necessary to perform these steps before 

every sample, we suggest doing it at least once a week and when starting the analysis of a new 

batch of samples and/or following insertion of the NMR probe into the magnet. For a detailed 

procedure on magic angle adjustment and temperature calibration for HR MAS MRS, we  

refer to [11]. 

3.3.1. Sample acquisition 

The following is the general procedure for acquiring NMR metabolomics data from in vitro 

and ex vivo samples. For more detailed procedures specific for the analysis of biofluids and 

extracts and for HR MAS MRS of intact tissue, we refer to [20] and [11], respectively: 

Protocol for NMR acquisition 

1. For HR MAS MRS: Load the sample into the magnet and stabilize the spin-rate (see 

Note 26).  

2. Set the temperature to an appropriate value (See Note 27) based on the last 

temperature calibration (See subheading 3.3.) and let stabilize. 

3. For steps 4-10 (See Note 28) 

4. Perform tuning and matching to the nucleus of interest. 

5. Lock on to the solvent signal. 

6. Perform shimming. 

7. Optimize the 90° pulse (P1). 

8. Optimize the value for water suppression (O1). 

9. Acquire the spectrum using the optimal parameters (i.e. shim, P1 and O1) and pulse 

sequences (See subheading 3.3.2.). 

10. For acquisition of biofluids and tissue extracts, see Note 28.  
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3.3.2. Pulse sequences 

The most commonly measured nucleus in NMR spectroscopy is 1H, but other nuclei like 13C, 

31P, 17O, 19F and 23Na can also be utilized in NMR studies. Various NMR pulse sequences are 

available to optimize the acquired spectrum according to the biological questions of interest. 

Arguably the most widely used pulse sequence in NMR metabolomics is the one-dimensional 

Nuclear Overhauser Effect Spectroscopy (NOESY) [21], with which spectra are acquired 

while suppressing the water signal through presaturation. The sequence begins with a long or 

continuous-wave, low-power pulse for presaturation of the water signal. This is followed by 

three high-power 90° pulses where the first and second pulses are separated by a delay, and 

the second and third pulses are separated by a mixing time. The free induction decay (FID), 

i.e. the signal produced by relaxing nuclei [22], is acquired after the third 90° pulse. 

NMR signals from macromolecules, such as lipids and proteins, are broad and can mask 

signals from low-molecular weight metabolites. Because the mobility of small molecules is 

much higher than that of macromolecules, the latter exhibit shorter T2, i.e. faster transverse 

relaxation [22-24]. The difference in T2 can thus be exploited to suppress lipid signals by 

employing T2-weighted pulse sequences which generate NMR spectra where the signal 

intensity of nuclei is directly proportional to its T2. One such sequence is the Carr-Purcell 

Meiboom-Gill (CPMG) pulse sequence, which is particularly useful for lipid suppression in 

serum and tissue spectra. This sequence acts as a T2 filter, suppressing the faster-relaxing 

macromolecules while enhancing the smaller metabolites. It begins with a presaturation and 

90° pulse, similarly to the NOESY sequence. This is followed by a delay and a series of 180° 

pulses, each with a short delay before and after. Each 180° pulse inverts or refocuses the 

signals dephased by the transverse relaxation [22]. The rephasing and subsequent dephasing 

of the signals produces an echo of the original 90° pulse.  
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If instead contrast enhancement of the macromolecules is desired, a diffusion-editing pulse 

sequence can be used. Diffusion-editing pulse gradients provide a diffusion filter which 

excludes signals from the fast-diffusing smaller molecules prior to spectral acquisition. The 

simplest form of a diffusion-edited pulse sequence begins with a 90° pulse followed by a 

gradient to disperse the magnetization, a 180° pulse to invert the dispersed magnetization and 

a second gradient to refocus the signal, prior to the acquisition of the FID [24]. The refocusing 

of signals is inversely proportional to the diffusion coefficient of the molecules they arise 

from, resulting in an attenuation of the faster-diffusing smaller molecules. 

Carbon NMR only detects the 13C isotope whose natural abundance is 1.1%, and since 13C has 

a low gyromagnetic ratio, 13C NMR spectroscopy is less sensitive than 1H NMR spectroscopy. 

Nevertheless, 13C NMR spectroscopy is a valuable tool for investigating fluxes of carbon 

through various metabolic pathways after administration or incubation of 13C labelled 

substrates. The most frequently used one-dimensional 13C NMR pulse sequences are 1H 

decoupled, and these pulse sequences use a repeated set of pulses for continuous irradiation of 

1H. 13C-1H coupled multiplets are consequently collapsed into singlets and enhanced signal-

to-noise ratio is achieved.   

Two-dimensional NMR pulse sequences are particularly useful for the unambiguous 

identification of metabolites. The pulse sequence for J-resolved (JRES) experiments, for 

example, produces a plot of the chemical shift versus the spin-spin coupling constants [25]. 

Comparing this plot to a one-dimensional spectrum allows for the elucidation of the shape and 

number, i.e. multiplicity, of peaks arising at a particular chemical shift. This facilitates 

metabolite assignment and detection of overlapping peaks. The JRES pulse sequence begins 

with a relaxation delay, followed by a 90° pulse with a consecutive incremented mixing time 

(t1) and a 180° pulse also with consecutive t1, prior to the FID acquisition. For a description 

of other two-dimensional NMR experiments for metabolite identification, including chemical 



21 
 

shift correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY) and 

heteronuclear single quantum correlation (HSQC) spectroscopy, we refer to [26]. 

3.4. Quantification 

The proportionality of the NMR signal intensity to the number of nuclei producing that signal 

makes NMR spectroscopy highly quantitative. There are several methods available to perform 

quantification of metabolites from NMR spectra. Curve fitting routines, such as PeakFit 

(Systat Software Inc., USA), that determine the area of metabolite peaks, can handle 

overlapping signals. However, this approach can be time consuming as each metabolite peak 

of interest must be fitted manually, and is therefore unfeasible for high numbers of samples 

and untargeted metabolomics approaches. Another peak deconvolution software that is simple 

to use is Chenomx NMR Suite (Chenomx, Edmonton, AB, Canada). Chenomx allows both 

identification and quantification of peaks simultaneously, and can be performed doing both 

manually or semi-automatic adjustment of peaks.  

Another quantification method that has been successfully employed for the quantification of 

ex vivo spectra of prostate tumor tissue [3, 5] is LCModel [27]. This method uses linear 

combinations of spectra of individual metabolites, collectively referred to as a basis set, to fit 

the spectra to be quantified. 

Protocol for peak fitting using LCModel  

1. If a suitable basis set (See Note 29) is not already available, generate a basis set 

through computer simulation of spectra of individual metabolites based on chemical 

shifts and coupling constants [28] using e.g. NMR-SIM (Bruker BioSpin, Germany). 

2. Run LCModel using the graphical user interface (GUI) or in-house scripts and with 

the time domain data of the spectrum to be quantified (See Note 30) and the basis set 

(See Note 31). 
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3. Check the quality of the fit based on the residuals and uncertainties of the 

quantification i.e. Cramer-Rao lower bounds (See Note 32) produced as part of the 

output.   

Relative quantification can be performed automatically by integrating fixed spectral regions 

of metabolites of interest once the spectra are preprocessed, particularly properly aligned. 

Although relative concentrations are not comparable with other studies, they allow 

comparisons between two groups within the same study, similarly as for gene expression 

microarray measurements. An important drawback of peak integration is that areas of 

overlapping peaks cannot be distinguished. This can lead to peak areas being influenced by 

signals other than those belonging to the metabolite of interest. To avoid this, only metabolite 

regions known to be isolated, i.e. not having overlap, should be selected for integration. The 

procedure can be evaluated by visually inspecting the regions selected for integration for each 

spectrum. 

Once the area of the metabolite peaks, i.e. relative concentration, is determined, calculating 

absolute concentration requires a reference signal with known concentration. Deuterated 

trimethylsilyl propionic acid (TSP) [29] formate, or the electronic reference to access in vivo 

concentration (ERETIC) [30] can be used as internal references for the absolute quantification 

of NMR spectra. TSP is more suitable for quantification of biofluids and extracts, as it may 

bind to proteins and other membrane components in tissue, which may lead to overestimation 

of metabolite concentrations [17]. ERETIC is an electronically-simulated reference which can 

be positioned at any region of the spectrum, therefore avoiding reference-analyte interactions 

and peak overlap [31]. Pulse length based concentration (PULCON) [32] is another 

alternative for new spectrometers where the enhanced stability and reproducibility allows 

direct comparison to a standard acquired under identical conditions. Standard curves for 

quantification with PULCON and ERETIC should be established.   
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Protocol for standard curve preparation 

1. Prepare standard solutions for a metabolite, e.g. creatine or formate, in a relevant 

concentration range (See Note 33). 

2. For each concentration value, acquire spectral data for a known amount of standard 

solution (See Note 34) including three technical replicates using the same 

experimental set up, i.e. similar probe, acquisition parameters, etc., as the spectra to be 

quantified. 

3. Calculate the peak area of the standards using the same method used for the spectra to 

be quantified (e.g. PeakFit, Chenomx or LCModel).  

4. Make a standard curve by plotting the concentration versus the peak area for each 

standard solution. 

5. Use the standard curve to relate the peak area to the added number of moles for each 

metabolite to calculate the absolute concentration of the unknown metabolites. 

When absolute quantification is to be performed, it is important to use a sufficiently long 

repetition time (TR) during NMR acquisition, which ideally should be at least 5 times the 

longest T1 to achieve more than 99% of the equilibrium magnetization. If a short TR is used, 

a compensation for this must be implemented for absolute quantification, as described in [33].  

Absolute quantification from spectra acquired using T2-weighted sequences like CPMG can 

also be misleading, as metabolite peak intensities can differ slightly due to variations in T2 

relaxation times rather than just reflecting differences in concentrations [28]. In order to 

ensure accurate absolute quantification based on CPMG spectra, the T2 relaxation effect 

should be calculated and corrected for [34]. 

Protocol for T2 relaxation correction 
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1. For each metabolite to be quantified, repeat NMR spectroscopy experiments with 

different echo times (TE). 

2. Relate each resulting metabolite peak area with the corresponding TE to fit a 

monoexponential decay function representing T2 [34]. 

3. Correct for the T2 effect by multiplying the peak areas by a T2 correction factor (f): f= 

exp[-TEeff/T2], where TEeff is the effective echo time. 

4. Notes 

1. The serum buffer is prepared as follows: i) Dissolve 10.05 g Na2HPO4•7H2O in 380 

mL H2O; ii) add 0.4 g TSP; iii) mix well by ultrasonic mixing; iv) add 5 mL of a 4% 

NaN3/H20 solution; v) adjust pH to 7.4 with 1M HCl (1M NaOH); vi) add H2O until 

total volume is 400 mL; vii) add 100 mL D2O and mix well. 

2. The urine buffer is prepared as follows: i) Dissolve 10.2 g KH2PO4 in 40 mL D2O; ii) 

dissolve 50 mg TSP in 3-5 mL D2O; iii) mix both solutions together by ultrasonic 

mixing; iv) adjust pH to 7.4 with KOH tablets or strong KOD solution (KOH tablets in 

D2O); v) add D2O until total volume is 50 mL and mix well. 

3. The choice of medium depends on the nutrient requirements of the cell line and the 

objective of the experiment. 

4. There are many different ways of isolating serum that are compatible with running an 

NMR experiment. The most important point is that the protocol should be 

standardized for all samples. 

5. Separating the serum sample into several tubes of appropriate volume for analysis is 

recommended to avoid unnecessary freezing-thawing cycles. 

6. Previous studies have reported that the samples can be stored at 4 °C for a maximum 

of  30 days [35] before further processing, but in general, this should be avoided. 

Remix the sample by pipetting before transferring into smaller containers. 
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7. One side of the biopsy may contain blood and rectal material; cutting off part of the 

ends will reduce the risk of contamination. 

8. Selection of the tissue area to drill out can be based on histopathological evaluation of 

the two adjacent tissue slices collected for clinical pathology. 

9. A 3 mm diameter is recommended for a suitable tissue weight for NMR spectroscopy 

analysis (See Note 23). 

10. Other commonly used fixatives will contaminate the final NMR spectra. 

11. Thawing takes 20-60 minutes, depending on the samples size. 

12. Serum should be pipetted slowly because it is viscous. 

13. It is also possible to analyze intact cells directly using HR MAS MRS (See 

subheading 3.2.4.), but this technique is less developed.   

14. Cells can be incubated with various 13C-enriched substrates. Normally, the substrate 

present in the culture medium is substituted with >99% pure 13C-enriched substrate, to 

maximize the amount of substrate consumed during the experiment. The choice of 

substrate, substrate concentration and incubation time depend on the objective of the 

experiment. 

15. The same extraction protocol can be used for studies of cells cultured under normal 

conditions (i.e. no 13C-enriched tracer). The number of cells needed for high resolution 

1H NMR will be considerably lower. 

16. Incubation duration and condition depend on the choice of 13C substrate. 

17. Total protein content can be determined to help normalize the NMR data to the 

number of cells in the extraction experiment. Alternatively, the cell number can be 

estimated from growth curves or cell counting under identical conditions. 

18. Ideal weight for extraction is 20-50 mg. 
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19. All work with chloroform should be performed in a fume hood and with glass 

material. 

20. Depending on the volume, use a 2 mL or 15 mL cryotube. 

21. Total protein content can be determined for the sample from the pellet in tube 1 after 

dissolving it in NaOH. 

22. Formate is added for shimming purposes and D2O is added to provide a frequency 

lock for the NMR spectrometer. Adding a larger volume than 3 µL of the D2O solution 

can enhance the shimming. Formate can also be used as an internal quantification 

reference. 

23. Ideal weight for intact tissue NMR analysis is 10-15 mg. 

24. The tissue and the formate in D2O solution should be evenly distributed in the insert, 

otherwise it may be difficult to reach the recommended spinning speed of 5000 Hz 

within the magnet. 

25. Do not screw the screw cap too tight, as this will cause the insert neck to expand and 

not fit in the rotor. 

26. 5000 Hz is appropriate when using 600 mHz NMR spectrometers. 

27. The recommended temperature for intact tissue samples is ≤ 5°C to minimize tissue 

degradation. The recommended temperature for serum is 37°C and for urine, cell 

extracts and medium and tissue extracts, it is 27°C. 

28. For biofluids and extracts, the acquisition for samples within the same batch can be 

automated using IconNMR (Bruker BioSpin, Germany). If performed this way, tuning 

and matching, shimming and P1 (90° pulse) optimization is carried out automatically 

for each sample. The O1 (water suppression) value is optimized manually for the first 

sample and set for subsequent samples. 
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29. LCModel requires all peaks observed in the target spectra, including those considered 

irrelevant, e.g. lipids or contaminants, to be comprised in the basis set; a signal that is 

unaccounted for will negatively affect the area calculation for the rest of the peaks in 

the spectrum. For spectra with high degree of lipid peaks, e.g. serum, simulating lipid 

peaks can prove to be a challenge when using this method. 

30. When using in-house scripts, LCmodel prefers the time domain data to be organized 

into a text file of 8 columns containing 4 complex pairs (real, imaginary, real, 

imaginary…) in each row. 

31. Some parameters, including chemical shift range of quantification, number of points 

and references for phasing and frequency alignment, need to be set before running 

LCModel. For more information we refer to the LCModel manual [36]. 

32. Typically a fit with Cramer-Rao lower bounds <15, shown as percentage standard 

deviationin the LCModel output, is considered unsuitable. 

33. Typically solutions with at least five different concentrations are prepared. For 

creatine, these can be 0.25 mM, 1.0 mM, 2.5 mM, 5 mM and 10 mM. 

34. Weigh the amount of sample analyzed using an analytical balance to know the exact 

amount of moles analyzed. 
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