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To Victoria

“You only have to do a very few things right in life so long as you don’t
do too many things wrong.

Warren Buffet



Abstract

This thesis concerns how the dynamic positioning (DP) control system can better handle
transient events, where the loads experienced by the vessel change significantly over a
short time frame. The material is intended for DP systems controlling surface ships, but
it is also relevant for other DP vessels, as well as other motion control applications for
marine vessels. The thesis is a collection of papers, with some introductory chapters to
set the context of the problem.

The thesis contains contributions on the fundamental level, where different load models
and observer algorithms are fairly compared and analyzed. The study investigates the ef-
fect of including nonlinear damping in the model. The results show that when using mod-
els where the residual loads are modeled as a current, then nonlinear damping improves
performance. For the models where the residual loads are modeled as a superimposed
load vector, then the effect of nonlinear damping is less apparent. The different observer
algorithms show surprisingly similar performance, which indicate that DP is dominantly
a linear process.

Two different augmentations of existing observer design have been proposed for better
transient performance, while maintaining good steady-state performance. A time-varying
model-based observer is presented and analyzed, where aggressive gains are used during
transient for responsiveness, and relaxed gains are used in steady state for lower oscilla-
tions in the state estimates. The performance is verified through high-fidelity closed-loop
simulations and on experimental full-scale data from a cruise with the research vessel
R/V Gunnerus. In addition, on the cruise with R/V Gunnerus, a partial closed-loop val-
idation with integrated DP observer and controller was performed. The other design is a
hybrid observer combining model-based and kinematic observers. The hybrid observer
switches to the kinematic observer in transient conditions, and to the model-based ob-
server in steady conditions. The observer performance is verified through model-scale
closed-loop experiments, and on full-scale experimental data from R/V Gunnerus.

For the control design, integral action is compared to other ways of compensating the en-
vironmental and unmodeled loads, with special focus on transient conditions. The results
show that the best solution is to use the estimate of the environmental and unmodeled
loads from an observer with tuning optimized to estimate these loads. This method out-
performs the other methods in transients, and has equal performance to integral action
in steady state. In addition, using an observer to find the estimate alleviates anti windup
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issues, and contrary to tuning integral action, an observer can be tuned open loop — which
is a large benefit. Hybrid integral action is proposed to improve performance in transient
conditions and still keep relaxed and satisfactory performance in steady conditions. This
is achieved by high gains in the integrator in transients to better compensate the loads in
transients, and relaxed gains in steady conditions to not induce unnecessary oscillations.
Pseudo-derivative control (PDF) is proposed as an alternative to traditional proportional-
integral-derivative (PID) control. The PDF control algorithm does not need a reference
filter as the PID does, as the references are generated internally, and the PDF control al-
gorithms is better at mitigating integral windup, compared to the PID control algorithm.
Performance of the PDF control law is shown through a simulation study, and through
full-scale closed-loop trials with R/V Gunnerus.
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Part 1

Dynamic Positioning and Transient
Challenges






Chapter 1

Overview

The thesis concerns DP control systems for marine surface vessels. The main topic is the
transient challenges experienced by a DP control system, when either the environment
change, or there is an event causing a sudden load change. The transient problem for DP
and DP control systems are introduced before the results of the thesis are discussed.

1.1 Objectives of Research

The research questions governing the topic of the papers in the thesis are:

1. In model-based observer and controller design for DP, how does different control
design models compare, and how does different estimation algorithms compare?

2. How can we improve observer and controller design to better handle transient events
in DP?

3. What is the best way of compensating the transient bias loads in the DP controller?

1.2 Target Audience

This thesis is intended for engineers, students, and academics working on one or more of
the following applications:

e Dynamic positioning systems for vessels, especially in severe conditions.

e Control systems for autonomous vessels.

1.3 Main Contributions

The main contributions of the thesis include the following:



4 Overview

e Contribute to knowledge of how to use different control design models and observer
algorithms for DP.

e Construct a time-varying model-based observer for DP that works well in both
steady state and transient conditions, with experimental validation.

e Contribute to the design of a hybrid observer for DP, that switches automatically
between a kinematic observer in transients, and a model-based observer in steady
state, in order to optimize performance in both steady state and transient conditions.

e Compare different ways of compensating the bias loads by control action, and give
a clear understanding of when to apply different methods and how they compare.

e Contribute to the design of a pseudo-derivative feedback control law for DP, with
experimental validation of performance.

1.4 Thesis Outline

The thesis is divided in three parts, and outline of the thesis is as follows:

e Part I gives a brief presentation about dynamic positioning in general, its history,
the background and motivation for the thesis topic and the published papers.

— Chapter 1 presents the thesis outline, discussion of target audience, and outline
of main contributions.

Chapter 2 describes the background and functionality of the DP system, in-
troduces and discusses the transient problem for DP observer and controller
design, and discusses solutions proposed in the literature not including the
ones proposed in this thesis.

Chapter 3 gives a brief overview of the AMOS DP Research Cruise 2016.

Chapter 5 presents the scope of work, publication list, and discusses the com-
mon thread in the publications included in the thesis.

o Part II presents all the articles of the thesis, either published or sent for publication.
— Chapter 6 presents all the journal papers.
— Chapter 7 presents all the conference papers.

o Part III presents concluding remarks and further work for the thesis as a whole.



Chapter 2

Dynamic Positioning and the Transient
Load Challenge

In this chapter, we provide a background and motivation for the research reported in this
thesis. First, the theoretical background for Dynamic Positioning (DP) systems is briefly
explained, with focus on the DP control system and its basic control mechanisms. In
Section 2.3, a general description of conventional model-based DP is explained along
with a description of the transient load challenge for DP, building on the DP basics from
Section 2.1 and 2.2. In Section 2.4, existing solutions to the transient problem from the
literature is discussed. This discussion excludes the works of this thesis, since these will
be explained in Chapter 5 with a description of the common thread of the thesis. The
reader is conferred to the publications presented in Part II for the detailed descriptions of
our analysis, findings, and proposed solutions.

2.1 Dynamic Positioning for Marine Surface Vessels

Due to needs in the offshore and petroleum industries to perform marine operations in
deep waters, where jackups and fixed installations are not viable options, the DP system
was developed and has become an essential asset to accomplish increasingly more com-
plex field developments. The first computer-controlled DP vessel was the drillship Eureka
that came in 1961 (Fay, 1989). Today, oil and gas is a major user of DP systems, typically
in platform supply vessels (PSVs), drilling vessels, pipe-laying, subsea construction, re-
mote operated vehicle (ROV) support, diving support, and virtual anchoring. Other vessel
types that use DP systems include cruise ships, fishing vessels, modern icebreakers, re-
search vessels, and more and more underwater vehicles. In the recent developments of
autonomous ships (MTEC/ICMASS, 2019), the DP control system is essential in order to
safely and effectively achieve the desired autonomous operations of the vessel.

A DP vessel means a vessel that automatically maintains its position (fixed location or
predetermined track) exclusively by means of thruster force (IMO, 1994). As presented by
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[ DP SYSTEM ] SYsTEM
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Figure 2.1: Subsystems and components of a DP system (Skjetne and Egeland, 2006).

Sgrensen (2011), the main subsystems of a DP vessel include a power system, a thruster
system, and a DP control system; see also (DNV GL, 2019).

Depending on the criticality of the operation, there are different requirements for the DP
system in terms of redundancy and safety. These are called DP Equipment Classes (IMO,
1994) defined by the IMO, and verified through ship rules by the classification societies
such as DNV GL, Lloyds Registry, ABS, and Buraeu Veritas. There are three DP classes.
DP1 is the most relaxed, where loss of position or heading is acceptable in the case of a
single failure. For DP2 and DP3, a single failure shall not lead to loss of position/heading,
and the DP system must have redundancy in all active components to achieve this. For
instance, there must be three position reference systems, three vertical motion sensors,
three gyro compasses, and three wind sensor. The additional requirement for DP3 is
that also passive components (electrical cables, piping, etc.) are considered in the single
failure criterion, resulting in segregation requirements for the physical arrangement of the
equipment, in order to ensure that fire and flooding in rooms and compartments do not
cause loss of position/heading.

Figure 2.1 shows an overview of the subsystems and typical components of a DP system.
The power system is responsible for the power supply to all components of the vessel.
Especially important for DP2 and DP3 is the ability to reconfigure the power plant into
two or more isolated electrical systems in order to avoid blackout on the vessel due to
electrical failures. Also important is the uninterrupted power supply to sensor units and
control equipment. The electrical system is governed by a power management system
(PMS), whose objectives include preventing blackouts, starting/stopping gensets accord-
ing to prevailing load conditions, and ensure load-sharing between the connected gensets.
More recent developments have defined energy and emission management functionality
by use of energy storage devices in a hybrid electric power plant for the DP vessel, to
achieve reduced emissions to air and reduced fuel consumption (Sgrensen et al., 2017;
Reddy et al., 2019). The thruster system is the low-level actuator control system, respon-
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Figure 2.2: DP drill rig. Courtesy: Sgrensen (2013) and ABB Marine.

sible for producing the required thrust forces and directions commanded by the DP control
system. It includes the main propulsion units, fixed direction thrusters, azimuth thursters,
and rudders, along with the drives and necessary auxiliary systems (Smogeli, 2006). The
components of the DP control system include sensors, control computers, networks, and
signal cabling (Skjetne and Egeland, 2006; Skjetne et al., 2017). Hence, the DP control
system includes all the steps from receiving noisy and unprocessed measurements, such
as the the position and attitude of the vessel, to the output by a demanded thrust force
and moment to the thrust allocation that translates this into specific commands for each
thruster. An illustration of the subsystems and components of a DP system, and their lo-
cations in a DP drilling rig, is shown in Figure 2.2. The DP control system, which will be
outlined in more detail in Section 2.2, is the relevant subsystem for this thesis.

2.2 The DP Control System

The DP control system is the subsystem of a DP vessel relevant for this thesis. The
first DP controllers from 1961 used a single-input-single-output proporional-derivative-
integral (PID) controller along with lowpass and/or notch filters (Sgrensen, 2011). Later,
Kalman Filtering with wave-filtering and multivariable control was proposed for DP by
Balchen et al. (1976), and later extended by Balchen et al. (1980), Jenssen (1981), Grim-
ble et al. (1980), Saelid et al. (1983), Fung and Grimble (1983), Fossen (1994), MandZuka
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and Vuki¢ (1995), Sgrensen et al. (1996), Fossen et al. (1996), Katebi, Zhang and Grim-
ble (1997); Katebi, Grimble and Zhang (1997), Tannuri and Donha (2000), and Katebi
etal. (2001). The use of a nonlinear passive observer was presented by Fossen and Strand
(1999), and their work was extended to include adaptive wave-filtering by Strand and Fos-
sen (1999). Feedback of acceleration measurements for DP was studied by Lindegaard
(2003), whereas extensions to slow speed tracking of a path, called maneuvering, was
developed by Skjetne (2005). More recently, DP in heavy sea-ice conditions has been
studied (Kjerstad, 2016), and inertial navigation systems with adaptive wave-filtering was
presented by Bryne et al. (2017). See also Sgrensen (2011) and Breivik (2010), and
the references therein, for a comprehensive account of the DP development and litera-
ture.

In a state-of-the-art DP system, a control design model (often called a control-oriented
model) is used for controller and observer design. This is usually a reduced model includ-
ing the relevant dynamics for the mode of operation. For low-speed applications such as
DP, this implies that Coriolis and centripetal loads are neglected, and typically nonlinear
damping is neglected as well. For surface vessels, only the horizontal motions (planar
motion and yaw rotation) are typically considered in the DP observer and control design,
because the other degrees of freedom (DOF) are self-restoring and self-stabilizing. The
motions are described in two main reference frames used for DP, the local Earth-fixed
North-East-Down frame (NED) used for navigation, and the local body-fixed frame (B)
in which the kinetics of the vessel is described. The NED-frame is a local tangent plane
on the mean ocean surface, with origin placed at an arbitrary location. The x-axis points
in the North direction, the y-axis points East, and the z-axis points down towards the
centre of the Earth. The NED-frame is assumed to be inertial (non-accelerating) such
that Newton’s laws apply. The B-frame moves with the vessel. It typically has its origin
midships in the waterline, referred to as CO (common origin), with the x-axis pointing
in the direction of the bow, y-axis pointing starboard, and positive z-direction downwards
(Fossen, 2011). A sketch of a DP vessel subject to waves, wind, and current, with the
body coordinate axes highlighted, is shown in Figure 2.3.

The DP control system is a complex system with several modules. Explained briefly, the
modules of the DP system are (Sgrensen, 2011, 2013):

Sensor module: This module includes all the sensors systems, providing information
about the vessel and its environment. The different systems includes:

e Position reference systems: The Global Navigation Satellite System (GNSS) pro-
vides position measurements in the NED-frame, and the most common GNSS sys-
tem is the Global Positioning System (GPS). Other positioning systems include hy-
droacoustic positon reference (HPR) systems, taut wire system, and other relative
reference systems based on radar, laser, or microwave technologies.

e Motion reference systems: The Inertial Measurement Unit (IMU) contains gyros
and accelerometers in three axis and provides linear accelerations and angular ve-
locities.
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Figure 2.3: DP principle sketch. Courtesy: Kongsberg Maritime.

o Attitude sensors: For heading measurements there exists gyrocompasses and mag-
netic compasses, and the Vertical Measurement Unit (VRU) provides pitch and roll
measurements.

e Environmental sensors: There are wind sensors (anemometer) that measure wind
velocity and direction, wave radar, and draft sensors.

Signal Processing: Processes the raw measurements from the sensors and faulty signals
are handled (e.g. by voting). This includes checking for wildpoints, signal freeze, and
checking signal range and variance. The signals are also weighted when there are several
sensors for the same sensory information.

Vessel Observer: Estimates low-frequency noise free vessel states based on the processed
signals, where the first order wave motion is filtered out. In addition, low-frequency
unmeasured states, such as the velocity and environmental loads are estimated. There
exists both kinematic and model-based observers, where model-based observers are most
common for DP — such as the nonlinear passive DP observer or by using an Extended
Kalman Filter (EKF). The kinematic observer uses processed measurements of acceler-
ation, angular velocities, heading, and position to estimate the states of the vessel, that
is, the position, velocity, and also the acceleration. The model-based observer typically
use processed measurements of heading and position in combination with a kinetic model
of the vessel to estimate the position, velocity, and environmental loads. The vessel ob-
server also provide dead reckoning in case of signal drop out, and for this the model-based
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Figure 2.4: Block diagram of a DP control system integrated with the power management system.
Adopted from Sgrensen (2013).
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observer is the best choice.

Guidance system: Produces desired trajectories and reference states for the vessel to fol-
low in order to perform a maneuver, such as a setpoint change or low-speed tracking. The
reference trajectory is sent to the controller.

Supervisory logic: Governs which observer and controller algorithms are to be used at
any point in time, depending on the mode of operation, the sea state and the environment.
The controller logic ensures a smooth transition when switching between the different
controller and observer algorithms.

Control law: Controls the vessel states towards the reference by using state estimates from
the vessel observer, the reference trajectories from guidance system, and environmental
measurements. It calculates a command thrust load in the body-frame of the vessel. The
control law has two parts:

e Feedback control law: Uses the deviation between the estimated states and the
reference trajectories to calculate an appropriate force to correct for the deviation,
and bring the vessel towards the trajectory.

e Feedforward control law: Directly cancels the wind forces, measured by a wind
sensor. In addition, the desired trajectories from the guidance system are used as
reference feedforward along with the model parameters such as mass and damping
to better control the vessel through maneuvers and along trajectories.

Adaptive law: During operation, the environmental conditions, the sea state, and other
conditions, such as the load conditions and draft, change. The adaptive law identifies
these changes and sends this information as input to the observer, control law(s), and the
supervisory logic block.

Thrust allocation: This module forms a layer below the control law in order to translate
the commanded thrust load vector from the control law (in the vessel body-frame) into a
commanded thrust force and direction (angle) for each of the thrusters of the vessel. It
gives the thrusters a speed command (most common), or a torque or power command,
and for azimuth thrusters also an angular command. The process of finding desired force
and direction for each thruster is generally solved as a constrained optimization problem,
where limits of the thruster forces, rate of turn of azimuth thrusters, forbidden zones,
power limits, and other requirements are taken into consideration.

Together, all the components of the DP system described above produce commands to the
thrusters so that the vessel can maintain the desired position or execute a guided maneu-
ver.

2.3 The Transient Load Challenge

During DP operation, the vessel may keep the same position and heading for hours and
days in row in very slowly varying environmental conditions. Hence, the DP control sys-
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tem should inhibit a relaxed behavior, for the majority of time, to not induce unnecessary
oscillations in the use of the thrusters. In steady conditions, the DP is able to accurately
position the vessel by relaxed control actions, which also lowers the fuel consumption and
reduces wear and tear on the thrusters. The DP control system normally compensates the
low-frequency dynamics only. The vessel is subject to waves, wind, and current in open
sea, where the first-order wave loads are large, but oscillatory, and on average do not push
the vessel off position. The other loads are called low-frequency loads, including second-
order wave-drift loads, slowly-varying current loads, and mean wind loads (Faltinsen,
1990), and these have to be rejected by the control system. A wave-filter is implemented
in the observer to separate the vessel motion induced by the first-order wave loads, called
the wave-frequency motion, from the low-frequency motion caused by the slowly-varying
loads. Because of this separation into low-frequency and wave-frequency motion, the ob-
server injection gains have to be tuned such that the wave-filtering capabilities are good.
This implies a lower tuning than if the wave-filtering was not present.

Ve

Figure 2.5: A ship with different heading subject to an ocean current V.. Courtesy: Refsnes and
Sorensen (2007).

As DP operations move into harsher environments, transient events pose a substantial
challenge for the DP observer and control law. These are events where the loads acting on
the vessel change significantly over a short time period. The transient events can be ex-
ternal — such as wave trains, rotational currents, and sea-ice loads (Kjerstad et al., 2015),
they can be operation specific — such as structural forces from coil tubing in well interven-
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tion, gangway connections, or jackup platform operations at touchdown or release of the
legs, or they can be operator induced — such as mode changes or heading changes during
operation of the DP system. A heading change will, for instance, induce a transient since
the loads experienced by the vessel will vary due to ship hull geometry — as illustrated for
a current load in Figure 2.5 and in the next example.

Example 2.3.1. Residual bias load vector. Assume a NED-fixed irrotational current ve-
locity vector is given by v := col(V, cos(8.), V. sin(f,), 0) where (V., 5.) are the current
speed and direction, respectively. Let v := (u,v,r) € R3 be the B-frame velocity vector
of the vessel, let Vf, = R(@Z))TV? € R? be the B-frame velocity vector of the current,
and let v, := v — v® be the corresponding relative velocity vector. Suppose according to
(Fossen, 2011, Eq. 8.147) that the actual 3DOF low-frequency dynamics of the vessel is
described by

Muv.+C(v v + D)y =7 2.1

where wave loads, wind loads, and thruster dynamics are disregarded, 7 is the thrust load,
M is the mass matrix, C'(-) models the Coriolis and centripetal loads, and D(-) models
the linear and nonlinear damping loads. Consider the typical DP control design model,
studied in (Verng et al., 2019),

My +d=7, (2.2)

where M and 7 are the estimated mass matrix and thrust load vector, used in the control,
and d is a load vector to capture hydrodynamic effects and bias loads. Typically, the
model of d is chosen as either of:

— b0 n '
de { Drv— 1, b®* = 0; B-fixed bias load 2.3)

Dyv—R(y)Tb", b =0; NED-fixed bias load.

Dy is the estimated linear damping matrix, and R(v) is the rotation matrix from B to
NED. Comparing (2.2) with (2.1) gives the expressions for the respective bias loads based
on the difference between the reduced model and the actual dynamics (2.1),

W=7 — Mp+ M —C(v,)v, — D(v,)vy + Dpv o
b" = R(¢) {717]\N{I)+Ml)cb7C(Z/T)I/T7D(Z/T)VT+BLZ/ , 24
where 7 := 7 — 7 is the error of the unmodeled thruster dynamics, and M := M — M is
the error in the mass matrix. The residual load terms in (2.4) is related to both body-fixed
and NED-fixed effects; the relative velocity terms (and current) are correlated to a current
in the NED frame, whereas the uncertainties due to thruster dynamics and inertial loads
are body-fixed errors.

As an example, we investigate the bias loads on the platform supply vessel simulation
model that we used in (Verng et al., 2019). The model includes current loads, Coriolis/-
centripetal loads, and linear/nonlinear damping. In the simulation we exclude wind loads,
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Figure 2.6: Residual bias loads of supply vessel during a 360° turn. The blue and red curves
correspond, respectively, to the B- and NED-fixed bias vectors. The average values are shown as
the constant curves.

wavedrift loads, and uncertainties in thruster dynamics and mass/inertia. A forced yaw
rotation ¢ (t) = 155t so that = {35 rad/s = 1 deg/s is executed in a current field with
V. = 0.5 m/s and 8. = 180 deg, while we maintain (u,v) = (0, 0). Figure 2.6 shows the
evolution of the residual bias loads during the 360° turn of the vessel. It is very clear that
the assumption of a constant bias load, either in NED or in body, is not valid during the
heading change. The variation is significant, as seen by the varying difference from the
average values. The faster the heading change is executed, the faster the bias load also
changes. We also observe, in this case, that the NED-fixed bias has a larger average value
but with less variation than the B-fixed bias. O

Transient events pose great challenges for the DP control system, partly because the typi-
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cal sensor instrumentation and control design models do not capture the load changes well
enough. There are umodeled dynamics from, for instance, errors in the mass and added
mass, hydrodynamic damping, and errors in the thruster dynamics, and there are uncertain
environmental loads from wind, waves, and current as mentioned earlier. The DP system
must robustly compensate these uncertain loads in order to maintain acceptable position-
ing performance. However, with typical instrumentation where North/East position along
with the heading angle are measured, it is not possible to separate between what is cur-
rent, wind, wave loads, or unmodeled dynamics in the estimator or controller. Thus, the
environmental loads and unmodeled dynamics are lumped into one vector, typically as a
residual load vector or bias, b, as shown in Example 2.3.1. Most often, this is modeled as
a constant load in the NED-frame (Fossen, 2011; Fossen and Strand, 1999). This has its
background in the assumption that the bias load is dominated by environmental param-
eters like current and waves, which are represented in the NED-frame. Body-fixed bias
models do also occur, typically in linearized models; see for instance the works by Fossen
and Perez (2009) and Hassani et al. (2012). This is justified by the fact that much of the
unmodelled loads and dynamics are body-related mechanisms that has no correlation to
the North-East axes.

Another approach, assuming the bias loads are dominated by unmodeled hydrodynamic
effects, is to model the damping loads based on the relative velocity vector v, between
the hull and the fluid; see for instance (Fossen, 2011; Refsnes, 2007). Again, all loads are
estimated in one vector, but now as dissipation loads represented by a bias velocity, for
instance as D(v)v?, where D(v) is the damping matrix and v/* is a DP-observed “current”
velocity vector to be estimated by the observer. The estimated ©> becomes, in reality, the
sum of all the unmodeled dynamics and environmental forces captured as a bias velocity
vector. This model should better capture current and wave loads, since it incorporates the
dissipative damping of the vessel hull. Thus, it should also be less affected by heading
changes. However, as the loads to be estimated in this vector still is a combination of
body-fixed loads from the model errors in mass/inertia, damping, and thruster dynamics,
and primarily NED-fixed loads from current, waves, and wind, this approach is not perfect
either. Again, any discrepancies in the model will result in a transient load under various
events, like heading changes, implying a need for mechanisms to more rapidly updating
the bias estimates during such load variations.

Example 2.3.2. Residual bias velocity vector. Consider again the DP vessel in Example
2.3.1 and its dynamics (2.1) and reduced control design model (2.2). Let v, € R3 be a
velocity bias vector (to estimate a DP current vector), with the relationship v} = R(¢) "v}!
between the B-fixed and NED-fixed vectors. Consider d selected among:

~ b b -0 _ . .
g { Dp(v —v}), 7} =0; B-fixed bias velocity 25)

Di(v—R(¥)T), ' =0; NED-fixed bias velocity.

Inserting (2.5) into (2.2) and comparing with (2.1), gives the bias velocitiy vectors based
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on the difference between the model and the “actual” dynamics,

W =v+ Dt [% — Mv+ Mt - C(v,)vy — D(Z/T)Z/T:|

. - (2.6)
v = R()v + R(y) D! [% — M+ M — (), — D(yr)yr} ,

Suppose C(1,)v, ~ 0, D(v,)v, =~ Dp(v — 1), and 7 — Mir + M1, ~ 0 in (2.6). Then
the velocity bias vectors will match v = 1% and v = R(¢))v? = v". Assuming constant
current velocity in the NED-frame, only the latter of these will validly conform to the
constant bias model ;' = 0.
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Figure 2.7: Residual bias velocities of supply vessel during a 360° turn. The blue and red curves
correspond, respectively, to the B- and NED-fixed velocity vectors. The average values are shown
as the constant curves.

Figure 2.7 shows the evolution of the bias velocities during a 360° turn of the platform
supply vessel simulation model used in (Varng et al., 2019), by again inducing a forced
yaw rotation while keeping (u,v) = (0,0), with the same data as in Example 2.3.1. It is
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clear that the assumption of a constant bias velocity, either in NED or in body, is again
not valid during the heading change due to the various unmodeled loads and dynamics.
The variations in the bias velocities are similar as in Example 2.3.1, but note that the size
of the bias velocities are in the order of 1 while being in order of 10° for the bias loads.

Figure 2.8 better illustrates the evolution of the bias velocity vector (uy, v) and yaw rate
73, both for /2 and /{". In the left plot, it is seen that (u}, v}*) has a smaller footprint, but
larger mean value, than (u}, vf). O

Bias yaw rate for forced simulation model
90

Bias velocity vector (X-Y) for forced simulation model

B I
East & Sway velocity [m/s] 240 300

(a) Bias velocities North/Surge vs East/Sway. a0

(b) Bias Yaw rate for each heading angle.

Figure 2.8: Residual bias velocity components for the supply vessel during the 360° turn, corre-
sponding to Figure 2.7. Left plot (a) shows uy vs. vy for the B-fixed (blue curve; surge vs. sway)
and NED-fixed (red curve; North vs. East) vectors, where the dots indicate every 10° heading
angle. The black star indicates the initial heading ¢ = 0°, for both curves, and the black circles
indicate the respective average values. Right plot (b) shows the bias yaw rate 1, as a polar plot
with respect to heading angle .

Remark 1. A higher fidelity bias velocity model than (2.5) may be used with respect to
relative velocity in an observer (Varng et al., 2019). By incorporating the full nonlinear
damping and Coriolis, the bias velocity may be modeled as

Y L
v =10

d=C(v)v. + D(v,)v, v, =v—RW) v 2.7)

Then this dynamics is included in the nonlinear observer, such as an EKF or UKF. In-
cluding nonlinear damping in the bias velocity model showed a slight positive effect on
performance in our study in (Verng et al., 2019). [

The bias load/velocity vector is slowly-varying in steady conditions, while it can change
rapidly during transient events, as explained above. To better capture these transient vari-
ations in the bias, one may attempt to improve the fidelity of the control design model
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by including more precise hydrodynamic descriptions of the loads. However, this will re-
quire more complex hydrodynamic parameters to be identified, which is a costly process,
and it will give a more complex control algorithm that may be more difficult to qualify
with regards to stability and robustness. In addition, there will still be uncertainties in the
more complex model, so that other transient problems and new safety issues may be the
outcome. Because of this, the preferred method in conventional model-based observer
design for DP, is for the residual load to be modeled as a constant bias load or through a
constant bias velocity. This assumption has been shown to work well in normal practice,
as well as in the experimental results by Fossen and Strand (1999) and Loria and Panteley
(1999). However, we highlight that these practices are related to operations where the
bias loads are constant or slowly-varying, and not on the more rapidly varying conditions
that motivates this thesis.

Accurate estimation of the environmental loads and unmodeled dynamics is crucial for
the performance of a model-based observer. When this estimate is inaccurate, the er-
ror propagates especially to the velocity estimate, and further to the position estimate —
making them biased. Ideally both a current velocity model and a bias model should be
included in the control design model to better capture the total variations. However, that
causes observability issues to be overcome. We illustrate this in the next example.

Example 2.3.3. Observability of 1DOF DP model. Consider a IDOF hydrodynamic
model that, say, resemble the surge dynamics of a DP vessel. Let € R be a position and
u := T be its velocity. Further, let u. be a constant current velocity, and define u, := u—u,
as the relative velocity. Suppose the rigid-body and hydrodynamic model, with linear and
nonlinear damping, is expressed as the 1DOF mass-damper system

Meplt + Mty + dyy || v + dpu, =7+ 9 (2.8)

where m,;, and m, are rigid-body and added mass, d; and d,,; are linear and nonlinear
damping coefficients, 7 is the control input, and J is a disturbance force. Since @, = 0
implies u, = u, we can write the dynamics both in terms of absolute and relative velocity,
that is,

ma 4 dp |u— ue| (u—ue) +dy(u—u.) =740 (2.9a)
ma, + dy Jug vy + diu. =749 (2.9b)
where m := m,, +mg.

Letting b be a bias state and choosing the state vector £ := col(b, x, u), with absolute
velocity u, we can reduce the system into the simplified control design model

00 0 0

E=10 0 1 |&€+] 0|7 (2.10a)
10 —4 1

y=[0 1 0]¢& (2.10b)

We recognize here the bias, to match the uncertain terms, as
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b= —dy |u,| ur + dyu, + 0,

which depends on u through the nonlinear damping. The observability matrix and its
determinant for this system are

0 1
1
o=|0 0 1 and detO = — #0. (2.11)
1 m

It follows that the system state ¢ is uniformly completely observable; however, this is
based on the assumption that b = 0 which is valid only for constant 1.

Letting both b and u, be states, and choosing the state vector ¢ := col(b, z, u., u,), with
relative velocity u,, we can alternatively express the system by the simplified control
design model

000 0 0
001 1 0

=10 0o 0 o I (2.12a)
w000 = | i

y=1[0 10 0]¢ (2.12b)

where b is recognized as b = §. Hence, in this case the assumptions b=0and i, =0
are both valid. Disregarding the nonlinear damping, by setting d,; = 0, the observability
matrix and its determinant for this system becomes

0 10 0
0 01 1
O=| 1 g _a| and detO=0. (2.13)
m i
—z 00 L

It follows that this system, now having a valid bias model, instead struggle from lack of
observability, meaning that the states b and u. may not be distinguishable and estimated
individually. O

Remark 2. One may consider to use the relative velocity vector v, in the DP observer.
However, one should then note that the DP control law requires a precise estimate of the
absolute velocity v and not v,.. Hence, if 1, is used as a state in the observer, as in Example
2.3.3, then accurate estimation of v, is also necessary so that v = v, + Vﬁ can be output
from the observer.

When sticking to the approach of using a bias load or velocity model, more aggressive
tuning during the transients seems necessary for satisfactory performance of the observer,
whereas relaxed tuning is beneficial in steady conditions to reduce oscillations in the state
estimates. During transient events, a prompt and responsive control action is necessary
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for good DP performance, which implies using higher gains in the control law. How-
ever, since transient events occur infrequently, a controller optimized only for transient
conditions will cause unnecessary oscillations in the longer periods of steady conditions.
This will in overall lead to worse positioning performance, higher wear and tear on the
thrusters, and higher fuel consumption compared to using more relaxed control gains that
are optimized for the steady conditions.

2.4 Towards Better Transient Performance

There are several designs in the literature to improve transient performance of DP opera-
tion. Hybrid control for switching between different controller/observer pairs for DP has
been proposed by Nguyen et al. (2007), where the appropriate pairs were selected based
on the sea state. This was also analyzed by Brodtkorb et al. (2014), and it is a part of the
"controller logic" block described in Section 2.2. This allows for performance optimized
for the condition the vessel is operating in, from calm to severe sea states. Hybrid con-
trol in general (Hespanha, 2001; Goebel et al., 2009) gives great flexibility in designing
observers and controllers that by discrete switching or updates can handle a changing en-
vironment and transient events. Another work on hybrid control for DP was proposed by
Nguyen et al. (2008), where a supervisory control method is applied for control transfer
between different modes; stationkeeping, low-speed maneuvering, and transit. Different
observer/controller pairs are selected based on the desired mode of operation, and con-
trollers that automatically switch between the different modes are also included. This
allows for a holistic control system, not just optimized for one mode of operation. See
Figure 2.9 by Nguyen et al. (2007) for an illustration of the switching logic for the ob-
server/controller pairs.

Kinematic observers avoid the bias transient problems, and is a viable solution to the
observer side of the transient problem. The bias problem of the model-based observer is
avoided by using a purely kinematic model, and thus no bias load is part of the model.
Using a kinematic observer, at least in transients, is beneficial, and a comparison of the
methods in both steady conditions and transients should be performed. The kinematic
observers, often called navigation filters, combine an inertial nagivation system (INS)
with GNSS measurements. This has been proposed used for DP by Bryne et al. (2014) and
Bryne et al. (2017) based on work by Grip et al. (2015) and Grip et al. (2012). This further
build on, among others, the works by Salcudean (1991), Thienel and Sanner (2003), Vik
and Fossen (2001), Mahony et al. (2008), Mahony et al. (2008), Hamel and Mahony
(2006), and Vasconcelos et al. (2008). In (Bryne et al., 2017), a wave-filtering capability is
added to a kinematic observer making it suitable as an observer in waves. Since kinematic
observers do not estimate loads, some kind of integral action is needed in the control law.
Either a model-based observer could be used to estimate the loads, or integral action on
the tracking errors in the controller should be used. Hence, the load transient problems
will still be present in the closed-loop system, but it will not propagate to the position
and velocity state estimates in this case. Hence, the kinematic observer seems to be a
promising option.
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et al. (2007).
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Figure 2.10: Platform and offshore supply vessel in extreme conditions.

Lindegaard (2003) and Kjerstad and Skjetne (2016) proposed the use of acceleration
sensors and kinematic models to improve control in harsh environment. In Lindegaard
(2003), acceleration feedback is proposed to virtually increase the mass of the vessel. This
is used to make the vessel “more inertial” and less sensitive to external load variations.
Kjerstad and Skjetne (2016), on the other hand, proposed a mechanism for direct can-
cellation of the residual loads, denoted acceleration feedforward and primarily directed
towards ice loads. The estimated acceleration is, in this case, used to directly calculate
the loads acting on the vessel using Newton’s second law. This method is promising, and
it is shown by Kjerstad and Skjetne (2016) to work well against ice loads that are large,
fast, and require responsive control actions. The approaches by Lindegaard (2003) and
Kjerstad and Skjetne (2016) to load rejection, are fundamentally different from the bias
estimation or integral action approaches. They are based on extra instrumentation to bet-
ter sense the loads (through accelerations) and thereby compensate load variations more
directly from measurements. The challenge of using acceleration feedback or feedfor-
ward for open seas is the wave-filtering of the acceleration measurements or the estimated
loads. The first order wave accelerations are much larger than the low-frequency acelera-
tions, and the oscillation period of the waves are in the range of 5 — 15 seconds. There-
fore, good wave-filtering of the accelerations or the load estimates is difficult. In case
the wave-filtering is out of phase, the loads can easily dominate the other low-frequency
loads. Another option for some applications, using acceleration feedforward, is to cancel
all the external loads acting on the vessel, provided the thruster system is dimensioned for
it. This will provide aggressive control and should probably only be used in conditions
that absolutely require it, since this will increase fuel consumption and cause extra wear
and tear on the thrusters. In the case of DP in sea ice, such aggressive control is neces-
sary, since the thrusters must respond directly to the agile sea ice loads to avoid loss of
position.



Chapter 3

NTNU AMOS DP Research Cruise
2016

In the fall of 2016, NTNU AMOS in collaboration with Kongberg Maritime conducted a
two week long full-scale DP test campaign. The campaign, NTNU AMOS DP Research
Cruise 2016 (ADPRC’ 16), was conducted with the research vessel (R/V) Gunnerus shown
in Figure 3.2. To the author’s knowledge, this is the first time DP algorithms has been im-
plemented and tested closed-loop on a vessel of this size in an academic research context
(Skjetne et al., 2017). Several papers of this thesis either present closed-loop results or
use data from the cruise, and thus a brief presentation of the cruise follows.

R/V Gunnerus is owned and operated by NTNU. It has been used as a university reasearch
vessel since 2006, within marine biology, marine archeology, oceanography, subsea ge-
ology, fisheries, and marine technology. R/V Gunnerus has a K-Pos DP-11 system from
Kongsberg Maritime, is equipped with two main azimuth thrusters by Rolls-Royce Ma-
rine (now Kongsberg Maritime), and a Brunvoll tunnel thruster in the bow. During the
ADPRC’16 campaign, the vessel was of length overall Loa = 31.25 meters and dead
weight of 107 tons. Note however, that after these sea trials, in the winter 2018-2019,
R/V Gunnerus was retrofitted and elongated by 5 meters, now with Loa = 36.25 meters

Figure 3.1: The research team on ADPRC’16.
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Figure 3.2: The NTNU-owned research vessel R/V Gunnerus.

and dead weight of 165 tons.

When testing algorithms, a simulation study is the first step, starting at a low-fidelity
model, and moving over to a higher fidelity model. Thereafter, experimental tests are pre-
ferred for performance verification in “real conditions”. At NTNU, up to ADPRC’16 this
has been limited to model-scale tests in the basin at MC-Lab; see for instance Lindegaard
(2003), Nguyen et al. (2007) and Bjgrng et al. (2017) for details about the lab and model
scale vessels. Model tests are a great way of testing the algorithms. However, full-scale
tests have the benefit of a more realistic environment, real machinery and propulsion sys-
tems, and a real sensor suite compared to the lab. Thanks to the DP Development and
Cybernetics department in Kongberg Maritime, implementation of our (NTNU AMOS)
control algorithms was possible. Figure 3.3 shows the topology of the DP system for
R/V Gunnerus, where the “NTNU algorithm” block is where our algorithms were imple-
mented, taking the processed measurements as input, and commanded thrust as output.
Safety functions were built around this block, so that we could test new algorihtms with
minimum risk. Safety fallback was provided by a switch back to the commercial DP
control functions installed in the vessel.

The test objectives from the ADPRC’ 16 cruise were (Skjetne et al., 2017):

e Establish a test interface and a method for the academic reasearchers to test their
control-related algorithms on the industrial DP control system onboard R/V Gun-
nerus.

o Test relevant DP state observer algorithms in full-scale.

o Test relevant DP feedback control algorithms in full-scale.
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Figure 3.3: Topology of DP test interface on R/V Gunnerus for ADPRC’16 (Skjetne et al., 2017).

o Test experimental adaptive autopilot control algorithms in full-scale.

e FEvaluate the test methodology and results from testing, and learn from both suc-
cesses and failures.

Our algorithms were tested as either closed-loop tests in real time at the DP operation, or
offline based on collected data from the campaign. For the closed-loop test, the objectives
were to test and verify performance of 1) DP control laws in feedback with a selected
observer algorithm (often the industrial DP observer), or 2) DP observer algorithms in
feedback with a selected control law (possibly the industrial DP algorithm). Otherwise,
performance of the observer algorithms have been verified offline by the collected data in
the office later. Which papers of this thesis that consider closed-loop tests, and which later
used data from the ADPRC’16, are highligheted in Chapter 5.2. See otherwise (Skjetne
et al., 2017) for more detailed descriptions of other tests, and for more details about the
campaign itself.
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Chapter 4

Tuning by Derivative Free
Optimization

In several papers of the thesis ((J.1),(J.2),(J.4)) optimization is applied to find gains of
observers and controllers. Optimal tuning based on a common cost function is applied
in order to get comparable gains and performance and, thus, be able to fairly compare
the different algorithms. In addition, in one of the papers, optimization is applied to
identify hydrodynamic parameters. We have chosen to use derivative free optimization
(DFO), defined as “the mathematical study of optimization algorithms that do not use
derivatives” (Audet and Hare, 2017). Hence, the benefit of DFO that it does not require
any information about derivatives or gradients, is what we have exploited in our studies.
This is useful for computer simulations and experimental data since accurate and explicit
information about the derivatives is not readily available. Note also, as stated by Audet
and Hare (2017), that if “gradient information is available, reliable, and obtainable at
a reasonable cost, then DFO ... will almost never outperform modern gradient-based
methods.” The reader is referred to Audet and Hare (2017), and references therein, for
presentation of several advanced algorithms for solving DFO and blackbox optimization
problems as well as relevant background information.

In the recent M.Sc. thesis by Lgvas (2019), several methods for DFO-based autotuning
of the DP control law has been investigated — as a follow-up of relevant papers in this
thesis. This included parametrization of the control law, discussion and evaluation of
different performance functions, and comparison of different DFO algorithms such as
particle swarm optimization (PSO), surrogate model optimization, and the Nelder-Mead
simplex search method (Lagarias et al., 1998) as implemented in the MATLAB function
fminsearch. In the development work by Lgvas (2019), the PSO was chosen as the
preferred algorithm, and the cost function was chosen simply as the integral of absolute
error (IAE) on the DP output tracking error. An experimental setup was implemented in
the MC-Lab at NTNU, where a model ship was running automated DP maneuvers in a
repeated manner while executing the DFO-based tuning of the control gains. See (Lgvas,
2019) for further details of this investigation.
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In the following, a short description of how to apply the optimization for tuning an ob-
server is outlined. This is similar to what was done in the papers (J.1), (J.2), and (J.4). In
the studies leading to these papers, the objective of the DFO-based tuning was on finding
observer gains that gave fair comparison between different observer algorithms. Towards
this goal, the MATLAB function fminsearch (MATLAB, 2016) was found adequate and
implemented similarly as in the following setup.

We consider finding optimal gains for an observer based on a dataset consisting of sam-
pled time evolutions of the state, (control) input, and (measurement) output values. Let
X = {xo,x1,x9,...,2,} be the set of n+1 samples of the state, U = {uq, us, ug, ..., u,}
be the set of control inputs, and Y = {yo, y1, Y2, - - -, Yn } be the set of measurement out-
puts. Accordingly, let X = {Zo, 21,2, ..., 2, } be the state estimates from the observer,
where the observer algorithm is represented by the overall difference equation

:i'kz :Fk71(£k7717uk71ayk7K)7 k= 1a27"'an' (41)

K is the tunable observer gain that the state estimates then depend upon, that is, X =
X (K). The optimization problem can now be formulated as

minimize J(X, X(K)) (4.2a)
subject to Yk € V,ur, €U,z € X, and (4.1), (4.2b)

where J(X, X (K)) is the cost function. DFO is then used to solve this problem.

An obvious example of a cost function, is the sum (integral) of absolute errors in the state
estimate, that is,

J(X,X(K)) =Y |ax — @l. 43)
k=0

For high-fidelity computer simulations of a DP vessel and control system, the data to
evaluate the cost function on is directly available from the simulation data, that is, the full
state dataset X and its estimate dataset X'. For the full-scale experimental data, on the
other hand, the available values to evaluate the cost function on are the post-processed
measurement data. It is therefore a question if the complete state data &X', or the most
important subset of this, can be made available through post-processing. For DP, the
measured data correspond to the pose 7, and from this the actual velocity ¥ may be found
in post-processing by differentiating the resulting positions and heading using a finite
impulse response (FIR) filter. Therefore, as long as the study is conducted offline on the
sampled data, the state (7, ) may be accurately reconstructed in order to evaluate the cost
function .J in each iteration of the DFO. The alternative, available for online execution of
DFO, is to design the cost function based only on measured data or based on a surrogate
model (Audet and Hare, 2017).

To run the optimization, first an initial value for the observer gain, K, is selected. Then
the MATLAB function fminsearch is used, where the function findgains supplies
fminsearch with the cost.
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Algorithm 1 findgains.m (pseudocode)

function J = FINDGAINS(X, U, ), K)

forkdo=1:n
= Tpo1 (T, Ug—1, Yr, K)
end for

J= norm()% —X);
end function

This is executed according to
K = fminsearch(Q findgains, X ,U, Y, Ky) 4.4)

Finally, because the DFO finds a local optimum, the optimization is run several times
with different initial K, values, either using a grid search or some other technique to
select random variations of K.
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Tuning by Derivative Free Optimization




Chapter 5

Research Overview

Section 5.1 presents an overview of the publications, and in Section 5.2 the context of
the thesis and papers is outlined. The research questions from Section 1.1 define the
scope of work of the thesis, and Section 5.2 discuss how the papers address the research
questions.

5.1 List of Publications

The papers published and submitted in the time 2014-2018 are listed below.

International Refereed Journal papers

(J.1) Veerng, S. A., Skjetne, R., Kjerstad, @. K., Calabro, V. (2019). Comparison of
control design models and observers for dynamic positioning of surface vessels.
Control Engineering Practice, DOI: 10.1016/j.conengprac.2019.01.015.

(J.2) Veerng, S. A., Brodtkorb, A. H., Skjetne, R., Calabro, V. (2017). Time-varying
Model-based Observer for Marine Surface Vessels in Dynamic Positioning. IEEE
Access, DOI: 10.1109/ACCESS.2017.2731998 .

(J.3) Brodtkorb, A. H., Vaerng, S. A., Teel, A. R., Sgrensen, A. J., Skjetne, R. (2018).
Hybrid controller concept for dynamic positioning of marine vessels with experi-
mental results. Automatica, DOI: 10.1016/j.automatica.2018.03.047.

(J.4) Veerng, S. A., Brodtkorb, A. H., Skjetne, R. (2019). Compensation of bias loads in
dynamic positioning of marine surface vessels. Ocean Engineering,
DOI: 10.1016/j.0ceaneng.2019.03.010.

International Refereed Conference papers

(C.1) Verng, S. A., Brodtkorb, A. H., Skjetne, R., Sgrensen, A. J. (2016). An Output
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Feedback Controller with Improved Transient Response of Marine Vessels in Dy-
namic Positioning. In Proceedings of IFAC CAMS.

(C.2) Brodtkorb, A. H., Vaerng, S. A., Teel, A. R, Sgrensen, A. J., Skjetne, R. (2016).
Hybrid observer for improved transient performance of a marine vessel in dynamic
positioning. In Proceedings of IFAC NOLCOS.

(C.3) Vearng, S. A., Skjetne, R. (2015). Hybrid Control to Improve Transient Response
of Integral Action in Dynamic Positioning of Marine Vessels. In Proceedings of
IFAC MCMC.

(C.4) Kjerstad, @. K., Veerng, S. A. , Skjetne, R. (2016). A Robust Dynamic Positioning
Tracking Control Law Mitigating Integral Windup. In Proceedings of IFAC CAMS.

(C.5) Skjetne, R., Sgrensen, M. E. N., Breivik, M., Vaerng, S. A., Brodtkorb, A. H.,
Sgrensen, A. J., Kjerstad, @. K., Calabro, V., Vinje, B. O. (2017). AMOS DP
Research Cruise 2016: Academic Full-scale Testing of Experimental Dynamic Po-
sitioning Control Algorithms Onboard R/V Gunnerus. In Proceedings of ASME
OMAE.

5.2 Context of Thesis and Papers

The common theme in this thesis is on understanding DP systems experiencing transient
events and on improving the performance of the DP system. All the publications presented
in Part I are stand-alone. However, the thesis can be read as a whole, and the relationships
between the papers are summed up in Figure 5.1.

The papers address the three research questions presented in Section 1.1. Research ques-
tion 1 is answered by paper (J.1) that compares and contrasts different models and ob-
server algorithms for DP, with special focus on transient events. This information can
support selection of a good model and corresponding observer algorithm. The observer
part of research question 2 is addressed by the papers (J.2), (C.1), (J.3), and (C.2). They
present solutions to extend existing observer designs to work well in both transient and
steady state conditions. Even though specific models and observer algorithms are chosen
for these four papers, the methods can be applied for different models and algorithms.
Finally, to close to loop, control action is addressed in (J.4), (C.3), and (C.4), with special
focus on transient performance, especially in (J.4) and (C.3). The papers (C.3) and (C.4)
address the control action part of research question 2, whereas research question 3 is ad-
dressed in (J.4), where different methods to compensate the bias loads in DP are analyzed.
The discussion below is separated into the observer and control problem.

5.2.1 Observer Problem

The aim of (J.1) is to aid in model selection for observer and control design for DP. Differ-
ent control design models are investigated, where some are bias load models and some are
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Figure 5.1: Illustration of the connection between different papers of the thesis.



34 Research Overview

current models, as described in Section 2.3. As discussed in Section 2.3, the residual loads
are more precisely modeled as a combination of a bias load model and a current model;
however, with standard instrumentation for DP it is not possible to separate the two in the
observer. Therefore, each control design model is either a bias load model or a current
model. The paper also investigates the effect of including nonlinear damping in the mod-
els. In addition, the paper compares common observer algorithms for DP. Three observer
algorithms are compared; the Extended Kalman Filter (EKF) (Saelid et al., 1983) (Tannuri
and Morishita, 2006), the Uncented Kalman Filter (UKF) (Simon, 2006), and the linear
time-varying Kalman Filter (LTV-KF). The comparisons are made fair through derivative
free optimization used to tune the observers based on a common cost function. An in-
teresting observer to include in the comparison is the nonlinear passive observer (Fossen
and Strand, 1999), which is common in the DP literature. However, to achieve a more
structurally fair comparison, only Kalman Filters were studied. One should note, though,
that the LTV-KF is the Kalman Filter-equivalent to the nonlinear passive observer when
only linear damping is used. Therefore, this gives a good indication of the achievable
performance of the nonlinear passive observer. All the maneuvers used are rich on tran-
sient events. Both high-fidelity simulation data and experimental data is used, where the
experimental data was collected on a cruise with R/V Gunnerus, as described in Chapter
3 and (C.5).

The paper (J.2) seeks to modify existing model-based observer design to better handle
transient events by using time-varying injection gains. The presented design gives both
good transient performance, as well as good steady state performance. The journal paper
(J.2) is an extension of the observer design in (C.1), where the whole output-feedback sys-
tem was the focus. The observer part from (C.1) has been extended to include the velocity
injection gains, and not just the bias injection gains as in (C.1). In addition, experimental
full-scale data from R/V Gunnerus is used in (J.2), and experimental validation of (C.1)
is briefly presented in (C.5), and in more detail in (J.2). A state of the art fixed-gain ob-
server is used as the basis for the time-varying design. Even though it is not discussed
in the paper, the same time-varying gain method would work for Kalman Filters, where
instead of time-varying gains, the state covariance matrix Q could be time-varying.

The paper (J.3) has the same objective as (J.2), to achieve both good steady-state and
transient performance of the DP observer. It applies a hybrid design with a model-based
observer including a wave filter to be used in steady-state conditions, and a kinematic
observer with IMU/GNSS integration for use in transient conditions. The kinematic ob-
server does not include bias estimation, and therefore works well in transients. The kine-
matic observer does not include a wave-filter, rendering the control action in transients
more aggressive. The journal version (J.3) is an extension of (C.2), where the journal pa-
per includes a deeper analysis, as well as model-scale experimental results and full-scale
experimental results with R/V Gunnerus from the ADPRC’ 16 cruise.
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5.2.2 Control Problem

The paper (J.4) investigates how to best compensate the bias loads in the controller, and
thereby closing the loop. Traditional integral action is compared to different variations of
using the bias estimate from observer designs. The performance of the methods is made
comparable through derivative-free optimization methods, giving a fair comparison in
order to find the best way to effectively compensate the bias loads. The journal paper (J.4)
is an extension of the controller part of (C.1). In (C.1) a filtered version of the bias load
estimate was proposed to be used instead of traditional integral action. This was merely
argued for in (C.1), but in (J.4) these claims are made rigorous. The conference paper
(C.3) addresses hybrid integral action, and applies much of the same design philosophy
as in (J.2) and (C.1), where different gains for the integral action is applied to achieve
good steady state and transient performance of the control system. Finally, the paper
(C.4) proposes a viable alternative to using a traditional PID-controller in conjunction
with a reference filter. The benefit of this approach is both a simpler design, with easy
implementation of both rate constraints in the integral action, and an easier way to handle
wind-up issues in the integral action of the controller.
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This paper investigates some fundamental aspects of control system design for dynamic positioning of marine
surface vessels. Different control design models are compared. The impact of applying linear and nonlinear
models to describe the hydrodynamic damping loads are investigated, and common observer algorithms for DP
are compared. The comparison includes a linear time-varying Kalman filter, an extended Kalman filter, and an
unscented Kalman filter. To make the comparisons rigorous, optimization is employed to find optimal observer

gains, and high-fidelity simulation data and full-scale experimental data are used to test the performance under
operations/conditions with significant transient effects.

1. Introduction

In a model-based control and observer design, the performance of
the control and observer algorithms strongly depends on how well the
underlying model captures the dynamics of the system. The modeling
of marine surface vessels performing dynamic positioning (DP) has an
extensive literature; see for instance Fossen (2011) and Sgrensen (2011)
where high-fidelity models are described in detail, along with differ-
ent models for controller and model-based observer design. However,
there are few rigorous comparisons of control design models in the
literature. There are papers where observers and controllers based on
control design models have been shown to work well, as for instance
by Fossen and Strand (1999), and Tannuri and Morishita (2006),
where experimental validations were presented. In the work by Refsnes
and Sgrensen (2007) two control design models were compared for
a linear system subject to an ocean current. A similar study is done
by Refsnes (2007) where different control design models were compared
for autonomous underwater vehicles (AUV’s) subject to ocean currents.
The study reported by Refsnes (2007) used a number of injection gains
for each observer. However, the simulation model used to simulate the
plant dynamics matches one of the control design models, giving the
observers based on this model a clear advantage in their simulation
study.

There exist a number of papers where different observer algorithms
are presented and tested for DP. Early work on using the Kalman filter
for DP was presented by Grimble, Patton, and Wise (1980) and Fung
and Grimble (1983), and the Extended Kalman Filter (EKF) by Balchen,

* Corresponding author.

Jenssen, and Salid (1976) and Saelid, Jenssen, and Balchen (1983).
In the work by Fossen and Strand (1999) the authors presented a
nonlinear (passive) observer (NLO) with full-scale experimental results,
and in Tannuri and Morishita (2006) experimental results of a typical
DP system using an EKF was presented. However, to the authors’ knowl-
edge, there are no papers with a rigorous comparison of the different
algorithms applied to DP. In Fossen and Strand (1999), the authors
argued that the NLO has some benefits compared to the EKF. The NLO
has fewer tuning parameters and is shown to be UGES, whereas there is
no global stability guarantee for the EKF. In terms of performance, the
EKF has time-varying gains initially, whereas the NLO is a fixed-gain
observer. Additionally, the NLO assumes that the rotation matrix is a
signal, using the measured heading angle, whereas the EKF uses the
low-frequency (LF) heading as a state in the rotation matrix. Especially
in moderate to high sea states, this EKF mechanism should be beneficial.
In Candeloro, Sgrensen, Longhi, and Dukan (2012) different observer
algorithms were compared for remotely operated vehicles (ROVs), but
the tuning of the observers is found in an ad hoc manner, so a definite
conclusion on performance is difficult.

In this work a rigorous analysis of the performance of both the
models and observer algorithms for DP is reported, using derivative-
free optimization (DFO). Different model structures to capture the envi-
ronmental loads and unmodeled dynamics are analyzed. This includes
a comparison of using nonlinear damping as opposed to just linear
damping. For each such model, different observer algorithms are then
quantitatively compared using a high-fidelity simulation model of a
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supply vessel and full-scale data from DP operations of R/V Gunnerus.
The observers are an EKF, an Unscented Kalman Filter (UKF), and a
Linear Time-Varying Kalman-Filter (LTV-KF). The natural comparison
is to compare the EKF with the NLO, the two most applied DP observers.
However, it is easier to rigorously compare Kalman filters, since they
have the same structure and the DFO can optimize on the same
parameters. The LTV-KF is the Kalman filter equivalent of the NLO,
provided only linear damping is included. Typically when the NLO is
implemented for DP in the literature (Fossen & Strand, 1999; Loria,
Fossen, & Panteley, 2000), only the linear damping is included. Since
the yaw angle is assumed to be a signal, the rotation matrix can be
assumed to be a known time-varying matrix, and the system is linear
time-varying. Thus, a linear Kalman filter can be applied. When the
LTV-KF reaches steady state Kalman gains, the LTV-KF and the NLO
are identical in structure.

The last observer algorithm that is included in the comparison is the
UKF. This is a nonlinear filter that does not rely on linearized dynamics
as the EKF, thus being interesting for the comparison. The UKF is better
at handling nonlinearities than the EKF (Simon, 2006), and it also has
the benefit of using the low-frequency heading angle as a state (and not
a signal) in the rotation matrix.

The main contribution of this paper is a systematic comparison of
residual load models and Kalman filter algorithms for DP of marine
surface vessels, using derivative-free optimization on test data that holds
significant transient effects. The effect of using nonlinear damping ver-
sus only linear damping is tested. Both high-fidelity simulation data and
full-scale experimental data from the AMOS DP Cruise 2016 (Skjetne
et al., 2017) are used.

Nomenclature

Notation
. T
A column vector is stated as col (x,y.2z) := [xT.y",z7| , R, denotes
positive real numbers, and S represents the angle defined on the interval
[~z 7).

Abbreviations
AUV Autonomous underwater vehicle

CDM Control design model
DFO Derivative free optimization
DOF Degrees of freedom
EKF Dynamic positioning
LF Low frequency
LTV-KF Linear time-varying Kalman filter
NED North-East-Down
NLO Nonlinear observer
SVM Simulation verification model
UGES Uniformly globally exponentially stable
UKF Unscented Kalman filter
2. Problem formulation
The two reference frames used in DP are the North-East-Down (NED)

frame, which is a local Earth-fixed frame assumed inertial (with x-axis
pointing North, y-axis pointing East, and z-axis pointing down), and the
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body-fixed frame, which typically has the origin in the waterline along
the centerline of the vessel(with x-axis pointing in the direction of the
bow, y-axis pointing starboard, and z pointing down).

In the following there is a distinction between the simulation veri-
fication model (SVM) and the control design model (CDM). The former
is a higher fidelity model used for controller and observer verification,
whereas the latter is used for observer and controller design. The CDM
captures the main dynamics, and for DP this includes the part of the
model relevant for low-speed maneuvers, that is, Coriolis and centripetal
terms are often omitted, and typically the nonlinear damping effects
as well (Fossen, 2011). A bias load model is then typically applied to
capture the residual loads in the CDM. These are uncertainties related
to ocean current loads, slowly-varying wave drift loads, differences
between actual wind loads and the estimated wind loads from the wind
sensor measurements, unmodeled dynamics in the thruster system, and
parametric uncertainties in the mass/inertia and damping terms.

2.1. Overall control design model

The CDM used in this study is the 3 DOF model (Fossen, 2011; Fossen
& Perez, 2009; Sgrensen, 2011)

E=AE+E,w, (1a)
1= R(y)v (1b)
Mv+d=1+w, 10
y=n+Cué+v,, ad

where ¢ € R® models the wave-frequency motion by a damped
oscillation model. A,, is a Hurwitz matrix that contains the damping
ratio of the wave motion model and the peak frequency of the sea state,
and w,, € R’ is white noise; see Fossen (2011) for details. There is
a separation between the wave-frequency motion in (1a) and the low-
frequency motion of the vessel in (1b)-(1c). In low-speed applications
such as DP, it is typically only interesting to control the low-frequency
motion of the vessel, since compensating the first-order wave motion
causes extra wear and tear on the thrusters, and in most cases it is not
possible to compensate this motion. The vector n = col (ny,np.vw) €
R? x S is the low-frequency North/East position and heading angle of
the vessel, and v = col (u,v,r) € R? is the low-frequency surge/sway
velocity in the body-frame, and the yaw rate, respectively. The matrix
R(y) rotates a 3 DOF vector from body to NED according to

cos(y) —sin(y) O
R(y) =|sin(y) cos(y) Of. @
0 0 1

The mass matrix contains the inertia and added mass parameters of the
vessel, and 7 € R3 is the control vector formed by propulsion loads.

The measurement y € R xS is the sum of the low-frequency North/
East position and heading vector », the wave-frequency North/East
position and heading vector n,, = C,,&, where C,, = [03,3  I3,3], and
the measurement noise v, € R3.

Remark 1. It is assumed that only the vector 7 is measured through y in
(1d). If, however, also the velocity v is accurately measured, for example
through a measurement equation y, = R(y)v + C,A,¢ + v, from a
sophisticated navigation system, then this can with ease be included
in the measurement equations of the observer, typically resulting in
improved estimation accuracy of the overall state vector.

The load vector d € R? contains hydrodynamic damping loads,
slowly-varying second order wave drift loads, and other unmodeled
dynamics such as parametric uncertainties in the mass/inertia and
damping terms, and errors in thrust modeling. Different choices for d
are outlined in the next section.
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2.2. Damping and bias load models

Control design models for DP can differ in their complexity, but
they also differ in how the residual loads such as current, second order
wave loads, and unmodeled dynamics are accounted for in the model.
In the state estimator, using only GNSS and compass measurements,
it is not possible to separate the different environmental loads and
unmodeled dynamics, so they are lumped together and estimated as
one bias load vector. The most common assumption is that these loads
are slowly-varying (or even constant) in the NED-frame so that they
can be compensated by a type of integral action. However, even if the
environmental loads are constant in the NED-frame, they will not be con-
stant as experienced by the vessel, due to vessel hull geometry. Another
method is to model the unknowns as a current vector, which should be
more accurate in terms of estimating environmental disturbances, such
as current and second order wave loads. This model, contrary to the
bias vector model, takes the vessel hull into account by including the
damping matrix. In addition, if the current is irrotational and constant,
this load is accurately described as a NED-fixed current. However, there
are other loads that has to be accounted for as well. Errors in the
damping parameters become a body-fixed bias load, and so do errors
in the thrust modeling and mapping. Therefore, the choice of the most
accurate model is not obvious.

Another motivation for model choice in the literature concerns the
stability proofs of the observer and controller designs. These typically
require an assumption on the external and unmodeled loads, either
that they are constant in the NED- or the body-frame. Neither is 100%
correct.

Next, the different models for d in (1c) are presented.

Residual load modeling. CDMs 1 and 2 capture the environment and
unmodeled dynamics as a load vector assumed constant in the NED-
frame and body-frame, respectively.

CDM 1 (NED-fixed):

d := D(v)v — R(y)"b" (3a)

b = w,, (3b)

where b" € R? is a NED-fixed bias load vector, w, € R? is white
noise, and the damping matrix D(v)v is given as

D(v)v :=D;v+ Dy (V)V (C)]

where Dy, Dy (v) € R?3 are the linear and nonlinear damping
matrices, respectively. The bias model (3b) is the common random
walk model used in the literature; see for instance Kjerstad and
Skjetne (2016). Another common version of (3b) is the Markov
model (Sgrensen, 2011). However, typically the time constant is
very large, essentially making it a random walk model as in (3b).
CDM 2 (body-fixed):

(5a)
(5b)

d :=D(v)v-b"
B = w,,

where b® € R? is a body-fixed bias load vector. Since unmodeled
dynamics and other load effects often are body-fixed, it makes good
sense to include the bias b as a body-fixed vector. In addition, this
model is typically used in linearized models; see for instance Fossen
and Perez (2009) and Hassani, Pascoal, Aguiar, et al. (2012).

Current estimation. CDMs 3 and 4 are current models with ocean
currents assumed constant in the NED-frame and the body-frame,
respectively.
CDM 3 (NED-fixed):
d =D, )v, (6a)

(6b)

o
Vi=w,
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Table 1
The control design models.

CDM

Description

1 Bias load model, NED-fixed
2 Bias load model, body-fixed
3 Current model, NED-fixed
4 Current model, body-fixed

T |ve
v, =v—R(y) ol (6c)
where v? € R? is an unknown NED-fixed current vector, and
w, € R? is white noise.
CDM 4 (body-fixed):

d:=DWv,)v, (7a)

=w, (7b)
[ o

V,=Vv-— NE )

vb € R? is an unknown body-fixed current vector.

The different CDMs are summarized in Table 1.
2.3. Observer realizations

For all implementations, the models are discretized and discrete-
time observers are used. The following continuous dynamics covers all
models in this paper,

x = A(t,x)x + Bu+ Ew (8a)
y=Cx+v, (8b)
and the discretized system becomes
X = Fr-1(Xk-1s —> Ug—1> Wi—1) (%9a)
=Py (g o)X go1 + Ay (o o Uy
+ T g o Wiy (9b)
Y = Hypxp +vg (90)
wy ~(0,0;) 9d)
v ~ (0, Ry), (9e)

where, using Taylor expansion (Chen, 2009; Fossen, 2011) and sampling
time 2 = 0.1 s gives

@, = A [ 4+ A(ty, x)h + %(A(tk,xk)h)z (10a)

h
A= (/ e’“’do‘) B (1n+ %A(tk,xk)hz + éA(tk,xk)2h3) B (10b)
0

h
T, = (/ eA“Mk)”da) Ex(1h+ %A(tk,xk)hz + éA(:k,xk)Z;ﬁ) E
0
100

H,=C. (10d)

The goal is not to obtain the best and most accurate observer, but to have
a fair comparison between the models and observers being investigated.
Because of this, the sample time is set quite high to keep the run-time
of the DFOs low.

Kalman filters

The Kalman filters have been implemented as in Simon (2006). The
implementation for the LTV-KF and the EKF are given below, and the
UKF implementation is shown in Appendix A.
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« Initialization:

x5 = E(xg) (11a)
P} = El(xg— %))(xg — )] (11b)
« Kalman Filter equations LTV-KF and EKF (Simon, 2006):
Py =F (P} F|  +T; 0T}, (12a)
Ky =P H[(H P H| + R (12b)
% =@y (DX + Ay (- Duy_;  (LTV-KF) (120)
xp = fro1Gh_uep) (EKF) 12d)
Xy = % + K (y(k) — H %) (12e)
Pr=(I-KH)OPI-K.H)" + KR K, (120

where F is

Fiy = () = B, (y™ ) (LTV-KF)
0f 1

o
ox 1%,

Fo = (EKP),

and y}! is the measured yaw angle at time step k.
2.4. Feedback control law

The controller 7 in (1c) has a feedforward and feedback component,

T=Tpp+Tpp. (13a)

where 7y helps track the reference trajectory, and z,p is a PID
(proportional-integral-derivative) tracking controller using state feed-
back,

Trr = Dv () + Mv, (1) (13b)
trp = —K,RW) (= n,()) — Kq(V = v4(1) = K,RW)'¢ (13c)
&= n-nyw, (13d)

where 74, v4, and v, are references generated by a guidance system
and K p Ka and K; are positive definite gain matrices, and , ¥ are state
estimates; for details see Sgrensen (2013).

Remark 2. In a DP control law, the states # and ¥ in (13) will be
state estimates from the DP observer used in the loop. To generate the
simulated dataset in this work, the LF state estimates #, ¥ from one
well-tuned observer were used in the control law to track the reference
trajectories. The different observers will then be tested and evaluated
on this dataset. For the experimental data, the control input was given
and the corresponding dataset will be used directly after some post-
processing.

2.5. Derivative free optimization for comparison

To compare performance in the model and the observer investiga-
tion, optimization is used. A classic gradient decent-like method is not
applicable, since information about the gradient, Hessian, or higher
order derivatives are not available. Therefore, DFO is used.

The cost function used for the DFO in the paper is

J(@, V) = J,@) +¢,J,(V) (14a)
where
n
= N . 180 N
J,(@) = Z(MN,k — ANl + Mgk — gl + 7|Wk =D (14b)
k=0
< 180
Jv(V):E(Wk_ﬁk|+|Uk_f’k|+7|’k—fk|)~ (140)

k=0
Here, i = n—1ny, V = v — vy, k = n is the final time step of the interval,
and ¢, € R, is a scaling constant to weight the respective contributions
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from the estimation error in position and velocity. This scaling function
is found iteratively and set such that the size of (14b) and (14c) are
similar. Typical operating limits for DP is 3 m and 3 degrees (Veritas,
2011). The weighting in (14) is chosen to be close to this. In (14b), the
cost on 1 m position error is chosen to be equivalent to 1 deg in heading.
Similarly, 1 m/s error in linear velocity is equivalent to 1 deg/s angular
velocity in (14c¢).

For a given dataset of n state, input, and output values according to
the model (1), let Y = {y(, ¥, ¥,. -...¥,} be the set of measurement data
according to (1d), U" = {ug, u;,u,, ..., u,} be the set of control input data
according to (13), H = {ny,n;,M,,....n,} be the set of low-frequency
position/heading data according to (1b), and V = {v(, v, v,,...,v,} be
the set of low-frequency velocity data according to (1c). Let the selected
observer algorithm be represented by the overall difference equation

X = N X w94 K) (15)

where X collects the overall state vector of the observer, and K
represent the tunable observer gain vector. The optimization problem
can then be formulated as

mini’gnize J(@, V) (16a)

subject to yi €Y, €eV,n €H,viy €V, and (15) (16b)

with J(#, v) according to (14). Derivative-free optimization is then used
to solve this optimization problem. For the high-fidelity simulation data,
the data to evaluate the cost function are directly available from the
simulation data. For the full-scale experimental data, on the other hand,
the values used to evaluate the cost function (14) are the post-processed
position/heading data, and from this the actual velocities are found
by differentiating the resulting position/heading using a finite impulse
response (FIR) filter.

2.6. Assumptions

For the linear LTV-KF, the heading angle in the rotation matrix is a
measured signal. Thus ¢t — R(y(1))) is seen as a measured time-varying
signal R(1). The assumption according to Fossen and Strand (1999) is
made:

(A1) R(y+w,,) ~ R(y); that is, the heading angle due to wave-induced
motion, y,,, is negligible, since the wave-induced heading angle
is typically less than 1° for normal sea states and less than 5° for
extreme sea states (Price & Bishop, 1974),

and by (A1), the matrix signal R(r) approximates the low-frequency
rotation matrix, R(y).

2.7. Problem objective

The objective is to quantitatively compare the performance of the
LTV-KF, EKF, and UKF observer algorithms over the four different
residual load models (CDM1-CDM4) on several realistic (simulated
and experimental) datasets containing transient operating and envi-
ronmental conditions. Additionally, the effect of including nonlinear
damping on the observer performance shall be particularly analyzed.
The intended outcome is to gain deeper insight on the differences in
performance for the investigated observers and models.

3. Setup
3.1. DP simulation verification model

The SVM is a 6 DOF high-fidelity model of a platform supply vessel
with the main parameters listed in Table 2. The model includes waves,
Coriolis, centripetal loads, linear damping, and nonlinear damping. The
benefit of this model is the use of lookup tables for environmental
forces, creating realistic variations of the environmental loads with
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Table 2

Simulation, platform supply vessel, main parameters.
Parameters Value
Length between perp. 80 m
Breadth 17.4m
Draft 5.6 m
Displacement 6150 tons

Table 3

R/V Gunnerus, main parameters.
Parameters Value
Length over all 31.3m
Length between perp. 289 m
Breadth middle 9.6 m
Draft 2.7m
Dead weight 107 tons

vessel heading, allowing for a fair comparison of the different control
design models. The sea state has a significant wave height of 6 m, with a
peak frequency of 0.53 rad/s taken from the JONSWAP' spectrum. The
mean incident wave heading is 190° (head waves) in the North/East
frame (Price & Bishop, 1974). The current has an initial velocity of 0.5
m/s and direction of 160° (bow). The SVM has realistic noise on the
sensors, and the measurements are discretely updated at 1 Hz for the
GPS and 10 Hz for the compass. The control action is implemented in
discrete time with an update rate of 1 Hz. In addition, a first order filter
(with time constant 5 s) is included to account for the actuator dynamics.

For the SVM, the linear damping is known from the model. The
nonlinear damping was identified through several maneuvers with no
waves or current. Maneuvers with pure surge, pure sway, and pure yaw
were used to find the diagonal terms, and a maneuver with coupled sway
and yaw motion was then used to find the cross-terms. The damping was
identified also using DFO as described in Section 2.5. For details about
the mass and damping parameters for the SVM, see Appendix B.

3.2. AMOS DP research cruise 2016

R/V Gunnerus is a 31 m long NTNU-owned research vessel, shown
in Fig. 1, with main parameters in Table 3. Experimental full-scale data
of R/V Gunnerus was collected during the AMOS DP Research Cruise
(ADPRC) 2016. Kongsberg Maritime made available a test interface in
the onboard commercial DP system, for the NTNU researchers to test
different control and observer algorithms in real time and to log all
necessary data during the trials (Skjetne et al., 2017).

On the sea trials for ADPRC, the DP 4-corner maneuver shown in
Fig. 2 was performed. The waves were negligible, but there were current
and wind during the sea trials. Three datasets are used, where dataset 1
had a current of velocity 0.6 m/s with direction 170°, and wind velocity
of 5 m/s and direction 150°. Datasets 2 and 3 had similar environmental
conditions, with a current of velocity 0.3 m/s with direction 300°, and
wind velocity of 6 m/s and direction 250°.

The damping identification for the experimental data followed al-
most the same procedure as described for the SVM in Section 3.1, except
for the identification of the linear damping matrix. For the simulation
model, the linear damping matrix was known from the model. However,
for the experimental data, the linear damping matrix was first identified
as a standalone linear damping matrix, that is, for the case where
only linear damping was used in the observer. For the identification of
the nonlinear damping, the linear damping matrix as identified above
was fixed and the model was further fit to the nonlinear terms. Thus,
the same linear damping matrix is used when nonlinear damping is
included. This makes the experimental data case similar to that of the
simulation data case study. For details about the mass and damping
parameters for R/V Gunnerus, see Appendix C.

1 Joint North Sea Wave Project.

239

Control Engineering Practice 85 (2019) 235-245
3.3. Application of the DFO

The MATLAB® function fminsearch has been adopted to run the DFO
optimization according to (16). The DFO searches the points around the
current value of the tunable observer gain K to see if any values give
a lower cost for J(#, v). However, the DFO does only provide a local
minimum, so it is therefore important to run simulations with several
different initial conditions.

When DFO is used to find the optimal tuning for the Kalman filters,
the Q-matrices (process noise) are restricted to be diagonal, and so is
the initial covariance matrix. The constraint that the Kalman filters must
start with a diagonal covariance matrix is not optimal for performance,
but is in practice necessary for finding the minimum of the DFO cost
function within a reasonable time. If all non-diagonal terms are to be
included in the DFO, the problem becomes too large to solve, especially
since several initial conditions have to be tested.

3.4. DP test cases

Two test cases of different characteristics are used to compare the
models and observers, as described next.

Dp 4-corner test

The maneuver here called DP 4-corner is a box maneuver as shown
in Fig. 2, where the vessel starts at = col(Om, Om, 0°) with the following
setpoint changes:

. 1 = col(40m, 0m, 0°) (pure surge motion)

. n = col(40m, —40m, 0°) (pure sway motion)

. 1 = col(40m, —40m, —45°) (pure rotation)

. = col(Om, —40m, —45°) (coupled surge/sway)
. 11 = col(Om,0m, 0°) (coupled, all DOFs)

g s WN =

For each setpoint change above, the vessel follows a reference filter
trajectory.

Transient test

Especially when comparing the control design models, a lot of tran-
sients are beneficial to trigger the potential differences in the models.
The vessel is exposed to current and waves, and there is a setpoint
change in both North/East and heading, that is, a coupled maneuver
with a transient due to the heading change. For the setpoint change, the
vessel follows a reference filter trajectory. Shortly thereafter there is a
current direction change of 60°, and a slight change in current velocity,
to simulate an unknown transient event. These changes are filtered
through a first order filter with time constant of 30 s. The time frame
between the two transients is short, which is deliberate to have three
transient bias events (including initialization) in a short maneuver. The
reference filter trajectories are shown in Fig. 3. Note that the reference
trajectories are intentionally made fast compared to the size of the vessel
(as seen in Table 2).

4. Results and discussion

Three different Kalman filters are compared; LTV-KF, EKF, and UKF
for the four different control design models presented in Section 2.2.
In addition, results for including nonlinear damping versus only linear
damping are shown for the EKF and UKF. Results from the simulation
cases as well as the experimental data are presented, before overall
conclusions on the different observers and models are provided.

The tuning of the observers was found through DFO. First, several
initial conditions was used to find minimum tuning of the LTV-KF
algorithm. Then, variations around the minimum tuning for the LTV-KF
was used as initial conditions to search for the minimum tuning of the
EKF and the UKF.
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Fig. 1. The R/V Gunnerus. Photo: Helge Sunde/Samfoto.

Coupled motion all DOFs

Fig. 2. The 4-corner DP test.

4.1. Simulation results

For the simulation results, the high-fidelity model described in
Section 3.1 was used with the transient dataset and the DP 4-corner
dataset described in Section 3.4. At the beginning of the simulation, the
position n and all observer states were initialized at zero, except the
observer states for n,, from (1d) that was initialized at the measured
position. The scaling factor in (14) was ¢, = 7 for the simulation runs.
The tuning was optimized for the transient dataset, and the same tuning
was used for the DP 4-corner dataset. The environmental conditions in
the two maneuvers were the same. Thus, by applying the tuning found
through DFO for the transient dataset, the results for the DP 4-corner
reveal how applicable the tuning was across the different maneuvers.

The results for the transient dataset are shown in Table 4 where the
cost function J(#, ) from (14) is given for all the different combinations,
and the results are normalized such that the worst performing J (7, ¥) has
a score of 100. Fig. 4 shows time plots of how the cost function J(#, V)
evolves for some of the CDM/observer combinations from Table 4. The
plots show the best performing combination; the EKF using CDM 3
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Fig. 3. Reference trajectories for the transient dataset.

and nonlinear damping included, against the worst performing; the EKF
using CDM 4 with only linear damping. Finally, the best performing LTV-
KF version is plotted (using CDM 1). Note that the deviations mainly
occur at the transients, that is, in the beginning, at 200 s, and at 400 s;
see Section 3.4 for details about the transients.

From the results of the transient dataset, it is observed that the
differences between the performance of the Kalman filters are small.
The nonlinear damping significantly improves performance for CDMs 3
and 4, but only slightly for the CDMs 1 and 2. The differences between
the CDMs are notable, but not significant.

The results for the DP 4-corner dataset are shown in Table 5, where
it is observed that the differences between the observer algorithms are
small also here. It is noted that the benefit of nonlinear damping is not as
explicit as for the transient dataset. This is especially notable for CDMs
3 and 4. The differences between the four CDMs are smaller than for
the transient dataset, and the best performing CDMs are different for
the two datasets. That is true also when just linear damping is included.

For both the transient dataset and the DP 4-corner, the LTV-KF
performs similarly to the EKF and UKF that use linear damping. In other
words, there is no significant performance deterioration by using the
measured yaw angle in the rotation matrix as a signal.
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Results on high fidelity simulation data: The transient dataset. The table shows the cost (14), where the results
are normalized such that the worst performing J has a score of 100.

EKF UKF LTV-KF EKF(Lin.)UKF(Lin.)
CDM 1 88.2 88.1 90.1 90.1 90.1
CDM 2 90.2 90.2 91.9 92.0 92.0
CDM 3 83.4 83.5 94.8 94.8 95.8
CDM 4 87.5 87.5 99.2 100. 100.
Table 5

Results on high fidelity simulation data: DP 4-corner dataset using the optimal tuning for the transient dataset.
The table shows the cost (14), where the results are normalized such that the worst performing J has a score

of 100.

EKF UKF LTV-KF EKF(Lin.) UKF(Lin.)
CDM 1 94.9 94.9 97.0 96.9 96.9
CDM 2 100. 100. 98.0 98.0 98.0
CDM 3  91.8 91.8 92.4 92.4 92.4
CDM 4 90.5 90.5 91.9 92.0 92.0

4.2. Results from sea trials

The sea trial results are given for the three datasets described in
Section 3.2, with the DP 4-corner test described in Section 3.4. The
scaling factor in (14) was ¢, = 1.1 for the experimental results. The
resulting maneuver for dataset 1 is shown in Fig. 5. The tuning is
optimized for dataset 1, and that tuning is thereafter applied for dataset
2 and dataset 3. This is to verify how well the tuning performs for
maneuvers with different environmental conditions. Datasets 2 and
3 are performed in similar environmental conditions. The results are
shown in Tables 6-8 for datasets 1, 2, and 3, respectively. The tables
show the cost function J (7, ¥) from (14) where the results are normalized
such that the worst performing J has a score of 100.

As found on the simulation data, the experimental results show
that with the same CDM and damping matrix, the KFs have similar
performance. This is a surprising results, especially considering that
the UKF should be better at handling nonlinearities than the EKF.
However, this indicates that the DP process is dominantly linear, and
that using the measured heading angle in the rotation matrix may be
sufficient. The three datasets did, however, contain a limited amount of
environmental disturbances, since the weather conditions for the sea
trials were very nice, and in such conditions the linear dynamics is
even more dominant. However, dataset 1 does reveal a performance
improvement using nonlinear damping. Note that the environmental
conditions are similar for datasets 2 and 3.

CDMs 3 and 4 are good only if the EKF or UKF with nonlinear
damping is used. Then a performance improvement over just using
linear damping is observed. If linear damping (and bias) is used in the
KFs, then the data supports using CDMs 1 or 2 (see Table 7).

4.3. Overall conclusions

The performance of the CDMs conclude somewhat differently for the
high-fidelity simulation data versus the R/V Gunnerus full-scale data.

« For the simulation data, the EKF and UKF including nonlinear
damping with CDM 3 perform the best for the transient dataset.
The EKF and UKF including nonlinear damping with CDMs 3 and
4 perform the best for the 4-corner dataset.

For the full-scale experimental datasets, CDM 1 performs the best.
The performance is only slightly better for the EKF and UKF
including nonlinear damping than the KFs with linear damping.
If only using linear damping is considered for the simulation data,
then the bias models (CDMs 1 and 2) perform best for the transient
dataset, while the current models CDMs 3 and 4 are better for the
4-corner dataset.

Including nonlinear damping gives a positive effect for the current
models (CDMs 3 and 4), both for the simulation and experimental
results. For the bias load models (CDM 1 and 2) the effect is
negligible, and even slightly negative for CDM 2 on the 4-corner
dataset on the simulation data.
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Table 6
Experimental results for dataset 1. The table shows the cost (14), where the results are normalized such that
the worst performing J has a score of 100.

EKF UKF LTV-KF EKF(Lin.)UKF(Lin.)
CDM 1  90.8 90.8 91.1 91.0 91.0
CDM 2  91.9 91.9 92.2 92.2 92.2
CDM 3 93.2 93.2 100. 100. 100.
CDM 4 94.6 96.0 99.3 99.3 99.3

Table 7
Experimental results for dataset 2 using the optimal tuning for dataset 1. The table shows the cost (14), where
the results are normalized such that the worst performing J has a score of 100.

EKF UKF LTV-KF EKF (Lin.)UKF(Lin.)
CDM 1 975 97.4 97.5 97.5 97.5
CDM 2 99.0 99.0 99.0 99.0 99.0
CDM 3 96.9 96.9 100. 100. 100.
CDM 4  96.8 97.5 99.1 99.1 99.1

Table 8
Experimental results for dataset 3 using the optimal tuning for dataset 1. The table shows the cost (14), where
the results are normalized such that the worst performing J has a score of 100.

EKF UKF LTV-KF EKF(Lin.)UKF(Lin.)

CDM 1 96.4 96.4 96.8 96.8 96.8

CDM 2 97.0 97.0 97.4 97.4 97.4

CDM 3 97.6 97.6 100. 100. 100.

CDM 4 97.1 97.5 99.4 99.3 99.3
« In all test cases, the best performance is obtained by the EKF simulation, less uncertain and unmodeled dynamics, and vice versa for

and/or UKF with nonlinear damping. the experimental full-scale data.

The fact that the current models perform better for the simulation Both the simulation and experimental data show that the different
data can be explained by richer environmental disturbances in the Kalman filters all performed similarly, showing that DP is dominantly a
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Fig. 4. Results from the simulation data using the transient dataset: The figures show the
cost (14), where the results are normalized such that the worst performing J has a score
of 1. In the figures, three of the combinations of observer algorithm and CDMs are shown.
These are the EKF with CDM 3 and nonlinear damping (the best performing), the EKF with
CDM 4 and linear damping (the worst performing), and the best performing version of the
LTV-KF, that is, with CDM 1. The lower left plot starts at the setpoint change transient, and
the lower right plot starts at the current direction transient; see Section 3.4 for details..
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Fig. 5. Resulting position and heading for the experimental DP 4-corner test for dataset
1.

linear process. The nonlinear damping, however, gives a slight perfor-
mance improvement. Both the simulation and experimental results show
no significant performance deterioration when using the measured yaw
angle in the rotation matrix with the LTV-KF instead of using the state
estimate with the EKF/UKF. The LTV-KF performs similarly to the EKF
and UKF when these use only linear damping.

Further work should put emphasis on the damping identification,
especially for the experimental data. This could to a greater extent reveal
what is achievable for the different control design models.

5. Conclusion

In this study different control design models and common Kalman
filter algorithms for DP were compared for a high-fidelity simulation
verification model of a supply vessel and for full-scale data from sea
trials by R/V Gunnerus. In particular, the effect of including nonlinear
damping in the observers was tested. The observer algorithms tested
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were the Linear Time-Varying Kalman Filter, the Extended Kalman
Filter, and the Unscented Kalman Filter. The latter two were tested on
both a linear damping model and a nonlinear damping model. The high-
fidelity simulation data included waves, whereas the full-scale experi-
mental data did not. The results indicated similar performance across the
different design models and observers. The results justified that the DP
process is dominantly linear, whereas a slight performance improvement
can be obtained by using nonlinear damping (and consequently the EKF
or UKF algorithms). However, the data from all the test cases did not
show a clear indication of when to use the bias models, CDMs 1/2, over
the current models, CDMs 3/4, or vice versa.
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Appendix A. UKF-implementation

The implemented UKF is the discrete-time unscented Kalman Filter
according to Simon (2006):

1. Discrete nonlinear system is given by

X1 = FOup 1) + T, 1wy (17a)
Vi = h(x;. 1) + vy (17b)
w;, ~(0,0,) 17¢)
v, ~(0,Ry), (17d)
2. The UKF is initialized as
2+ = E(x)) (18a)
Py = El(xg — £ = 59)7] (18b)
3. Time update equations:
S =%, +20, i=1,...2m (19a)
20 = (\/nP}_ ) sn (19b)
£0e) — _ ( N ) o 199
30 = GV Luey) (19d)
2n
PR | NO)
X, = ﬂ g{ X, (19e)
1 2n T
-_ 1 o) _ o= (20 _ o
Pk 3 (s (- x0)
+ T, )0 Ty, 1) (19
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Table 9 Table 10
Mass and damping coefficients, control design model simulation verification model. Mass and damping coefficients, control design model R/V Gunnerus.
Coefficient Value Coefficient Value Coefficient Value Coefficient Value
my, [kgl 6684200 Y. [£] -182481 my, kgl 788900 Y. ] 12212
myy [kgl 11332800 Y, (2] ~1922557 my, [kgl 924500 Y, [2] -131673
My [kf: ] 3193127000 Y, 2] ~1469858 myy [“’fa:" ] 51240 000 Yo (2] 2224318
X, %] ~167105 Y, [0 1298060 X, [%] —4949 Y, (2] 1234186
Y, %] ~141660 Nyypo kgl —702742 Y, %] —34890 Ny [kg] ~163526
k; k; kg kg
Y, [ 551 650440 Ny [E2] 2383317 Y, [E2] -1292126 Ny [E3] 3568858
N, [5m) 650 440 Ny, [ER] 379526 N, (7] -1292126 Ny, [E2] —6564338
kgm? kgm’ kgm? kgm’
N[5 —63862540 Ny 1501 -10683000 N, [ER) —66 285641 Ny [50] 0
X 1] -14778 - - Xy ] —2275 - -
4. Measurement update equations: applied has been calculated using ShipX VeRes (MARINTEK, 0000),
whereas the damping matrices are identified as discussed in Section 4.
f=x+x0, i=1,...2n (20a) ; - R
k k ’ v The matrices are given below and the parameter values are given in
8 p g
T
i Table 10.
x0 = an_l) , i=1,...,n (20b)
" M = diag{m,,, my,, my3} 24)
X+ = _ ( nP;_l) , i=1,...,n (20¢)
i -X, 0 0
3V =n:0.1) @od) DL={ 0 -Y, -V, (25)
1 2n 0 _NU _NV‘
he=5, > (20e) dy 0 0
i=1 Dy (v)=| 0 dy dyl. (26)
2n
1 N N o A \T 0 dyy dy;
Py=5-3 (Y;:) yk) (yfj) - yk) +R, (20f)
i=1 where dy) = =X, ||, dyy = =Y}, |0, | =Y}, 17l doy = =Yy lo | =Y} r],
1 & G o\ () T d3y = =Nyplve | = Nigplrls dsz = =Ny v, | = Nyl
Py=2 Z (ﬁk JA‘k) (3’,( —S’k) (20g) N, is zero because the identification results provided slightly
=1 negative and slightly positive values for the coefficient (for different
K, = nyP;' (20h) data series). Therefore, it was set to zero.
ot _ am N .
X =%+ K (yp— Y0 (201)
K k - References
+ _ R
Pf = P; - K,P,K]. (20

Appendix B. Control design model for the simulation verification
model

The simulation verification model is a 6 DOF model of a supply
ship, and is part of the MCSim repository based on the MSS GNC
toolbox (Fossen & Perez, 2004). For its corresponding 3 DOF control
design model, the linear damping and mass matrix are known from the
simulation model, whereas the nonlinear damping matrix is identified as
discussed in Section 4. The matrices are given below and the parameter
values are given in Table 9.

M = diag{m,, myy, ms3} @21
X, 0 0

p,=| o0 -v, -y ©2)
0 -N, -N,
4, 0 0

Dy (v)=[0 dyp dy|, (23)
0 dyp dy

where dy = =X, |u, |, dyy = =Yy |0, | =Y} lrls doz = =Y, 10, =Y}, 17,

dyy = =Nyplv, = Nigolrl, dsz = =Ny v ] = Nyl
Appendix C. R/V Gunnerus control design model
For the NTNU-owned vessel R/V Gunnerus, observers are tested on

real data captured during DP operations at the AMOS DP Research
Cruise 2016 (Skjetne et al., 2017). In the observers, the mass matrix
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ABSTRACT This paper deals with the problem of transient events in model-based observers for dynamic
positioning of marine surface vessels. Traditionally, model-based observers experience a deterioration of
performance during transients, and there is a give or take relationship between transient and steady state
performance. To remedy this problem, we propose to use time-varying gains for a model-based observer. The
gains are aggressive during transients to improve transient performance, and relaxed in steady state to lower
the oscillations of the estimates. The proposed observer is analyzed with regard to stability. Its performance
is verified in both a high-fidelity simulation model, and on experimental data with the research vessel (R/V)

Gunnerus. In addition, a partial closed-loop validation with R/V Gunnerus has been performed.

INDEX TERMS Dynamic positioning, Marine control systems, Observers.

1. INTRODUCTION

A dynamically positioned (DP) vessel means a unit or a
vessel which automatically maintains its position (fixed loca-
tion or predetermined track) exclusively by means of thruster
force [1]. As dynamic positioning operations are moving
into harsher conditions or doing more complex operations,
better transient performance of the DP system is required.
A bias term is used as integral action to model slowly-varying
environmental loads and unmodeled dynamics, and for good
model-based observer performance it is important to estimate
this bias accurately. Integral action is typically based on
the assumption that this bias is constant. The bias load is,
however, slowly-varying in steady state, but can vary rapidly
in transient events. A major obstacle in transient performance
of DP is how to handle rapid changes in this bias load.

In model-based observers for DP, the environmental loads
are typically modeled as a constant force vector in the North-
East-Down-frame (NED), that is, the following kinetic equa-
tion is typically used, MV = —Dv + R(¥)Tb + T, where
b is this constant load (bias) vector in the NED-frame and
R(-) is a rotation matrix mapping into the body-frame of the
vessel; see Section II-A for more details about the model-
ing, as well as [2], [3]. There are instances when the bias
loads change significantly over a short time period, where
this assumption does not hold. In Figure 1 we investigate,
as an example, how the current and wave drift loads vary in

the NED-frame over a heading change. The figure shows a
high-fidelity simulation of a surface vessel performing two
maneuvers; first, a position setpoint change, and afterwards,
a combined setpoint change of position and heading. In the
top plot of Figure 1 the low-frequency North position and
heading angle are shown. In the bottom plot the combined
current and wave-drift loads are shown in North and yaw.
We observe that the loads experienced by the vessel in the
NED-frame changes significantly, even though the current
and wave parameters are constant in the NED-frame. This
is because the forces experienced by the vessel vary due to
ship hull geometry, which is not accounted for in the sim-
ple (but effective) bias model. Consequently, for some time
after a transient event, the bias load estimate of a model-based
observer will be off, leading to poor velocity and position
estimates. This example clearly illustrates that if the vessel
changes heading, the common slowly-varying assumption of
the bias model in the NED-frame does not apply in transients;
see also [4] for a discussion on this for AUVs (Autonomous
Underwater Vehicles) exposed to currents. Other common
occurrences of rapid bias load changes include wave trains,
rotational currents, sea-ice loads, or during mode changes in
the operation of the DP system.

Even with the knowledge that the slowly-varying bias
assumption is not good in transients, it is difficult to device
better ways of handling this. One non-model based option
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FIGURE 1. Low-frequency North position and heading angle (top), and
current and wave-drift loads in North and yaw experienced by the
vessel (bottom).

is to measure accelerations to estimate the forces in a direct
fashion as suggested in [5]. Another option that does not
require more instrumentation is to use a more complex model
of the hydrodynamic loads, but this would also give a more
complex control algorithm that could be more difficult to
parameterize and analyze with respect to stability. Moreover,
depending on the type of environment, there will always be
uncertainty in such models.

There exists other time-varying observer schemes for DP in
the literature. See for instance [6], where an inertial observer
for DP is proposed that uses time-varying gains to improve
convergence and suppress sensor noise. In [7] and [8] a
wave encounter frequency observer is proposed, where time-
varying gains are used in an adaption law, and in [9] hybrid
gains are used in integral action for DP.

The main contribution of this paper is to construct a model-
based observer with time-varying gains that performs well
in transients as well as in steady state. In state-of-the-art
fixed gain model-based observer design for DP [2], there
is a tradeoff in tuning the observer for either good steady
state performance or good transient performance, and in com-
mercial systems there are typically three gain settings; low,
medium, and high, which the DP operator can select from.
As an extension of the observer design from [10], we propose
in this paper to use time-varying bias and velocity injection
gains. The paper includes a comprehensive analysis and thor-
ough selection of gains, and an observer verification based
on experimental data. Another contribution is a full-scale
closed-loop validation of the observer when conducting a DP
experiment on the AMOS DP Research Cruise 2016 [11].
Demonstration of the observer performance through
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full-scale closed-loop experiments on an academic research
cruise is, to the author’s knowledge, not done before.

Notation and Terminology: In UGES, G stands for Global,
U for uniform, E for exponential, and S for Stable. The
smallest and largest eigenvalues of a matrix A € R"™" is
Amin(A) and Apqy.(A), respectively, and R o denotes positive
real numbers. The Lo signal norm s [|x|| o = esssupf{|x(?)| :
t > 0}.

1. PROBLEM FORMULATION

In the following we separate between the simulation model,
which is a high-fidelity model used for control and observer
verification, and the control design model, which is a sim-
plified model intended for control and observer design. The
control design model typically only includes the parts rele-
vant for the operational regime of the observer or controller.
For low-speed applications such as DP, this implies that the
Coriolis and centripetal forces are neglected, and the nonlin-
ear damping is typically neglected as well. See [3], and [2] for
DP modeling details, and [12], [13], [14] for other insightful
DP literature.

Two reference frames are used: The North-East-Down
frame (NED) is a local Earth-fixed frame assumed non-
rotating, with x-axis pointing North, y-axis pointing East, and
z-axis pointing down to the center of the Earth. The body-
frame is a local frame, centered along the center line and in
the water plane of the vessel. The x-axis points in the direction
of the the bow, y-axis starboard, and z-axis down.

A. CONTROL DESIGN MODEL
The control design model is a 3 degree of freedom (DOF)
model,

£ = Ak + Eywy, (la)
n = RW)v (1b)
b=—T;"b+wp (1c)
Mb = —Dv+R() b+t ad)
y =1+ Cy€ +vy, (le)

where there is a separation between the first order wave-
induced motion in (1a) and the low-frequency motion of the
vessel in (1b) - (1d) [2]. When controlling the vessel, we are
typically only interested in the low-frequency part of the
motion. Controlling the total motion causes extra wear and
tear on the thrusters, and in most cases it is not possible to
counteract the first order wave-induced motion. The wave-
induced motion & € R> x S! is modeled by a second order
mass-spring-damper model, where A,, is a Hurwitz matrix
that contains the peak frequency of the sea state and the
damping ratio of the wave motion model, w,, € R? is zero
mean white noise, and E,, = [03,3 13X3]T. The vector
n = col (v, ne, ) € R? x S contains the low-frequency
North/East position and heading angle of the vessel, and the
bias load b := col (bN, bE, by,) € R3 is a NED-fixed vector
that contains the slowly-varying loads affecting the vessel due
to wave drift, mean and slowly-varying currents, mean wind
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loads, as well as unmodeled dynamics from inaccurate mass
and added mass, unmodeled hydrodynamic effects, and errors
in thrust modeling. The bias load dynamics are modeled by
a Markov process, where T is a diagonal matrix of time
constants, and w, € R3 is the white noise vector [2]. The
vector v = col (u,v,r) € R3 contains the low-frequency
surge/sway velocity and yaw rate in the body frame of the
vessel, M € R33 and D e R3*3 are the mass (inertia
and added mass) and linear damping matrices, respectively.
7 € R3 is the control vector. The measurement vector y € R3
is a sum of the low-frequency North/East position and head-
ing 1, and the wave frequency North/East and heading C,&,
where C,, = [03X3 I3 3], and the measurement noise vector
vy € R3. The rotation matrix R(¥) rotates a 3 DOF vector
from the body to the NED frame. It satisfies R(Y)R(Y) " =1
and det(R(y)) = 1, and its time derivative is R = R()Sr,
where

cos(yy) —sin(y) O
R(Y) = | sin(y)  cos(¥) O],
0 0 1
0o -1 0
S=|1 0 0]; ?2)
o 0 O

see [2] and [15] for details.

B. ASSUMPTIONS
Since the wave-induced heading angle is typically less than
1° for normal sea states and less than 5° for extreme sea states,
we assume as in [16] that:
(A1) R(Y + ¥) = R(Y), that is, the heading angle due to
wave-induced motion, v, is small.

We also make the following assumptions:

(A2) The added mass part of M and the wave-induced
damping of D are set to the values when the wave
frequency approaches infinity, and therefore they
are constant. In addition, starboard/port symmetry is
assumed, M = M > 0, and that the damping matrix
satisfies D+ DT > 0.

(A3) wy, = wp = 0. Since the presented observers are
deterministic, both the wave and the bias estimates in
the observers are driven by the estimation error [16].

(A4) In the stability analysis, no measurement noise is con-
sidered, vy = 0. However, simulation and experimen-
tal data include it.

The last two assumptions are common for a deterministic
observer design, but in practice we will see that the resulting
observer has good filtering properties of these noise inputs.

C. PROBLEM STATEMENT

We consider the case where the bias b is constant or slowly
varying in long periods of time, but then sporadically expe-
riences rapid changes due to some transient condition. The
problem is thus to design an observer for (1) that accurately
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estimates the states during both steady and transient condi-
tions. The performance of the observer shall be compared to
a conventional design basis through a performance index.

1ll. OBSERVER DESIGN

The proposed observer is based upon the ‘“‘nonlinear passive
observer” initially presented in [16]. Time-varying injection
gains for the velocity and the bias dynamics are proposed
to capture slowly-varying dynamics in steady state, and fast
dynamics during transients. The observer is designed by
copying the control design model (1) and adding injection
terms, that is,

£ =A+ K (3a)
i = RO + K3 (3b)
b=—T,'b+Ks(t)7 3c)
MD = —Dd+ R h+1 + Ku(ORW)'S  (3d)
5 =h+Cuk, (3e)

whereé e R xS,/ e R? x S.h e R? and b € R? are
the state estimates, K1 € R*3, K, K3(1), K4(r) € R>3 are
non-negative gain matrices, and y = y—y is the measurement
error. The gains K| and K, depend on the peak frequency
of the wave spectrum as in [16]. The observer in (3) was
preliminarily presented in [10] with only K3(¢) varying with
time. Further analysis shows that an appropriate choice of
values for K3 and K4 are important for good transient observer
performance, so here a scheme for time-varying K3 and K4 is
proposed.

As discussed in Section I, the transient changes of the bias
load experienced by the vessel pose challenges for the model-
based observer in (3). To illustrate this, consider the following
case: When the vessel is pushed off setpoint due to a rapid
external load b, the DP controller will try to decelerate and
stop the movement, and bring the vessel back to setpoint.
The observer has information about this control action T and
position deviation y, whereas the bias observer state b under-
estimates the actual bias load. While the position deviation is
helpful for the observer, the control action’s ‘““‘push back” to
position is seen as an indication that the vessel is moving in
the direction of the control action, which initially is opposite
of the actual motion of the vessel. Therefore, including feed-
back control action deteriorates the observer performance in
the initial phase of a transient.

Therefore, in order to achieve good transient observer
performance, the injection gain K4(¢) in the velocity dynam-
ics (3d) must be high enough to dominate the feedback con-
trol action. In addition, the injection gain K3(¢) in (3c) must be
high enough in order for the bias estimate to more accurately
track the bias load value during the transient. Keeping these
gains high all the time will, however, result in oscillatory
estimates of the bias and velocity in steady state.

K3(r) and K4(¢) are proposed to stay within the range

Ki(t) € [Ki,mim Ki,max], i=3,4Vt > 1.
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The values of K; ;,qx should be set such that they give a good
transient performance of the observer, and K; i, such that
the observer performs well in steady state. The steady state
tuning is purposely set low, providing calmer estimates to
the controller, as is normal tuning practice for conventional
DP observers. The time-varying gains should react quickly
to transient events by approaching their maximum values
rapidly.
The equation for K3(¢) and K4(t) is thus proposed as

Ki(t) = k(OKimax + (1 — k() Ki min, (C))

where k(¢) € [0, 1], V¢ > 0. Whenever there is a transient
event, k¥ should approach 1, and whenever the vessel is in
steady state, « should stay close to 0.

Three transient events are considered. The first is an
operator-executed heading change, which is easily detected
through the desired yaw rate from the guidance system.
The second is a change in the environmental disturbances.
This is detected through a deterioration of the observer per-
formance. The final transient is the error due to initialization
of the observer. The proposed dynamics for « is

i=3,4,

(t) = max{0, B(1) — 1)} (5)
B() = miney lra(0)] + eyl (1)1, 2} (5b)
np = =T, iy =), (5¢)

where ¢, € R.¢ and the desired yaw rate r4(t) € R are
related to a heading change. The second term 7y in (5b) is
the lowpass filter (5c) that tracks the observer output error

performance, where T,, € R3*3 is a diagonal matrix of

filter time constants. If the observer performance deteriorate,
[77| will grow. The time constants and &, € R are tuned
such that « approaches zero at steady state. To incorporate
the effect of a transient at observer startup, 7y is initialized
with non-zero values. The value of 8 in (5b) takes a value
between zero and two. The maximum function in (5a) defines
a threshold such that « will not go above zero before g is
larger than one. This will reduce the amount of switching
back and forth.

IV. STABILITY ANALYSIS

By deflnmg the estimation error %tatesé =& S n:=n-1n,
bp:=v—90,andb := b — b, and subtracting the observer
equations (3) from the control design model (1), we get the
observer error dynamics,

MV = —Di +RW) b — KsORW) 5. (6d)
The stability analysis follows the same structure as in [10].
However, the following proof removes the assumption of a
maximum yaw rate. We collect all the observer error states
from (6) in a vector x := col(f 7,b,V) € R!5 and write the
observer error dynamics from (6) compactly as

X =A@, 0)x, (7

where the equation can be derived, as shown at the bottom of
this page.
The dynamics (7) can be written as [17],

& =TE) A0, DT (W)x, ®

where
T(Y) = diag{RY) ", RY) T, RW)T, R, I}, (9)

if the matrices K3, K3(¢), and T commute with R(v), and
K R = diag{R, R}K;. Note that the nonlinearity R(y) is
replaced by R(0) = I in A(0, t). Moreover, it can be shown
that we can write A(0, t) as

A(0, 1) = k(OAmax + (1 — k(O))Amin,

k() €[0,1]. (10)

where A,,in =A(0, 0) and A5 =A(0, 1).
Proposition 1: The equilibrium x =
Ki(t), i=3,4,is given by (4), and

0 of (7) where

k() € [0,1] Vvt >0,

is uniformly globally exponentially stable (UGES) if the
following holds:
(1) The matrices K3, K3(t), and T, commute with the rota-
tion matrix R(y), and K| R = diag{R, R}K].
(2) The linear matrix inequalities (LMIs) below are

satisfied,
A;;mP +PAmm < 7Q (lla)
A;axp + PApax < =0 (11b)
PSt — StP is skew-symmetric, (l1c)

where St = diag{Ss, S, S,S,0}, and P € RI15%15 and

Q € R*15 are symmetric positive definite matrices. O]

Proof 1: Consider the transformation z = T(y¥)x given
by (9), and notice that T()~! = T'(y)T. From (8) we get

E=AZ Ky (62)
i = R)D - Ko (6b) i = TWHTW)TAQ. e+ TUHT W)z
b=-T,"b— K1)y (6¢) = A0, 1)z — 872, (12
Aw - Kl Cw 7KI 0 0
3 —K\C, —K 0 R(Y)
AWD= 1 e R)TC —K3(OR()T T, 0

~M K4 (ORWY) T Cyy
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where r is the yaw rate. We introduce a quadratic Lyapunov
function V(z) = z! Pz with P from (11), and take the time
derivative of V along (12), which gives

V =z {PAQO, 1) + A0, ) P — r(PSy — STP)}z
= 0.852" {k(t)(PApax + A _P)

max
+ (1 = k() (PAmin + ALinP))z
< —gmlz (13)

where g, is the smallest eigenvalue of Q from (11).

V. SETUP, RESULTS, AND DISCUSSION
The observer in (3) has been tested on the high-fidelity simu-
lation model and on full-scale experimental data, described in
sections V-A and V-B, respectively. For the experimental data
we only have data sets with negligible waves, so the observer
tested does not apply the wave filter. Hence, the observer used
is (3b)-(3d) with § = 7. In addition, the data series for the full-
scale experiments contain a lot of transients, but little steady
state. Therefore, the simulation study has a wider discussion
of performance than the observer results on the experimental
data.

After a presentation of the setup, we start with presenting
a closed-loop verification of the observer from [10] onboard
the R/V Gunnerus. This serves as a verification of the time-
varying observer design, which is relevant for the observer
presented in this paper, as the observers have similar structure
and scheme for selecting the time-varying gains.

A. DP SIMULATION MODEL

The simulation model is a 6 DOF high-fidelity model
of a platform supply vessel with main parameters shown
in Table 1. The model includes nonlinear damping, Coriolis,
centripetal forces, and linear damping, based on building
blocks from the MSS Toolbox [18]. Wave drift and current
forces are calculated using lookup tables, which give a real-
istic variation of the bias loads with vessel heading. Realistic
noise is added to the measurement signals from the GPS and
compass, with sampling rates of 1 Hz and 10 Hz, respectively.

TABLE 1. Simulation, platform supply vessel, and main parameters.

FIGURE 2. The NTNU-owned research vessel R/V Gunnerus.

TABLE 2. R/V G , Main p
Parameters Value
Length over all 313 m
Length between perp.  28.9 m
Breadth middle 9.6 m
Draft 27 m
Dead weight 107 tons

Parameters Value
Length between perp. 80 m
Breadth 174 m
Draft 5.6 m
Displacment 6150 tons

The simulated sea state is very rough with significant wave
height of 6 meters, and a peak frequency of 0.53 rad/s taken
from the JONSWAP! spectrum. The mean incident wave
heading is 190° (head waves) in the North/East frame [19].
The simulation also includes current with a speed of 0.5 m/s
with direction of 160° (bow).

!Joint North Sea Wave Project
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FIGURE 3. The 4-corner DP test. Courtesy: @ivind K. Kjerstad.

B. AMOS DP RESEARCH CRUISE 2016
Full-scale experimental data were collected during the
AMOS DP Research Cruise (ADPRC) 2016 [11] with R/V
Gunnerus, a 31-meter long research vessel owned and oper-
ated by NTNU, as seen in Figure 2, and with main parameters
in Table 2. In addition, a closed-loop verification of the
observer from [10] onboard the R/V Gunnerus was tested on
the cruise. For the experimental data we only have data sets
with negligible waves.

The data sets from the full-scale experiment with R/V
Gunnerus are all from the vessel performing a box maneuver,
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here called DP 4-corner test, as shown in Figure 3. The vessel
starts at North and East position (N, E) = (0, 0) with heading
zero degrees, and the test steps are:
1) Position change to (N, E) = (40m, 0) with zero head-
ing (pure surge motion).
2) Position change 40 meter to (N, E) = (40m, —40m)
with zero heading (pure sway motion).
3) Heading change to = —45 degrees (pure rotation).
4) Position changeto (N, E) = (0, —40m) keeping heading
at -45 degrees (combined surge and sway motion).
5) Position change to (N, E) = (0, 0) and heading ¢ = 0
degrees (coupled motion with all DOFs).

C. PERFORMANCE EVALUATION

To compare performance of the different observer algorithms,
we will apply the following cost functions as performance
indicators,

It R R 180 A
Jy = {Imv—nN|+|nE—nE|+7\1/f—¢|}dt (14a)
1o

y 180

Ty :/ (=il v = 9|+ —r = Fl}ds (14b)
fo

Jp = /r/{lb’v — by + 1o ~ br| 2 oo =buly 4
o Ibvlleo 1bE o 1Dy Nl oo ’

where #( and # are the initial and final time of the interval.

D. DERIVATIVE FREE OPTIMIZATION FOR TUNING

When comparing observers, a fair tuning is important.
We would like to find the tuning based on optimization.
Due to the absence of information about the gradient, Hes-
sian, or higher derivatives of a typical cost function, a classic
gradient descent-like method is not applicable. Therefore,
derivative free optimization (DFO) will be used as a guide to
tune the observers, and the MATLAB® function fminsearch
has been adopted.

To illustrate how derivative free optimization works, let
us consider a variable of interest, x € R. The goal is to
establish a cost function to minimize the error ¥ = x — x
given a certain parameter K € R and a simulation time
of tr seconds. We consider a cost function J(K, t), where
for each value of K a new simulation is performed and the
cost function is evaluated. The derivative free optimization
method explores the solution set around the current iteration
result to compute a new solution point which minimizes the
cost function. In our case this means to find a new value for
K that gives a lower cost for J than the one before. There is
a chance of getting stuck in a local minimum, and therefore
several initial conditions for K are needed.

E. OBSERVER OF [10]: TIME-VARYING K5(t) ONLY, WITH
FULL-SCALE CLOSED-LOOP VERIFICATION

The time-varying observer from [10] was tested in closed
loop on the ADPRC 2016. The observer is similar to (3),
with a time-varying bias injection gain K3(z), but K4 was kept
constant. However, since the waves were negligible while
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performing the closed-loop trials, the observer used in closed-
loop was (3b)-(3d) with = 7.

The control law t used for the full-scale experiments had
a feedback term tpp, and a reference feedforward term tzp,
where the feedback term consisted of a nonlinear PD (pro-
portional, derivative) tracking term and a bias load rejection
term,

T = TFB + TFF (15a)
TrF = Mig(1) + Dvg(t) (15b)
g = —KpRW) T (7 — 11a()) — Ka(® — va(1)) — RWY) by,

(15¢)

where K, and K; are positive definite gain matrices, and
na(t), va(t), vq(t) are the desired references generated by a
guidance system. The state l;f is a lowpass-filtered state of
the bias estimate 13,

by = ~17 by — b, (16)

where T is a diagonal matrix of the filter time constants. This
filter was used instead of the bias estimate directly, to achieve
a calmer control signal; see [10] for more details. The tuning
for the observer and controller gains were found through trial
and error.

1) EXPERIMENTAL CLOSED-LOOP RESULTS

The vessel followed the DP 4-corner maneuver described in
Section V-B, and Figure 4 shows the response of the vessel
for two different runs. The left side of the figure shows
the North/East position of the target and the two runs, and
the right side of Figure 4 shows the heading setpoint and the
vessel heading for the two runs. The figure indicates that the
observer worked well in closed loop, and vessel followed
the maneuver well. The best performance was in surge, and
when the degree of coupling between surge, sway, and yaw
increased, tracking the reference was harder.

The two runs had similar environmental conditions, with
current of velocity 0.3 m/s and direction 300°, and with
wind speed of 6 m/s and direction 250°. For both runs the
observer gains were the same, but the filter time constant
for the bias was four times higher for run 2. As seen from
Figure 4, both runs were quite similar in performance, but
run 2 was more oscillatory, at least on the last part of the
maneuver. This is probably due to the higher bias filter time
constant. The closed-loop results indicate that the observer
worked well in closed loop, and managed to control the vessel
to a satisfactory degree.

F. OBSERVER WITH TIME-VARYING BIAS AND VELOCITY
INJECTION GAINS

We now present the results for the time-varying observer
in (3), where both K3(¢) and K4(t) are time-varying. In addi-
tion, the results of the observer in [10] with only K3(#) time-
varying is presented, with K4 = K ,in. TWwo benchmarks
are included to compare the performance of the observers.
The first benchmark is an observer that always uses K3 in
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FIGURE 4. Full-scale experimental verification on R/V Gunnerus of the algorithm from [10]. The left plot shows the four corner target and results of two

different runs. The right side shows the heading setpoint and the resp

and K4 pin in (4), named the baseline observer, working well
in steady state. This is the ‘“‘nonlinear passive observer”
presented in [16], with normal tuning, and is typical in the
literature. The second benchmark is an observer called the
aggressive observer that always uses K3 qr and K4 max,
working well in transients.

1) TUNING

To find the tuning for the observers, derivative free optimiza-
tion, as discussed in Section V-D, was used with the cost
function

J = Jy+cudy, 17

where J;, and J,, are defined in (14a) and (14b), and ¢, is a
scaling factor to weight the relative contributions for position
and velocity.

For the simulated data in Section V-F.2, a maneuver with
many transients has been used. The data set has both a change
of the current direction and a heading change combined
with a North/East position change, with short time intervals
between the transients. The resulting tuning was adjusted to
accommodate the stability requirements in (11), and this was
used as a guide to tune the transient observer gains, that is,
the maximum values of K3(#) and K4(¢).

In order to find values for K3 ju, and Ky in, several tests
have been conducted. We tried to select maximum gains
higher than the gains from the tuning found from DFO and
combined this with a low minimum tuning, but this did not
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of the two different runs.

yield good results. This makes sense as the DFO tuning is
found over a lot of transients, and thus is very aggressive
already.

Thereafter, using the DFO tuning as the maximum values,
we searched though several variations for the minimum tun-
ing. Setting the minimum gains to 60 — 70% of the maximum
gains yielded the best results. However, since we needed to
adjust K3 4 to satisfy the stability requirements in (11),
we selected the highest feasible K3 ;4 that in combination
with minimum gains K; yin = 0.7 K; jax that satisfied (11).
This gave K3 ;qx = 0.5 Kffngx.

For the full-scale experimental data, a similar approach
was used where the DP 4-corner maneuver seen in Figure 3
was used to find the transient tuning. To find the gains
by using DFO, the post-processed position measurement
and velocities were used. The velocities were found by
differentiating the North/East position and heading using a
finite impulse response (FIR) filter. A search over possi-
ble ratios between the maximum and minimum tuning was
performed, where 0.7 performed well, satisfying (11) with
1(3Jnax =05 I([)FO

3,max*
2) ESTIMATION BASED ON SIMULATED DATA
For the simulated data the vessel is controlled by (15) and (16)
that operate on the estimated states, i.e. the observers operate
in closed loop.

In the data series, the current changes direction
at + = 500 seconds, and at r = 1000 seconds there is
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FIGURE 5. Simulation results of observer in closed-loop.
TABLE 3. Performance indices for the error, simulation data.
Time: 0-1500 s 2000-3500 s
Observer Jn Ju Jy Iy Ju Jy
Baseline 21252 964 666.8 21256 363 3550
Aggressive 20988 847 6532 21418 50.0 4469

2099.3 851 6462
21172 917 697.1

21256 363 3513
2125.6 364 3524

Time-varying K3 and K4
Time-varying K3

a setpoint change of both North/East position and heading.
Figure 5 shows the results of the four observers. The left side
shows the low-frequency North/East position and heading of
the baseline observer in the top plot, the middle plot shows the
bias load of the baseline observer, found by solving (1d) for
b, and the lower left plot shows the « variable of the observer
with time-varying K3(7) and K4(¢) from (4). The right side
shows the performance indices J;, J,, and Jj in (14) from
top to bottom, respectively. The same performance index
values for 0 to 1500 seconds and for the steady-state time
interval 2000 to 3500 are listed in Table 3. Note that the
steady-state time interval 2500 to 3500 seconds is not shown
in Figure 5.

Looking at the left side of Figure 5 we see that the bias
loads change a lot, both at the current direction change at
500 seconds, and at the setpoint change at 1000 seconds. The
K-value starts at 1 due to high initialization of 7¢(¢) in (5b)
in order to handle initial transients before settling at « = O.
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At the heading change at 1000 seconds, « reacts quickly and
jumps to 1 due to the non-zero desired yaw rate. The current
direction change at 500 seconds has to be detected through
deterioration of the observer performance and the subsequent
rise in |7 (¢)|. Therefore it takes « longer to reach 1 during the
current direction change.

On the right side of Figure 5 and in Table 3 we see that
all observers perform similarly for J;,. In both the estimation
of the velocity and bias loads, the time-varying observer pro-
posed in this paper performs the best, especially in velocity.
It outperforms the aggressive observer due to effect of lower
oscillations in steady state, and it outperforms the baseline
due to faster reaction over the transients. The time-varying
observer with only K3 time varying performs worse than the
observer with both K4 and K3 time varying, but it performs
better than the baseline observer in transients. As seen from
Table 3, the baseline and time-varying observers are slightly
better than the aggressive observer in steady state for posi-
tion estimation, and considerable better for bias and velocity
estimation.

If the noise variance of the measurements is increased,
the time-varying observer performs better relative to the
aggressive, due to lower tuning in steady state. To make the
time-varying setup better handle large measurement noise,
we could make & in (5) depend on the variance of the noise.
In this way the time-varying observer could adopt lower gains
if the measurement noise increases.
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TABLE 4. Performance indices for the estimation error, full-scale exp.

data.

Time: 0-1500 s 1500-1940 s

Observer Jn Ju Jn Ju
Baseline 142.09 144.02 1097 895
Aggressive 13527 12335 11.02  9.05
Time-varying K3 and Ky  137.00 12694 10.97 8.95
Time-varying K3 138.83 12697 1097 895

3) ESTIMATION BASED ON FULL-SCALE MEASUREMENTS
Figure 6 shows the results of the four observers on data from
R/V Gunnerus from ADPRC 2016. In the data set presented,
the vessel is exposed to a current roughly estimated to 0.6 m/s
and direction 170°, and with wind speed 5 m/s and direction
150°. The left side of the plot shows the measured North/East
position, and heading in the top plot. The bottom left plot
shows the k variable. Notice that « is 1 for most of the four
corner maneuver, and after 1500 a steady state is reached.
Since the four corner maneuver has a lot of transients, and
not too much steady state, it is harder to show a difference
between the different observers. The right side of Figure 6
shows the performance indices J;, and J,, in (14), and all four
observers perform similarly for J,, but for J, the baseline
observer is significantly worse than the other three, due to
all the transients. However, the performance between the
observer with only time-varying K3 to that of the other time-
varying observer is smaller than for the closed-loop simula-
tion results. The values for J; and J,, for the transient and
steady state periods are given in Table 4, and the trend is
similar to that of the closed-loop simulation results, although
the differences in steady state are smaller. This is natural as
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the steady state in simulation is actually steady, and here the
environment is changing, and there is less time to settle into
steady state conditions.

V1. CONCLUSION

A time-varying model-based observer with good perfor-
mance in both transients as well as steady state has been
proposed. The observer is shown to be UGES, and perfor-
mance is shown through a simulation study and on full-scale
experimental data. In addition, a full-scale closed-loop veri-
fication is presented, and this shows that the observer works
to a satisfactory degree in closed loop. Satisfactory tran-
sient tuning for the observer is found through derivative free
optimization. The time-varying observer shows a marginal
benefit over a well-tuned transient observer, depending on
variations in measurement noise and environmental condi-
tions. Especially, if there are large periods of steady state in
between transients the time-varying observer is a tractable
solution over the conventional DP observer. In addition,
the added complexity of implementation for the time-varying
gains is very small.
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Errata (J.2)

e For Eq. (8) to be valid, there should be an assumption on A,, that
diag{ R(¢¥), R(¥))} A, diag{ R(¥) ", R(¢)) "} = A,,. A typical wave-filter (used in
this paper) is a second order filter (Sgrensen, 2013), where

_ 0 I 6x6
Auw = [—&22 —2AS2] € R

where Q = diag{w;,ws, w3} € R¥3 and A = diag{\;, A2, \3} € R3>*3. The
assumption above imples that w; = ws and A\; = )y, which means that the East
and North components are treated the same. Typically, all elements of €2 are set to
the same value; the peak frequency of the sea state. In practice, the values of A are
often set to be the same as well. It makes sense to set A\; = \,, because it is hard to
justify different damping factors in North and East, since these components are not
linked to the vessel, but to arbitray directions (seen from the vessel). In the paper,
all components of €2 were the same, and similarly for A.

e The matrix A(¢,t) at the bottom of page 4, below Eq. (12) has two typos in row
3, for element (3,1) and (3,2). Element (3,1) should write — K3(¢)C', and element
(3,2) should write — K3(t)

e In Eq. (13) the factor 0.85 is a typo and should not be there.

Additional comments (J.2)

The tuning of this paper relies on the LMI-constraints in Eq. (11) being satisfied. This is
similar to the LMI-constraints in Eq. (18) of (C.1), where the notion of a maximum yaw
rate, 7,42, 1S used. The idea of Eq. (18) in (C.1) is that if the LMIs are satisfied for a
very large and unattainable yaw rate the system is stable. In (J.2), the maximum yaw rate
requirement is removed. However, the solution found in Eq. (11) of (J.2) is a subset of the
solutions from Eq. (18) of (C.1). The stability analysis of (J.2) is thus more conservative
than in (C.1). To illustrate this, let us consider the stability proof of the simulation model
in (J.2). As mentioned in (J.2), the allowed minimum tuning of K, and Ky s 18 0.7
(0.68) of the maximum tuning. However, if we instead apply the tuning rules of Eq. (18)
of (C.1) the minimum tuning of K3 ,,,;, and K3 .45, 1s allowed to be 0.55 of the maximum.
This is using an 7,,,, of 10°/s, which is reasonable. For a vessel of this size obtaining a
yaw rate 10°/s is unrealistic.
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The next generation marine control systems will, as a step towards increased autonomy, have more
automatic functionality in order to cope with a set of complex operations in unknown, challenging and
varying environments while maintaining safety and keeping operational costs low. In this paper a hybrid
control strategy for stationkeeping and maneuvering of marine vessels is proposed. The hybrid concept
allows a structured way to develop a control system with a bank of controllers and observers improving
dynamic positioning (DP) performance in stationary dynamics, changing dynamics including enhancing
transient performance, and giving robustness to measurement errors. DP systems are used on marine
vessels for automatic stationkeeping and tracking operations solely by use of the thrusters. In this paper
a novel method improving the transient response of a vessel in DP is developed. The performance of the
hybrid control system, including two observer candidates and one controller candidate, is demonstrated
in model-scale experiments and on full-scale field data. The hybrid system has global stability properties.
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1. Introduction

Marine operations are moving into harsher environments,
and as a consequence, requirements for the vessel’s operational
window, safety functions, and energy-efficiency become stricter
(Sgrensen, 2011). As a result, the level of autonomy in marine
control systems is increasing, with automatic performance mon-
itoring and switching. During marine operations, both variations
in stationary dynamics and transient behavior are important to
account for in an all-year operation philosophy subject to changing
weather, sea loads, and modes of operation (Perez, Sgrensen, &
Blanke, 2006). There are many unknown factors that may cause
transients in the vessel response, both from the environment
(e.g., wave trains and wind gusts) and triggered by the operation
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taking place (e.g., heading changes or crane operations of heavy
goods). Fig. 1 shows a marine vessel with its operational con-
ditions and a block diagram of a general hybrid marine control
system. The vessel operational conditions with use mode, speed,
and environment indicate how the vessel performs different tasks
with varying speed in an unknown and changing environment.
The use mode includes algorithms that satisfy different control
objectives such as stationkeeping, maneuvering, and target track-
ing, which is closely linked with the vessel speed. Environment
refers to the state of the environment consisting of wind, waves
and current. Naturally, certain operations can only be performed
in calm conditions. Because different physical effects matter for
the various vessel operational conditions, there are distinct models
and control strategies which are designed specifically for each op-
erational condition. Nguyen, Sgrensen, and Quek (2007) proposed
to use supervisory switched control based on the methodology of
Hespanha, Liberzon, and Morse (2003) and Hespanha and Morse
(2002). In addition to handling different speed regimes, use modes
and changing sea states, the proposed setup ensures redundancy in
the (software) design methodology so that faults (Blanke, Kinnaert,
Lunze, & Staroswiecki, 2003) may be detected early and alarms
may be raised to operators, who are either on-site or remote. The
performance monitoring and switching logic block includes moni-
toring of the environment, power system, observer performance,
position precision, signal health, and more. In order to ensure
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Fig. 1. Block diagram of a hybrid control system for a marine vessel in an unknown
environment consisting of wind, waves and current. Sensors measure the opera-
tional status and vessel motions, and signal processing software filters, weights and
votes between redundant measurements. The performance monitoring monitors
the performance of the different blocks, and the switching logic chooses which
algorithms to use in closed-loop control from the candidates. Here two observers
and one controller are used.

safety, there are high requirements for system reconfiguration,
fault tolerance and redundancy, and for testing and verification of
performance (DNV-GL, 2014). Testing and verification of marine
control systems with higher levels of autonomy are faced with a
large (when not infinite) number of failure modes (Smogeli, Vik,
Haugen, & Pivano, 2014); exhaustive testing is rarely possible.
Therefore having modular design and proofs of subsystem proper-
ties may play a larger role in assuring safety (Kapinski, Deshmukh,
Jin, Ito, & Butts, 2016). Systems with a wide range of dynamics
and different modes that also use hybrid control approaches are
for instance air traffic control (Hu, Prandini, & Sastry, 2005; Sastry
et al., 1995), adaptive cruise control for the automotive industry
(Girard, Howell, & Hedrick, 2005), autonomous docking operations
of spacecraft (Malladi, Sanfelice, Butcher, & Wang, 2016), and in
the marine industry hybrid power plants (Miyazaki, Serensen, &
Vartdal, 2016). The focus of this paper is on detecting and improv-
ing the transient performance of the DP control system using the
hybrid system framework as proposed in Goebel, Sanfelice, and
Teel (2012). As shown in Fig. 1, it is believed that the concept
of hybrid control can provide a scalable and stringent methodol-
ogy for the design of real industrial control applications dealing
with several control objectives and changing environmental and
operational conditions. A similar, or alternative, method may be
to consider robust control by multiple model adaptive controllers
as proposed by Hassani, Serensen, Pascoal, and Athans (2017) and
Hassani, Serensen, Pascoal, and Dong (2012).

The main scientific contribution of this paper is the develop-
ment of a hybrid control concept for proper switching of candidate
observers and controllers, customized for transient and steady-
state behavior of DP vessels. For particular observer candidates,
this work combines a model-based observer (Fossen & Strand,
1999), a signal-based observer (Grip, Fossen, Johansen, & Saberi,
2015), a controller, and switching logic into a hybrid system with
the goal of improving the transient response. The model-based

observer, including wave filtering and bias force estimation, is
especially suited in steady state, while the signal-based observer is
more reactive during transients, even though it is more sensitive
to signal noise. Stability analysis of the hybrid system applies
results from Goebel, Sanfelice, and Teel (2009). Performance of
the proposed concept is demonstrated experimentally through
model-scale experiments with the hybrid observer estimates used
in closed-loop output feedback control, and through estimation
on full-scale field data. The paper is a continuation of Brodtkorb,
Verng, Teel, Serensen, and Skjetne (2016), with the signal-based
observer exchanged with one that has global stability properties,
enhanced performance monitoring and switching logic, and new
hybrid stability analysis.

The paper is organized as follows: The measurements and no-
tation are introduced in Section 2, and the candidate observers and
control algorithms are presented in Section 3. The hybrid system is
assembled in Section 4, and stability is discussed in Section 5. The
experimental setup and results are shown in Section 6. Section 7
concludes the paper.

2. Preliminaries

Common instrumentation in DP vessels includes position ref-
erence systems (typically GNSS' ), compass, and inertial measure-
ment units (IMU). The measurements, denoted with subscript m,
are in this paper assumed to be of the form

pl=I[N,E]" (1a)
Y=V (1b)
b, = + by (1c)
fE=RL(" —g"), (1d)

where the measurements in the North-East-Down (NED) frame
(an Earth-fixed local reference frame assumed to be inertial) have
superscript n, and measurements in the body-fixed frame have
superscript b. For the purpose of stability analysis, the system
is assumed to be deterministic such that noise is disregarded.
This follows similar approaches as Fossen and Strand (1999) and
Nguyen et al. (2007). The vector p”, € R? is the measured position
in North and East. A vertical measurement may also be obtained
through GNSS, but it is typically of low quality, and is not used
here; see Section 3.2. The measured angle ¥, € R includes the low
frequency yaw angle v and the wave-induced heading oscillations
Yrw, Which are assumed to be small (Fossen & Strand, 1999). The
angular velocity ®, which takes values in R?, is continuous and
bounded, and the gyro bias is constant with a known bound ||bg || <
Mj. The vector f2 € R is the measured specific force,” including
the acceleration of the vessel 9" and the acceleration due to gravity
g" € R3. Ry € R**3 is the rotation matrix about the z, y, x-axes
(Fossen, 2011, Ch. 2). We assume f2 is non-biased, bounded ||f2|| <
M, and the derivative of the actual specific force f? is continuous
and bounded. Furthermore, there exists a constant c,,s > 0 such
that ||c? x f2|l > cops, ¢® = [cos(¥1), — sin(yL), 017

3. Candidate observers and controller

Two observers based on two philosophically different models of
the same vessel are presented in the next sections. The relationship
between the models is as follows:

[Pf'my PFM), (’9(3,1)]—r (2a)
b b b
(it 1)s V2,1)0 w(3.1)JTs (2b)

n+ny =
v+,

1 Global Navigation Satellite System.

2 Specific force is the physical acceleration experienced by an object, consisting
of the acceleration of the object and the acceleration due to gravity, i.e., it is the
measurable acceleration, with unit [m/sz].
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with the subscript (i, j) denoting the elements of the corresponding
vectors. On the left-hand side we have the position vector n+n,, €
R? (North, East, yaw) and velocity vector v +v,, € R? (surge, sway,
yaw) split into low-frequency and wave-frequency components.
n and v will later be estimated in the model-based observer and
marked with a hat. On the right-hand side we have the low-
frequency and wave- frequency position p;.,) € R? (North, East)
and yaw @3 1), and velocity ”(1 2 € R? (surge sway)and yaw w(3 1)

Two consecutive elements of a vector are denoted with subscript
(1 : 2).p"and v" := Rpv’ are estimated in the signal-based
observer and marked with a hat. Note that ©3 1) = ¥ + ¥, &~ Y.

3.1. Model-based observer

We have chosen to work with the nonlinear passive observer
(Fossen & Strand, 1999) since it is an intuitive observer to tune,
and it has global stability properties. This observer is based on the
DP control plant model (Serensen, 2011), which is a simplification
of the real vessel dynamics. The inputs to the observer are the
measurement y = [p"', 21T € R and the control input t € R,
The 3 degree of freedom (DOF) model-based observer algorithm
for a ship-shaped vessel in DP can be written as (Fossen & Strand,
1999)

E=Af +Kiy (3a)
7= RYmD + Koy (3b)
b=—T,"h+Ksj (30)
MD = —Dyd 4+ RT(Y")b + 7 + RT(Y" K4 (3d)
y=i+Wé, (3e)

where£ € R, 7, §, b € R? are the state estimates. The wave states
£ € RS, low frequency position vector 7 and velocity vector v, and
the bias force vector b € R3. j := y — J is the measurement
estimation error, and Ki,, € R%3 K, K3, Ks € R are the
observer gain-matrices. A,, € R6*® is a Hurwitz matrix containing
wave parameters, R(y/) € R>*3 is the rotation matrix about the
z-axis (Fossen, 2011, Ch. 2), M = M' e R3**3 is the inertia
matrix including added mass, D; € R3*3 is the linear damping
coefficient matrix including second-order wave-induced damping,
and T, € R3**3 is a diagonal matrix of bias time constants. The
first-order model (3c) accounts for slowly-varying environmental
disturbances from mean wind, current, and second-order wave
loads, as well as unmodeled vessel dynamics.

(A1) The bias force dynamics (3c) are assumed to account for only
slowly-varying loads (Fossen & Strand, 1999).

This is a good assumption in steady state, but does not capture
rapid variations in the bias force due to transients, e.g., heading
changes or wave trains. Wave filtering is achieved by separating
the wave-frequency motion estimate 7,, = W&, W = [0343, [3x3]
from the low frequency estimate 7, giving the output from the
model-based observer 7; := 7 and ¥; := ©». The model-based
estimation error dynamics, can be written compactly as

e; = Fi(er), (4)
with state vector
e :=X1 — )’21

=[-8

Claim 1. Under Assumption (A1), the origin of the estimation error
dynamics (4) is uniformly globally exponentially stable (UGES). O

Jb=DT (=T =TT eR®.

Proof. See Fossen and Strand (1999). O

3.2. Signal-based observer

Grip et al. (2015) propose a nonlinear observer, for GNSS-aided
inertial navigation with biased gyro measurements. It is based
on the kinematic model (Fossen, 2011) with an angular and a
translational part, relating the position, velocity, and acceleration
of the vessel in 6 DOF. The inputs to the signal-based observer are
ph, ¥, b, and f from (1). The rotation matrix Re (about the

z,y, x-axis) is estimated directly, giving
ol —by)+oL,] (5a)
by = Projy, (by, —Livex(Po(Rb,Le)))), (5b)

Ro = RoS(

where ﬁ@ is the rotation matrix estimate, 13g is the gyro bias
estimate, and the angular rate estimate is @ = ? — b,. The
projection function Projy, (-, -) (Grip et al., 2015, Appendix) ensures
that HBg || < Mj, and the S(-), vex(-), and Po(-) operators are defined
in the foomote.ifz@s, appearing in (5b), is saturated elementwise
with bound 1; R()s := saty(Rp). The gain-matrices are Lp €
B2, L e RE, and o > 1is a scaling factor that is tuned to
achieve stability. ] is a stabilizing term (Grip et al., 2015, (3) and
(5)) that takes 1/, measured by the compass, and the specific force
measurement f,) b as input. The translational observer algorithm is

= p(;,]) + kpipipl (6a)
P ="+ e (6b)
="+ g" 4 Ce (6¢)
§ = —oLpfp+ Cee (6d)
fr=Rof} +&. (6e)

with estimates p;, p", 9" and f, Re is from (5), and & is a cor-
rection term on the specific force estimate. (6b)-(6e) are standard
kinematic observer equations, and (6a) is an addition from Bryne,
Fossen, and Johansen (2015) that comes instead of using the verti-
cal GNSS position measurement height, as mentioned in Section 2.
The augmentation is motivated by the fact that a marine vessel in
normal operation oscillates in heave about the mean sea surface. It
may be assumed that:

(A2) The mean vertical position of the vessel over time is zero
(Godhaven, 1998), p; = 0.

pr is called the virtual vertical reference. In (6a) the vertical
position estimate ﬁ?s,n is integrated to give p;, which is compared

with p; and used as the driving error for the vertical dynamics.
For more details, see Bryne et al. (2015). The driving error is e :=
[, pT1T € R¥withp := pJ, —pfi,) €R?, pr:=pi—pr=0—p; €
R. The correction gain-matrices are

02><1 Kpp C 02><1 Kvp C = 02><1 Kép

kppl 01><2 kUPI 01><2 § kgpi 01><2 :
The North and East gain components are Ky, Ky, Kep € R23?, and
the down gains are Kpipi, Kppi, kupi, kepi € Rso. The signal-based
estimation error dynamics are written compactly as
&, = Fy(ey), (7)
with state vector
ey i=xy — R = [(r =), (by — b)". (p1 — P1),

®" =" " =L (" =TT e B2,
3 For a vector x € R3, S(x) denotes a skew-symmetric matrix so that for any

y € R3,S(x)y = x x y, where x denotes the cross product. The skew-symmetric

part of a matrix X is denoted by P, = zi(X — XT). The linear function vex(X), with
X skew symmetric is defined so that S(vex(X)) = X and vex(S(x)) = x.
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with 1 := [Re1.), Re.), Ro.n]" € R® and 7 defined accordingly.
*." denotes all elements of the row/column.

Claim 2. Under Assumption (A2), with inputs as described in (1), the
origin of the signal-based estimation error dynamics (7) is UGES. O

Proof. See Bryne et al. (2015) and Grip et al. (2015). O

The output from the signal-based observer is written using (2),
so that fiy = [P} 1), By 1y» O]’y D2 = [8F 4. D 40 F5 1)1,
where the heading angle estimate @)(3_1) is extracted from Re, and
P = izg 9", Because this observer relies on the specific force
measurements instead of estimating the bias force, it reacts fast
and accurately to transients. Here, no wave filter is included so 7,
and D, capture the combined low-frequency and wave-frequency
motion. For shorter periods of time this may be acceptable, which
is the case during transients.

3.3. Controller
The control objective is to control the vessel to the desired time-

varying trajectory ny(t) with the desired velocity trajectory vg(t).
The proposed control law is

§:s = ﬁs — Nd
T = —KRT (Y )(Fs — 14) — Ka(Ds — v)
— KiRT(W2)¢s + Mg + Dpvg. (8)

7 € R?is the commanded thrust vector, Ky, Kq, Ki € ]Ri?f are gain-
matrices, and 7j; and b are the estimates from the model-based
observer when s = 1, and from the signal-based observer when
s = 2. ¢ compensates for the unknown bias force vector b with
dynamics b = —T,~ 1. The last two terms in (8) are feedforward
terms of the desired acceleration and desired velocity. For the
stability analysis of the controller, it is assumed that:

(A3) Theyaw rate wf, ) (also denoted v(3 1)) is bounded, |wf; ;)| <
'max» and K; and T, commute with R(y)* (Lindegaard &
Fossen, 2003).

The following result is proven in Lindegaard and Fossen (2003).

Claim 3. IfAssumption (A3) holds, and the controller gains are chosen
so that the system matrix A, (see below) is Hurwitz, the origin of the
tracking error dynamics, consisting of the control plant model using
control input with state feedback, (8) inserted the real states n, v, is
UGES. O

We note, for later use, that the tracking error dynamics have the
form &g = T T (Y )AT(Y)eg with

eo=[".b",(n—na) . (v—va)', 2]

A, O 0 0 0
0-1,7 0 0 0
AA=]0 0 0 I 0 ,
0 I —-M'K,—M (D, +Kq) —MK;
0 0 I 0 0

T(y) = blkdiag([I, R™(¥). RT (%), I RT (%)),

where T(v/) is a block diagonal matrix. A Lyapunov function of the
form Vo(eo, ¥) := ej T (¥)PT(y)eo with P = PT > 0, where P
satisfies the linear matrix inequality (LMI) PA. + A/P < 0, that
verifies the UGES property asserted in Claim 3.

4 Ki = diag([ky, k1, k21), T, = diag([ty, t1, t2]) are used. The North and East
gains/time constants are equal, which for a marine vessel is justified, since the
environmental changes have roughly the same dominating frequencies in surge and
sway.

4. Hybrid system

In this paper we propose a new hybrid strategy for DP systems
in order to cope with both stationary and transient dynamics. In
general, a hybrid system % = (C, F, D, G) is written formally as

xeC x e F(x) (9a)
xeD x" e Gx), (9b)

where x is the hybrid state, C is the flow set, F is the flow map,
D is the jump set, and G is the jump map. When x is in C, then the
states are allowed to flow, and when x is in D the states are allowed
to jump (Goebel et al., 2012). In this section the hybrid DP control
system is assembled, starting with the performance monitoring
and switching logic that choose the appropriate estimates to use
in output feedback with (8). The performance monitoring and
switching logic dynamics can be written as:

1; =0, i={1,...,n} (10a)
b= —1 (10b)
§5=0 (10¢)
+ _ a2y = haoll, fori=1
M= {mm, fori={2,...,n} (10d)
th=T (10e)
1, ifm <eg
2, ifm>e
+ _ E — €
S =2 ifvgs 1y =6 (100)

s, otherwise,

where m; are monitoring states, t, is a timer, and s is the switching
signal. In order to evaluate the performance of the observers, we
choose to compute the difference in estimation error in North
and East (p), — f1x12)) — (P, — M) = (Ma2) — f2a1:2)), and
take the Euclidean norm of this difference, see (10d). This signal
may oscillate a lot, so we take the average of n of the past values
that are saved in the shift register of size n with state m € R",
ie,m= %Z?:]mi. We call m the performance monitoring signal,
and switch based upon this quantity in (10f). m does not change
during flows, (10a). During flows, t,, decreases with unitary rate
(10b), and is reset to T during jumps. A new jump is triggered
when a new position measurement is available, when t,, = 0, so
the position measurement has sample time T. The jump map for
the switching signal s, including performance and heading change
monitoring is (10f), where €, > 0 is the estimation difference we
expect to see in steady state, and ¢, > 0 is the estimation differ-
ence we expect to see during a transient. Choose ¢, > €5 with
some margin to provide hysteresis that suppresses unnecessary
switching back and forth. The signal-based observer is chosen in
closed loop if the desired yaw rate vg(s 1) is larger than a threshold
8§ > 0, as we know that the forces on the vessel hull will change
rapidly in this situation. s does not change during flows (10c).

For later use, we look closer at the steady state behavior of
the performance monitoring states. Inserting for the steady-state

observer estimates we have that 7y12) = #n(1:2) (Claim 1), and
T2 = p&:z) (Claim 2). During steady state, the performance
monitoring states m;, i = {1, ..., n}, are

m; = (Hrl(lzz) - p?];z)‘l)F] = (H7Iw<1:2>\|),-,1 s (11)

corresponding to the norm of the wave-frequency motion n,, =
WE in North and East, for each sample i in the shift register.
The wave states & go to zero during steady state, since A, in
(3a) is Hurwitz. In this case m is also zero, and we would like to
use the model-based observer estimates in output feedback with
(8) during steady state. This is because these estimates are wave
filtered, and hence reduce the wear and tear on the propulsion
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system. During a transient, the observers do not agree, and then
m is larger. Since the signal-based observer presumably performs
better in transients, these estimates are used in closed loop during
these times.

The control plant model and the kinematic model represent,
with some overlap, the same underlying dynamics being the mo-
tion of the vessel. We assume that:

(A4) The solutions to the control plant model and kinematic
model dynamics are forward complete.’

Then the solutions exist for all positive time. The tracking error
analysis in Lindegaard and Fossen (2003) (Claim 3) makes sure
that x; behaves as it is meant to, i.e., n converges to ng and v
converges to vg. From the relation between the control plant model
and kinematic model (2), we have that [pf},), @1)]" goes to 14,
and [v(bsz), wf’m)]T, goes to vq. The heave, roll, and pitch states in
the kinematic model are not controlled, and hence do not converge
to a reference. Therefore the kinematic model with state x, is not
included in the hybrid analysis. We define the state vector of the
hybrid system as

X = (%1, 6. X1, &g, m, ty, )
eR® xR} x R"® x RZ x R" x [0, T] x {1, 2}, (12)

consisting of the control plant model state x;, the integral state
in the control law ¢, the model-based observer estimates X;, the
signal-based observer estimates X;, the performance monitoring
states m, the timer t,,, and the switching signal s. The flow dy-
namics of the hybrid system constitutes the vessel described by
the control plant model, controller, observer, and timer dynamics.
The states X1, &5, X1, and X, do not change during jumps, i.e., xT =
X1, ¢ = &, and so on. The dynamics for m, t,, and s are given by
(10). Flows are allowed when x € C, and jumps are allowed when
x € D, defined by

C:=R>" x [0,T] x {1,2} (13)
D :=R>® x {0} x {1, 2}. (14)
5. Stability

We are analyzing stability of the set

A=C N ({x1g} x {0} x {x14}
X {xp} x {0} x [0, T] x {1,2}). (15)

This corresponds to the vessel tracking the desired trajectory,
with x;4 = [0,0,7,,v/1", and the controller integral state ¢
converging to zero. The model-based estimates being equal to the
control plant model state x;, which goes to xq4, and the signal-
based estimates being equal to the kinematic model state x,. The
performance monitoring states m go to zero, as discussed around
(11), and the timer t,,, and the switching signal s stay within .4 by
design.

Theorem 1. Under Assumptions (A1-A4) the set A given by (15)
is GAS for the hybrid system given by the control plant model, the
observers (3), (5)-(6), the controller (8), the performance monitoring
and switching logic (10), and the flow and jump sets (13)-(14). O

Proof. The proof follows from Goebel et al. (2009), Corollary 19.
By splitting the control law (8) into a state feedback part and a part

5 A solution with an unbounded time domain is called complete (Goebel et al.,
2009, p. 41).

that is due to estimation error, the tracking error dynamics and
observer error dynamics can be written in a cascaded structure,

o = Fo(eo) + g(eo. ;) (16a)
e = Fi(er) (16b)
& = Fy(ey) (16¢)
el =ep, el =e1, e =e5. (16d)

(16a) is the tracking error dynamics with tracking error e =
[ET,bT,(n —na)", (v —vg)", 71" and estimation errors e, with
s = 1 model-based estimation error, and s = 2 signal-based
estimation error. g(eo, e) is the additional control input due to
estimation error, where g(eo, e;s) = K,R" (¥ )(n —fis)+Ka(v —D5)+
KRT(Y2)(¢ — &). The switching signal s decides which observer
perturbs the tracking error dynamics. (16b), (16c) are the model-
based and signal-based estimation error dynamics. The rest of the
observer error dynamics are given by (10). The flow and jump sets
for (10) and (16) are:

=R x[0,T] x {1,2} (17)
D = R%*" x {0} x {1, 2}. (18)

To prove Theorem 1, it is sufficient to prove global asymptotic
stability (GAS) of the set

A= {05540} x [0, T] x {1, 2}, (19)

for the hybrid system # := (C',F,D’,G) given by (10) and
(16)-(18). This is done in two steps.

Step 1. We prove GAS of A’ for Hg := (Cg, F, Dg, G), which is
7 with the flow and jump sets intersected with B x R+ for
B > 0and unit ball B € R®; ¢4 := C’' N (BB x R¥*") and
Dg == D' N (BB x R3*"). Firstly, the compact set

Ay = {BB} x {0374n} x [0, T] x {1, 2}, (20)

is GAS for . This follows from the analysis in Bryne et al. (2015),
Fossen and Strand (1999) and Grip et al. (2015) resulting in UGES
origin of the observer error dynamics (Claims 1 and 2). Then, we
prove GAS of A’ for #| 4, = (C' N Ay, F, D’ N Ay, G). When the
solutionisin .4, we have state feedback so that (16a)iséy = Fy(ep),
since e, = 0, and g(ep, 0) = 0. The analysis in Lindegaard and
Fossen (2003) gives UGES origin of the tracking error dynamics
with state feedback (Claim 3). Applying Corollary 19 in Goebel et al.
(2009), we have that the compact set A; is GAS for 7, and that the
compact set A" C .A; is GAS for 7| 4,. Then A" is GAS for 4.

Step 2. We use this preliminary result to prove GAS of A’ for H
without restrictions on e in the flow and jump sets. The solutions
of A are the solutions of #g when e; € BB. The only thing left
to prove is that the basin of attraction is the entire space, so that
for each solution, 8 can be chosen large enough so that the B
intersection has no effect. The observer solutions e; can be bounded
by lles(t)]l < Aqlles(to)]le~*2( =) for A, A, > O that are dependent
on initial condition es(tp). Integrating es(t) over time, we get

o0
[ et o, eoni < e, vio =0,
to

with ¢(|les(to)ll) = %lles(tg)\l. g(ep, €) can be bounded in terms
of e; by l|g(eo, el < yllesll, ¥ > II[Kp, Ka, Ki]" || Then, the only
state that can grow unbounded is eg, but this is ruled out by the

following. The Lyapunov function Vy(eo, v ), defined below Claim 3,
for ((16a)) with g(eo, e;) = 0and Fo(eg) = T T (¥ )AT( )eg satisfies

aVo(eo,
HM ‘lleo\l <alleol?. Vieol = (21a)
deg
aV s
HM‘ <6 Viel<u (21b)
deg
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Fig. 2. Closed-loop control: C/S Inocean Cat I Drillship is pushed off position using a boat-hook at time 170 and 520 s. North-East position track (left), heading, estimation
error, monitoring signal and switching signal (middle), details of the second transient (right). Position and heading trajectories are red when model-based estimates are
used in closed loop, and black for signal-based estimates. Environmental conditions corresponding to rough full-scale sea state with significant wave height H; = 3.6 m,

peak period T, =
referred to the web version of this article.)

with ¢; = 2Apex(P) and ¢; = 2Amax(P)p, with Apac(P) being the
largest eigenvalue of P. (21b) holds for all headings . (21) ensures
that eg stays bounded (Loria, Fossen, & Panteley, 2000), so that each
solution of # has to converge to A" because it is a solution to the
system Hy for large enough $ and the solutions of 74 converge.
Hence, A" in (19) is GAS for the hybrid system # given by (10) and
(16)-(18), which concludes the proof. O

When applying Assumption (A1) we assume that the control
plant model is an exact deterministic model of the real vessel
dynamics. Then there may only be switching due to reference
changes and due to transients during initialization. However, as
shown through experiments in Section 6, switching based on per-
formance is triggered because Assumption (A1) of slowly-varying
bias loads does not hold during transients. Performing an analysis
of the hybrid system with randomness is a topic for further work,
see Teel, Subbaraman, and Sferlazza (2014).

6. Experimental setup, results and discussion

The model-scale experiments were conducted with C/S Inocean
Cat I Drillship, a 1:90 scale model with dimensions (length, beam)
=(2.578 m, 0.44 m) in the Marine Cybernetics Laboratory (MCLab)
at NTNU. The full-scale DP data was collected during the AMOS
DP Research Cruise 2016 (ADPRC'16) onboard R/V Gunnerus, see
Skjetne et al. (2017) for details. The model-based observer was
in both cases tuned using tuning rules in Fossen (2011), Ch. 11,
for good steady state, and adequate transient performance. The
same IMUs were used to provide input to the signal-based observer
both in model-scale and full-scale, showing that the proposed
hybrid observer setup is robust to large variations in signal-to-
noise ratio. In full-scale, the signal-based observer tuning from
(Bryne et al., 2015) was tweaked to work better for R/V Gunnerus,
but in the MCLab the tuning was found from scratch. Tuning of
the controller in the MCLab was found using standard PID tuning
rules (Fossen, 2011, Ch. 12), which were tweaked to work well with

10.4 s, head sea, no wind nor current, €, = 0.02, €;; = 0.005, 8§ = 0.05. (For interpretation of the references to color in this figure legend, the reader is

both observer estimates in feedback. The algorithms were coded in
Matlab/Simulink and run in NI Veristand® software.

6.1. Model-scale experiments

Wind loads constitute a lot of the mean forces on the vessel
hull, and since wind is not available in the MCLab, the directional
dependence of the bias force that is seen in full-scale applications
was less prominent in the lab. Hence, switching based on observer
performance was triggered by pushing the model off setpoint using
a boat-hook, inducing an unknown, rapid transient, see Fig. 2.
The model is pushed off setpoint twice; at time 170 and 520 s.
In the first transient, the observer is fixed with the model-based
observer in closed loop. The vessel spends a long time coming back
to the setpoint, since the estimates from the model-based observer
(especially the velocity estimate) are off during the transient. In the
second transient the observer is allowed to switch based on per-
formance, and chooses the signal-based observer in closed loop for
most of the transient, although there is some switching back and
forth. The heading reaches steady state somewhat faster when the
signal-based observer is in closed loop, although comparison of the
two pushes can be seen only as indications of performance since the
conditions were not identical. Brodtkorb et al. (2016) and the section
below compares the model-based observer, signal-based observer
and hybrid approach in closed loop and estimation performance
on full-scale data, respectively. Switching during heading changes,
based on desired yaw rate, worked well in the MCLab. How large §
is chosen should be dependent on the vessel size and the maximum
desired yaw rate. The thrust usage when the model-based or the
signal-based observer estimates were used in closed loop was not
significantly different, though the signal-based estimates made the
thrust more oscillatory, as expected.

6 The Bogacki-Shampine solver (Matlab ode23) was used with fixed step 0.01 s,

www.ni.com/veristand/.
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Fig. 3. Estimation: R/V Gunnerus is doing a DP 4 corner maneuver, starting at (0,0) and moving as indicated by the arrows. North-East position track (left), heading, observer
estimation error and monitoring signal, and switching signal (right). The position and heading trajectories are red when the model-based estimates should be used in closed
loop, and black when the signal-based estimates should be used in closed loop. Environmental conditions: current 0.3 m/s, 290°, wind 7 m/s, 260°, and waves with significant
wave height H; = 0.2 m, peak period T, = 13.6 5, and direction 260°. ¢, = 0.5, €; = 0.03, § = 0.2. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Table 1
Cumulative estimation errors for the model-based, signal-based and hybrid ob-
servers at the end of R/V Gunnerus’ DP 4 corner maneuver.

Observer Surge [m] Sway [m] Yaw [deg]
Model-based 1368.3 998.0 13727
Signal-based 964.3 949.9 902.9
Hybrid 945.1 901.3 1247.3

6.2. Estimation based on full-scale measurements

Fig. 3 shows estimation results on full-scale R/V Gunnerus
data from a DP 4 corner maneuver, and that the hybrid observer
switches due to transients. If the third and fourth parts of the
maneuver were to be done close to other offshore infrastructure,
R/V Gunnerus may have been required to either reduce the speed,
or choose another control strategy in order to stay on the desired
straight-line segments of the square. In the fifth maneuver, a pure
surge motion should not induce much transients, however in this
dataset the heading oscillates 4-3°, and therefore the signal-based
observer is chosen for most of the leg. Depending on the vessel
size, propulsion system, and instrumentation, a smarter choice of
controller could make the vessel stay on the desired path with a
higher speed, reducing the vessel operation time.

Fig. 4 and Table 1 show the cumulative estimation errors over
time when the model-based, signal-based and hybrid observers
(switching between the model-based and signal-based) are used
for estimation on full-scale data. The hybrid observer has the low-
est estimation error at the end of the time series in surge and sway,
a bit lower than the signal-based observer, and much lower than
the model-based observer, which accumulates estimation error
fast during transients. The signal-based observer has the smallest
estimation error in yaw; 34% lower than the model-based observer,
and 28% lower than the hybrid observer. A reason may be that the
signal-based observer uses more information about the yaw angle
through the yaw rate to construct the estimate. Keep in mind that
the maneuver R/V Gunnerus performs in this case includes a lot of
transients, and therefore favors the signal-based observer over the
model-based observer. In the case where there are more periods
of steady state, the model-based observer and hybrid approach are
more beneficial.

Cumulative estimation error
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Fig. 4. Cumulative estimation error when the model-based, signal-based and hybrid
observers are used for estimation on full scale field data from R/V Gunnerus doing
a DP 4-corner maneuver.

7. Conclusion

A general hybrid control strategy for marine control systems
providing a redundant design methodology for robustness to sys-
tem errors was proposed in this paper. An example of a such
control system improving the transient vessel response in dynamic
positioning was given. Performance was shown through model-
scale experiments, and estimation on full-scale field data.
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ARTICLE INFO ABSTRACT

This paper investigates different methods for compensating the mean and slowly varying environmental loads,
and unmodeled dynamics (bias loads) in dynamic positioning of marine vessels. Four different methods are
compared; using the bias estimate from an observer tuned to estimate position and velocity well, using a wave-
filtered version of this bias load, using the estimate from a separate observer tuned to work well for estimating
the bias loads, and finally traditional integral action on the tracking errors. The results show that the bias from
the bias observer is the best solution, both in transients and steady state. Standard integral action matches the
steady state performance, but is slower in transients. The estimate from the observer used for position and
velocity is fast in transients, but too oscillatory in the bias state. The wave-filtered version of this has less
oscillations, but falls short compared to the other methods due to added phase lag from the extra wave filter.
Using a bias estimate from an observer has benefits over typical integral action, such as the possibility of offline
or open-loop tuning and avoiding integral windup issues. For the comparison study, a 6 DOF simulation model of

Keywords:

Dynamic positioning
Control design
Observers

Integral control

a supply vessel is used.

1. Introduction

In control systems for dynamic positioning (DP) of marine vessels it
is common to include integral action to compensate for the mean and
slowly varying environmental disturbances and unmodeled dynamics.
When using a model-based observer, the sum of the environmental
disturbances and unmodeled dynamics is estimated in what is typically
called a bias load (Fossen and Strand, 1999). Use of this bias load es-
timate in feedback instead of integral action has been proposed by Loria
et al. (2000). However, for output feedback designs it is common in the
literature (Sgrensen, 2011) to include integral action in the controller
even though this load is estimated in the observer. One reason for this
could be the assumption that the bias estimate from the observer is too
oscillatory to give good performance when used in feedback. Integral
action is therefore introduced and tuned such that it is slow, calm (small
oscillations), and works well in steady state.

Recently, however, there have been much focus on DP during
transient conditions, e.g. due to sudden large wave trains, ice loads,
frequent setpoint changes, etc., and the question has been asked if a
slow integral action is suitable. As seen for instance in Refsnes and
Serensen (2007), Varng et al. (2016), Varng et al. (2017), Kjerstad and
Skjetne (2016), Lindegaard (2003), and as discussed in Brodtkorb et al.
(2016) and in Brodtkorb et al. (2018), the bias load can vary rapidly,
even for common situations such as heading changes. In these

* Corresponding author.

instances, effective compensation of the bias load is beneficial. In the
following we compare four different approaches for compensating the
bias loads, with special focus on transient events. This problem received
some attention by Varng et al. (2016), but here the discussion is more
rigorous.

A typical DP system is evaluated through numerical studies and
model-scale experiments in Tannuri and Morishita (2006), and a model-
based Kalman filter is presented for DP by Fossen and Perez (2009),
initially proposed by Balchen et al. (1976). A robust controller pre-
sented by Du et al. (2015) uses a high-gain observer, in addition to
neural networks to compensate for the unknown environmental dis-
turbances. Typically, fault tolerance and robustness are system design
properties that are considered (Blanke et al., 2003). For an overview of
the DP system and a historical overview, see Sgrensen (2011) and the
references therein.

In this paper we refer to the bias compensation by a term b in the
control law, where b is the estimated bias in an observer. Integral ac-
tion, on the other hand, refers to an integral term ¢ in the control law
with ¢ =% — 7,(t), that is, it integrates the tracking error based on the
estimated vessel state 7.

Using the bias estimate from a model-based observer instead of
typical integral action on the output tracking errors has some benefits.
First, if we use the bias estimate from an observer instead of integral
action, windup issues in the integrator are of no concern. However, it

E-mail addresses: svenn.are.varno@ntnu.no (S.A. Veerng), astrid.h.brodtkorb@ntnu.no (A.H. Brodtkorb), roger.skjetne@ntnu.no (R. Skjetne).

https://doi.org/10.1016/j.oceaneng.2019.03.010

Received 14 June 2018; Received in revised form 19 January 2019; Accepted 4 March 2019

0029-8018/ © 2019 Elsevier Ltd. All rights reserved.



S.A. Verng, et al.

should be noted that if a separate observer is added to estimate the bias
load, this adds similar complexity as an anti-windup filter in the con-
troller (Perez, 2009). Another benefit of using a bias estimate from an
observer is tuning. It is easier to tune an observer since you only need
offline data series. In addition you can use optimization methods to find
satisfactory gains. An advantage of using the integral action is that it
can be tuned independently of the bias response time. This means, for
instance, that the integral action can be tuned slow to account for
steady-state offsets, whereas the bias estimate in the observer can be
made faster and letting it live its own life. This tuning separation also
applies if there is a separate observer to estimate the bias load.

The main contribution of this paper is an in-depth study into several
best practices of compensating the unknown environmental loads and
unmodeled dynamics for DP of marine vessels. The analysis of perfor-
mance is made fair by the use of optimization in tuning of all observers,
and also a thorough tuning of controller and integral action. The results
are demonstrated through a high-fidelity simulation study. To the au-
thors' knowledge, such a comparison does not exist in the literature.
This study is important, as it allows for research-based design choices to
be made when developing DP control systems.

Notation and terminology: A column vector is stated as
col(x, y, z): =[x7, y7, z']", R, denotes positive real numbers, and $
represents the angle defined on the interval [—7, 7).

2. Problem formulation

There are two reference frames typically used for DP; the North-
East-Down (NED)-frame and body-frame. For operations in confined
areas (such as DP) the NED-frame can be assumed to be a non-rotating
global and inertial frame. This is a tangent plane to the Earth, with the
x-axis pointing North, y-axis pointing East, and z-axis pointing down to
the center of the Earth. The body-frame is a local frame with origin
typically midships, in the centerline, and waterline of the vessel, with
the x-axis pointing to the bow, y-axis to starboard, and z-axis down.

We separate between a simulation verification model (SVM) and a
control design model (CDM). The SVM is intended for observer and
controller verification, and is a high-fidelity model. The CDM includes
the dynamics that is most important for the operation. For low-speed
application such as DP, this typically implies that the Coriolis, cen-
tripetal, and nonlinear damping loads are omitted from the model. As
shown by Varng et al. (2019), including nonlinear damping gives a
slight improvement. However, because the improvement is not sig-
nificant, and because it is not important for this study, it is not included
in the CDM of this paper.

2.1. Control design model

We consider the 3 degrees of freedom (DOF) CDM (Fossen, 2011),

£= Ak + Eyw, (1a)
% =R@)v (1b)
b=w, (1c)
MV =—Dv + R(Y)™D + T+ Tyina ad
y=n+Cu€+, (1e)

where £ € R® in (1a) is the first order wave-induced dynamics of the
vessel, and (1b)-(1d) is the low-frequency vessel dynamics. The first-
order wave-induced dynamics makes the vessel oscillate about the
setpoint at the wave frequency. Compensating this oscillatory motion
causes extra wear and tear on the thrusters, and it is often not possible
due to thruster limitations. For both of these reasons, we separate be-
tween the low-frequency and wave-frequency dynamics. The wave-
frequency dynamics ¢ in (la) are modeled by a mass-spring-damper
dynamics, where A, is a Hurwitz matrix that contains the damping
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ratio and the peak frequency of the incident waves, and w, € R® is
white noise (Sgrensen, 2013). The vector n: =col(n, 7, $) € R* X S in
(1b) contains the low-frequency North/East position, and heading, re-
spectively, and v: =col(u, v, r) € R® is the surge/sway velocity in the
body-frame, and the yaw rate, respectively. The rotation matrix R (%)
rotates a 3 DOF vector from the body to the NED-frame according to

cos(y) —sin(p) 0
sin(y) cos(y) O |-
0 0 1

R(®) =
(2)

72 =Col(Tyurger Toway» Tyaw) € R® is the generalized control vector in the
body-frame, 7,0 € R® is the wind load, which is measured, and
b: =col(by, bg, by) € R® is the bias load vector, and w; € R® is white
noise. The vector b constitutes the sum of the low-frequency loads, such
as the slowly-varying second-order wave loads, current loads, and un-
modeled dynamics from errors in the mass, added mass, hydrodynamic
damping, wind loads, and thrust mappings. The bias load vector is as-
sumed constant (or slowly-varying) in the NED-frame. Finally, the
measurement vector y is the sum of low-frequency North/East position
and heading 75, the wave-frequency North/East position and heading
Cwé, where C, = [03x3 Lxsl, and the measurement noise v, € R®.

2.2. Model-based observer

To estimate the low-frequency position 7, velocity v, and the bias b,
a nonlinear observer (NLO) similar to the observer proposed by Fossen
and Strand (1999) is chosen. The observer is given by

f=af+ky (3a)
1 =RW)? + KJ (3b)
b=Ky (30)
Mb = —Db + R($)TD + T + Tying + K4R(Y)Y Bd)
§ =9+ Cud, o)

where £ € RS, € R®x S, b € R3, and # € R are the state estimates.
The injection gains K = [K;, Kj]" € R®3, K, K, K4 € R are non-
negative matrices, and j =y — y is the measurement error. The ma-
trices K3 and K, are constant, whereas K; and K, depend on the peak
frequency of the wave spectrum to obtain good wave-filtering. As in
(Fossen and Strand, 1999) and many later references, we assume that:

(A1) R@™) ~ R(Y + ¥,) = R(P). First, because of the low noise on
the compass, we assume that the measured heading angle $™ is close to
the real heading angle, that is, the sum of the low-frequency heading y
and the wave-frequency heading ¥,,. Second, the heading angle due to
wave-induced motion, ¢, is small (negligible effect on the rotation
matrix).

The assumption is justified because the wave-induced heading angle
is typically less than I° for normal sea states, and less than 5° for extreme
sea states. Thus, the measured heading angle is used instead of the low-
frequency heading angle in the rotation matrix.

2.3. Controller

The controller 7 is given by a feedback part 7z and a reference
feedforward part 7z,

T=Tgg + Ty (4a)
T = Dva(£) + MV () — Twina (4b)
TrB = Tupp + TBR, (40)

where 7,pp is a nonlinear proportional-derivative (nPD) controller given
by



S.A. Verng, et al.

Trp = —K,R@)T (G = 7y(0) — K@ — w (),

and 7, € R2X S, 1 € R%, and 7(t) € R® are bounded references gen-
erated by a guidance system, K, € R¥ and K; € R®? are positive
definite gain matrices, and 7z is a bias rejection term to compensate for
R(@%)'b in (1d). Designs for 7z is the main focus of this paper and will
be elaborated in Section 2.4.

(4d)

2.4. Methods for bias compensation

In the following, four methods for compensating the bias load, 7z in
(4c), are presented:

e Method 1: Direct compensation

e Method 2: Wave-filtered bias estimate
e Method 3: Separate bias observer

e Method 4: Integral action.

All the methods use estimates of  and v from the same observer in
the nPD-controller, called the position and velocity observer, based on (3).
In order to obtain meaningful results in the comparison of different
versions of g, it is important that the observer that provides the es-
timates of # and v, as well as the nPD-controller are well tuned. Details
about the tuning for position and velocity observer, the nPD-controller,
and the bias compensation methods are presented in Section 4.4.

2.4.1. Method 1: Direct compensation

The first method we consider, common in the literature (Loria and
Panteley, 1999), is to directly use the bias estimate from the position
and velocity observer based on (3), tuned for good » and v estimates,
that is,

or = R(P)TD. (5)

2.4.2. Method 2: Wave-filtered bias estimate

When we optimize the observer to work well for position and ve-
locity in transients, we observe that the bias estimate is fast, but very
oscillatory in steady state. This is elaborated in Section 4.2. By as-
sumption, the bias load b from (3) is low-frequency, but for sufficiently
high tuning of the observer (3) the bias estimate will oscillate due to
wave-induced behavior. Therefore, we suggest to add an extra wave
filter on the bias estimate before this is sent to the controller.

For this method we make the assumption that the bias load contains
a wave-component in addition to the low-frequency part that we want
to compensate. Accordingly, we redefine the bias load in (1¢) to

b: =by + Cuby, )

where Cyb,, € R® and by € R® are the wave-frequency and low-fre-
quency components of the bias load from (1c), respectively.

In the bias wave-filter we treat the bias estimate b from the observer
(3) as the input to the filter and assume that:

(A2) The bias estimate b from (3c) is given as b: =by + Cyby.

The model used for the bias dynamics has the same wave dynamics
as in (3a), where

by = Awby + EywWpw (7a)
by =0 (7b)
and the observer is given as

bu = Aubyy + Kp1(@0)b (8a)
by = Kyab (8b)
b, = by + Cyby, (80)
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where b: =b — b,. The low-frequency estimate of the bias is used in
feedback, such that 7z is given as

T = R(®)Thy. ©)

2.4.3. Method 3: Separate bias observer

The third bias compensation method is to use the bias estimate from
a separate observer with the same structure as in (3), but with a tuning
optimized to find a bias estimate that closely resembles the true low-
frequency bias load.

Let us denote the estimate from this bias observer as bpo, and then
Tpg is given as

75z = R($) bpo. (10)

2.4.4. Method 4: Integral action

The last method we consider is perhaps the most common choice for
g, and that is integral action in the control law (Sgrensen, 2011). A
new integral state ¢ is defined with dynamics

=1 -1, an
such that
TBR = —KiR(lf’)T{- 12)

2.5. Problem statement

We consider both the case where the bias b is slowly-varying for
long periods of time, and also the case when b changes rapidly due to
transient events. The objective is to compare the four different model-
based approaches for 73z to compensate the bias loads, in order to gain
insight on the efficiency of the methods and make conclusions on when
the best overall closed-loop performance is obtained. The comparisons
will be based on closed-loop key performance indicators (KPIs) that
measure the low-frequency positioning performance and thrust utili-
zation.

3. Setup and implementation

To test the different bias compensation methods, an SVM is used
along with two different test maneuvers that include a combination of
transients and longer periods of steady state.

3.1. Simulation verification model

The simulation model is a 6 DOF high-fidelity model of a platform
supply vessel, with main parameters given in Table 1. The model is
based on building blocks from the MSS Toolbox (Fossen and Perez,
2004), and includes Coriolis, centripetal forces, and linear and non-
linear damping; see Appendix A. To give a realistic load variation with
heading angle of the vessel, lookup tables are used to calculate the loads
acting on the vessel. The model is subject to waves from a sea state
taken from the JONSWAP' spectrum, with a significant wave height of
6m, and a peak frequency of 0.53rad/s. The mean incident wave di-
rection is 190 (head waves) in the North/East frame (Price and Bishop,
1974). The simulation also includes a current with a speed of 0.5m/s
and direction of 30". The sensor models include realistic noise and
sensor effects. The GPS is updated at 1 Hz, and the compass is updated
at 10 Hz. The vessel is controlled by (4), which operates at 1 Hz. In
addition, a first order lowpass thrust dynamics with a 5s time constant
is included.

! Joint North Sea Wave Project.
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Table 1

Simulation, platform supply vessel, main parameters.
Parameters Value
Length between perp. 80m
Breadth 17.4m
Draft 5.6m
Displacement 6150 tons

3.2. Maneuvers

For the simulations presented in Section 5, two maneuvers are
performed, both with the environmental conditions described in Sec-
tion 3.1 above. One training maneuver, which is used to tune the ob-
servers and controller, and one test maneuver that uses the same
tuning. This is to verify that the tuning is not an overfit to the training
maneuver.

Both maneuvers are 1500 s in duration. For the training maneuver
there is a combined North/East setpoint change and heading change of
90° at 300, and at 600 s there is a change of 45° in the direction of the
current. The current direction changes as a first order filtered step re-
sponse with time constant of 30s. This is an exaggerated case, not
necessarily very realistic, designed to challenge the algorithms. This
gives three transient events for a short time frame, and about the last
half of the maneuver, the conditions are steady, in order to compare the
steady state performance as well. The test maneuver has a combined
North/East setpoint and heading change at 300s, where the heading
changes 70°, and at 500 s there is also a combined setpoint and heading
change with a heading change of 50°. Finally, at 800 s there is a pure
heading change of 90°.

3.3. Closed-loop performance evaluation

To evaluate the closed-loop positioning performance of the algo-
rithms, combinations of the following metrics are used,

" 180
Ji = ‘/[; {'ﬂN — Nan! + Mg — Mg pl + 7'@9 - %'}di

(13a)
. 7
T = jt; {Itsu,gg\ + Mgyt o
¢ i
I, = -/t; [Tyaldt, 130

where the states and the elements of 7 are defined in (1), and ¢, and t;
are the initial and final time of the interval. J; is a positioning perfor-
mance metric, whereas J;,, and J;, are control effort metrics.

4. Tuning

In this section the tuning for the observers, nPD-controller and the
bias compensation methods are presented. The maneuver used in the
tuning is the training maneuver described in Section 3.2.

4.1. Derivative free optimization for tuning

In order to allow for a fair comparison of the bias compensation
methods, optimization is used to find observer tuning. Classic optimi-
zation methods are not applicable due to a lack of information about
the gradient, Hessian, or higher order derivatives. Thus, derivative free
optimization (DFO) is used, specifically the MATLAB® function fmin-
search.

To illustrate how DFO works, consider the example where we have
one state variable x € R where the objective is to minimize the error
X =x— X, and % is our state estimate. The observer has an injection
gain K € R, and we select a cost function that depends on the injection

487

Ocean Engineering 178 (2019) 484-492

gain and the time of the interval J (K, t;,), where t;,; = ty — to, and t;
and ¢, are the final and initial time of the interval. We initialize the DFO
by selecting an initial guess for K, and the DFO evaluates the cost of J.
Thereafter, the DFO algorithm selects values close to the initial K value
to see if they provide a lower cost for J. It then selects the K that gave
the lowest value and repeats the process. Note that the DFO can get
stuck in a local minimum, so several runs with varying initial conditions
have to be performed.

The different observer performance evaluations metrics used in this
paper are

I = ‘/[;l/ {|77N = Ayl + Ing — Al + %W) - lﬁ‘}d[ (14a)
= ./l;‘f {m —dl+ v =9l + %\r - f‘}df (14b)
Ty = oy = bylat (140)
Tip = [ 1bg = Bylds (14d)
Jiy = [O’f lby — byldt, (14¢)

where the states are defined in (1) and the estimates in (3).

4.2. Tuning of position and velocity observer

The injection gains K; and K; in (3) for the wave and #-dynamics are
found by the tuning rules proposed by Fossen and Strand (1999), which
give good wave-filtering. The tuning for K; and K, is optimized for
finding good 5 and v estimates, and is found by derivative free opti-
mization. The corresponding cost function J used in the DFO is then

J=T5 + ¢y, (15)
where J; and J; are given by (14a) and (14b), and ¢, € R, ¢ is a scaling
parameter set such that the contributions from the velocity estimation
error ¢, J; and the position estimation errors are balanced. The value we
used was ¢, = 7. The vessel is controlled by (4) using state estimates
together with the integral action (11)-(12). The tuning of the observer
is found in several iterations, and for each iteration the observer tuning
is updated with the resulting DFO tuning from the previous run.
Thereafter, a new closed-loop run was performed, serving as the dataset
of the next round of DFO runs, until the observer tuning converged.

The resulting bias estimate from the observer tuned with (15), along
with the actual bias load found by solving for b in (1d), are shown in
Fig. 1. Note that the bias estimate tracks the actual mean bias load well,
but since the bias estimation is not part of the evaluation function (15)
it is quite oscillatory in steady state.

4.3. nPD-controller tuning

The tuning for the nonlinear PD-controller is given by the tuning
rules outlined in Fossen (2011) by specifying desired eigenfrequencies
and damping ratios of the response, as if the system is linear, that is, by
setting the rotation matrix to identity. Thereafter, the tuning is adjusted
through trial and error using the well-tuned » and v estimates from the
position and velocity observer.

4.4. Tuning of the bias compensation methods

4.4.1. Tuning method 1: direct compensation

The tuning of Method 1 is given by the tuning of the position and
velocity observer as outlined in Section 4.2. No further tuning is
needed.
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Fig. 1. Bias estimate from the position and velocity observer and the true bias
load in the North direction.

4.4.2. Tuning method 2: wave-filtered bias estimate

Method 2 uses the bias estimate b from the position and velocity
observer in Section 4.2 as input, that is, the bias estimate used in
Method 1. The tuning of the matrices Kj; and K}, in the wave filter of
(8) are found by the tuning rules proposed by Fossen and Strand (1999).
That is, Kj; and K, are similar to K; and K; in (3), respectively.

4.4.3. Tuning method 3: bias observer

For Method 3 the cost function Jpp used in the DFO is
Jgo = ConJpp + CopJiy + wa]l;w 16)
where Jj, Jg;, and J;, are given by (14c)-(14e), and cpy, g, Cby, € R o
are scaling parameters to balance the contributions from the three bias
terms. The values used were ¢,y = 0.587, ¢;; = 1, and Cpy = 0.055. This is
to make the observer equally responsive to all the three bias forces. For
instance, in the training dataset, the North bias force is larger than the
East bias force over the maneuver. An equal weighting with ¢,y = ¢y,
would have made the observer more aggressive in observing the North
bias. With the chosen weights this is avoided. The DFO tuning process is
similar to that of Section 4.2.

4.4.4. Tuning method 4: integral action

For Method 4 the tuning for K; in (12) was found through extensive
trial and error, starting at the tuning given in Fossen (2011). In the
following we provide a reasonable documentation for a good K;-tuning,
where it is shown that K;-values above and below the chosen tuning are
less optimal. To document the choice of a good K;—tuning the cost
function J,§ from (13a) is shown for several values of K; in Table 2,
applied on the maneuver described in Section 3.2 as the main man-
The different values for K; in Table 2 are given as
Kij=pKn, j=1, ...,5, where ppJ=1,..,5 are positive scalars that
satisfy p,,; > p;,j = 1, ...,4. The results of the table clearly show that
K3 gives the minimum value, and the lower and higher values of K; give
less optimal performance.

euver.
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Table 2

Results for the integral action tuning on the training maneuver. The table shows
the KPI in (13a). The KPIs are normalized such that the worst performing has a
value of maximum of 100 for the whole maneuver.

Step K;[10%] J§
1 diag{0.0132, 0.0115, 6.314} 99.88
2 diag{0.0142, 0.0123, 6.765} 99.59
3 diag{0.0151, 0.0131, 7.188} 99.58
4 diag{0.0160, 0.0139, 7.6673} 99.74
5 diag{0.0170, 0.0148, 8.1183} 100.00
Table 3
Summary of the bias compensation methods.
Method Description
1 Direct comp. from pos/vel observer
2 Wave-filtered bias compensation
3 Comp. from separate bias observer
4 Integral action

5. Results and discussion
5.1. Simulation results

Results for the four different bias rejection methods are presented in
the following. See Table 3 for a summary of the methods. The vessel
performs the two different maneuvers presented in Section 3.2. The
results on the training maneuver are shown in Fig. 2, Fig. 5, and
Table 4. Fig. 2 has three plots. The upper left plot shows the low-fre-
quency position and heading for the run with Method 1. The lower left
plot shows the different bias rejection terms in surge only, and the right
plot shows the cumulative error J; of the positioning performance from
(13a). Table 4 shows all the performance indices from (13) both for the
whole maneuver and also for the steady-state time interval from 1000
to 1500s. Fig. 5 shows the thrust KPIs J7 ,, in (13b) and J7, in (13c) for
the training maneuver and the test maneuver.

The results for the training maneuver show that Method 3 (the bias
observer) has the best overall performance. It is both fast over tran-
sients and calm in steady state. As seen from Table 4 and from Fig. 5,
the thrust effort of Methods 3 and 4 are about equal, and lower than
Methods 1 and 2, which also are approximately equal. During the
steady period, the thrust effort of all four methods are similar, but
Methods 3 and 4 have a lower positioning error than Methods 1 and 2.

Fig. 3 shows the bias rejection terms in surge for the four different
methods in the upper plot. This is the same as the lower left plot of
Fig. 2 zooming in on the transient at 600s. The lower plot of Fig. 3
shows the difference between 7z and true bias force for the different
methods for the respective simulations. As observed from Fig. 3, all four
methods are quite fast in the transient, with Method 4 as the slowest. In
steady state Method 4 is very calm, while Methods 2 and 3 are much
calmer than Method 1.

As observed, Methods 1 and 2 have similar closed-loop perfor-
mance. Even though Method 2 has smaller oscillations than Method 1,
it also has a slight lag due to the extra filter, as observed from Fig. 3.
The lag seems to make Method 2 underperform Method 1 during
transients, and the two effects (lower oscillations and added lag) cancel
in steady state, making the two methods similar in their steady-state
performance. Method 3 has a good balance between steady-state and
transient performance, and therefore has a better overall performance
compared to Methods 1 and 2.

The results for the test maneuver is shown in Fig. 4, Fig. 5, and
Table 5. The tuning used for the observers and controllers are the same
as those used for the training maneuver. Similar type of results are seen.
In the test maneuver there are more transient events and less steady
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Fig. 2. Results for the four different bias rejection methods for the training maneuver. The right plot shows the KPI in (13a). The KPI is normalized such that the worst

performing has a maximum of 1 for the whole maneuver.

Table 4

Results for the training maneuver. The table shows the KPIs from (13). The KPIs
are normalized such that the worst performing has a value of maximum 100 (for
the whole maneuver). The time interval 1000-1500s is in steady state.

Time: 0-1500s 1000-1500s

Controller J§ T Jor J5 Tt Jer
Method 1 95.5 100.0 99.5 7.3 42.4 29.6
Method 2 100.0 99.1 100.0 7.3 42.4 29.6
Method 3 88.8 97.5 98.7 6.3 42.4 29.6
Method 4 97.8 97.7 98.9 6.5 42.4 29.6

state than in the training maneuver. That is why Method 4 performs
worse overall (in positioning performance) than in the training man-
euver. However, note that Method 4 has the lowest thrust consumption.
Method 3 still performs best, and Method 4 has the best steady-state
behavior, and Method 3 has close to the same steady-state performance.
This shows that the same tuning and observations also apply well for
the test maneuver.

5.2. General discussion

The findings presented in Section 5.1 justify that using a bias esti-
mate from a separate bias observer, with tuning optimized to estimate
the bias, is the best way of compensating the bias loads in DP. This is
better than the traditional integral action based on the tracking errors,
since it mainly outperforms the integral action in transients. In addi-
tion, the results show that using the bias estimate (in feedback) from a
single observer optimized for position and velocity estimates under-
performs compared to using the separate bias observer both in tran-
sients and in steady state. The wave-filtered version of this bias estimate
(from the position and velocity observer) underperforms the non-wave-
filtered version, seemingly due to the added phase lag from the extra
wave-filter. Using a separate bias observer is the best option among
those presented in the paper. Direct integral action and bias compen-
sation from the single position/velocity/bias observer have similar
performance. If there are longer periods of steady state conditions,
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Fig. 3. The top plot shows the bias rejection term in surge for the four different
methods on the training maneuver. The bottom plot shows the error between
7z and the true bias in surge (absolute value).

integral action is better than the single observer bias compensation, and
vice versa for transient conditions.

6. Conclusion
In this paper, four methods for compensating the mean and slowly

varying environmental loads (and unmodeled dynamics) for DP of
marine vessels have been investigated. A high-fidelity simulation model



S.A. Veerng, et al.

Low frequency position and headin:
20 9 yp 9 150

-5 -50
0 500 1000 1500
Bias rejection term, surge
250 T T
—Method 1: Direct compensation
200 -~ Method 2: Wave-filtered bias |
- - Method 3: Bias observer
150 Method 4: Integral action
Z 100
50 fi4
ol
50 . .
0 500 1000 1500

Time [s]

Ocean Engineering 178 (2019) 484-492

0.9 e
0.8 1
0.7 4
0.6 1
SR05F 1 1
el d
0.4 1
0.3 4 1
0.2 1
) —Method 1: Direct compensation

01F 7 -~ Method 2: Wave-filtered bias |

- = Method 3: Bias observer

Method 4: Integral action

0 I n
0 500 1000 1500

Time [s]

Fig. 4. Results for the four different bias rejection methods, on the test maneuver. The right plot shows the KPI in (13a). The KPI is normalized such that the worst

performing has a maximum of 1 for the whole maneuver.

was used to compare the methods, using two different maneuvers; one
training maneuver for tuning and one test maneuver for verification. All
methods were tuned to work well for the training maneuver. Then this
tuning was applied for the test maneuver to verify the gains, and similar
performances were shown. The standard integral action was compared
to three variations of using the bias estimate from a model-based ob-
server. The results indicated that the best method to compensate the
bias loads was using the bias estimate from a separate bias observer, for
which the tuning was optimized to estimate the bias loads. This method
displayed both the best transient and steady state behavior given the
maneuvers in this paper.

Ji 4 (1), training maneuver
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Table 5

Results for the test maneuver. The table shows the KPIs from (13). The KPIs are
normalized such that the worst performing has a value of maximum 100 (for
the whole maneuver). The time interval 1000-1500s is in steady state.

Time: 0-1500s 1000-1500 s
Controller J§ JEw Jer J§ I Jor
Method 1 95.1 100.0 99.4 5.5 24.3 24.4
Method 2 98.7 94.2 99.4 5.4 22.1 24.4
Method 3 90.3 92.0 99.5 5.0 22,0 24.4
Method 4 100.0 90.5 100.0 47 21.3 24.3
J¢ (t), test maneuver
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Fig. 5. Cumulative thrust results for the four different bias rejection methods, on the training maneuver (left) and the test maneuver (right). The top plots show the
KPI in (13b) and the bottom plots show the KPI in (13c). The KPIs are normalized such that the worst performing has a maximum of 1 for the whole maneuver.
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Appendix. Simulation verification model

The kinetics used in the SVM of the supply vessel, see Section 3.1, is (Sgrensen, 2013)
My + Crg()v + Ca(v)Vr + Dy + dnp () + G = T + Toms a7

where M € R®*¢ is the inertia matrix, Cgg(v) € R®*® and C4(v,) € R®*® are the rigid body and added mass Coriolis matrices, respectively, v € R® and
v, € R® are the velocity and relative velocity, respectively, D, € R®*® is the linear damping matrix, dyz,(v,) € R° is the non-linear damping vector,
G € R®*¢ is the restoring matrix, 7 € R® is the thrust vector, and 7., € R® is the environmental load vector. The inertia matrix for the SVM is a sum of
the rigid body mass and the added mass, M: =Mgg + Mp,

mhys  —mS(rg)
o mS(rg) I,

0.0615 0 0 0 —0.3198 0
0 0.0615 0 0.3198 0 —0.1414
0 0 0.0615 0 0.1414 0
0 0.3198 0 31.4290 0 —0.7355
—0.3198 0 0.1414 0 4.2767 0
0 —0.1414 0 —0.7355 0 16.6653 (18)

=108

0.0053 0 —0003 O —0.7101 0
0 0.0518 0 0.1135 0 0.0095
—0.0036 0 0.1993 0 1.9683 0
0 0.1128 0 2.6167 0 —1.9025
-07070 0 1.9664 0 177.7000 0
0 0.0095 0 —1.9082 0 15.2660 19)

M, = 10%

where m is the mass of the ship, here m = 6150 tons, and I,: =I, — mSz(ré’), where I, is the inertia matrix about the body's center of gravity,
ré’ = col(—2.3m, 0, —5.2m). The matrix S(1), where 1 = col(4;, 4, 43) € R?, denotes a skew-symmetric matrix,

0 —A A
SMH=4 o —af
-k A4 0 (20)

The rigid body and added mass Coriolis matrices are calculated online during simulations from the inertia matrices Mg and M, given above, and
the velocity v and relative velocity v,. The rigid body Coriolis can be written as Fossen (2011):

0O3x3 - mS) — mS(v)S(r)

Crg(v) = s
- mS) + mS(rH)S(vy) — S(Iyvy) @
where the linear and angular velocities are written as »; = col(u, v, w), v, = col(p, g, r). The added mass Coriolis is calculated in a similar way, see
Sorensen (2013) for a complete representation. The nonlinear damping is calculated from a look-up table. The linear damping matrix D;, and
restoring force matrix G are

0.0017 0 0 0 —0.0115 0
0 0.0014 0 0.0147 0 — 0.0065
Dy = 10% 0 0 0.0387 0 0.0891 0
0 0.0147 0 1.6800 0 —0.0338
—0.0115 0 0.0891 0 16.5299 0
0 — 0.0065 0 —0.0338 0 0.6386
00 0 0 0 0
00 0 0 0 0
G = 10% 0 0 0.0141 0 0.0324 0 .
00 0 0.1931 0 0
0 0 0.0324 0 42977 0
00 0 0 0 0
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Abstract: An output feedback controller for dynamic positioning (DP) of marine surface vessels
is developed. The proposed algorithm has good performance during transients as well as good
steady state performance. The method achieves this by a flexible injection gain in the bias
estimation dynamics in the observer. In addition, the traditional integral action is replaced
by a filtered bias estimate from the observer. Both these elements combined provide good
DP performance in transients, as well as calm behavior in steady state. A simulation study
is performed showing the benefit of the proposed output feedback controller, and a stability
analysis is performed to show uniform asymptotic stability.

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Dynamic positioning; Observers; Output feedback; Integral action

1. INTRODUCTION

A surface vessel performing dynamic positioning (DP) has
to keep position and orientation (stationkeeping) or do low
speed tracking while compensating for the slowly-varying
loads that affect the vessel. These loads are typically
due to current, mean wind loads, and second order wave
loads. The sum of these loads together with unmodeled
dynamics, is lumped into the bias load vector. For model-
based observer designs it is important to estimate this bias
in order to achieve good estimation of the velocity, and
thereby the position of the vessel. In addition, this bias
load needs to be compensated in the controller to keep
the desired position. This is typically achieved through
integral action in the control law.

In standard model-based observer designs (Fossen, 2011),
the tuning of the bias observer is set low to ensure good
performance of the observer in steady state. Since the
bias is typically slowly-varying, low tuning will lead to
less oscillations in the bias estimate, and therefore also
less oscillations in the velocity and position estimates.
However, when there is a significant transient in the bias
force, for instance by a heading change, a wave train, or a
mooring line that breaks (for position mooring), the bias
estimate will take some time to converge to the new value.
This is problematic for transient performance of the DP
system, since the velocities will not be estimated correctly
over the course of the transient.

* Research partly funded by the Research Council of Norway (RCN)
project no. 223254: CoE NTNU AMOS, and partly by RCN project
no. 237929: CRI MOVE.

The objective of this paper is to construct a model-based
observer and controller with good performance in both
transients as well as in steady state. This will be achieved
by two changes from the standard model-based design.
The first is to allow for a flexible bias estimation in the
observer. The injection gain in the bias dynamics will be
allowed to take values ranging from a nominal gain matrix
to higher gains and a more aggressive tuning. The second
contribution is to add a lowpass-filtered bias estimate
which has a less oscillatory and smoother characteristics
than the direct bias estimate. This filtered estimate will be
used to compensate for the bias in the controller. There are
two reasons for this implementation. From the literature,
the two existing options for compensating the bias is to
either use the bias estimate from the observer (Lorfa and
Panteley, 1999), or to add integral action in the controller
(Sgrensen, 2011). The integral action in the controller finds
the bias estimate based on the tracking errors. Since the
control performance depends on the convergence of the
observer, it is reasonable to believe that the bias estimate
in the observer will always be faster than the integral
action based on tracking errors (with reasonable tuning).

However, if we use a filtered version of the bias estimate,
we allow for fast bias convergence in the observer, without
having to send this noisy estimate directly to the con-
troller. At the same time the bias compensation term in the
controller is oscillating less than the direct bias estimate
itself, and this is most likely faster than integral action
based on tracking errors. This is a similar idea as used in
L1 adaptive control (Hovakimyan and Cao, 2010).

In addition, there is a tuning benefit of using the bias
estimate from the observer, both because tuning an ob-

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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server does not require the system to be in closed loop,
and because tuning of integral action (on tracking errors)
heavily depends on how fast the observer estimates con-
verge. This is especially beneficial in the current design,
since the proposed observer have time-varying gains.

Similar use of time-varying gains is present in the litera-
ture. See for instance Tutturen and Skjetne (2015) where
hybrid integral action for DP of marine vessels is proposed,
and Lekkas and Fossen (2014) where the authors propose
to use a time-varying lookahead distance as a function of
the cross track error in a line-of-sight algorithm. In Belleter
et al. (2013, 2015) a wave encounter frequency estimator
is proposed, where the frequency adaption law has a time-
varying gain. In Bryne et al. (2014) time-varying gains are
proposed for an inertial observer (aided by GNSS) for DP,
in order to improve convergence and suppress sensor noise.

2. PROBLEM FORMULATION

In the following we will separate between a simulation
model and a control design model. The simulation model
has higher fidelity and is used for simulation and veri-
fication of observer and control designs. Because of the
low-speed nature of the dynamic positioning operations,
the control design models typically neglect centripetal
and Coriolis terms, as well as nonlinear damping; see
(Serensen, 2005, 2011), and (Fossen, 2011). The control
design model considered here is a horizontal motion 3
degree of freedom (DOF) model, with the dynamics

£ = At + Eywy, (1a)
0= R (1b)
b=wy (1c)
Mi=-Dv+R%)Tb+u (1d)
y =0+ Cwé + vy, (1e)

where ¢ € RS is the state of a synthetic white noise-driven
model of the vessel motion due to the 1st order wave
loads. In normal operating conditions it is beneficial to
counteract the low frequency part of the wave motion only,
and the model therefore consists of a wave model (1a) and
a low frequency part (1b) - (1d), which consists of the low
frequency position in north and east, as well as the heading
angle, n := [N, E,¢]T € R3, the velocities in surge, sway,
and the yaw rate, v := [u,v,7]T € R3, the slowly varying
NED-fixed bias force b € R? that constitutes the sum of all
slowly-varying perturbation loads, such as current, mean
wind, 2nd order waves, and unmodeled dynamics. In (1b)
the kinematic relation is described by the 3 DOF rotation
matrix from the body to the NED frame R(v) € R3*3,

cos(¢) —sin(¢) 0

R(y) = {Sin(w) cos(y) Of, (2)

0 0 1
and the time derivative of R(1) is given by R = -5, where
0-10
S=1{10 0, (3)
000

and r = ¢ € R is the yaw rate. In (1d), M € R3*3 is
the inertia matrix including added mass, D € D3*3 is
the linear damping matrix, and u € R? is the control
input vector. The measurements y € R® in (1le) measure

the actual position of the vessel, that is, the sum of
the low frequency and wave frequency position, where
Cyp = [01] € R®S, and v, € R? is the measurement
noise.

The control objective of the paper is to construct an
output feedback tracking controller for DP, that has good
performance in both steady state as well as in transients.
This output feedback controller will track a reference tra-
jectory given by an open-loop reference system (Sgrensen,
2011).

Below are some assumptions relevant for the observer and
control design.

Assumption 1. Starboard/port symmetry, M = M T > 0,
and M = 0. The damping matrix satisfies D + DT > 0.

Assumption 2. Because of physical limitations of the
thrusters, the yaw rate is bounded, by |r| < 7z < 00.

3. OUTPUT FEEDBACK DESIGN
3.1 Model-based observer

The model-based observer considered is similar to the tra-
ditional "nonlinear passive observer” presented in Fossen
and Strand (1999) with an additional state l;f, which is a
lowpass-filtered version of b. By copying the dynamics of
(1), neglecting the noise terms, and adding injection terms
we get the observer dynamics as

E= Auf+ KLy (42)
0= R()0 + K2y (4b)
b= Ksp (4¢)
by = ~T; by ~ b] (4d)
Mi=-Dio+R)"b+u+K;R¥) g (de)
§ =1+ Cué, (4f)

where € € RS, #, b, by, € R? are the state estimates,

K., € RO*3 Ky, K3, K4 € R3*3 are non-negative gain

matrices, and § = y — ¢ is the measurement error. The

underlying assumptions for the observer are:

Assumption 3. (a) R(1 + 1) =~ R(¢). That is, the
heading angle due to wave-induced motion is small.

(b) The frequency used in the wave filter does not change.
It corresponds to the peak frequency of the wave
spectra of the incoming sea state.

By defining the estimation error states 7 :=n—1n, v := v—
U,b:=0b-0, by := b— by, and subtracting the observer
equations (4) from the control design model (1), we get
the observer error system,

€= AuE— K17 (52)
in=R()7 — K3y (5b)
b= —Ksj (5¢)
by = —T; ' [b — b) (5d)
Mp=—Di+ R(¥)Tb— K,R(4) 5. (5e)
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3.2 Varying bias gain

To improve the transient response, we want the injection
gain K3 in (4c) to vary. In steady-state it is desired
that K3 stays close to a nominal gain such that the
bias estimate is calm. Whenever the vessel experiences
transients, K3 should increase to make the bias estimate
more reactive, and when the vessel again reaches steady
state, the gain should return to the nominal gain. To solve
this, K3 is allowed to take a range of values within K3(t) €
[KS,min»KS,max]y vt > 0. We let KB(t) = ’i(t)K&,min:
where £(t) € [Kmin, fmaz), Vt > 0. The update law for s
is given by

x = max{1, 8}, (62)
8= min{g,.d ‘Td(t)‘ + 5n‘ﬁf| + ’imazeistt: Hmaz}: (6b)
~T,, s — v} (6¢)

The first term in (6b) contains a constant &, > 0 and the
desired yaw rate rq(t) € R, related to a heading change.
The second term is a performance term that triggers a
higher gain when the observer error is large, and the third
term only makes x large during the initial transient. In
(6¢c) Ty, is a positive definite diagonal matrix with filter
time constants, and these time constants and the size of
ey > 0 are tuned such that s approach K, at steady
state.

In order to have a convenient expression for K3 in the
further analysis we introduce A € [0,1] and write K3 :=
K3 ) as

K3)\ = )\Kii,min + (1 - A)I(Sm'uzz- (7)

3.8 Output feedback tracking control

The control law consists of a reference feedforward term
and a feedback term. The feedback part consists of a
nonlinear PD-term, and a bias rejection term, which is
the filtered bias estimate from (4d),

u=1upp + upr ®)

upp = Mvgy(t) + Dl/d(t) (9)
upp = —KyR() " (7 = na(t) = Ka(? = va(t) = R(®) by
= —KpR(W)" (71— 7) = Ka(? = 7) = R($)T (b —by).

(10)

where 14(t), va(t), va(t) are the desired references gener-

ated by a reference generator. By defining the tracking

error states 7 := n — n4(t), ¥ := v — v4(t), the kinematics

in (1b) along with the kinetics in (1d) inserted for (8) gives

the tracking error system,

1= R(Y)v (11a)
M= —(D + Kz)v — K,R(4) "7 (11b)
+ Kav + K R(¢) "7+ R(1) Tby (11c)

4. STABILITY ANALYSIS

We collect all error states in = := col(z.,x,), where
x = col(7], D), &, := col(§,7,b,by,7) and combining (5),
(7), and (11) the total error dynamic becomes

where
Ac(¥) Beo
AN(y) = [olg(i) Aoﬁx((w))} ' )

and
— 0 R(¥)
Ac:= [—M’leR(q/;)T —MY D+ K|’ (142)
B — 03><18
€0 10356 MTTK,R(Y)T 0O3xz MT'R(p)T M™'K4|’
(14b)
Ay — K1,,C —Kyw 0 0 0
—KyCly —K, 0 0 R
Ay = —K3,Cly — K, 0 0 0)
’ 0 0 ' -T7' 0
5 i
~M'KR() Cp —M ' K4R(y)T M7 0 —MT'D,
(14c¢)

The dynamics (12) can be written (Lindegaard, 2003),
& =T() " AN0)T (¥)z, (15)
if the matrices K1 ., K, K3 x, and T commute with the

rotation matrix R(¢). The transformation matrix T'(¢) is
given as

T(¢) = diag{Tc(¢), To(¢)} (16a)
To(v) = diag{R(¥)", I} (16b)
To(v) = diag{R(¥)",....R(¥) .1}, (16¢)
By inserting (7) we can write
Ax(0) = M + (1 = A) Amaa, (17)

where A, contains K3 ,in and Ay,qe contains K3 paq-
Proposition 1. The equilibrium z = 0 of (12,) where
K3 5 can arbitrarily take any value in [K3 min, K3 max)s
is uniformly asymptotically stable under the following
conditions:
e The matrices K o, K2, K3, and T;l commute with
the rotation matrix R(¢).
e The following LMI’s are satisfied,
ApinP + PAnin + T (STP = PS1) < =@ (18a)
AL P + PApin — Pmaz(StP — PS7) < —Q  (18b)
(18c)
)

ALsP 4 PAuas + e (SrP — PS7) < —Q

A;uz:cp + PApaz — 7'maz(STP - PST) < —-Q,
where Sp = diag{95,0,S,...,5,0}, and P and Q are
symmetric positive definite matrices.

Proof. Consider the transformation z = T'(¢))z given by
(16), and notice that T(v)) ™t = T'(¢)) 7. From (15) we get
E=T@W)TY) A\(0)2 +T@)T(Y) "2

= Ay(0)z — rSrz (19)
where r is the yaw rate. We introduce a quadratic Lya-
punov function V(z) = 2T Pz, and from (19) we define
f(z) = Ax(0)z and g¢,(2) := —rSrpz such that (19)
becomes

i=f(z) +9r(2), (20)

where f(2) := Afmin(2)+(1=X) finqz (z). From (18a)-(18d)
and 7 € [—Tmaz, Tmaz] We have

(VV(2), fmin(2) + gr(2)) < —a(|2]) (21a)

<VV(Z)7 fmaz(z) + gT(z)) < _O‘(‘Z‘)v (21b)
where «a(|z]) is a positive definite function. Finally, we get
<VV(Z)> )‘fmin(z) + (1 - )‘)fma:v(z) + gr(z» <
/\<VV(Z)7 f'm,in(z) + g,(Z)> + (1 - >‘><VV(Z) f’ma.’b‘(z) + g,-(Z)>
< —ha(z) - (1- Na(z) < —a(2), (22)
and this concludes the proof.
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Table 1. Supply vessel, main parameters

Parameters Value
Length between perp. 80 m
Breadth 174 m
Draft 5.6 m
Displacment 6150 tons

If the observer and controller gains are set such that A,,;,
and A,q, are Hurwitz, and if the ratio of Kimaz/Kmin i DOt
very large (in practice, up to 5), it is easy to satisfy (18)
for a maximum yaw rate far above "normal” yaw rates.

5. SIMULATION RESULTS AND DISCUSSION

The simulations are performed in MATLAB/Simulink on a
high fidelity model based on building blocks from the MSS
Toolbox (MSS, 2010). The case simulated is a platform
supply vessel in an environment consisting of waves, wind,
and current. See Table 1 for the main parameters of the
vessel. The sea state is very rough with significant wave
height of 6 meters, and a peak frequency of 0.53 rad/s
taken from the JONSWAP ! spectrum. The mean incident
wave heading is 190° in the north-east frame (Price and
Bishop, 1974). The current has a speed of 0.5 m/s and
direction of 180°, and the wind has a mean velocity of 5
m/s with a direction of 160°. A first order model for the
thrust dynamics is included, and the time constants for
thrust force is set to 5 seconds. The GPS measurements
have realistic noise properties, and are sampled at 1 Hz,
and the measurements are processed by a zero-order hold
element before they are sent to the observer.

Three different output feedback controllers are compared
to illustrate the benefit of changing the gain K3 in (4c).
The only difference between the three setups is a variation
of allowed values for s from (6a). For two of the output
feedback controllers the x-value is fixed, where the "nom-
inal” controller has kK = K, for steady conditions, while
the "aggressive” controller has kK = Kypq, for transient
conditions. The last controller is our proposed algorithm in
(6) where K € [Kmin, fmaq), called the ”flexible” controller.
Even though the difference between these three systems is
in the observer we often just write ”controller” to describe
the system. However, when just the observer performance
is discussed, ”observer” is used.

At the beginning of the simulation, the position and
orientation of the vessel is at 7 = [0,0,0] . At 1000 seconds
there is a setpoint change 20 meters north, 20 meters
east, and to heading -90°. Due to the ship hull shape this
maneuver will change the bias force experienced by the
vessel in the body frame, as well as in the NED frame.
After 3000 seconds the direction of the current changes to
90°, to see how the vessel responds to a sudden change
in bias force that is not known in advance. The current
direction changes as a first order filtered step with time
constant 30 seconds.

In Figure 1 the cumulative low-frequency position tracking
error of the vessel is shown for the three controllers. The
left part starts from the instance of the heading change,
and the right part is a zoom-in on the steady period
2000-3000 seconds. The top plots show the combined error

1 Joint North Sea Wave Project

in north and east, and the bottom plots show the error
in yaw. From the left part it can be observed that the
aggressive and flexible controller perform much better
than the nominal controller in the transient regime, that
is, just after 1000 seconds, and just after 3000 seconds.
From the right part of Figure 1 it can be observed that
after the system reaches steady state, the flexible and
nominal controller perform better than the aggressive
controller, and this is due to lower oscillations of the bias
and velocity estimates from the observer. This implies
that since the flexible and aggressive controllers have
similar performance in transients, the flexible controller
will eventually perform better.

From the left part of Figure 1 it is observed that already
around 2000 seconds the flexible controller has a lower
cumulative position deviation. This is because the heading
change is a transient known in advance, and the flexible
controller can react fast, and go to a higher value for s
quickly. This is observed from Figure 4, where x for the
flexible controller is shown (Kmer = 2.5). In addition,
we can observe from Figure 4 that at 3000 seconds it
takes a bit more time for k to go to Kma. than at 1000
seconds. This is natural since this increase is based on the
estimation error in the observer, and not a command in
the reference system as with the heading change. Even
though k will be slower for the "unknown” transients,
we see from Figure 1 that the flexible controller has
a similar performance to the aggressive controller, and
will eventually outperform the aggressive controller if the
steady state conditions persist.

In Figure 2 the cumulative bias estimation error (in the
body frame) from the observer is plotted for the entire
simulated case study. The combined error of surge and
sway is shown in the top plot, and the yaw error is shown
in the bottom plot. Here we see the same trend as in Figure
1, but the trend is even clearer. The flexible observer is
superior to both the aggressive and nominal observer. Even
the nominal observer performs better than the aggressive
observer after 5000 seconds for the error in surge and sway.

In Figure 3 the bias in surge is plotted, along with the
observer estimate, and the filtered bias estimate for the
flexible controller. It is observed that the bias estimate
(and the filtered estimate) converge to their new bias
values quite fast, and within 200 seconds after a transient
steady state conditions are reached.

6. CONCLUSION

The proposed output feedback controller was shown to
have good closed-loop properties in both transients and
steady state. Both the flexible bias estimation, and the
filtering of the bias estimate used in the control law,
contributed to a good overall performance for the system.

For the flexible bias estimation, the lowest tuning should
be quite responsive to ensure good overall responsiveness.
There are a couple of reasons for this. If we failed to
detect a transient, or the detection was slow, a moderate
nominal tuning vastly improved the performance in the
transient compared to a very low nominal tuning. That is,
if excellent positioning capabilities is the goal, the tuning
should have a fairly high minimum. In the presented
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simulation case study all the bias estimate tunings were

quite fast, and they all converged within 300 seconds.
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Abstract: Dynamic positioning (DP) systems are used on marine vessels for automatic station
keeping and tracking operations solely by use of thrusters. Observers are key components of
DP systems, and two main types are proposed in this paper. The model-based type is used
in steady state conditions since it is especially good at filtering out first order wave induced
motions and predicting states in the case of signal loss, and the signal-based type typically has
superior performance during transients. In this paper a hybrid observer including a signal-based
part and a model-based part with a performance monitoring function is proposed. The observer
part that provides the best estimate of the vessel position and heading is used in closed-loop
control, thereby allowing for improved transient response while maintaining good steady-state
performance. The contributions of this paper include the design of a hybrid signal-based and
model-based observer with performance monitoring, stability analysis of the vessel with hybrid
estimates in output feedback control, and simulations of a platform supply vessel during a
setpoint and heading change.
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1. INTRODUCTION

Marine operations are moving further from shore and into
harsher environments, and with it requirements for the DP
vessel’s operational window, safety functions and energy-
efficiency become stricter. Vessels that are doing opera-
tions with longer duration experience changing sea states
with varying wind and wave directions, with suboptimal
heading at times. Large forces and moments act on the ves-
sel, making quick and precise control essential, especially
when operating close to other offshore infrastructures.

There are many unknown factors at sea that may cause
transients in the vessel response depending on the type of
operations: wave trains, ice loads, mooring line break, etc.
However, many transients are triggered by the operator,
which makes them easier to account for with proactive con-
trol strategies, e.g. heading and setpoint changes, pipelay
operations, well intervention operations, the lowering of
a jack-up vessel from jacked-up to floating, etc. In this
work the transient response of a DP vessel is improved by
combining two observers.

* This work was supported by the Research Council of Norway
through the Centres of Excellence funding scheme, project number
23254 - AMOS, and in part by NSF grant number ECCS-1508757
and AFOSR grant number FA9550-15-1-0155.

The model-based observer, like the Extended Kalman filter
(Tannuri and Morishita, 2006), (Hassani et al., 2013),
or the nonlinear passive observer (Fossen and Strand,
1999), are commonly used in DP systems. The model-
based observer uses noisy position and heading angle
measurements to estimate the low frequency position,
heading, and velocity of the vessel. A key feature of this
observer type is the wave filter, which eliminates the wave
frequency vessel motion from the output feedback control
law. This reduces the wear and tear on the machinery as
well as reducing the energy consumption.

The signal-based observer, also referred to as a kinematic,
or sensor-based observer, is based on the kinematic equa-
tions, see for instance Mahony et al. (2008), Hua (2010),
Grip et al. (2012), and Bryne et al. (2015). It is especially
well suited during transients, as it uses linear acceleration
measurements to predict velocity and position. In this im-
plementation no wave filter was included in this observer,
but it is ongoing work by Bryne et al. (2016). As a result
this observer estimates the total vessel motion, including
low frequency and wave frequency motion. When inserted
into the control law it gives an oscillatory thrust command.

Earlier hybrid control theory has been applied to dynamic
positioning in a changing sea state, see Nguyen et al.

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
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(2007) and Brodtkorb et al. (2014), and for changing
operational modes (Nguyen et al., 2008). These all consist
of a bank of controllers and observers with a supervisory
mechanism that monitors performance and chooses the
best controller/observer pair. Dwell-time and hysteresis
switching were applied to avoid chattering. In this paper
we apply an output feedback DP controller, using analysis
from Loria et al. (2000). Related to this, Prieur and Teel
(2011) looks at output feedback control using a hybrid
controller with a nonlinear globally stabilizing part, and a
linear locally stabilizing part.

The main contributions of this paper includes the design,
analysis, and simulation of a hybrid observer with a model-
based part and a signal-based part for improving the tran-
sient vessel response in an uncertain marine environment.
A performance monitoring function keeps track of the
mean estimation error over a time period for the observers,
and the estimates from the better-performing observer are
used in closed-loop output feedback control using a non-
linear proportional, integral, derivative (nPID) controller.
Hysteresis is applied in order to limit the number of jumps
for the system, and this is important for the stability of
the system.

The organization of the paper is as follows: In Section
2 typical instrumentation for DP vessels is discussed,
and two mathematical models of marine DP vessels are
presented. A model-based and a signal-based observer
are introduced in Section 3, and Section 4 presents the
output feedback control algorithm. The hybrid signal-
based and model-based observer in closed loop control is
modeled in Section 5, and stability is discussed in Section
6. Simulation results for a platform supply vessel doing a
setpoint change are presented and discussed in Section 7.
Section 8 concludes the paper.

2. MARINE VESSEL MODELING AND DYNAMIC
POSITIONING

Two reference frames are used in this paper: the North-
East-Down (NED) reference frame which is a local Earth-
fixed frame, and the body frame, which is body-fixed.

2.1 Instrumentation

DP vessels have statutory class requirements on the on-
board instrumentation, and system redundancy. Vessels
have positioning systems, e.g. GNSS, acoustics, or laser,
a compass measuring heading angle, and an inertial mea-
surement unit (IMU) that combines gyroscopes for mea-
suring angular rates and accelerometers for measuring lin-
ear acceleration. The measurements are taken at different
sampling rates ranging from 0.1-2 Hz for acoustics, 0.5-
4 Hz for GNSS position measurements, to 100-200 Hz for
IMU angular velocity and acceleration measurements. The
measurements are in this paper assumed to be of the form

pn — []\/v7 E]T (1a)
wc = w (1b)
wfmu = wb + bg (1(})
ibmu = R(e)(vﬂ - gn)? (1d)

where the measurements in the NED frame have super-
script n, and measurements in the body frame have su-
perscript b. p"* € R? is the measured position in north
and east. A heave measurement may also be obtained
through GNSS, but it is typically of low quality and is not
used here. ¥, € R is measured heading angle (¢ is used
in the remainder of the paper), w?,, € R® is measured
angular rate w®, f& € R3 is measured linear acceleration,
© = [, 6, ¥]" € R? is the orientation in roll, pitch and
yaw, R(©) € R3*3 is the rotation matrix about the z,y,
axes, g" € R? is acceleration due to gravity, and b, € R
is the gyro bias. Measurement noise is disregarded in the
stability analysis, but inserted in simulations.

2.2 Marine vessel modeling

Two models of the same system are presented.

Control plant model  The control plant model for a
vessel is a simplification of the real vessel dynamics. It
is different for the various vessel types, operational and
environmental conditions, and the design problem under
consideration (e.g. observer design or feedback control
design); see Fossen (2011) or Sgrensen (2013). A surface
vessel in DP with starboard/port symmetry, M = M,
has largest motions in the horizontal plane (surge, sway,
and yaw), so the heave, roll, and pitch dynamics are
neglected. The control plant model in this case is:

€ = At + Eywy, (2a)
n=R)v, (2b)
b= T, "0+ Byw, (2¢)
My =—Dv+RT ()b +u, (2d)
y=n+WE+ vy (2e)

where the states of the system include the 3 DOF North,
East position and heading 7 := [N, E, 4] and body-fixed
velocity v in surge, sway and yaw. In normal operational
conditions we want to control only the low frequency part
of the vessel motion, and the wave filter in (2a) allows us
to separate the motion into a wave frequency part, and
a low frequency part. The wave filter has a state £ € RS
and system matrix A, € R®*6 that contains the peak
wave frequency and damping. It is driven by zero mean
white noise w,,. (2b-d) are the low frequency dynamics of
the vessel. (2b) is the 3 DOF kinematics that transforms
velocity from the body to the NED frame; R(v) is the
rotation matrix about the z-axis,

cos(¢) —sin(¢) 0
R(y) = | sin() cos(uy) o}
0 0 1
The wave frequency part of the heading angle, 1, is
assumed to be small, R(¢+1,,) &~ R(1)). (2¢) is a bias force
model with state b € R3, accounting for slowly-varying
environmental disturbances from mean wind, current, and
second-order wave loads and unmodeled vessel dynamics.
Ty is the Markov time constant, and wj zero mean white
noise. Note that the bias force model does not capture
rapidly varying disturbances. In (2d) M € R3*3 is the
inertia matrix including added mass for asymptotic values
of wave frequency equal to zero, D € R®*3 is the linear
damping coefficient matrix, and u € R3 is the control
input. (2e) is the measurement y = [(p™)T ¥]T € R® of

3)
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position and heading including low frequency motion 7,
wave frequency motion W¢ with W = [03x3, Isxs], and
measurement noise v,.

Kinematic model The kinematic model is based on fun-
damental principles of inertia, relating position, velocity
and acceleration of the vessel in 6 DOF. It represents the
same vessel as in (2), but now the acceleration and angular
velocities are inputs as well as the position and heading.
The dynamics are split into a translational part and an
angular part. The translational part is written as
ST — ,UTL

p (4a)
i = R(O) [l + 9" (4b)
p" is the north, east and down (heave) position and v™ is
the NED velocity. The acceleration measurements from
the IMU are rotated directly to the NED frame. The
orientation of the vessel is © in roll, pitch, and yaw angles,
and R(©) is the 6 DOF rotation matrix about the z,y, z-
axes. Gravity is also acting on the vessel. The attitude part
is written as
O =T(O)w’ (5)
with the velocity transformation matrix 7(©) and angular
rate w®.

Relating the two models, we have that
n=[p"1), p"(2), ¥,
v=R(y) "(1), v"(2), «*3)]". (6)

3. OBSERVERS USED IN DYNAMIC POSITIONING

The two observers are briefly presented in this section.
The reader is referred to Fossen and Strand (1999), Fossen
(2011) for details on the model-based observer, and to Grip
et al. (2012), Grip et al. (2013), Bryne et al. (2014), and
Bryne et al. (2015) for details on the signal-based observer.

3.1 Model-based observer

We have chosen to work with the nonlinear passive ob-
server (Fossen and Strand, 1999) since it is an intuitive
observer to tune, and it has global stability results. This is
based on the control plant model (2) taking in position and
heading measurements, and commanded thrust « from the
controller (see Section 4). It is a 3 DOF observer, and the
algorithm can be written as

E=Auf+ Ko7 (7a)
i = R()0 + Kaj (7b)
b=T, ' + Ksj (7¢)
Mb=-Do+ R ()b+u+ R ($)Kyj  (7d)
=1+ Cut, (7e)

where &,7,0,b € R3 are the estimates of the states in
(2), ¥ = y — ¢ is the measurement estimation error and
Ky, € RE$3 Ky, K3, Ky € RY? are observer gains chosen
to satisfy the Kalman-Yakubovich-Popov (KYP) lemma
(Khalil, 2002). The wave filter contains estimates of the
peak wave frequency and damping in A, € R%*6 and
C,, = W from (2). The key feature in this observer is the
wave filter. This means that the wave frequency motion
WE is separated from the low frequency motion 7, and

the output from this observer is the low frequency motion
estimate of the vessel: 7y := 7 and 7y := D.

Define the estimation errors as ():=¢) - (), and collect
them in the state =1 := [#7, 7', fT, ET]T. The error
dynamics of (2) and the model-based observer (7) is
written compactly as

jjl :Fl(xlvpn7¢)' (8)
3.2 Signal-based observer

The signal-based observer is a 6 DOF observer, and is
based on the kinematic relations (4) and (5). The attitude
is represented using quaternions, q.

Attitude observer  Write the attitude observer dynamics

as
q = T(@)(Whyu — by +6) (92)
by = Proj(b,, —ki16), (9b)
with the correction term
& =kic" x R(§) " + ko[l x R@T " (10)

where ¢ is the attitude estimate, 7(¢) is the velocity
transformation matrix, by is the gyro bias estimate, and
a bias compensated angular rate estimate is provided as
well @, The projection function used is found in (Grip
et al., 2012, Appendix). The symbol X represents the cross
product, ¢® = [cos(¢)), —sin(v), 0]7, ¥ is measured by
the compass, and ¢" = [1, 0, 0]' is a reference vector.
fb ., is the measured acceleration and f" is the estimated
acceleration in NED. Choose the gains k1 > kp, ko > kp,
with kp > 0 sufficiently large.

Translational Observer — The translational observer is
based on (4). The equations are taken from Bryne et al.
(2015), as we use a virtual vertical reference in heave
in stead of the low quality GNSS measurement. The
algorithm is

ﬁ? =Py + kpipiDr (11a)

o an 2 02><1 Kpp ]51

pr=0"+6 |:kppi Ores| | (11b)
‘n o fn n 3 02><1 Kvp ﬁl N
=gt {k 0} M (11¢)
o pAVG(A) £ 4 |02x1 Kep| |D1

& = -R@S(@) b +0* [0 (][] (11a)
F* = R(@) fh + &5 (11e)

The driving errors are defined as: § = p" — p" € R?, j; =
pr —pr = 0—p; € R. R(q) is the rotation matrix in roll,
pitch, and yaw represented with quaternion estimates from
(9). &¢ is a correction term on the acceleration estimate.
Kpps Kops Kep € REZ, and kpipis kppi, kupis kepi € Rso.
6 > 1 is a high gain. The equation (1la) includes only
the virtual heave part of the position estimate, i.e. it is
scalar.

The estimation error state can be written compactly as
zy = [G",b),p1,p 0", fT]T, with estimation errors
defined as before, ():=¢) - (). The error dynamics can be
written compactly as

ij = F2(3727pn77/}7wi?muv (12)

b
i'rnu)'
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The signal-based estimation error dynamics (12) has the
origin uniformly locally exponentially stable (ULES) with
almost global attractivity (Grip et al. (2012) and Bryne
et al. (2015)). The attractivity is almost global but not
global; hence, the convergence rate from points near the
boundary of the basin of attraction, particularly those cor-
responding to yaw estimation error equal to 180 degrees,
is slow.

The output from the signal-based observer is transformed
so it has the same form as the output from the model-based
observer using (6)

772 = [ﬁn(l)v ﬁn(2) ,‘[)2]T
Dy = R(s) " [0" (1), 0"(2), &°(3)]" (13)

where 1) is the heading angle estimate we get when
converting from quaternions ¢ to Euler angles, and the
velocity output is transformed from the NED frame to the
body frame. Because this observer relies on acceleration
measurements and does not include a bias force estimation
model, it reacts fast and accurately to transients. The
downside to this is that the estimates are not wave filtered,
so 72 and o will cause an oscillatory control input.

4. CONTROLLER

The control objective is to control the vessel to the de-
sired time-varying setpoint 74(¢) with the desired velocity
trajectory vq(t):

dimn(t) = na(t) = 0
tlggo v(t) —vq(t) = 0.

We write the tracking error dynamics as zg := [V —vq, n—
Na, ¢ — K;lb}, with the integral state in the controller ¢
defined below.

The control objective is achieved by combining feedfor-
ward of the desired trajectory and output feedback using
a nonlinear proportional, integral, derivative (nPID) algo-
rithm. The algorithm is

¢ = (s — 1) (14a)
w=—K,R"($)(As — na) — Ka(Ps — va) (14b)
~ KiRT($)¢ + M + Dvg. (14c)

u € R3 is the commanded thrust, Ky, Kq,K; € R3x3
are the proportional, derivative and integral gains, and 7
and U are the estimates from the model-based observer
when s = 1, and from the signal-based observer when
s = 2. ¢ compensates for the unknown bias force in
(2d), which is commonly assumed constant for control
design. The integral action error is ( — Ki_lb. K; should
be picked so it can commute with the rotation matrix,
ie. K;R(yY) = R(¥)K;. The last two terms in (14b) are
feedforward terms of the desired acceleration times inertia
and desired velocity times damping.

Loria et al. (2000) showed that the feedback control law
(14) using model-based estimates renders the closed-loop
vessel and output feedback controller UGAS.

Following a similar approach for the other observer renders
the closed-loop vessel and output feedback controller using
signal-based estimates uniformly locally asymptotically
stable (ULAS). We conclude local because the desired

behavior of the observer error dynamics (12) is predicated
on the derivative of the tracking error, ¢, being bounded.
It is not clear whether the region of attraction for the origin
of the signal-based output feedback controller and vessel is
almost global. The simulations in Section 7 indicate that
the basin of attraction when the signal-based estimates are
used in feedback is fairly large, but further research on this
problem is required to make rigorous statements about the
basin of attraction of the origin for (12), (14), (4) and (5).

5. HYBRID SIGNAL-BASED AND MODEL-BASED
OBSERVER IN CLOSED-LOOP CONTROL

The observers flow in parallel in the hybrid observer
design, and the position and velocity in surge, sway, and
yaw from the observer that performs best is used in output
feedback with (14). The estimation errors are monitored,
and switching is limited by hysteresis.

5.1 Plant, controller, and observer

The flow dynamics of the hybrid system constitutes the
marine vessel, controller, and observer dynamics is

n=R(y)v, (15a)
Mi=—-Div+ R (4)b+u (15b)
C. = ﬁs —Nd (15C)

u = 7RT(¢)KP(775 - nd) - Kd(l)s - Vd)
—RT(W)Ki 4+ Mig+ Dy (15d)
iy = Fy(z,p" ) (15e)
d2 = Fa (2, 0", 0, Wins Fima) (15f)
=0, (15g)

with 7,v,%,,0s € R3. (15a-b) are the vessel dynamics,
(15¢-d) is the control algorithm with output feedback and
reference feedforward, (15e) is the model-based observer
(7), and (15f) is the signal-based observer from (9) and
(11). s € {1,2} is a logic variable that indicates if the
model-based or signal-based estimates are used in closed-
loop control. s = 1 is model-based and s = 2 is the signal-
based estimates, as decided by the performance monitoring
and switching logic.

5.2 Performance monitoring and switching logic

The performance monitoring function computes the esti-
mation errors of the two observers in position and heading
over a time period to make sure the system does not switch
unnecessarily often. In order to make a fair comparison,
the total (low frequency and wave frequency) estimates
are compared with the measured position and heading
where north and east positions are measured in meters and
heading in degrees. The model-based estimate, including
wave frequency components, is §; := ¢ from (7), and the
signal-based position and heading estimates are gs := 7.

We sample y, 91, and g every T > 0 seconds and N € Z>;
consecutive measurements are stored in the state of three
different shift registers with states x, € R*Y, k = {0,1,2}.
Xk € R3, i € {1,..., N} are the stored measurements and
estimates. The state component xj1 contains the most
recent samples, and x, 5 contains the least recent samples;
see (17a-f).
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Let £ € R be a counter that triggers a performance check
of the observer. This happens every LT seconds where
L € Z>y. Let us define the shift register mean value

for the measurements: yg := % Ef\il X0,i, model-based:
X1 = %Zf\; X1,i, and signal-based: yo := ﬁZf\; X2,i-
We switch to the other observer if it performs better than
the one currently in feedback with a hysteresis margin of
e > 0; see (17g-i).
The jumps for these variables are allowed when

(zo, @1, @2, Xk, T, {,5) € D (16)
D:=R%x RY x R x R3VF x (T} x {0,...,L} x {1,2}
xo is the tracking error defined in Section 4. The jumps
satisfy

Xa:l =y (17a)
Xfl =i (17b)
X;l = {o (17¢)
ng =xr1, k=1{0,1,2} (17d)
: (17e)
X = X1, b= {0,1,2} (171)
= (17g)
(+1 telo,...,L—1
= {o ¢ :{L : (17h)
s tef{0,...,L—1}
sted3—s (=1L, |Xo— Xs-s| < X0 — Xs| — €
s L=1L, [xo—X3-s| > X0 — Xs| — €

(171)
All the states introduced in this section remain constant
during flows, except for 7 that satisfies 7 = 1. Flows are
allowed when

(w0, 21,22, Xk, 75 £, 8) € C (18)
C =R xR x RS x R?N* x [0, T] x {0,...,L} x {1,2}.

6. STABILITY

The stability results used to analyze the set are based on
invariance and uniform convergence according to Proposi-
tion 7.5 of Goebel et al. (2012). Consider the set

A :={0} x {0} x {0}

x U x [0, T x{0,...,L} x {1,2}, (19)
with ¥ := {XO,SS} X {XLSS} X {XZSS} and Xk,ss» k =
{0,1,2} are the steady-state values of the shift register
with saved measurements and estimates of the total vessel
motion. The set A is compact because its components are
closed and bounded sets.

Theorem 1. The set A defined in (19) is uniformly locally
asymptotically stable (ULAS) for the hybrid system de-
fined in (15)-(18).

Proof: The set A is:

(i) strongly forward invariant. If the solution starts inside
the set A, the observer in closed loop, regardless of
which, will keep the solution within A during flows.
During jumps the solution still remains in A since
jumping from the set of values A N D, will yield a
solution that still is in A.
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(ii) uniformly attractive from a neighborhood of itself.
Since each observer is converging, at least locally, it
follows from the switching condition in (17i) that the
number of switches will be uniformly bounded, at
least from initial conditions sufficiently close to the
set A, and that the last switching time can also be
uniformly bounded. That is there exists a T such that

Xo(t) = xa (D) + [Xo(t) = xo(t)| <& VE=>T,
and there will be no more switching. Then, because of
uniform attractivity in the absence of switching, we
also have uniform attractivity with the switching. O

7. SIMULATION RESULTS AND DISCUSSION

Simulations are done in Matlab/Simulink with a platform
supply vessel in a marine environment with waves, wind
and current. The high fidelity simulation model is based
on the MSS GNC toolbox (Fossen and Perez, 2010) with
realistic measurement noise and sample time. The sea
state is very rough with significant wave height 4 meters,
peak frequency 0.6 rad/s taken from the JONSWAP!
spectrum, with mean incident wave heading 150° in the
North-East frame (Price and Bishop, 1974). The current
speed is 0.5 m/s with direction 180°, and the wind speed
and direction are taken as expectation values based on the
wave parameters.

The case simulated is a setpoint change where the vessel
moves 20 meters North and East, and changes heading
from ¢ = 0° to » = —90°. The change happens at 2500
seconds so the observer parts have ample time to converge
to steady state first. Figure 1 shows the estimation error
for the signal-based and model-based observer parts after
the initialization phase. The switching variable s indicates
which observer estimates are used in closed loop.
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Fig. 1. Estimation error for the signal-based and model-
based parts. The estimates used in closed-loop s is
indicated, with axis to the right.

At initialization the model-based observer is chosen in
feedback, as it takes time for the gyro bias estimate by
in the signal-based observer to converge. The bias force
estimate b in the model-based observer converges after
about 500 seconds. When the vessel changes heading,

1 Joint North Sea Wave Project.
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the forces on the hull due to current, wind and waves
changes rapidly. This induces a transient in the model-
based part since the bias force estimate takes time to
converge to the new value. 40 seconds after the vessel starts
the setpoint change, the signal-based observer performs
better and is used in feedback. 700 seconds later the model-
based bias force estimate b has converged to the new
value and is used in feedback once more. While performing
better during the setpoint change, the signal-based part
has higher estimation error during steady state, as seen
clearly in the figure. The simulation results indicate that
the basin of attraction for the signal-based estimates in
output feedback control is fairly large, since it includes
points from where we end up switching,.

The vessel response is more oscillatory when the signal-
based observer is used in closed-loop. This is because
the signal-based observer does not include a wave filter
and has oscillatory estimates. It therefore induces some
wave frequency motion on the system through the control
law, approximately +1 meter. This motion is insignificant
compared with the motion due to the 4 meter waves,
however, the vessel uses more energy and in a real system
the wear and tear on the machinery would be increased.

8. CONCLUSION

The hybrid observer with a signal-based and a model-
based part was shown to have good performance in simu-
lations of a DP vessel in a rough sea state. The observer
used in output feedback with a nonlinear PID tracking con-
troller, was shown uniformly locally asymptotically stable.
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Abstract: A hybrid control approach for integral action in the PID control law for dynamically
positioned marine vessels is considered. The proposed method is essentially a resetting of the
integration gain when the control performance deteriorates. The method allows for a flexible
tuning, and could be useful when there are long periods of normal operating conditions, but
abnormal events may occur. In that case the hybrid controller will have a low tuning in the
normal regime and switch to a more aggressive tuning in the abnormal regime. Stability of the
hybrid system is investigated, and a simulation case is performed.
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1. INTRODUCTION

Dynamically positioned (DP) vessels normally experience
wave loads, wind loads, and currents. The loads the
integral action part of the controller compensate for are
slowly varying forces, almost constant for long periods
of time. Because of this the integral action is normally
tuned very low, such that it does not induce unnecessary
oscillation in the closed loop system. Also, the tuning could
be low to avoid that the integral action compensates for
motion due to 1% order wave loads. Even though this
motion is filtered out with a wave filter [Fossen 2011],
the exact knowledge of the peak frequency of the wave
spectrum is uncertain, and perfect filtering is difficult.
Therefore, there is some oscillatory motion left that the
integral action ideally should not compensate for.

One issue with a low tuning of the integral action is that
it will spend some time building up to the correct value.
This is especially the case at initialization, or when large
changes in force occur. This could for instance be caused
by ice forces, a tension line that breaks, or a sudden wave
train. In these instances, it is of interest to improve the
transient response of the integral action.

Hybrid control of DP vessels has been considered in
several papers in the literature. A framework with several
continuous controller and observer-pairs based on the work
in Hespanha [2001] was proposed for hybrid control of DP
vessels in Nguyen et al. [2007]. The operational window
of a DP vessel is extended by switching between different
observer-controller pairs depending on the sea state. Using
the same type of continuous controller and observer-pair
methodology as in Nguyen et al. [2007], a hybrid control

* This work was supported by the Research Council of Norway
through the Centres of Excellence funding scheme, project number
223254 - AMOS.

approach was proposed to combine dynamic positioning,
maneuvering, and transit operation in Nguyen et al. [2008],
and also to be applied for switching control for position
mooring in Nguyen and Sgrensen [2009]. See [Sgrensen
2013] for an overview. In Brodtkorb et al. [2014] the control
problem considered in Nguyen et al. [2007] is analyzed
in the framework of Goebel et al. [2012], which is the
framework used in this paper as well.

The main contribution of the paper is a novel control
structure that allows for increased flexibility in integral
action in the PID control law, for dynamically positioned
marine vessels. This is achieved by a hybrid global/local
controller approach. A hybrid control framework is used,
and particularly the methods analyzed in [Goebel et al.
2012, Ch. 3] have motivated the method presented here.

The idea of the proposed hybrid controller is that close to
the desired position the nominal local integrator is active.
When the vessel is far off target, for instance due to a rapid
disturbance, the global and more aggressive integral action
is turned on. The benefit is that the aggressive integral
action will give a faster response to a disturbance. When
close to the desired values, this aggressive part is turned
off, and the system is back to the nominally tuned integral
action. Stability of the hybrid system is analyzed, and a
simulation study is performed to demonstrate the benefit
of the approach.

Notation: The time derivative is denoted by dot notation,
such that & is the time derivative of x. The minimum
and maximum eigenvalue of a matrix P are denoted by
Amin (P) and Apqq (P), respectively.

2. PROBLEM STATEMENT

Given the 3 degree of freedom (DOF) control design model
of a DP system [Fossen 2011],

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
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7= R()v (1a)
My =—Dv+R@®) b+, (1b)
where n = [N, E,%]T € R3 is a vector containing the

North/East positions and heading, and v = [u,v,r]T € R3
contains the surge/sway velocities and yaw rate, 7 € R3 is
the control input, and R(¢)) € R3*3 is the 3 DOF rotation
matrix,

cos(¢) —sin(¢) 0
R(¢) = |sin(y) cos(¢) 0] : (2)
0 0 1

The mass matrix is M = M" > 0, and D > 0 is
the damping matrix. The disturbance or bias vector b €
R3 contains all the remaining forces affecting the vessel,
such as current, second order wave forces, and unmodeled
dynamics [Sgrensen 2013]. It is common to assume b is
constant. The task of the integral action is to compensate
this bias.

Due to saturation limits in the thrusters and bounded
environmental loads, we make the following assumption.

Assumption 1 The yaw rate r := 1 is bounded, with
7] < rimae < 0.

In the following, the position and velocity are assumed
measured. The velocity is normally found through a state
observer, but to simplify the analysis, velocity is assumed
known. The proposed integral action integrates the posi-
tion error.

3. HYBRID CONTROLLER APPROACH

In hybrid control, continuous and discrete dynamics are
combined [Goebel et al. 2012]. The continuous dynamics
is called ”"flow”, which is allowed on a flow set C. The
discrete dynamics is called ”jump”, which is allowed on a
jump set D.

Consider a case with two different controllers for the
same system dynamics. One controller works locally, and
has good performance around the equilibrium. The other
?global” controller is used when the states are far from the
equilibrium.

In the following, this controller structure will be used for
PID control of a DP plant. Under normal conditions the
local integral action will be active. The global integral ac-
tion will first activate under large disturbance events that
deteriorate the control performance. The global integral
action will then be more aggressive in response to the
disturbance.

The system setup is similar to the local/global control
structure of Goebel et al. [2012], but here both controllers
are globally stable. Another difference is that Goebel et al.
[2012] assumes full state knowledge. Here, knowledge of the
position and the velocity is assumed known, but the bias
force is not known.

4. FLOW DYNAMICS

The integrator state & is given the dynamics
£ =L, (3)

where the properties that the matrix L € R3*? needs to
satisfy will be elaborated later.

The controller considered is the standard DP PID-control
law

7= —K,R(¢) 1~ Kqv — KiR(W) ¢, (4)
where K, K4, K; € R3*3 are all positive definite matrices,
and K; commutes with the rotation matrix, that is,
K;R(¢p) = R(¢)K;. Let the integral action error be £ = {—
K b, Then the resulting error dynamics becomes

£=Ln (52)
n=R()v (5b)
Mp = —K,R%)"n— (D+ Kag)v— K;R@®) . (5¢)
Collecting the error states in a state vector z € R,
3
T= N> (6)
v
the error dynamics becomes
&= Fp(y), (7)
where
0 L 0
Fo(l/)) = 0 0 R(v)
~M'KR(W)T MK R(¢)T —M~H(D + Ka)
(8)

Consider the global diffeomorphism, similar to the one
proposed by Lindegaard [2003],

z=T())z, 9)
where
T(y) = diag{ R(¢), R(¥), I}. (10)
The z-dynamics becomes
i=TW) z2+T() &
=TT WTW)z+TW) F(WTW)z (1)

First, consider the term T'(v) T Fo(¢)T (1),

0  R()TLR(y) 0
T() T Fo()T(¢) = 0 0 I (12)
-M7'K; -M7T'K, —-M7Y(D+Ky)

Given that L commutes with the rotation matrix R(v),

that is, R(¥)L = LR(¢), then Ay := T(¢)T FyT(¢)
becomes
0 L 0
Ay = 0 0 I } . (13)
~M7'K; —M'K, ~-M7Y(D + K,)

For a specification of what the K; and L matrix needs to
satisfy to commute with R(v)), see [Fossen 2011, ch. 11].

Now, consider the second term T'(¢) TT (1)) z. Since R(1)) =
R(%)Sr, where
0—-10
S = {1 0 0} ,

000
the term T'(1)T can be written as
T()" = diag{R(¥)", R(v)", 0}
= diag{—$SR(y)", —$SR(v)", 0}
= —rSrT()T,

(14)

(15)
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where
Sr = diag{S, S, 0} = —S7. (16)
This gives
T(W) ' T(W)z = —rSrT(W) T($)z = —rSrz,  (17)
which finally gives the z-dynamics as
z=Apz —rSrz. (18)

Let Ag be Hurwitz, and choose a Lyapunov function
candidate as

V(z) = 2" Pz, (19)
where P = PT > 0 and
AJP+PAy = -Gy < 0. (20)

The time derivative of V along the trajectories of z
becomes

V =2"[AJ P+ PAy — r(Sf P+ PSr))z (21a)

S [_)\min(GO) + 2T‘max)\maz(P)”Z|2- (21b)

For (21b) to be negative definite, 7,4, needs to be very

small, due to the structure of Ay. A less conservative

estimate of 7,4, is found in Lindegaard [2003], and is

based on (21a). Given Ay, Tmaz, P and G are found from
an LMI optimization problem, such that

V =2T[AJ P+ PAy— (S} P+ PSr)z
< —-Gz2 <0 Y|r| € Tmas- (22)

For how to find this 7,4, see [Lindegaard 2003, Corollary
5.1].

5. HYBRID SYSTEM ANALYSIS

The condition for switching between the two controllers is
the norm of the position error, |n|. Two scalar quantities
n7 = 0 and 13 > 0 are defined, and switching is based
on an idea that is similar to what was proposed in
Brodtkorb et al. [2014], where switching between different
DP controllers was decided based on the estimated peak
frequency of the wave spectrum. In the following, the
switching will be based on the position error. When |n|
is closer to nj than 73, that is, abs(|n| — nf) < abs(|n| —
n3), the local controller is used, and similarly the global
controller is used when |7| is closer to ;.

For the hybrid system the closed loop dynamics can be
described by

z= f(Z, Lq)’ (23)
where f(z,Lg) is given by (18), and L, is the L-matrix
from (5a). This L-matrix is the only difference between the
local and global controller. The variable ¢ € {1,2} =: Q
is a switching variable between the two controllers, where

L is the L-matrix used in the local controller, and Lo is
used by the global controller (||La|| > ||L1||).

The system will include dwell-time switching, and the
timer variable 7 has continuous dynamics 7 = 1. When
7 = T jumps are allowed, and the preferred controller is
decided based on a check of whether |n| is closer to nf
than n3, and vice versa. This can be formally written as
q = argmin, ¢ g[abs(|n| —n})] [Brodtkorb et al. 2014].

From (19)-(22), given Ay Hurwitz, a Lyapunov function
on the form

V[G(z):zTRz, B,sz>0., i=1,2, zeR° (24)

can be found for both the local and global closed-loop
system.

o (|z]) < Wilz) < aa(|2]), (25)
where a;(|z]) = min{Apnin(P1), Amin(P2) 212 =: pml2]?,
and as(|z]) = max{Amaz(P1); Amaz(P2)} =: par|z|?. De-
fine the augmented state space as

2o = || € R (26)
q
Then the hybrid system becomes
Z= f(Z, Ll])
¢g=0 T€[0,T) (27)
T=1
2t ==z
¢ = argmin,cqlabs(inl =)l p7=T, (28
=0
where the flow set is
C := R® X [~Tmaz: Tmaz] X Q x [0,T7, (29)
and the jump set is
D := R® X [~Tmaz, "maz] X Q x {T}. (30)
The goal is to prove that the set
A={z.: 2=0, ¢ Q, 7€[0,T]} (31)

is uniformly globally (pre-) asymptotically stable. The
relevant theorem from Goebel et al. [2012] is given in
Appendix A. Note that the distance to the set |z.|4 = |2|.

For any scalar p > 0, consider the following Lyapunov
function

Vi(ze) = "W, (2)Ws4(2),
and notice that
Pralzlt < V() < phgetT 2%,
such that condition(A.1) is satisfied for a;(|z]) := p2,|2
and as(|z]) := pirerT|z).
Define Gy, := min{A,in(G1), Amin(G2)}, such that local
controller satisfies
(VW1 f(z, k1) < _)\min(Gl)lz‘2
< —Gpl2|* Yz €R®,
and the global controller satisfies
(VWa, f(2,K2) < —Amin(G2)|2)
< —Gpl2]? ¥z € RO,
Consider next the flow dynamics of V(z.),
(V(ze), f) = TV (2e) + (VW1, (2, k1) Wa(2)
+(VWa, f(z, k2) Wi (2)]
< M Tupi et el = 2Gmpml2l'],  (35)

and let T := = such that for y = smfi‘pT", e < 1, the flow
I Pt

(32)

‘ 4

(33)

(34)

dynamics becomes
(VV(2e), fq) < —p1]2|*, Yz €C, f € F(a)

< (36)
where p; = (1—-¢)2Gpme*™ > 0, such that the Lyapunov

function decrease in flow, and condition (A.2) is satisfied.

Let V(g) be the value of V (z.) after a jump, and V'(z.) the
value right before a jump. Looking at the jump dynamics,
V(g) — V(z.) becomes



Svenn Are Tutturen et al. / [FAC-PapersOnLine 48-16 (2015) 166-171 169

V(g) = Vi(ze) = Wy Wa_gr — T W, W3_,
= —(e"T — )W, Ws_,
—p2lz|*, Ve eD,geG(D)  (37)

where py > 0 since e*” > 1 for T' > 0, and since both
and Wy are scalar quantities, W1 Wy = WoW7.

A

Note that in the stability proof there was only a demand
for the timer variable T" to be strictly larger than zero. The
reason for this is because the switching is between two vec-
tor fields that are globally stable, and the switch between
them is performed only to achieve better performance, so
the dwell time need not be large.

6. SIMULATION CASE STUDY

As a case study a vessel simulated in MATLAB/Simulink,
using the MSS Toolbox [MSS 2010] is considered. The
simulated vessel is a model ship called Cybership III (CS3),
which is used for experiments in the Marine Cybernetics
Lab (MC-lab) at the Norwegian University of Science and
Technology.

The vessel model used is given by (1), where the mass and
damping matrices are given in Appendix B.

The case study will compare the hybrid local/global con-
troller implementation to a non-switching PID control law.
Good tuning rules are stated in [Fossen 2011, Ch. 12]. A
damping ratio corresponding to critical damping is chosen,
and design time constants for the closed loop system and
the controller gains are given in Appendix B.

The comparison is performed between the hybrid con-
troller, a non-switching controller with nominal integral
action (named ”low gain”), and a non-switching controller
with aggressive integral action (named ”high gain”). For
the local controller, we use L = I343, and for the global
controller we use L = 3[3x3. For the hybrid controller,
other relevant parameters are the timer variable 7" that is
set to T = 2s, and n{ =0, and 75 = 1.0.

The vessel is initialized in (n,v) = 0. The bias force b is
acting in the NED frame, and in both North and East
direction there is a sine wave of amplitude 0.3N with
a frequency of 0.1Hz. In North direction there is also
a ramp component equal to 0.001¢ to illustrate a slowly
varying bias. In both North, East, and yaw there is a step
disturbance at ¢ = 500s of magnitude 5N in North, 3N in
East, and 1Nm in yaw. In yaw there is also a white noise
component with variance 0.001. See Figure 3.

The results are shown in figures 1 to 4. In Figure 1 the
error in position is shown, and also the switching signal gq.
From the plot of ¢ it is observed that the global controller
is active right after the step inputs, and some seconds
later the controller switches back to the nominal integral
action. Note that all controllers show similar ability to
maintain position in normal conditions, but after the step
disturbance the low tuned controller is slower to get back
to position. This is illustrated more clearly in Figure 2
where the cumulative error in position is shown.

In Figure 3 the bias force is shown. Also, the integral
action of the three controllers are plotted. Note that in
North and East up to ¢t = 500s the high gain controller

has a higher integral action amplitude, and therefore
spends more control action trying to compensate for the
sine waves. This is also illustrated in Figure 4 where the
cumulative control action is shown between ¢t = 200s
and t = 300s. This figure illustrates that the high gain
controller spends more control effort than the hybrid and
the low gain controllers (those two are equal in this time
interval), whereas Figure 2 shows that this does not give
a considerable gain in position performance. Note that
the hybrid solution gives a trade-off between the two
controllers, where the integral action is relaxed in the
normal regime, and responsive when there is a step change
in b. This ensures that the position offset is maintained
close to the level of the high gain integral action controller,
without the additional control effort in the normal regime.

North error

eta, hybrid
0.4t - - - eta_low gain []

~.—. etag high gain

0 100 200 300 400 500 600 700 800 900 1000

Psi error
0.6 T

0 100 200 300 400 500 600 700 800 900 1000

Time [s]
Switching variable — q
1.8 4
1.6 1
1.4} 1
1.2+ 1
1
o] 260 460 660 860 1000

Fig. 1. North position error (top), East position error
(second), yaw angle error (third), q (bottom).

7. CONCLUSION

In the following a hybrid control approach for integral
action in the PID control law for dynamically positioned
marine vessels is considered. The proposed approach al-
lows the integral action to work aggressively when there is
a large change is external force affecting the vessel, and to
work slowly in normal conditions. The controller is shown
to be uniformly globally asymptotically stable, and the
benefit of the design is illustrated through simulations.
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Fig. 2. Comulative position error. North (top), East (mid-
dle), yaw (bottom).

Appendix A. STABILITY THEOREM

Theorem 1. (Goebel et al. [2012] Theorem 3.18).
(Sufficient Lyapunov conditions)

Let H = (C, F, D, Q) be a hybrid system and let A C R
be closed. If V' is a Lyapunov function candidate for H
and there exists ay, as € K, and a continuous positive
definite function p such that

ar(|z|a) < V(z) < as(|z|a) V2 €CUDUG(D) (A1)
(VV(@), ) < —pllela) Vo eC,fe Fx)  (A2)
V(g) = V(z) < —p(lzla) V2 €D,g€ G(D) (A3)

then A is uniformly globally pre-asymptotically stable for
H.

Note on pre-asymptotically [Goebel et al. 2012, p. 45]: Pre-
asymptotically indicates the possibility of a maximal solu-
tion that is not complete, even though it may be bounded.
By including ”pre-” this phenomena is included. Lyapunov
functions do not guarantee existence or completeness of
solutions, so this inclusion is reasonable.

Appendix B. CASE STUDY - DIMENSIONS AND
TUNING

Parameters Cybership IIT

Mass matrix M,

Bias force, North

Bias force

Int action, hybrid

- = = Intaction, low gain
— = Int action, high gain

o] 100 200 300 400 500 600 700 800 900 1000

Bias force, East

Bias force

Int action, hybrid
3r = = = Int action, low gain
— = Int action, high gain

o] 100 200 300 400 500 600 700 800 900 1000

Bias force, Psi

1.2 Bias force 7
Int action, hybrid :
11| = = = Int action, low gain
- = Int action, high gain
0.8
£ 06 1
=z
0.4 b
02 b

0 100 200 300 400 500 600 700 800 900 1000
Time [s]

Fig. 3. Bias force and integral action. North (top),
East (middle), yaw (bottom).

76.88 0 0
M=1| 0 149.58 —1.07{,

0 —1.07 34.10

and damping matrix D,

1220 0 0
D= [ 0 11.87 0.59} .

0 0.59 4.37

Controller tuning

Critical damping is chosen for all degrees of freedom
(DOF), such that the damping ratio ¢ becomes

¢ = diag{1.0, 1.0, 1.0}.
The design time constants
T, = [T T,

Msurge? ~ Nsway?

T,

nyaw} = [15, 15, 20] [s],
and corresponding design natural frequencies

27 27 27
T, T, b

Nsway Nyaw

Wn = diag{ T

Nsurge

and from Table 12.2 in [Fossen 2011, p. 374], the P and
D-tuning become

K, = diag{ Mw?} = diag{13.49, 26.24, 3.36}
Ky = diag{2M(w,, — D} = diag{52.20, 113.44, 17.06},
and K is assigned as follows
K; = diag{0.16, 0.16, 0.05}.
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Cumulative control action — surge

Hybrid
Low gain
- High gain

Cumulative control action — sway

Hybrid
Low gain
- High gain

Cumulative control action — psi
45

Hybrid
- Low gain .
4L == High gain -
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200 210 220 230 240 250 260 270 280 290 300
Time [s]

Fig. 4. Cumulative control action. Surge (top), sway (mid-
dle), yaw (bottom).
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Abstract: This paper deals with the design of a tracking control law for dynamic positioning
of marine vessels subject to disturbances. It shows that the integral windup problem can be
mitigated by removing the position setpoint in the proportional error term and injecting the
velocity setpoint in the integral state. This creates an internal reference point in the control
law for the vessel to follow. Control of the transient convergence trajectories is achieved without
compromising stability by constraining the internal convergence velocity. The proposed control
law provides the same functionality as a conventional tracking control law in combination with a
reference filter, but with lower complexity and fewer tuning parameters. A closed-loop simulation
case study verifies the theoretical findings and show feasible and robust performance.
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1. INTRODUCTION

Dynamic positioning (DP) of a marine vessel is defined ’7'i<t)/19,1(t)‘19,1(t)
as keeping location (either a fixed position and heading

or low-speed tracking) exclusively by means of onboard N

thrusters (IMO, 1994). State-of-the-art marine control sys- Disturt

tems employ the structure of Figure 1 and are designed
using continuous model-based control methods relying on E
measurements of position, heading, and sometimes angular
velocity (Fossen, 2011; Sgrensen, 2012). Since the 1960’s

14(t), a(t), Va(t)
|

the control law principle has relied on proportional po- Y ‘ : NGB Gy
it ; “Hh o ; Reference Control Control - Sensor
§1t10n anfl damping terms together with integral action ’ o | | }_"(\]lu(dtion}— _.
in PID-like structures to calculate forces and moments

t t

Reference system

needed for positioning (Breivik et al., 2015). Proportional
feedback is still state-of-the-art, but modern designs in-
clude nonlinear terms to handle reference frame transfor-
mations and guarantee stability. Although such control
laws have good track record in most sea states, the non-
linear PID structure has issues with respect to integral
windup and integral settling time during setpoint changes.

Control system

Fig. 1. Reference frames, desired trajectory, and signal flow
in guidance, navigation, and control of marine vessels.

To deal with integral windup in LTI systems, Phelan
(1977) proposed the pseudo-derivative feedback (PDF)
control law. It is structurally similar to PID (Ohm, 1994)

To avoid overshoot, oscillations, and instabilities, inte-
gral windup is typically dealt with by slow integral ac-
tion update together with a reference filter providing
a smooth time-varying reference trajectory. Additional
remedies such as bounding the integral action output
and integrator resetting may also be applied (Serensen,
2012). Although these methods mitigate integral windup,
the trade-off is typically reduction in performance and/or
increased system complexity with more tuning parameters.

* Research partly funded by the Research Council of Norway project
no. 203471: CRI SAMCoT, and project no. 223254: CoE AMOS.

and a special case of the weighted reference PID by Astrom
and Héagglund (1995). The only difference from conven-
tional PID is the lack of setpoint error in the proportional
term. This vastly improves integral windup (and thereby
reduces the need for the mentioned remedies). Although
PDF is as simple as PID, and has demonstrated feasible
experimental performance (Nikolic and Milivojevic, 1998;
Setiawan et al., 2000), it has received little attention in
marine applications. In the authors best knowledge, only
Vahedipour and Bobis (1993) considers the method for
autopilot design. Thus, the objective and contribution of
this paper is to extend the PDF control law for LTI point

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2016.10.349
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stabilization to nonlinear tracking control for DP of marine
vessels in presence of disturbances. Since PDF for LTT is
not well know, an example is presented next.

Terminology and notation: In UGS, UGES, etc.,
stands G for Global, S for Stable, U for Uniform, and
E for Exponential. LTT means linear time-invariant, and
ISS means input-to-state-stable. The smallest and largest
eigenvalues of a matrix A € R"*" is denoted Apin(A4) and
Amax(4), respectively. Rso denote positive real numbers
and positive definite matrices.

1.1 Ezample

Consider the scalar second order system for which a point
stabilization control law is to be designed,

mi+ag=u+b (1a)

b=0 (1b)

where ¢, ¢, § € R is the position, velocity, and acceleration,

respectively, m,a € Ry are known system parameters,

and b € R is a constant un%mown bias. Full state feedback

is assumed (i.e., y := [q q] ), which enables PID and PDF

control laws as,

t

uprp = —kp(q — qa) — ka(d — Ga) — ks /O (g—qa)dt (2)

¢
uppr = —lpq —lag —1; / (g — qa) dt, (3)
0

where g4 € R is the setpoint, ¢4 € R is the desired velocity,
kp.a,i € R are the PID gains, and I, 4; € R are the PDF
gains. The closed-loop transfer functions are thus,
(kas? + kps + ki) qq + bs
qrip(s) = 3 5
ms3 + (a+ kq)s? + kps + k;
_ liqa + bs (5)
ms3 + (a+1g)s® + lps + 1;

Notice that (4) and (5) have equal characteristic polyno-
mial and disturbance rejection properties (provided equal
tuning), but differ in the number of zeros.

—
N
Nl

qppF(s)

Figure 2 shows a setpoint unit step of (1) comparing (2)

to (3) with system parameters m = 10, a = 2, and b = 2.

The PID is used with and without the following filter,
i )

!

Qd(S) 52 T 2((4}()8 T+ UJ% 5
for smooth reference generation (replacing gq4, ¢a with ¢,
¢, in (2)). (4) and (5) were designed with equal poles (s
= -0.75, -0.25, and -0.25), and the PID reference filter
was set to provide quick transient, but avoid overshoot
(wp = 0.21 and ¢ = 1). The results show that the PDF
obtains feasible performance which is comparable to the
PID with a reference filter, but with the benefit of fewer
tuning variables.

2. PROBLEM FORMULATION

The aim of this paper is to design a nonlinear tracking
control law for DP using the PDF concept. As illustrated
in Figure 1 the control objective is to track a desired
time-varying North-East-Down (NED) trajectory param-
eterized by na(t), 94(t), 9a(t) € R3. To achieve this the
following control design model is applied,

]

G [m/s]
A
%

uN]

0 5 10 15 20 25 30
Time [s]

Fig. 2. Reference step simulation example results. PIDf
denotes the use of a second order reference filter.

0= R (7a)
b=0
M+ Dv =1+ MR (¢)b, (7¢)

where € R? is the position and heading given in the
NED frame, R(1)) € R3*? is the rotation matrix between
the NED and vessel’s body-fixed frame, b € R? is a bias
state describing unmodeled dynamics and external loads,
M € R¥%? is the vessel inertia and added mass matrix, v €
R3 is the vessel’s body-fixed linear and angular velocity,
D e ]Rifjg is a linear damping matrix, and 7 € R3 is the
control input. The design model is derived from the state-
of-the-art models found in (Fossen, 2011; Sgrensen, 2012)
with one minor difference. The bias term is multiplied with
the mass matrix M in (7c). This modification is reasonable
as any external load may be described as mass times an
acceleration. For the control design, ideal state feedback
measurements of 7 and v are assumed together with the
following rotation matrix properties,

R()R@)T =1 (8a)
R=R¥)S(r), (8b)

where I € R3*3 is the identity matrix, S(r) € R3*3 is a
skew-symmetric matrix, and r € R is the yaw-rate (for
further details, see (Fossen, 2011)). For simplicity and
readability, the arguments of R(¢)) and S(r) are dropped
in the remainder of the paper.

For 7, the following nonlinear PDF tracking control law
structure is proposed,
T:]VI(TFF+TFB) (Qa)
75 = R (¢ — K,yn) — Kpiv + Kpavg (9b)
&= Ki(na—n) + B, (9¢)
where 7rr € R? is a design feedforward term, f € R3%3
and Kp p1,p2: € R3%3 will be state-dependent design
matrices, and ¢ € R3 is an integral action state. Similar to
the example, the difference from conventional nonlinear
PID control designs for marine vessels (as seen in e.g.
(Serensen, 2011)) is the lack of ng in (9b), and inclusion
of Y4 in (9c). Hence, the problem treated in this paper
is to design 7rp, Kp pi,p2,i, and § such that the vessel
converges to, and tracks, the desired time-varying setpoint
with feasible convergence trajectories.
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Va

(RTKR—M™'D+ S)v J

Fig. 3. Block diagram showing the nominal nonlinear tracking control law for DP.

3. CONTROL DESIGN

First, 77r, Kp p1,p2,i, and § are derived to provide a
nominal control law. Then, the results are extended to
impose internal velocity constraints in (9c¢) such that
feasible convergence trajectories are obtained. Finally, a
set of tuning laws are proposed.

3.1 Nominal tracking design

To formalize the control law (9) the design model (7) is
transformed to NED by ¢ := Rv and ¥4 := Ryg, where
vy € R? is the body-fixed desired trajectory. This can be
written as,

=1 (10a)
b=0 (10b)
¥ =RSR"™+RM™ (1 —DR"9+MR"b).  (10c)

Inserting (9) in (10c) gives the closed-loop dynamics,
9= Rrpp +&—Kpm+b+ RKpaR" 9,

—R(Kp1+M™D—-S)R"9. (11)
From this it can be seen that choosing,

Kpi=R"K4R—M™D+S8 (12)

Kps = RTK,R, (13)

where K; € R3*3 is a gain matrix, the NED velocity
dynamics become,

9= Rrpp + € — Kpn +b — Ka(9 — 9a). (14)

To investigate the closed-loop stability properties and
determine 7pp and B, the following error variables are
proposed,

e1="n4—1 (15a)
ea =g — 0 (15Db)
e3 =& — Kpn+b. (15¢)

Differentiating these give the closed-loop error dynamics,

él = €3 (163,)
ég = ﬁd — RTFF — Kd €9 —e3 (16b)
é3 = Kieq + f0q — Kpﬂ. (166)

By choosing 77 = R4 and 8 = K, the error dynamics
become linear.

Theorem 1. The tracking control law (9) with

e = Ry (17a)
Kpi=R'K4qrR—M7D+S8 (17b)
Kpy = RTK4R (17c)

8 =K,, (17d)

render the equilibrium (e, ez, e3 = 0) of (16) UGES if the
gains K, Ky, and K; are designed to make the matrix

0 I 0
0 K4 -1,

Ki K, 0

A= (18)

Hurwitz.

Proof. Letting e = col(ey, e, e3) gives ¢ = Ae, which is
UGES.

The integral windup problem is dealt with by the fact that
the integral state € acts as an internal reference model (and
integral action). This is possible as ¢ is the only entry
point of 74 (see Figure 3). Thus, there is no need for an
external reference filter in order to avoid integral windup.
A major benefit is that it reduces the overall control
system complexity and mitigates the need for complex
integral state handling logic. Since the control law (9),
with (17), renders the closed-loop UGES, it is also ISS,
and will be ideal for use in both a separation principle with
an observer, and in more complex changing disturbance
environments.

3.2 Constraining the convergence velocity

In DP it is beneficial to limit the velocity of the vessel as
it converges to ng(t), Ya(t), and ¥4(t), so that it remains
in the low velocity range. In conventional PID-like control
designs this is typically achieved by limiting the velocity in
the reference filter. In the proposed design, which has no
reference filter, the convergence velocity may be impacted
through tuning of Kj, K,, and Kg4, or by constraining
¢. The second option is pursued as the tuning method
is a trade-off that reduces the freedom of the response
design. Since 94 is given by the desired trajectory it should
not be constrained in (9¢) as that may lead to improper
tracking. However, the proportional term K;(ng—n) which
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governs the convergence velocity may. Thus, the following
modification to (9c) is proposed,

& =sat(Kier) + Kpdqg (19)
where the saturation operator is defined by a maximum
vector, denoted Umax € R3>o- This is evaluated for the dif-
ferent elements in K;e; so that sat(K;e1) € [—Omax Umax]-

Before proceeding to analyze the impact of this modifica-
tion, we note that (9) with (17) and (19) can be written
as,

é=Ae+ Bu (20a)
y=_Ce (20b)
u=—o(y), (20¢)

where BER3:=[001]T,ueR3 CeR>?:=[100],
(A,B) is controllable, (A,C) is observable, and ¢ : R? — R?
is a memoryless nonlinearity, locally Lipschitz in y.

Theorem 2. The tracking control law (9) with (17) and (19)
render the system absolutely stable if (18) is Hurwitz, and

Y1y2 < 1, (21)
where 72 = Amae (K;) and y1 := sup g |G()[|2, where
G(s) € R3*3 is the transfer function matrix of (20).

Proof. First note that G(s) is Hurwitz since A is Hurwitz.
The second condition of the circle criterion (Theorem 7.1
in (Khalil, 2001)), states that (20) is absolutely stable
if § € [K1, Ka], with K = Ky — K; = KT > 0, and
Z(s) = [I + K2G(s)|[I + K1G(s)]7! strictly positive real
(SPR).

The sector [K;, K»]is established by noting that ¢ satisfies

o)z < r2llyllzs Yy € R?, (22)
by choosing 72 = Amaz(K;). From this it follows that
K = —yl and Ky = y,I, and K" > 0.

Lemma 6.1 in (Khalil, 2001) states that Z(s) is SPR if
Zg_s) is Hurwitz, Z(jw)+Z" (jw) > 0 Vw € R, and Z(o0) +
Z " (c0) > 0. To show that these hold we define

71 = sup [|G(s)]l2, (23)
w€eR

and note that 1 is finite as G(s) is Hurwitz. The analysis
showing Z(s) SPR with (22) and (23) is identical to
Example 7.1 in (Khalil, 2001), and therefore left out
here. Then, the second condition of the multivariable
circle criterion is satisfied, and we conclude that (20) is
absolutely stable if 71y < 1.

3.8 Control synthesis

Since the nominal error dynamics (16) are linear, tuning
laws based on the closed-loop transfer function can be
proposed. By assuming that K, 4; are diagonal, 94 = 0,
¥q = 0, and b = 0, it may be shown that each degree of
freedom has the following transfer function,
ki
hs)=————5———,
(s) 83 4+ kas® + kps + ki’
where k;, k,, kq € R are diagonal terms of K;, K,
and Ky, respectively. To determine these, the following
characteristic polynomial is proposed,
() = (54 a)(s® + 2¢wo + W) (25a)
=% 4 (2¢wo + a)s? + (W2 + 2Cwoa)s + awd, (25b)

(24)

0.9

0.8

0.7

0.6

Amplitude

0.4

0.3

a=0.1

0.2 a=1 .
I a=10
01 W a =100 |
— — — 2nd order system

0 . . . . . . \
0 100 200 300 400 500 600 700 800 900 1000
Time [s]

Fig. 4. Comparison of different o values for use in control
parameter tuning.

where ¢ € R is the damping factor, wp € R is the natural
frequency, and a € R is a filtering coefficient. From (24)
and (25) it is found that,

kq = 2¢wo + « (26a)
kp = wi + 2Cwoar (26b)
ki = aw?. (26¢)

As the impact of a on the closed-loop dynamics is not
well-known, Figure 4 shows a unit step comparison of (24)
using a range of « values. For each value the control gains
were calculated as in (26) using ¢ = 1 and wp = 0.1. It can
be seen that « acts as an inverse first order lowpass filter
time constant for the 2nd order system defined by ¢ and
wp. General tuning laws for the control law (9) with (17)
are therefore proposed as,
[ 2¢owor + oz
K, = diag ( 2Cywoy + ay ) (27a)
[ 2Cypwoy + oy

[way + 2Cowors

Ky = diag ( Wy + 2Cywoyay :|> (27b)
Wiy + 2Cuwopay
[awd,

(=il 10
.O‘wwtz)w

where the subscripts x, y, and 1 denote the parameter of
the degree of freedom. It must be mentioned that other
tuning methods may provide equal or better results as
the above rely on assumptions of diagonal K, K4, and
K; matrices and the specific characteristic equation given
in (25). Yet, (27) provide an intuitive approach and give
feasible results.

4. SIMULATION CASE STUDY

A simulation case study implementing (7) is conducted
to verify the proposed PDF control design and evaluate
its feasibility. The vessel in scope is the construction
and intervention vessel for Arctic operations (CIVArctic),
seen in Figure 5. It is a multi-purpose vessel capable of
operating in open water on the Norwegian Continental
Shelf and in first year in the High North (Berg, 2012).
Table 1 gives its main particulars.
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Fig. 5. The construction and intervention vessel for Arctic
operations. Courtesy of (Berg, 2012).

Table 1. CIVArctic main parameters.

Parameter [ Value
Length between perp. 109.3 m
Breadth at water line 24 m
Draught 6.5 m
Mass (normal load) 11.85 - 10° kg

The simulation scenario is point stabilization followed by
setpoint tracking subject to constant disturbance (b =
[25 0 0]T). For the point stabilization we consider static
setpoints given by n4(t) = ng (implying 94(t),Jq(t) =
0), where 74 is changed twice with an interval of 250
seconds (at ¢ = 250s, 500s). At ¢ = 750 seconds the
vessel’s control objective changes from point stabilization
to setpoint tracking where the objective is to follow a linear
trajectory parametrized by n4(t), ¥4(t), and d4(t).

The nonlinear PDF design (9) using (17), with and with-
out the convergence velocity constraints given in (19), is
compared to the following nonlinear PID control law,

Tpip = M(Trp + TrB) (28a)
5 =R (= Kp(n—na)) — Kp1v+ Kpava  (28b)
§=Ki(na—n) (28¢)

where 7pp, Kpi, and Kps are given in (17). The error
dynamics of (28) can be shown to be UGES by following
the approach of Section 3.1. As both the PID and the PDF
control laws have (24) as the characteristic equation, they
are tuned equally with the method proposed in (27), using
¢ =1, wp =0.06, and o = 10 (for all degrees of freedom).

To produce feasible transient PID performance, we pro-
pose the following general reference filter for setpoint
tracking,

iy = Dq + wgro + 2Gwor (Vg — 1) (29a)

G =wi (g —nr — ) — 2CeWos T, (29b)
where 1, € R? is the reference position and heading,
wWor, Crywoos (s € Rsq are positive scalars, and ¢ € R3
is a reference acceleration state. For the simulation case
this is applied with (., = 1, wo, = 0.04, and wo, = 0.5.
The initial condition of the PID reference position and the
internal PDF reference state are both set to n,.(0) = £(0) =
1(0). For the PDF control law with velocity constraints,
these are set to ¥ynar = [0.35 0.35 0.0175]T.

Figures 6 and 7 show that all four closed-loop systems
accomplish the control objective during both point stabi-
lization and setpoint tracking, and that all are significantly

PDF
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— — —PIDf
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Fig. 6. The position trajectories of the control laws com-
pared to the setpoints ans setpoint trajectory. PDFc
denotes velocity constraint and PIDf denotes use of
reference filter.

affected at initialization due to the unknown environ-
mental bias. As expected, the PID without a reference
filter has less feasible transient performance during point
stabilization setpoint changes compared to the others due
to integral windup. For setpoint tracking (initialized at the
vessel position) there is no difference in performance.

Note that the PDF velocity constraints only affect the
transient convergence velocity, and not the total motion.
This can be seen in Figure 7 where the limitations are re-
spected during point stabilization as the resulting velocity
is solely due to convergence. During setpoint tracking the
total motion is mostly a result of the setpoint motion which
is unaffected by the convergence limitations. Overall, the
results indicate that the extension of the PDF concept
to the nonlinear DP tracking problem is valid and that
performance comparable to nonlinear PID control laws
using a reference filter can be achieved.

5. DISCUSSION AND CONCLUSIONS

The main implications of the presented design are:

e Reduced number of tuning variables and implemen-
tation complexity.
e Ease of constraining the convergence velocity.

The reduced control system implementation complexity
comes from the fact that the PDF control do not require
a reference filter to achieve feasible convergence transients
(as it mitigates integral windup). This simplifies synthesis
and tuning and allows for designing highly reactive system
responses without special attention to the integral action
dynamics. Especially in harsh environment applications
which includes effects such as wave trains, ship-ice interac-
tion effects, ship-to-ship interaction effects, current surges,
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Fig. 7. Simulation case study results. The left column shows position and heading. The right column shows the linear
velocity and angular rate. All signals are presented in the NED frame.

and effects from operations with heavy equipment in the
sea or at the sea floor this can be of particular importance.

This paper has presented a robust tracking control law for
DP of marine vessels that mitigates the integral windup
problem often encountered in conventional PID-like de-
signs. It is achieved by a subtle change in the control law
feedback structure that allows the integral state to act
as a reference point (and integral action). The proposed
control law was analyzed and found to have uniform global
exponential stability with respect to its error variables
when subject to constant disturbance. Further, a method
to constrain the convergence velocity was proposed and
shown to render the error system absolutely stable. To-
gether these mitigate the need for an explicit reference
filter. A simulation case study verified the findings.
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Chapter 8

Conclusions and Further Work

The research questions of the thesis were stated in Chapter 1.1 as:

1. In model-based observer and controller design for DP, how does different control
design models compare, and how does different estimation algorithms compare?

2. How can we improve observer and controller design to better handle transient events
in DP?

3. What is the best way of compensating the transient bias loads in the DP controller?

Research question 1 was addressed by (J.1), where the comparisons were made fair by
derivative free optimization on a high-fidelity simulation model and experimental data.
For the control design model results, the current models including nonlinear damping
performed the best for the simulation results, and the bias load models performed the best
for the experimental results. Including nonlinear damping had a positive effect for the
current models, especially for transient performance, whereas the effect was negligible
for the bias load models. The reason the current models performed better in simulation
data can be explained by less uncertain and unmodeled dynamics compared to the results
on the full-scale experimental data. The results showed surprisingly small differences
between the observer algorithms, showing that DP is dominantly a linear process. When
using the nonlinear damping model, the EKF and UKF had very similar performance, and
when using only linear damping the LTV-KF, the EKF, and the UKF had similar perfor-
mance. There was no notable performance deterioration when using the measured yaw
angle in the rotation matrix for the LTV-KF compared to as a state for the EKF/UKF.

For the research question 2, the observer performance has received the most attention
of this thesis. In (J.2), a version of a model-based nonlinear observer with time-varying
gains has been proposed and analyzed with regards to stability. This observer has a good
steady-state and transient performance. Performance of the observer is shown through a
closed-loop high-fidelity simulation study, on experimental data, and through a full-scale
closed-loop verification on R/V Gunnerus during the ADPRC’ 16. The time-varying
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observer performs slightly better than a well tuned fixed-gain observer, especially if in
between the transients, there are long periods of steady state. As a second contribution to
improve observer design presented by (J.3), a hybrid observer that combines a kinematic
and a model-based observer is proposed, and stability is proven. The hybrid observer
switches to the kinematic observer in transients, while the model-based observer is used
in steady state. This observer performance is shown through a high-fidelity simulation
study, closed-loop experimental data in the MC-lab, and through full-scale experimental
data from R/V Gunnerus on ADPRC’ 16. Both these observer contributions improve the
overall performance of the DP system, as expected.

The control aspect of research question 2 has a similar challenge as the observer chal-
lenge, as discussed in Section 2.4, and this is addressed by (C.3) that propose hybrid
integral action as a solution to improve controller performance during transients. The in-
tegral action switches between aggressive tuning in transients, to achieve better bias load
compensation, and relaxed tuning in steady state, to lower the control oscillations and im-
prove wave-filtering. Performance is shown through a simulation study, and the results are
as expected. The control action is calm in steady state, and responsive in transient, leading
to an overall good performance. In addition, pseudo-derivative control is proposed for DP
by (C.4). This simplifies the control design since it does not need a reference filter, and it
mitigates windup issues with the integral action.

Finally, research question 3 was addressed by (J.4) where different bias compensation
methods were compared. Traditional integral action was compared to using different ver-
sions of a bias load estimate from a model-based observer. The results clearly show that
using a model-based observer optimized for bias estimation is the best solution in compen-
sation of the bias loads in the controller. However, the results in this paper is a simulation
study, and experimental verification would be interesting as further work.

To improve transient behavior in DP, there are a lot of further work that can be done.
These may include:

e Investigate further how the kinematic observer with wave-filter by Bryne et al.
(2017) behaves in transients. As mentioned in Chapter 2.4, this is a promising de-
sign. However, it needs more study, and it should be compared in a rigorous way to
a model-based observer, considering normal steady state and transient conditions,
as well as dead reckoning.

e Perform another and thorough analysis of damping identification, especially for
experimental results, to further investigate the performance of the different control
design models.

o Investigate how well the acceleration feedforward proposed by Kjerstad and Skjetne
(2016) in transient conditions when the vessel operates in waves, with special at-
tention on compensating the low-frequency loads.
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Structural Reliability, CeSOS.

Numerical studies on wave forces and moored ship
motions in intermediate and shallow water, CeSOS.

Maneuvering of two interacting ships in waves,
CeSOS

Time-domain fatigue response and reliability
analysis of offshore wind turbines with emphasis on
welded tubular joints and gear components, CeSOS

Investigation of Wave-Induced Nonlinear Load
Effects in Open Ships considering Hull Girder
Vibrations in Bending and Torsion, CeSOS

Numerical and Experimental Investigation of
Station-keeping in Level Ice, CeSOS

Particulate matter emission characteristics from
diesel enignes operating on conventional and
alternative marine fuels, IMT

Experimental and Numerical Analysis of Combined
In-line and Cross-flow Vortex Induced Vibrations,
CeSOS
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Chuang, Zhenju

Etemaddar, Mahmoud

Lindstad, Haakon

Haris, Sabril

Shainee, Mohamed

Gansel, Lars

Gaspar, Henrique

Thys, Maxime

Aglen, Ida

Modelling and geometry optimisation of wave
energy converters, CeSOS

Technical condition indexes doe auxiliary marine
diesel engines, IMT

Experimental, numerical and analytical
investigation of the effect of screens on sloshing,
CeSOS

Potential-Flow Predictions of a Semi-Displacement
Vessel Including Applications to Calm Water
Broaching, CeSOS

Modelling and analysis of the gearbox in a floating
spar-type wind turbine, CeSOS

Optimization models for reducing air emissions
from ships, IMT

Transitional wake flow behind an inclined flat
plate-----Computation and analysis, IMT

Prediction of Extreme Loads and Fatigue Damage
for a Ship Hull due to Ice Action, IMT

Ageing management and life extension of technical
systems-

Concepts and methods applied to oil and gas
facilities, IMT

Experimental and Numerical Investigation of Speed
Loss due to Seakeeping and Maneuvering. IMT

Load and Response Analysis of Wind Turbines
under Atmospheric Icing and Controller System
Faults with Emphasis on Spar Type Floating Wind
Turbines, IMT

Strategies and measures for reducing maritime CO2
emissons, IMT

Damage interaction analysis of ship collisions, IMT

Conceptual Design, Numerical and Experimental
Investigation of a SPM Cage Concept for Offshore
Mariculture, IMT

Flow past porous cylinders and effects of
biofouling and fish behavior on the flow in and
around Atlantic salmon net cages, IMT

Handling Aspects of Complexity in Conceptual
Ship Design, IMT

Theoretical and Experimental Investigation of a
Free Running Fishing Vessel at Small Frequency of
Encounter, CeSOS

VIV in Free Spanning Pipelines, CeSOS
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Jiang, Zhiyu

Dukan, Fredrik

Grimsmo, Nils I.

Kvittem, Marit I.

Akhtar, Juned

Syahroni, Nur

Bockmann, Eirik

Wang, Kai

Fredriksen, Arnt Gunvald

Jose Patricio Gallardo Canabes

Theoretical and experimental studies of wave
diffraction and radiation loads on a horizontally
submerged perforated plate, CeSOS

Numerical and Experimental Investigation of a
Hinged 5-body Wave Energy Converter, CeSOS

Safe and efficient operation and maintenance of
offshore wind farms ,IMT

Design and Dynamic Analysis of Tension Leg
Platform Wind Turbines, CeSOS

Water Entry of Freefall Wedged — Wedge motions
and Cavity Dynamics, CeSOS

Experimental and numerical studies related to the
coupled behavior of ice mass and steel structures
during accidental collisions, IMT

Numerical investigation of ship’s continuous- mode
icebreaking in leverl ice, CeSOS

Design and Analysis of Combined Floating Wave
and Wind Power Facilities, with Emphasis on
Extreme Load Effects of the Mooring System,
CeSOS

Long-term response analysis of wind turbines with
an emphasis on fault and shutdown conditions, IMT

ROV Motion Control Systems, IMT

Dynamic simulations of hydraulic cylinder for
heave compensation of deep water drilling risers,
IMT

Modelling and response analysis for fatigue design
of a semisubmersible wind turbine, CeSOS

The Effects of Human Fatigue on Risk at Sea, IMT

Fatigue Assessment of Welded Joints Taking into
Account Effects of Residual Stress, IMT

‘Wave Propulsion of ships, IMT
Modelling and dynamic analysis of a semi-

submersible floating vertical axis wind turbine,
CeSOS

A numerical and experimental study of a two-
dimensional body with moonpool in waves and
current, CeSOS

Numerical studies of viscous flow around bluff
bodies, IMT

15



IMT-5-
2015

IMT-6-
2015

IMT-7-
2015

IMT-8-
2015

IMT-9-
2015

IMT-10-
2015

IMT-11-
2015

IMT-12-
2015

IMT-13-
2015

IMT-14-
2015

IMT-15-
2015

IMT-16-
2015

IMT-1-
2016

IMT-2-
2016

IMT-3-
2016

IMT-4-
2016

Vegard Longva

Jacobus De Vaal

Fachri Nasution

Oleh I Karpa

Daniel de Almeida Fernandes
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Arturo Jesus Ortega Malca

Dagfinn Husjord

Anirban Bhattacharyya

Qin Zhang

Vincentius Rumawas

Martin Storheim

Mia Abrahamsen Prsic

Tufan Arslan

Formulation and application of finite element
techniques for slender marine structures subjected
to contact interactions, IMT

Aerodynamic modelling of floating wind turbines,
CeSOS

Fatigue Performance of Copper Power Conductors,
IMT

Development  of  bivariate  extreme  value
distributions ~ for  applications  in  marine
technology,CeSOS

An output feedback motion control system for
ROVs, AMOS

Particle Filter for Fault Diagnosis: Application to
Dynamic Positioning Vessel and Underwater
Robotics, CeSOS

Impact of emission allocation in maritime
transportation, IMT

Dynamic Analysis and Design of Gearboxes in
Offshore Wind Turbines in a Structural Reliability
Perspective, CeSOS

Dynamic Response of Flexibles Risers due to
Unsteady Slug Flow, CeSOS

Guidance and decision-support system for safe
navigation of ships operating in close proximity,
IMT

Ducted Propellers: Behaviour in Waves and Scale
Effects, IMT

Image Processing for Ice Parameter Identification
in Ice Management, IMT

Human Factors in Ship Design and Operation: An
Experiential Learning, IMT

Structural response in ship-platform and ship-ice
collisions, IMT

Numerical Simulations of the Flow around single
and Tandem Circular Cylinders Close to a Plane
Wall, IMT

Large-eddy simulations of cross-flow around ship
sections, IMT
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Pierre Yves-Henry

Lin Li

Qivind Kére Kjerstad

Xiaopeng Wu

Zhengshun Cheng

Ling Wan

Wei Chai

Qyvind Selnes Patricksson

Mats Jorgen Thorsen

Edgar McGuinness

Sepideh Jafarzadeh

Wilson Ivan Guachamin Acero

Mauro Candeloro

Valentin Chabaud

Mohammad Saud Afzal

Peng Li

Martin Bergstrom

Parametrisation of aquatic vegetation in hydraulic
and coastal research,IMT

Dynamic Analysis of the Instalation of Monopiles
for Offshore Wind Turbines, CeSOS

Dynamic Positioning of Marine Vessels in Ice, IMT

Numerical Analysis of Anchor Handling and Fish
Trawling Operations in a Safety Perspective,
CeSOS

Integrated Dynamic Analysis of Floating Vertical
Axis Wind Turbines, CeSOS

Experimental and Numerical Study of a Combined
Offshore  Wind and Wave Energy Converter
Concept

Stochastic dynamic analysis and reliability
evaluation of the roll motion for ships in random
seas, CeSOS

Decision support for conceptual ship design with
focus on a changing life cycle and future
uncertainty, IMT

Time domain analysis of vortex-induced vibrations,
IMT

Safety in the Norwegian Fishing Fleet — Analysis
and measures for improvement, IMT

Energy effiency and emission abatement in the
fishing fleet, IMT

Assessment of marine operations for offshore wind
turbine installation with emphasis on response-
based operational limits, IMT

Tools and Methods for Autonomous Operations on
Seabed and Water Coumn using Underwater
Vehicles, IMT

Real-Time Hybrid Model Testing of Floating Wind
Tubines, IMT

Three-dimensional streaming in a sea bed boundary
layer

A Theoretical and Experimental Study of Wave-
induced Hydroelastic Response of a Circular
Floating Collar

A simulation-based design method for arctic
maritime transport systems
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Bhushan Taskar

Mohsen Bardestani

Fatemeh Hoseini Dadmarzi

Michel R. Miyazaki

Giri Rajasekhar Gunnu

Kevin Koosup Yum

Zhaolong Yu

Martin Hassel

Astrid H. Brodtkorb

Kjersti Bruserud

Finn-Idar Gretta Giske

Stian Skjong

Yingguang Chu

Sergey Gavrilin

Jeevith Hegde

Ida M. Strand

Erlend Kvinge Jorgensen

The effect of waves on marine propellers and
propulsion

A two-dimensional numerical and experimental
study of a floater with net and sinker tube in waves
and current

Direct Numerical Simualtion of turbulent wakes
behind different plate configurations

Modeling and control of hybrid marine power
plants

Safety and effiency enhancement of anchor
handling operations with particular emphasis on the
stability of anchor handling vessels

Transient Performance and Emissions of a
Turbocharged Diesel Engine for Marine Power
Plants

Hydrodynamic and structural aspects of ship
collisions

Risk Analysis and Modelling of Allisions between
Passing Vessels and Offshore Installations

Hybrid Control of Marine Vessels — Dynamic
Positioning in Varying Conditions

Simultaneous stochastic model of waves and
current for prediction of structural design loads

Long-Term Extreme Response Analysis of Marine
Structures Using Inverse Reliability Methods

Modeling and Simulation of Maritime Systems and
Operations for Virtual Prototyping using co-
Simulations

Virtual Prototyping for Marine Crane Design and
Operations

Validation of ship manoeuvring simulation models

Tools and methods to manage risk in autonomous
subsea  inspection,maintenance  and  repair
operations

Sea Loads on Closed Flexible Fish Cages

Navigation and Control of Underwater Robotic
Vehicles
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Bérd Stovner

Erlend Liavég Grotle

Borge Rokseth

Jan Vidar Ulveseter

Chenyu Luan

Carl Fredrik Rehn

Qyvind Gdegérd

Stein Melvar Nornes

Petter Norgren

Minjoo Choi

Ole Alexander Eidsvik

Mahdi Ghane

Christoph Alexander Thieme

Yugao Shen

Tianjiao Dai

Sigurd Solheim Pettersen

Thomas Sauder

Jan-Tore Horn

Aided Intertial Navigation of Underwater Vehicles

Thermodynamic Response Enhanced by Sloshing
in Marine LNG Fuel Tanks

Safety and Verification of Advanced Maritime
Vessels

Advances in  Semi-Empirical Time Domain
Modelling of Vortex-Induced Vibrations

Design and analysis for a steel braceless semi-
submersible hull for supporting a 5-MW horizontal
axis wind turbine

Ship Design under Uncertainty

Towards Autonomous Operations and Systems in
Marine Archaeology

Guidance and Control of Marine Robotics for
Ocean Mapping and Monitoring

Autonomous Underwater Vehicles in Arctic Marine
Operations: Arctic marine research and ice
monitoring

Modular Adaptable Ship Design for Handling
Uncertainty in the Future Operating Context

Dynamics of Remotely Operated Underwater
Vehicle Systems

Fault Diagnosis of Floating Wind Turbine
Drivetrain- Methodologies and Applications

Risk Analysis and Modelling of Autonomous
Marine Systems

Operational limits for floating-collar fish farms in
waves and current, without and with well-boat
presence

Investigations of Shear Interaction and Stresses in

Flexible Pipes and Umbilicals

Resilience by Latent Capabilities in Marine
Systems

Fidelity of Cyber-physical Empirical Methods.
Application to the Active Truncation of Slender
Marine Structures

Statistical and Modelling Uncertainties in the
Design of Offshore Wind Turbines
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Hakon Strandenes
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Anna Maria Kozlowska

Hans-Martin Heyn

Stefan Vilsen

Finn-Christian W. Hanssen

Trygve Olav Fossum

Jorgen Bremnes Nielsen

Yuna Zhao

Daniela Myland

Zhengru Ren

Drazen Polic

Endre Sandvik

Data Mining Methods for the Analysis of Power
Systems of Vessels

Hydrodynamic study of a moored fish farming cage
with fish influence

Numerical and Experimental Study on the Ship
Parametric Roll Resonance and the Effect of Anti-
Roll Tank

Turbulent Flow Simulations at Higher Reynolds
Numbers

Safety in Norwegian Fish Farming — Concepts and
Methods for Improvement

Reliability Analysis of Wake-Induced Riser
Collision

Experimental Investigation of Injection and
Combustion Processes in Marine Gas Engines using
Constant Volume Rig

Hydrodynamic Loads on Marine Propellers Subject
to Ventilation and out of Water Condition.

Motion Sensing on Vessels Operating in Sea Ice: A
Local Ice Monitoring System for Transit and
Stationkeeping Operations under the Influence of
Sea Ice

Method for Real-Time Hybrid Model Testing of
Ocean Structures — Case on Slender Marine
Systems

Non-Linear Wave-Body Interaction in Severe
Waves

Adaptive Sampling for Marine Robotics

Modeling and Simulation for Design Evaluation

Numerical modelling and dyncamic analysis of
offshore wind turbine blade installation

Experimental and Theoretical Investigations on the
Ship Resistance in Level Ice

Advanced control algorithms to support automated
offshore wind turbine installation

Ice-propeller impact analysis using an inverse
propulsion machinery simulation approach

Sea passage scenario simulation for ship system
performance evaluation
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Loup Suja-Thauvin

Emil Smilden
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Amrit Shankar Verma
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Thomas H. Viuff

Fredrik Mentzoni

Senthuran Ravinthrakumar

Stian Skaalvik Sandey

Kun Xu

Jianxun Zhu

Sandra Hogenboom

Woongshik Nam

Svenn Are Tutturen Varne

Response of Monopile Wind Turbines to Higher
Order Wave Loads

Structural control of offshore wind turbines —
Increasing the role of control design in offshore
wind farm development

On equivalent ice thickness and machine learning
in ship ice transit simulations

Modelling, Analysis and Response-based
Operability Assessment of Offshore Wind Turbine
Blade Installation with Emphasis on Impact
Damages

Autonomous Technology for Inspection,
Maintenance and Repair Operations in the
Norwegian Aquaculture

Model-based fault detection and diagnosis of a
blade pitch system in floating wind turbines

Effectiveness in Decision-Making in Ship Design
under Uncertainty

Uncertainty Assessment of Wave-and Current-
induced Global Response of Floating Bridges

Hydrodynamic Loads on Complex Structures in the
Wave Zone

Numerical and Experimental Studies of Resonant
Flow in Moonpools in Operational Conditions

Acoustic-based Probabilistic Localization and
Mapping using Unmanned Underwater Vehicles for
Aquaculture Operations

Design and Analysis of Mooring System for Semi-
submersible Floating Wind Turbine in Shallow
Water

Cavity Flows and Wake Behind an Elliptic
Cylinder Translating Above the Wall

Decision-making within Dynamic Positioning
Operations in the Offshore Industry — A Human
Factors based Approach

Structural Resistance of Ship and Offshore
Structures Exposed to the Risk of Brittle Failure

Transient Performance in Dynamic Positioning of
Ships: Investigation of Residual Load Models and
Control Methods for Effective Compensation
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