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Background
Classification and pattern recognition are important challenges 
in data analysis. The k-nearest neighbor (kNN) approach was 
proposed by Fix and Hodges in 19511 and later modified by 
Cover and Hart in 1967.2 It is a simple, robust and versatile algo-
rithm for classification and regression and has been used for dif-
ferent types of problems such as pattern recognition,3 ranking of 
models,4 text categorization,5 and object recognition,6 and in 
many different areas, including bioinformatics and medicine.7-9 
It is a non-parametric10 and lazy learning classifier. Being non-
parametric makes kNN free of assumptions on underlying data 
properties, so there is no need to have prior knowledge about the 
data. In lazy learning, any generalization of the training data is 
postponed until the test data are presented to the system.11

The kNN algorithm is conceptually simple but can still be 
used on complex biological data, for example, from cancer. A 
search in the PubMed database for “k-NN OR kNN” retrieves 
more than 2000 hits from 1980 to 2020 (August 2020), and a 
joint search with “cancer” shows that more than 330 of these 
hits (16%) are related to using the kNN approach in cancer 
research. The popularity of kNN actually seems to be increas-
ing; the largest number of hits for both kNN itself and the 
combination of kNN and cancer is found in 2019, and for the 
combination of kNN and cancer more than 60% of the hits are 
found in 2014 or later.

The kNN algorithm depends upon a neighborhood of close 
(or similar) patterns relative to a query pattern, and an impor-
tant challenge is to find the best distance or similarity meas-
ure.12 Different distance measures will lead to different shapes 
that define the neighborhood which directly impacts the per-
formance of the kNN classifier, as illustrated in Figure 1. 
However, most applications of kNN seem to rely on a limited 
set of distance measures like Euclidean or Spearman by default, 
without considering whether alternative distance measures 
may lead to improved performance.

Several general benchmarking studies have investigated how 
the performance of the kNN algorithm is affected by the choice 
of distance measure. Chomboon et al13 tested the performance 
of kNN with 11 different distance measures including Euclidean, 
Minkowski, Mahalanobis, Cosine, Manhattan, Chebyshev, 
Correlation, Hamming, Jaccard, Standardized Euclidean, and 
Spearman, and they used these distance measures on 8 different 
binary synthetic data sets. They used cross-validation (70% 
training and 30% testing) to measure performance and showed 
that similar accuracy could be obtained using either Manhattan, 
Minkowski, Chebyshev, Euclidean, Mahalanobis, or 
Standardized Euclidean, and that these distance measures could 
outperform several other measures.

Hu et al14 evaluated distance measures for kNN classifica-
tion using medical data sets. They focused on 3 different types 
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of data, consisting of categorical, numerical, and mixed data 
types. The sets were from the UCI repository of data sets for 
machine learning, and they used 4 different distance measures; 
Euclidean, cosine, chi-square, and Minkowski. They used 
cross-validation (70% training and 30% testing) to measure the 
performances, with k-values between 1 and 15. The experi-
ments showed the chi-square distance measure to be best for 
the 3 different data types, whereas the cosine, Euclidean, and 
Minkowski distances lead to the lowest accuracy on the mixed-
type data set.

Punam and Nitin15 used the KDD data set16 and the kNN 
classifier with Chebyshev, Euclidean, and Manhattan distance 
measures. The KDD data set contains numeric data for 41 fea-
tures in 2 classes. They estimated accuracy, sensitivity, and 
specificity to evaluate the performance of kNN for each dis-
tance. The Manhattan distance outperformed the other dis-
tances, with 97.8% accuracy, 96.76% sensitivity and 98.35% 
specificity.

Todeschini et  al17,18 investigated the kNN classifier on 8 
benchmark data sets with 18 different distance measures, 
including Manhattan, Euclidean, Soergel, Lance-Williams, 
contracted Jaccard-Tanimoto, Bhattacharyya, Lagrange, 
Mahalanobis, Canberra, Wave-Edge, Clark, Cosine, Correlation, 
and 4 locally centered Mahalanobis distances. The rate of 

non-errors and average rank for each distance was determined 
to evaluate the efficiency of the measure. The results indicated 
that the highest accuracy was achieved for the Manhattan, 
Euclidean, Soergel, contracted Jaccard-Tanimoto, and Lance-
Williams distance measures.

In a comprehensive review study Prasath and colleagues19 
investigated the impact of 54 different distance measures on 28 
various data sets that were obtained from the UCI machine-
learning repository. On most data sets, their work showed the 
best performance by using the Hassanat distance, compared to 
the other distances.

In summary, these benchmarking studies (and others) have 
shown that no distance metric is optimal for all data types. 
Each data type may require a different distance metric for opti-
mal performance in kNN, which is consistent with the princi-
ple of “no free lunch.” This makes it relevant to ask how we can 
guide users with respect to the choice of distance metrics for 
kNN classification of complex data sets to achieve optimal per-
formance. Here, we have tried to answer that question by iden-
tifying metrics with relatively consistent performance across a 
range of complex data sets, using a selection of both common 
and more novel metrics.

Specifically, we have investigated the performance of kNN 
classification with 12 different distance metrics, including 8 

Chebyshev Distance

Manha�an Distance

Figure 1.  Impact of alternative distance measures on kNN performance.
Diamond and square shaped neighborhoods are generated by the Chebyshev and Manhattan distances, respectively. In this case, a new query pattern (blue star) would 
be classified as either green or red by Chebyshev and Manhattan distances, respectively.
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common and well-known metrics (Euclidean, Manhattan, 
Canberra, Chebyshev, Bray-Curtis, Clark, Hamming, 
Bhattacharyya), 2 more novel metrics (Hassanat and Soergel), 
and 2 new metrics presented by us (Sobolev and Fisher). We 
have tested these metrics on 4 different data sets on cancer; for 
breast cancer (cytology), brain cancer (imaging), lung cancer 
(multivariate), and prostate cancer (clinical). We have evaluated 
the overall performance of each metric by ranking the metrics 
according to classification performance across these data sets.

Method
Data sets

The experiments were done on 4 cancer data sets, for brain, 
lung, breast, and prostate cancer (see Table 1).

For brain cancer, we used a data set consisting of 2-dimen-
sional (2D) slices of CE-MRI images for 3 types of tumors; 
glioma, meningioma, and pituitary tumor. Data for 233 patients 
with a total of 3,064 images (axial, coronal, and sagittal views) 
were available. The original size of each image was 512 × 512 
pixels, which has been decreased to 64 × 64 to make the calcula-
tion faster. The breast and lung cancer data sets were benchmark 
data sets obtained from the UCI Machine-Learning Repository. 
The Wisconsin Breast Cancer Data set (WBCD) has 699 
instances with 9 attributes for cytology data on 2 types of tumors 
(i.e. malignant and benign). The lung cancer data set is a multi-
variate data set with 55 attributes for 32 instances. The prostate 
cancer data set is a data frame with 97 rows and 9 features with 
data from a study examining the correlation between the level of 
prostate-specific antigen and several clinical parameters, using 
data from participants about to receive a radical prostatectomy.

Distance measures

Here, we give mathematical formulas for distance measures 
estimating the closeness between 2 vectors x  and y , with 
x x x xn= ( . . ., ), ,1 2  and y y y yn= ( . . ., ), ,1 2  having numerical 
attributes. The d x ym ( , )  is the distance between x  and y  as 
measured by m . Formulations and terminologies are mainly 
taken from Abu Alfeilat et al,19 with additional definitions as 
specified.

Minkowski, Euclidean, Manhattan, and Chebyshev distance.  This 
family of distances is defined as:

	 d x yMinkowski
i

n

i i
pp= −

=
∑

1

	 (1)

where p  is a positive value. It is the Manhattan distance when 
p =1, and the Euclidean distance when p = 2, whereas the 

Chebyshev distance is a variant of Minkowski distance where 
p = ∞.  This is also known as maximum value distance,23 

Lagrange,17 and chessboard distance,24 and can be formulated as:

	 d x yChebyshev i i i= −max 	 (2)

Canberra distance.  This weighted version of the Manhattan 
distance was introduced and later modified by Lance and 
Williams.25,26
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Hamming distance.  This distance is based on the number of 
differences between 2 vectors.27 It is mainly used to analyze 
nominal data but can also be used for numerical data.
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Bhattacharyya distance.  This distance represents the similarity 
of 2 probability distributions.28
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Sorensen distance.  This distance is often used to describe rela-
tionships in areas like ecology and environmental sciences,29 
and it is also known as Bray-Curtis. It is a modified Manhattan 
distance, where the total sum of the values is used to standard-
ize the difference over the vectors x and y.30 It will be between 
0 and 1 when all values of the vectors are positive.
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Table 1.  Summary information for the cancer data sets that were used in this study.

Data set No. of 
instances

No. of 
classes

No. of 
attributes

Type of 
data

Reference

Brain cancer 3064 3 64*64 matrix MRI image [20]

Breast cancer 699 2 9 Float [21]

Lung cancer 32 2 55 Integer [21]

Prostate cancer 97 2 9 Float [22]
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Clark distance.  This distance31 is also known as the coefficient 
of divergence and is the square root of half the divergence 
distance.
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Soergel distance.  This distance (also known as the Ruzicka dis-
tance) is widely used for calculating evolutionary distances.32 It 
is identical to the complement of the Jaccard or Tanimoto 
similarity coefficient for binary variables,32 and it is in accord-
ance with all 4 metric properties provided that all the attributes 
have non-negative values.33
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Hassanat distance.  This non-convex distance was introduced 
by Hassanat.34
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Sobolev distance.  Definitions and notations for this distance are 
as given by Villmann.35 Starting with the standard p-inner 
product
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the Sobolev inner product, norm, and metric of degree k can be 
defined as follows:

x y x y D x D y
p
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where Dk  is the kth differential operator. There is a connec-
tion to the Fourier transform for the special case p = 2  and 
α =1. Let x  be the Fourier transform y
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where ω πk k N= 2 /  and i = −1 . The norm can be defined 
as
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Here, we have used metric (13) with norm (15) and k = 1.

Fisher distance.  Definitions and notations are as given by 
Lebanon.36 We first define the n-simplex Pn.
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The sequence { }xi  is the probability of different outputs in 
each experiment. The Fisher information metric on Pn  can be 
defined by

	 J
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The Fisher information is defined as a pull-back metric from 
the positive n-sphere Sn

+ ;
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The transformation T P Sn n: → +  defined by

	 T x x xn( ) ,. . .,= ( )+1 1
	 (19)

pulls back the Euclidean metric on the surface of the sphere to 
the Fisher information on Pn . Now Fisher metric for x y Pn, ∈  
can be defined as the length of the great circle (geodesic) 
between T x( )  and T y( )  on Sn

+ .
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Performance measures

We used 4 complementary measures for evaluating the perfor-
mance of each classifier; accuracy, precision, recall, and F1. 
These measures can be computed from the following classifica-
tions results, where a subset of patterns (the positive set) 
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belongs to a specific class, whereas the remaining patterns (the 
negative set) do not belong to this class:

•• True positive (TP): The number of patterns of the posi-
tive set that is correctly classified as belonging to the 
positive set.

•• True negative (TN): The number of patterns outside of 
the positive set that are correctly classified as not belong-
ing to the positive set.

•• False positive (FP): The number of patterns of the nega-
tive set that is incorrectly classified as belonging to the 
positive set.

•• False negative (FN): The number of patterns of the posi-
tive set that is incorrectly classified as not belonging to 
the positive set.

The relevant performance measures can then be defined as:

	 precision = TP
TP FP+

	 (21)

	 recall = TP
TP FN+ 	 (22)

	 F precision recall
precision recall1 2=

×
+ 	 (23)

	 accuracy = TP TN
TP TN FP FN

+
+ + +

	 (24)

Ranking of distance measures

For each distance and performance score, we considered the 
best (maximum) score among scores across all different k K∈  
values as the final score. If Sdpe

k  is the score of distance d  for 
performance p  and experiment e , the final score can be 
defined as:

	 S Sdpe k dpe
k= max 	 (25)

We then ranked distances according the final score for each 
individual experiment, using 2 different approaches. The first 
approach was simply to compute the average of the ranks across 
all experiments. That is, for a given experiment e  and a given 
performance measure p , the score S  was computed for each 
distance metric d , and the distance metrics were ranked 
according to the score. This was repeated for each combination 
of e  and p , giving e p×  rankings in total. The final ranking 
was then estimated as the average ranking of distance metric d  
over all these e p×  rankings. For the second approach, we used 
RankAggreg tool,37 an R package for weighted rank aggrega-
tion, and we used it on the complete set of ranked lists as 
described above, using the Cross Entropy Monte Carlo (CE) 
method, Kendall distances, and a value of rho as 0.1 (please see 
the RankAggreg documentation).

In addition to the ranking, we used the k-means algorithm 
to cluster the distance measures based on the scores over all 
experiments, and plotted this using the factoextra38 tool in R. 
This highlights in a visual way the similarities and differences 
between the tested distance measures.

Software implementation

The Python programming language (version 3.7.1) was used for 
scripts, which were implemented under Anaconda3. We used 
libraries from the scikit-learn package (version 0.20.1) to apply 
the kNN algorithm for Euclidean, Manhattan, Chebyshev, 
Hamming, Canberra, and Bray-Curtis distances.

Results
We applied all 12 distance measures on the 4 cancer data sets. 
For the brain, breast, and prostate cancer data sets, we used 
ranges from 1 up to 20 for k. For the lung cancer data, the range 
of k was limited to values from 1 up to 11, due to more limited 
data.

The best scores for the brain cancer data are shown in Table 2. 
The best precision score is for Canberra followed by Sobolev and 
Hassanat. For recall the maximum is shared between Manhattan 
and Hamming. Second and third places are for Sobolev and 
Hassanat. The best performances based on F1 and accuracy were 
for Canberra and Hassanat, respectively.

The scores for the breast cancer data are shown in Table 3. 
The Clark distance achieved the best score for 3 performance 
measures: recall, F1, and accuracy. The best precision was for 
the Bray-Curtis distance.

For the lung cancer data, the Sobolev distance outperformed 
the other distances, as it had the best performance according to 

Table 2.  Best scores among all tested k-values for the brain cancer 
data set.

Distance Precision Recall F1 Accuracy

Fisher 0.442 0.387 0.378 0.487

Sobolev 0.462 0.460 0.441 0.526

Clark 0.435 0.414 0.404 0.493

Bhattacharyya 0.434 0.398 0.394 0.492

Soergel 0.450 0.444 0.428 0.518

Hassanat 0.462 0.460 0.443 0.529

Euclidean 0.461 0.455 0.432 0.522

Manhattan 0.458 0.461 0.440 0.524

Chebyshev 0.452 0.455 0.438 0.521

Hamming 0.445 0.461 0.432 0.520

Canberra 0.466 0.457 0.448 0.527

Bray-Curtis 0.450 0.445 0.428 0.518

Maximum scores for each performance measure are shown in bold.



6	 Cancer Informatics ﻿

Table 3.  Best scores among all tested k-values for the breast cancer 
data set.

Distance Precision Recall F1 Accuracy

Fisher 0.896 0.896 0.892 0.903

Sobolev 0.964 0.958 0.960 0.964

Clark 0.967 0.972 0.969 0.971

Bhattacharyya 0.905 0.895 0.896 0.907

Soergel 0.964 0.966 0.964 0.967

Hassanat 0.963 0.966 0.964 0.967

Euclidean 0.966 0.962 0.963 0.967

Manhattan 0.963 0.954 0.957 0.962

Chebyshev 0.963 0.961 0.960 0.964

Hamming 0.950 0.925 0.934 0.943

Canberra 0.966 0.969 0.967 0.970

Bray-Curtis 0.969 0.969 0.968 0.971

Maximum scores for each performance measure are shown in bold.
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Figure 2.  Comparison of average ranking and RankAggreg ranking.

precision, F1, and accuracy. The second rank was for Fisher dis-
tance, which achieved the best score for recall and shared F1 
with Sobolev.

Finally, for the prostate cancer data, the Canberra distance 
clearly outperformed the other distances according to all per-
formance measures.

To have a total and robust ranking scale we used 2 approaches 
as described under Methods: a basic average of ranks for each 
distance measure estimated over 16 different rankings (i.e. all 
possible combinations of data set and performance measure), 
and the weighted rank aggregation of these rankings by the 
RankAggreg tool.

To compare the ranking of these 2 approaches, we plotted 
the 2 rankings, as shown in Figure 2. This shows a good 

correlation between these rankings, indicating that the overall 
ranking of the distance measures is robust.

The result of the k-means clustering on the performance 
scores over all experiments for k = 3 are shown in Figure 3. The 
set of (Hassanat, Canberra, Sobolev, Manhattan, Euclidean, 
Soergel, Bray-Curtis) forms a relatively tight cluster, whereas 
the 2 additional clusters are (Hamming, Chebyshev, Clark) and 
(Bhattacharyya, Fisher). This is quite consistent with the rank-
ing in Figure 2, where the main cluster is seen to consist of the 
measures with the best overall performance. A clustering with 
k = 4 splits the main cluster into 2 subclusters consisting of 
(Sobolev, Manhattan, Euclidean) and (Hassanat, Canberra, 
Soergel, Bray-Curtis), but the general clustering is stable. In 
summary, the k-means clustering confirms the ranking of the 
performance data shown in Figure 2.

Discussion
The results presented here show clear differences between dis-
tance measures with respect to classification performance on the 
cancer data sets. Some distance measures have a quite robust 
performance across most data sets, whereas other measures show 
a clearly lower performance on some data sets. This seems to be 
largely independent of which performance measures that are 
used (precision, recall, F1 or accuracy), which seems to be con-
firmed by the loading plot of a principal component analysis 
(PCA) of the performance data from Tables 2 to 5 (Supplemental 
Figure S2 in Additional file 1). The plot shows very similar load-
ings for all performance measures for each data set, in particular 
for the data on breast cancer and lung cancer.

The individual classification results in Tables 2 to 6 show 
important differences (and similarities) between the distance 
measures, depending on data type. If we focus on the F1 perfor-
mance measure, we see that both Fisher and Bhattacharyya seem 
to have relatively low performance on brain cancer (Table 2), 
breast cancer (Table 3), and prostate cancer (Table 5), in addition 
to Hamming for prostate cancer. This is different for lung cancer 
(Table 4), where it is Clark and Chebyshev that is associated with 



Ehsani and Drabløs	 7

low performance. These differences seem to be confirmed by the 
k-means clustering (Figure 3), where both (Fisher, Bhattacharyya) 
and (Clark, Chebyshev, Hamming) form separate clusters, and by 
the PCA analysis, where the loadings for breast cancer data are 
clearly separated from the other cancer types (Supplemental 
Figure S2 in Additional file 1). It is also consistent with the rank-
ing data shown in Figure 2, where these same distance measures 
are ranked together as having low performance.

The ranking of the well-performing measures shows some 
variation, but this is mainly due to the generally good perfor-
mance of these measures, with only small (and partly random) 
differences between cases. However, it is important to realize 
that the performance of a given distance measure depends on 
the input data. For example, in the data on lung cancer (Table 4) 
the Fisher measure shows one of the best performances, whereas 
it shows low performance on the other data sets. Similarly, the 
Clark measure is the best-performing measure on breast cancer 
data (Table 3) but has very low performance on lung cancer 
data. Apart from intrinsic effects of the type and distribution of 
data, these differences could arise from the distance functions, 
which is something that is relevant for further studies.

Figure 3.  The k-means clustering of all scores over all experiments.
Axes represent variance in a PCA plot of the data.

Table 4.  Best scores among all tested k-values for the lung cancer 
data set.

Distance Precision Recall F1 Accuracy

Fisher 0.611 0.656 0.602 0.613

Sobolev 0.650 0.633 0.602 0.618

Clark 0.144 0.356 0.198 0.307

Bhattacharyya 0.553 0.600 0.511 0.545

Soergel 0.550 0.578 0.522 0.545

Hassanat 0.489 0.544 0.464 0.516

Euclidean 0.617 0.633 0.582 0.590

Manhattan 0.618 0.611 0.582 0.585

Chebyshev 0.268 0.389 0.262 0.351

Hamming 0.449 0.500 0.418 0.459

Canberra 0.584 0.544 0.503 0.507

Bray-Curtis 0.550 0.578 0.522 0.545

Maximum scores for each performance measure are shown in bold.
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The analysis presented here may be influenced by the qual-
ity of the input data, for example, whether cases in the training 
set are correctly annotated with respect to class (e.g. cancer 
versus normal). In principle, we can estimate the quality of 
training data by looking for consistent misclassifications, 
experiments where a case consistently is classified to a differ-
ent class compared to its annotation. Such cases may represent 
potential annotation errors in the data set and may be 

considered for removal. However, we should probably expect 
to have some examples of such cases in most data sets consist-
ing of experimental data. In particular for complex properties 
like cancer, where it may be difficult to decide unambiguously 
in each case whether a given sample should represent “cancer” 
or “normal.” In the data presented here, the somewhat lower 
classification performance on brain cancer data and lung can-
cer data can possibly be linked partly to misannotated cases. 
However, such cases will be a natural part of most experimen-
tal data and removing them may introduce user bias into the 
analysis. Also, kNN is supposed to be somewhat robust with 
respect to errors in training data, in particular for higher values 
of k, as the classification will represent an average over multi-
ple cases. Therefore, we have not considered removing such 
cases from the analysis.

This analysis will also be influenced by the choice of fea-
tures, for example, if we select only specific features for analysis, 
compared to the full range of features of a data set. This may 
for example be relevant if the features represent very different 
properties. Again, selecting subsets of features may introduce 
user bias into the analysis. Here, we wanted to test the robust-
ness of the various distance metrics, and therefore, we decided 
to use all features as given in the original data sets, without any 
feature selection.

Conclusions
The performance analysis of kNN classification of cancer data 
with different distance measures identifies important differ-
ences between both distance measures and data sets. It is pos-
sible to identify a subset of distance measures that show robust 
performance across several data sets, and this includes the 
Hassanat, Sobolev, and Manhattan measures. However, the 
study also confirms that no single distance measure will be 
optimal for all data sets, and the recommendation must be that 
several measures should be tested on suitable reference data 
that are as similar to the actual data as possible when selecting 
distance measure for a particular study.
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Table 5.  Best scores among all tested k-values for the prostate cancer 
data set.

Distance Precision Recall F1 Accuracy

Fisher 0.868 0.792 0.769 0.813

Sobolev 0.856 0.832 0.823 0.832

Clark 0.892 0.836 0.840 0.861

Bhattacharyya 0.864 0.783 0.755 0.803

Soergel 0.836 0.820 0.812 0.822

Hassanat 0.864 0.835 0.829 0.841

Euclidean 0.856 0.845 0.834 0.841

Manhattan 0.846 0.828 0.821 0.832

Chebyshev 0.864 0.845 0.834 0.841

Hamming 0.625 0.625 0.594 0.598

Canberra 0.926 0.882 0.877 0.892

Bray-Curtis 0.836 0.820 0.812 0.822

Maximum scores for each performance measure are shown in bold.

Table 6.  Total ranking of distance measures over all experiments 
according average rank and rank aggregation by RankAggreg.

Distance Average 
rank

Rank_Ave RankAggreg

Hassanat 3.50 1 1

Manhattan 4.18 2 4

Sobolev 4.56 3 2

Canberra 4.64 5 6

Bray-Curtis 4.62 4 5

Euclidean 4.81 6 3

Soergel 5.43 7 7

Clark 5.56 8 9

Chebyshev 5.68 9 8

Fisher 5.87 10 10

Bhattacharyya 6.06 11 11

Hamming 6.68 12 12
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•• “Brain tumor data set” (https://figshare.com/articles/
brain_tumor_dataset/1512427/5).

•• “Breast Cancer Wisconsin (Original) Data Set” (https://
archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wiscons
in+%28Original%29).

•• “Lung Cancer Data Set” (https://archive.ics.uci.edu/ml/
datasets/Lung+Cancer).

•• Prostate cancer data from the R package ElemStatLearn 
(https://cran.r-project.org/web/packages/ElemStat 
Learn/index.html)
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