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ABSTRACT
A commonly encountered phenomenon in chemical processes is bubble evolution driven by supersaturation. On the continuum scale, this
essentially involves interfacial mass transfer resulting in the growth of bubbles and their subsequent detachment from a surface. Analytical
approaches to study this phenomenon typically involve estimating the driving force for interfacial mass transfer based on Sherwood number
(Sh) correlations and the bulk concentration of dissolved gas. This is often not practical since the bulk concentration is often unknown and
Sh correlations are sometimes not available to provide an accurate description of the associated flow fields. With the use of interface-resolved
simulations to model these processes, the local distribution of dissolved gas can be obtained by solving for the concentration field. The driving
force for interfacial mass transfer can be computed based on Sh correlations (which can be adopted for specific flows and are typically used in
“engineering” applications) or the universally applicable Fick’s first law. This paper compares the predictions of these approaches for the well-
studied case of a two-dimensional bubble growing in an unbounded supersaturated solution for three different levels of supersaturation. The
equivalent two-dimensional simulations are run in a previously developed volume of fluid framework on OpenFOAM® [K. J. Vachaparambil
and K. E. Einarsrud, Appl. Math. Model. 81, 690–710 (2020)]. The results show that the choice of an appropriate Sh correlation can provide a
reasonable estimate of bubble growth. In a more universal approach, which is relevant when the flow being simulated cannot be captured by
a single Sh correlation (e.g., bubble growth/coalescence and detachment) or when existing Sh correlations are not applicable, Fick’s first law
can be used to compute the driving force for bubble growth, provided that the concentration boundary layer can be resolved.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0020210

I. INTRODUCTION

Bubble evolution in supersaturated solutions is a process ini-
tiated by nucleation, followed by interfacial mass transfer driven
growth and eventually detachment from the surface.1 This phe-
nomenon is relevant to processes such as electrolysis of water and
electrolytic reduction of alumina, as well as to the opening of cham-
pagne bottles. As the presence of bubbles reduces the efficiency of
electrochemical systems,2 it is important to efficiently remove them.
The bubble growth can be divided into two main regimes: inertial
(which lasts for less than a second for very small bubbles of the order
of tens of micrometers in size) and diffusion-controlled (the interfa-
cial mass transfer driven regime relevant for continuum scale bub-
bles).2 Apart from these two regimes, in electrochemical systems, the

heterogeneous reactions that result in supersaturation of the liquid
can also affect the bubble growth.2 Consequently, the continuum-
scale bubble growth driven by interfacial mass transfer in supersatu-
rated solutions is an important topic that has been investigated using
analytical, numerical, and experimental approaches.

Seminal analytical studies were carried out by Epstein and Ples-
set11 and by Scriven7 in the 1950s. Epstein and Plesset11 derived an
approximate solution for the temporal changes in bubble size start-
ing from a pre-existing bubble, although they neglected the effect of
convection induced by the bubble growth. The effect of convection
induced by the radially symmetric bubble growth was subsequently
treated by Scriven7 who derived an asymptotic solution describing
the bubble growth controlled by interfacial mass transfer. Bruman
and Jameson8 derived a Sherwood number (Sh) correlation (see
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TABLE I. Some examples of Sherwood number (Sh) correlations reported in the
literature.

Sh correlation Applicable flow scenario References

Sh = 2 Re = 0 flow around a
spherical bubble

3

Sh = 2 + 0.6515(Re Sc)1/2 Re≪ 1 flow around a
bubble

4

Sh = 2 + 0.6Re1/2Sc1/3 2 < Re < 200 flow
around a droplet

5 and 6

Sh = 4β2
/Aa Bubble growth based

on the work of Scriven7
8

Sh = 0.332Re1/2Sc1/3 Laminar flow over a
flat plate

9

Sh = 1.26Re1/3Sc1/3 Rising bubble in
champagne

10

aβ andA are dimensionless numbers that are defined in Eqs. (16) and (17), respectively.

Table I) based on the bubble growth scenario described by Scriven.
The growth of rising bubbles in champagne was also described using
a Sh correlation by Liger-Belair et al.10 In these works based on Sh
correlations, the analytical driving force ( ja) for interfacial mass
transfer is computed as

ja =M
D Sh

L
(C∞ − Csat), (1)

where M and D are the molar mass and the diffusion coefficient of
the dissolved gas, respectively, L is a characteristic length scale, and
C∞ −Csat is the difference between the concentration of dissolved
gas in the bulk and at the interface (which is assumed to be at satura-
tion). The supersaturation is represented by S, which is calculated as
C∞/Csat. Additionally, these analytical models assume that the bub-
bles are present in the bulk and are surrounded by an unbounded
uniformly supersaturated solution.

In contrast to these analytical models, which present a greatly
simplified view of the process, experimental studies have revealed
the complex nature of bubble growth, including its dependence on
surface wettability and the inhomogeneous distribution of supersat-
uration around the bubble.2 Owing to the inhomogeneous distribu-
tion of supersaturation, as a result of convection or heterogeneous
reactions, the driving force for interfacial mass transfer must be
computed based on the local value of the dissolved gas concentration
near the interface.

Numerical approaches, especially interface-resolved multi-
phase models such as the Volume of Fluid (VOF) method, can
provide an adequate framework to resolve and study the growth of
individual bubbles as well as to solve for the dissolved gas transport
to determine its distribution and even treat heterogeneous reac-
tions. However, owing to the difficulty in modeling transport of
dissolved gas in multiphase flows and coupling this to the bub-
ble growth, advances in numerical modeling of the latter phe-
nomenon have been made only relatively recently. The transport of
dissolved gas in multiphase flows requires treatment of the inter-
face conditions that account for the jump in concentration and that
of the continuity of the diffusive fluxes that accounts for interfa-
cial mass transfer.12 The ways in which these interfacial conditions

have been addressed in the literature can be broadly grouped as
follows:

● two-field approaches,12–14 which use individual transport
equations for the dissolved species in each phase and in
which interfacial conditions are applied as boundary condi-
tions for each phase; and

● single-field approaches,15–17 which use a single governing
equation (which accounts for the interfacial conditions) to
describe the transport of dissolved gas in both phases.

Although interfacial mass transfer can be simulated by both
types of approaches, the two-field approach has a greater compu-
tational requirement owing to the larger number of governing equa-
tions that have to be solved, as well as the requirement for the
sharp representation of the interface (obtained using geometrical
reconstruction in VOF methods).15 This information about the local
concentration of the dissolved gas can be used to obtain a driving
force for the interfacial mass transfer and bubble growth, which is
computed in one of the following ways:

● Fick’s first law provides an accurate representation of inter-
facial mass transfer for any given flow scenario, but it is
computationally expensive owing to the need to resolve
concentration gradients at the interface.

● The use of Sherwood number correlations is computa-
tionally cheaper and circumvents the need for gradient
calculations by means of flow-specific approximations for
“engineering” applications. As a result of these approxi-
mations, Sh correlations can be adopted for specific flow
scenarios (see Table I) and can be generally expressed as
Sh = 2 + aRebScc, where a, b, and c are case-specific con-
stants, Re is the Reynolds number (the ratio of inertial to
viscous forces), and Sc is the Schmidt number (the ratio of
the kinematic viscosity to the diffusion coefficient).16 The
associated driving force is computed based on the Sh corre-
lations and the local concentration of the dissolved gas near
the interface.

A summary of studies that have implemented these methods
for determining driving forces and have simulated bubble growth by
interfacial mass transfer is presented in Table II. Although the use
of a driving force based on Fick’s first law provides an accurate and
generic representation of bubble growth for any flow scenario, Sh
correlations are typically used for engineering applications.

The aim of this paper is to compare the bubble growth predic-
tions using driving forces based on Fick’s first law and two Sh corre-
lations for a bubble growing in an unbounded solution that is super-
saturated for a range of values. These driving forces are implemented
in a VOF-based framework on OpenFOAM® 6 proposed in our
recent work.21 This flow scenario, which has been thoroughly inves-
tigated analytically, is chosen because of the availability of the exact
solutions that can be used for the verification of the computational
model. The results from the simulations show that carefully chosen
Sh correlations can provide reasonably predictions that match ana-
lytical models. For flow scenarios that cannot be described by a single
Sh correlation, such as bubble evolution (which includes growth,
coalescence, and detachment), Fick’s first law should be used to com-
pute the driving force for interfacial mass transfer. Finally, when
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TABLE II. Summary of the literature on bubble evolution driven by interfacial mass transfer.

Reference Interfacial mass transfer Transport Concentration treateda VOF schemeb

19 Sh correlation Two-field Lc Geometric
20 Fick’s first law Two-field L + I + G Geometric
21 Fick’s first law Single-field L + I Algebraic
22 Fick’s first law Single-field L + I + G Algebraic
aThis refers to the regions to which the dissolved gas transport model applies: the liquid phase (L), the interfacial region where
the jump conditions are treated (I), and the gas phase (G).
bGeometric VOF methods employ interface reconstruction within each cell, whereas algebraic VOF methods, which are compu-
tationally cheaper, generate an interface based on algebraic techniques (e.g., interface compression), which results in the interface
being smeared over a few computational cells.18

cInterface jump conditions are not described in Ref. 19.

Fick’s first law is used, the concentration boundary layer must always
be resolved. This paper shows that using the appropriate Sh corre-
lation can provide reliable results, which is beneficial for obtaining
computationally cheaper simulations in engineering applications. As
the effect of gravity has been studied in our previous work,21 it will
not be investigated again here. This paper will also ignore surface
tension, since its modeling can lead to the well-known problem of
spurious velocities,18,23–25 which has been reported to alter interface
mass transfer.21

II. GOVERNING EQUATIONS AND SOLUTION
ALGORITHM

The solver used in the this paper, proposed in Ref. 21, is based
on the algebraic VOF method used by OpenFOAM® 6 (in the
interFoam solver18) along with a single-field dissolved gas trans-
port model [the Compressive-Continuous Species Transfer (C-CST)
model17] and a continuum field representation of source terms that
was adapted based on the work of Hardt and Wondra26 and Kunkel-
mann.27 An overview of the governing equation and the overall
solution algorithm of the solver is provided in this section; for
further details and the derivation of the governing equations, see
Ref. 21.

The first step of the solver is advection of the volume fraction of
liquid. The volume fraction of liquid, denoted by α1, is a scalar used
in the VOF method to distinguish between the phases. α1 = 1 indi-
cates the liquid (phase 1), α1 = 0 indicates the gas/bubble (phase 2),
and 0 < α1 < 1 indicates the interfacial region. To preserve the sharp-
ness of the interface, α1 is advected using the interface compression
method (which belongs to the algebraic VOF approach), which is
described as follows:

∂α1

∂t
+∇ ⋅ (α1U⃗) +∇ ⋅ [α1(1 − α1)U⃗r] = α1∇ ⋅ U⃗, (2)

where the first two terms on the left-hand side are the temporal
and convection terms, while the third term, which is nonzero only
in the interfacial region, compresses the interface depending on the
relative velocity between the phases, U⃗r .18 The term on the right-
hand side is associated with the source term that results in the bub-
ble growth.21 Equation (2) is solved using the semi-implicit multi-
dimensional limiter for explicit solution (MULES) to ensure that α1
remains bounded.28 The volume fraction of phase 2, α2, is calcu-
lated as 1 − α1. The fluid properties such as density ρ and viscosity

ν are computed using volume fraction based algebraic averaging as
χ = α1χ1 + α2χ2, where χ ∈ [ρ, ν].

Once α1 has been advected, the driving force for interfacial
mass transfer is calculated. The solver computes the transport only
to the dissolved gas (see Table II) and determines only the con-
centration Ci above the saturation condition. These simplifications
allow the saturation concentration on the gas side of the interface
to be described as 0 mol/m3, and correspondingly, the driving force
can be computed based on one of the following approaches:

● Fick’s first law in the form

j =MiDi,1∣∇Ci∣, (3)

where Mi is the molar mass of dissolved gas (i) and Di,1 is
the diffusion coefficient of the dissolved gas in the liquid.
Equation (3) is based on the assumption that the gradient of
concentration of the dissolved gas at the interface in the tan-
gential direction is negligible in comparison with the normal
component, as discussed by Deising et al.15

● Sh correlation 1:Sh = 2 + 0.6515
√

Re Sc, which is applicable
for low solubility/small mass transfer rates from the interface
to liquid for a bubble in a creeping flow.4 In this case,

j =MikSh1Ci, (4)

with kSh1 given by

kSh1 =
Di,1

2R
Sh =

Di,1

2R
(2 + 0.6515

√
Re Sc), (5)

where R is the bubble radius, Re is given by 2RU∞/ν1 (where
U∞ is computed as the rate of increase in the bubble radius),
and Sc = ν1/Di,1.

● Sh correlation 2: Sh = 4β2ρ2/(MiCi), which is applicable for
the bubble growth driven by supersaturation (derived in
Appendix A). In this case,

j =MikSh2C1 = (
Di,1

2R
4β2ρ2

MiCi
)MiCi

= 4β2ρ2
Di,1

2R
, (6)

where β is the growth coefficient used in Scriven’s model7

and is estimated using Eq. (16).
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Based on j, the local mass transfer rate is computed at the liquid
side of the interface as

ψ0 = Njα1∣∇α1∣, (7)

where N is a normalization factor calculated as
∫Ω ∣∇α1∣dV/ ∫Ω α1∣∇α1∣dV . To improve numerical robust-
ness, the calculated local mass transfer rate is smeared at the
interface, according to the method of Hardt and Wondra,26 using a
user-defined value DΔt as follows:

DΔt∇2ψ = ψ − ψ0. (8)

For the simulations reported in this paper, DΔt is set equal to
10−6 m2 based on the parametric study reported in our previous
work.21 For numerical stability, the source term for the continuity
equation, which is redistributed in the region where α1 < 10−3 using
a Heaviside function (as described by Kunkelmann27), is expressed
as

ṁ = Aα2ψ, (9)

where A is a normalization factor equal to ∫Ω ψ0 dV/ ∫Ω α2ψ dV . The
sink term in the transport of the dissolved gas is computed at the
liquid side of the interface as

Si = −
Nα1(j∣∇α1∣)

Mi
, (10)

where N is the normalization factor used in Eq. (7).
The momentum equation, using a modified pressure (prgh

= p − ρg⃗ ⋅ x⃗) and a single-field velocity field (U⃗), is written as

∂ρU⃗
∂t
+∇ ⋅ (ρU⃗U⃗) = −∇prgh +∇ ⋅ (μ∇U⃗) +∇U⃗

⋅ ∇μ − g⃗ ⋅ x⃗∇ρ + F⃗ST, (11)

where ∇ ⋅ (μ∇U⃗) +∇U⃗ ⋅ ∇μ are the viscous terms of the momen-
tum equation.18 As the surface tension effects are not simulated in
this paper, F⃗ST, which is the volumetric surface tension force, will
not be considered here. As the densities of the individual phases are
assumed to be constant, mass conservation can be described using
the continuity equation as

∇ ⋅ U⃗ =
ṁ
ρ

, (12)

where ṁ is the source term for phase 2 computed in Eq. (9). The
momentum and continuity equations are solved together using the
pressure implicit with splitting of operator (PISO) algorithm.18,21

Finally, the C-CST model17 for the transport of the dissolved
gas is solved,

∂Ci

∂t
+∇ ⋅ (U⃗Ci) =∇ ⋅ (D̂i∇Ci) −∇ ⋅ (D̂i

1 −Hei

α1 + α2Hei
Ci∇α1)

−∇ ⋅ (
1 −Hei

α1 + α2Hei
α1α2U⃗rCi) + Si, (13)

where Si is computed using Eq. (10), Hei describes the interfacial
jump in concentration, which is set to 10−4 to reliably model just the
dissolved gas,21 U⃗r is the relative velocity between the phases that
appears in Eq. (2), and D̂i is the harmonic average of the diffusion
coefficients of the phases.17

TABLE III. Settings used to solve the governing equations.

Equation Linear solver Smoother/preconditioner Tolerance

prgh PCG GAMG 10−20

U⃗ smoothSolver symGaussSeidel 10−10

α1 smoothSolver symGaussSeidel 10−10

Ci PBiCGStab Diagonal 10−10

ψ PCG DIC 10−10

A. Numerical settings
The governing equations are discretized with the first- and

second-order schemes in time and space,21 respectively, and
computed using the iterative solvers listed in Table III. Other
OpenFOAM® specific numerical settings, such as MULESCorr and
momentumPredictor, are set as described in our previous work.21

The maximum time step is set by applying an upper limit on the
Courant number equal to 0.05. The iterative solver used to solve
for ψ, given in Table III, is used instead of the settings used in
our previous work,21 namely, PBiCGStab–diagonal, to reduce the
computational time required, as described in Appendix B.

III. RESULTS AND DISCUSSION

A. Problem description
The computational domain and boundary/initial conditions

used in the simulations are presented in Fig. 1. The fluid proper-
ties used in the simulations, adapted from our previous work,21 are
listed in Table IV. The supersaturation levels used in the simulations

FIG. 1. Computational domain and boundary/initial conditions used in the simula-
tions. The operating pressure (p0) and the pre-existing bubble radius (R0) used
in the simulations are equal to 101 325 Pa and 250 μm, respectively. The con-
centration of the dissolved gas at t = 0 s is set based on the various levels of
supersaturation S.
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TABLE IV. Fluid properties used for the simulations (adapted from Ref. 21).

Property Phase 1 (liquid) Phase 2 (bubble)

Density (kg/m3) 997.0751 (Ref. 29) 1.81 (Ref. 30)
Viscosity (m2/s) 8.92 × 10−7 (Ref. 29) 8.228 × 10−6 (Ref. 30)
Diffusion 1.94 × 10−9 (Ref. 31) 9.18 × 10−6 (Ref. 32)
coefficient (m2/s)
Molar mass (kg/mol) 44 × 10−3 (Ref. 21)

are 2.5, 4, and 7, which correspond to the initialized concentra-
tions of dissolved gas Ci equal to 50.16 mol/m3, 100.32 mol/m3, and
200.64 mol/m3, respectively (with a saturation concentration equal
to 33.44 mol/m3). It should be noted that the initialized uniform dis-
tribution of the dissolved gas does not take account of any concen-
tration boundary layer, the implications of which will be explored
later in the discussion of the results. Again, both surface tension and
gravity are neglected in the simulations, but we have investigated
the influence of these parameters on growth previously.21 The mesh
used for all the simulations presented in this paper had a uniform
hexahedral grid of 16 × 106 cells based on grid convergence studies

performed for the bubble growth associated with S = 7 and a driving
force based on Fick’s first law in our previous work.21

B. Choice of analytical model
As the Epstein–Plesset model11 ignores the effect of bub-

ble growth on interfacial mass transfer, Scriven’s asymptotic solu-
tion7 provides the most reliable description of bubble growth via
interfacial mass transfer, as was also noted by Burman and Jame-
son.8 According to Scriven,7 the increase in bubble radius can be
described as

RScriven = 2β
√

Di,1t, (14)

where β is the growth coefficient. To treat the interfacial mass trans-
fer driven growth of a pre-existing bubble, Scriven’s solution was
extended by Hashemi and Abedi33 (in what we will refer to here
as the “extended Scriven model”) where the evolution of the bubble
radius is described by

RScriven−ext = 2β

¿
Á
ÁÀDi,1(t +

R2
0

4Di,1β2 ), (15)

FIG. 2. Comparison of the results of simulations of bubble radius evolution using the driving forces based on Fick’s first law [Eq. (3)] and on Sh correlations [Eqs. (4) and (6)]
with the results of the extended Scriven model (with β2D) for various levels of supersaturation: (a) 2.5, (b) 4.0, and (c) 7.0.
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where R0 is the radius of the pre-existing bubble. Our previous
work21 has shown that Eq. (15) provides a better representation of
the process of interfacial mass transfer driven bubble growth from a
pre-existing bubble when compared to Eq. (14).

The growth coefficient for two-dimensional bubbles should be
calculated as21

β2D =
A +
√
A2 + 4A

2
√

2
, (16)

where A is calculated as

A =
MiΔC
ρ2

, (17)

with ΔC being the concentration of the dissolved gas in the bulk
above the saturation condition. As the simulations in this paper
deal with the growth of a two-dimensional bubble from a pre-
existing bubble, the theoretical model used to verify the simulations
is the extended Scriven model [Eq. (15)] with the growth coefficient
determined based on Eq. (16). As ΔC in the simulations is set to
50.16 mol/m3, 100.32 mol/m3, and 200.64 mol/m3, the correspond-
ing values of β2D are 1.3230, 2.2632, and 4.0509, respectively.

C. Verification of the simulations
As the simulations predict bubble growth due to uniform

supersaturation, the velocity and concentration of the dissolved gas
around the bubble are radially symmetric (as reported in our pre-
vious work21). Figure 2 compares the increase in bubble radius
predicted by simulations using a driving force for interfacial mass
transfer based on Fick’s first law and on Sh correlations with the pre-
diction by the analytical solution of the extended Scriven model for
various supersaturation levels. The simulations using a driving force
based on Sh correlation 1 underpredict the bubble size compared
with the analytical model for all three supersaturation levels. Inter-
estingly, the simulation using a driving force based on Fick’s first law
appears to agree with the analytical model at larger supersaturation,
whereas the simulations using a driving force based on Sh correla-
tion 2 exhibits good agreement with the extended Scriven model for
all three supersaturation levels.

As the interfacial mass transfer is proportional to the surface
area of the bubble (which in the case of a two-dimensional bub-
ble is proportional to the bubble radius), a normalized growth rate
based on the bubble radius, which is computed as ∫ ψ0dV/R, is
used to account for the different bubble sizes.21 In the extended

FIG. 3. Comparison of the results of simulations of bubble radius normalized growth rates (kg m−1 s−1) based on Fick’s first law [Eq. (3)] or on Sh correlations [Eqs. (4) and
(6)] with the results of the extended Scriven model (with β2D) for various levels of supersaturation: (a) 2.5, (b) 4.0, and (c) 7.0.
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Scriven model, the radius normalized growth rate is computed as
the rate of change in the mass of the bubble divided by the bubble
radius based on the analytical model, i.e., Eq. (15). The discrepan-
cies between the temporal change in bubble radius computed using
a driving force based on Fick’s first law or on Sh correlations and
that computed using the analytical extended Scriven model can be
explained based on the bubble radius normalized growth rate (see
Fig. 3). The driving force based on Sh correlation 1 used for the
simulations appears to underpredict the radius normalized growth
rate (see Fig. 3) compared with the analytical model, which results
in the bubble being smaller (see Fig. 2). On the other hand, the evo-
lution of the bubble radius predicted using a driving force based on
Sh correlation 2 agrees reasonably well with the analytical model,
since the normalized growth rates from the two methods match,
with an absolute deviation of less than 1% for all three cases at t = 10
s (see Figs. 2 and 3). As the initialized distribution of the dissolved
gas does not take account of the concentration boundary layer, the
local value of Ci, which is used to calculate j based on Eq. (4), is
close to the bulk supersaturation, which causes the initial spike in
the normalized growth rate observed in Fig. 3. As the simulation
proceeds over time, a concentration boundary layer develops, and
the local Ci becomes lower than the bulk supersaturation. Although
for Sh correlations, j is calculated to be proportional to Ci, Fick’s
first law computes j based on the gradient of the local concentra-
tion [see Eq. (3)]. As a result of this gradient-based calculation, the
use of j from Fick’s first law leads to a large normalized growth rate
that is greater than the analytical solution, as observed in Fig. 3. As
the concentration boundary layer becomes fully developed, the sim-
ulated radius normalized growth rate matches the analytical solu-
tion for all three supersaturation levels. This initial larger growth
rate in the simulations causes the bubble radius to increase more
rapidly than expected, which results in the discrepancy observed
in Fig. 2.

IV. CONCLUSIONS
In this paper, the VOF-based approach proposed previously21

has been used to simulate the interfacial mass transfer driven growth
of a bubble in a unbounded and uniformly supersaturated solution
(for S = 2.5, 4, and 7). As an analytical solution is available for this
flow scenario, the results of simulations with the driving forces com-
puted based on Fick’s first law and on two Sh correlations have been
compared with the theoretical results to assess the predictions of
bubble growth. The results reveal the following:

● If a Sh correlation that is appropriate for the specific flow
being simulated is chosen to compute the driving force for
interfacial mass transfer, a reasonably accurate prediction
of bubble growth can be obtained. In the case of radially
symmetric bubble growth driven by supersaturation, Sh cor-
relation 2 [Eq. (6)] is better suited than Sh correlation 1
[Eq. (4)].

● If Sh correlations are not available to describe a flow scenario
or if a single correlation cannot capture a complex phe-
nomenon (such as bubble growth, coalescence, and detach-
ment), the driving force should be computed based on Fick’s
first law, since it provides a better representation of the flow
than a single Sh correlation with limited applicability.

● The driving force computed using Fick’s first law has been
shown to be able to handle bubble growth for a range
of supersaturation levels, provided that the concentration
boundary layer has been resolved, even at t = 0 s.

● The driving forces based on Sh correlations and Fick’s first
law are proportional to the local concentration and the gra-
dient of Ci. This means that the computational requirements
(with respect to mesh resolution) needed with Sh correla-
tions are lower than when Fick’s first law is used, since the
latter requires the resolution of concentration gradients near
the interface.

Future work within this framework will utilize a driving force
computed based on the local concentration to model the bubble
growth driven by heterogeneous reactions such as electrochemical
gas evolution.
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APPENDIX A: DERIVATION OF Sh CORRELATION 2

In this appendix, based on the original work by Burman and
Jameson,8 we extend their approach to derive Sh correlation that is
used in simulations.

For a two-dimensional bubble as simulated in this paper, the
growth rate can be expressed as

ρ2
dV
dt
= jA, (A1)

where V = πR2h, A = 2πRh, and j =MikCi, with h being the unit
cell thickness used to define the two-dimensional domains in
OpenFOAM®, which in this paper is set to 1 μm. Substituting the
expressions for V , A, and j, we get

ρ2
dR
dt
=MikCi. (A2)

The rate of change in the radius can be calculated based on
Eq. (15) as

dR
dt
=

2β2Di,1

R
. (A3)

Substituting Eq. (A3) into Eq. (A2), we get

2β2Di,1

R
=

MikCi

ρ2
. (A4)

This equation can be rearranged and multiplied by 2 on both sides
to give

k =
Di,1

2R
4β2ρ2

MiCi
, (A5)

and the corresponding Sh is defined as 4β2ρ2/(MiCi). In the work
by Burman and Jameson,8 the value of Ci is written in terms of the
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bulk concentration of the dissolved gas under the assumption of
diffusion-limited mass transfer through the liquid film. This leads
to Sh being defined as 4β2ρ2/(MiΔC), where ΔC is defined as in
Eq. (17). At a very low supersaturation, when Re is approximately
zero and β is small, Burman and Jameson8 showed that Sh→ 2, as
expected for the case of diffusive mass transfer in the absence of
convection (see Table I).

APPENDIX B: CHOICE OF LINEAR SOLVER
AND PRECONDITIONER

To reduce the computational time required for the simula-
tions, the effect of the iterative solver used to smear ψ0 [Eq. (8)],
which is the bottleneck in the simulation at each time step, is
investigated in this appendix. Bubble growth driven by super-
saturation S = 7 is chosen as the flow scenario to be simulated,
with the convergence criterion for Eq. (8) set at 10−10. The first
case corresponds to the setting used in this paper, i.e., Eq. (8) is
solved using PCG (linear solver)–DIC (preconditioner). The sec-
ond case corresponds to the setting used in our previous work,21

i.e., Eq. (8) is solved using PBiCGStab (linear solver)–diagonal
(preconditioner).

Although the bubble growths predicted by the two simulations
are in very close agreement (see Fig. 4), the number of iterations
required for the convergence of Eq. (8) is reduced by almost half at
every time step, as observed in the log file obtained from the solver
during the run:

● For the PCG–DIC solver setting:

– At t = 0 s:DICPCG: Solving for psi, Initial residual
= 1, Final residual = 9.88185e − 11, No Iterations
1842

– At t = 10 s:DICPCG: Solving for psi, Initial resid-
ual = 0.0132484, Final residual = 9.94304e−11, No
Iterations 1218

● For the PBiCGStab–diagonal solver setting:

FIG. 4. Bubble size simulated using the various solvers for Eq. (8). The bubble
evolution for the PBiCGStab/diagonal setting is obtained from the data reported in
our previous work.21

– At t = 0 s:diagonalPBiCGStab: Solving for psi, Ini-
tial residual = 1, Final residual = 4.55196e−11, No
Iterations 4020

– At t = 10 s:diagonalPBiCGStab: Solving for
psi, Initial residual = 0.0131794, Final residual
= 9.72418e−11, No Iterations 2904
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