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Abstract
Realistic renderings of materials with complex optical properties, such as goniochromatism and non-diffuse reflection, are
difficult to achieve. In the context of the print and packaging industries, accurate visualisation of the complex appearance of
such materials is a challenge, both for communication and quality control. In this paper, we characterise the bidirectional
reflectance of two homogeneous print samples displaying complex optical properties. We demonstrate that in-plane retro-
reflective measurements from a single input photograph, along with genetic algorithm-based BRDF fitting, allow to estimate
an optimal set of parameters for reflectance models, to use for rendering. While such a minimal set of measurements enables
visually satisfactory renderings of the measured materials, we show that a few additional photographs lead to more accurate
results, in particular, for samples with goniochromatic appearance.

Keywords Visual appearance · Goniochromatism · Genetic algorithm-based optimisation · BRDF measurement · Retro-
reflection

1 Introduction

Materials like non-diffuse metallic paints, varnish coat-
ings, and effect paints have complex optical properties that
produce fascinating appearance in manufactured products.
Metallic paints contain metal flakes, causing the incident
light to be specularly reflected. Effect paints are made using
thin metal oxide layers on transparent mica platelets [28]
and contain pearlescent pigments. The multi-layered struc-
ture of pearlescent pigments helps increasing changes in
visual appearance of a material, with respect to the inci-
dent and viewing directions [28], including angle-dependent
spectral reflectance [22]. These materials, often referred as
“goniochromatic” [32], are commonly used in the print and
packaging industry.

Such materials are produced using different printing
techniques (e.g. offset, gravure, screen printing [22]) and
contribute to some of the main challenges in the printing
line, including:
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1. performing fast and easy process control measurements;
2. synthetically reproduce and match visual properties of

packaging materials for customer approval and quality
control;

3. communicate material appearance across production and
quality control departments in a print production line.

To characterise and communicate the visual appearance
properties of goniochromatic print and packaging materials
during print production, typically bidirectional reflectance
distribution function (BRDF) measurements are required
[10,32]. Commercially available devices, such asmulti-angle
spectrophotometers and goniospectrophotometers, could be
used to perform such bidirectional measurements [22]. How-
ever, such devices prove to be slow and relatively expensive,
therefore not suited for inline measurements in the produc-
tion process.

Image-based measurements [14] could represent an effi-
cient, fast, and a practical method to accurately estimate
bidirectional reflectance, also in the context of the print and
packaging industries, able to satisfy the needs of control and
inline quality evaluation. Furthermore, back-scattering mea-
surements often provide enough information to analytically
characterise the reflectance properties of a given material
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Fig. 1 Materials used in our study, rendered inside a Cornell box using
the Löw et al. BRDF model [26], under a constant (flat) illumination
spectrum. Thematerials have been assigned, in turn, to different shapes,
in order to better display the quality of our results. In a, a blue-green
goniochromaticmaterial (measuredwith our setup) has been assigned to

the “Bunny”, the “Blue Metallic Paint” (from the MERL dataset [30])
to the “Happy Buddha” and a gold sample (measured) to the “Asian
Dragon” (all models are from the Stanford 3D Scanning Repository).
b and c are obtained from a, by rotating anticlockwise the assignment
order of the materials to the shapes

[1,16,17], whereas additional measurements can be used to
improve the initial estimates [9].

Building upon the above, in this paper we estimate the
BRDF of print samples using a small set of salient measure-
ments taken with a simple, low-cost image-based setup, easy
to integrate in inline quality evaluation for print and packag-
ing industries. These measurements are used to estimate the
optimal set of parameters of a commonly used BRDF model
[26], by means of a genetic algorithm (GA)-based BRDF
fitting method. We demonstrate that even for print samples
showing goniochromatic optical properties, typically chal-
lenging to capture, we are able to obtain visually satisfactory
renderings.

The main contributions of this paper are:

1. the use of common BRDF models to faithfully represent
the appearance of non-diffuse, goniochromatic print sam-
ples described in this paper;

2. the use of retro-reflective in-plane measurements as a key
to successfully represent the appearance of non-diffuse
packaging print samples;

3. a GA BRDF fitting method, rather than the commonly
usedNelder–Mead down-hill simplex algorithm, to obtain
the optimal set of BRDF model parameters.

Along with the print samples, we use an additional non-
diffuse sample, “Blue Metallic Paint” (BMP), from the
MERL dataset [30]. The BMP material is used to assess the
performance of in-plane BRDF measurements to faithfully
represent the appearance ofmaterials with visual characteris-
tics comparable to the print samples measured, as opposite to
a full measurement dataset. Figure 1 demonstrates the results
achievable with our setup and approach, showing some ren-

derings of thematerials used in our study, fitted using our GA
method. Finally, we compare measurements taken using our
setup with the ones of a commercially available goniospec-
trophotometer.

2 Background and related work

The reflectance properties of a homogeneous, opaque mate-
rial can be described using the BRDF, defined by Nicodemus
et al. [37] as

fr (l, v) = dL r (v)
dE i (l)

= dL r (v)
L i (l) cos θidωi

. (1)

In Eq. (1), l and v are incident and viewing direction unit vec-
tors, Ei is incident spectral irradiance, L i is incident spectral
radiance (flux per unit area, per unit solid angle (ωi)), L r is
the reflected spectral radiance and d is the differential. The
unit of a BRDF is inverse steradian [1/sr ]. There exist a
variety of possible designs for BRDF measurement setups
[14]; measured data can be left in tabular form, or repre-
sented in a compact way by means of BRDF models, either
phenomenological or physically based, depending upon the
specific needs of the application. In the remainder of this
section, we discuss related work on BRDFmeasurement and
models. For a comprehensive survey on the taxonomy of
BRDF measurement setups and reflectance models, we refer
the reader to the work by Guarnera et al. [14].

2.1 Image-based BRDFmeasurement setups

A number of image-based measurement setups, making use
of one or more cameras as sensors, have been proposed
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[27,29,31,35,38,47,51], since they allow to perform bidirec-
tional measurements in a fast and relatively inexpensive way.
Ngan et al. [35] presented an image-based measurements
to measure anisotropic materials like velvet by wrapping it
around a cylinder in different orientations. A conceptually
similar setup was used in [44] to investigate the suitability
of image-based measurements to estimate the reflectance of
isotropic packaging materials, represented using two well-
known reflectance models (Cook–Torrance [7] and Ward
[50]). Three flexible packagingmaterials, with different opti-
cal properties ranging from fairly diffuse to goniochromatic,
weremeasured using both their setup and a goniospectropho-
tometer; both their setup and the goniospectrophotometer
cannot measure retro-reflectance. For BRDF fitting, the
Nelder–Mead down-hill simplex algorithm [34] was used,
driven by a RMS-based error cost function. Their results
show a large relative error, in particular, for the goniochro-
matic print sample, due to the optimisation algorithm often
converging to local minima. In [44], both BRDF models
used have 3 free parameters (enforced in the Cook–Torrance
model by replacing the Fresnel term with a constant). Phe-
nomenological and physically based models with a higher,
yet reasonable amount of free parameters, could provide bet-
ter generalisation properties for packaging materials.

An important line of research is related to defining the
number of measurements needed, that is, finding an optimal
and minimal number of acquisitions to represent a mate-
rial [38]. Xu et al. [51] demonstrated that two image-based
measurements can suffice to estimate a BRDF, under the
assumption that the reflectance lies in the subspace spanned
by the MERL dataset. Their measurement setup used a sin-
gle near-field fixed camera with multiple lighting directions
enabling a simple and fast acquisition method. The need for
reducing the number of acquisitions is not limited to BRDF
acquisition, with more complex reflectance representations,
such as BSSRDFs, presenting additional challenges [13].

2.2 BRDFmodels

The Lafortune model [24] is a generalisation to multiple
steerable lobes of cosine lobe-based models, such as Phong
[40]. The generalisation is achieved using a 3× 3 matrix, in
which the direction vectors are defined to a fixed local coor-
dinate systemwith respect to the surface normal. For a single
specular lobe, the Lafortune model can be written as:

fr (l, v) = ρd

π
+ ρs

[
Cxlxvx + Cylyvy + Czlzvz

]α
. (2)

In the above, ρd and ρs are, respectively, the diffuse and spec-
ular albedo, while Cx , Cy , Cz , and α controls the shape and
orientation of the specular lobe, retro-reflection (withCx ,Cy ,
Cz as positive), and anisotropy (with Cx �= Cy). lx,y,z and

vx,y,z are direction components of the incident (l) and view-
ing (v) direction vectors. Given the six free parameters per
lobe, the Lafortune model is potentially more versatile than
the Ward model, thanks also to the possibility of emulating
the Fresnel effect by using an additional lobe with increas-
ing intensity towards grazing angles. Therefore, it might be
expressive enough to fit complex reflectances, while still
being efficient and following both reciprocity and energy
conversation principles of a BRDF.

Bagher et al. [2] introduced the Shifted Gamma micro-
facet distribution with the Cook–Torrance model. Such a
distribution results in a more accurate reflectance repre-
sentation than the Beckmann distribution. Löw et al. [26]
introduced two isotropic models for accurate and efficient
rendering of glossy surfaces, either based on the Rayleigh-
Rice light scattering theory or on themicro-facet theory; both
models makes use of a modified version of the ABC model
[5,6]. In particular, the micro-facet model introduced in [26]
Eq. (3) is based on the Cook–Torrance model [7]:

fr(l, v) = kd
π

+ S(
√
1 − (n · h)F(θh)G(n · l,n · v)

(n · l)(n · v) . (3)

In Eq. (3), kd controls the diffuse component,G and F are,
respectively, the geometrical attenuation and Fresnel factors
as defined in [7] and given in Eqs. (5) and (6). θh is the half
angle between the normal and the halfway vector h, l and v
are the incident and viewing direction vectors, n is a normal
at a point on the surface. Finally, S is the ABC-based micro-
facet distribution, reported in Eq. (4):

S ( f ) = A
(
1 + B f 2

)C . (4)

In the above equation, B and C , respectively, control the
width of the specular peaks and the fall-off rate of wide-
angle scattering, while A is a scaling factor for the specular
component. Therefore, Eq. (4) represents a non-normalised

distribution. The term f is defined as
√

f 2x + f 2y where

fx = (sin θr cosφr − sin θi) /λ and fy = (sin θr sin φr) /λ. λ
is wavelength of the incident light.

G = min

{
1,

2 (n · h) (n · v)
(v · h)

,
2 (n · h) (n · l)

(v · h)

}
(5)

F = (g − c)2

2 (g + c)2

{

1 + [c (g + c) − 1]2

[c (g − c) + 1]2

}

. (6)

In Eq. (6), c = v · h, g = η2 + c2 − 1 and η is the index
of refraction. In the following, we will refer to the model
described by Eq. (3) as “ABC model”.
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While themodels used in ourwork are all analyticalBRDF
models, it is worth to mention that a large number of sur-
face reflectance representations fall in the data-driven class
[14], that aims at representing measured reflectance data in
a suitable function space, for instance, using factored rep-
resentations [48]. Soler et al. [45] presented a method for
learning a nonlinear manifold of measured BRDFs, starting
from a set of reflectance measurements. The measurements
are mapped into a 2d latent space, in which novel points can
be computed by interpolation and mapped back to the 4d
BRDF measurement space.

2.3 BRDF fittingmetrics

Estimating the optimal set of the parameters for a reflectance
model, given an optimisation algorithm, cost function, and
the measured reflectance data, is a common task required
to extrapolate material BRDF data, for instance, to be used
in rendering. A wide range of different fitting metrics has
been used in the previous work. Lafortune et al. [24] min-
imise the mean-square error of the reflectance multiplied by
the cosine of both the incident and outgoing direction. The
cost function defined by Löw et al. [26] makes use of a loga-
rithmic function, with the understanding that it yields a better
visual reproduction of wide-angle scattering compared to the
previously used metrics [35]. Fores et al. [12] used psycho-
metric experiments to demonstrate that a cube root-based
fitting metric is perceptually more uniform compared to a
RMS error-based metric, and does not depend on the ana-
lytical model used. In recent years, perceptually motivated
metrics have been further explored [41], and they proved to be
useful also in gamut mapping tasks [46]. Recently, Lagunas
et al. [25] used a deep learning architecture with a novel loss
function to learn a feature space that is well correlated with
visual appearance similarity of different materials. Guarnera
et al. [15] proposed the use of a perceptually based image sim-
ilaritymetric, which accounts for both colour differences and
gradient distribution. However, their approach requires ren-
derings of the input material in a specific setting. In general,
the choice of the cost function for fitting is not obvious, and
depends alsoon the sample to bemeasured and the reflectance
model used [26].

3 Method

3.1 Measurement samples

In our paper, we focus our attention on the two flexible
packaging samples reported in Fig. 2. The gold sample is
a metallic gold thin cardboard commonly used for deco-
rative purposes in print and packaging industry, while the
blue-green sample is a packaging paper printed using effect

Fig. 2 The two flexible samples used in our paper, wrapped around a
cylinder, used in our measurement setup

Fig. 3 Colour shift obtained from the spectral radiance factor mea-
surements of the blue-green sample surface when measured at different
viewing directions [44]

pigments and varnish coatings. Both samples are non-diffuse
with the blue-green sample also being goniochromatic. Fig-
ure 3 shows the spectral shift in the blue-green sample with
the change in viewing direction. A Munsell white N9/ sheet
(MW), produced according to the ANSI standards, was mea-
sured along with the gold and the blue-green samples and
used as reference white for bidirectional reflectance calcu-
lations of samples measured with our setup. Along with
the print samples, a metallic paint sample (“Blue Metallic
Paint”—BMP), from theMERLdataset [31], is used to assess
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Fig. 4 Sample measurements: with our setup, we take measurements
at four different illumination directions (θL)

the performance of in-plane BRDF measurements in repre-
senting the appearance of print samples, as opposite to full
BRDF measurements.

3.2 BRDFmeasurement setup

Our measurement setup for flexible samples is schemati-
cally represented in Fig. 4. In order to measure a sample,
this is wrapped around a cylinder of known radius. Each
point on the curved sample surface corresponds to an inci-
dent (θi) and reflection (θr) angle with respect to the surface
normal and incident direction (θL) of the light source in the
setup. Our setup performs in-planemeasurements (azimuthal
angles φi = φr = 0) and the captured image records the radi-
ance (L r (θi, θr)) exiting from the sample surface, expressed
in terms of digital pixel values (R, G, B); the (R, G, B) val-
ues clearly depend also on the per-channel camera sensor
spectral sensitivity (r̄ , ḡ, b̄), other than on the material prop-
erties. Figure 4 (“Top View”) shows a schematic diagram of
our measurement setup. A 16 bit Nikon D200 DSLR camera
was used for the measurements. A film projector, consisting
of a halogen tungsten lamp, was used as the light source.
The radius of the cylinder used is 56 mm, while the distance
between the cylinder and the light source is 1m, aswell as the
distance between the cylinder and the camera. Please refer
to [42] for details about the estimation of the incident (θi)
and reflection (θr) angles; details about the accuracy of our
measurement setup are reported in [43].

The samples were measured at four different illumination
directions (θL = 0◦,−20◦,−30◦, and −40◦) (Fig. 4). In
order to capture retro-reflected light from the sample surface,

θL = 0◦ incident light direction was used during the mea-
surements. Due to practical constraints, it was not possible to
have incident light direction (θL = 0◦) in-planewith the cam-
era as it blocks the camera view. In order to overcome this
limitation, the samples were illuminated at approximately
φL = 4.6◦ (see “Side View” in Fig. 4). Since the azimuthal
angle (φL) is fairly small, we consider these measurements
as approximately in-plane, i.e. with φi = φr = 0◦.

In order to compare our measurements with the ones
from a professional device, the samples were measured
using both our setup and a goniospectrophotometer, the
Murakami’s GCMS-3B [33] (GCMS in the following). The
GCMS records the spectral radiance factor (390–730 nm at
10 nm intervals) at anormal incident (θi) and reflection (θr)
angles in the range of +80◦ to −80◦ at 5◦ intervals. GCMS
uses a tungsten halogen light bulb as a light source and a
silicon photo-diode array as a detector. The sample lays flat
on a plate, which rotates between anormal angles ±80◦ with
respect to the incident light source, the latter normal to the
sample surface; the instrument performs automatic correc-
tion for the change in illumination and viewing area due to
sample rotation. The reference white plate used in the instru-
ment is assumed to be a perfect reflecting diffuser. Therefore,
we calculate its BRDF as β = π fr.

Following the definition of radiance factor [39], the dis-
cussions in [20], and using theMunsell White N9 reflectivity
(78.66%), we calculate the bidirectional reflectance for the
sample as follows:

fr (θi, φi, θr, φr, λ) ≈ 0.79 ∗ πL r (θi, φi, θr, φr, λ)

LPRD
r (θi, φi, θr, φr, λ)

. (7)

In Eq. (7), L r and LPRD
r are radiance at the sample and

the perfect reflecting diffuser (PRD) surface. θ and φ are
the polar and azimuth angles, respectively. Indexes i and r
are incident and reflected radiation and λ is the wavelength.
PRD not being real, in practice, reference white materials
like the spectralon tile that can be traceable to a metrological
reference or a transfer standard is commonly used as a PRD
[19]. We use the MW, which is wrapped around the cylinder
along with the gold and blue-green sample, as a PRD in
Eq. (7).

3.3 BRDF fitting

3.3.1 Choice of the fitting metric

Print samples, such as the ones used in [44], shownon-diffuse
and goniochromatic propertieswhich are challenging to visu-
alise. Due to these complex optical properties, we test two
different fitting metrics. The metric M1, commonly used in
the previous work, is given in Eq. (8). It uses a cos θi assum-
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ing a uniform incoming radiance at the sample surface thus
giving more weight to error in the specular region [35].

M1 =
∑

RGB

√
∑

P

[(
frm (l, v) cos θi

) − (
fre (l, v) cos θi

)]2

P
.

(8)

In Eq. (8), P is the measurement at each pixel and frm and
fre are the bidirectional reflectance measured and estimated
using the reflectance model, respectively. θi is the anormal
incident angle. The cost function M2 as defined by Löw et
al. [26] is able to produce more visually accurate results, and
it is reported in Eq. (9).

M2 =
∑

RGB√
∑

P

[
ln

(
1 + frm (l, v) cos θi

) − ln
(
1 + fre (l, v) cos θi

)]2

P
. (9)

In Eq. (9), similar to the M1 cost function, frm and fre are the
bidirectional reflectance measured and estimated using the
reflectancemodel, respectively, and θi is the anormal incident
angle.

The BRDFs of the print samples, as well as the BMP
sample (from the MERL dataset), were estimated using an
optimal set of BRDF parameters for the two reflectancemod-
els described inSect. 2, Lafortune [24] andmicro-facetmodel
by Löw et al. [26]. The print samples were measured both
using our setup and the GCMS instrument.
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P

Fig. 5 Directional vectors in the coordinate system used in our setup,
with respect to the surface normal at point (P) on the curved sample
surface

3.3.2 Lafortune model

Figure 5 shows the directional vectors of the Lafortune
model, in our setup coordinate system. Since both our setup
and the GCMS instrument perform in-plane measurements,
and the samples used are isotropic (Cx = Cy = Cxy), Eq. (2)
can be rewritten as in Eq. (10), where we report also the nor-
malisation factor used.

frRGB(l, v)

= ρdRGB

π

+ α + 2

2π
[
max

(| Cxy |, | Cz |)]α
[−Cxy sin θi sin θr

+Cz cos θi cos θr
]α (10)

where diffuse (ρd) and specular (ρs) albedo are optimised per
channel. The Lafortune model parameters ρdRGB , ρsRGB ,Cxy ,
Cz , and α were optimised using M1 cost function, Nelder–
Mead down-hill simplex algorithm [34] as the optimisation
tool, and themeasured data from our setup (all θL directions);
additionally, measurements from the GCMS were used for
comparisons.

3.3.3 ABCmodel

Using individual diffuse (ρd) and specular (ρs) component
albedo per channel, the micro-facet ABCmodel from Eq. (3)
can be rewritten as given in Eq. (11) to estimate the sample
BRDF.

frRGB (l, v)

= kdRGB
π

+ SRGB
(√

1 − (n · h)
)
F (θh)G (n · l,n · v)

(n · l) (n · v) . (11)

SRGB is the modified ABC distribution with parameter A (in
SRGB) being used as a scaling parameter per channel for the
specular component albedo and kdRGB is the diffuse compo-
nent albedo.

To find a salient measurement dataset for analytically esti-
mating material BRDF using the micro-facet ABC model,
we performed in total eight optimisations consisting of two
cost functions (M1 and M2), and four different sets of mea-
surements. Three of these sets of measurements represent
different subsets of the measurements made using our setup,
as detailed in the following:

1. Illumination direction θL = 0◦ (which includes retro-
reflective measurements);
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2. Illumination direction θL = {0◦,−40◦} (as in the previous
point, plus one additional direction to further improve the
estimates),

3. All illuminationdirections: θL = {0◦,−20◦,−30◦,−40◦}.

In addition to the above, for each sample, we fitted theGCMS
measurements. As for the BMP sample, in-plane measure-
ments from the MERL dataset were used, testing both the
M1 and M2 metrics.

Estimating an optimal set of ABCmodel parameters using
Nelder–Mead down-hill simplex algorithmproved to be diffi-
cult, as A in (SRGB) is not normalised. Themodel parameters,
kdRGB , ARGB (in S), B, C , and η (in F), were therefore
optimised for the three samples using the M1 and M2 cost
functions and the GA method instead, as detailed in the next
subsection.

3.3.4 BRDF fitting algorithm

Fitting measured BRDF data to an analytical BRDF model
typically implies optimising for the set of parameters
that minimises a given cost function. The cost function,
defined over the range of possible parameter values of the
BRDF model, measures the difference between the acquired
reflectance data and its representation using the selected
model. Optimisation algorithms, such as the Nelder–Mead
down-hill simplex or Powells, may converge to a local min-
imum or a saddle point, rather than finding global minima,
in particular, in the challenging cases involving non-convex
objective functions.

To address this issue, an evolutionary algorithm such as
a GA-based method could be used, in particular, in situ-
ations where a large number of BRDF model parameters
need to be optimised. Due to their applicability both in
constrained or unconstrained nonlinear systems, GA meth-
ods have been successfully used in computer graphics, for
instance, to derive new BRDF models [4], to represent mea-
sured subsurface scattering data in a compact way [23],
to derive and appearance-preserving mapping between the
parameter space of any two arbitrary analytical BRDF mod-
els [15], for application-specific tone mappings [8] and to
estimate unknown illumination spectra in facial appearance
acquisition setups [13].

In the context of BRDFfitting, among the potential advan-
tages, there is an increased probability to have in output a set
of model parameters derived from a global minimum of the
objective function. In fact, GA test a number of different solu-
tions (represented by the population) at any given step of the
optimisation (i.e. generation). Thus, by controlling the pop-
ulation size and the number of stall generations (i.e. number
of consecutive generations that do not lead to an improved
solution), it is possible to converge to more accurate results,
while there is no theoretical guarantee to reach a global min-

imum. Furthermore, GA does not require the user to specify
an initial guess of the parameters, a challenging task due
to the complex effect of the parameters on material appear-
ance [15,36], in particular, in the presence of goniochromatic
materials and model parameters with no clear bounds.

The parameters range has a significant impact both on the
quality of the solution and on the fitting time. This is par-
ticularly true for the ABC model, in which the micro-facet
distribution is not normalised and the parameters controlling
it (A, B, andC) do not have a clear upper bound, as well as the
parameter to control the Fresnel term. To address this issue,
we rely on the fitting results available in the supplemental
material of [26], under the assumption that the reflectances
of our materials lie in the subspace spanned by the MERL
dataset. Similar assumptions about the gamut of the MERL
dataset have been used in the previous work [30,41,51].
Indeed, a wider range of parameters could be used. How-
ever, to the best of our knowledge, this has been done so far
only for the purpose of conducting detailed experiments on
surface appearance perception [49].

In our implementation, with a single panmictic popula-
tion of 100 individuals, parents for the next generation are
selected using the stochastic universal sampling algorithm
[3], children are given by the weighted arithmetic mean of
two parents, where the weight depends on the fitness values
of the parents, and small random mutations are obtained by
enforcing a direction in the change which is consistent with
the last successful generation, with a step length account-
ing for the boundaries derived from the MERL dataset, as
described in the above.

4 Results

Mitsuba 0.6 [21] was used to render the estimated materials
BRDF. To display our results, we used the geometry and
lighting described in Havran et al. [18]. Figures 7, 9, and 11
show the renderings obtained using the optimised reflectance
models, discussed in Sect. 5.

Figure 6 compares the Lafortune model fits parameters
obtained from measurements using our setup (all avail-
able θL directions) and the GCMS instrument. In all cases,
the Nelder–Mead down-hill simplex algorithm converged
to local minima, thus preventing to reach satisfactory fits.
Since the samples are isotropic, it follows that Cx = Cy ,
which causes the BRDF, and hence the cost function, to
assume the same value when {Cxy = ξ,Cz = χ} and
{Cxy = χ,Cz = ξ}, with {χ, ξ} ∈ R (see Eq. 10). Therefore,
fitting only in-plane measurements to the Lafortune model
leads to additional issues and sub-optimal fits. The same con-
sideration applies regardless of the device used to acquire the
in-plane measurements (i.e. GCMS, our setup or the in-plane
only data extracted from the MERL dataset) and the fitting
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(a) Our setup (Gold) (b) GCMS (Gold) (c) Our setup (Blue-Green) (d) GCMS (Blue-Green)

Fig. 6 G-channel gold (a, b) and blue-green (c, d) sample measure-
ments using GCMS instrument and estimation using the Lafortune
model. In a and c, we used data measured with our setup, using all

the available θL directions, whereas in b and d reflectance data was
acquired with the GCMS instrument measurements. In all cases, the
M1 fitting metric was used

Fig. 7 Comparison of the images rendered using the Lafortune model, from measurements obtained with our setup (a, c) and with the GCMS
instrument (b, d). In all cases, the M1 fitting function was used, along with the Nelder–Mead algorithm

(a) Lafortune fit, metric M1. (b) ABC fit, metric M1. (c) ABC fit, metric M2.

Fig. 8 G-channel BMP sample measurements from the MERL dataset and estimated using Lafortune model (a) and ABC model (b, c) derived
from the subset of in-plane MERL data. For the ABC model, we report both M1 and M2 metrics

Fig. 9 “Blue Metallic Paint” (BMP) sample renderings. In a, b, and
c, in-plane data from the MERL dataset are used, while in d the full
BRDF data is used. The limitations deriving from using only in-plane
measurements a–c are noticeable, when compared to the renderings

obtained by fitting the BRDF with a complete set of measurements (i.e.
including out-of-plane data). Depending on the model, the lack of out-
plane-data might result in visible blur (a), or reduced visual contrast
between diffuse areas and specular peaks
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(a) GCMS, metric M1 (b) GCMS, metric M2 (c) GCMS, metric M1 (d) GCMS, metric M2

(e) Our setup ( θL = all),
metric M1

(f) Our setup (θL = all),
metric M2

(g) Our setup (θL = all),
metric M1

(h) Our setup (θL = all),
metric M2

(i) Our setup (θL = 0◦

metric M1

(j) Our setup (θL = 0◦),
metric M2

(k) Our setup (θL = 0◦),
metric M1

(l) Our setup (θL = 0◦),
metric M2

(m) Our setup (θL = {0◦,
−40◦}), metric M1

(n) Our setup (θL = {0◦,
−40◦}), metric M2

(o) Our setup (θL = {0◦,
−40◦}), metric M1

(p) Our setup ( θL = {0◦,
−40◦}), metric M2

Fig. 10 Gold sample (metric M1 first column, metric M2 second col-
umn) and blue-green sample (metricM1 third column,metricM2 fourth
column), fitted using the ABC model. The first row refers to measure-
ments derived from the GCMS instrument; the second, third, and fourth

row refer to measurements from our setup, respectively, using all the
available θL measurements, only θL = 0◦ and θL = {0◦, 40◦}. In all
cases, the plots refer to the G-channel

algorithm. Therefore, in our experiments we did not further
explore the use of the Lafortune model. Figure 7 shows ren-
derings obtained using the Lafortune model.

To assess the quality of the fits achievable using in-plane
BRDF measurements, rather than the full BRDF, we used
the subset of in-plane reflectance data for BMP sample in the
MERL dataset; Fig. 8 reports the results of the experiment,
while Fig. 9 shows the corresponding renderings, including
as a reference the reconstructed appearance of the material
using the whole BRDF data.

Figure 10 compares the fits obtained for the micro-facet
ABC model using the GA algorithm, relying on measure-
ments from the GCMS (first row) and from our setup (second
to last row); Fig. 11 reports the corresponding renderings.

To objectively compare the effectiveness of the measure-
ments used to estimate the BRDF parameters, we used the
relative error (Err), computed using Eq. (12), which accounts
for the maximum value in the measurements. In Eq. (12),
frm represents the measurements obtained using our setup,
fre represents the data estimated using the optimised micro-
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Fig. 11 Gold sample (first and second column) and blue-green sample
(third and fourth column), rendered using the micro-facet ABC model.
The reflectance data is measured using the GCMS instrument (first row)
and using our setup (second, third, and last row). The rather limited res-

olution of the GMSCmeasurements (5◦) fails to capture the appearance
of the material samples, while our setup allows to derive more faithful
results

facet ABC model, and N is the total number of data points
(P).

Err = 1

3

∑

RGB

1

N

∑
P | frm − fre |
max( frm )

. (12)

Figure 12 shows the relative error using different measure-
ment datasets, for both material samples and metrics.

5 Discussion

With reference to Figs. 6 and 7, in-plane measurements were
not sufficient to achieve satisfactory fits for the Lafortune
model, regardless the measurement device used. In fact, the
Cx = Cy condition for isotropic materials, along with the
use of in-plane only measurements, resulted into optimisa-
tion converging to sub-optimal local minima. Even though
the estimated BRDF shows a good fit with the measure-
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(a) Gold sample (b) Blue-Green sample

Fig. 12 Relative error calculated using Eq. (12) between the measured and estimated measurement data using ABC model optimised with different
measurement datasets

ments (Fig. 6), the renderings obtained fail to display the
goniochromatic properties of the sample. Therefore, for some
combinations of surface reflectance and analytical BRDF
model, this represents a limitation of our measurement setup,
since using out-of-plane measurements could result in more
robust estimates. Gold sample renderings (Fig. 7a) show a
greenish colour cast, which we believe is due to the spectral
sensitivity functions (r̄ , ḡ, and b̄) of the camera that was used
as a detector.

As for the micro-facet ABC model, the parameter A of
the micro-facet distribution acts as a scaling factor for the
specular term, thus resulting into a non-normalised distri-
bution. This consideration, along with the lack of a clear
upper bound for all the model parameters, suggested the use
of a GA method to fit the acquired reflectance data, instead
of commonly used optimisation tools. For the print samples
measured in this paper, the micro-facet ABC model, fitted
using our GA method, allows to obtain visually satisfactory
renderings that correctly display non-diffuse and goniochro-
matic properties. However, our setup is able to acquire few
measurements at grazing angles, due to design limitations.
Therefore, the lack of information about surface reflectance
at grazing angle may affect the estimation of the model
parameter related to the material refractive index (η), thus
affecting the quality of the estimated Fresnel effect. A pos-
sible solution would be replacing the cylinder in our setup
with an elliptical surface.

The micro-facet ABC model parameters were derived
from different sets of measurements with our setup, com-
paring the results. In-plane measurements that include the
retro-reflective slice of the BRDF (θL = 0◦), allowed us
to obtain visually satisfactory renderings for the measured

samples (Fig. 11). The inclusion of additional measurements
(θL = −40◦) increases the quality of the renderings, in partic-
ular, for the goniochromatic blue-green sample. The limited
resolution of the GCMS instrument (at 5◦ intervals) fails to
capture the specular and goniochromatic properties. In com-
parison, our setup provides a sparser set of measurements,
locally more dense. In practice, the density of our measure-
ments depends on the cylinder radius on which the sample
is wrapped around, the distance between detector and the
sample, and the resolution of the camera used as a detector.
Performingmeasurements using our setup is also faster com-
pared to measuring using the GCMS instrument, as expected
for an image-based acquisition setup.

With respect to the relative error calculated between the
measurements and estimated data (Fig. 12), the performance
of both M1 and M2 metrics is numerically rather similar. Fits
obtained using the logarithmic cost function (M2) led tomore
realistic renderings, able to faithfully convey the goniochro-
matic properties of the blue-green sample. The difference
between BMP sample rendered using the two different fits
achieved for the ABC model, using the M1 and M2 metrics,
is noticeable (Fig. 9).

6 Conclusion

We characterise the surface reflectance of two print samples
displaying complex optical properties by fitting their BRDF
to commonly used reflectance models. Goniochromatic and
non-diffuse optical properties are rendered using the esti-
mated BRDF.
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In-plane retro-reflective measurements taken with our
setup, along with the GA method as a BRDF fitting tool,
allowed to estimate an optimal set of the reflectance model
parameters. Renderings obtained using the micro-facet ABC
BRDF model show that using just in-plane retro-reflective
measurements is salient enough to render the reflectance
properties of the print samples measured. However, more
measurements led to more accurate renderings, in particu-
lar, for the goniochromatic sample. In-plane measurements
obtained from our setup, as well as from the goniospec-
trophotometer, did not allow to derive satisfactory fits for the
Lafortune model, given its analytical definition for isotropic
materials. We believe out-of-plane measurements would be
required, in order to solve the resulting ambiguities.

Our measurement setup represents a simple and fast
BRDF measurement tool and, along with the GA-based
BRDF fitting, could be used to build upon the existing meth-
ods [11] for acquiring and rendering discrete sparkles for
both isotropic and anisotropic packaging materials, along
with goniochromatism and specularity.
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