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Discrete dynamical modeling shows promise in prioritizing drug combinations for
screening efforts by reducing the experimental workload inherent to the vast numbers of
possible drug combinations. We have investigated approaches to predict combination
responses across different cancer cell lines using logic models generated from one
generic prior-knowledge network representing 144 nodes covering major cancer
signaling pathways. Cell-line specific models were configured to agree with baseline
activity data from each unperturbed cell line. Testing against experimental data
demonstrated a high number of true positive and true negative predictions, including
also cell-specific responses. We demonstrate the possible enhancement of predictive
capability of models by curation of literature knowledge further detailing subtle
biologically founded signaling mechanisms in the model topology. In silico model
analysis pinpointed a subset of network nodes highly influencing model predictions. Our
results indicate that the performance of logic models can be improved by focusing on
high-influence node protein activity data for model configuration and that these nodes
accommodate high information flow in the regulatory network.

Keywords: logic modeling, synergy prediction, high-influence nodes, cell signaling network, drug combination

INTRODUCTION

Drug combinations are anticipated to advance cancer therapy by targeting multiple trajectories
of the complex signaling crosstalk regulating cancer cell fate (Al-Lazikani et al., 2012; Hyman
et al., 2017; Senft et al., 2017). Drug combinations may act synergistically and postpone the
emergence of resistance. Empirical testing of limited numbers of drug combinations has already
led to the discovery of several proven and promising drug combinations. These include the
well-established use of MEK inhibitors in combination with BRAF inhibitors in melanoma patients
(e.g., trametinib and dabrafenib) (Larkin et al., 2014; Robert et al., 2015; Long et al., 2016), or
cyclin-dependent kinase 4/6 inhibitors (e.g., palbociclib) in combination with anti-estrogen therapy
in breast cancer (Cristofanilli et al., 2016). However, due to the vast number of possible drug
combinations, it is not feasible to efficiently and economically test the combinatorial drug space
exhaustively. For example, in the Broad Institute’s Drug Repurposing Hub (Corsello et al., 2017) 128
compounds are currently annotated in the disease area oncology. Testing these compounds in pairs
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would result in 8128 combinations. This combinatorial explosion
poses a bottleneck to the discovery of novel synergistic
drug combinations.

In recent years, logic models have been successfully applied
to predict drug responses and to prioritize drug combinations
(Klinger et al., 2013; Miller et al., 2013; Flobak et al., 2015;
Vitali et al., 2016; Eduati et al., 2017; Silverbush et al., 2017)
including a recent application of patient-specific models (Eduati
et al., 2020). These models build on a vast amount of signaling
knowledge that has been uncovered over the years and archived
in several databases like KEGG (Kanehisa and Goto, 2000),
Reactome (Fabregat et al., 2018), or SIGNOR (Perfetto et al.,
2016; Licata et al., 2019). However, annotated interactions suffer
from study bias. For well-studied proteins often a multitude of
functions have been described and many interactions have been
annotated. Consequently, these proteins may appear as hubs,
while interactions for other proteins are less well documented
(Invergo and Beltrao, 2018). The use of perturbation data for
model training (Klinger et al., 2013; Miller et al., 2013; Eduati
et al., 2017; Silverbush et al., 2017) overcomes some of the
challenges related to gaps in signaling knowledge by addition
or removal of signaling influences as well as providing context
specificity. However, such experiments are time-consuming
and substantially increase the experimental load. Additionally,
explorative perturbation studies are difficult to realize in a
clinical setting. Thus, approaches enabling the use of logic
modeling without this kind of training data might help us employ
modeling approaches for pre-clinical and clinical applications
at a later stage.

Few studies, excluding strictly statistical models, have
investigated the use of baseline molecular data for cell-specific
model calibration, e.g., molecular data like gene-expression solely
from an unperturbed system (Flobak et al., 2015; Silverbush et al.,
2017; Béal et al., 2019). Silverbush et al. (2017) used their model,
initially informed with perturbation data to a specific cell line, to
predict combinations for another cell line using only mutation
data, validating the majority of the predicted combinations. In
a recent DREAM challenge (Menden et al., 2019), participating
teams used different machine-learning techniques to predict
combination effects for 910 drug combinations using baseline
molecular data across multiple cancer cell lines from different
origins. In contrast, Jaeger et al. (2017) have explored the use
of a generic signaling network without incorporating any cell-
specific activity data. They reported a strong correlation between
molecular features, such as mutations status and molecular
subtype, and synergy strength in their validation data set,
suggesting that predictive models can be generated without
depending on perturbation data for model training.

A challenge in generating these models using only baseline
data arises from the difficulty to correctly assess activity
profiles for cell line components. It has been previously shown
that a combination of different data types is beneficial in
predicting drug responses (Iorio et al., 2016). While genomic and
transcriptomic data are often abundantly available, proteomics
and in particular phosphoproteomics data is much less available,
although it might allow a more direct assessment of protein
activity. As the challenge of understanding and translating these

data into activity states for logic model calibration remains, only
a limited amount of signaling components can be accurately
assessed for their activity, thus calling for explorations that can
provide guidelines as to which proteins should be probed for
model calibration.

For a useful and ready application of logic modeling in
a pre-clinical and clinical setting, it is necessary to enable
high-quality predictions for a wider range of systems, such
as complete cell line panels. In this study, we therefore set
out to investigate the use of a single signaling knowledge
network to predict synergistic drug combinations for four
cancer cell lines derived from gastric, colorectal or prostate
cancer, by calibrating the general model to cell-specific models
using their baseline activity data. In addition, we investigated
how specific model features impacted the predictive power
of these models. Predictions were tested against our recently
performed drug combination screen data (Flobak et al., 2019).
Our results show that model calibration with a protein activity
profile combining information from literature-curated and
omics-inferred data increases predictive sensitivity. Network
refinements based on literature knowledge accounting for subtle
biologically founded mechanisms improve the model’s predictive
performance. Further, in silico exploration indicates that nodes
with high betweenness centrality and closeness centrality, and
whose removal reduces network efficiency, have a higher
influence on predictions. This can provide a prioritized list of
signaling entities whose activity must be correctly assessed for
model calibration.

MATERIALS AND METHODS

Testing Data
Drug combination data for model testing was obtained from
our previously performed high-throughput screening (Flobak
et al., 2019). The following cancer cell lines were the focus of
this study: AGS (gastric adenocarcinoma), COLO 205 (colorectal
cancer), DU-145 (prostate cancer), and SW-620 (colorectal
cancer). Drug combination effects were classified as synergistic or
non-synergistic according to Highest Single Agent model (HSA).
The HSA model assumes synergy if the effect of a combination
is greater than that achieved by any of the single drugs alone
(Berenbaum, 1989). For this, the HSA excess was calculated as
Viability(Drug A + Drug B) − min[Viability(Drug A, Drug B)].
Combinations with mean HSA excess across doses of ≤−0.11
were classified as synergistic. Among the 19 drugs tested in
all combinations, we observed that the SF inhibitor (targeting
PTEN) was involved in the majority of observed synergies.
Due to further lack of good characterization of this inhibitor
for off-target effects against other kinases, we excluded it from
further study. Hence, the testing set included 153 pairwise drug
combinations from 18 inhibitors (Table 1).

Construction of Regulatory Network –
CASCADE 2.0
The published prior knowledge network (PKN) for the
adenocarcinoma cancer cell line AGS (Flobak et al., 2015)
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TABLE 1 | List of inhibitors.

Colloquial name Abbreviation Inhibitor Primary HGNC target(s) Node in network PubChem CID

MAP3K7i 5Z (5Z)-7-oxozeaenol (LL-Z1640-2) MAP3K7 MAP3K7 9863776

AKTi AK Akt Inhibitor VIII (AKTi-1,2) AKT1, AKT2, AKT3 AKT_f 135398501

MAPK14i BI Doramapimod (BIRB0796) MAPK14 MAPK14 156422

GSK3i CT CHIR 99021 (CT99021) GSK3A, GSK3B GSK3_f 9956119

MEKi PD PD0325901 MAP2K1, MAP2K2 MEK_f 9826528

PI3Ki PI PI-103 PIK3CA, PIK3CB, PIK3CD PIK3CA 9884685

CTNNB1i PK Toxoflavin (PKF118-310) CTNNB1 CTNNB1 66541

JNKi JN JNK-IN-8 (JNK Inhibitor XVI) MAPK8, MAPK9, MAPK10 JNK_f 57340686

RSKi D1 BI-D1870 RPS6KA1, RPS6KA3, RPS6KA2, RPS6KA6 RSK_f 25023738

IKBKBi 60 BI605906 (BIX02514) IKBKB IKBKB 23652660

JAKi RU Ruxolitinib (INCB18424) JAK1, JAK2 JAK_f 25126798

TGFBRi SB SB-505124 TGFBR1, ACVR1B, ACVR1C TGFBR1, ACVR1C 56924523

CK1i D4 D4476 CSNK1D, TGFBR1 CK1_f, TGFBR1 6419753

MYCi F4 10058-F4 MYC MYC 1271002

STAT3i ST Static STAT3 STAT3 2779853

PDPK1i G2 GSK2334470 PDPK1 PDPK1 46215815

ROCK1i G4 GSK 429286 ROCK1 ROCK1 11373846

SYKi P5 PRT 062607 (P505-15) SYK SYK 44462758

Colloquial name indicates names for inhibitors used throughout the paper to improve the readability of the article. For computational analysis, inhibitors were identified
using the indicated abbreviation.

was manually extended using SIGNOR (Perfetto et al., 2016),
KEGG (Kanehisa and Goto, 2000), and relevant recent scientific
publications (PubMed), to cover the 18 proteins targeted by
small-molecule inhibitors (Table 1). Specifically, the KEGG
database (Kanehisa and Goto, 2000) was used to extract proteins
relevant to generic signaling pathways. Focusing on drug targets,
the PKN was extended with signaling knowledge obtained from
scientific literature. Each protein was either named after its
official gene symbol or with its official genesymbol_f (i.e., AKT_f)
if several isoforms are represented by a single node in the model
(“f” stands for family); with its official genesymbol_g if the
node represents a gene; or with symbol_c if the node represents
a protein complex. Nodes informative of cellular phenotypes
related to cell growth were identified and linked to the two
output nodes “Prosurvival” and “Antisurvival.” This enabled
the quantification of the effect of drug treatment simulations.
All network and model constructions were done using GINsim
(Naldi et al., 2009). Annotated regulatory interactions can
be found in cascade_2.0.tsv at https://github.com/druglogics/
cascade. Figure 1 was generated using Cytoscape 3.7.1 (Shannon
et al., 2003) by grouping nodes by primary pathways from
KEGG (Kanehisa and Goto, 2000), via DAVID analysis (Huang
et al., 2009a,b), and Reactome (Fabregat et al., 2018). Nodes
were associated with manually defined consensus pathways from
these resources.

Model Calibration and Simulation
The nodes in the regulatory network are connected by signed
and directed interactions, representing activating or inhibiting
regulatory events. Logical formalism was used to describe the
regulatory rules of the network, defining the activity of each node
by its upstream regulator using the Boolean operators AND, OR,

and NOT, respectively, represented with &, |, and ! in the notation
of the rules. Generally, all activating or inactivating regulators
of nodes were linked by OR, while activators and inactivating
regulators were combined by AND NOT. Exceptions from these
rules were made for complexes or proteins acting in combination
to activate a downstream node (Supplementary Table 2). All
nodes except for the two phenotypic output nodes Prosurvival
and Antisurvival can occupy the two Boolean states 1, describing
an active node, or 0, describing an inactive node. The two output
nodes were assigned the value multi-level values 0, 1, 2, or 3
(Supplementary Table 1). We note that after model refinement
also the node FOXO_f was multivalued.

Additionally, the following generic rule had to be adjusted to
compute a stable state and stop state oscillation in the model:

MAPK14 = MAP2K3 |MAP2K4 | !DUSP1

This means that MAPK14 is more likely to be active.
Specifically, MAPK14 will be active in the model if:

(1) MAP2K3 and/or MAP2K4 are active despite active
DUSP1.

(2) MAP2K3 and MAP2K4 are inactive and DUSP1 is
inactive.

For the generation of cell line-specific models, we next
collected molecular activity information for the four cell lines
addressed in the present study: the gastric adenocarcinoma AGS,
the colorectal COLO 205 and SW-620, and the prostate DU-145
cancer cell lines. For each cell line, we generated three different
sets of baseline activity data.

(1) Omics-inferred activity profile: using the pathway activity
inference algorithm PARADIGM (Vaske et al., 2010),
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FIGURE 1 | Prior knowledge network – CASCADE 2.0. Drug targets are highlighted in yellow boxes. Model outputs are indicated in turquoise. Nodes are linked by
directed and signed interactions: green arrows denote activation; red arrows denote inhibition; blue arrows denote dual interaction. (A) Complete PKN. Nodes are
categorized by primary pathways determined by KEGG (Kanehisa and Goto, 2000) and Reactome (Fabregat et al., 2018) (see section “Materials and Methods” for
details). (B) Reduced PKN showing topology of generic logical model reduced by GINsim model reduction for drug target and output nodes. Nodes representing a
family, a complex of proteins or a gene are annotated with “_f”, “_c,” and “_g”, respectively. Nodes additional to previously published PKN (Flobak et al., 2015) are
indicated with thick black borders.

protein activity was inferred from cell line copy number
variations and gene expression data obtained from the
Cancer Cell Line Encyclopedia (Barretina et al., 2012).

(2) Literature informed activity profile: PKN node protein
activity was collected from protein activity observations
described in the scientific literature.
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(3) Combined activity profile: since different sources for
protein activity data may complement each other, and
even do not always agree (Costello et al., 2014; Iorio et al.,
2016), we generated a third set of baseline activity data
by integrating the omics-inferred and literature-derived
observations, where we prioritized literature-derived over
omics-inferred activity states.

Cell-specific models were generated by modifying the general
Boolean rules until nodes in the stable state of the model
represented the given activity profile. First, nodes that were
inactive in the stable state but supposed to be active according
to the baseline data were subjected to this rule change to increase
their chance of being active. In the first round, this only applied
to nodes for which also the respective negative regulators of
the node were active according to the baseline data. In the
second round, negative regulators of nodes that were active in the
computed stable state but supposed to be inactive were subjected
to this rule change to inactivate the node of interest. These steps
were repeated until the stable state of the model agreed with
the baseline activity data. Thus, the resulting cell line models
were derived from the same PKN but constituted by different
logic rules. Modifications were done following the principle of
Occam’s razor, where few changes were prioritized over many
changes. For details regarding baseline activity data, model
calibration and modified rules, see Supplementary Text S1 and
Supplementary Tables 4–11.

Simulation of the model was performed with the software
GINsim (Version 2.9.4) (Naldi et al., 2009), as described in Flobak
et al. (2015). Drug perturbations were simulated by fixing the
activity of nodes representative of drug targets to 0 and observing
changes to the steady state behavior of the model. The outcome
of single and double perturbations in the model simulations
was assessed by measuring their effects on Viability, where
Viability was calculated by subtracting the simulated output
value of the Antisurvival output node from the output value
of the Prosurvival node. A combination (double perturbation)
that decreased Viability more than each single drug alone was
classified as synergistic.

To enable simulations of perturbations when no stable state
could be reached, the model was reduced using the model
reduction algorithm provided by GINsim (Naldi et al., 2009),
retaining the nodes targeted by our drugs of interest, the two
output nodes, and nodes involved in self-loops that could not be
removed. The initial states of the remaining nodes were first set
to zero. A hierarchical transition graph was computed to analyze
the effect of the perturbation on the phenotypic output nodes.

To evaluate model performance, we additionally computed
the chance of obtaining the predicted number of True Positives
(TP), False Positives (FP), True Negative (TN), and False
Negatives (FN) by randomly selecting the predicted number
of synergies per model and comparing it to the validation set
(N = 100,000).

Baseline Activity Data
A literature-derived baseline activity profile was collected for
SW-620, AGS, COLO 205, and DU-145 cells by reviewing

published articles by searching in PubMed for [Node] [Cell
line], as in Flobak et al. (2015). For the AGS cell line,
we reused the previously collected protein activity described
in Flobak et al. (2015). The tool PARADIGM was used to
infer the state of proteins from copy number variations and
gene expression data from Cancer Cell Line Encyclopedia
(degree = 7) (Vaske et al., 2010; Barretina et al., 2012),
generating omics-inferred activity profiles. The combined
activity profile was built by overlaying the omics-inferred
activity state with the literature-derived activity state, giving
priority to literature-derived data whenever in conflict with the
omics-inferred state.

Evaluation of Model Performance
Model-generated predictions were classified as TP, FP, TN and
FN, by comparing the predicted synergies to the observed
synergies in our drug screen (Flobak et al., 2019). To
evaluate model performance, we have calculated a list of
parameters. Matthews’s correlation coefficient (MCC) is a
metric giving an overall impression on model performance
accounting for unbalanced data (Chicco, 2017). Sensitivity
was calculated as TP/(TP + FN) evaluating how many
of the observed synergies we can predict. The positive
predictive value calculated as TP/(TP + FP) evaluates how
many of the predicted synergies are TPs. The negative
predictive value calculated as TN/(TN + FN) evaluating
how many of the combinations not predicted to be
synergistic are TNs.

Model Refinement
Model refinement was guided by biological insights that
potentially underly false negative predictions. For this, the
literature was searched for biological mechanisms regarding
investigated drug combinations and for molecular mechanisms
of single drugs that could explain single drug effects. We
investigated reported signaling crosstalk between pairs of
proteins targeted by drugs observed to act synergistically
but lacking model synergy prediction. We focused on
strategies relating to “shortest path” connections and
logic rules. A summary of performed changes is listed
below, while an extensive description can be found in the
Supplementary Text S1.

(1) FOXO_f regulation and activity.
This was motivated by biological insights that could underlie
the false negative prediction of MAPK37 inhibitor (5Z) with
the PIK3CA inhibitor (PI) in the AGS cell line model.

(a) The logic rule defining FOXO_f was adapted to cover an
activity of 0, 1, or 2, depending on whether one or both
regulators, NLK or AKT_f, is active or inactive.

(b) The edge from CK1 to FOXO_f was removed, giving
priority to the kinases that have been reported to
distinctly regulate FOXO1’s nuclear exclusion (Kim et al.,
2010; Mendes-Pereira et al., 2012; Monsalve et al., 2015).

(2) PDPK1 and PIK3CA signaling in PKN.
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This was motivated by false negative prediction of the PDPK1
inhibitor (G2) with the PI3KCA inhibitor (PI) in the AGS and
SW-620 cell line model.

(a) PDPK1 is now positively regulated by RTPK_f,
representing active PDPK1 when growth signals are
present and independent of active PIK3CA (Mora et al.,
2004; Anjum and Blenis, 2008).

(b) Joint regulation of AKT_f by PDPK1 and PIK3CA is
now represented by the inclusion of a new node PIP3,
jointly activated by PDPK1 and PIK3CA and inhibited
by PTEN. The logic rule for AKT_f was changed to
[(mTORC2_c | ILK) & PIP3] & !PPP1CA.

(c) To represent reduced potency of the G2 inhibitor
(Knight, 2011; Najafov et al., 2011) in the presence of
high PIK3CA signaling, the rule for PIP3 was further
modified for cell lines with high PIK3CA inferred from
single drug viability data.

(d) The logical rule for S6K_f was modified to reflect effective
downregulation upon exposure to the G2 inhibitor.

(e) RSK_f is now active upon the presence of both PDPK1
and ERK_f (Anjum and Blenis, 2008).

(3) mTORC1/S6K and MYC signaling in PKN.
This was done to more directly link mTORC1/S6K signaling
to the Prosurvival output.

(a) A new node MXD1 was included, negatively regulated by
both RSK_f and S6K_f, negatively regulating Prosurvival
via inhibition of MYC (Zhu et al., 2008).

Evaluation of High-Influence Nodes
The identification of high-influence nodes in the four cell
lines models has been studied by sequentially perturbing (i.e.,
creating a mutation for) each node whose activity is then either
fixed (measured activity in model) or inverted (1 – measured
activity in model). In each case, this generates a mutated model
that is subsequently analyzed: additional mutations are applied
to each mutated model, corresponding to single drug target
perturbation or a combination of two drug targets perturbation,
resulting in 2∗(fixed model | inverted model) ∗ 144∗ (nodes) ∗
171 (drug combinations) mutated models to test for each cell
line. Using the bioLQM library (Naldi, 2018), stable states are
computed for each mutated model and results are compared
with the WT model (non-mutated model), for which stable states
have also been computed. Similar to the simulation method
used before (see section “Model Calibration and Simulation”),
each mutated model for a particular drug combination was
assessed with a synergy prediction (TP, TN, FP, and FN).
The influential character of a node is assessed by monitoring
whether the fixation or the inversion of its activity changed
the synergy predictions compared to the WT analysis. By
quantifying the sum of changes in synergy predictions, e.g.,
number of TP gains, number of TN gains, we rank each node
in each cell line: the higher the number, the more changes
occurred in the mutated model, providing a measure for node
influence. All files are available in https://github.com/druglogics/
influential-nodes.

Identification of High-Influence Node
Features
To determine node features that are characteristic of
high-influence nodes, we used them in a Random Forest
classifier (randomForest R package version 4.6-14). This
classifier provided the Gini importance metric, which measures
how useful each feature is in making the classification into
high and low influence nodes. We conducted a batch of
experiments considering separately the different types of
features (numeric, pathways, etc.), whether the nodes were
of high-importance in a particular cell line, in all cell lines,
or in any cell line. The analysis was run with both balanced
and unbalanced data in terms of nodes in each of the two
classes. Similar results were obtained both with unbalanced and
balanced data. The code for this batch analyses can be found
in https://github.com/druglogics/influential-nodes/tree/master/
taskNodeAssessment/results/randomForest.

Analysis of High-Influence Nodes to
Investigate Putative Synergy
Mechanisms
Potential drug synergy mechanisms were investigated
in subgraphs containing high-influence nodes for drug
combinations of interest. For this, nodes whose inversion
or fixation lead to a complex attractor were excluded from the
analysis. In contrast to a stable state where all nodes remain
fixed in their activity, a complex attractor is defined by all or
some nodes oscillating in their activity (Zañudo and Albert,
2013). After obtaining a combination- and cell line-specific list
of high influential nodes, a subgraph of the complete network
was generated to obtain the perturbated pathway structures.
Next, the furthest downstream nodes of the subgraph (nodes
without outgoing edges) were used to obtain nodes whose
activity is altered by additional fixation or inversion of those
influential nodes upon simulation of drug combination effects.
These nodes were added to the subgraph structure, while all sink
nodes, excluding output nodes, were removed. The analysis was
performed using R version 3.5.3 and tidyr (0.8.3), dplyr (0.8.1)
and igraph (1.2.4.1).

RESULTS

Calibration of a Comprehensive PKN
With Information From Literature and
Omics Data Enables Drug Synergy
Predictions
We set out to build a logic model that can be used to predict
drug combination responses. Specifically, the model was designed
to enable predictions for 153 drug combination responses of 18
drugs obtained in our recent cancer cell line screen (see Flobak
et al., 2019 and Materials and Methods). With this strategy, the
final model predictions for each drug combination could be tested
against observations from our previous in vitro study to assess
prediction quality. In brief, to represent the signaling crosstalk
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between proteins targeted by each single drug, we expanded
our previously published PKN developed for predicting the
response to seven drugs and their combinations in the AGS
gastric adenocarcinoma cell line (Flobak et al., 2015) to represent
or increase signaling coverage for the additional 11 drug targets.
The constructed PKN (Figure 1) represents a comprehensive
signaling network of 144 nodes and 366 interactions. The
expansions (Figure 1A, nodes with thick black borders) include
entire pathways (TGF beta-, JAK- STAT-, and Rho GTPase-) and
substantial augmentation of several other pathways.

To enable logic rule fine-tuning and calibration to cancer cell
line-specific models, the PKN was first translated into a generic
Boolean model capturing the dynamics of the network. Cell
line-specific models were generated by calibrating the PKN to
each of the three sets of protein activity data (see “Materials and
Methods” section for details).

(1) Omics-inferred activity profile: this approach yielded
activity state suggestions for the majority of nodes
for all cell lines.

(2) Literature informed activity profile: this enabled estimation
of activity states of 21, 9, 41, and 26 nodes for the AGS,
COLO 205, DU-145, and SW-620 cells, respectively.

(3) Combined activity profile: this approach yielded activity
state suggestions for the majority of nodes for all cell lines.

To assess the capacity of our models to correctly predict
cell line-specific synergistic drug combinations, we compared
simulated cell survival to observed outcomes in our large
experimental screen (Flobak et al., 2019) (see section “Materials
and Methods” for details). We focused our analysis on the
effect of the different protein activity data sets on model
performance for two of the cell lines: AGS and SW-620. Overall,
we found that combining literature-derived and omics-inferred
activity profiles produced models with a higher (AGS) or the
same (SW-620) number of true positive predictions, compared
to models informed with the omics-inferred activity profile,
and fewer false positives than literature-informed models (see
Supplementary Text S1 and Supplementary Figures 2, 3). These
models were thus better suited for guiding preclinical screening
efforts since fewer false negative synergy predictions resulted,
while no true positive predictions were lost. If the experimental
screen had omitted to test all drug combinations predicted to be
ineffective, the number of combinations for AGS cells could have
been reduced from 153 to 10, while still discovering 5 of the 15
observed synergistic drug pairs.

Network and Model Refinement Improve
Predictions of Efficient Drug
Combinations
When prioritizing drug combinations for screening, ideally
one would not want to miss possibly effective combinations
by having false negatives. One possible explanation for the
low sensitivity from our initial set of models is that causal
interactions covered in existing knowledge databases, e.g.,
SIGNOR (Perfetto et al., 2016; Licata et al., 2019) and
KEGG (Kanehisa and Goto, 2000), are incomplete and lack

context under which different interactions occur. Since signaling
knowledge is likely to be more exhaustively represented in
scientific literature than in databases, we started a series of
refinements to increase the predictive power of our models.
For this we adjusted the signaling network and logic rules
informed by careful investigation of signaling information in
scientific literature, aiming at better recapitulating the underlying
biological mechanisms for the studied cell lines. A total of
seven network modifications were made. A summary of changes
is shown in Figure 2 (see section “Materials and Methods”
for a more comprehensive description and Supplementary
Text S1 for details).

To evaluate whether the model refinements resulted
in improved performance, we generated AGS- and
SW-620-calibrated versions of the refined model and performed
new drug simulations. As illustrated in Figure 3, the refined
model generated more true positive predictions for AGS and
SW-620 cells compared to the pre-refinement models. For
example, drug combinations involving the MAP3K7 inhibitor
could now correctly be predicted to be synergistic in AGS
cells. The SW-620 model now predicted additional synergistic
combinations involving the PI3Ki. Overall, the decrease in
false negative predictions makes the model more suitable for
economizing preclinical screening efforts.

To investigate the performance of our model for other cancer
cell lines, we performed simulations for two additional cell
lines: COLO 205 and DU-145. For this, cell-specific models
were calibrated to the combined baseline protein activity
profiles. Comparing the overall performance of the four cell
line-specific models (Table 2), we observed that the AGS cell
line model showed highest sensitivity of observed synergies. All
models showed improved positive predictive value compared
to random prediction performance, indicating an increase in
truly synergistic combinations among predictions compared to
random guessing (Table 2). Low performance of the COLO 205
model could be attributed to the scarcity of literature-reported
protein activity data or the prior network not optimally
representing all relevant signaling mechanisms involved in the
tested drug responses in this cell line. Prediction performance
in our study, with an overall balanced accuracy of 0.64 and
cell line-specific balanced accuracy ranging from 0.73 to 0.51
for our best and worst performing model, is comparable to the
balanced accuracy achieved in the recent DREAM challenge,
with an overall average balanced accuracy of 0.63, and the best
performing individual team obtaining a balanced accuracy of 0.69
(Menden et al., 2019).

Model Predictions Enable Reduction in
Experimental Load
Next, we tested how our model predictions fared against all
experimentally characterized drug combinations (Flobak et al.,
2019). Of 153 possible pairwise drug combinations tested, on
average 8% of combinations were observed to be synergistic
in the four cell lines. In contrast, a screen of only the drug
combinations predicted to be effective by our current models
would have increased this drug screen efficiency to 47% for AGS,
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FIGURE 2 | Network and model refinements. Added edges are indicated in green, while removed edges are indicated in orange. For new edges or changes to
Boolean rules, the Boolean operator describing the activity of a node is indicated in circles. Nodes representing family or a complex of proteins are indicated by “_f”
and “_c”, respectively. For example: FOXO_f regulation and activity was modified by changing the logic rule defining FOXO_f to cover an activity of 0, 1, or 2,
depending on whether one or both regulators, NLK or AKT_f, is active or inactive, and by modifying the topology with the edge from CK1 to FOXO_f removed, giving
priority to the kinases that have been reported to distinctly regulate FOXO1’s nuclear exclusion (Kim et al., 2010; Mendes-Pereira et al., 2012; Monsalve et al., 2015).
See Section “Materials and Methods” for a full description of these changes.

FIGURE 3 | Comparison of predictions pre- and post-refinement of the PKN and model using the combined activity profile. Figures show prediction improvements
after refinement for (A) AGS and (B) SW-620 model. Numbers in dots indicate observations for true positives (TP), false negatives (FN), and false positives (FP).
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TABLE 2 | Synergy predictions for AGS, SW-620, COLO 205, and DU-145 cells using the refined PKN.

Refined model AGS SW-620 COLO 205 DU-145

Prediction Random Prediction Random Prediction Random Prediction Random

TP 8 1.8 4 1.8 1 0.8 3 1.6

FN 7 13.3 5 7.2 7 7.2 14 15.4

TN 128 121.7 117 114.8 131 130.8 125 123.6

FP 9 15.3 26 28.2 14 14.2 11 12.4

Sensitivity [%] 53.3 11.2 44.4 19.8 12.5 9.8 17.6 9.1

PPV [%] 47.1 9.9 13.3 5.9 6.7 5.2 21.4 11.1

NPV [%] 94.8 90.1 95.9 94.1 94.9 94.8 90.0 88.9

MCC 0.44 0.00 0.16 0.00 0.02 0.00 0.10 0.00

Models were informed using combined activity data. TP, true positive; FN, false negative; TN, true negative; FP, false positive; PPV, positive predictive value; NPV, negative
predictive value; MCC, Matthews’s correlation coefficient. Random – expected average count for respective values by chance when selecting the number of predicted
synergistic combinations from the pool of possible drug combinations (n = 100,000).

FIGURE 4 | Predictive performance of cell-specific models. (A) Percentage of synergies across all tested combinations (undirected, n = 153) vs. combinations
predicted to be synergistic (directed, nAGS = 17, nCOLO205 = 15, nDU−145 = 14, nSW−620 = 30). (B) Predictions across different cell line models. True negative
predictions across all cell lines are not shown (n = 107). True predictions are indicated by thick frame borders (black frames for true positives, and gray frames for
true negatives). Abbreviations: true positive (TP), false positive (FP), true negative (TN), and false negative (FN). Color fill: light blue – negative predictions, dark blue –
positive predictions, gray – NA.

and efficiencies for DU-145, SW-620, and COLO 205 would
have been 21%, 13%, and 7%, respectively (Figure 4A). In other
words, for three of the cell lines, experimental testing of drug
combination effects guided by logic model predictions would
have substantially reduced the need for an exhaustive drug screen
to discover a high percentage of synergies. Overall, we find
that the number of combinations to be experimentally tested
could have been reduced to 12% (76 of 612 combinations + cell

lines) and thereby increasing the detection rate of synergies
2.6-fold, from 8 to 21%.

To gain more insight into cell line-specific drug combination
predictions, we systematically compared predictions across the
four cell lines as well as their agreement with the drug
combination response. As illustrated in Figure 4B, of 34
combinations predicted to be synergistic by at least one of the
cell-specific models, six are predicted by all models and nine
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combinations are predicted for three of the tested cell lines.
Specifically, the model correctly identifies the joint targeting
of the PI3Ki and PDPK1i as synergistic in AGS, DU-145,
and SW-620 cells and non-synergistic in COLO 205. Of note,
several of true positive synergy predictions involve drug targets
jointly targeting the PI3K-AKT and MAPK-signaling pathway
such as combined targeting of RSK and PI3K. Of the observed
synergistic drug combinations, 12 are never predicted by any
of the cell models, indicating possible knowledge gaps. This
includes any of the synergistic combinations involving JNKi
and GSK3i. However, in several cases, synergies missed in one
cell line are correctly predicted by other cell line models. This
suggests that the underlying signaling graph encompasses the
relevant interactions and components to cover these combination
effects, while the cell model-specific logic rules might not always
optimally represent the investigated cell line. This observation
could result from the calibration data not containing the correct
signaling activities, thus asking for node identification for which
high-quality activity state data is highly desired.

Identification of High-Influence Nodes
Enables Improved Prediction Qualities
We next set out to examine the importance of correct node
activity assessment, specifically posing the question of whether
the correct assessment of activity for some nodes matter more
than others. Inspired by previous publications exploring the
identification of high-influence nodes (Gao et al., 2014; Puniya
et al., 2016; Campbell et al., 2017; Pentzien et al., 2018; Rozum
and Albert, 2018; Yang et al., 2018) as well as by the concept of
target control in network biology, assuming that only a subset of
nodes control the system (Gao et al., 2014; Yang et al., 2018), we
pursued the goal to identify such nodes in our network as well
as features that identify them. For each node we iteratively fixed
its activity both at its stable state activity value and after activity
inversion followed by computation of new synergy predictions.
For each cell line model, we recorded all nodes whose inversion
or fixation either changed any of the predictions or resulted
in a system attractor where some nodes would cycle between
activity and inactivity (i.e., in a complex attractor). Both node
classes were designated to be high-influence nodes (see “Materials
and Methods” section). Specifically, 56, 54, 83, and 82 nodes
were classified as high influence nodes for the AGS, COLO
205, DU-145, and SW-620 model, respectively (Figure 5A). This
corresponds to one to two thirds of all nodes in the model. The
36 high influence nodes shared by all cell lines include oncogenes
KRAS, BRAF and the Wnt-signaling component CTNNB1. For
38 nodes, inversion or fixation did not affect predictions in any of
the cell lines. Taken together, our results support the hypothesis
that a subset of nodes may be most decisive for the state of the
model (Gao et al., 2014; Puniya et al., 2016; Campbell et al., 2017;
Pentzien et al., 2018; Rozum and Albert, 2018; Yang et al., 2018).

We next set out to investigate whether the use of baseline
protein activity calibration data could be restricted to only
high influential nodes. For this, we calibrated new models for
each cell line using the combined baseline protein activity data
for only the top 36 cell model-specific high-influence nodes.

Of these, 8 high-influence nodes were shared among all cell
lines, while 4, 2, and 12 nodes were distinct for AGS, COLO
205 and SW-620, respectively (Supplementary Figure 4). For
comparison, we calibrated models for each cell line where we
only used protein activity data for the 38 nodes identified as
non-influential in all the cell line models (see Supplementary
Text S1). Figure 5B shows predictions for these two new sets
of models alongside predictions from the models calibrated to
the complete baseline data. We find that models generally show
equal or better performance when calibrated to high-influence
nodes compared to either the complete set of baseline activity
data or to low-influence nodes. Thus, our results indicate that
acquisition of model calibration data can focus on a subset
of nodes identified to be of high influence using a simulation
approach as presented here.

To enable classification of nodes that are of high influence
for the quality of model predictions prior to computationally
exhaustive simulations, we investigated different node features.
We annotated all nodes in the refined model for their structural
network characteristics including betweenness centrality,
out-degree and pathway cross-talk inhibition index (PCI), the
latter quantifying the relative reduction of network efficiency
(Latora and Marchiori, 2007; Jaeger et al., 2017). A complete
list of analyzed network features is available in Supplementary
Text S1. In addition, nodes were annotated with selected
biological features encompassing association with KEGG-,
Reactome-, and ACSN- pathways, Gene Ontology terms related
to protein function, classification as drug targets related to the
experimental screen used for testing model predictions, and for
their classification as cancer census genes (tier 1), oncogene or
tumor suppressor according to COSMIC (Sondka et al., 2018).

Using a random forest algorithm, we first tested if any of
the network features could identify high-influence nodes. Cluster
analysis of network feature Gini importance scores (Menze et al.,
2009) showed that PCI, closeness centrality and betweenness
centrality could be used to a priori identify high-influence nodes
in a model (Figure 6A). Interestingly, these network properties
provided better identification of high-influence nodes compared
to annotated biological features (Supplementary Figure 5),
indicating that emergent properties from network analyses
complement traditional molecular biology knowledge. To further
investigate the usability of the identified features, we produced
scatter plots (Supplementary Figure 6) indicating that nodes
with high influence in all or any cells tend to have higher
PCI, betweenness centrality and closeness centrality compared to
nodes with low influence. As PCI and betweenness centrality have
a high and significant correlation (Pearson correlation of 0.90)
either of these features could be used to identify high-influence
nodes for a careful assessment of the baseline activity.

High-Influence Nodes Can Propose
Synergy Mechanisms
We next explored whether our approach for identifying
influential nodes could additionally be used to elucidate potential
synergy mechanisms. For this, we studied graph subsets around
nodes of high-influence for drug combinations that were
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FIGURE 5 | Cell-specific high-influence nodes. (A) Venn diagram displaying the number of distinct and shared influential nodes across cell lines. (B) True positive
(TP), false negative (FN), and false positive (FP) predictions of cell line models using the complete set, the 38 nodes classified as non-influential in all cell lines or the
top 36 high-influence nodes for each cell line of the combined baseline data for model calibration.
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FIGURE 6 | High-influence nodes are characterized by network-based features and may be used to propose synergy mechanisms. (A) Network-based feature
importance. Gini importance for network features used by random forest to classify influential nodes in each cell lines, for all cell lines or of nodes influential in any cell
lines. (B) Putative synergy mechanism of combined inhibition of the nodes PIK3CA and RSK_f in AGS cells. Simulation of combined application of PI3Ki and RSKi
leads to a further decrease in “Prosurvival” compared to single drugs. Regulation of output nodes by the drug targets occurs both via mechanisms specific to each
individual drug target as well as to downregulation of MYC only seen by joint inhibition of both drug targets. Color code: red – high-influence nodes whose fixation
led to a loss in synergy prediction, yellow – high-influence nodes whose fixation and inversion led to a loss in synergy prediction, light blue – nodes whose activity
was altered upon fixation or inversion of most downstream influential nodes in addition to simulation of perturbation of drug combination targets.

experimentally observed to be synergistic and correctly predicted
by the model, as illustrated below for the example of PI3Ki
in combination with RSKi in AGS cells. Nodes identified to

be of high influence for a given drug synergy are in most
instances not directly linked to the nodes depicting Antisurvival
or Prosurvival, but rather impinge on them via multiple pathways
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that are involved in propagating the signal to the two phenotypic
nodes. To investigate potential signal propagating mechanisms,
we therefore further identified nodes whose activity was changed
upon in silico experiments where we simultaneously inhibited
the drug target nodes and in addition applied a knock-in or a
knock-out to the furthest downstream nodes of the previously
identified high-influential nodes. For the synergy of combined
PIK3CA and RSK_f inhibition, a total of six nodes had been
identified to be of high-influence (see red and yellow nodes
in Figure 6B). The signal converges from the high influential
nodes AKT_f and RSK_f. A total of 11 nodes (blue nodes
in Figure 6B) including the two phenotypic outputs nodes
were identified to be altered in their activity upon knock-in
or knock-out of AKT_f and knock-out of RSK_f. Only for the
high-influence nodes, knock-out or knock-in completely blocks
the synergistic response, while inferences with the other nodes
in the subgraph merely weakens the synergistic effect. Our
model simulations indicated that inhibition of either PIK3CA
and RSK_f independently alters the phenotypic output nodes
“Antisurvival” and “Prosurvival” with a clear synergistic effect of
inhibiting both (Figure 6B, upper right table). From the subgraph
obtained from our in silico knock-out/knock-in experiments
(Figure 6B) it can be seen that both PIK3CA and RSK_f indirectly
regulate the node “MYC” by inhibition of its negative regulator
MXD1. Based on these observations we hypothesize that this
mechanism can be responsible for the synergistic decrease in
“Prosurvival” achieved by combined targeting of PIK3CA and
RSK_f. The here discussed example illustrates how our modeling
approach for analyzing drug combination effects can be useful
not only for prediction of drug synergies but also to propose
putative synergy mechanisms.

DISCUSSION

Effective use of computational models to increase efficiency of
preclinical drug screening needs system-specific models. We
have investigated the feasibility of applying logic simulations
of cell system models to obtain cell line-specific predictions
of efficient drug combinations. We focused on simulation
characteristics of high value for preclinical screening: the ability
to discover all effective drug combinations, i.e., the quest to
minimize false negative predictions, and the ability to identify
combinations of interest even if they are synergistic in only a
subset of cell lines. We show that our modeling approach can
predict cell line-specific drug responses and present strategies
to optimize logic modeling procedures by logic rule refinement
and by identification of high-influence nodes for which accurate
baseline protein activity data will likely be essential for obtaining
well-performing models.

Optimal calibration of a model to protein activity states in a
specific cell line is critical for a good predictive performance and
is often achieved by using perturbation data (Klinger et al., 2013;
Miller et al., 2013; Eduati et al., 2017; Silverbush et al., 2017).
However, comprehensive perturbation data covering a wide
range of drug combinations and biological systems are often not
conveniently available for model calibration, even for pre-clinical

systems, due to the cost of experiments. We therefore focus
on strategies to calibrate cell-specific models with the use of
baseline molecular data, a field which has up to now only been
modestly studied (Flobak et al., 2015; Béal et al., 2019; Menden
et al., 2019). We here demonstrate the generation of four cell
line specific models from one PKN graph and further show that
baseline activity profiles leveraging inference both from large
scale omics data and high-quality small-scale data give the best
possible ratio of true positive, false negative and false positive
predictions. This is in line with observations from another group
(Iorio et al., 2016), indicating that strategies to combine different
types of calibration data, thereby reducing the uncertainty of
estimated protein activity, are beneficial for model performance.
The use of literature curated protein activity data in this study
limits its scalability to a high number of different cell lines and
its application in a clinical context. However, we expect that
increasing availability of targeted phosphoproteomics data will
allow for confident protein activity estimation and abrogate the
constraint of manual activity curation for future investigations.

Construction of suitable PKNs poses a central challenge to
the successful use of mechanistic models. PKN construction is
hampered by the incompleteness of signaling database content
compared to scientific literature, heavy bias toward much studied
signaling mechanisms (Invergo and Beltrao, 2018) and lack of
biological context that would allow a more specific design of
PKNs to biological systems of interest, such as under which
conditions, in which sequence and in which tissues causal
interactions occur. Other studies indicate that such database
shortcomings can to some extent be remedied by including the
use of perturbation data for model training (Klinger et al., 2013;
Miller et al., 2013; Eduati et al., 2017; Silverbush et al., 2017) or
by performing iterative model refinement by comparison with
experimental data and literature (Collombet et al., 2017). In
this study, we succeeded in improving predictive performance
of initial predictions by turning to the scientific literature and
extracting additional knowledge for manual PKN refinement
and logic rule adjustments. In a parallel study (Tsirvouli et al.,
2019, submitted manuscript), we show how this PKN can be
effectively extended and enhanced further by a middle-out
approach leveraging the analysis of multi-omics data from the
TCGA Colorectal Adenocarcinoma (COAD) cohort to guide the
specification of the model for this cancer type.

Testing our logical model predictions for different cell lines
from multiple origins against our comprehensive in vitro drug
combination screen (Flobak et al., 2019) demonstrated that
synergy predictions are enriched in experimentally observed
synergies for three of the cell lines originating from gastric,
colorectal and prostate tumors with a good ability to identify
non-synergistic drug combinations (true negatives). Correctly
predicted combinations include amongst other joint application
of PI3Ki with PDPK1i or RSKi. The former combination has been
previously reported to show synergistic effect in bladder cancer
cells (Sathe et al., 2018) and is also observed to show a synergistic
effect across multiple cancer cell line in our drug combination
screen (Flobak et al., 2019). Since the states of roughly half (56%)
of all network nodes with available baseline data were the same
across cell lines, it can be expected that several predictions are
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shared among the different models. Interestingly, while taking the
same PKN as starting point, models tailored to specific cell lines
nevertheless displayed a high degree of cell line specificity. We
observed that only roughly half of the combinations predicted
to be synergistic were shared across three or more cell lines.
These results further support the use of baseline data for model
calibration applied in our previous study (Flobak et al., 2015)
and show that this approach can be extended to multiple cell
line models. Of interest for future study is the application of this
approach to more advanced culture models such as organoids and
xenograft models as well as prediction of a patient’s treatment
response, potentially employing automated model generation
and predictions to allow investigation of a larger number of drugs
and experimental screening platforms.

Several different reference models have been developed
to quantify synergism. Each of these models have different
definitions and assumptions and as such they can show
disagreement in synergy scoring (Vlot et al., 2019). In this
study we have applied the HSA synergy metric to allow for
the detection of as many as possible potentially synergistic drug
combinations for pre-clinical screening. In order to binarized
the drug combination data a synergy cut-off guided by literature
and investigation of drug responses was applied, similar to other
studies (Menden et al., 2019). When testing two alternative
cut-offs that would result in approximately half or twice as
high synergy calling compared to the one used in this study,
we observe a generally increase in sensitivity with the more
conservative experimental threshold, reflected by a decrease in
FN prediction (Supplementary Figure 7 and Supplementary
Table 27). This indicates that our model predictions were
enriched in the strongest synergistic combinations. To enable
a more fine-graded response of synergy strength, inclusion of
additional multi-valued nodes or the use of a multi-valued logical
model approach such as applied by Silverbush et al. (2017) may
be investigated in future explorations.

Previous studies have indicated that a subset of nodes have the
ability to affect the behavior of the overall network (Gao et al.,
2014; Puniya et al., 2016; Campbell et al., 2017; Pentzien et al.,
2018; Rozum and Albert, 2018; Yang et al., 2018). Translated
to our example, this means that calibration of a set of nodes
with such characteristics will determine the activity of the
remaining nodes. In our efforts to identify such a subset of
nodes, we specifically looked for nodes whose activity state
affected prediction outcomes. The proportion of high-influence
nodes among all 144 network nodes varied between cell lines
from roughly half to one third. When cell-specific models
were calibrated using only protein activity data for topmost
high influential nodes, their performance was at least as good
(increased or similar number of true positive and decrease in
false positive predictions) as when using the complete baseline
data set. It can be speculated that the improved functionality
could be related to the fact that partially calibrated models have
a high degree of freedom to find their optimal configuration.
However, we show that the models calibrated to the lowest
ranking quartile from the influential node assessment display a
markedly poorer performance.

We also investigated whether high-influence nodes could
be identified using network or biological features. Pentzien

et al. (2018) proposed identification of high-influence nodes
by assessing their determinative power, which quantifies the
influence of a node over other nodes in a network taking
both their degree as well as the Boolean logic into account
(Heckel et al., 2013; Matache and Matache, 2016). They reported
enrichment of essential genes among their high-influence nodes,
while no commonalities of network features besides out-degree
were found. We were unable to find biologically annotated
function traits linked to high-influential nodes. However,
we did observe that nodes with higher PCI, betweenness
centrality and closeness centrality are overrepresented among the
high-influence nodes. These findings indicate that network nodes
associated with high information flow are good candidates to
be included if an experimental assessment of protein activity is
restricted to a subset of nodes in strategies seeking to increase
effectiveness of predictive modeling. Strategies to identify high
influential nodes, like the one we applied here, may further
allow focus on a subset of nodes for an enrichment of the PKN
with refined representations of network signaling mechanisms.
Thus, our approach may alleviate two prominent bottlenecks:
the limited capacity of current experimental methods for
exhaustively determining protein activity states, e.g., through
phosphoproteomics assays, and the burden to obtain accurate
signaling network information for an entire PKN, including
biological context of importance for the system to be modeled.

Mechanistic models may be explored to unravel a drug’s
mechanism (Espinal-Enríquez et al., 2014) or to identify
successful combination therapies by investigating multitarget
drugs (Tang et al., 2013). In this study we focused on
predicting the combination effect of a panel of small molecular
inhibitors considering the inhibitors main annotated target.
Polypharmacology is a well-known attribute of pharmacological
compounds where unknown or unintended targets are
commonly referred to as “off-target” effects. These unknown
“off-target” effects pose significant challenges to the prediction
of drug and drug combinations effects. While some drugs are
highly specific, others may show a wide target profile. This also
the case for the compounds investigated in this study (Flobak
et al., 2019). A full exploration into predicting and testing drug
effects on wider target profiles (i.e., including “off-targets”) is
beyond the scope of this publication, but clearly an interesting
path for future research.

In summary, we demonstrated the effective use of logic
modeling to predict cell line-specific drug combination effects
using baseline calibration data. Our findings show that both
the underlying PKN and calibration data are critical for good
predictions. Manual network refinement can be effective when
several underlying molecular mechanisms are documented in
scientific literature. In future investigations, it is also of interest to
explore the curation of cell line-specific topologies from baseline
data recapitulating the presence or absence of specific causal
interactions in a specific cell line or context. While this is in
theory possible from our approach, inferring the presence or
absence of causal interactions from baseline data is not a trivial
task. Our findings to restrict the assessment of stable state protein
activity to high-influential nodes is a first step to economize
the amount of calibration data that needs to be assessed with
high confidence. These results suggest that improved curation
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of molecular interaction logical models, together with focused
baseline calibration data sets can constitute the foundation
for logic-model based drug synergy prediction for cancer cell
lines in general.
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