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Introduction

Computational modeling of cellular systems has been one of the most powerful tools used to
build interpretable knowledge of biological processes and help identify molecular mechanisms
that drive diseases such as cancer (Aldridge, Burke, Lauffenburger, & Sorger, 2006). In
particular, the use of logical modeling has proven to be a substantially useful approach, since it
allows the easy construction, simulation and analysis of predictive models, capable of providing
a qualitative and insightful view on the extremely complex landscape of biological systems
(Abou-Jaoudé et al., 2016; Morris, Saez-Rodriguez, Sorger, & Lauffenburger, 2010; Wang,
Saadatpour, & Albert, 2012). Such mechanistic models, with the systematic integration
of prior knowledge and experimental data, have been extensively used to better understand
what drives deregulation of signal transduction, the outcome of which is the manifestation of
diseases (Traynard, Tobalina, Eduati, Calzone, & Saez-Rodriguez, 2017). Furthermore, their
explanatory power has been used to provide insights into a drug’s mode of action, investigate
the mechanisms of resistance to drugs (Eduati et al., 2017) and suggest new therapeutic
combination candidates, among others (Flobak et al., 2015).
One of the major challenges in systems medicine, has been the identification of scientifically
validated, predictive biomarkers that correlate with patient response to given therapies. The
analysis of biological predictive markers of pharmacologic response can not only further our un-
derstanding of the systemic processes involved in diseases but can also help to classify patients
into groups with similar responses to specific therapeutic interventions, advancing personal-
ized medicine (Senft, Leiserson, Ruppin, & Ronai, 2017). In addition, the identification of
biomarkers in tumor cells (e.g. mutations) has enabled the discovery of drug targets which
are utilized in combinatorial molecular-targeted therapies - a strategy which aims to treat
specific patient subgroups and has shown larger overall survival rates and reduced side-effects
than monotherapy (Al-Lazikani, Banerji, & Workman, 2012). Despite the huge advancements
towards drug combination therapy, genetic heterogeneity, drug resistance and drug combina-
tion synergy mechanisms still pose fundamental challenges to clinicians, modelers and lab
researchers.
To help bridge the model simulation results with the (clinical) laboratory observations, several
optimization methods have been used, such as model calibration, parameter estimation and
sensitivity analysis. These methods also allow us to determine which model parameters have
the biggest influence in the overall behaviour of the system (Aldridge et al., 2006). For
example, in Fröhlich et al. (2018), a computational framework that allowed for the efficient
parameterization and contextualization of a large-scale cancer signaling network, was used to
predict combination treatment outcome from single drug data. This model was calibrated to
fit and accurately describe specific cell-line experimental data, while enabling the identification
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of biomarkers of drug sensitivity as well as molecular mechanisms that affect drug resistance.
Furthermore, in Dorier et al. (2016), a network optimization approach which topologically
parameterized boolean models according to a genetic algorithm was used, in order to best
match the experimentally observed behaviour. This method resulted in an ensemble of boolean
models which can be used to simulate response under drug perturbations in order to assess
the underlying mechanisms and to generate new testable hypotheses. Such an aggregation of
best-fit models (wisdom of the crowds) has been shown to be quite robust and effective for
model prediction performance (Marbach et al., 2012).

Statement of need

There is a plethora of software tools devoted to the qualitative modeling and analysis of biolog-
ical networks. The Consortium for the development of Logical Models and Tools (CoLoMoTo)
is a community effort which aims to standardize the representation of logical networks and
provide a common repository of methods and tools to analyze these networks (Naldi et al.,
2015). Furthermore, to facilitate the access to several software logical modeling tools and
enable reproducible computational workflows, the CoLoMoTo Interactive Notebook was intro-
duced as a unified computational framework (Aurélien Naldi, Hernandez, Levy, et al., 2018).
The incorporated tools are accessed via a common programming interface (though originally
implemented in different programming languages e.g. Java, Python, C++ and R) and offer
a collection of features like accessing online model repositories (Helikar et al., 2012), model
editing (Aurélien Naldi, Hernandez, Abou-Jaoudé, et al., 2018), dynamical analysis (finding at-
tractors, stochastic simulations, reachability properties, model-checking techniques) (Klarner,
Streck, Siebert, & Sahinalp, 2016; Müssel, Hopfensitz, & Kestler, 2010; Aurélien Naldi, 2018;
Paulevé, 2017; Stoll et al., 2017) and model parameterization/optimization to fit perturbation
signaling data (Gjerga et al., 2020; Terfve et al., 2012). Despite the diverse and multi-purpose
logical modeling tools that exist, there is still a lack of data analysis-oriented software that
assists with the discovery of predictive biomarkers in ensembles of parameterized boolean
networks that have been subject to drug combination perturbations.
The emba R package aims to fill that gap and provide a first implementation of such a novel
software. Initially, it was designed as a complementary software tool, to help the analysis
of the parameterized boolean model ensembles which were produced by modules from the
DrugLogics NTNU software pipeline (see respective documentation (Zobolas, 2020a)). Later,
we generalized most of the functions in the package and modularized them to package-essential
(that form the core of the emba package) and various general-purpose yet useful functions
(that are now part of the dependency package usefun (Zobolas, 2020b)).

Summary

The main functionality of the emba R package is to find performance and synergy biomarkers.
Performance biomarkers are nodes in the input boolean networks whose activity state and/or
model parameterization affects the predictive performance of those models. The prediction
performance can be assessed via the number of true positive predictions or the Matthews
correlation coefficient score which is more robust to class imbalances (Chicco & Jurman, 2020).
On the other hand, synergy biomarkers are nodes which provide hints for the mechanisms
behind the complex process of synergy manifestation in drug combination datasets.
For more information, see our “Get started guide” and the reference manual in the package
website (Zobolas, 2020c). Several analyses using the emba R package are available in a
separate repository (Zobolas, 2020d). Future developments will include the implementation
of a method for the identification of topology biomarkers, where we will be able to assess
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which interactions in the network are important for the manifestation of synergies in specific
cell-contexts.
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