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A result by Courrège says that linear translation invariant operators satisfy 
the maximum principle if and only if they are of the form L = Lσ,b + Lμ

where

Lσ,b[u](x) = tr(σσTD2u(x)) + b ·Du(x)

and

Lμ[u](x) =
∫

Rd\{0}

(
u(x + z) − u(x) − z ·Du(x)1|z|≤1

)
dμ(z).

This class of operators coincides with the infinitesimal generators of Lévy processes 
in probability theory. In this paper we give a complete characterization of the 
operators of this form that satisfy the Liouville theorem: Bounded solutions u of 
L[u] = 0 in Rd are constant. The Liouville property is obtained as a consequence of 
a periodicity result that completely characterizes bounded distributional solutions 
of L[u] = 0 in Rd. The proofs combine arguments from PDEs and group theory. 
They are simple and short.
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r é s u m é

Selon un résultat de Courrège, les opérateurs linéaires invariants par translation 
satisfont le principe du maximum si et seulement si ils sont de la forme L = Lσ,b+Lμ, 
où

Lσ,b[u](x) = tr(σσTD2u(x)) + b ·Du(x)

et

Lμ[u](x) =
∫

Rd\{0}

(
u(x + z) − u(x) − z ·Du(x)1|z|≤1

)
dμ(z).

Cette classe d’opérateurs coïncide avec les générateurs infinitésimaux des processus 
de Lévy dans la théorie des probabilités. Dans cet article, nous donnons une 
caractérisation complète des opérateurs de cette forme qui satisfont le théorème 
de Liouville : les solutions bornées u de L[u] = 0 dans Rd sont constantes. La 
propriété de Liouville est obtenue grâce à un résultat de périodicité qui caractérise 
complètement les solutions distributionnelles bornées de L[u] = 0 dans Rd. Les 
preuves combinent des arguments d’EDP et de la théorie des groupes. Ils sont 
simples et brefs.

© 2020 The Authors. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction and main results

The classical Liouville theorem states that bounded solutions of Δu = 0 in Rd are constant. The Laplace 
operator Δ is the most classical example of an operator L : C∞

c (Rd) → C(Rd) satisfying the maximum 
principle in the sense that

L[u](x) ≤ 0 at any global maximum point x of u. (1)

In the class of linear translation invariant3 operators (which includes Δ), a result by Courrège [13]4 says 
that the maximum principle holds if and only if

L = Lσ,b + Lμ, (2)

where

Lσ,b[u](x) = tr(σσTD2u(x)) + b ·Du(x), (3)

Lμ[u](x) =
∫

Rd\{0}

(
u(x + z) − u(x) − z ·Du(x)1|z|≤1

)
dμ(z), (4)

and

b ∈ Rd, and σ = (σ1, . . . , σP ) ∈ Rd×P for P ∈ N, σj ∈ Rd, (Aσ,b)

μ ≥ 0 is a Radon measure on Rd \ {0},
∫

Rd\{0}

min{|z|2, 1} dμ(z) < ∞. (Aμ)

3 Translation invariance means that L[u(· + y)](x) = L[u](x + y) for all x, y.
4 If (1) holds at any nonnegative maximum point, then by definition the positive maximum principle holds and by [13] there is 

an extra term cu(x) with c ≤ 0 in (3). For the purpose of this paper (Liouville and periodicity), the case c < 0 is trivial since then 
u = 0 is the unique bounded solution of L[u] = 0.

http://creativecommons.org/licenses/by/4.0/
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These elliptic operators have a local part Lσ,b and a nonlocal part Lμ, either of which could be zero.5
Another point of view of these operators comes from probability and stochastic processes: Every operator 

mentioned above is the generator of a Lévy process, and conversely, every generator of a Lévy process is of 
the form given above. Lévy processes are Markov processes with stationary independent increments and are 
the prototypical models of noise in science, engineering, and finance. Well-known examples are Brownian 
motions, Poisson processes, stable processes, and various other types of jump processes.

The main contributions of this paper are the following:

1. We give necessary and sufficient conditions for L to have the Liouville property: Bounded solutions u
of L[u] = 0 in Rd are constant.

2. For general L, we show that all bounded solutions of L[u] = 0 in Rd are periodic and we identify the set 
of admissible periods.

Let us now state our results. For a set S ⊆ Rd, we let G(S) denote the smallest additive subgroup of Rd

containing S and define the subspace VS ⊆ G(S) by

VS :=
{
g ∈ G(S) : tg ∈ G(S) ∀t ∈ R

}
.

Then we take supp(μ) to be the support of the measure μ and define

Gμ := G(supp(μ)), Vμ := Vsupp(μ), and cμ := −
∫

{|z|≤1}\Vμ

z dμ(z).

Here cμ is well-defined and uniquely determined by μ, cf. Proposition 2.13. We also need the subspace 
Wσ,b+cμ := spanR{σ1, . . . , σP , b + cμ}.

Theorem 1.1 (General Liouville). Assume (Aσ,b) and (Aμ). Let L be given by (2)–(3)–(4). Then the following 
statements are equivalent:

(a) If u ∈ L∞(Rd) satisfies L[u] = 0 in D′(Rd), then u is a.e. a constant.
(b) Gμ + Wσ,b+cμ = Rd.

The above Liouville result is a consequence of a periodicity result for bounded solutions of L[u] = 0 in 
Rd. For a set S ⊆ Rd, a function u ∈ L∞(Rd) is a.e. S-periodic if u(· + s) = u(·) in D′(Rd) ∀s ∈ S. Our 
result is the following:

Theorem 1.2 (General periodicity). Assume (Aσ,b), (Aμ), and u ∈ L∞(Rd). Let L be given by (2)–(3)–(4). 
Then the following statements are equivalent:

(a) L[u] = 0 in D′(Rd).
(b) u is a.e. Gμ + Wσ,b+cμ-periodic.

This result characterizes the bounded solutions for all operators L in our class, also those not satisfying 
the Liouville property. Note that if Gμ + Wσ,b+cμ = Rd, then u is constant and the Liouville result follows. 
Both theorems are proved in Section 2.

5 The representation (2)–(3)–(4) is unique up to the choice of a cut-off function in (4) and a square root σ of a = σσT. In this 
paper we always use 1|z|≤1 as a cut-off function.



232 N. Alibaud et al. / J. Math. Pures Appl. 142 (2020) 229–242
We give examples in Section 3. Examples 3.2 and 3.5 provide an overview of different possibilities, and 
Examples 3.7 and 3.8 are concerned with the case where card (supp(μ)) < ∞. The Liouville property holds 
in the latter case if and only if card (supp(μ)) ≥ d − dim

(
Wσ,b+cμ

)
+ 1 with additional algebraic conditions 

in relation with Diophantine approximation. The Kronecker theorem (Theorem 3.6) is a key ingredient in 
this discussion and a slight change in the data may destroy the Liouville property.

The class of operators L given by (2)–(3)–(4) is large and diverse. In addition to the processes mentioned 
above, it includes also discrete random walks, constant coefficient Itô- and Lévy-Itô processes, and most 
processes used as driving noise in finance. Examples of nonlocal operators are fractional Laplacians [23], 
convolution operators [14,1,5], relativistic Schrödinger operators [19], and the CGMY model in finance [12]. 
We mention that discrete finite difference operators can be written in the form (2)–(3)–(4), cf. [17]. For 
more examples, see Section 3.

There is a huge literature on the Liouville theorem. In the local case, we simply refer to the survey [20]. 
In the nonlocal case, the Liouville theorem is more or less understood for fractional Laplacians or variants 
[23,4,8,9,18], certain Lévy operators [2,27,30,28,16], relativistic Schrödinger operators [19], or convolution 
operators [10,5–7]. The techniques vary from Fourier analysis, potential theory, probabilistic methods, to 
classical PDE arguments.

To prove that solutions of L[u] = 0 are Gμ-periodic, we rely on propagation of maximum points [10,14,
11,15,16,22,6,7] and a localization technique à la [10,3,29,7]. As far as we know, Choquet and Deny [10] were 
the first to obtain such results. They were concerned with the equation u ∗ μ − u = 0 for some bounded 
measure μ. This is a particular case of our equation since u ∗ μ − u = Lμ[u] +

∫
Rd\{0} z1|z|≤1 dμ(z) · Du. 

For general μ, the drift 
∫
Rd\{0} z1|z|≤1 dμ(z) ·Du may not make sense and the identification of the full drift 

b + cμ relies on a standard decomposition of closed subgroups of Rd, see e.g. [24]. The idea is to establish 
Gμ-periodicity of solutions of L[u] = 0 as in [10], and then use that Gμ = Vμ ⊕ Λ for the vector space Vμ

previously defined and some discrete group Λ. This will roughly speak remove the singularity z = 0 ∈ Vμ

in the computation of cμ because 
∫
Rd\{0} 1z∈Vμ

z1|z|≤1 dμ(z) · Du = 0 for any Gμ-periodic function. See 
Section 2 for details.

Our approach then combines PDEs and group arguments, extends the results of [10] to Courrège/Lévy 
operators, yields necessary and sufficient conditions for the Liouville property, and provides short and simple 
proofs.

Outline of the paper
Our main results (Theorems 1.1 and 1.2.) were stated in Section 1. They are proved in Section 2 and 

examples are given in Section 3.

Notation and preliminaries
The support of a measure μ is defined as

supp(μ) :=
{
z ∈ Rd \ {0} : μ(Br(z)) > 0, ∀r > 0

}
, (5)

where Br(z) is the ball of center z and radius r. To continue, we assume (Aσ,b), (Aμ), and L is given by 
(2)–(3)–(4).

Definition 1.3. For any u ∈ L∞(Rd), L[u] ∈ D′(Rd) is defined by

〈L[u], ψ〉 :=
∫
Rd

u(x)L∗[ψ](x) dx ∀ψ ∈ C∞
c (Rd)

with L∗ := Lσ,−b + Lμ∗ and dμ∗(z) := dμ(−z).
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The above distribution is well-defined since L∗ : W 2,1(Rd) → L1(Rd) is bounded.

Definition 1.4. Let S ⊆ Rd and u ∈ L∞(Rd), then u is a.e. S-periodic if
∫
Rd

(
u(x + s) − u(x)

)
ψ(x) dx = 0 ∀s ∈ S,∀ψ ∈ C∞

c (Rd).

The following technical result will be needed to regularize distributional solutions of L[u] = 0 and a.e. 
periodic functions. Let the mollifier ρε(x) := 1

εd
ρ(xε ), ε > 0, for some 0 ≤ ρ ∈ C∞

c (Rd) with 
∫
Rd ρ = 1.

Lemma 1.5. Let u ∈ L∞(Rd) and uε := ρε ∗ u. Then:

(a) L[u] = 0 in D′(Rd) if and only if L[uε] = 0 in Rd for all ε > 0.
(b) u is a.e. S-periodic if and only if uε is S-periodic for all ε > 0.

Proof. The proof of (a) is standard since L[uε] = L[u] ∗ ρε in D′(Rd). Moreover (b) follows from (a) since 
for any s ∈ S we can take L[φ](x) = φ(x + s) − φ(x) by choosing σ, b = 0 and μ = δs (the Dirac measure 
at s) in (2)–(3)–(4). �
2. Proofs

This section is devoted to the proofs of Theorems 1.1 and 1.2. We first reformulate the classical Liouville 
theorem for local operators in terms of periodicity, then study the influence of the nonlocal part.

2.1. Wσ,b-periodicity for local operators

Let us recall the Liouville theorem for operators of the form (3), see e.g. [26,25]. In the result we use the 
set

Wσ,b = spanR{σ1, . . . , σP , b}.

Note that spanR{σ1, . . . , σP } equals the span of the eigenvectors of σσT corresponding to nonzero eigenval-
ues.

Theorem 2.1 (Liouville for Lσ,b). Assume (Aσ,b) and Lσ,b is given by (3). Then the following statements 
are equivalent:

(a) If u ∈ L∞(Rd) solves Lσ,b[u] = 0 in D′(Rd), then u is a.e. constant in Rd.
(b) Wσ,b = Rd.

Let us now reformulate and prove this classical result as a consequence of a periodicity result, a type of 
argument that will be crucial in the nonlocal case. We will consider C∞

b (Rd) solutions, which will be enough 
later during the proofs of Theorem 1.1 and 1.2, thanks to Lemma 1.5.

Proposition 2.2 (Periodicity for Lσ,b). Assume (Aσ,b), Lσ,b is given by (3), and u ∈ C∞
b (Rd). Then the 

following statements are equivalent:

(a) Lσ,b[u] = 0 in Rd.
(b) u is Wσ,b-periodic.
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Note that part (b) implies that u is constant in the directions defined by the vectors σ1, . . . , σP , b. If their 
span then covers all of Rd, Theorem 2.1 follows trivially. To prove Proposition 2.2, we adapt the ideas of 
[25] to our setting.

Proof of Proposition 2.2. (b) ⇒ (a) We have b · Du(x) = d
dtu(x + tb)|t=0 = 0 for any x ∈ Rd since the 

function t �→ u(x + tb) is constant. Similarly (σj ·D)2u(x) := d2

dt2u(x + tσj)|t=0 = 0 for any j = 1, . . . , P . 
Using then that tr(σσTD2u) =

∑P
j=1(σj ·D)2u, we conclude that Lσ,b[u] = 0 in Rd.

(a) ⇒ (b) Let v(x, y, t) := u(x + σy − bt) for x ∈ Rd, y ∈ RP , and t ∈ R. Direct computations show that

Δyv(x, y, t) =
P∑

j=1
(σj ·D)2u(x + σy − bt) = tr

[
σσTD2u(x + σy − bt)

]

and ∂tv(x, y, t) = −b ·Du(x + σy − bt). Hence for all (x, y, t) ∈ Rd ×RP ×R,

Δyv(x, y, t) − ∂tv(x, y, t) = Lσ,b[u](x + σy − bt) = 0.

Since v(x, ·, ·) is bounded, we conclude by uniqueness of the heat equation that for any s < t,

v(x, y, t) =
∫
RP

v(x, z, s)KP (y − z, t− s) dz, (6)

where KP is the standard heat kernel in RP . But then

‖Δyv(x, ·, t)‖∞ ≤ ‖v(x, ·, s)‖∞‖ΔyKP (·, t− s)‖L1(RP ),

and since ‖ΔyKP (·, t − s)‖L1 → 0 as s → −∞, we deduce that Δyv = 0 for all x, y, t.
By the classical Liouville theorem (see e.g. [26]), v is constant in y. It is also constant in t by (6) since ∫

RP KP (z, t − s) dz = 1. We conclude that u is Wσ,b-periodic since

u(x) = v(x, 0, 0) = v(x, y, t) = u(x + σy − bt)

and Wσ,b = {σy − bt : y ∈ RP , t ∈ R}. �
2.2. Gμ-periodicity for general operators

Proposition 2.2 might seem artificial in the local case, but not so in the nonlocal case. In fact we will 
prove our general Liouville result as a consequence of a periodicity result. A key step in this direction is the 
lemma below.

Lemma 2.3. Assume (Aσ,b), (Aμ), L is given by (2)–(3)–(4), and u ∈ C∞
b (Rd). If L[u] = 0 in Rd, then u is 

supp(μ)-periodic.

To prove this result, we use propagation of maximum (see e.g. [10,14,11]).

Lemma 2.4. If u ∈ C∞
b (Rd) achieves its global maximum at some x̄ such that L[u](x̄) ≥ 0, then u(x̄ + z) =

u(x̄) for any z ∈ supp(μ).
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Proof. At x̄, u = supu, Du = 0 and D2u ≤ 0, and hence Lσ,b[u](x̄) ≤ 0 and

0 ≤ L[u](x̄) ≤ Lμ[u](x̄) =
∫

Rd\{0}

(
u(x̄ + z) − sup

Rd

u
)
dμ(z).

Using that 
∫
Rd\{0} f dμ ≥ 0 and f ≤ 0 implies f = 0 μ-a.e., we deduce that u(x̄ + z) − supRd u = 0 for 

μ-a.e. z. Since u is continuous, this equality holds for all z ∈ supp(μ).6 �
To exploit Lemma 2.4, we need to have a maximum point. For this sake, we use a localization technique 

à la [10,3,29,7].

Proof of Lemma 2.3. Fix an arbitrary z̄ ∈ supp(μ), define

v(x) := u(x + z̄) − u(x),

and let us show that v(x) = 0 for all x ∈ Rd. We first show that v ≤ 0. Take M and a sequence {xn}n such 
that

v(xn) n→∞−→ M := sup v,

and define

un(x) := u(x + xn) and vn(x) := v(x + xn).

Note that L[vn] = 0 in Rd. Now since v ∈ C∞
b (Rd), the Arzelà-Ascoli theorem implies that there exists v∞

such that vn → v∞ locally uniformly (up to a subsequence). Taking another subsequence if necessary, we 
can assume that the derivatives up to second order converge and pass to the limit in the equation L[vn] = 0
to deduce that L[v∞] = 0 in Rd. Moreover, v∞ attains its maximum at x = 0 since v∞ ≤ M and

v∞(0) = lim
n→∞

vn(0) = lim
n→∞

v(xn) = M.

A similar argument shows that there is a u∞ such that un → u∞ as n → ∞ locally uniformly. Taking 
further subsequences if necessary, we can assume that un and vn converge along the same sequence. Then 
by construction

v∞(x) = u∞(x + z̄) − u∞(x).

By Lemma 2.4 and an iteration, we find that M = v∞(mz̄) = u∞((m + 1)z̄) − u∞(mz̄) for any m ∈ Z. 
Then by another iteration,

u∞((m + 1)z̄) = u∞(mz̄) + M = . . . = u∞(0) + (m + 1)M.

But since u∞ is bounded, the only choice is M = 0 and thus v ≤ M = 0. A similar argument shows that 
v ≥ 0, and hence, 0 = v(x) = u(x + z̄) − u(x) for any z̄ ∈ supp(μ) and all x ∈ Rd. �

We can give a more general result than Lemma 2.3 if we consider groups.

6 If not, we would find some z0 and r0 > 0 such that f(z) := u(x̄ + z) − supu < 0 in Br0 (z0) where as μ(Br0 (z0)) > 0 by (5).
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Definition 2.5.

(a) A set G ⊆ Rd is an additive subgroup if G �= ∅ and

∀g1, g2 ∈ G, g1 + g2 ∈ G and − g1 ∈ G.

(b) The subgroup generated by a set S ⊆ Rd, denoted G(S), is the smallest additive group containing S.

Now we return to a key set for our analysis:

Gμ = G(supp(μ)). (7)

This set appears naturally because of the elementary result below.

Lemma 2.6. Let S ⊆ Rd. Then w ∈ C(Rd) is S-periodic if and only if w is G(S)-periodic.

Proof. It suffices to show that G := {g ∈ Rd : w(· + g) = w(·)} is a closed subgroup of Rd. It is obvious 
that it is closed by continuity of w. Moreover, for any g1, g2 ∈ Rd and x ∈ Rd,

w(x + g1 − g2) = w(x− g2) = w(x− g2 + g2) = w(x),

which ends the proof. �
By Lemmas 2.3 and 2.6, we have proved that:

Proposition 2.7 (Gμ-periodicity). Assume (Aσ,b), (Aμ), L is given by (2)–(3)–(4), and Gμ by (7). Then any 
solution u ∈ C∞

b (Rd) of L[u] = 0 in Rd is Gμ-periodic.

2.3. The role of cμ

Propositions 2.2 and 2.7 combined may seem to imply that L[u] = 0 gives (Gμ + Wσ,b)-periodicity of u, 
but this is not true in general. The correct periodicity result depends on a new drift b + cμ, where cμ is 
defined in (9) below. To give this definition, we need to decompose Gμ into a direct sum of a vector subspace 
and a relative lattice.

Definition 2.8.

(a) If two subgroups G, G̃ ⊆ Rd satisfy G ∩G̃ = {0}, their sum is said to be direct and we write G +G̃ = G ⊕G̃.
(b) A full lattice is a subgroup Λ ⊆ Rd of the form Λ = ⊕d

n=1anZ for some basis {a1, . . . , ad} of Rd. A 
relative lattice is a lattice of a vector subspace of Rd.

Theorem 2.9 (Theorem 1.1.2 in [24]). If G is a closed subgroup of Rd, then G = V ⊕ Λ for some vector 
space V ⊆ Rd and some relative lattice Λ ⊆ Rd such that V ∩ spanRΛ = {0}.

In this decomposition the space V is unique and can be represented by (8) below.

Lemma 2.10. Let V be a vector subspace and Λ a relative lattice of Rd such that V ∩ spanRΛ = {0}. Then 
for any λ ∈ Λ, there is an open ball B of Rd containing λ such that B ∩ (V ⊕ Λ) = B ∩ (V + λ).
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Proof. If the lemma does not hold, there exists vn + λn → λ as n → ∞ where vn ∈ V , λn ∈ Λ, λn �= λ. 
Note that vn, λn, λ ∈ V ⊕ spanRΛ, and that

λ = 0
∈V

+ λ
∈Λ

.

By continuity of the projection from V ⊕ spanRΛ onto spanRΛ, λn → λ and this contradicts the fact that 
each point of Λ is isolated. �
Lemma 2.11. Let G, V and Λ be as in Theorem 2.9. Then

V = VG := {g ∈ G : tg ∈ G ∀t ∈ R} . (8)

Proof. It is clear that V ⊆ VG. Now given g ∈ VG, there is (v, λ) ∈ V × Λ such that g = v + λ. For any 
t ∈ R, tg = tv + tλ ∈ G and thus tλ ∈ G since tv ∈ V ⊆ G. Let B be an open ball containing λ such that 
B∩G = B∩ (V +λ). Choosing t such that t �= 1 and tλ ∈ B, we infer that tλ = ṽ+λ for some ṽ ∈ V . Hence 
λ = (t − 1)−1ṽ ∈ V and this implies that λ = 0. In other words VG ⊆ V , and the proof is complete. �
Remark 2.12. Any G-periodic function w ∈ C1(Rd) is such that z · Dw(x) = limt→0

w(x+tz)−w(x)
t = 0 for 

any x ∈ Rd and z ∈ VG.

By Theorem 2.9 and Lemma 2.11, we decompose the set Gμ in (7) into a lattice and the subspace 
Vμ := VGμ

. The new drift can then be defined as

cμ = −
∫

{|z|≤1}\Vμ

z dμ(z). (9)

Proposition 2.13. Assume (Aμ) and cμ is given by (9). Then cμ ∈ Rd is well-defined and uniquely determined 
by μ.

Proof. Using that supp(μ) ⊂ Gμ = Vμ ⊕ Λ,
∫

{|z|≤1}\Vμ

|z|dμ(z) =
∫

Gμ\(Vμ+0)

|z|1|z|≤1 dμ(z)

≤
∫

Gμ\B

|z|1|z|≤1 dμ(z)

for some open ball B containing 0 given by Lemma 2.10. This integral is finite by (Aμ) which completes the 
proof. �
Proposition 2.14. Assume (Aμ) and Lμ, Gμ, cμ are given by (4), (7), (9). If w ∈ C∞

b (Rd) is Gμ-periodic, 
then

Lμ[w] = cμ ·Dw in Rd.

Proof. Using that 
∫
Rd\{0} f dμ =

∫
supp(μ) f dμ, we have

Lμ[w](x) = −
∫

Rd\{0}

z ·Dw(x)1|z|≤1 dμ(z)
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because w(x + z) − w(x) = 0 for all x ∈ Rd and z ∈ supp(μ) ⊂ Gμ. The result is thus immediate from 
Remark 2.12 and Proposition 2.13. �
2.4. Proofs of Theorems 1.1 and 1.2

We are now in a position to prove our main results. We start with Theorem 1.2 which characterizes all 
bounded solutions of L[u] = 0 in Rd as periodic functions and specifies the set of admissible periods.

Proof of Theorem 1.2. By Lemma 1.5 we can assume that u ∈ C∞
b (Rd).

(a) ⇒ (b) Since L[u] = 0 in Rd, u is Gμ-periodic by Proposition 2.7. Proposition 2.14 then implies that

0 = L[u] = Lσ,b[u] + cμ ·Du = Lσ,b+cμ [u] in Rd,

which by Proposition 2.2 shows that u is also Wσ,b+cμ -periodic. It is now easy to see that u is Gμ + Wσ,b+cμ-
periodic.

(b) ⇒ (a) Since u is both Gμ and Wσ,b+cμ-periodic, by first applying Proposition 2.14 and then Proposi-
tion 2.2, L[u] = Lσ,b+cμ [u] = 0 in Rd. �

We now prove Theorem 1.1 on necessary and sufficient conditions for L to satisfy the Liouville property. 
We will use the following consequence of Theorem 2.9.

Corollary 2.15. A subgroup G of Rd is dense if and only if there are no c ∈ Rd and codimension 1 subspace 
H ⊂ Rd such that G ⊆ H + cZ.

Proof. Let us argue by contraposition for both the “only if” and “if” parts.

(⇒) Assume G ⊆ H + cZ for some codimension 1 space H and c ∈ Rd. If c ∈ H, then G ⊆ H = H �= Rd. 
If c /∈ H, then Rd = H ⊕ spanR{c}, and each x ∈ Rd can be written as x = xH + λxc for a unique 
(x, λx) ∈ H × R. Hence H + cZ = {x : λx ∈ Z} is closed by continuity of the projection x �→ λx, and 
G ⊆ H + cZ �= Rd.

(⇐) Assume G �= Rd. By Theorem 2.9, G = V ⊕Λ for a subspace V and lattice Λ with V ∩spanRΛ = {0}. It 
follows that the dimensions n of V and m of the vector space spanRΛ satisfy n < d and n +m ≤ d. If m = 0, 
G ⊆ V ⊆ H for some codimension 1 space H. If m ≥ 1, then Λ = ⊕m

i=1aiZ for some basis {a1, . . . , am} of 
spanRΛ. Let W := V ⊕ spanR{ai : i �= m} for m > 1 and W := V for m = 1. Then W is of dimension 
n + m − 1 ≤ d − 1 and contained in some codimension 1 space H. Hence G ⊆ H + cZ with c = am. �
Proof of Theorem 1.1. (b) ⇒ (a) If u ∈ L∞(Rd) satisfy L[u] = 0 in D′(Rd), then u is Gμ + Wσ,b+cμ-periodic 
by Theorem 1.2. Hence u is constant by (b).

(a) ⇒ (b) Assume (b) does not hold and let us construct a nontrivial Gμ + Wσ,b+cμ -periodic L∞-function. 
By Corollary 2.15,

Gμ + Wσ,b+cμ ⊆ H + cZ, (10)

for some c ∈ Rd and codimension 1 subspace H ⊂ Rd. We can assume c /∈ H since otherwise (10) will hold 
if we redefine c to be any element in Hc. As before, each x ∈ Rd can be written as x = xH + λxc for a 
unique pair (xH , λx) ∈ H ×R. Now let U(x) := cos(2πλx) and note that for any h ∈ H and n ∈ Z,
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x + h + nc = (xH + h)︸ ︷︷ ︸
∈H

+ (λx + n)︸ ︷︷ ︸
∈R

c,

so that

U(x + h + nc) = cos(2π(λx + n)) = cos(2πλx) = U(x).

This proves that U is (H + cZ)-periodic and thus also Gμ + Wσ,b+cμ-periodic. By Theorem 1.2, L[U ] = 0, 
and we have a nonconstant counterexample of (a). Note indeed that u ∈ L∞(Rd) since it is everywhere 
bounded by construction and C∞ (thus measurable) because the projection x �→ λx is linear. We therefore 
conclude that (a) implies (b) by contraposition. �
3. Examples

Let us give examples for which the Liouville property holds or fails. We will use Theorem 1.1 or the 
following reformulation:

Corollary 3.1. Under the assumptions of Theorem 1.1, L does not satisfy the Liouville property if and only 
if

supp(μ) + Wσ,b+cμ ⊆ H + cZ, (11)

for some codimension 1 subspace H and vector c of Rd.

Proof. Just note that G(supp(μ) + Wσ,b+cμ) = Gμ + Wσ,b+cμ and apply Theorem 1.1 and Corol-
lary 2.15. �
Example 3.2.

(a) For nonlocal operators L = Lμ with μ symmetric, (11) reduces to

supp(μ) ⊆ H + cZ, (12)

for some H of codimension 1 and c. This fails for fractional Laplacians, relativistic Schrödinger operators, 
convolution operators, or most nonlocal operators appearing in finance whose Lévy measures contain 
an open ball in their supports. In particular all these operators have the Liouville property.

(b) Even if supp(μ) has an empty interior, (12) may fail and Liouville still holds. This is e.g. the case for 
the mean value operator

M[u](x) =
∫

|z|=1

(
u(x + z) − u(x)

)
dS(z), (13)

where S denotes the d − 1-dimensional surface measure.
(c) We may have in fact the Liouville property with just a finite number of points in the support of μ, see 

Example 3.7.
(d) The way we have defined the nonlocal operator, if L = Lμ with general μ, (11) reduces to

supp(μ) ⊆ H + cZ and cμ ∈ H, (14)
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for some H of codimension 1 and c ∈ Rd. We can have (12) without (14) as e.g. for the 1–d measure 
μ = δ−1 + 2δ1. Indeed supp(μ) ⊂ Z but cμ = 1 �= 0. The associated operator Lμ then has the Liouville 
property even though it would not for any symmetric measure with the same support.

(e) A general operator L = Lσ,b + Lμ may satisfy the Liouville property even though each part Lσ,b and 
Lμ does not. A simple 3–d example is given by L = ∂2

x1
+ ∂x2 + (∂2

x3
)α, α ∈ (0, 1).

Indeed σ = (1, 0, 0)T, b = (0, 1, 0), dμ(z) = c(α) dz3
|z3|1+2α with c(α) > 0, thus cμ = 0, Wσ,b = R × R × {0}, 

and Gμ = {0} × {0} ×R, so the result follows from Theorem 1.1.
(f) For other kinds of interactions between the local and nonlocal parts, see Example 3.8.

Remark 3.3. The Liouville property for the nonlocal operator (13) implies the classical Liouville result for 
the Laplacian, since M[u] = 0 for harmonic functions u.

In the 1–d case, the general form of the operators which do not satisfy the Liouville property is very 
explicit.

Corollary 3.4. Assume d = 1 and L : C∞
c (R) → C(R) is a linear translation invariant operator satisfying 

the maximum principle (1). Then the following statements are equivalent:

(a) There are nonconstant u ∈ L∞(R) satisfying L[u] = 0 in D′(R).
(b) There are g > 0 and a nonnegative {ωn}n ∈ l1(Z) such that

L[u](x) =
∑
n∈Z

(u(x + ng) − u(x))ωn.

Proof. If (b) holds, any g-periodic function satisfies L[u] = 0 in R. Conversely, if (a) holds then L is of 
the form (2)–(3)–(4) by [13]. By Corollary 3.1, there is g ≥ 0 such that supp(μ) + Wσ,b+cμ ⊆ gZ. In 
particular σ = b + cμ = 0 and μ is a sum of Dirac measures: μ =

∑
n∈Z ωnδng.7 By (Aμ), each ωn ≥ 0 and ∑

n∈Z ωn < ∞. Injecting these facts into (2)–(3)–(4), we can easily rewrite L as in (b). �
Example 3.5.

(a) In 1–d, the Liouville property holds for any nontrivial operator with nondiscrete Lévy measure.
(b) For discrete Lévy measures, we need σ �= 0 or b �= −cμ or Gμ = R for Liouville to hold. The condition 

Gμ = R is typically satisfied if supp(μ)
R

has an accumulation point or if supp(μ) contains two points 
z1, z2 with irrationial ratio z1z2 (see Theorem 3.6). Another example is when supp(μ) = {n2+1

n }n≥1, which 
has no accumulation point or contains any pair with irrational ratio.

Let us continue with interesting consequences of the Kronecker theorem on Diophantine approximation 
(p. 507 in [21]).

Theorem 3.6 (Kronecker theorem). Let c = (c1, . . . , cd) ∈ Rd. Then cZ + Zd = Rd if and only if 
{1, c1, . . . , cd} is linearly independent over Q.

We can use this result to get the Liouville property with just a finite number of points in the support of 
the Lévy measure.

Example 3.7.

7 If g = 0 then μ = 0 and the rest of the proof is trivial.
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(a) Consider the operator

L[u](x) = u(x + c) +
d∑

i=1
u(x + ei) − (d + 1)u(x)

for some c = (c1, . . . , cd) �= 0 where {e1, . . . , ed} is the canonical basis. Liouville holds if and only 
if {1, c1, . . . , cd} is linearly independent over Q. Indeed Gμ = cZ + Zd, so the result follows from 
Theorems 1.1 and 3.6.

(b) For more general operators L[u](x) =
∑

z∈S(u(x + z) − u(x))ω(z), with S finite and ω(·) > 0, we may 
have similar results by applying Theorem 3.6 (or variants) and changing coordinates.

Let us end with an illustration of how the local part may interact with such nonlocal operators. We give 
2–d examples of the form

L[u](x) = b̃1ux1 + b̃2ux2 + u(x + z1) + u(x + z2) − 2u(x)

where b̃ represents the full drift b + cμ.

Example 3.8.

(a) If b̃, z1, z2 are collinear, Liouville does not hold by Theorem 1.1.
(b) If z1 and z2 are collinear and linearly independent of b̃ as in

L[u](x) = ux1(x) + u(x1, x2 + α) + u(x1, x2 + β) − 2u(x),

then the Liouville property holds if and only if αβ /∈ Q.
Indeed, here we have Gμ = {0} × αZ + βZ and spanR{b + cμ = (1, 0)} = R × {0}, so we conclude by 
Theorems 1.1 and 3.6.

(c) If {z1, z2} is a basis of R2 as in

L[u](x) =b̃1ux1(x) + b̃2ux2(x) + u(x1 + 1, x2) + u(x1, x2 + 1) − 2u(x),

then Liouville holds if and only if b̃1 �= 0 and b̃2
b̃1

/∈ Q.
Indeed, let us define G := Gμ + Wσ,b+cμ where we note that Gμ = Z2 and Wσ,b+cμ = spanR{(b̃1, ̃b2)}. 
If b̃1 = 0 or b̃2 = 0, then G ⊆ Z ×R or R ×Z which is not R2. Assume now that b̃1, ̃b2 �= 0 and b̃2

b̃1
∈ Q, 

i.e., b̃2
b̃1

= p
q with p, q �= 0. Then

G ⊆ T :=
(1
p
, 0
)
Z + spanR

{(
1, b̃2

b̃1

)}
=

{(k
p

+ r, r
p

q

)
: k ∈ Z, r ∈ R

}

since spanR{(b̃1, ̃b2)} = spanR{(1, b̃2b̃1 )} ⊂ T and Z2 ⊂ T . The last statement follows since for any 

(m, n) ∈ Z2, we can take k = pm − qn ∈ Z and r = n q
p ∈ R. Since T �= R2, Liouville does not hold by 

Theorem 1.1 and Corollary 2.15.
Conversely, assume b̃1, ̃b2 �= 0 and b̃2

b̃1
/∈ Q. Then (0, b̃2

b̃1
) = (−1, 0) + (1, b̃2

b̃1
) ∈ G and since (0, 1) ∈ G, we 

get that {0} × (Z + b̃2
b̃1
Z) ⊂ G. By Theorem 3.6, {0} × R ⊂ G. Arguing similarly with ( b̃1

b̃2
, 0), we find 

that R × {0} ⊂ G. Hence G = R2 and Liouville holds by Theorem 1.1.
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