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Abstract

The present paper is concerned with reliability economics, considering a certain
performance-per-cost criterion for coherent and mixed systems, as introduced in [M.
R. Dugas and F. J. Samaniego, On optimal system designs in reliability-economics
frameworks, Naval Research Logistics, vol. 54, pp. 568-582, 2007]. We first present
a new comparison result for performance-per-cost of systems with independent and
identically distributed component lifetimes under certain stochastic orderings. We
then consider optimization of the performance-per-cost criterion, first reconsidering
and refining results from the above cited paper, and then considering mixtures of
given subsets of coherent systems.

Keywords: coherent system, system signature, mixed system, ordering of random vari-
ables, performance-per-cost.

1 Introduction

Complex engineering systems play an ever increasing role in today’s industry and society.
Reliability and availability of systems are hence becoming increasingly important, and are
in most applications interdependent with economic considerations. Typically, decision
makers are faced with questions of whether a certain new system design can be defended
on economic grounds, or whether improvements of certain components or subsystems
should be undertaken. This demonstrates the need for a common framework for the
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simultaneous treatment of reliability and economics and the attendant analyses of costs
versus benefits. While there appears to be a large literature on reliability optimization
and related topics, the literature on comprehensive economic evaluations, possibly from
the design process to system retirement, is somewhat sparse. There is, however, excellent
published work in the area, including the book by Billinton and Allan [3] on reliability
of power systems. Here the economic aspect of reliability both from the supplier and
consumer’s point of view, in the latter case named reliability worth, are considered.

In the same area of applications, [9] and [19] consider economic evaluations of power
systems involving renewal energy. The latter article provides a review of different studies,
emphasizing the necessity of evaluating reliability and economics simultaneously. It is
noted in particular that the optimal system should have low initial cost but high reliability
in order to maintain the system with minimum life-cycle cost per unit of energy delivered.

[17] and [8] provide other examples of the kinds of problems that can be treated within
the framework of reliability and economics. The former paper considers wind farm reli-
ability optimization using multistate systems in order to find the best system topology
under constraints on performance, e.g., availability, costs and the Global Warming Po-
tential (GWP) of the system. The latter article considers coastal flood defense systems,
which may consist of multiple lines of defense. In case of a system with a front and a
rear defense, the front defense can improve the reliability of the rear defense by reducing
the load on the latter. The authors develop a framework for an economic cost-benefit
analysis in order to assess the effect of the load reduction obtained by including the front
defense.

That the study of the economic aspects of reliability is not new becomes moreover
clear from two early references, [4] and [18]. The authors of these articles identified both
the need for probabilistic evaluation of reliability and for relating economics to reliability.

Dugas and Samaniego [7] defined the field of reliability economics to mean “the col-
lection of problems and frameworks in which there is tension between the performance
of a group of systems of interest and their cost”. Their stated goal was to identify sys-
tem designs which are optimal according to some reasonable criterion depending on both
performance and cost. They formulated the problem in terms of classical system relia-
bility, and they further utilized the flexible tool of system signatures as introduced by
Samaniego [13] (see also the monograph of Samaniego [14]). In this framework, they con-
structed a reasonable criterion function for measuring performance-per-cost for systems,
and considered its optimization in the collection of systems of an arbitrary but fixed size.

In this paper, we shall follow their path, and complement their work in certain direc-
tions. More specifically, we shall in the first part consider the problem roughly described
as follows: Suppose there are given two different designs of systems for performing a
specific task, where one system is known to perform better than the other, although at
a higher price. For any given criterion function a question naturally arises regarding the
conditions under which the more expensive system is to be preferred. In the second part
we shall consider the optimization of the criterion function, when a given set of coherent
systems is available. We first reconsider results from [14], and then establish new and
more general results.

The paper is organized as follows. In Section 2, we review the basic definitions and
properties of coherent and mixed systems and their signatures, as well as the basic ingre-
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dients of the theory for reliability economics as introduced in [7]. For ease of reference, we
shall mostly refer to Chapter 7 in [14], the chapter which is based on the paper [7]. In Sec-
tion 3 we state and discuss a series of results which give sufficient conditions for improved
performance-per-cost under orderings of the system signatures. The proof is relegated
to the Appendix. In Section 4, we reconsider the optimization of the performance-per-
cost criterion of [14, Chapter 7] and give, in particular, a strengthening of one of the
optimization results. In Section 5 we explore the possibility of improving performance
among a given set of coherent systems by means of mixtures. An application is given in
Section 6, while in Section 7 we offer some concluding remarks. The paper is ended by
an Appendix giving some key results and proofs.

2 Definitions and Basic Theory

2.1 Coherent and Mixed Systems and their Signatures

Consider a coherent system with n binary components as studied, for example, in the
monograph by Barlow and Proschan [2]. In the following developments we shall refer to
a system with n components as an n-system. Suppose that the components’ lifetimes,
X1, . . . , Xn, are independent and identically distributed (i.i.d.) with continuous distribu-
tion F , and let X1:n < X2:n < · · · < Xn:n be their ordered values. Let T be the lifetime
of the system. The signature vector s = (s1, . . . , sn) of the system, introduced in [13], is
defined by si = P (T = Xi:n) for i = 1, . . . , n. A key property of s is that it depends only
on the system structure and does not depend on the distribution F of component life-
times. Moreover [14, Theorem 3.1], the survival function of the lifetime T of the system
can be represented as

P (T > t) =
n∑

i=1

siP (Xi:n > t) (1)

=
n∑

i=1

si

i−1∑
j=0

(
n

j

)
(F (t))j(F̄ (t))n−j,

which further implies that

E(T ) =
n∑

i=1

siE(Xi:n). (2)

This shows in particular that the system’s lifetime distribution depends on the system
structure only through the signature vector s.

Standard examples of coherent systems are series systems, which work if and only if
all components are working, and parallel systems, which work if and only if at least one
component is working. These are special cases of the so-called i-out-of-n systems which
fail upon the i-th component failure, for 1 ≤ i ≤ n. It is easy to see that the signature
vector of an i-out-of-n system is

(0, . . . , 1i, . . . , 0), (3)
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where the subindex i refers to the ith element of the vector.
For practical as well as mathematical reasons, it has been proven useful to extend

the class of systems to include so-called mixed systems [14, page 28-31]. A mixed system
can be considered as the result of selecting a system at random from a given finite set of
coherent systems. To be more precise, suppose that a k-dimensional probability vector
p = (p1, p2, . . . , pk) gives positive weight to k distinct coherent n-systems with signature
vectors s1, s2, . . . , sk, respectively, each assumed to have components whose lifetimes are
i.i.d with a common distribution F . Let X1:n < X2:n < · · · < Xn:n be the ordered lifetimes
of the n components. Then, assuming that the jth system is chosen with probability pj
(j = 1, . . . , k) and letting T be the resulting lifetime, we have

P (T = Xi:n) =
k∑

j=1

P (T = Xi:n| jth system is chosen)P ( jth system is chosen)

=
k∑

j=1

pjsij,

where sj = (s1j, . . . , snj). It follows that the signature s∗ associated with the process of
selecting among the m systems according to the probability distribution p is the vector
equal to the mixture of the signature vectors s1, s2, . . . , sk, that is, s∗ =

∑k
j=1 pjsj. It is

easily verified that the results (1) and (2) continue to hold for mixed systems [14, page
30]. Note that any probability vector s = (s1, . . . , sn) can serve as the signature of a
mixed system. One possible representation of such a mixed system is the one which gives
weight si to an i-out-of-n system, for i = 1, . . . , n.

Computation of signatures may be a complicated task, particularly for large systems.
A comprehensive review of methods for computation of signatures, as well as a new
approach, are given in the recent paper [6].

2.2 Ordering of Random Variables

Signature vectors have proven particularly useful in the comparison of lifetimes of different
systems. Let s1 and s2 be signature vectors of two mixed n-systems, and let T1 and T2
be their lifetimes. As shown in [14, Section 4.2], certain ordering properties of signature
vectors are preserved for the corresponding lifetime distributions. This applies to the
three orders presented in Definition 1 below, which are involved in the main result of
Section 3. Note that here and hereafter we will use increasing to mean non-decreasing
and decreasing to mean non-increasing

Definition 1. Let X1 and X2 be random variables, either discrete or absolutely continu-
ous, with corresponding cumulative distribution functions F1 and F2, and let F̄i = 1−Fi

for i = 1, 2. Then X1 is smaller than X2 in the stochastic order, denoted X1 ≤st X2,
if and only if F̄1(x) ≤ F̄2(x) for all x; in the hazard rate order, denoted X1 ≤hr X2, if
and only if F̄2(x)/F̄1(x) is increasing in x; and in the likelihood ratio order, denoted
X1 ≤lr X2, if and only if f2(x)/f1(x) is increasing in x (where the fi are either prob-
ability mass functions or density functions, according to whether the Xi are discrete or
absolutely continuous).
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In the above definitions, and elsewhere in the paper, a/0 =∞ for a > 0.

Theorems 4.3-4.5 of [14] state that when g denotes any of the three orders in Defini-
tion 1, that is st, hr, lr, we have that

s1 ≤g s2 ⇒ T1 ≤g T2. (4)

It is furthermore well known [16, Chapter 1] that

X1 ≤lr X2 ⇒ X1 ≤hr X2 ⇒ X1 ≤st X2.

2.3 Representation of Performance of a Coherent System

In describing system performance, two particular measures seem the most natural: the
expected system lifetime E(T ) and the system’s reliability function RT (t) = P (T > t).
If the system has been designed to survive beyond a predetermined mission time t0, then
the reliability RT (t0) at this mission time might be taken as the appropriate measure of
performance. It follows from (1) and (2) that both E(T ) and RT (t0) can be expressed in
terms of the system’s signature s as

n∑
i=1

hisi, (5)

where the hi are increasing positive constants. More generally, for any increasing function
Φ(T ), we can write E[Φ(T )] =

∑n
i=1 siE[Φ(Xi:n)], so the class of performance measures of

the form
∑n

i=1 hisi, where the hi are increasing, is a natural and flexible class to consider.
Note that since an i-out-of-n system has the signature vector displayed in (3), the

coefficient hi in (5) can be interpreted as measuring the performance of an i-out-of-n
system for i = 1, 2, . . . , n.

Since monotonicity of the hi is not needed for all our results, we shall generally assume
only that hi > 0 for each i and state further assumptions when appropriate.

2.4 Representation of Cost of a Coherent System

Similarly, one may let the expected cost of a system with signature vector s be represented
as
∑n

i=1 cisi, where ci is interpreted as the cost of an i-out-of-n system, i = 1, . . . , n. The
justification of this is that a system with signature vector s can be represented as a
mixture of i-out-of-n systems, see Section 2.1. Thus, the cost of producing a system
with signature s can reasonably be considered to be the cost of producing the equivalent
mixture of i-out-of-n systems. This latter system is produced using the probability vector
s as the mixing distribution for i-out-of-n systems, and its expected cost would be exactly∑n

i=1 cisi.
[14, page 95] gives an example of how the linear representation

∑n
i=1 cisi of expected

cost of an n-system might occur in practice, in the so called “salvage model”. Here it is
assumed that the cost ci of an i-out-of-n system can be written as

ci = C + nA− (n− i)B for i = 1, . . . , n, (6)
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where C is the initial fixed cost of manufacturing the system, A is the cost of an individual
component, and B is the salvage value of a used but working component which is removed
after system failure.

As for the hi, although it is natural from the setting that the ci are increasing, we
will only assume that ci > 0 for each i, unless otherwise stated.

2.5 The Performance-per-cost Criterion

Having established measures of, respectively, performance and cost of a system, Dugas
and Samaniego [7] proposed the following measure of the relative value of performance
and cost for a mixed n-system with signature vector s:

mr(s,h, c) =

∑n
i=1 hisi

(
∑n

i=1 cisi)
r
. (7)

As explained in [14, page 97], the power parameter r > 0 serves as a calibration param-
eter, determining the weight to be put on cost relative to performance in the criterion
function (7). Thus r = 1 is the natural choice if equal weight is put on performance
and cost, while r < 1 (r > 1) correspond to cases where the most weight is put on
performance (cost).

The optimality problem considered in [7] was the problem of maximizing the performance-
per-cost criterion (7) with respect to the signature vector s among all mixed systems of
a given size. The authors were then able to give several explicit optimality results for
the given criterion, see also Section 4 below.

The class of criterion functions given by (7) is of course by no means uniquely ap-
propriate to the problem of interest. The particular form has been discussed in [14,
Chapter 7.2], where it is pointed to at least two good reasons for the choice of functions;
their desirable monotonicity properties with respect to performance and cost, and their
amenability to analytical treatment.

3 On the Comparison of Performance-per-cost for

Ordered Systems

Consider two n-systems, where the signature vectors are ordered with respect to one of
the orders considered in Definition 1.

Assume that there are given a performance vector h = (h1, . . . , hn) and a cost vec-
tor c = (c1, . . . , cn) where we now may think of these as having increasing entries. It
follows that for two n-systems with respective signature vectors s = (s1, . . . , sn) and
t = (t1, . . . , tn) which are stochastically ordered, i.e., s ≤st t, both the performance and
cost will be larger for the system with signature t. Since both vectors appear, respec-
tively, in the numerator and denominator of the performance-per-cost measure (7) for
each system, it remains undetermined which of the two systems has the highest value
in terms of performance-per-cost. Intuitively, if in some sense the performance increases
relatively more than the cost when going to a stochastically better system, then the value
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of the criterion function should rise. The following theorem makes this issue more precise
for the case r = 1. It presents sufficient conditions under which two n-systems with sig-
nature vectors s and t, where s ≤g t according to one of the orders of random variables
considered in Definition 1, are ordered in the same direction by the performance per cost
criterion, i.e., ∑n

i=1 hisi∑n
i=1 cisi

≤
∑n

i=1 hiti∑n
i=1 citi

. (8)

The proof of the theorem is given in the Appendix, where we first present and prove
a slightly more general result based on the monograph by Shaked and Shanthikumar [16,
Chapter 1].

Theorem 1. Let s and t be signatures of two mixed n-systems. Let c = (c1, . . . , cn) and
h = (h1, . . . , hn) be, respectively, the cost vector and the performance vector. Consider
the follwing conditions:

C1: ci ≥ 0 for all i

C2: hi/ci is increasing in i

C3: ci is increasing in i

C4: hi+1−hi

ci+1−ci ≥
hn

cn
for i = 1, 2, . . . , n− 1

Then the following implications hold:

(i) If s ≤lr t, then C1,C2 together imply (8).

(ii) If s ≤hr t, then C1,C2,C3 together imply (8).

(iii) If s ≤st t, then C1,C2,C3,C4 together imply (8).

Theorem 1 makes explicit the fact that the weakening of the ordering between the
signatures s and t results in the need for stronger conditions on the cost and performance
vectors in order to establish the inequality in (8). For example, if s ≤lr t, then the
increasing property of the ci is not needed, provided C2 holds, i.e., the ratios hi/ci
are increasing. This expresses the intuition that performance needs to increase more,
relative to the cost, when going from an i-out-of-n system to an (i+ 1)-out-of-n system.
An interpretation of condition C4 is that the ratios of the increase in performance and
increase in cost when going from an i-out-of-n to an (i+ 1)-out-of-n system are bounded
below by the ratio of performance and cost for a parallel system of size n.

Some aspects of Theorem 1 are illustrated and discussed in the example below.

Example 1. Let n = 4 and suppose costs are given by the salvage model (6), where the
constants A,B,C are A = 4/10, B = 5/10 and C = 3/10. It follows that the cost vector
for the system are given by c = (0.4, 0.9, 1.4, 1.9).

Now suppose that the component lifetimes Xi are exponentially distributed with
mean 1. As is well known, for i = 1, 2, . . . , n,

E(Xi:n) =
1

n
+

1

n− 1
+ . . .+

1

n− i+ 1
. (9)
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Thus, letting n = 4 and assuming that performance is measured by expected lifetime, we
obtain the performance vector h = (1/4, 7/12, 13/12, 25/12) = (0.250, 0.583, 1.083, 2.083).

It is now straightforward to see that conditions C1-C3 of Theorem 1 hold. It is easily
confirmed, however, that C4 does not hold. Indeed, we calculate

h2 − h1
c2 − c1

= 0.667 <
h4
c4

= 1.096.

Still, in order for a system with signature t to outperform a system with signature s
relative to the criterion function (7) with r = 1, it is sufficient that s ≤hr t. It is,
on the other hand, not sufficient to have s ≤st t. Suppose, for example, that s =
(1/4, 1/4, 1/2, 0) and t = (0, 1/2, 1/2, 0). These are both signatures of coherent systems
[14, Table 3.2], and the fact that s ≤st t but s 6≤hr t is easily verified. Thus, Theorem 1
does not guarantee that the system with signature t has the highest performance-per-
cost. In fact, substitution of the relevant values into (8), gives 0.75/1.025 = 0.732 for
the left hand side, while for the right hand, one obtains 0.833/1.15 = 0.725. Hence, the
system with signature t does not have the best performance-per-cost.

Changing the signature from t to t′ = (0, 1/3, 2/3, 0) (which also corresponds to
a coherent system), it is seen that s ≤hr t′. Hence, since C1-C3 hold, the theorem
guarantees a better performance-per-cost for the latter system. This is also seen by
recalculating the right hand side of (8), now for t′, which gives 0.917/1.233 = 0.743.

The following corollary to Theorem 1 considers the case when the performance per
cost criterion in (7) is used with r < 1.

Corollary 1. Implications (ii) and (iii) of Theorem 1 will continue to hold in the case
r < 1 if (8) in the statements (ii) and (iii) is replaced by∑n

i=1 hisi
(
∑n

i=1 cisi)
r
≤

∑n
i=1 hiti

(
∑n

i=1 citi)
r
. (10)

Proof. Note first that (10) can be written∑n
i=1 hisi∑n
i=1 cisi

≤
∑n

i=1 hiti∑n
i=1 citi

·
(∑n

i=1 cisi∑n
i=1 citi

)r−1

.

Since (8) holds under the given conditions, the above inequality holds if the last factor
is at least 1. By condition C3, the ci are increasing in i. Since s ≤st t, this implies that∑n

i=1 cisi ≤
∑n

i=1 citi. The result then follows by the assumption r < 1.

The implication (i) in Theorem 1 will not hold in general for r < 1, however, as shown
by the following example.

Example 2. Let n = 4 and consider two systems with signatures, respectively, u =
(0, 1/2, 1/2, 0) and v = (0, 1/3, 2/3, 0). Both of these signatures correspond to coherent
systems [14, Table 3.2], and it is also easy to see that u ≤lr v. Next let the cost and
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performance vectors be given by, respectively, c = (4, 3, 2, 1) and h = (4, 4, 3, 2), so that
conditions C1 and C2 (but not C3) are satisfied. Now (10) corresponds to

7/2

(5/2)r
≤ 10/3

(7/3)r

which, however, holds if and only if r > 0.707 (r = 1 is of course guaranteed by Theorem
1). Thus the corollary can not be extended to include implication (i).

Example 1 (continued). Corollary 1 implies that the system with signature t′ has
higher performance-per-cost than s also for any r < 1. If one calculates the two sides
of (10) with s and t′ also for some r > 1, one finds that the system with signature t′ is
the better one for r < 1.085, but that the system with signature s is the better one for
higher values of r. The reason for this behavior is, of course, the lower cost of the system
with signature s, which is

∑
cisi = 1.025, while the cost of the system with signature t′

is 1.233.

4 Optimization of the Criterion Function

In this section, we reconsider the optimization of the criterion function (7) as treated in
[14]. First, as a second corollary to our Theorem 1, we obtain the result of Corollary 7.1
of [14] for the case r = 1. We present the result and the new proof as a theorem below:

Theorem 2 (Samaniego, 2007). Consider the class of mixed n-systems. Assume that
r = 1 in the criterion function (7), with h and c fixed. Let

K∗ =

{
k | k = argmaxi

{
hi
ci
, i = 1, . . . , n

}}
(11)

Then (7) is maximized by any mixture of i-out-of-n systems with i ∈ K∗.

Proof. Let s be a given signature vector. Let {i1, . . . , in} be a reordering of the compo-
nents {1, 2, . . . , n} such that

hin
cin
≥
hin−1

cin−1

≥ · · · ≥ hi1
ci1

Let s′ = (si1 , . . . , sin). Then s′ ≤lr (0, . . . , 0, 1) and it follows from (i) of Theorem 1 that∑n
j=1 hijsij∑n
j=1 cijsij

≤ hin
cin

Here the left hand side equals m1(s,h, c), while the right hand side equals∑n
i=1 hiti∑n
i=1 citi

for any signature (i.e. probability) vector t = (t1, . . . , tn) for which tk > 0 only if k ∈ K∗.
Since s was chosen arbitrarily, this proves the corollary.
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Remark 1. In view of Corollary 1 one might think that the result of Theorem 2 would
hold also for r < 1. The following example shows, however, that this is not the case.
Suppose n = 3 and

mr(s,h, c) =
2s1 + 3s2 + 5.7s3
(s1 + 2s2 + 3s3)r

.

For r = 1, this is uniquely maximized by s0 = (1, 0, 0) by Theorem 2. Now for t = (0, 0, 1),
the criterion mr(t,h, c) equals 5.7/3r, while mr(s0,h, c) equals 2 for any r. Hence for
r ≤ 0.9533, t gives a higher value of the criterion function than s0.

This suggests that for r < 1, one should replace the hi/ci in (11) by hi/c
r
i . Now

Theorem 3 below takes care of this, and in addition strengthens the corresponding result
of [14, Chapter 7] for r < 1, which states (Theorem 7.2) that the optimal signature for
r 6= 1 has no more than two positive entries. Our Theorem 3 shows that, when r < 1, the
optimum is always a single i-out-of n system. The proof uses Lemma 1 which is found
in the Appendix, and which will be basic in the next section.

Theorem 3. Assume that r < 1 in the criterion function (7), with h and c fixed with
0 < h1 < h2 < . . . < hn and 0 < c1 < c2 < . . . < cn. Let

K∗ =

{
k | k = argmaxi

{
hi
cri
, i = 1, . . . , n

}}
.

Then (7) is maximized by a system with signature vector s if and only if s puts mass 1
on one of the components i ∈ K∗, i.e., can be represented as an i-out-of-n system with
i ∈ K∗.

Proof. Theorem 7.2 of [14] states that, under the requirements on h and c as given above,
a signature vector maximizing (7) can be given having at most two non-zero elements.
Without loss of generality we can assume that s3 = · · · = sn = 0, and thus, denoting s1
by s, we may consider the function

m(s) =
h1s+ h2(1− s)

(c1s+ c2(1− s))r

for 0 ≤ s ≤ 1. Since r < 1, Lemma 1 shows that the function m(s) cannot have a local
maximum in the interval (0, 1), and hence that only s = 0 or s = 1 are possible for its
maximum. This proves the theorem.

Remark 2. It should be remarked that in Theorem 2, any mixture of i-out-of-n systems
with i ∈ K∗ is optimal, while in Theorem 3, the optimal systems are only the ones that
put mass 1 in single i-out-of-n systems with i ∈ K∗.

Example 7.1 in [14], shows that the result of Theorem 3 does not hold in general for
r > 1. In this case, there is not necessarily a single i-out-of-n system that is optimal.
The reason for the difference between the cases r < 1 and r > 1 is related to the fact
that the denominator of (7) for r < 1 is a concave function, while for r > 1, it is convex.
The difference between the cases r < 1, r = 1 and r > 1 is further studied in the next
section. Note finally that the monotonicity requirements of h and c are not necessary
for Theorem 3 to hold, as will be clear from Section 5.
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5 Comparing Coherent Systems and their Mixtures

In this section we study the case where there is given a set of k candidate coherent n-
systems, assigned for a specific task, with respective signatures s1, s2, . . . , sk. The task to
be considered is the search for the optimal system with respect to performance-per-cost,
among all mixtures of the k coherent systems. The main result (Theorem 5) states that
if r ≤ 1, then the optimal system is always one of the original systems, i.e., no mixture
of several systems can outperform all the single systems with respect to the criterion (7),
while for r > 1 the optimal system is either a single system or a mixture of just two of
the original systems.

The performance vector h and the cost vector c are assumed fixed in this section, and
they will therefore be dropped in the notation of the mr-function (7). Unless otherwise
stated, we will only assume that hi > 0, ci > 0 for each i. Note also that although we
state the theorems for given sets of coherent systems, the statements will hold also if we
start from a set of mixed systems which are not necessarily coherent.

Consider first the case k = 2, and let s and t be the signature vectors of two coherent
n-systems. A mixed system which selects the first system with probability p and the
second with probability 1−p has signature vector ps+(1−p)t. The criterion function (7)
for this mixture is given by

mr(ps + (1− p)t) =
p
∑n

i=1 hisi + (1− p)
∑n

i=1 hiti
(p
∑n

i=1 cisi + (1− p)
∑n

i=1 citi)
r

=
p h′s + (1− p) h′t

(p c′s + (1− p) c′t)r
.

By using Lemma 1 (see Appendix), we have the following result:

Theorem 4. Let there be given two coherent systems with signatures s and t, respectively.

If r = 1, then

m1(ps + (1− p)t) < max{m1(s),m1(t)} for all 0 < p < 1 (12)

when m1(s) 6= m1(t), while m1(ps+(1−p)t) is constant for 0 ≤ p ≤ 1 if m1(s) = m1(t).

If r < 1, then

mr(ps + (1− p)t) < max{mr(s),mr(t)} for all 0 < p < 1.

If r > 1, then if
h′(s− t)c′(s− t) > 0 (13)

and

0 < pr ≡
h′(s− t)c′t− rh′tc′(s− t)

(r − 1)h′(s− t)c′(s− t)
< 1, (14)

we have
mr(ps + (1− p)t) ≤ mr(prs + (1− pr)t) for all 0 ≤ p ≤ 1;

11



with equality if and only if p = pr.

Otherwise, if r > 1 and s 6= t, then

mr(ps + (1− p)t) < max{mr(s),mr(t)} for all 0 < p < 1.

Remark 3. Suppose that s ≤st t. It was demonstrated in Example 1 that this does not
necessarily imply that mr(s) ≤ mr(t), even when r = 1. It should be noted, however,
that this fact does not contradict (12), which in Example 1 would merely state that,
when r = 1, no mixture of s and t can beat s with the given h and c.

Remark 4. Note that if s ≤st t and s 6= t, while both h and c are increasing, then
h′(s − t) and c′(s − t) are both negative (see [14, Proposition 7.1]). Hence (13) holds,
so if r > 1, there might be a strict mixture of the two systems which is optimal. In
Example 1, a numerical search shows that this is not the case for the given s and t for
any r > 1. Let therefore t be replaced by the t′ which is given in the example. Then
s ≤st t′, and a calculation shows that for r = 1.08 we have pr = 0.25 from (14). A strict
mixture of s and t′ is hence optimal. In fact we get

m1.08(0.25s + 0.75t′) = 0.73094

while m1.08(s) = 0.73026 and m1.08(t
′) = 0.73088.

Suppose now that there are k > 2 systems at hand. Theorem 5 below extends the
results for k = 2 in Theorem 4 to this case. In fact, the conclusion for r ≤ 1 extends
easily by induction. When r > 1, the extension of Theorem 4 to k > 2 does at first
sight look rather unclear. It turns out, however, that the optimization of the criterion
function for k > 2 can be done by considering pairs of systems, which hence enables the
application of Theorem 4. The proof of Theorem 5 for the case r > 1 is given in the
Appendix.

Theorem 5. Let there be given k coherent n-systems with signatures, respectively,
s1, s2, · · · , sk. Consider the mixed system with signature

∑k
j=1 pjsj, where

∑k
j=1 pj = 1.

If r = 1, then

m1

(
k∑

j=1

pjsj

)
≤ max{m1(s1), · · · ,m1(sk)},

with equality if and only if pj > 0 implies m1(sj) = maxj′m1(sj′).

If r < 1, then

mr

(
k∑

j=1

pjsj

)
≤ max{mr(s1), · · · ,mr(sk)}.

with equality if and only if pj = 1 for some j with mr(sj) = maxj′mr(sj′).

If r > 1, then the criterion function mr

(∑k
j=1 pjsj

)
is maximized by a vector (p1, . . . , pk)

for which pj + pj′ = 1 for some j, j′ ∈ {1, 2, . . . , k}.
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Remark 5. For r ≤ 1, Theorem 5 tells us that the maximum performance-per-cost
among all mixtures of a set of coherent n-systems is always attained by a single system.
(It is seen, moreover, that in the case r = 1, systems with the same value of the criterion
function may be mixed withouot losing the optimal property. This is not the case if
r < 1.)

When r > 1, the maximization can be done by considering all the
(
k
2

)
different

pairs of systems. The optimal mixture is then given by the pair that gives the max-
imal performance-per-cost, based on the result of Theorem 4. Section 6 provides an
illustration.

Remark 6. If k = n, and the set of coherent systems in question consists of the i-out-of-
n systems for i = 1, . . . , n, then the mixed systems considered in Theorem 5 correspond
exactly to the collection of all mixed n-systems, see Section 2.1. It is then not difficult
to see that Theorem 5 implies the previous results Theorem 2 and Theorem 3, as well as
the result of [14, Theorem 7.2] which states that the maximum of the criterion function
is attained by a signature vector with at most two non-zero entries (see the proof of
Theorem 3). It should be remarked, however, that the results of the present section are
proven under the weaker assumption that the vectors h and c have positive entries, while
strict monotonicity of the entries of h and c are assumed in [14].

6 Application

As mentioned in the Introduction, Dupuits et al. [8] considered economic optimization
of coastal flood defence systems. Such systems can consist of multiple lines of defence.
The cited paper studied in particular systems consisting of a front and rear defence with
the aim of finding the economically optimal heights of the two barriers, when taking into
account both risk cost and investment cost.

Motivated by this, we will redefine the problem in the setting of the present paper
to that of choosing between different system configurations under certain constraints.
In the present example we consider three systems, each consisting of three components,
but which are structured differently. The three systems, named A,B,C, are illustrated
in Figure 1. Their signature vectors are, respectively, sA = (1/3, 2/3, 0), sB = (0, 1, 0),
sC = (0, 2/3, 1/3), which are seen to be stochastically ordered as sA ≥st sB ≥st sC .

The choice between these structures, or possibly mixtures of them (if r > 1), will
be based on a performance vector h and cost vector c. In their application, [8] seeks to
minimize total costs, consisting of risk costs plus investment costs, with precise definitions
given in the paper. In our setting, this would correspond to letting minus risk cost serve
as the performance measure, while investment cost corresponds to our cost.

For ease of exposition, we shall in our example of choosing between the systems A,B
and C, let the performance vector h be defined in the same manner as in Example 1,
i.e., by the expected values of the order statistics of the unit exponential distribution.
Letting n = 3 in (9) we obtain the vector h = (1/3, 5/6, 11/6). Somewhat arbitrarily, we
define the cost vector c by letting ci = i for i = 1, 2, 3.
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With the given values, we maximized the criterion function

mr(pAsA + pBsB + pCsC)

with respect to the mixture probability vector (pA, pB, pC), for r in steps of 0.1 from 0
and upwards, using Theorem 5. Hence, for r ≤ 1, the optimum was simply obtained as
the maximum of mr(sA), mr(sB) and mr(sC), while for r > 1 we had to maximize over
each system plus all pairs of systems. Table 1 shows the resulting optimal systems for
each value of r. It is seen that for the smallest r, i.e., when cost is less emphasized, the
optimal system is the one with the highest performance (stochastically largest signature),
C. As r increases, and cost hence gets a larger impact, the less costly system, A, will
be more and more part of the optimal solution. The example shows, moreover, that for
r > 1, the optimal system needs not be a single system, in contrast to the case r ≤ 1.
Thus the special treatment of the case r > 1 in Theorem 5 is needed. It is also noticeable
from Table 1 that system B is never part of the optimal solution.

r Optimal system
0-1.5 C
1.6 0.389 A + 0.611 C
1.7 0.667 A + 0.333 C
1.8 0.875 A + 0.6 C

1.9 – A

Table 1: Optimal system or mixed system

Figure 1: Systems A (left), B (middle) and C (right)

7 Concluding Remarks

In the present paper we have obtained new results for the reliability economics framework
introduced by Dugas and Samaniego [7]. In particular, we have obtained comparison re-
sults for the performance-per-cost measure for different stochastic orders. Our Theorem 1
may throw new light on both the performance-per cost measure and on the nature of the
various orders that are considered.

Next we have studied, under various settings, the optimization of the performance-per-
cost function of [7]. In particular we have improved the optimization result of [7] for r < 1.
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We have further studied the problem of maximizing the criterion function for mixtures
of arbitrary sets of coherent systems. Using the powerful, but simple, Lemma 1, we have
proved in particular that no mixture of coherent systems can have better performance-
per-cost than the best single system in the set when r ≤ 1. By an example we have
shown that such a result does not hold in general when r > 1. The optimal mixture may,
however, in this case be described by a mixture of at most two systems, and an explicit
formula is given for the mixture probabilities.

In our study, we have restricted attention to comparison of systems with the same
number of components, that is, with signature vectors of the same dimension. For com-
parison of systems with different sizes, [14, page 32] shows how to “convert” the smaller
of two systems into an equivalent system of the same size as the larger one. This con-
version allows, for example, the extension of results like (4) to comparison of systems
of different sizes in a fairly straightforward manner. This suggests, therefore, that the
comparison results of the present paper can be extended in a similar manner. Some work
in this connection was done in [11]. In the setting of the present paper, [11] considered
the problem of whether one may increase performance-per-cost by building smaller and
hence less costly systems, i.e., systems with fewer components.

In this paper we have restricted the attention to coherent systems with independent
and identically distributed component lifetimes. There is by now an increasing literature
where the study of coherent systems in the i.i.d. case is generalized in various directions.
A successful extension of the traditional signature of systems as described in the present
article, is the so-called survival signature introduced by Coolen and Coolen-Maturi [5],
which allows several (finitely many) types of components. Survival signatures have re-
cently been applied in various directions. For example, Aslett et al. [1] presented an
application to networks; Huang et al. [10] used the survival signature in an analysis
of phased mission systems, while Samaniego and Navarro [15] investigated methods for
comparison of coherent systems with heterogeneous components. In another direction,
Navarro et al. [12] introduced the notion of identically distributed, but dependent, com-
ponent lifetimes (d.i.d.), with dependency modeled by a copula.

It would certainly be of interest to adapt the present work to these new and more
general approaches, and this is an obvious topic for further research.
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Appendix

Proof of Theorem 1.

We prove Theorem 1 by first stating and proving the following theorem, which follows
from results presented in the monograph by Shaked and Shanthikumar [16].

Theorem 6. Let X and Y be two independent random variables and let α(·) and β(·) be
arbitrary real-valued functions. Consider the following conditions:

D1: β(x) ≥ 0 for all x

D2: α(x)/β(x) is increasing in x

D3: β(x) is increasing in x

D4: α(y)β(x)− α(x)β(y) is decreasing in x on {x ≤ y}

D5: E[α(X)]E[β(Y )] ≤ E[α(Y )]E[β(X)] (assuming that the expectations exist)

The following implications hold:

(i) If X ≤lr Y , then D1,D2 together imply D5.

(ii) If X ≤hr Y , then D1,D2,D3 together imply D5.

(iii) If X ≤st Y , then D1,D2,D3,D4 together imply D5.

Proof. Statement (ii) is part of Theorem 1.B.12 in [16]. In their proof, (ii) is obtained by
application of their Theorem 1.B.10 to a particular pair of functions φ1, φ2. The results
(i) and (iii) are not stated in [16], but it is straightforward to check that (i) is obtained
by using the same pair of functions as in their Theorem 1.C.22, while (iii) is obtained
similarly from their Theorem 1.A.10.
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Remark: Regarding (ii) above, Theorem 1.B.12 in [16] in fact shows that if D5 holds for
all functions α, β satisfying D1,D2,D3, then X ≤hr Y .

Proof of Theorem 1: We consider the special case of Theorem 6 where X, Y are defined
on {1, . . . , n} with probability distributions respectively given by the signature vectors
s and t. Further, we let the functions α and β be defined on {1, . . . , n} with values,
respectively, h = (h1, . . . , hn) and c = (c1, . . . , cn). Then it is seen that condition D5 can
be written as ∑n

i=1 hisi∑n
i=1 cisi

≤
∑n

i=1 hiti∑n
i=1 citi

,

which is (8).
The conditions D1 and D3 now become, respectively, ci ≥ 0 and ci is increasing in i,

which are C1 and C3. Further, D2 can be written

h1
c1
≤ h2
c2
≤ · · · ≤ hn

cn
, (15)

which is C2.
Next, D4 states that hjci − hicj is decreasing in i for i ≤ j, which means that

hjci − hicj ≥ hjci+1 − hi+1cj or, equivalently,

hi+1 − hi
ci+1 − ci

≥ hj
cj

for j = 2, . . . , n; i = 1, 2, . . . , j − 1.

Thus it follows from (15) that if we assume both D3 and D4, then in addition to (15) we
have the condition

hi+1 − hi
ci+1 − ci

≥ hn
cn

for i = 1, 2, . . . , n− 1,

which is C4 in Theorem 1.

Lemma 1 and its proof

Lemma 1. Let A,B,C and D be positive numbers and, for 0 ≤ p ≤ 1 and r > 0, let

Hr(p) =
pA+ (1− p)B

(pC + (1− p)D)r
. (16)

If r = 1, then
H1(p) < max{H1(0), H1(1)} for all 0 < p < 1

when H1(0) 6= H1(1), while H1(p) is constant for 0 ≤ p ≤ 1 when H1(0) = H1(1).

If r < 1, then
Hr(p) < max{Hr(0), Hr(1)} for all 0 < p < 1. (17)

If r > 1, then if
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(A−B)(C −D) > 0

and

0 < pr ≡
(A−B)D − rB(C −D)

(r − 1)(A−B)(C −D)
< 1, (18)

we have
Hr(p) ≤ Hr(pr), for all 0 ≤ p ≤ 1, (19)

with equality if and only if p = pr.
Otherwise, if r > 1,

Hr(p) < max{Hr(0), Hr(1)} for all 0 < p < 1, (20)

unless A = B and C = D in which case Hr(p) is constant in 0 ≤ p ≤ 1.

Proof. Let Hr(p) be given by (16). The derivative of Hr(p) at a fixed p ∈ [0, 1] is

H ′r(p) =
(A−B) (pC + (1− p)D)r − r(pA+ (1− p)B)(C −D) (pC + (1− p)D)r−1

(pC + (1− p)D)2r

=
(A−B) (pC + (1− p)D)− r(pA+ (1− p)B)(C −D)

(pC + (1− p)D)r+1

=
(1− r)(A−B)(C −D)p+ (AD − rBC − (1− r)BD)

(pC + (1− p)D)r+1 .

The sign of H ′r(p) for 0 ≤ p ≤ 1 thus equals the sign of the linear function

p 7→ (1− r)(A−B)(C −D)p+ (AD − rBC − (1− r)BD). (21)

Thus, if (1− r)(A−B)(C −D) = 0, Hr(p) is either increasing or decreasing or constant.
This means that, unless Hr(p) is constant, we have

Hr(p) < max{Hr(0), Hr(1)} for all 0 < p < 1.

This proves the lemma for the case when p = 1.
If (1 − r)(A − B)(C −D) 6= 0, then an interior extreme point of the function Hr(p)

will necessarily be at pr as given by (18). This is a maximum point only if

H ′r(0) > 0 and H ′r(1) < 0. (22)

In such a case, putting p = 0 and p = 1 in (21), it is necessary that

(1− r)(A−B)(C −D) < 0. (23)

This proves (19), since (23) implies that, if r > 1, an interior point can be a maximum
only if (A−B)(C −D) > 0. Also, (20) follows from this.
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Assume finally that r < 1. Note first that (22) implies, using (21), that{
AD − rBC − (1− r)BD > 0,

(1− r)(A−B)(C −D) + AD − rBC − (1− r)BD < 0,

or, by reordering terms, (22) implies that{
(A−B)D − r(C −D)B > 0,

(A−B)C − r(C −D)A < 0.
(24)

On the other hand, it follows from (23) that, when r < 1, there can be an interior
maximum point only if

(A−B)(C −D) < 0. (25)

From this, if C−D > 0, we must have A−B < 0. But this contradicts the first inequality
in (24). Similarly, if C −D < 0, then A − B > 0 by (25), and the second inequality in
(24) is violated. It follows that no interior point can be a maximum in the case r < 1,
so (17) holds.

Proof of Theorem 5 for the case r > 1

Proof. Let sj = (s1j, s2j, . . . , snj) for j = 1, 2, . . . , k. Then by (7) we have

mr

(
k∑

j=1

pjsj

)
=

∑k
j=1 pj

∑n
i=1 hisij(∑k

j=1 pj
∑n

i=1 cisij

)r =

∑k
j=1 pjαj(∑k
j=1 pjβj

)r
=

αk +
∑k−1

j=1(αj − αk)pj(
βk +

∑k−1
j=1(βj − βk)pj

)r =
αk +

∑k−1
j=1 α̃jpj(

βk +
∑k−1

j=1 β̃jpj

)r . (26)

Here αj =
∑n

i=1 hisij, βj =
∑n

i=1 cisij, α̃j = αj−αk and β̃j = βj−βk for j = 1, . . . , k−1.
We consider the task of maximizing (26) on the convex set R of p = (p1, . . . , pk−1) with
each pi ≥ 0 and

∑k−1
j=1 pj ≤ 1.

Let us first exclude the case when ci = ahi for i = 1, . . . , n for some constant a > 0.

Then clearly mr

(∑k
j=1 pjsj

)
is constant, so the result of the theorem is trivially satisfied.

We now claim that the maximum of (26) occurs on the boundary of R. The following
argument is similar to the one of [11, page 346]. Assume for contradiction that the max-
imum occurs at an interior point p̂ of R. Consider the two hyperplanes of (p1, . . . , pk−1)
for which, respectively, the linear functions

∑n−1
i=1 α̃jpj and

∑n−1
i=1 β̃jpj have the same

value as in the optimum point p̂. (These hyperplanes are not parallel when the propor-
tionality case considered above has been excluded). Let N be an open neighborhood of p̂
which is included in R, and consider the intersection N0 of N and the above hyperplane
defined by the β̃j. On this set, the denominator of (26) is constant. The set N0 will,
however, contain points on both sides of the hyperplane defined by the α̃j, meaning that∑k−1

j=1 α̃jpj on N0 will have values both larger and smaller than its value at p̂. But then
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(26) will in N0 take values larger than the value at p̂, which gives a contradiction since
the maximum is assumed to be at p̂. Thus the maximum point of (26) is a boundary
point of R.

It follows that the maximum of mr

(∑k
j=1 pjsj

)
is obtained either for a p for which

pj = 0 for some j ∈ {1, 2, . . . , k − 1} or for a p for which
∑k−1

j=1 pj = 1, in which case
pk = 0. Hence the problem of maximizing the criterion function is reduced to a case of
k − 1 systems. The above approach can then be continued by first checking the possible
proportionality of the remaining hi and ci, in which case we are done, and then in case
of non-proportionality, reducing the set of systems by one. This process will end when
only two systems are left, in which case we are done and Theorem 4 applies.
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