
PHYSICAL REVIEW B 101, 214513 (2020)
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Insight into why superconductivity in pristine and doped monolayer graphene seems strongly suppressed
has been central for the recent years’ various creative approaches to realize superconductivity in graphene and
graphene-like systems. We provide further insight by studying electron-phonon coupling and superconductivity
in doped monolayer graphene and hexagonal boron nitride based on intrinsic phonon modes. Solving the
graphene gap equation using a detailed model for the effective attraction based on electron tight binding and
phonon force constant models, the various system parameters can be tuned at will. Consistent with results in
the literature, we find slight gap modulations along the Fermi surface, and the high-energy phonon modes are
shown to be the most significant for the superconductivity instability. The Coulomb interaction plays a major role
in suppressing superconductivity at realistic dopings. Motivated by the direct onset of a large density of states
at the Fermi surface for small charge dopings in hexagonal boron nitride, we also calculate the dimensionless
electron-phonon coupling strength there, but the comparatively large density of states cannot immediately be
capitalized on, and the charge doping necessary to obtain significant electron-phonon coupling is similar to the
value in graphene.
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I. INTRODUCTION

The discovery of graphene has attracted massive attention
in condensed matter physics, stimulating an enormous number
of theoretical and experimental investigations into a class of
novel materials broadly denoted as Dirac materials [1–5].
Among their interesting properties is the Dirac-cone-shaped
electron band structure at half filling, enabling the study of
relativistic physics in a condensed matter setting [3,6–8].
However, the cone structure with a vanishing density of states
and Fermi surface at the Dirac point suppresses phenomena
such as superconductivity, which precisely rely on the exis-
tence of a Fermi surface.

In spite of this obstacle, there is a plethora of graphene-like
systems where superconductivity has been predicted or
observed. In carbon nanotubes and the carbon based fullerene
crystals also known as “buckyballs,” superconductivity was
observed already decades ago in crystals intercalated with
potassium [9,10]. Superconductivity is also well known
in graphite intercalation compounds [11–15], where the
interlayer interactions and the additional dopant phonon
modes enhance superconductivity [12]. A similar picture
arises also for intercalated bilayer graphene, where interlayer
interactions are crucial for the resulting superconductivity
[16,17]. In bilayer graphene, a different route to superconduc-
tivity is the magic angle twist approach [18–21], where strong
correlations are believed to play a key role. Superconductivity
has also been demonstrated in effectively one-dimensional
carbon nanotubes [22,23], which have strong screening of the
repulsive Coulomb interaction. In addition to these intrinsic
mechanisms, superconductivity may also be induced by
proximity [24–27]. There, the resulting superconductivity
in graphene will necessarily inherit extrinsic key properties
from the superconductor it is placed in proximity to [27].

Although superconductivity is already well established in
a multitude of these graphene-like systems, its observation
in monolayer graphene has proven very challenging. For
phonon-mediated superconductivity, the key quantity is the
dimensionless electron-phonon coupling (EPC) strength λ,
which is determined by both the density of states at the
Fermi level and the strength of the effective phonon-mediated
potential. The first challenge that has to be overcome is
therefore doping the system away from the Dirac point. The
primary ways of doing this are chemical doping [28–32] and
deposition of elements onto (or under) the graphene sheet
[33–43]. Using these methods, doping levels approaching
the van Hove singularity have been achieved [35]. Second,
one must make sure that λ has a sufficiently large value
at the achievable doping. Additional dopant phonon modes
and modifications of the electron band structure in decorated
monolayer graphene may enhance the electron-phonon cou-
pling strength [36,41–44], and in these systems, one has even
observed some evidence [43,45] for the desired monolayer
graphene superconductivity.

The EPC strength λ can be measured by examining kinks
and broadening in the electronic band structure using angular-
resolved photoemission spectroscopy (ARPES) [46–48]. At
realistic doping energies in the vicinity of the van Hove
singularity in the π band, λ values of the same order as in
many known conventional superconductors [49] have been
predicted and measured experimentally [48,50,51]. In light
of this, superconductivity in single-layer graphene with rea-
sonable critical temperatures does not seem inconceivable
even without dopant phonon modes and special electron band
structure modifications. Why superconductivity in monolayer
graphene remains so hard to achieve is therefore not entirely
clear.
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In conventional superconducting materials, the Coulomb
interaction does not play a significant role in reducing Tc,
since the effective phonon-mediated potential is attractive
only in a small region around the Fermi surface, whereas
the repulsive Coulomb interaction has much longer Brillouin
zone variations. The mechanism at work, retardation, can be
seen by solving the gap equation with a simplified model
[52] for the combined potential. In graphene, however, we
do expect the Coulomb interaction [53] to reduce the critical
temperature significantly [41,44,54,55] due to the modest
electron-phonon coupling strength. A crude estimate of the
Morel-Anderson renormalization of the dimensionless EPC
strength λ shows that the renormalization is of the same order
as λ itself. A detailed study of phonon-mediated superconduc-
tivity in graphene is therefore necessary.

Eliashberg theory for doped monolayer graphene was de-
veloped in Ref. [55], where the pair scattering processes
within and between the Fermi surface segments centered
around the inequivalent Brillouin zone points K and K ′ were
accounted for explicitly. The authors estimate the critical
temperature based on the assumption of an isotropic gap,
Fermi surface averaged Coulomb interaction [41,53] in the
linear spectrum regime, and various estimates for the electron-
phonon coupling strength based on other works. The resulting
critical temperature is of order 10 K with the optimistic
estimates.

In Ref. [44], the electron-phonon coupling strength and
superconducting gap were calculated with anisotropic Eliash-
berg theory based on ab initio calculation of the quasimomen-
tum and energy dependent electron-phonon coupling strength.
Coulomb interaction effects are incorporated through a Morel-
Anderson pseudopotential, which is treated as a semiempirical
parameter. For n-type doping, they find that superconductivity
may be possible due to the presence of a free-electron-like
(FEL) band. For p-type doping, this band is not present, and
the Coulomb interaction seems likely to suppress supercon-
ductivity.

In this paper, we perform detailed calculations of the
electron-phonon coupling based on an electron tight binding
model and a phonon force constant model in the presence
of a Hubbard-type Coulomb interaction. We then solve an
anisotropic BCS-type gap equation, which should give rea-
sonable estimates for the superconducting properties due to
the relatively modest electron-phonon coupling strength. The
various system parameters in our model can easily be tuned
to investigate how various physical mechanisms affect the
superconducting properties. Understanding this is essential
in the pursuit of realizing superconductivity in monolayer
graphene based on the intrinsic in-plane phonon modes.

Our results show that superconductivity with an experi-
mentally measurable gap may be possible for large dopings
approaching the van Hove singularity. We find an electron-
phonon coupling strength and gap anisotropy qualitatively
similar and of the same order as in Ref. [44], and the Coulomb
interaction is shown to be crucial in reducing the critical tem-
perature of the system. We also look into the contributions to
the electron-phonon coupling from the various phonon modes
in the system [41], and identify the high-energy phonons as
the most significant for the superconducting instability in the
realistically achievable doping regime.

The two-dimensional material hexagonal boron nitride (h-
BN) was discovered shortly [2] after graphene [1] using

the same micromechanical cleavage technique to exfoliate
monolayers from the stacks of weakly interacting layers also
known as van der Waals materials. In many respects, the two
are very similar [56]. They have the same lattice structure
and a similar lattice constant, which makes h-BN a good
substrate for graphene [57,58] and suitable for graphene
heterostructure engineering [59]. Like graphene, it also has
strong chemical bonding, and a comparable phonon Debye
frequency [60]. Unlike graphene, however, boron nitride has
two different ions, boron and nitrogen, on the two honeycomb
sublattices. This has dramatic consequences for the electronic
band structure, since the Dirac cone in graphene is protected
by time-reversal and inversion symmetry. Breaking of the
latter symmetry therefore renders hexagonal boron nitride a
large-gap insulator [61].

The possibility of superconductivity in doped hexagonal
boron nitride is a lot less studied than in doped graphene, but a
recent density functional theory study [62] suggests that dec-
orated h-BN may become superconducting with a transition
temperature of up to 25 K. Although the dopant phonon modes
are again responsible for this relatively large transition tem-
perature, this also hints at possibilities for superconductivity
mediated by intrinsic in-plane phonon modes. Furthermore,
and very different from graphene, the parabolic nature of the
electron band close to the valence band maximum gives a
direct onset of a large density of states even at small charge
doping. Motivated by this, we use the same methodology as
in the graphene case to calculate the dimensionless electron-
phonon coupling strength λ for hexagonal boron nitride.
Due to suppression of the electron-phonon coupling matrix
element due to the small Fermi surface, however, this effect
cannot be capitalized on, and we find that h-BN has an
electron-phonon coupling strength similar to graphene.

In Sec. II of this paper, we first present the free electron and
the free phonon models for graphene briefly, followed by a
more thorough derivation of the tight binding electron-phonon
coupling. In Sec. III, we introduce and discuss the Hubbard-
type Coulomb interaction used in this paper. In Sec. IV, we
introduce the assumed pairing, resulting gap equation, and
effective phonon-mediated potential, before presenting the
numerical results for graphene in Sec. V. In Sec. VI, we
discuss some qualitative aspects of these results. Switching
to boron nitride in Sec. VII, we discuss how the opening of a
gap changes the band structure and electron-phonon coupling.
Finally, the paper is summarized in Sec. VIII.

II. ELECTRONS, PHONONS, AND ELECTRON-PHONON
COUPLING

We consider a model for electrons on the graphene lattice,
and allow for lattice site vibrations. For the electrons, we
use a nearest neighbor tight binding model [4] describing
the π bands, as explained in further detail in Appendix A.
Other bands are disregarded, since only the π bands are
close to the Fermi surface for realistically achievable doping
levels in graphene. For the phonons, we use a force constant
model with nearest and next-to-nearest neighbor couplings
as introduced in Refs. [63,64] and elaborated in Appendices
B and C. These models give a realistic band structure and
realistic phonon spectra.
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The electron-phonon coupling model is derived by assum-
ing the electrons to follow the lattice site ions adiabatically,
and by Taylor-expanding the overlap integral ti j in the hopping
Hamiltonian

H = −
∑

〈i, j〉,σ
(ti jc

†
iσ c jσ + H.c.) (1)

to linear order in the deviations. Here, c†
iσ and ciσ are creation

and annihilation operators for an electron at site i with spin
σ ∈ {↑,↓}. Considering only the nearest neighbor hoppings,
we obtain

ti+δA,i = t1 + (ui+δA − ui ) · ∇δt1(δ), (2)

where t1 is the nearest neighbor hopping amplitude, ui is the
ionic displacement of lattice site i from its equilibrium posi-
tion, and the overlap integral t1(δ) is regarded as a function
of the relative position δ of the two lattice sites i and i + δA,
where δA is the equilibrium nearest neighbor vector from the A
to the B sublattice. Due to the mirror symmetry about the line
connecting the lattice sites i and i + δA, the electron-phonon
coupling can be written as

Hel−ph = γ t1
d2

∑
i∈A,δA,σ

δA · (ui+δA − ui )(c
†
i+δA,σ

ci,σ + H.c.),

(3)
where γ = −d ln t1/d ln d is a dimensionless number of order
1, and d is the equilibrium nearest neighbor distance, which
we use as our unit of length. In quasimomentum space, this
gives the electron-phonon coupling

Hel−ph =
∑
k,q

∑
ηη′

∑
ν,σ

gηη′,ν
k,k+q(aqν + a†

−q,ν )c†
η′σ (k + q)cησ (k),

(4)

where aqν and a†
−q,ν are creation and annihilation operators

for in-plane phonons labeled by ν ∈ {0, 1, 2, 3}, and η, η′ =
± denote electron bands. To linear order in the lattice site
deviations, the out-of-plane phonon modes do not couple to
the electrons due to the assumed z → −z mirror symmetry of
the system [65]. The coupling matrix element gηη′,ν

k,k+q is given
by

gηη′,ν
k,k+q = g0√

NA

√
ω	

ωqν

∑
δA

(
δA

d

)[
eiq·δA eB

ν (q) − eA
ν (q)

]
× [eik·δA F ∗

Aη′ (k + q)FBη(k)

+ e−i(k+q)·δA F ∗
Bη′ (k + q)FAη(k)], (5)

where FDη(k) is the sublattice amplitude of electron band η

at quasimomentum k and follows from the diagonalization
of the free electron model, as elaborated in Appendix A.
Similarly, eD

ν (q) is the phonon polarization vector at sub-
lattice D ∈ {A, B} for the phonon mode (q, ν), and follows
from diagonalization of the in-plane phonon Hamiltonian (see
Appendix B for details). The phonon mode frequencies are
denoted by ωqν , NA is the number of lattice sites on the A
sublattice, and the energy scale g0 is given by

g0 =
√(

h̄2

2Md2

)
1

h̄ω	

γ t1, (6)

where M is the carbon atom mass, and ω	 is a phonon energy
scale given by the optical phonon frequency at the 	 point
q = (0, 0).

To quantify the strength of the electron-phonon coupling,
one may introduce the dimensionless electron-phonon cou-
pling strength parameter [47,66]

λkη =
∑
qν

2

h̄ωqν

|gηη,ν

k,k+q|2δ(εk+q,η − εkη ), (7)

where εkη is the electron single-particle energy. We have
neglected interband scattering processes since the π band only
overlaps with the lower lying σ bands at unrealistic doping
levels [48,67].

Averaging λkη over the Fermi surface corresponding to
the energy of the incoming momentum often provides a
simple and useful tool for understanding the dependence of
the critical temperature of a superconductor on other system
parameters through the BCS formula kBTc ≈ h̄ωD exp(−1/λ),
where λ is the Fermi surface average of λkη.

III. COULOMB INTERACTION

To include the effect of the Coulomb interaction, we use
the repulsive Hubbard interaction

V C = u0

∑
i

ni↑ni↓, (8)

where niσ is the electron number operator. The on-site re-
pulsion u0 has been calculated from ab initio in undoped
graphene [54]. At significant doping of order 2 eV, as dis-
cussed in Appendix D, the screening length is a small fraction
of the nearest neighbor bond length, and we therefore disre-
gard longer ranged interactions.

For doped graphene, we expect the onset of π -band screen-
ing to reduce the on-site repulsion. A simple model for u0(μ)
is obtained by calculating the polarization bubble in the linear
spectrum approximation for intravalley scattering processes
[53]. The resulting polarization bubble is momentum indepen-
dent, and this gives

u0(μ) = u0(0)

1 + αu0(0)ρ(μ)Acell
, (9)

where ρ(μ) is the density of states per area in the linear
spectrum approximation, and Acell is the real-space area as-
sociated with the unit cell. We have introduced a factor α

to be able to study polarization strength dependence. The
doping dependence can also be interpreted as an interpolation
between the known on-site Coulomb repulsion u0(0) for pris-
tine graphene, and the known result of doping-independent
Coulomb pseudopotential μC at the Fermi surface [41,44],
requiring u0 ∝ 1/ρ(μ).

In momentum space, the Coulomb interaction takes the
form

V C = u0

2NA

∑
kk̃q

∑
η1···η4

c†
η1↑(k + q)c†

η2↓(k̃ − q)cη3↓(k̃)cη4↑(k)

(10)
in terms of the momentum band basis annihilation operators
cησ (k).
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FIG. 1. (a) Electron spectrum for the π bands of graphene in a tight binding hopping model. (b) Phonon spectrum for freestanding graphene
in the force constant model. In-plane modes are shown in blue, with out-of-plane modes in green. At any point in the Brillouin zone, the in-plane
phonon modes are labeled according to energy.

IV. PAIRING AND GAP EQUATION

The in-plane phonons yield an effective interaction be-
tween the electrons in the system that may cause pairing and
superconductivity. Assuming spin-singlet pairing at ±k and
considering only the electron band π−, the relevant interaction
can be written in the form

V =
∑
kk′

Vkk′c†
−↑(k′)c†

−↓(−k′)c−↓(−k)c−↑(k) (11)

with a potential Vkk′ that contains contributions both from the
Coulomb potential and an effective phonon-mediated poten-
tial V ph−m

kk′ , so that

Vkk′ = V C
kk′ + V ph−m

kk′ . (12)

The Coulomb contribution is given by Eq. (10). The ef-
fective phonon-mediated potential follows from a canonical
transformation [68], and is given by

V ph−m
kk′ =

∑
ν

|g−−,ν
k,k+q|2

2h̄ωqν

(εk+q − εk )2 − (h̄ωqν )2
, (13)

where the quasimomentum q is defined by k′ = k + q.
Due to the singlet pairing assumption, the gap has to be

symmetric under k → −k, and therefore, the potential Vkk′

can be replaced with the symmetrized potential

V symm
k,k′ = 1

2 (Vk,k′ + Vk,−k′ ), (14)

which is symmetric under k → −k and k′ → −k′, as well as
interchange of the incoming and outgoing momenta k and k′.

To proceed, we have to solve the gap equation

�k = −
∑

k′
V symm

kk′ χk′�k′ , (15)

with susceptibility

χk = tanh βEk/2

2Ek
, Ek =

√
ξ 2

k + |�k|2, (16)

where Ek is the quasiparticle excitation energy, and ξk =
εk − μ is the single-particle energy εk measured relative to
the Fermi surface at chemical potential μ.

To find the critical temperature and the gap structure �k
just below the critical temperature, it suffices to neglect the
gap in the excitation spectrum Ek in the gap equation. This
gives an eigenvalue problem linear in the eigenvectors and

nonlinear in the eigenvalue, which is solved as discussed
in Appendix E to obtain the critical temperature and gap
momentum dependence.

V. GRAPHENE NUMERICAL RESULTS

A. Parameter values and free spectra

We set the equilibrium electron hopping amplitude t1 to
2.8 eV [53]. The resulting electron band structure for the π

bands of graphene is shown in Fig. 1(a). For the phonon force
constant model used to derive the phonon spectrum, we use
the same parameter values as Ref. [63], and the resulting
excitation spectrum is shown in Fig. 1(b).

The dimensionless parameter γ can be estimated from ab
initio, and is roughly 2.5 [69]. This gives reasonable values
[50] for the dimensionless electron-phonon coupling strength
λ. With phonon energy scale h̄ω	 = 0.20 eV and nearest
neighbor distance d = 1.42 Å [70], this gives g0 = 0.15 eV.
All system parameters involved in the calculation of the
energy scale are tabulated in Appendix F.

B. Electron-phonon coupling strength and effective potential

Using the parameter values in the preceding subsection,
one may calculate the electron-phonon coupling strength λ

as function of the chemical potential μ. This is shown in
Fig. 2(a), with contributions from the four in-plane phonon
modes shown in color. The parameter λ incorporates both the
strength of the effective potential at the Fermi surface and
the density of states. Since the latter has a very systematic
variation with the chemical potential, λ and the electronic den-
sity of states have similar profiles. In the low-doping regime,
the optical phonon modes, and the highest-energy mode in
particular, dominate the electron-phonon coupling strength
completely. Figure 2(b) shows the angular dependence of λk
on the Fermi surface for various dopings. As shown also in the
inset, the Fermi surface anisotropy is increasing with doping,
reaching values of order 2% close to the van Hove singularity.

The effective potential V ph−m
kk′ is shown in Fig. 3(a) for

incoming momentum k at various outgoing momenta k′. The
potential is attractive in a finite region around the Fermi
surface corresponding to the energy of the incoming momen-
tum, and becomes repulsive when the kinetic energy transfer
exceeds the phonon energy scale.
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FIG. 2. (a) Calculated electron-phonon coupling strength λ averaged over the Fermi surface (black) and electronic density of states
(magenta) as function of chemical potential. Since λ is highly dependent on the density of states but also dependent on the electron-phonon
coupling element |g−−,ν

kk′ |, the two have similar but not identical shapes. The contributions to λ from the various in-plane phonon modes are
shown in colors. (b) Electron-phonon coupling strength along the Fermi surface normalized to the mean value for various doping levels. As
shown in the inset, the electron-phonon coupling strength modulations are increasing with doping toward the van Hove singularity.

The potential has contributions from the four in-plane
phonon modes, and these contributions are shown in Fig. 3(b)
for the incoming momentum as indicated in Fig. 3(a). The
size of the region with attractive interaction is determined
by the energy of the relevant phonon mode. The optical
high-energy phonon modes therefore give the largest attrac-
tive Brillouin zone area. The effective potential for intra-
and intervalley scattering processes on the Fermi surface is
shown in Fig. 3(c). Comparing the effective potential con-
tribution from the various in-plane phonon modes on the
Fermi surface reveals that the high-energy phonon modes
corresponding to high mode index or large quasimomen-
tum scattering also give rise to a stronger attractive poten-
tial at the important Fermi surface than their low-energetic
counterparts.

C. Solutions of the gap equation

To contain the divergences of the effective electronic po-
tential, we introduce an energy cutoff � = 6 eV in the po-
tential. Solving the linearized self-consistent equation (15) in
the full Brillouin zone as discussed in Appendix E, we obtain
the gap structure at the critical temperature Tc for which the
superconducting instability occurs. This is shown in Fig. 4,
where the superconducting gap at a given point is given by
color. The gap equation solution shows that the gap has a
given sign within the attractive region of the Brillouin zone for
incoming momenta at or close to the Fermi surface. Outside
this region, the gap changes sign, and subsequently decays
to a roughly constant value far away from the Fermi surface.
Furthermore, the gap has modulations of the same order as λk
along the Fermi surface.
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FIG. 3. (a) Graphene effective interaction V ph−m
kk′ in eV for incoming electron momentum k (yellow dot) at outgoing momentum k′

indicated by position in the plot. There can be both intra- (green) and intervalley (magenta) scattering processes to the Fermi surface. The
potential is attractive close to the Fermi surface, before it turns repulsive at a characteristic phonon frequency, and then decays to zero.
(b) Decomposition of effective potential in phonon mode contributions. The size of the attractive region clearly depends on the phonon
energy. (c) Effective potential Vkk′ (black) for incoming momentum k given by the yellow dot in (a) to outgoing momentum given by angle θ1

for intravalley and θ2 for intervalley scattering processes. Phonon mode contributions are shown in colors. Although the electron-phonon
coupling strength λk has only slight modulations, the effective potential is strongly dependent on the scattering momentum for a given
incoming momentum.
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FIG. 4. Typical superconducting gap structure at the indicated chemical potential μ just below the superconducting transition at critical
temperature Tc. (a) Hexagonal Brillouin zone of the triangular Bravais lattice in blue. The rhombus (black) contains an equivalent set of
quasimomenta. The green contours indicate the Fermi surface, and the short orange line is perpendicular to the Fermi surface. (b) Position on
the Fermi surface is specified with the angle θ . (c) Gap structure around the point K ′ in color for the given doping and on-site repulsion. The
insets show the gap structure perpendicular to (orange) and along (green) the Fermi surface.

The critical temperature is shown as a function of doping
in Fig. 5(a). As expected, the critical temperature increases
rapidly with increasing doping due to the increasing electron-
phonon coupling strength.

The presence of the Coulomb interaction decreases the
critical temperature significantly. This is shown in Fig. 5(b),
which shows the dependence of the critical temperature on the
on-site Coulomb repulsion strength u0. The data points from
the solution of the gap equation have been fitted to the simple
functional form that is expected from the Morel-Anderson
model [52], as discussed in Appendix G.

VI. DISCUSSION OF GRAPHENE RESULTS

In conventional superconductors, the effect of a Coulomb
interaction is small, and the quantitative effect on the criti-
cal temperature can be incorporated through renormalization
[52,71] of the electron-phonon coupling strength λ in the
simple BCS result kBTc ≈ h̄ωD exp(−1/λ) according to λ →
λ − μ∗, where

μ∗ = N0u

1 + N0u ln(W/h̄ωD)
. (17)

FIG. 5. Critical temperature for the superconducting transition. (a) Critical temperature as function of doping with Hubbard repulsion
given by Eq. (9) for various polarization strengths parametrized by α. The green dashed line indicates the van Hove singularity. (b) Critical
temperature as function of on-site interaction u0. The calculated data points are fitted to the simple functional form (line) that follows from the
Morel-Anderson model. The black points correspond to points in (a).
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Here, u is the constant repulsive interaction strength that is
added on top of the attractive interaction close to the Fermi
surface, N0 is the density of states at the Fermi surface, W
is the electron bandwidth, and ωD the Debye frequency. For
strong Coulomb repulsion, the renormalization is suppressed
down to values of 1/ ln(W/h̄ωD), so that Cooper pair forma-
tion is possible despite the Coulomb repulsion being much
stronger than the attraction at the Fermi surface.

In the graphene case, simple estimates for the renormaliza-
tion μ∗ give a value of 0.2 in the presence of a strong Coulomb
interaction. This is larger than, but not very far away from, es-
timates [41,44] based on the long-wavelength limit, arriving at
0.10–0.15. Since the simple Morel-Anderson model predicts
the absence of superconductivity for μ∗ � λ and we expect to
be quite close to this situation, we would expect the Coulomb
interactions to have a dramatic effect on the critical temper-
ature of the superconducting transition. Our detailed solution
of the gap equation in the presence of the Coulomb interaction
confirms this picture. Although boosting the electron-phonon
coupling λ would be essential for realizing superconductivity
in graphene or graphene-like materials, within the realistic
regime for λ, the repulsive Coulomb interaction also has to
be taken into account explicitly.

Calculations of the critical temperature are notoriously
unreliable. On the other hand, the Fermi surface structure
of the gap calculated in this paper should give reasonable
estimates for the k-space modulation of the gap on the Fermi
surface. The modulations we find within our methodology are
similar and of the same order as in Ref. [44]. The modulations
are small, but could in principle be measured by ARPES.

In our calculations, we have considered the electron and
phonon band structures of pristine graphene. The presence of
intercalant atoms may affect the electron band structure and
phonon modes significantly, and this would be dependent on
the method chosen to dope graphene [42,44]. To understand
why realizing superconductivity in graphene is so challeng-
ing, it is nevertheless useful to study superconductivity based
on the intrinsic phonon modes and electronic properties.

In practice, graphene is often mounted on a substrate. A
small substrate coupling can be included in our phonon spec-
trum analysis by adding an on-site potential quadratic in the
displacement. This modifies the phonon spectrum by lifting
the low-energy modes to finite values. Our analysis clearly
indicates that it is primarily the high-energy phonons that are
responsible for the superconducting instability. Thus, we do
not expect a slight alteration of the low-energy phonon modes
to significantly impact our results. Since the introduction of
a substrate may break the z → −z mirror symmetry of the
system, the out-of-plane modes could in principle also give
some contribution to the effective potential, but we expect this
to be a higher-order effect in the lattice site deviations.

VII. BORON NITRIDE

So far, we have only considered graphene, but our method-
ology can easily be carried over to other graphene-like materi-
als. In particular, we consider hexagonal boron nitride (h-BN),
which is a two-dimensional material very similar to graphene,
but where the atoms on the two different sublattices are boron
and nitrogen. The associated sublattice symmetry breaking

opens a gap in the electronic spectrum, and in this section,
we discuss how this affects the electron-phonon coupling.

Due to the sublattice symmetry breaking of boron nitride,
the electron tight binding model in Eq. (1) has to be modified
by the addition of a sublattice asymmetric potential term

Himb = �BN

2

⎛
⎝∑

i∈A

c†
i ci −

∑
j∈B

c†
j c j

⎞
⎠. (18)

The resulting electron band structure is shown in Fig. 6(a),
where t1 = 2.92 eV and �BN = 4.3 eV [61,72].

For the phonon excitation spectrum, we again use a force
constant model as outlined in Appendix B. Values for the
boron nitride force constants are obtained by fitting the ex-
citation energies at the high-symmetry points to values from
density functional theory values in Ref. [60], as discussed in
Appendix C. The resulting excitation spectrum is shown in
Fig. 6(b).

As in the graphene calculation, the electron-phonon cou-
pling is obtained by Taylor-expanding the hopping element
integral in Eq. (1), and the resulting electron-phonon coupling
matrix element is similar [73] to Eq. (5). To compare the
boron nitride results with graphene, we set the value of the
dimensionless quantity γ to the same value that was used
for graphene. All quantities involved in the calculation of
the electron-phonon coupling energy scale g0 are listed in
Appendix F.

Averaging the dimensionless electron-phonon coupling
strength λk over the Fermi surface at chemical potential μ

gives the result shown in Fig. 7. The inset shows the same
electron-phonon coupling λ as function of the charge doping
n corresponding to each chemical potential μ for both boron
nitride and graphene.

Unlike the graphene electron-phonon coupling strength
shown in Fig. 2, the electron-phonon coupling strength of
boron nitride is qualitatively different from the electronic den-
sity of states. At the valence band edge, the electron density of
states has a discontinuous jump, whereas λ increases linearly.
Due to the direct onset of a large density of states in boron
nitride, it is tempting to assert that even small charge dop-
ings could quickly give rise to appreciable electron-phonon
coupling strengths. This is not the case. The electron-phonon
coupling matrix element |g−−,ν

kk′ |2 in Eq. (5) also plays an
essential role for the overall value of the electron-phonon
coupling strength, and is suppressed when the Fermi surface
is small. As a result of this, graphene and boron nitride have
similar electron-phonon coupling strengths at a given charge
doping.

In light of these results, we would expect the difficulty
of realizing intrinsic phonon-mediated superconductivity in
boron nitride to be similar to that for graphene. Further-
more, the importance of the electron-phonon coupling matrix
element underlines the importance of treating the electron-
phonon coupling in a detailed manner.

VIII. SUMMARY

In summary, we have studied electron-phonon coupling in
graphene and hexagonal boron nitride based on an electron
tight binding and a phonon force constant model giving
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FIG. 6. (a) Electron spectrum for the π band of hexagonal boron nitride (h-BN) in a tight binding hopping model. Contrary to graphene,
the band structure is gapped due to sublattice asymmetry. (b) Phonon spectrum for freestanding h-BN in force constant model. In-plane modes
are shown in blue, with out-of-plane modes in green.

realistic electron and phonon spectra. The ability to tune the
relevant system parameters in this detailed model provides a
platform for investigating the superconducting properties of
graphene and graphene-like systems.

In graphene, our results indicate that superconductivity
may be possible at sufficiently large doping. We have identi-
fied the phonon modes which couple most strongly to π -band
electrons, which are the electronic states of most relevance
for realistic doping levels in graphene. These modes are the
high-energy in-plane phonon modes. Solving the gap equa-
tion assuming singlet pairing, we find the critical tempera-
ture and the superconducting gap structure in the Brillouin
zone. The gap has small modulations along the Fermi sur-
face, but is surprisingly uniform even for highly anisotropic
Fermi surfaces. Introducing the Coulomb interaction gives a
dramatic suppression in the critical temperature, in contrast
with the moderate reduction in most normal superconductors.
We understand this in terms of the Morel-Anderson model,
where the calculated electron-phonon coupling strength and
estimates for the renormalization are of the same order. En-
hancing the electron-phonon coupling strength is important

FIG. 7. Electron-phonon coupling strength λ for boron nitride
averaged over the Fermi surface at chemical potential μ. The con-
tributions to the total electron-phonon coupling (black) from the
various phonon modes are shown in colors. The density of states is
shown in magenta. A given energy doping μ corresponds to a charge
doping n per site, and the inset shows the electron-phonon coupling
as a function of this charge doping for graphene and boron nitride.

to realize phonon-mediated superconductivity in monolayer
graphene, but the effect of the Coulomb interaction also has
to be discussed in detail.

Motivated by the direct onset of a large density of states in
the gapped hexagonal boron nitride, we also calculate the di-
mensionless electron-phonon coupling there within the same
framework. In spite of the large density of states, however, the
charge doping required to obtain a sizable electron-phonon
coupling is similar to the doping required in graphene since
the electron-phonon coupling matrix element is suppressed
due to the small Fermi surface at small charge doping.
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APPENDIX A: ELECTRON BAND STRUCTURE

To calculate the graphene electron band structure, we use
the nearest neighbor tight binding Hamiltonian [4],

Hel = −t1
∑
〈i j〉,σ

(c†
iσ c jσ + H.c.), (A1)

as our starting point. By introducing the Fourier-transformed
operators, this model becomes

Hel =
∑
k,σ

(
c†

kσA c†
kσB

)
Mk

(
ckσA

ckσB

)
, (A2)

where the matrix Mk is given by

Mk =
(

0 −t1
∑

δA
eik·δA

−t1
∑

δA
e−ik·δA 0

)
, (A3)

and δA are the nearest neighbor vectors from sublattice A to
sublattice B. Diagonalizing this matrix, we get eigenvectors
FDη(k) for the two eigenvalues εkη corresponding to the two
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π bands, where η is the band index. Thus, the D-sublattice
Fourier mode is given by

ckσD =
∑

η

FDη(k)ckση, (A4)

where η denotes the band and an eigenvector of the matrix Mk.
This provides the definition of the factors FDη(k) appearing in
the main text.

APPENDIX B: PHONON MODEL DIAGONALIZATION

The phonon dispersion relation calculation in this paper
follows Refs. [63,64], where the phonon excitation spectrum
is calculated for graphene. We take the same approach, and
use a force constant model with up to third nearest neighbor
interactions to calculate the dispersion relations for graphene
and boron nitride. Since boron nitride has a broken sublat-
tice symmetry, we have to account for the different sublat-
tice masses, and the intersublattice force constants become
sublattice dependent. In this Appendix, we discuss how the
force constant model can be diagonalized, leaving the discus-
sion of the force constants and their symmetry relations to
Appendix C.

We write the phonon Hamiltonian in the form

Hph =
∑

j

P2
j

2Mj
+ 1

2

∑
i, j

∑
μν

�
κiκ j
μν (δi j )u

κi
iμu

κ j

jν, (B1)

where i, j are lattice site indices on the honeycomb lattice,
κi, κ j are the corresponding sublattices, μ, ν are Cartesian
indices, and uκi

iμ is the deviation of site i on the sublattice
κi (uniquely determined by i) in direction μ. The deviation
coupling constants are �

κiκ j
μν (δi j ). In the kinetic term, P j is the

momentum of the particle at site j, and Mj is the mass.
We next express the phonon Hamiltonian in terms of un-

coupled harmonic oscillators. To do this, we first symmetrize
the sublattice sectors of the kinetic term. Introducing effective
mass M̃ = √

MAMB and relative masses μD given by MD =
μDM̃, we introduce rescaled deviations and momenta

P̃D = PD/
√

μD, ũD = uD√
μD, (B2)

where the rescaling of the deviations is chosen to retain
the canonical commutation relations [uiμ, Pjν] = ih̄δi jδμν . To
proceed, we rewrite the Hamiltonian in Fourier space, obtain-
ing

Hph = 1

2M̃

∑
κ,q

P̃κ
−qP̃κ

q + 1

2

∑
κκ ′

∑
μν

∑
q

Dκκ ′
μν (q)ũκ

−q,μũκ ′
qν,

(B3)
where κ, κ ′ are sublattice indices and the matrix elements
Dκκ ′

μν (q) are given by

Dκκ ′
μν (q) = 1√

μκμκ ′

∑
j∈κ ′

�κκ ′
μν

(
δκ

j

)
eiq·δκ

j , (B4)

where δκ
j is the vector from a lattice site on sublattice κ to

lattice site j on sublattice κ ′.
Using the symmetries of the system, as discussed further in

Appendix C, the number of independent real-space coupling
constants can be reduced drastically. Here, we only point out
the effect of the mirror symmetry under z → −z. Considering

the lattice deviation coupling term in the phonon Hamiltonian,
this symmetry implies that there cannot be any coupling
between the in-plane and the out-of-plane modes, and hence
that the phonon eigenmodes are either purely in-plane or
out-of-plane. The potential energy term can thus be written
in the form Vph = V z

ph + V xy
ph , where

V xy
ph = 1

2

∑
q

(
ũxy

q

)†
Mxy

q ũxy
q ,

V z
ph = 1

2

∑
q

(
ũz

q

)†
Mz

qũz
q,

(B5)

and the deviations ũq are given by

ũz
q = (

ũA
q,z ũB

q,z

)T
,

ũxy
q = (

ũA
q,x ũA

q,y ũB
q,x ũB

q,y

)T
.

(B6)

The matrices Mz
q and Mxy

q are 2 × 2 and 4 × 4 matrices,
and the matrix elements for graphene are given in Ref. [63].
For the boron nitride case, similar expressions are derived by
inserting values for the coupling constants using the symmetry
relations and force constants in Appendix C.

To obtain a system of uncoupled harmonic oscillators, we
introduce a new basis vν

q given by

ũD
qμ =

∑
ν

[
eD
ν (q)

]
μ
vν

q, (B7)

in which the phonon potential energy is diagonal. Here,
[eν (q)]μ is given by the eigenvectors of Mk, ν is an eigenvec-
tor label, eD

ν (q) is the phonon polarization vector on sublattice
D at quasimomentum q, and the index μ picks out a Carte-
sian component. This relation provides a definition for the
phonon polarization vectors occurring in the electron-phonon
coupling in the main text.

Since the kinetic term remains diagonal in the new basis,
the system is reduced to a system of uncoupled harmonic
oscillators, from which we obtain [75] the excitation spectrum
through ω2

qν = dqν/M̃, where dqν are the eigenvalues of D(q).
In our paper, the phonon spectrum and associated polar-

ization vectors eD
ν (q) are determined using numerical diag-

onalization. At the high-symmetry point K, one may derive
reasonably simple expressions for the eigenfrequencies.

APPENDIX C: FORCE CONSTANTS AND SYMMETRIES

The discussion in this Appendix is a generalization of the
graphene force constant model in Refs. [63,64] to the case of
honeycomb lattices without sublattice symmetry. We provide
an overview of how the symmetries of the system impose rela-
tions between the force constants in the model, and determine
the force constants by fitting the force constant dispersion
relation to density functional theory results in Ref. [60].

1. Chiral basis and double counting

The phonon Hamiltonian can be written in the form

Hph =
∑

j

P2
j

2Mj
+ 1

2

∑
i, j

∑
μν

�
κiκ j
μν (δi j )u

κi
iμu

κ j

jν,
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FIG. 8. Labeling of vectors to neighboring sites on the honey-
comb lattice.

where
∑

i denotes the sum over all lattice sites on the honey-
comb lattice, and all bonds (i, j) are being double counted. To
symmetrize these contributions, we may therefore impose

�
κiκ j
μν (δi j ) = �

κ jκi
νμ (δ ji ), (C1)

where the indices μ, ν are initially considered to be Cartesian.
We may however also introduce the chiral basis

ξ = x + iy, η = x − iy, (C2)

so that μ, ν ∈ {ξ, η, z}. Under rotation with angle φ around
the z axis, the new coordinates do not mix, and transform
according to

ξ → ξeiφ, η → ηe−iφ. (C3)

In terms of the old coupling coefficients, the coefficients
for the deviations in the new basis are given by

�ξξ = (�xx − �yy − i�xy − i�yx )/4,

�ηη = (�xx − �yy + i�xy + i�yx )/4,

�ξη = (�xx + �yy + i�xy − i�yx )/4,

�ηξ = (�xx + �yy − i�xy + i�yx )/4.

(C4)

Now, both deviations and coupling constant are in general
complex.

2. Force constant symmetry relations

The hexagonal boron nitride system has infinitesimal trans-
lation symmetry, Bravais lattice translation symmetry, in-
finitesimal rotation symmetry, lattice C3 rotation symmetry,
σz mirror symmetry, and, with the choice of lattice orienta-
tion indicated in Fig. 8, σx mirror symmetry. We use these
symmetries to reduce the number of independent coupling
coefficients.

a Translation symmetries

From translation symmetry with a Bravais lattice vector a,
it follows trivially, as already indicated by the force constant
notation, that

�
κiκ j
μν (δi j ) = �

κiκ j
μν (δi+a, j+a ). (C5)

Due to the infinitesimal translation symmetry of a single
graphene sheet under uκi

iμ → uκi
iμ + aμ, it furthermore follows

that ∑
j

�
κiκ j
μν (δi j ) = 0. (C6)

Following Refs. [63,64], we call this the stability condition,
and use it to determine the local force constants with δi j = 0.

Although infinitesimal lattice translation symmetry holds
for a freestanding graphene sheet, it breaks down if the
monolayer sheet is placed on a substrate. This would give
rise to additional free parameters through the force constants
�DD

μν (0).

b Rotation symmetries

Application of the C3 symmetry under 3-fold rotations R3

gives force constant relations

�
κiκ j

ξξ (R3δi j ) = �
κiκ j

ξξ (δi j )e
+i2π/3,

�
κiκ j
ηη (R3δi j ) = �

κiκ j
ηη (δi j )e

−i2π/3,
(C7)

whereas �
κiκ j
μν (R3δi j ) = �

κiκ j
μν (δi j ) if μ and ν are not equal

chiral in-plane components, as in the two cases listed above.
We also note that the infinitesimal rotation symmetry does

not give restrictions on the force constants in addition to the
ones we have already discussed.

c Mirror symmetries and complex conjugation

The mirror symmetry σz implies that there cannot be any
coupling between the in-plane and the out-of-plane devia-
tions, i.e.,

�ξz = �ηz = �zξ = �zη = 0. (C8)

As already discussed in Appendix B, this completely decou-
ples the in-plane and the out-of-plane phonon modes.

The σx mirror symmetry implies

�
κiκ j
μν (δi j ) = �

κiκ j

μ̄ν̄ (σxδi j ), (C9)

where ξ̄ = η, η̄ = ξ , and z̄ = z.
Finally, we note that the requirement of a real potential

gives the relation

�
κiκ j
μν (δi j ) = �

κiκ j

μ̄ν̄ (δi j )
∗, (C10)

and this can be combined with the above mirror symmetry σx

to obtain

�
κiκ j
μν (δi j ) = �

κiκ j
μν (σxδi j )

∗. (C11)

For the case of neighbor vectors parallel to the y axis, invari-
ance of the neighbor vector under the mirror symmetry σx

implies that the coupling constant has to be real.

3. Boron nitride force constants

Applying the above symmetry relations, the independent
force constants in the system are listed in Table I along the
bonds illustrated in Fig. 8. The graphene force constants are
taken from Ref. [63], and the boron nitride force constants
have been obtained by fitting the phonon frequencies at the
high-symmetry points to density functional theory results
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TABLE I. Force constants for graphene and boron nitride
phonons up to next-to-nearest neighbor for graphene and third near-
est neighbor for boron nitride. The graphene force constants are taken
from Ref. [63]. The tabulated values give �/M̃ in spectroscopic units
of 105 cm−2, related to frequency through factors of 2πc, where c is
the speed of light.

Parameter Coupling R/C Graphene h-BN

α �AB
ξη (α1) R −4.046 −3.15

β �AB
ξξ (α1) R 1.107 1.69

γA �AA
ξη (β1) C −0.238 −0.32 + 0.05i

γ ∗
B �BB

ξη (β1) C −0.238 −0.36 − 0.07i

δA �AA
ξξ (β1) R −1.096 −0.68

δB �BB
ξξ (β1) R −1.096 −0.66

α′ �AB
ξη (γ1) R 0.00

β ′ �AB
ξξ (γ1) R −0.23

αz �AB
zz (α1) R −1.176 −1.06

γ A
z �AA

zz (β1) R 0.190 0.00

γ B
z �BB

zz (β1) R 0.190 0.24

in Ref. [60]. Other force constants in the system can be
determined from the force constant symmetry relations listed
above.

Note that contrary to what Refs. [63,64] claim, the force
constants γD are in general complex, whereas the other inde-
pendent force constants up to third nearest neighbors, includ-
ing δD, are real. This can be seen from the symmetry relation
in Eq. (C11) and the double counting symmetrization relation
in Eq. (C1), as well as the mirror symmetry σx in combination
with the Cartesian component expressions in Eq. (C4).

APPENDIX D: COULOMB INTERACTION MODEL

The Coulomb interaction in a lattice model such as ours
can be modeled with the Hubbard type interaction

V C = u0

∑
i

ni↑ni↓ +
∑
〈i, j〉

ui jnin j . (D1)

In this Appendix, we discuss how one may model the doping
dependence of the nonlocal interaction strength parameters.
The doping dependence of the on-site repulsion is discussed
in the main text.

The on-site and two nearest neighbor interaction strength
parameters were calculated for pristine graphene in Ref. [54]
based on density functional theory and the constrained ran-
dom phase approximation. Any pristine interaction strength
parameter can therefore be modeled through the combination
of these values and Coulombic decay [76].

At finite doping, we expect the onset of π -band screening
to reduce the interaction coefficients ui j (μ). To obtain an esti-
mate for the nonlocal interaction parameters, one may write

ui j (μ) = V sc
μ (ri j )

V0(ri j )
ui j (0), (D2)

where V0(r) is the potential screened only by the σ bands
and the substrate, and V sc

μ (r) is the potential screened also
by π -band Dirac electrons. In the long-wavelength limit, the

screened interaction is [42,53]

V sc
μ (q) = 1

2ε0

(
e2

q + q0

)
, (D3)

where the Thomas-Fermi momentum q0 is given by [42]

q0 = e2|μ|
π h̄2v2εrε0

. (D4)

Here, v is the Dirac cone velocity, and εr a relative permittivity
depending on the substrate [53]. Inserting parameter values,
we obtain the screening length 1/q0d = 0.43εr eV/|μ|.

In real space, the screened interaction takes the form

V sc
μ (r) = 1

4πεrε0

{
1

r
− π

2
q0

[
H0(q0r) − N0(q0r)

]}
, (D5)

where H0(x) is the Struve function and N0(x) the Bessel func-
tion of the second kind [77]. Through asymptotic expansion
of the Struve and Bessel functions [78], one may show that
the screened potential has long-distance behavior V sc

μ (r) ∼
1/r3. The screening length 1/q0 determines the crossover
point to this rapidly decaying long-distance behavior from the
Coulombic small-distance behavior.

Since the screening length is a small fraction of the lattice
constant for significant doping of order 2 eV, we keep only the
on-site Hubbard interaction. For this on-site term, Eq. (D2)
can no longer be used, and as discussed in Sec. III of the
main paper, we instead use the direct polarization bubble
renormalization.

APPENDIX E: SOLVING THE GAP EQUATION

The gap equation is given by

�k = − 1

ABZ

∫
d2k′ Ṽ symm

kk′ χk′�k′ , (E1)

where ABZ is the Brillouin zone area and we let Ṽ symm
kk′ =

NAV symm
kk′ .

To find a proper solution to the discretized version of this
gap equation, it is important to have sufficiently good resolu-
tion in the important regions of the Brillouin zone. The factor
χk is peaked around the Fermi surface with a peak width ∝ T
and necessitates a good resolution there. Furthermore, good
resolution is also required in the regions around the corners of
the triangle-like Fermi surface at significant doping. To make
sure of this, we select points on a uniform grid in the Brillouin
zone, add additional points close to the Fermi surface, and
further additional points close to the Fermi surface corners.

To solve the gap equation, we rewrite the gap equation
in the integral form of Eq. (E1) in terms of a weighted sum
over the points described in the previous paragraph. To find
the appropriate weights wk, we split the Brillouin zone into
triangles {t} with the points {k} as vertices using Delaunay
triangulation. Denote the area of a triangle t by At . The weight
of a single point then becomes one third of the sum of the areas
of all the triangles that has the point as a vertex, i.e.,

wk =
∑

t

Atδk∈t/3, (E2)

where δk∈t is 1 if k is a vertex in the triangle t and 0 otherwise.
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The gap equation then becomes

�k = − 1

ABZ

∑
k′

Ṽ symm
kk′ wk′χk′�k′ . (E3)

The symmetrized potential Ṽ symm
kk′ is symmetric under the

exchange of incoming and outgoing momenta, but to sym-
metrize the eigenvalue problem in this exchange, we multiply
this equation with

√
wkχk on both sides, to obtain a gap

equation in the form

�̃k =
∑

k′
Mkk′ (β )�̃k′ , (E4)

where we introduced the weighted gap �̃k = √
wkχk�k, and

the matrix

Mkk′ = − 1

ABZ

(√
wkχkṼ symm

kk′
√

wk′χk′
)

(E5)

is symmetric in the interchange of k and k′.
To reduce the size of the matrix M and improve computa-

tional efficiency, we split the Brillouin zone into small trian-
gles similar to the shaded red triangle in Fig. 4(a), and assume
that the gap takes the same value at corresponding points
in all the triangles. The effective potential corresponding to
a scattering process within the shaded red triangle is then
the sum of contributions for scatterings to outgoing momenta
in all the small triangles which correspond to the outgoing
momentum within the shaded triangle. This reduction of the
problem excludes gap equation solutions without the full
symmetry of graphene, but we have checked that we obtain
the same solutions by solving the gap equation in the full
Brillouin zone.

We now have a matrix eigenvalue problem linear in the
eigenvectors and nonlinear in the eigenvalue. We find the gap
structure at the superconducting instability by determining
the smallest β, i.e., the largest temperature, for which the
largest eigenvalue of Mkk′ becomes 1. The corresponding
eigenvector must be a solution of our eigenvalue problem. The
critical temperature Tc = 1/βc is located using the bisection
algorithm.

APPENDIX F: PARAMETER VALUES

The parameter values used in the electron tight binding
model and the electron-phonon coupling for graphene and
boron nitride are listed in Table II. The electron-phonon
coupling scale g0 can be written as

g0 = γ t1

√(
h̄2

2mea2
0

)
1

h̄ω	

(me

M

)(a0

d

)2
, (F1)

where me is the electron mass, and a0 the Bohr radius. This
quantity is calculated based on the listed parameter values,
and also given in the table.

APPENDIX G: MOREL-ANDERSON MODEL

The Morel-Anderson model is a simple model describing
the effect of a repulsive potential in the entire Brillouin zone
on top of an attractive potential in a small region around
the Fermi surface giving rise to superconductive pairing [52].

TABLE II. Values for the quantities involved in the calculation
of the electron-phonon coupling amplitude strength g0, where the
A sublattice of boron nitride is assumed to host boron and the B
sublattice nitrogen.

Quantity Graphene h-BN Description

d 1.42 Å 1.45 Å NN distance
t1 2.8 eV 2.92 eV Hopping amplitude
� 0 4.30 eV Band gap
h̄ω	 0.20 eV 0.17 eV Phonon energy scale
M̃ 12.0 u 12.3 u Effective mass
μA 1 0.88 Relative mass, A subl.
μB 1 1.14 Relative mass, B subl.
γ 2.5 2.5 −d ln t1/d ln d
me 5.49 × 10−4 u Electron mass
1 Ry 13.6 eV Rydberg energy
a0 0.53 Å Bohr radius
g0 0.15 eV 0.16 eV El-ph coupling scale

This model illustrates why there can be a superconducting
instability even though the interaction potential is repulsive
even close to the Fermi surface.

In the Morel-Anderson model, one assumes that the poten-
tial Vkk′ occurring in the gap equation takes the form Vkk′ =
V rep

kk′ + V attr
kk′ with

V rep
kk′ =

{
u, for −W � ξk, ξk′ � W,

0, otherwise,

V attr
kk′ =

{−v, for −εD � ξk, ξk′ � εD,

0, otherwise,

(G1)

where u, v � 0, W is the bandwidth cutoff, and εD = h̄ωD

represents the size of the region with attractive interactions
around the Fermi surface. In the case of phonon-mediated
superconductivity, this is the phonon Debye frequency.

The gap equation for singlet BCS pairing can now be
solved by turning the momentum integral into an energy
integral, approximating the density of states by the density of
states NF at the Fermi surface, and assuming the gap to take
on two different constant values close to (|ξk| � εD) and far
away from (|ξk| > εD) the Fermi surface.

This gives a critical temperature given by

kBTc = 1.14 εD exp

(
− 1

λ − μ∗

)
, (G2)

where λ = NF v is the potential strength of the attractive
potential, and

μ∗ = NF u

1 + NF u ln(W/h̄ωD)
(G3)

is the renormalization due to the presence of the repulsive
interaction. The effect of the repulsive Coulomb potential
is therefore to renormalize the strength λ of the attractive
potential in the critical temperature formula. At sufficiently
large renormalization (μ∗ � λ), the analysis breaks down, and
there is no superconducting instability.

After solving the gap equation with different Coulomb re-
pulsion strengths, we fit the critical temperature to a function
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of the form

kBTc = 1.14 h̄ωD exp

(
− 1

λ − au
1+abu

)
, (G4)

with two fitting parameters a and b in addition to
the electron-phonon coupling strength λ, which is fixed
by the critical temperature at zero repulsive Coulomb
interaction.
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is scattered within the π band are of interest. The effect of the
mirror symmetry z → −z on the sign of the electron-phonon
coupling element g is determined by the product of the devi-
ation and the incoming and outgoing electron states. Since all
these are antisymmetric under z → −z, the out-of-plane phonon
modes cannot cause electron transitions within the π band.
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