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Abstract

Introduction

In cycling, the utilization of the drops position (i.e. the lowest handlebar position relative

to the ground) allows for reduced frontal area, likely improved aerodynamics and thus per-

formance compared to the tops (i.e. the position producing the most upright trunk). The

reduced trunk angle during seated submaximal cycling has been shown to influence cardio-

respiratory factors but the effects on pedalling forces and joint specific power are unclear.

The purpose of this study was to investigate the effect of changing handgrip position on joint

specific power and cycling kinematics at different external work rates in recreational and pro-

fessional cyclists.

Method

Nine professional and nine recreational cyclists performed cycling bouts using three differ-

ent handgrip positions and three external work rates (i.e. 100W, 200W and external work

rate corresponding to the lactate threshold (WRlt)). Joint specific power was calculated from

kinematic measurements and pedal forces using 2D inverse dynamics.

Results

We found increased hip joint power, decreased knee joint power and increased peak crank

torque for the professional cyclist compared to the recreational cyclists, but only at WRlt

where the professional cyclists were working at a higher external work rate. There was no

main effect of changing handgrip position on any joint, but there was a small interaction

effect of external work rate and handgrip position on hip joint power contribution (General-

ized eta squared (ηg
2) = 0.012). At 100W, changing handgrip position from the tops to the

drops decreased the hip joint contribution (-2.0 ± 3.9 percentage points (pct)) and at the

WRlt, changing handgrip position increased the hip joint power (1.6 ± 3.1 pct). There was a

small effect of handgrip position with the drops leading to increased peak crank torque (ηg
2

= 0.02), increased mean dorsiflexion (ηg
2 = 0.05) and increased hip flexion (ηg

2 = 0.31) com-

pared to the tops.
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Discussion

The present study demonstrates that there is no main effect of changing handgrip position

on joint power. Although there seems to be a small effect on hip joint power when comparing

across large ranges in external work rate, any potential negative performance effect would

be outweighed by the aerodynamic benefit of the drops position.

1. Introduction

In road cycling, high speeds makes air drag a primary source of external resistance and utiliz-

ing an aerodynamically efficient position is often essential to achieve an optimal performance.

On the handlebar of a standard road bike, the drops position is the lowest in relation to the

ground. Using the drops compared to the tops (i.e. the handgrip position furthest from the

ground and towards the back of the bike) and hoods (i.e. same height as tops, but further

towards the front of the bike) will reduce the inclination of the trunk which in turn will reduce

the frontal area of the cyclists [1] and thus the air resistance [2].

Ashe et al. showed that for untrained subjects, VO2max and peak power output is reduced

and oxygen cost of submaximal cycling is increased when using a horizontal trunk and poten-

tially more aerodynamically efficient position compared to a vertical trunk position [3]. In

contrast, Grappe et al. showed no physiological effects of using the drops compared to an

hoods position in competitive cyclists [4] which indicates that there may be an effect of athlete

level where the competitive cyclists adapt and are potentially less affected by a reduced trunk

angle, at least for the physiological response.

Potentially underlying the mentioned metabolic effects, and also influenced by change in

handgrip position, is pedalling technique. Frequently, the investigation of pedalling technique

includes muscle activation, movement kinematics and pedal forces. An expected effect of

changing handgrip position from the tops to the drops is kinematic changes such as increased

anterior pelvic tilt [5]. Using a time trial position has been shown to elicit greater gluteus maxi-

mus and vastus lateralis muscle activity in trained cyclists [6] as well as increased co-activation

in novice cyclists [7] compared to the tops position. Fintelman et al. [8] demonstrated that uti-

lizing a horizontal trunk position influenced pedal forces and led to increased and delayed

peak crank torque during the pedalling cycle compared to a 16 degree inclined trunk in trained

time trial cyclists. Chapman et al. [7] showed an effect of changing from the hoods to the drops

position on the muscle activity of novice cyclists but not trained cyclists. Taken together, the

literature indicates that there is an effect of upper body position on variables related to tech-

nique and coordination and that there seems to be differences between cyclists of different

levels.

Using a combination of pedal forces and kinematic measurements, inverse dynamics can

be used to calculate joint specific power production, more specifically in seated cycling, the

amount of power generated in the hip, knee and ankle joints. Investigating the hip, knee and

ankle joint contribution may provide additional insight into how pedalling technique is

affected by a change in body orientation. To the best of our knowledge, the effect of different

handgrip positions on joint specific power during seated submaximal cycling has not been pre-

viously investigated. However, inverse dynamics has previously been used to study the effect of

multiple cycling related factors such as external work rate [9–11] and cadence [12–14]. Bini

et al. [15] investigated the joint contribution to leg work during sprint cycling at different

handlebar positions and showed increased hip work and decreased knee work at the lowest
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handlebar positions. Sprint cycling is characterized by very high external work rates, but for

the effects related to intensities used in daily training or longer competitions, the effects of

handgrip positions during submaximal intensities are perhaps of greater interest.

Therefore, the purpose of this study was to investigate the effect of cycling handgrip posi-

tion at different power outputs on joint specific power in cyclists ranging from recreational to

elite level. Additionally, we investigated the effects of changing handgrip position on kinematic

(e.g. joint angles) and kinetic variables that could help explain the findings on joint specific

power.

2. Methods

2.1 Subjects

Nine professional male cyclists, recruited from a continental level team and nine recreational

male cyclists, recruited from local clubs participated in the study (Table 1). The study was reg-

istered and approved by Norwegian Social Science Data Services (Pnr: 50084). All participants

signed a written consent form after receiving information about the study. The participants

were informed explicitly that they could withdraw at any time without stating a reason. The

study was conducted in accordance with the general principles outlined in the Declaration of

Helsinki.

2.2 Experimental protocol

All participants visited the laboratory on two occasions. The first day consisted of anthropo-

metric measurements in addition to familiarize the participants with the laboratory setting

through an incremental exercise test, consisting of multiple 5-minute stages with increasing

intensity (25W per stage) and a freely chosen cadence was used, in order to determine lactate

threshold (LT) corresponding to an intensity eliciting a blood lactate of 4 mmol�L-1 (WRlt).

The incremental test was ended when blood lactate exceeded 4 mmol�L-1.

The second day consisted of a warm up (~15 minutes at a self-selected external work rate

characterized as low intensity), followed cycling at three different intensities (i.e. 100W, 200W

and WRlt) using three different handgrip positions (i.e. the tops, the hoods and the drops) at a

freely chosen cadence. The participants were given approximately 30 to 60 seconds during

each condition to adjust to the external work rate and stabilize their pedalling prior to kine-

matic- and pedal force-measurements. Kinematic data and pedal forces were measured for 30

seconds starting after a steady state external work rate was achieved and the participants were

unaware of the exact periods for measurements. If the total time for reaching a steady state of

pedalling and data collection exceeded 120 seconds, the measurement was redone in order to

Table 1. Subject characteristics.

Professional Recreational p gs
Age (years) 22 ± 1.5 40 ± 9.6 <0.01 2.48

Body mass (kg) 73.4 ± 7.8 85.8 ± 9.2 <0.01 1.38

Height (cm) 183 ± 5 184 ± 6 0.58 0.25

Peak heart rate (bpm) 201 ± 5 191 ± 5 <0.01 2.02

WRlt (W) 315 ± 23 250 ± 19 <0.01 2.98

WRlt (W/kg) 4.3 ± 0.5 2.8 ± 0.4 <0.01 3.28

Age (years), Body mass (kg), Height (cm), Peak heart rate (beats per minute), external work rate corresponding to a blood lactate of 4mmol/l presented as absolute

power (W) and relative to body mass (W/kg). gs = Hedges gs.

https://doi.org/10.1371/journal.pone.0237768.t001
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minimize the influence of fatigue during each trial. A freely chosen cadence was used during

all cycling and the resistance was automatically adjusted to achieve the desired external work

rate.

2.3 Instrumentation

All cycling was done using the participants’ personal road bikes with drop bars and an elec-

tronically braked trainer ergometer (Computrainer LabTM, Race Mate, Seattle, WA). The tire

pressure was manually pumped to a standardized 100 psi and the room temperature was held

at approximately 19 degrees Celsius. The ergometer was calibrated according to the manufac-

turers’ specifications and controlled using specialized software (PerfPRO Studio, Hartware

Technologies, Rockford, MI).

Pedal forces was measured using custom made force pedals equipped with two force cells

(Revere Model 9363, capacity 250 kg per cell, the Netherlands) with 2x2 degrees of freedom

and a sampling frequency of 100Hz. The pedals were calibrated by hanging weights from the

pedal axis (i.e. 2.5–15 kg) with the pedal fastened in two orientations, thus applying normal

and shear forces and measured cross-talk was proportional and remained <3%. A measure-

ment of zero load was done prior to each data collection.

An 8-camera 3D motion capture system was used for kinematic analysis (Oqus 400, Qua-

lisys, Sweden). Reflective markers placed on the neck (cervical spine), pelvis (iliac crest), hip

(greater trochanter), knee (lateral epicondyle), ankle (lateral malleolus) and on the front and

back of custom-made extensions placed symmetrically on the pedal spindle (see [16] for a pic-

ture). Data from the instrumented pedals and motion capture system was recorded simulta-

neously using Qualisys Track Manager (Qualisys, Sweden) at a sampling rate of 100 Hz.

2.4 Data analysis

A low pass filter was applied to the data before further analysis (10 Hz, 8th order, zero lag But-

terworth). The complete description of the analysis has been published earlier [16], but we

describe it here in brief. Power was calculated as the product of effective (perpendicular) crank

force and crank angular velocity. Continuous crank angular velocity was calculated from

crank angles using a 5-point differentiating filter. The average crank cycle (for all variables)

was calculated by expressing all data of all cycles completed during the 30 second recording

against crank angle and performing an averaging interpolation of these data, reducing the data

set to 360 samples (i.e., 1 sample per degree crank angle). The markers placed on the pedal

spindle were used to calculate pedal position, pedal orientation and crank angle. Pedal normal

and shear forces were transformed to crank normal and shear forces by rotation of the coordi-

nation system from pedal to crank using the angle between pedal and crank as calculated from

the kinematic data. Joint powers for the hip, knee and ankle joints were calculated using two-

dimensional inverse dynamics for a linked system of rigid segments from pedal forces, body

segment movements [16–18] and corresponding inertial estimates [19]. Thigh, leg and foot

mass was calculated as 10.3, 4.3 and 1.5% of body mass respectively and segment centre of

mass was calculated as 43, 43 and 27% of thigh, leg and foot length respectively measured from

the cranial end (Van Soest et al. [19]). Relative mean joint power was calculated as the percent-

age contribution of each joint to the sum of hip, knee and ankle joints when averaged over the

entire pedal cycle. Joint work was calculated as the amount of work done at each joint in joules

in one complete pedal revolution. Fig 1 shows an example of the polar plots of raw data pre-

sented as a function of crank angle for the three handgrip positions at 200 W.

Mean joint angle and range of motion was calculated from reflective markers places on

abovementioned anatomical positions. Because joint angles calculated from markers placed on
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the skin or tight fitting clothing above palpated anatomical position, it should be mentioned

that there may be deviation between true joint angles and the measured joint angles due to

sliding of the skin during movement and variation resulting from palpation. Ankle angle was

calculated from the markers of the knee, ankle and pedal with the marker at the lateral malleo-

lus as joint centre. Hip angle was calculated from the markers of the pelvic, hip and knee with

the marker at the greater trochanter as joint centre.

2.5 Statistics

All descriptive data are presented as mean ± standard deviation. In order to evaluate the effect

of handgrip position, external work rate and performance level on joint specific power and

work, cadence, torque and kinematics the main analysis was done using a mixed design three-

way repeated measures ANOVA. Handgrip position and external work rate was evaluated as

within subject factors and athlete level was evaluated as between subject factor. If significant

main and interaction effects were found, pairwise comparisons using T-test with Bonferroni

correction was used to evaluate specific effects between external work rates, handgrip positions

and athlete level. If the assumption of sphericity was violated, p-values were adjusted using the

Greenhouse-Geisser correction. Strengths of association in the main analysis were quantified

by generalized eta squared (ηg
2) and categorized as trivial/none (<0.0099), small 0.0099–

0.0588), moderate (0.0588–0.1379), and large effect (>0.1379). When comparing means, effect

size was calculated as Hedges gs (gs) due to the limited number of participants in each group

and assessed as of small (0.1–0.3), moderate (0.3–0.5), and large effect (>0.5) [20]. All data

analysis and statistical analysis was conducted using Excel for Windows, SPSS 25.0 (SPSS, Chi-

cago, USA) for WINDOWS, Matlab R2017b (MathWorks Inc. Natic, USA). Statistical signifi-

cance was accepted at p< 0.05.

Fig 1. Polar plots for pedal power (W, both legs combined) and hip, knee and ankle joint power (W, one leg only)

presented as a function of crank angle for three handgrip positions at 200W for a representative subject. Pedal

cycle is clockwise. Labels inside the plots indicate y-levels.

https://doi.org/10.1371/journal.pone.0237768.g001
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3. Results

3.1 Cycling conditions

The WRlt was, as expected, higher (i.e. 266 ± 21 W vs 331 ± 25 W) for the professional group

(p< 0.01, gs = 2.68). For cadence, there was a moderate main effect of external work rate

(p<0.01, ηg
2 = 0.14) with WRlt leading to a 6.4 RPM lower cadence compared to 100W and

significant but trivial main effect of handgrip position (p<0.01, ηg
2 = 0.008) with the drops

leading to 1.6RPM higher cadence compared to the tops.

3.2 Joint specific power

There was a large main effect of increasing external work rate on joint specific power (Fig 2)

leading to decreased mean relative knee joint power (p< 0.01, ηg
2 = 0.87) and increased mean

relative hip joint power (p< 0.01, ηg
2 = 0.80) but there was no effect on ankle power (p = 0.13,

ηg
2 = 0.10). There was no main effect of handgrip position (all p> 0.27 and all ηg

2 < 0.01) or

athlete level (all p> 0.64 and all ηg
2 < 0.01) on hip, knee or ankle relative joint power.

There was a large interaction effect of athlete level and external work rate for hip joint

(p< 0.01, ηg
2 = 0.21) and knee joint power (p< 0.01, ηg

2 = 0.18). Pairwise comparisons

showed that when comparing 200W to WRlt, the professional cyclists had a greater increase

in relative joint power in the hip (mean difference: 9.11 percentage points (pct), p< 0.01, gs =

1.36) and a greater reduction in the relative joint power in the knee (mean difference: 8.43 pct,

p< 0.01, gs = 1.43) compared to the recreational cyclists.

There was also a small interaction effect of handgrip position and external work rate for the

hip joint (p< 0.05, ηg
2 = 0.012). Pairwise comparisons showed that a change in handgrip from

the tops to the drops reduced hip joint contribution at 100W (-2.0 ± 3.9 pct) and increased it

at WRlt (1.6 ± 3.1 pct) (p< 0.05, gs = 0.97).

Fig 2. Joint specific power for the hip (black bars), knee (grey bars) and ankle (white bars) joints in the tops, hoods and drops positions for the

professional (left panel) and recreational (right panel) cyclists. �indicates a significant difference from previous external work rate, # indicates a

significant interaction between external work rate and performance level and † indicates a significant interaction effect between external work rate and

handgrip position. Inset plots the hip (circles) and knee (diamonds) joints for both groups as a function of absolute external work rate.

https://doi.org/10.1371/journal.pone.0237768.g002
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There was no 3-way interaction between handgrip, athlete level and external work rate for

any of the three joints (all p> 0.30 and all ηg
2 < 0.004).

3.3 Joint specific work

Since there was an effect of external work rate on cadence, we present absolute joint specific

work (Table 2). There was a large main effect of external work rate (p<0.01, ηg
2 = 0.91) leading

to increased joint work for all joints (all p<0.01, all ηg
2 = 0.78). There was a small effect of

handgrip position for the knee, with the drops leading to decreased knee joint work compared

to the tops (p<0.01, ηg
2 = 0.03). There was also an interaction effect between athlete level and

external work rate on hip joint work (p<0.01, ηg
2 = 0.45) with the professional cyclists having

a greater increase in hip joint work at WRlt compared to 200W. For the knee, there was also a

small interaction effect between handgrip position and external work rate (p<0.01, ηg
2 = 0.05),

where the drops led to less knee joint work compared to the tops at WRlt. The interaction effect

between handgrip and external work rate was also seen for the ankle work but the effect size

was trivial (p<0.01, ηg
2 = 0.009).

3.4 Crank torque

Both handgrip position (p< 0.05, ηg
2 = 0.02) and external work rate (p< 0.01, ηg

2 = 0.92) had

a small and large effect respectively on peak crank torque (Fig 3). There was also an interaction

effect of athlete level and external work rate (p< 0.01, ηg
2 = 0.29). Pairwise comparisons

showed that when comparing 200W to WRlt, the professional cyclists had a greater increase in

Table 2. Joint work per pedal revolution for the hip, knee and ankle joints of the right leg for the recreational and professional cyclists.

Recreational 100 W 200 W WRlt gs
Tops 6.8 ± 5.1 23.4 ± 9.8� 35.1 ± 10.7�#

Hip Hoods 6.5 ± 4.9 23.3 ± 10.0� 36.8 ± 11.1�#

Drops 6.3 ± 4.6 24.2 ± 9.0� 35.2 ± 10.6�#

Tops 25.9 ± 3.7 36.9 ± 4.3� 44.4 ± 5.1�

Knee Hoods 25.7 ± 4.1 36.9 ± 4.8� 41.8 ± 5.5�‡ 0.44
Drops 25.5 ± 3.6 35.2 ± 4.2� 40.9 ± 4.9�‡ 0.63
Tops 3.0 ± 2.3 6.6 ± 3.1� 9.9 ± 3.8�

Ankle Hoods 2.8 ± 2.2 6.4 ± 3.2� 9.2 ± 3.5�

Drops 2.9 ± 2.1 6.3 ± 3.2� 9.1 ± 3.6�‡ 0.12

Professional 100 W 200 W WRlt gs
Tops 4.3 ± 3.4 21.1 ± 6.2� 51.4 ± 6.2�#

Hip Hoods 3.8 ± 3.5 19.9 ± 7.8� 50.7 ± 7.8�#

Drops 3.4 ± 3.4 19.7 ± 7.6� 50.7 ± 8.6�#

Tops 26.3 ± 4.5 35.4 ± 4.4� 49.0 ± 9.6�

Knee Hoods 26.8 ± 4.5 35.9 ± 4.7� 47.0 ± 7.9�‡ 0.21

Drops 27.2 ± 4.3 35.7 ± 4.8� 45.2 ± 7.8�‡ 0.39

Tops 2.5 ± 2.3 5.2 ± 2.7� 10.0 ± 3.8�

Ankle Hoods 2.7 ± 2.1 5.3 ± 2.8� 10.0 ± 3.4�

Drops 2.9 ± 2.2 5.6 ± 2.7� 9.6 ± 3.5�‡ 0.15

Mean joint work ± standard deviation (in joules). WRlt = external work rate corresponding to a blood lactate of 4mmol/l.

� = significantly different from previous external work rate (p<0.05).
# = indicates a significant interaction effect between external work rate and athlete level.
‡ = significantly different from tops (p<0.05). gs = Hedges gs corresponding to the pairwise comparisons between handgrip positions.

https://doi.org/10.1371/journal.pone.0237768.t002
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peak torque compared to the recreational cyclists (Mean increase 16.3 ± 3.8 vs 7.1 ± 4.0 Nm

respectively, t = 5.03, p< 0.01, gs = 2.26). Increased external work rate decreased peak crank

torque angle (Fig 3: p< 0.01, ηg
2 = 0.44) i.e. peak crank torque occurred earlier during the

down stroke but there was no effect of handgrip position (p = 0.53, ηg
2 < 0.01).

3.5 Kinematics

There was a large main effect of changing handgrip position from the tops to the hoods and

drops leading to a reduced trunk angle (Fig 4: p< 0.01, ηg
2 = 0.89). There was also a moderate

main effect of athlete level (p< 0.05, ηg
2 = 0.17) and the recreational riders had an average of

5.4 degrees steeper trunk angle (i.e. they were sitting more upright) compared to the profes-

sional riders at the same handgrip position.

There was a small main effect of changing handgrip position (p< 0.01, ηg
2 = 0.05) and

external work rate (p< 0.01, ηg
2 = 0.26) on mean ankle joint angle (Fig 5) with the drops lead-

ing to an increased mean dorsiflexion compared to the tops. There was also a large main effect

of athlete level (p< 0.01, ηg
2 = 0.20) and the recreational riders had 7.4 degrees of increased

dorsiflexion in the ankle compared to the professional riders at the same handgrip position.

There was a large main effect of changing handgrip position (p< 0.01, ηg
2 = 0.31) leading

to decreased mean hip angle (i.e. more hip flexion) and a small effect of external work rate

Fig 3. A: Angle of peak crank torque and B: peak crank torque plotted at a function of absolute external work rate.

The different handgrip position are denoted by circles (tops), squares (hoods) and diamonds (drops). � indicates a

significant main effect of external work rate, ‡ indicates a significant main effect of changing handgrip position, #

indicates a significant main effect of performance level and † indicates a significant interaction effect between external

work rate and performance level.

https://doi.org/10.1371/journal.pone.0237768.g003
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(p< 0.01, ηg
2 = 0.03) leading to increased mean hip angle (Fig 5). There was no significant

effect of athlete level (p = 0.06, ηg
2 = 0.19).

There was a small main effect of changing handgrip position on hip ROM (p< 0.05, ηg
2 =

0.03) with the drops leading to a 0.4 degrees smaller ROM compared to tops and external

work rate (p< 0.05, ηg
2 = 0.10) with WRlt leading to 0.8 degrees smaller ROM compared to

100W. There was a large effect of athlete level (p< 0.01, ηg
2 = 0.29), where the professional

cyclists had a 3.9 degrees larger ROM at the same handgrip position.

There was also a large main effect of changing external work rate (p< 0.01, ηg
2 = 0.20) on

ankle ROM with WRlt led to 4.0 degrees greater ROM compared to 100W, but there was no

significant effect of athlete level (p = 0.98, ηg
2 < 0.01) or handgrip position (p = 0.80, ηg

2 <

0.001).

Fig 4. Mean back angle (i.e. absolute angle between the hip, neck and horizontal) in the tops, hoods and drops

position for the recreational (black) and professional (grey) cyclists. � indicates a significant difference from

previous handgrip position and # indicates a significant effect of performance level.

https://doi.org/10.1371/journal.pone.0237768.g004

Fig 5. A: Mean hip angle (calculated as the angle between the pelvic, hip and knee) and B: Mean ankle angle (calculated as the angle

between the knee, ankle and pedal spindle) in the different handgrip position, denoted by circles (tops), squares (hoods) and diamonds

(drops) for the recreational (grey) and professional (black) cyclists. � indicates a significant main effect of external work rate, ‡ indicates a

significant effect of changing handgrip position, # indicates a significant effect of performance level and † indicates a significant interaction

effect between external work rate and handgrip position.

https://doi.org/10.1371/journal.pone.0237768.g005
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4. Discussion

The aim of this study was to investigate the effects of using different handgrip positions, at dif-

ferent external work rates during seated cycling on the relative joint specific power contribu-

tion in cyclists of different performance levels. The main finding was that changing handgrip

position had no main effect on joint power in any joint. Independent of handgrip position,

there were large effects of changing external work rate on relative hip and knee joint specific

power and the different performance levels due to differences in power output at LT. However,

there was a small effect of changing handgrip position when comparing across large ranges in

external work rate (i.e. 100W vs. WRlt). Additionally, changing handgrip position from the

tops to the drops led to a small increase in mean dorsiflexion angle, a moderate increase in

mean hip flexion angle and a small increase in peak crank torque.

When interpreting these findings, it is important to consider pedal forces, joint powers and

kinematic changes as connected. Using the drops reduced the mean hip angle but an increased

dorsal flexion (i.e. heel drop) counteracted the effect by allowing for the increased hip exten-

sion relative to horizontal and thus the increased dorsiflexion may function to maintain hip

ROM. The maintained ROM may allow the primary work producing hip muscles to sustain

normal function and thus limit the changes in joint specific contribution resulting from

changing position from the tops to the drops. Although the heel drop may not be able to

completely counteract the reduced hip angle and the effect on hip joint power contribution

that occurs when using the drops, it might be enough to lead to the limited influence demon-

strated by the small effect seen on joint specific power.

Comparing our results with those of Bini et al. [15] obtained during sprint cycling using dif-

ferent handlebar heights, we found smaller effect sizes and we only found effects on relative

hip contribution with a decreased hip contribution at 100W, and increased hip contribution

at WRlt while Bini et al. [15] found no changes in hip or ankle mean angles. It is possible that

the changes we found in ankle and hip mean angle may only be effective at maintaining joint

power at submaximal intensities and positions such as the tops and drops and not during

more extreme sprinting positions and external work rates.

We achieved the desired reduction in back and hip angle by using the drops handgrip posi-

tion and although the recreational cyclists had [21] a steeper trunk angle compared to the pro-

fessional cyclists, the effect of changing handgrip position was similar in both groups. The

reduced trunk angle seen in the professional riders may be due to their increased participation

in races, where a low trunk is often preferred for reducing the effect of wind resistance [21].

Changing handgrip position from the tops to the drops led to an increase in peak crank

torque for both groups, but no change in the timing of peak crank torque. Our finding of

increased peak crank torque when using the drop position is in accordance with previous liter-

ature [8]. However, previous studies have also found delayed peak crank torque in the pedal

cycle [6, 8]. Our study differs from these mentioned studies in that we did not use a time trial

specific position and indeed Dorel et al. [6] did not report an effect on peak crank torque angle

of using the drop position similar to the one used in this study. A time trial specific position

would elicit a greater change in position from the tops and could potentially explain this dis-

crepancy in findings between our study and the literature.

We found no differences between performance levels in the effect of using the drops com-

pared to the hoods and tops on joint specific power. The small effect of handgrip position on

joint specific power does not seem to explain the physiological changes reported previously

resulting from utilizing the drops or a time trial specific position [3, 4]. It is possible that there

is a higher metabolic cost although the cyclists are able to produce the same joint power and

whole body energetic measurements in combination with local muscle measurements of blood
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flow or muscle oxygenation could provide some additional insight on the metabolic aspects.

Additionally, a longer duration trial could potentially elucidate if the handgrip positions influ-

ence joint power when fatigue accumulates. However, we compared recreational cyclists to

professional cyclists and although there are clear differences in the power output they are able

to produce at WRlt, they are all familiar with cycling and using the different position of a road

bike handlebar. It is possible that only a minor amount of cycling experience in necessary for

achieving a joint specific power distribution robust to further improvements in cycling experi-

ence. This would warrant the investigation of the effect of trunk angle when cycling in a popu-

lation not familiar with the different positions caused by a road bike handlebar.

The professional cyclists had a greater hip joint contribution at WRlt compared to the

recreational cyclists. An increased reliance on hip joint contribution at higher external work

rate has been previously shown [9] and thus, the effect is likely due to the increased external

work rate used by the professionals in the WRlt condition. In accordance, peak crank torque

increased when external work rate increased and there were no differences between the two

groups with the exception of a greater increase in the professional compared to the recreational

at the LT compared to the 200 W conditions. When considering the WRlt is greater for the

professional group compared to the recreational group this finding is not surprising.

Taken together, there were no differences between the professional and recreational riders

in peak torque or the timing of peak torque at 100W and 200W but only WRlt. However, as

with joint specific power, the differences occurred largely as an effect of increased external

work rate used by the professionals at WRlt. These finding shows that at the same absolute

power output, recreational and professional cyclists will have a similar joint specific power

contribution at least in the low to moderate external range used in the present study. However,

at an individualized external power output such as WRlt the joint power contribution will dif-

fer due to the different absolute power output and not due to the differences in performance

levels. Although the recreational riders in this study were at a much lower performance level

than the professional riders, they were still well familiar with cycling and do have a much larger

training volume compared to an untrained participants who also may be unfamiliar with the

pedalling exercise. The findings on pedal peak torque, the timing of peak torque and relative

joint power also indicates that only a certain amount of cycling experience is necessary to gen-

erate a pedalling pattern which changes little with subsequent performance increases at least

when investigated at the same absolute power output.

The use of a freely chosen cadence and a minimum of instructions for the cyclists presents

both challenges and advantages. The major advantage of this approach is that the cyclists were

able to maintain their own pedalling style and cadence. To the best of our knowledge, the effect

of a locked cadence compared to a freely chosen cadence on joint specific power has yet to be

investigated. A large change in cadence could have led to changes in joint power [12]. The

reduction in cadence (i.e. 6.4 RPM) between different power outputs could have influenced

joint power but this reduction should have increased relative hip joint contribution and thus

may overestimate the effect of the present study. However, the difference in the change of

cadence between the recreational and professional cyclists was 4.0 rpm and based on previous

work by our group [12] this would result in a hip and knee joint power change of ~3W and

approximately half of the change elicited by a change of 25W external power [9]. Furthermore,

the cadence freely chosen by the recreational cyclists was slightly lower compared to the pro-

fessional (i.e. 90.3 vs 91.8). Although a small difference, this could possibly lead to a small

underestimation of the difference between the groups at WRlt [13].

Since we used an ergometer providing constant power, a decreased cadence would require

more work per cycle to achieve the same external work rate and thus presenting joint work

provides a more complete picture of the effect. Beyond the effect of external work rate leading
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to increased joint work, there was a moderate decrease in knee joint work and a small decrease

ankle joint work at WRlt when changing from the tops to the hoods. The findings on joint

work demonstrate that the increased hip joint contribution results from maintained hip joint

work and reduced knee and ankle joint work. The reduced total work would be partially

explained by the 1.6 RPM cadence increase, but potentially also by increased upper body or lat-

eral leg movements not fully detected by the current 2D inverse dynamics model.

Our approach of simply instructing the participants to change handgrip position ensures

that the most “natural” cycling pattern is maintained but opens the possibility for differences

in how the participants changed handgrip position, (e.g. scapular movement instead of back

and hip movement in order to extend reach). However, by only instructing a changing hand-

grip position, we achieved similar changes in trunk angle in both groups (i.e. a reduction in

trunk angle by 8.1±3.0 and 9.5±2.3 degrees for the professional and recreational groups respec-

tively) and no changes between different power outputs. The changes observed in hip angle is

comparable with previous reports in the literature [5].

Some additional limitations include the use of 2D force inputs and inverse dynamics which

may not fully capture the 3D movements of the joints. Furthermore, the reflective markers are

placed on the skin and does not exactly reflect the rotational points of the joints in the joint

centres. Finally, it should be mentioned that it is problematic to recruit professional cyclists for

research projects and thus the sample size in low and we could not follow traditional sample

size calculation.

In conclusion, this study demonstrates no main effect of changing handgrip position from

the tops to the drops in professional and recreational cyclists. However, there seems to be a

small effect on hip joint power when comparing across large ranges in external work rates.

Changing handgrip position has a small effect on peak crank torque and an on ankle mean

angles as well as a moderate effect on hip mean angle. Although we cannot directly conclude

on implications for performance, most of the effects on hip joint power and joint kinematics

are small or moderate and any negative effect on performance that may exist is likely out-

weighed by the aerodynamic benefit of using the drops.
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