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Preface 

The work presented in this PhD thesis was carried out at the Department of Mechani-
cal and Industrial Engineering of the Faculty of Engineering, the Norwegian Universi-
ty of Science and Technology (NTNU) into the five-year period from August 2015 to 
May 2020. The work was supervised by Professor Knut Sørby from the Department 
of Mechanical and Industrial Engineering (NTNU) and by co-supervisor, Doctor Ve-
gard Brøtan from the SINTEF Manufacturing. The funding of this work was giving 
by the Research Council of Norway (NRF). 

The PhD thesis is a part of a research project – Avansert Toleransesetting og 
Måleteknikk (ATOM). The project was established by professor Knut Sørby in col-
laboration with TechnipFMC and Kristiansands Skruefabrik og Mekanisk Verksted 
(KSMV).  

This thesis is dedicated to the solution of the actual problems in production indus-
try and product inspection. These problems have been selected together with my su-
pervisor, based on my previous work experience in design (Rapp Bomek AS), pro-
duction (RossNor Marine Ltd.), measurement control (Conoptica AS), in addition 
with our project meetings and discussions with other colleges from TechnipFMC and 
KSMV. 

In order to solve the selected problems, different aspects of science were involved 
such as the parametric and non-parametric Statistics, Computation Geometry, Artifi-
cial Intelligence, advanced Manufacturing and Processing, Geometrical Dimensioning 
and Tolerancing (GD&T) based on the international standards (ISO) related to a new-
ly revised Geometrical Product Specifications (GPS) family. During this work, it also 
became necessary to utilize software like PC-DMIS for the Coordinate Measuring 
Machine (CMM) and Spatial Analyzer (SA) for the laser tracker, and programming 
tools like MATLAB and R for development of algorithms and statistical simulations. 
The results of their applications in the GD&T inspection field are presented in this 
thesis. 
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Summary 

The PhD thesis proposes new approaches and algorithms related to the field of Geo-
metrical Dimensioning and Tolerancing (GD&T) inspection based on ISO standards 
on Geometrical Product Specifications (GPS). The main purpose of this work is to 
improve reliability and accuracy of measurement strategies in GD&T inspection (tol-
erance verification), which plays an important role in manufacturing industry. The 
results of this work provide contributions for further development and standardization 
of measurement strategies and procedures with optimized sample strategies to provide 
a desired level of the measurement uncertainty. 

The objective of the PhD project is to identify key factors that influence the meas-
urement uncertainty and confidence level, try to clarify effects of these influences to 
improve the current state of measurement strategies in GD&T inspection. Generally, 
the measurement uncertainty is affected by many factors, e.g. choice of measuring 
equipment, calibration, control of environment conditions, workpiece orientation and 
clamping. In measurements with Coordinate Measurement Machines (CMMs), addi-
tion factors like stylus system qualification, choice of probe configuration, probe de-
flection, traveling speed, approach vector, coordinate system alignment, and datum 
system definition will influence on the measurement uncertainty.  

Most of the measurements involved in this thesis were performed in a Leitz PMM-
C-600 CMM, with an analogue measuring probe. All factors determining the uncer-
tainty of CMM measurements can be divided into four main categories: equipment, 
environment, workpiece, and operator influence. The last category is mostly associat-
ed with the measurement strategy and procedure performed by the operator, which is 
of particular importance for the uncertainty in CMM measurements. Thereby, the 
following objectives were defined for this PhD project: 

 development and investigation of sample strategies with optimal sample
size;

 investigation of outlier detection methods;
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 development of algorithms for calculation of substitute (reference) ele-
ments.

The choice of sample strategies and algorithms should be based on the tolerance 
requirements and the expected workpiece geometry deviations. The number of meas-
urement points that are necessary to discover the decisive area of the workpiece sur-
face for reliable geometrical verification is an important research question. In spite of 
many efforts of previous research, it remains an unsolved problem. Uniform guide-
lines based on international standards, which could determine criteria for optimal 
choice of the sample size has not been established so far. 

Taking into account all aspects mentioned above, the main contributions of this 
PhD research are the following:  

 An approach to define a confidence level for statistical tolerance intervals of vari-
ous types of distributions and different sample sizes of measured variables based
on CMM measurements of circular profiles after turning and milling machine op-
erations (associated with ISO16269-6)

 Classification of data outliers and an investigation of outliers detecting procedures
according to ISO16269-4

 An approach for optimizing the sample size for two-point diameter verification
according to ISO14405-1

 An approach based on Artificial Neural Networks (ANN) to evaluate the maximum
estimated error of the form deviation related to ISO1101

 New methods for defining substitute elements in estimation of the minimal dis-
tance between planes of cuboid objects by using the Minimum Volume Bounding
Box (MVBB) principle

The contributions are presented in six papers, where five papers have been present-
ed at conferences and conference proceedings, and one paper have been submitted for 
publication in a scientific journal. The contributions are addressed to quality engi-
neers, metrology specialists and other researchers in metrology and GD&T inspection 
field. 
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1 Introduction 

1.1 Background 

The desired geometry of a product is defined by the design specification, while the 
actual quality can be limited by technical capabilities of suppliers. In this case, we are 
considering the quality in terms of geometrical characteristic of the manufactured 
product. The technical capabilities of the suppliers include many aspects. Primarily, it 
concerns of availability of modern facilities i.e. machine tools, measuring equipment 
and employee qualifications. However, the availability of modern equipment itself 
does not guarantee the best quality and reliability of the final product. The competen-
cy level in the measurement technique is varying from one supplier to another. There-
fore, a uniform measurement procedure for quality product control is demanded. The 
final decision about the product quality is taken in conformity with Geometrical Di-
mensioning and Tolerancing (GD&T) requirements [1]. In Europe, the GD&T re-
quirements are based on Geometrical Product Specifications (GPS) [2] of ISO stand-
ards. As a part of the work presented in this thesis, a number of aspects towards a 
uniform measurement procedure is taken into account. 

The GD&T inspection of critical components in subsea technology area is one of 
the best examples [3] when the right decision is especially important for assemblies 
and installations which are often carried out in a deep-water condition. Any geometry 
or dimension deviations of the critical parts can bring either to system malfunction or 
to uncompleted installation. Such failures may cost to suppliers and operating compa-
nies significant financial losses, what actually happens in practice time after time. 
Similar problems also exist in other industrial sectors but may be with less significant 
consequences. The reasons for product failures are not always easy to identify. Each 
particular case might relate either to the Product Design or to the GD&T inspection 
issues [4]. In many cases, the issues related to the Product Design can be eliminated 
by use of Computer-Aided Tolerancing (CAT) [5-8] before any drawings have been 
sent to production. However, this thesis is dedicated to an investigation of possible 
reasons and solutions for eliminating the GD&T inspection issues caused by meas-
urement errors. 

After all achievements in the accuracy improvements of equipment for coordinate 
measurements, there is still a number of factors related to measurement strategies, that 
may lead to the differences in the result which might be even larger than the value of 
the actual geometrical and dimension deviations themselves. The factors related to the 
measurement strategies (e.g. alignment, sample strategy, evaluation methods, outlier 
detection, data filtering etc.) are strongly dependent on the operator qualification and 
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company operation procedures. Consequently, measurement results of the same 
workpiece according to the same design specifications (production drawings) may 
vary dramatically from one operator to another. The main reason for such situation is 
that some of the mentioned factors related to the measurement strategy are neither 
complete standardised nor applied as default settings by a metrology software.  

The goal of this research to determine and estimate an optimal value for those 
measurement factors and parameters, which should be standardized and set as default 
software settings in order to avoid an extra measurement uncertainty due to the opera-
tor influence. The existing algorithms (i.e. evaluation methods) of computation geom-
etry for substitute elements have been further developed in this work. 

Modern manufacturing and automation technology faces a number of challenges 
such as requirements of high precision and accuracy. Coordinate Measuring Machines 
(CMMs) play an important role in the part inspection and quality control. CMMs are 
universal and widely employed automated measuring systems in industry  [1, 9]. Most 
of the research presented in this thesis is related to measurement with CMMs [10-13]. 
The CMM probe may utilize either contact (mechanical) or non-contact (optical) 
measuring principle [14]. Therefore, CMMs are very flexible and can be used for 
calibrations and measurements of complex components. It may include but not lim-
ited to such applications as GD&T inspection, process-capability studies (SPC), 
measuring of prototypes, calibration of gages and reference test-pieces etc. [9]. How-
ever, CMMs have not only benefits, but also some drawbacks. Initially, CMM is a 
post control system, and parts need to be taken from the CNC machine and delivered 
to a metrology laboratory. The other drawback is a limitation of overall dimensions of 
the component that can be physically measured by CMM. 

There is one common principle, which is applied for all measurement systems in-
cluding CMMs. Measurements are valid for accreditation with quality assurance sys-
tems only if all estimated measurement uncertainties are traceable to the meter-unit 
[9, 15]. After an innovation of lasers, a new stage in the interferometry and a new 
definition of the meter became possible [16-19]. 

1.2 Research challenges and questions 

In spite of great efforts in developing a large number of ISO standards related to Ge-
ometrical Product Specification (GPS), not all aspects concerning measurement strat-
egy have been covered [1]. Often the manufacturers due to lack of competence in 
GPS inspection have subjective interpretations of technical drawing requirements and 
analyses of the measured data. The proper procedures and measurement technique are 
not always applied. As a result, identical measuring task may have different ap-
proaches and not always comparable results. Thus, the purpose of this work is to in-
vestigate measurement accuracy of different measurement strategies and the support-
ing algorithms for integrating them into the measurement software and procedures. 
The challenges and questions related to the identified above problems are considered 
in the next sections.  
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1.2.1 Influence of the sample strategy on GD&T inspection 
In spite of many scientific and technical proposals dedicated to the sample size 

problem, it remains unsolved. There is not a standardized guide regarding to the sam-
ple strategy provided so far. The detail state-of-the-art is given in section 2.1 or more 
extended version can be also found in [20]. The choice of the sample strategy strongly 
depends on the tolerance types and workpiece conditions. The sample size is a trade-
off between the measurement uncertainty and time consumption. The inspection 
based on a finite sample size allows representing a fail part as a good one. These con-
ditions often push suppliers to apply too small sample sizes. As result, a product de-
livered to a customer has inspection results approved, but the product does not corre-
spond to the design specification indicated on the drawings. Then the following ques-
tions can be formulated: 

 What is the minimum number of the measuring points that is necessary to deter-
mine the dimensional and geometrical deviations in order to make a reliable deci-
sion?

 What are the main influence factors (e.g. tolerance type, nominal size, the actual
workpiece shape, measurement equipment, etc.)?

 How to estimate the influence and interrelation of these factors?
 Is it possible to define a sample size for the specific task based on the expected

geometrical deviation of the workpiece?

1.2.2 Data outliers 
According to ISO16269-4 [21], before any computation methods are performed on 

measured data, it must be checked for outliers. The presence of outliers in the meas-
ured data may affect dramatically on the final result of data filtration, data statistics, 
geometry computation methods, especially those which are based on extreme values 
such as contacting methods maximum inscribed, minimum circumscribed, Minimal 
Volume Bounding Box (MVBB), which will be clarified later.  

However, outliers are not always incorrect measurements. The presence of outliers 
may indicate whether the manufacturing, measuring or data processing failures. 
Therefore, not only the presence of outliers is important but an investigation of their 
origins as well. To distinguish wrong measurements from the correct data can be a 
challenging task. Such task may be sophisticated even for an experience operator. 
Then the following questions can be formulated: 

 What are outliers?
 What are possible reasons for outliers?
 How to distinguish a bad measurement from the workpiece deviations?
 Which outlier detection methods can be selected for the metrology tasks?
 How to estimate the efficiency of the selected methods?

1.2.3 Computation of the substitute elements 
In order to estimate the form deviation, the actual feature derived from the meas-

ured points must be associated with an ideal feature (reference substitute element, e.g. 
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circle, cuboid, plane, line etc.) computed by an associated method. The reference 
substitute elements can be defined based on the three commonly used associated 
methods [1, 9]: 

1. Minimum Zone (MZ) / Chebyshev method computes the minimum distance be-
tween two substitute elements bounding the actual feature (e.g. two circles, two
parallel lines or planes etc.)

2. Contacting methods compute the bounding substitute elements such as maximum
inscribed (MI) or minimum circumscribed (MC)

3. Least squares (LS) / Gauss method computes the minimum sum of the squares of
local deviations of the actual feature from the substitute element

All three methods based on the same actual feature provide different result and only 
the LS method solution is always unique. Meanwhile, for the assessment of geomet-
rical form deviations, MZ method is the most relevant method according to ISO 1101 
and provides the least possible form deviation value compared to the other methods. 
Still the MZ method is computationally expensive and not always unique, thus the LS 
method often used by commercial software as the default method unless otherwise 
specified.  
 Circumscribed Bounding Box approach based on minimum volume principle has 
been presented in this work (Chapter 4). Three associated methods were demonstrated 
based on different level of the approximation. As it will be shown further, the evalua-
tion results are varying from one method to another. Then the following questions can 
be formulated:  

 How to select a proper associated method?
 How to keep the reproducibility of the evaluated results (make it comparable)?
 What is an estimated difference between three known MVBB methods?

1.3 Research objectives and approaches 

The main objective of this work is to improve the measurement uncertainty and as a 
result the reliability of making decisions about product acceptance. Then the influence 
factors that affect the measurement uncertainty must be identified. The next step is 
clarifying the degree of the effect caused by the factors.  

1.3.1 Objectives 

The following research objectives were identified: 

1. Investigation of the influence of the sample size for geometry assessment in Coor-
dinate Measuring Machines;

2. Detection of outliers in CMM measurements;
3. Development of evaluation methods for workpieces with cuboid (rectangular paral-

lelepiped) form.
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1.3.2 Approaches 
There are three main phases of this work that can be emphasized: a development of 

the research project plan, a development of the scientific articles and a development 
of the presented thesis. A more specific list for the last two phases is given below: 

1. Study of literature related to the measuring systems. Discussion of the industrial
measurements systems is given in the paper 5 [22].

2. Different analytical approaches were exploited to clarify the degree of influence of
the sample size. Some approaches are based on non-parametric, parametric [10]
and order statistics [11]. Another alternative based on Artificial Neuron Networks
(ANN) [12] was applied to consider some specific details involved into the meas-
uring procedures in the real practise.

3. In order to provide a comprehensive investigation both graphical and analytical
approaches have been engaged in the outlier detection procedure [13, 21].

4. Estimation of the minimum distances between opposite faces of cuboid object were
performed with the Minimum Volume Bounding Box (MVBB) methods [23].
These methods are well known in the Computation Geometry but their technique
could be further approved. The technique applied in these methods is supported by
the Analytical Geometry, and especially an apparatus of the Linear Algebra.

A more detail information about the objective factors and the applied approaches will 
be provided in the Theoretical Background and the Main Results (Chapter 2-4) of this 
thesis.  

1.4 Limitations 

The NTNU measuring laboratory is equipped by Coordinate Measurement Machine 
(CMM) Leitz PMM-C-600. All measurements used in the developed algorithms and
simulations, were performed with CMM. The measured data provided by other alter-
native measuring systems have not been involved for simulations presented in this
report.

Most of the approaches are developed for two-dimension problems e.g. the sample 
size problem is considered for radial sections only. The problem regarding number of 
sections (and their locations) has not been considered in this work. Very few sources 
were dedicated to the problem related to the radial section method, generatrix meth-
od, extreme position method etc. exploited for tolerance inspection [1, 24]. It seems 
that existing methods are not well studied so that this problem remains opened, and 
ISO standard does not provide a complete guidance regarding these measurement 
strategies [25]. 

All simulations related to the circular profiles employed Least Squares (LS) meth-
od, which always provides the unique solution. Other evaluation methods such as 
Minimum Zone (MZ, Chebyshev), contacting methods (MI, MC) may provide more 
than one solution, and they have not been involved in this report. 

Generally, the filtration technique is applied on measurement data to separate 
roughness and waviness from geometrical deviation and for attenuation of measure-
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ment uncertainty. The filtration methods are well defined and standardized in ISO 
16610 series. When filtration is required, then the minimum number of measurement 
points and the tip ball diameter of the probe are defined by the filter characteristics. 
According to the Nyquist theorem, at least seven points per undulation must be sam-
pled [26]. In general, the measuring repeatability of Leitz PMM-C-600 is less than 
one micrometer. The stylus tip ball diameters of 5 mm and 10 mm were used for 
measurements presented in this work. Thereby the roughness components were signif-
icantly filtered out by the tip ball. No additional digital filtration was applied and 
hence, it has not been considered in this report. 

1.5 Interconnections between Papers and Objectives 

The main results of this PhD report are presented in the form of contributions for the 
objectives formulated in section 1.3.1. Altogether, it is a collection of six scientific 
papers. The interconnections between the objectives and the papers are illustrated in 
Fig. 1. As shown by the block diagram, the objective “Sample Size” has been divided 
into three sub-objectives. Chapters 2–4 describe the paper contributions and some 
additional observations of corresponding research. 

Fig. 1. The block diagram of interconnections between objectives and papers 
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2 Optimization of sample size 

2.1 Overview of the sample strategy for discrete point measurements 

Most of the work presented in the author’s papers [10-13] are based on CMM applica-
tions. Coordinate measurements with CMM is a collecting of measuring points on the 
surface of a workpiece. The minimum number of sampled points depends on the ge-
ometry of a substitute element that must be calculated using mathematical algorithms. 
However, the mathematical minimum number of points is insufficient to estimate the 
geometry of a real workpiece, due to form deviation. Since there are always form er-
rors, more measuring points are required. Though an official guide based on the inter-
national standard has not been submitted yet, some recommendations for the mathe-
matical and practical minimum number of points are provided by British Standard BS-
7172 [24] and [1, 9]. Still, the recommended minimum number of points may lead to 
underestimation of the actual form deviation. The evaluation of estimation error due to 
the finite sample size is the objective of numerous studies. 

Mesay et al. [27] have classified the manufacturing process error into systematic 
and random components. In another paper, Qimi, Mesay et al. [28] have estimated the 
systematic roundness errors by use of Fourier analyses. In a case study on machined 
parts with a diameter of 20 mm, they found that at least 22 measured points were 
necessary to achieve a consistent value of the roundness error. 

Other authors have investigated the measurement uncertainty due to the sample 
size based on approximation of an aperiodic deterministic profile with Fourier series 
[29, 30]. There were some more simple approaches based on the normal distribution 
[31], chi-square distribution [32, 33], and fuzzy logic [34]. A more comprehensive 
study can be found in [20]. 
 Moschos et. al [35] suggested a Bayesian regularized artificial neural network 
(BRANN) model trained with relatively small sample size to predict a variability of 
large data sample. The intention of the method was to improve the final uncertainty by 
decreasing the uncertainty in the coordinates of each point. Other authors determine an 
optimal inspection sample size based on measurement errors approximated by ANN 
for various machine processes and nominal sizes [36]. A few studies have been con-
ducted in applying ANN for reverse engineering for automatic inspection with a CMM 
[37, 38]. A comprehensive study has been presented by Sładek [39] on simulation 
methods based on ANN and Monte Carlo-methods for estimation of uncertainty of 
virtual coordinate measurements. The developed Virtual Neuro CMM was compared 
with other existing models such as MegaKal and Virtual CUT. The MegaKal model 
has been developed in the National Metrology Institute of Germany (Physikalisch 
Technische Bundesanstalt, PTB). The Cracow University of Technology in the Labora-
tory of Coordinate Metrology has developed the Virtual CUT model. 
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 As long as the nature of the workpiece surface errors is a result of a large number 
of factors with not fully understood correlation interfered with measurement uncertain-
ty in various environment conditions, it leads to the development of a more general 
solution with virtual workpiece profile. This virtual profile provides opportunity for 
simulation of measurements to enable a choice of an optimal sample strategy. Such 
approach was presented in Paper 4 and it is described in section 2.6.2 of this thesis as 
well. 
 The optimal choice of discrete points also depends on utilized evaluation methods 
and tolerance types  [40, 41]. Since, the reliability and quality of CMM sample assess-
ment depends on the density and the location of the measured points [25], the inspec-
tion is often a compromise between time consumption, cost, and the measuring uncer-
tainty. 

2.2 Kernel density estimation 

In real practice, the data distribution is often unknown and/or may contain outliers. 
Therefore, the statistical tolerance intervals should be estimated without the assump-
tions about a specific statistical distribution. The non-parametric statistic can be con-
sidered as a helpful option in such cases. The main idea of the non-parametric statis-
tics is to avoid assumptions about a probability function. The distribution is estimated 
directly from a data.  

One of the most known graphical method of non-parametric statistic is the histo-
gram technique. The data is estimated in the form of rectangles with their bases of 
equal bandwidth b:[𝑟௠௜௡ + (𝑘 − 1)𝑏, 𝑟௠௜௡ + 𝑘𝑏], (𝑘 = 1,2, … 𝑚), where 𝑟௠௜௡ is the 
smallest random variable in the data sample. The rectangles are centered in the mid-
points of each interval with their heights corresponding to relative frequencies [42]. 
Then the estimator of the probability density function (pdf) can be expressed by 

1ˆ( ) iNumber of observations r in the particular rectangle
f r

b Number of all observations in the data sample
 (1) 

This is an example of the simplest non-parametric estimator used for a relative fre-
quency histogram or a probability histogram. A choice of the rectangle bandwidth b
has a significant effect on the form of the histogram. An example of a probability 
histogram is shown in Fig. 2. The main disadvantage of the relative frequency histo-
gram is discreteness. 
 In order to avoid a lack of continuity, another alternative of non-parametric estima-
tion of pdf  [43] can be used e.g. a Rosenblatt-Parzen type kernel estimator of 𝑓(𝑟) at 
a given point r: 

1

1

ˆ( ) ( ) ,
N

i

i

r r
f r Nb K r

b




 
     

 
  . (2) 

Where N is a data sample size, and K is a standardized weighting function with the 
bandwidth 𝑏 = 1 (smoothing parameter). The weighting function is called the kernel. 
The kernel defines the form and properties of the weighting function. There is a num-
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ber of commonly used kernels such as Rectangular, Triangular, Gaussian and Ep-
anechnikov function etc. If a function has properties of a symmetric pdf: 

2( ) 1, ( ) 0, ( ) ,K t dt tK t dt t K t dt C     (3) 

where 𝑡 =
௥ି௥೔

௕
 and C is a non-zero finite constant it can be employed as a kernel. 

Also the estimator 𝑓መ(𝑟) is expected to have the properties of pdf : 

( ) 0,

( ) 1

( ) ( ) .
r b

r b

f r for all r

f r dr

P r b R r b f r dr









  


 




    








(4) 

The proper choice of K and b is a subject for optimization [44, 45]. With larger 
smoothing parameter b the fluctuations of 𝑓መ(𝑟) is reduced. The optimal value of b 
depends on many factors e.g. type of kernel function, shape of unknown pdf 𝑓(𝑟), the 
data sample size N, etc.. The accuracy of the kernel density estimator may be estimat-
ed as a mean square error (MSE), a mean integrated squared error (MISE) and an 
asymptotic mean integrated squared error (AMISE). The optimal kernel function 
with respect to MISE is the Epanechnikov weighting function [46]: 

23 1
1 , 5,

54 5
( )

0, .

t for t

K t

elsewhere

     
   



(5) 

An example of a pdf data estimation by kernel is illustrated in Fig. 2. 
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Fig. 2. An example of data estimation with Histogram and Epanechnikov kernel estimator with 
default bandwidth based on the sample size of 480 observations 

The main advantage of kernel estimation is that we get the continuous function 
𝑓መ(𝑟) as an output of the method. This continuous function can be further used for 
development of simulation algorithms. Some of the papers included in this thesis 
(Paper 1, Paper 2, Paper 3 [11, 13, 10]) involves the non-parametric technique based 
on the kernel density estimators (sections 2.6 and 3.2). The estimators of pdf used in 
these papers utilize the Epanechnikov kernel. 

2.3 Analytical approach based on Statistical Hypothesis 

In this section, we are also considering the parametric approach based on the hypothe-
sis test. In order to analyze the statistical inference, the entire population must be 
examined. However, such approach may be either very expensive or not even availa-
ble. An alternative to this is to use statistical hypothesis. The applications based on 
statistical hypothesis has a wide demand among engineering and scientific practice. 
The statistical hypothesis technique is used for some outlier detection procedures [13, 
47, 48], which is described in Chapter 3. In addition, an example of an alternative 
analytical approach is to be demonstrated here. An optimization of the sample size for 
the two-point diameter (Paper 3) is based on this principle [10].  

According to the definition in [42], a statistical hypothesis is an assertion or con-
jecture concerning one or more populations. Instead of measuring the entire popula-
tion, we can employ random samples taken from the population to collect a necessary 
evidence to reject or not reject the stated hypothesis. The choice of the test statistic 
and the statement of the null hypothesis is very important, and it is a crucial part of the 
reliability of the hypothesis test. In order to provide a strongly supported alternative 
hypothesis, one should accept the alternative hypothesis in a form of rejection of a 
null hypothesis. As an example, if we would like to provide a strong evidence that a 
new developed engine has lower gasoline consumption, the tested null hypothesis 
should be of the form “there is no reduction of the gasoline consumption of the new 
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engine”. As a result, the acceptance of the engine improvement (alternative hypothe-
sis) is achieved by the rejection of the null hypothesis.  

A sample of data must be collected from the population in order to provide suffi-
cient evidence to reject the null hypothesis. Two possible wrong decisions may be 
taken in the hypothesis test. One wrong decision is the rejection of the null hypothesis 
when, in fact, it is true. This is called an error type I. The probability of this error is 
often designated 𝛼, which is also called as level of significance. The other error is 
committed by acceptance (non-rejection) of the null hypothesis, when, in fact, the 
alternative hypothesis is true. That is called an error type II [42]. The probability of 
this error is designated 𝛽. The probability of committing error type I or error type II 
depends on the sample size. The sample size can be determined with reasonable prob-
ability values of both type errors. 

To keep this simple, let us consider the situation where measuring data 𝛿௜  follows 
the normal distribution 𝑁(𝜇ଵ, 𝜎ଵ) with the mean value 𝜇ଵ and the variance 𝜎ଵ

ଶ. We 
will test if the mean value 𝜇ଵ is larger than a reference mean 𝜇଴ of 𝑁(𝜇଴, 𝜎଴), i.e. 
𝜇ଵ > 𝜇଴. Such hypothesis test is called a one-tailed test (upper-tailed test in the un-
derlying situation). Thereby the tested hypotheses can be formulated in this way: the 
null hypothesis is 𝐻଴: 𝜇ଵ = 𝜇଴, hence the alternative hypothesis is 𝐻ଵ: 𝜇ଵ > 𝜇଴. We 

use the sample mean 𝛿̅ =
ଵ

௡
∑ 𝛿௜

௡
௜ୀଵ  as the estimator of the population mean 𝜇ଵ and as

the test statistic. Now, we can determine the lower bound value 𝛿௞ for a critical re-
gion: 

2
1 0 0/k u n     , (6) 

where 𝑢ଵିఈ is the quantile of levels 1 − 𝛼 for distribution 𝑁(0,1) and n is the sample 
size of the random measurements 𝛿௜ . In our example, we consider the level of signifi-
cance 𝛼 = 0.05 i.e. 𝑢଴.ଽହ = 1.645.  

Then according to the terms of the errors of type I and II, formulated above, we can 
write the following: 
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 
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

 
  



           
  


            

(7) 

The expressions in (7) can be converted into the form: 
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 (8) 

Then, the upper equation of (8) can be converted into (6) and substituted into the low-
er equation of (8) so that all this can be expressed in terms of the required number of 
observations (an optimal sample size): 

 

2
1 0 1

0 1

u u
n   

 
 

  
 

, (9) 

where 𝑢ఉ  is the quantile of levels 𝛽 for distribution 𝑁(0,1) related to the error type II. 
Thus, the optimal value of the sample size can be determined for a reasonable balance 
between 𝛼 and 𝛽 values. The relation of the sample size n and the mean difference 
∆𝜇 = 𝜇଴ − 𝜇ଵ was computed in the R programming environment, and the results are 
shown in Fig. 3. The quantile 𝑢ఉ = −1.645 corresponding to the level 𝛽 = 0.05 was 
applied for the calculation. Three data sets A, B and C with corresponding standard 
deviations 𝜎ଵ

஺ = 1.1 𝜇𝑚, 𝜎ଵ
஻ = 0.9 𝜇𝑚, and  𝜎ଵ

஼ = 1.4 𝜇𝑚 are considered. 

 

Fig. 3. The sample size vs mean difference for cross-sections A, B and C 

According to Fig. 3 and (9), the sample size n can be reduced, if the distance between 
two means ∆𝜇 is increased e.g. for the mean difference ∆𝜇 = 𝜎଴ = 1.6 µm, the de-
termined sample sizes are 𝑛஺ = 8, 𝑛஻ = 8, and  𝑛஼ = 10 measurements respectively. 
For detection of smaller ∆𝜇, the sample size increases dramatically. However, in prac-
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tise more parts have deviations with larger ∆𝜇, thus fewer measuring points might be 
required for their inspection. 

2.4 Distribution-free model 

In practice, a sample of measured variables 𝑟ଵ, 𝑟ଶ, … 𝑟௡ often follows an unknown 
distribution and hence, the use of parametric statistics can be misleading. Then a sta-
tistical tolerance interval can be determined with the sample order statistics 𝑟(ଵ) ≤

𝑟(ଶ) ≤ 𝑟(௡) of a data sample of n independent observations [49]. Statistical tolerance 
intervals limited by the smallest and the largest sample order statistics independent on 
the sample distribution are called distribution-free statistical intervals or non-
parametric statistical intervals.  ISO 16269-6 [50] provides the procedures for the 
determination of required sample size based on the order statistics for the desired 
population proportion p with the desired confidence level 1 − 𝛼. According to ISO 
16269-6, “a statistical tolerance interval is an estimated interval, based on a sample, 
which can be asserted with confidence level 1 − 𝛼 (e.g. 0.95), to contain at least a 
specified proportion p (e.g. 0.95) of the items 𝑟௞  in the population. The limits of a 
statistical tolerance interval are called statistical tolerance limits.”  

According to Wilks  [51, 52] and ISO16269-6 (in case of the continuous function), 
the interval with 100(1-α) % confidence that at least 100p % of the population lies 
between the vth smallest observation (i.e., order statistic 𝑟(௩)) and the wth largest obser-
vation (i.e., order statistic 𝑟(௡ି௪ାଵ))  of the sample (see Fig. 4), is determined by solv-
ing the cumulative binomial distribution function for the smallest sample size  𝑛௠௜௡ as 
follows: 

1

0

(1 ) , (0 1), (0 1)
v w

n k k

k

n
p p p

k
 

 




 
      

 
 , (10) 

Fig. 4. The population content p constrained between the vth smallest observation and the wth 
largest observation of the sample of an unknown distribution 
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where 𝑤 ≥ 0, 𝑣 ≥ 0, 𝑣 + 𝑤 ≥ 1, and ቀ
𝑛
𝑘

ቁ is the binomial coefficient. The binomial 

coefficient is calculated as: 

 
 

!
, 0,1, 2,...

! !

n n
for k n

k k n k

 
    

 . (11) 

The form deviation of a workpiece feature (e.g. roundness) is assessed as the differ-
ence between two extreme measured values (e.g. 𝑟௠௔௫ − 𝑟௠௜௡). The form deviation of 
the workpiece might be associated with the two-sided distribution-free statistical 
tolerance interval. Then, the interval with 100(1-α) % confidence that at least 100p % 
of the surface profile lies between the smallest observation (𝑟௠௜௡) and the largest ob-
servation (𝑟௠௔௫) of the sample, is determined by the following expression, which is 
derived from (10): 

  1 1min minn n
min minn p n p        (12) 

where 𝑣 + 𝑤 = 2 and 𝑛௠௜௡ is the minimum sample size. The robust estimations of 
the minimal sample sizes based on the distribution-free model (12) for two-sided 
nonparametric statistical tolerance interval are tabulated in Table 1. The number of 
observations is the natural numbers 𝑛௠௜௡ ∈ ℕ, thus all negative and complex solu-
tions are excluded. The values are rounded up to the nearest integer. 
 The Paper 1 is based on the presented approach and the contribution results are 
given in section 2.6.1. 

Table 1. The minimum sample size 𝑛௠௜௡ for the two-sided nonparametric tolerance limits 

Confidence level, 
100(1 )%   

Proportion of population, p 

0.500 0.750 0.900 0.950 0.990 

50 3 7 17 34 168 

75 5 10 27 53 269 

90 7 15 38 77 388 

95 8 18 46 93 473 

99 11 24 64 130 662 

2.5 Artificial Neural Network Approach 

The state-of-the-art in Artificial Neural Network (ANN) is based on our understand-
ing of biological neurons’ function [53]. One of the most important advantage of 



16 

ANN is that it can imitate the behaviour of an unknown relation between an input and 
output data. In case of lack of knowledge about an analytical function, the ANN can 
provide relatively precise solution based on the limited experimental data, which is 
called training set. It is important to notice that the solution of an ANN is not a 
unique solution, but one that satisfied the minimal error requirements. 

An artificial network is composed of differently connected artificial neurons, 
which are named as processing elements (PE). The fundamental principle of the PE is 
shown in Fig. 5. 

Fig. 5. A single Processing Element (PE) of ANN 

The PE executes a number of functional operations with a given input such as multi-
plication by weight scalar 𝑤௜௝ , substitute of threshold (bias) scalar 𝑠௜ , summation of 
all results 𝑎௜  from other inputs 𝑥௝, and finally, transformation of results by the activa-
tion  function 𝑓௜(𝑎௜) [54]. The final output signal can be mathematically expressed as 

1

( )
n

i i ij j i i i
j

y f w x s f a


 
   
 
 
 , (13) 

where the summation 𝑎௜ is given by 

1

n

i ij j i
j

a w x s


  (14) 

There is a number of activation factions 𝑓௜(𝑎௜) available i.e. a step function, a linear 
function, a log-sigmoid function etc. In this work, we exploit the tan-sigmoid activa-
tion function (tansig), which is commonly used for calculating a layer’s output to 
achieve faster and better stability of network processing [55]. The tan-sigmoid activa-
tion function can be written in the following form: 

2

2
( ) 1

1 i
i i i a

y f a
e

  


 (15) 

The activation function (15) is defined in the interval [-1; 1]. 
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 In fact, the PE can have more than one output and it is often the case. The PEs 
(artificial neurons) are connected into input, hidden and output layers creating the 
artificial neural network. Multilayer ANN can include many hidden layers but to re-
duce a computation time many commercial systems usually do not exceed two hidden 
layers. In general, the basic procedure for design of a neural network of an arbitrary 
architecture may include a number of standard steps [54, 56]: 

1. Preparing and pre-processing (normalizing) training data [57]
2. Creating a network structure
3. Configuring the network
4. Initialization of weights and biases
5. Training, validation and testing of the network

In our study, we utilize a Supervised Back-Propagation (BP) Artificial Neural
Network. The network type of Supervised Back-Propagation is related to the learning 
strategy of ANN [54, 58, 59]. ANNs based on the BP strategy are popular in many 
applications, including the industrial sectors. An example of a multilayer feedforward 
PB ANN with a single hidden layer is illustrated in Fig. 6. 

The BP learning includes both a forward and backward phase. The forward phase 
is a calculation of the actual outputs (network response). The backward phase is a 
adjustment of the weights in order to reduce the deviation between the actual output 
and the desired target until the deviation achieve an acceptable value. The processing 
operations of network between layers are described in the simplified form (without 
biases) below. Then the network input for the hidden layer is the following [54]: 

Fig. 6. Multilayered n-m-h feedforward PB ANN with a single hidden layer 
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1

, ( 1, 2,... ; 1, 2,... )
n

j ji i
i

I v x i n j m


    , (16) 

where 𝑣௜௝  is randomly generated weight scalars in the interval [-1; 1] corresponding to 
the tansig activation function (15) between a unit i of the input layer and a unit j of 
the hidden layer. Then, the network input for the output layer is the following: 

1

, ( 1, 2,... , 1, 2,... )
m

k kj j
j

H w y j m k h


   , (17) 

where 𝑤௞௝  is randomly generated weight scalars in the interval [-1; 1] corresponding 
to the linear activation function (purelin) between a unit j of the hidden layer and a 
unit k of the output layer. The output of the unit j of the hidden layer can also be ex-
pressed through the corresponding activation function: 

( ), ( 1, 2,... )j jy f I j m  . (18) 

Analogically, the output of the unit k of the output layer can be expressed by: 

( ), ( 1, 2,... ).k kz f H k h  (19) 

Eventually, the forward phase of calculation of the actual network output can be ex-
pressed by substituting (17) into (19) with substituting 𝑦௝ by (18) and substituting 𝐼௝ 
by (16): 

1 1 1 1

( ) ( )
m m m n

k k kj j kj j kj ji i
j j j i

z f H f w y f w f I f w f v x
   

      
                      
     . (20) 

The difference between the output 𝑧௞  and the target 𝑡௞  of the feedforward network is 
typically calculated as the mean squared error (MSE): 

2( )

2
k k

mse
z t




  , (21) 

and a total MSE over all network output nodes (the final output): 

2

1

1 m

k
k

E e
m 

   , (22) 

where 𝑒௞ = 𝑧௞ − 𝑡௞ . 
The backpropagation learning based on Levenberg-Marquardt training algorithm is 

used in this work for the backward phase (adjusting of the weights 𝑣௜௝ , 𝑤௞௝) [60]. The 
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new modification was designed to improve the convergence speed of network training 
without calculating the Hessian matrix. The Levenberg-Marquardt algorithm is a 
modification of Newton’s (Gauss-Newton) method [61]: 

2 1[ ( )] ( )w E w E w     . (23) 

If function 𝐸(𝑤) has a form of the performance function given by (22), then the fol-
lowing approximation can be applied: 

( ) ( ) ( )TE w J w e w   , (24) 

and 

2( ) ( ) ( ) ( )TH w E w J w J w  , (25) 

where H is the Hessian matrix, J is the Jacobian matrix of first-order partial deriva-
tives of the network errors with respect to weights; e is a vector of the network errors, 
∇𝐸(𝑤) is the gradient of function 𝐸(𝑤), which needs to be minimized with respect 
with the weighting parameter w. Then the Gauss-Newton method is expressed by: 

1
( ) ( ) ( ) ( )T Tw J w J w J w e w


      . (26) 

Finally, the Levenberg-Marquardt modification of Gauss-Newton method can be 
written in the following form: 

1
( ) ( ) ( ) ( )T Tw J w J w I J w e w


      , (27) 

where I is the identity matrix, 𝜆 is a Lagrange multiplier, which regulates whether 
Newton (𝜆 = 0) or the gradient descent method (𝜆 is large) is performed. The algo-
rithm has a good performance on nonlinear function fitting problems. In spite, a large 
memory consumption, Levenberg-Marquardt is the fastest supervised feedforward 
neural network (up to few hundred weights) optimization algorithm with an efficient 
implementation in MATLAB [56]. 

Paper 4 presents a new developed model based on this approach. The results of this 
model application are also discussed in section 2.6.2. 

2.6 Contributions to objective 1 

The research questions related to the sample strategy have been formulated in section 
1.2.1. The objective related to the sample size has been stated in section 1.3.1. The 
choice of the sample size is a decision which must be taken by the CMM operator 
while planning the measurement procedure. A comprehensive standardized guide for 
the sample strategy and sample size has not been provided so far. Some recommenda-
tions can be found in British standard BS 7172 [24] and the old German standards 
TGL 39093 to TGL 39098, and TGL 43041 to TGL 43045 [1]. The sample strategy 
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depends on the uncertainty of the measuring system, the tolerance types, and the 
workpiece shape. As an example, the measurement of cylindricity requires more 
measured points than the measurement of straightness of the cylinder axis.  

Especially, there is a difference between assessment of geometrical deviations 
(form, orientation, location) and size deviations. In case of form deviation assessment 
(e.g. roundness) it is necessary to detect the difference between the smallest and the 
largest value (Paper 1 [11]), while for the assessment of the size deviation, it may be 
enough to estimate only the mean value (Paper 3 [10]). To be able to define which 
measuring instrument or method that should be applied, we need an assumption about 
the maximum value of geometry deviations and measurements errors (Paper 4 [12]).  

2.6.1 Geometrical deviation. 
The assessment of the form deviation (e.g. roundness) depends on detection of maxi-
mum and minimum variables (e.g. radius extreme values). Paper 2 is based on the 
research of radius variable distribution derived from CMM measurements of circular 
sections of internal cylinders manufactured by turning processes. 

In this section, for demonstration of the universality of the proposed approach, we 
present the additional results (non-published) based on eight measured circular pro-
files (four profiles with nominal diameter of 100 mm and four profiles with varying 
nominal diameters of 200-500 mm) manufactured by milling processes. Each section 
has very specific probability density function (pdf), different from pdfs of the other 
section profiles. Each pdf was estimated by Kernel estimator based on 480 measured 
radii according to (2) in section 2.2. The coordinates of the circle center (𝑥௖ , 𝑦௖) were 
calculated with LSC method based on the coordinates of 480 measured points equally 
spaced around a circle. The radius variables were calculated as a follows: 

2 2( ) ( )i i c i cr x x y y    (28) 

The estimated pdf functions for four circle section profiles with nominal diameter 100 
mm are illustrated in Fig. 7.  
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Fig. 7. Estimated pdf based on 480 measured radii for four circular sections with nominal di-
ameter 100 mm 

The estimated pdf for normalized radius variables of four other circular sections 
with nominal diameters 200 mm, 300 mm, 400 mm and 500 mm are illustrated in Fig. 
8. 

In order to define the minimum sample size related to the assessments of the form 
deviation, the statistical simulations have been developed in MATLAB. The main 
idea of simulation is motivated by the distribution-free analytical model (12), pro-
posed by Wilks (section 2.4). It means that a new robust approach is not based on 
assumptions of the normal distribution, or other statistical distributions. 

The coordinates (𝑥௜ , 𝑦௜) of the measured points were used as the input of the algo-
rithm. The estimated pdfs of random radius variables (Fig. 7, Fig. 8) were computed 
by eq. (2). The following sample sizes were considered n = [5; 10; 15; 34; 60; 90; 93; 
95]. The sample size of 34 and 93 measured points have a special interest. 

Fig. 8. Estimated pdf based on 480 normalized radii for nominal diameters 200 mm, 300 mm, 
400 mm, 500 mm 
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According to Table 1, thirty-four-point sample allows to detect 95 % of the popula-
tion with 50 % confidence level (CL), while ninety-three-point sample should have at 
least 95% CL for detecting 95 % of the population. Thus, these samples can be further 
used as the references for verification of the algorithm. We employ the random gener-
ators based on the estimated pdfs to simulate random radius variables. There are 10ହ 
iterations applied for each sample size in our simulation algorithm. The maximum and 
minimum values of the radius (𝑟௠௔௫, 𝑟௠௜௡) are defined in each iteration. Then, the 
proportion p of the population, which is the area under the corresponding pdf curve 
(Fig. 4) is bounded by the two defined extreme ordinates (𝑟௠௔௫ , 𝑟௠௜௡). Thus, for all 
types of probability distribution curves, p is represented by the area, which is a differ-
ence of the two cumulative distribution functions (cdf): 

max min

min max( ) ( , ) ( , )

r r

i k k k kp r r r K dr K dr   
 

     (29) 

where 𝐾(𝜇௦, 𝜎௦) is a distribution estimated by the kernel (shown in Fig. 7, Fig. 8) that 
corresponds to each section profile. Then, the condition 𝑝௜ ≥ 0.95 is checked for each 
iteration. Whether the condition is satisfied or not the sum S will be updated either as 
S = S + 1 (success/Yes) or S = S + 0  (failure/NO). Eventually, the confidence level 
(CL) for each sample size  𝑛௝  (𝑗 = 1, . .8) is calculated as

1

1
100%

M

i
i

CL S
M 

 
   
 
 (30) 

where M is the total number of iterations. The block-diagram of the simulation algo-
rithm to estimate the CL for detecting 95 % of the population due to various sample 
sizes 𝑛௝  is shown in Fig. 9.  

The robust estimations of CL due to the sample size to detect 95% of the popula-
tion for four circular profiles with the same nominal diameter 100 mm are given in 
Table 2. The developed approach can be also applied for profiles with larger diame-
ters as shown in Table 3. As can be observed from the computation results in both 
tables, the CL is very similar and thus, it is independent on the size. 



23 

Fig. 9. The block-diagram of the simulation algorithm 
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Table 2. The confidence level CL = (1 − 𝛼)100% versus the sample size n to detect at least 
95% ( 0.95)p   of the population (for the circle profiles with diameter of 100 mm) 

Section D1001 
Sample size 5 10 15 34 60 90 93 95 

CL , % 2.3 7.9 17.5 51.4 80.0 94.5 94.9 95.7 

Section D1002 
Sample size 5 10 15 34 60 90 93 95 

CL , % 2.0 9.0 16.6 51.1 81 94.2 94.6 95.5 

Section D1003 
Sample size 5 10 15 34 60 90 93 95 

CL , % 2.1 8.3 17.4 50.9 80.6 94.6 95.0 95.2 

Section D1004 
Sample size 5 10 15 34 60 90 93 95 

CL , % 2.1 8.5 17.2 51.2 80.7 94.2 94.9 95.4 

Table 3. The confidence level CL = (1 − 𝛼)100% versus the sample size n to detect at least 
95% ( 0.95)p  of the population (for the circle profiles with diameter of  200 mm, 300 mm, 

400 mm, 500 mm) 

Section D200 
Sample size 5 10 15 34 60 90 93 95 

CL , % 2.2 7.9 16.9 49.9 80.6 94.2 94.8 95.6 

Section D300 
Sample size 5 10 15 34 60 90 93 95 

CL , % 2.1 8.8 16.5 51.5 80.7 94.7 95.0 95.5 

Section D400 
Sample size 5 10 15 34 60 90 93 95 

CL , % 2.2 8.7 16.5 51.0 81.2 94.5 95.0 95.7 

Section D500 
Sample size 5 10 15 34 60 90 93 95 

CL , % 2.2 8.7 17.2 50.7 81.2 94.4 95.3 95.6 

According to the simulation results, the optimal sample size is 94 measured points. 
This sample size can guarantee at least 95 % of the population content with 95 % 
confidence level. The minimum 35 measured points can ensure at least 95 % of the 
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population content with at least 50 % CL. These results are consistent with Wilks 
criteria and computation results (Table 1) based on the analytical approach (12). All 
sample sizes below 34 measured points have CL less than 50 % for detecting 0.95 
population proportion. It should be emphasized that the developed approach does not 
have any constraints concerning to the type of the distribution and the nominal size. 
The simulation results presented here and in Paper 2 leads to the conclusion that 
workpieces with different materials, sizes, produced by other machine processes will 
provide the similar results.  

2.6.2 Maximum estimated error of roundness deviation 
The previous approach has a number of limitations regarding to the real practice con-
ditions. It was based on the assumptions of a single circle center and given distribu-
tion form of the radius variable. The approach proposed in Paper 4 [12] does not have 
any of these constraints. 

The form of a workpiece profile is not known before it is measured, thus the profile 
is characterized as nondeterministic. This approach deals with the nondeterministic 
profiles derived from coordinate measurements of real workpieces. In order to inves-
tigate the influence of the sample size, Artificial Neural Network (ANN) was em-
ployed to create the continues nondeterministic profiles based on the discrete CMM 
data. When the relevant factors of the nonlinear correlation are not known and hence 
have to be assumed, the ANN approach is more preferable than the conventional re-
gression approaches. Besides, the ANN approach is more versatile, and it can be easi-
er adopted to the new profiles generated by other machine processes. 

In order to implement the new developed model, 9 holes with various diameters 
from 40 mm to 500 mm have been milled in a 20 mm aluminium plate. The inspec-
tion was performed in a Leitz PMM-C-600 coordinate measuring machine with an 
analogue probe and PC-DMIS software. The middle section of each hole was meas-
ured with 480 uniformly distributed points. The least squared circle (LSC) method 
was applied to calculate the circle centre coordinates (𝑋௖ , 𝑌௖) and radius values 𝑅௞ of 
each section. 

The radius distance 𝑅௞ from the circle centre (𝑋௖ , 𝑌௖) to each individual measured 
point (𝑋௞ , 𝑌௞) was calculated by: 

 2 2( ) ( )k k c k cR X X Y Y    . (31) 

The angle between points is 𝜑௞ = 2𝜋𝑘/480, where 𝑘 is the index number of the 
points (k = 0…479). Examples of measurements are shown on the polar plots in Fig. 
10. 
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(a)         (b)        (c) 

Fig. 10. Examples of measured radial sections: (a) 𝐷ଵ = 40 mm; (b) 𝐷ଷ = 100 mm; (c) 𝐷ଽ = 
500 mm. 

The back propagation (BP) ANN was applied for profile fitting of the circular fea-
tures. The theoretical background for design and processing of the BP ANN is given 
in section 2.5. The multilayered BP ANN developed with MATLAB is illustrated in 
Fig. 11. 

 

Fig. 11. A 1-260-12-1 feedforward BP ANN for approximation of the measured profiles 

The network input is denoted as 𝜑௞ and the target as 𝑅௞, thus we have a network with 
one input and one output. In order to achieve a better accuracy of approximation we 
apply a deep learning strategy in this work. There are two hidden layers, with 260 
neurons in the first and 12 neurons in the second layer. The chosen number of layers 
and neurons is the result of a trial-and-error procedure providing the best-experienced 
performance. The data set was divided in the following groups: training – 85 % ; vali-
dation – 10 %; test – 5 %. The training process was repeated until the maximum abso-
lute error reached a value below the certain level |𝜀௠௔௫| < 2.5 𝜇𝑚. 

An example of the approximated nondeterministic profile is illustrated in Fig. 12. 
The lowest graph of the figure shows the approximations error in each particular 
point. The range of the fit errors 𝜀௜ is [−0.9 ∙ 10ିସ; 0.9 ∙ 10ସ] mm for the presented 
profile (Fig. 12). The nondeterministic profile equivalents to a continuous function 
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that provides an opportunity to simulate the measuring strategies based on a typical 
measuring procedure and perfect repeatability conditions. 

 

Fig. 12. The continues nondeterministic profile approximated with ANN (𝐷ଷ = 100 mm) 

In order to determine a maximum measuring error due to the sample size, an addi-
tional simulation algorithm has been developed. According to common practice in 
CMM, measuring points are uniformly spaced around a circle profile, and the LSC 
method is utilized as default. An example of the simulation, using a five-point sample 
(n = 5), is illustrated in Fig. 13. A sample of n equally distributed points is taken from 
the profile approximated with the designed ANN, and the n-point sample is rotated 
clockwise with m = 1000 iterations. In each iteration the sample is rotated by the an-
gular step 𝑠 = 2𝜋/𝑛𝑚. When the first point 𝑝ଵ position is defined, the other (𝑛 − 1) 
sample points  (𝑝ଶ, 𝑝ଷ, … 𝑝௡) are determined uniquely with the equal spacing 2𝜋/𝑛. 

 
Fig. 13. The five-point sample: 𝑝ଶ, 𝑝ଷ, … 𝑝ହ are the measured points; 𝜌ଵ , 𝜌ଶ, … 𝜌ହ are the esti-
mated radius variables; ref.lsc is the reference least squares circle; 𝑟ଵ

஺ேே is the radius of the 
original reference circle; (𝑋௖ , 𝑌௖) is the reference circle center based on 480 points; (𝑥௖ , 𝑦௖) is 
the new circle center based on 5 points. 
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Then, the sample of n  radius values 𝑟௞
஺ேே  (𝑘 = 0, … 𝑛 − 1) is generated from the 

trained network. The 𝑥௞ , 𝑦௞  coordinates are calculated from radius variables 𝑟௞
஺ேே  by 

the following equations: 

 
cos( )

sin( )

ANN
k c k k

ANN
k c k k

x X r

y Y r





  


 
 (32) 

A new circle centre (𝑥௖ , 𝑦௖) is calculated with the LSC method to simulate the meas-
uring routine. Then, the radius for each point is calculated with new centre coordi-
nates again by: 

 2 2( ) ( )k k c k cx x y y     . (33) 

The new circle centre (𝑥௖ , 𝑦௖) and radius values 𝜌௞  were calculated in each iteration. 
Then the radius variation range of the n-sample for each particular location was esti-
mated as ∆𝜌 = 𝜌௠௔௫ − 𝜌௠௜௡ . Eventually, after all iterations were completed, the 
smallest estimated radius variation range ∆𝜌௠௜௡ for the particular sample size n was 
defined. The maximum estimation error 𝛿௠௔௫  was calculated as 𝛿௠௔௫ = ∆𝑅஺ேே −
∆𝜌௠௜௡, where ∆R஺ேே = 𝑅௠௔௫

஺ேே − R௠௜௡
஺ேே is the precise radius variation range based on 

480 variables, which were simulated with the continuous virtual profile. 
The simulation procedure described above was applied with different sample sizes 

from 5 to 400 measuring points and 9 circle sections with nominal diameter from 40 
mm to 500 mm. The final simulation results are tabulated in Table 4. 

Table 4. The maximum estimated error (𝛿𝑚𝑎𝑥) due to the sample size for various diameters 

* 𝛿௠௔௫  is given in µm 

A plot of the results (see Fig. 14a) shows that the relation between the maximum 
estimated error 𝛿௠௔௫  and the sample size n has nonlinear, asymptotic behavior. This 
behavior appears relatively predictable. However, the relation between the maximum 

Sample size n 5 15 30 60 93 150 200 300 400 

1 40 mmD       11.2* 7.5 5.0 4.3 3.1 2.8 2.5 1.3 0.7 

2 80 mmD        10.2 5.4 5.0 4.1 2.5 1.9 1.6 1.1 0.5 

3 100 mmD   7.1 4.9 4.0 3.1 2.5 2.0 1.3 0.7 0.4 

4 150 mmD   21.4 11.5 9.1 7.3 6.6 6.6 4.5 2.1 0.8 

5 200 mmD   15.1 4.4 2.0 0.9 0.7 0.3 0.2 0.1 0.1 

6 250 mmD   30.2 7.8 2.6 1.9 1.1 0.7 0.7 0.4 0.0 

7 300 mmD   22.2 8.7 5.9 3.7 2.1 1.4 1.3 1.0 0.8 

8 400 mmD   21.5 8.7 4.1 1.8 1.6 1.1 0.7 0.4 0.2 

9 500 mmD   24.3 10.6 7.8 7.8 5.0 3.2 3.2 1.9 0.8 



29 

estimated error and the diameter size for various sample sizes does not follow a clear 
trend, as shown in Fig. 14b. 

 

(a)              (b)  

Fig. 14. Simulation of error in roundness assessment. (a): The maximum estimated error vs 
sample size for various diameters 𝐷ଵ, 𝐷ଶ, … 𝐷ଽ; (b): The maximum estimated error 𝛿𝑚𝑎𝑥 vs 
diameter size 𝐷௜ for sample sizes with 5, 93, 300 points 

The maximum estimated error for a five-point sample (Fig. 14b) varies between 7.1 
µm and 30.2 µm. The maximum error for ninety-three-point sample does not exceed 
6.6 µm, and for three-hundred-point sample size the error does not exceed 2.1 µm. 
However, for most of the diameters, there is not a substantial improvement of the 
maximum estimated error with the three-hundred-point sample size relative to the 
ninety-three points. 

According to the simulation results, the error due to the sample size can give a sig-
nificant contribution to the measurement uncertainty and thus it must be considered in 
the measuring strategy. The computed values of the maximum estimated errors can be 
used in calculation of a worst-case scenario in the design and inspection stage. 

As shown with the measurements and the simulation, the diameter size is not the 
main factor for defining the sample strategy. The actual form of the measured work-
piece is a more dominant factor than the nominal diameter. Thus, increasing the sam-
ple size due to larger diameter is not always necessary. 

The presented ANN approach can be adapted to profile forms generated by any 
machining operations. The approximated nondeterministic profile can be further used 
as the continuous function for simulations of sample strategies, alignments, filtration 
methods and measurement uncertainty. 
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2.6.3 Dimensional (Size) deviation 

This section presents an algorithm for evaluation of the effect of sample size in two-
point diameter verification of machined features. The algorithm is based on the calcu-
lation of minimum sample size presented in section 2.3. According to ISO 14405-1, 
the dimensions specified on the drawing are defined as two-point size. The following 
definition applies: “the two point size is the distance between two opposite points on 
an extracted integral linear feature of size” [62]. In Paper 3, we propose a method for 
optimizing the sample size for diameter verification of cross-sections of cylindrical 
components. The two-point size of such circular features are also called “two-point 
diameter”. The illustration of the two-point diameter is given in Fig. 15. 

 

Fig. 15. Two-point diameter: a – extracted feature; a’ – section profile; b, b’ – LS associated 
cylinder; c, c’ – axis of LS associated cylinder; d – extracted median line; e – LS associated 
circle (of section); f – LS associated circle center of e; g – actual local size (two-point diame-
ter), the straight line between two opposite points P1 and P2, which goes through the center f 

In this work, it has been considered the particular case, where the dimensional toler-
ance interval is larger than the variation of the measurements of the two-point diame-
ter. Three cross-sections A, B and C of an internal cylinder produced by turning op-
eration with nominal diameter of 60 mm were measured by a coordinate measuring 
machine (CMM). It is assumed that the connecting line between two opposite points 
includes the associated circle centre. There are 500 measured points in each cross-
section, which provides 250 two-point diameters 𝐷௜: 

 2 2
250 250( ) ( )i i i i iD x x y y     , with (𝑖 = 1, … 250) (34) 

For convenience of the result presentation and further data processing, the values of 
𝐷௜  has been transformed into 𝜉௜ = (𝐷ഥ − 𝐷௜)1000, where 𝐷ഥ is the mean value of the 
diameter measurements in each cross-section. In order to derive the shape of the 
probability density function (pdf) 𝑓(𝜉) of the standardized variable 𝜉௜, the kernel 
density estimator (KDE) has been used according to (2) and (5) given in section 2.2. 
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The estimation results of pdfs 𝑓஺(𝜉), 𝑓஻(𝜉), 𝑓஼(𝜉) for all three sections are shown in 
Fig. 16. 

 

Fig. 16. The pdfs of transformed variables 𝜉௜ estimated by KDE for sections A, B and C and the 
normal distribution adjusted according to the six-sigma interval 

In order to combine the parametric and non-parametric statistics within a new devel-
oped model, we need to adjust the standard deviation 𝜎଴ of the reference normal dis-
tribution corresponding to the null hypothesis in such way that the six-sigma interval 
could cover any of the estimated pdf shown in Fig. 16. The standard deviation 𝜎଴ =
1.6 μm is satisfied for this condition. These estimated pdfs will be further used in the 
statistical simulation model. 
 The developed method evaluates whether the given sample size is sufficient or not 
for two-point diameter verification. We are applying a hypothesis test as illustrated in 
Fig. 17. Examples of distributions of the workpiece diameters are depicted as 5, 6, 
and 7. As long as we do not know in advanced in which area of the tolerance interval 
the deviation might be located (upper or lower), then two independent hypothesis tests 
(denoted as 3 and 4) must be formulated. The mean values 𝜇଴

௅  and 𝜇଴
௎ of each corre-

sponding normal distribution 𝑁(𝜇଴
௅ , 𝜎଴) and 𝑁(𝜇଴

௎ , 𝜎଴) are located in 3𝜎଴ distance 
from the tolerance limits (1 – lower, 2 – upper, Fig. 17). 

Transformed diameter variable, [μm]
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Normal

Section A

Section B
Section C



32 

 

Fig. 17. Hypothesis tests for verification of two-point diameter: 1 – lower tolerance limit; 2 – 
upper tolerance limit; 3 – upper Gauss (null hypothesis); 4 – lower Gauss (null hypothesis); 5 – 
KDE object with large deviation; 6 – KDE object with medium deviation; 7 – KDE object with 
small deviation; 8 – lower boundary of the statistical test; 9 – upper boundary of the statistical 
test. 

The cases when the sample mean is equal to one of the reference means 𝜇଴
௅ , 𝜇଴

௎ corre-
spond to the null hypotheses 𝐻଴

௅  or 𝐻଴
௎. If one of the null hypotheses is not rejected, 

then a larger sample size will be recommended. 
 As an example, we consider the dimensional tolerance H7 for nominal diameter 60 
mm of an internal cylinder. According to ISO 286-1 the tolerance limits are 𝐸𝐼 =
0, 𝐸𝑆 = +30 𝜇𝑚. The values of the reference means can be calculated as 𝜇଴

௅ = 𝐿𝑇𝐿 +
3𝜎଴ and 𝜇଴

௎ = 𝑈𝑇𝐿 + 3𝜎଴ respectively. Finally, the null hypotheses can be formulated 
as the following 𝐻଴

௅ : 𝜇஽ = 𝜇଴
௅  and 𝐻଴

௎: 𝜇஽ = 𝜇଴
௎ , where 𝜇஽ is the diameter mean esti-

mated as 𝜉̅ =
ଵ

௡
∑ 𝜉௜

௡
௜ୀଵ . Then the alternative hypotheses are formulated as 𝐻ଵ

௅ : 𝜇஽ >

𝜇଴
௅  and 𝐻ଵ

௎: 𝜇஽ < 𝜇଴
௎  respectively. The sample means are computed from the sample 

data generated by random generator based on KDE, which has unknown non-normal 
distribution 𝐾(𝜇஽ , 𝜎஽). The alternative hypotheses 𝐻ଵ

௅ , 𝐻ଵ
௎ are accepted, when the 

sample mean is inside of the critical range 𝐷௞. Then, according to (6), the critical 
range is defined by both, the lower bound: 

 2
1 0 0/L L

k u n     , (35) 

and the upper bound 

 2
0 0/U U

k u n     . (36) 
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Where n is the sample size, 𝑢ఈ and 𝑢ଵିఈ are the quantiles of 𝑁(0,1) distribution. The 
significance level 𝛼 = 0.05 (i.e. 𝑢଴.଴ହ = −1.645 and 𝑢଴.ଽହ = 1.645) was applied for 
hypothesis tests. The calculation results of the critical range and boundary values due 
to the sample size are shown in Table 5. 

Table 5. The critical range for 30 µm tolerance interval with 𝛼 = 0.05, 𝜎଴ = 1.6 

Sample 
size, n 

Lower bound 
L

k , μm 

Upper bound 
U

k , μm 

Critical range 

kD , μm 

Tolerance re-
duction,% 

5 6.0 24.0 18.0 40.00 

10 5.6 24.4 18.8 37.33 

15 5.5 24.5 19.0 36.67 

20 5.4 24.6 19.2 36.00 

30 5.3 24.7 19.4 35.33 

40 5.2 24.8 19.6 34.67 

50 5.2 24.8 19.6 34.67 

60 5.1 24.9 19.8 34.00 

After the initial conditions are specified, we can proceed with the simulation pro-
cedure. A number of 𝑁 = 10ହ iterations were used for each sample size of the simu-
lated diameter measurements. In order to choose which of the hypothesis tests must 
be carried out, we simply check the following condition ∆𝜇௅ < ∆𝜇௎  (where ∆𝜇௅ =
𝜇஽ − 𝜇଴

௅ or ∆𝜇௎ = 𝜇଴
௎ − 𝜇஽). The general principle of the algorithm is shown in Fig. 

18. In this work, we would like to demonstrate simulation results only for three values
of the mean differences ∆𝜇ଵ

௅ = 𝜎଴, ∆𝜇ଶ
௅ = 0.5𝜎଴ and ∆𝜇ଷ

௅ = 0. The estimated sample
mean 𝜉 ̅is compared with either the lower bound 𝜉௞̅

௅ or the upper bound 𝜉௞̅
௎ (Table 5).

When the conditions of 𝜉̅ > 𝜉௞̅
௅ or 𝜉̅ > 𝜉௞̅

௎ are met, the iteration is assigned as 1 (0
otherwise) and summed up as the counters 𝐶௅ or 𝐶௎, then the confidence levels (CLs)
𝜂଴

௅  or 𝜂଴
௎ are calculated as 𝐶௅/𝑁  or 𝐶௎/𝑁  respectively. The simulation results for

each section A, B and C are presented in Table 6, Table 7 and Table 8. The results
for the opposite side UTL are similar, and they are not presented here.
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Fig. 18. The algorithm for evaluation of the sample size for two-point diameter verification 
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Table 6. Estimation of the CL 𝜂଴
௅  for various sample sizes and different ∆𝜇௅, for Section A 

Mean 
difference 

Sample size 
5 10 15 20 30 40 50 

∆𝜇ଵ
௅ = 𝜎଴ 0.78 0.98 1 1 1 1 1 

∆𝜇ଶ
௅ = 0.5𝜎଴ 0.22 0.46 0.65 0.79 0.93 0.98 1 

∆𝜇ଷ
௅ = 0 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Table 7. Estimation of the CL 𝜂଴
௅  for various sample sizes and different ∆𝜇௅, for Section B 

Mean 
difference 

Sample size 
5 10 15 20 30 40 50 

∆𝜇ଵ
௅ = 𝜎଴ 0.82 0.99 1 1 1 1 1 

∆𝜇ଶ
௅ = 0.5𝜎଴ 0.21 0.46 0.66 0.82 0.95 0.99 1 

∆𝜇ଷ
௅ = 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Table 8. Estimation of the CL 𝜂଴
௅  for various sample sizes and different ∆𝜇௅, for Section C 

Mean 
difference 

Sample size 
5 10 15 20 30 40 50 

∆𝜇ଵ
௅ = 𝜎଴ 0.75 0.95 0.99 1.00 1.00 1.00 1.00 

∆𝜇ଶ
௅ = 0.5𝜎଴ 0.29 0.47 0.63 0.75 0.88 0.95 0.98 

∆𝜇ଷ
௅ = 0 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

From the simulations, we get three categories of results. The first category G (good 
parts) corresponds to the intersection of two subsets {𝜇஽ ≥ 𝜇଴

௅ + 𝜎଴} ∩ {µ஽ ≤ µ଴
௎ −

𝜎଴}. The second category T (not confirmed) includes the subsets {µ଴
௅ < µ஽ < µ଴

௅ + 𝜎଴} 
and {µ଴

௎ − 𝜎଴ < µ஽ < µ଴
௎}, and the third category S (suspected parts) belongs to 

{µ஽ ≤ µ଴
௅} and {µ஽ ≥ µ଴

௎}. In addition, we have parts which are definitely out of tol-
erances (F, fail parts), {µ஽ < 𝐿𝑇𝐿} and {µ஽ > 𝑈𝑇𝐿}. For illustrational purposes, we 
presume a uniform distribution U(0,30) of the manufacturing process over a long time 
period. The tolerance interval is illustrated in Fig. 19. The content of each region (S, 
T, and G) can be easily evaluated: 

0 0 0 0

0 0 0

3 4

0 3

1 1 1
0.16, 0.05, 0.57

30 30 30

U

L

du du du

   

  





     (37, 38, 39) 

In the S category (µଷ
௅ = 0), the correct decision can be taken with at least 95 % 

probability (1 − 𝜂଴
௅) with the five-observation sample, according to Table 6, Table 7 

and Table 8. 
Similar for the G category, the correct decision can be taken with at least 95 % 

probability (𝜂଴
௅) with the ten-observation sample for µଵ

௅ = 𝜎଴. 
According to Table 6, Table 7 and Table 8 for the category T (µଶ

௅ = 0.5 ∙ 𝜎଴), 
more than 40 observations might be required to confirm the compliance of the diame-
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ter measurements with the tolerance limits, with 95 % confidence level. Nevertheless, 
the T category is only 10 % of whole area of the uniform distribution (Fig. 19) ac-
cording to (38). 

Fig. 19. The dimension tolerance interval based on the uniform distribution assumption. 

The presented method reduces the tolerance interval, but this is compensated by 
the significant minimization of the sample size. By using the ten-observation sample 
(corresponding to 20 measuring points for the two-point diameter), we are able to 
make the right decision in about 95 % of the cases. 



37 

3 Outlier detection 

3.1 Outlier detection methods 

A great number of methods for outlier detection are available today [21, 63]. It is 
always advisable to use a combination of graphical [64] and analytical approaches 
[47, 48] for investigation of outliers in data sets. There are also hybrid methods based 
on both analytical and graphical interpretations, which are very efficient for detection 
of outliers. The examples of such methods are kernel density estimator [43] (de-
scribed recently above in section 2.2) and box plot [65] (will be given later in section 
3.2.1). In this chapter, two analytical methods based on parametric statistics [13] and 
the hypothesis test (described in previous section 2.3) are presented. These methods 
must meet the following conditions: 

 flexibility to the sample size (finite or large)
 more than one outlier can be handled
 not strictly constrained to a specific statistical distributions of the data set
 robustness to masking and swapping effects

The masking and swamping effects can occur during the data analysis with parametric 
statistical test. The masking effect can happen when too few outliers are specified in 
the outlier detection procedure. Then, the test performance can be influenced by the 
other outliers and the result is that no outliers will be detected. On the other hand, if 
too many outliers are specified in the parameters of outlier test, then some valid ob-
servations can be incorrectly labelled as outliers, which is the swamping effect. 

Paper 2 deals with an investigation of the outlier detections procedures based on 
both graphical and analytical approaches. The theoretical background of two analyti-
cal methods is given in next two sections. The contributions based on these approach-
es are presented further in section 3.2.  

3.1.1 Grubbs method 
The Grubbs method can detect a single outlier in a normally distributed data set. In 
order to detect more than one outlier, Grubbs method must be sequentially applied on 
data sample [66, 47]. The outlier detecting procedure tests two types of hypotheses: 
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null hypothesis H0 is no outliers in the data set, the alternative hypothesis H1 is that 
there is one outlier in the sample. The test statistic for the two-sided case is  

max iG
s

 
 , (40) 

where 𝜌௜  is the individual observations, 𝜌̅ is the sample mean, and 𝑠 is the standard 
deviation. The following conditions must be checked for two-sided case: 
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where 𝑡
ቀ

ഀ

మ೙
,௡ିଶቁ

 is the Student’s quantile given at probability 
ఈ

ଶ௡
 with 𝑛 − 2 degrees of 

freedom in the data set and n sample size. The null hypothesis is rejected if the condi-
tion (41) is satisfied. The significance level α is the probability of rejection of a true 
H0, i.e. the type I error. The test result might be affected by the masking effect. 

3.1.2 Rosner method 
The original name of this method is Generalized Extreme Studentized Deviate 
(GESD) procedure, proposed by Rosner [48]. The method was developed to detect an 
unknown number of outliers. The only parameter required is an upper number m of 
expected outliers (to avoid the masking effect, the number should not be too small).  
  The method tests two types of hypotheses: null hypothesis 𝐻଴ – no outliers in the 
sample, alternative hypothesis 𝐻ଵ – the sample has up to m outliers. The test statistic 
for two-sided case is [48]: 

max i i
i s

R
 

 . (42) 

The observation that maximizes |𝜌௜ − 𝜌̅| is removed, and then the statistic 𝑅௜ is 
recomputed with 𝑛 − 1 observations. The process is repeated until m observations 
have been removed. The result of the computation will be an array of 𝑅ଵ, 𝑅ଶ, … 𝑅௠. 
Then for each single element of the array 𝑅௜, the critical value 𝑘௜  for the two-sided 
case is calculated: 
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Where  𝑡(௣,௡ି௜ିଵ) is the quantile of Student’s distribution with (𝑝, 𝑛 − 𝑖 − 1) degrees 

of freedom and probability value 𝑝 = 1 −
ఈ/ଶ

௡ି௜ାଵ
. Thus the total number of outliers is 
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the largest 𝑖 such that 𝑅௜ > 𝑘௜ . The GESD test was created to reduce the masking 
effect. 

3.2 Contributions to objective 2 

The research questions and objectives related to the data outlier detection have been 
formulated in section 1.2.2 and 1.3.1, respectively. The stated questions are relevant 
for those who deal with measuring data processing and analyses. This contribution 
provides a criteria for assessment of suspected measurements in the data sample. The 
presence of outliers can significantly affect the result of data analysis such as data 
statistics, computation of substitute geometrical elements and data filtration. There-
fore, the detection of outliers has a decisive role for the GD&T inspection. 
 In CMM inspection, outliers are not necessarily erroneous measurements. The 
presence of outliers can point out that an additional investigation might be required. A 
combination of both graphical and analytical approaches provides the best investiga-
tion result. 

3.2.1 Graphical approach 
It is always recommended to look at the graphical interpretation of the data before any 
analytical method is applied. There are many options available such as histograms, 
scatter diagrams, dot plots, etc. [64]. There is also hybrid solution such as box plots, 
which is based both on the analytical model and the graphical interpretation [65]. 
Analyses of the data with the box plot helps to decide which method is the most ap-
propriate one (for single or multiple outliers), if any outliers are presented. An exam-
ple of a box plot is shown on Fig. 20.  

Fig. 20. The six data sets with outliers (A1, B1, C1) and without (A2, B2, C2) 
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Six data sets were derived from CMM measurements of sections of an internal cylin-
der, with 475 observations in each set. The data with outliers is denoted as A1, B1, 
and C1, and the data sets without outliers as A2, B2, and C2. (In section A2 one outlier 
has not been removed.) The section A1 represents the measured sample with multiple 
potential outliers. The section B1 has two potential outliers, and the section C1 has 
only one potential outlier. The influence of outliers on statistics (sample mean, medi-
an, skewness, IQR – interquartile range, etc.) are indicated by the box plots. The IQR 
of data, the different between lower and upper quartiles, is measured along the verti-
cal axis (Radius value) on the diagram.  

The analytical part of the box plot is expressed as the following: 

1 3 1( )LF q w q q   , (44) 

where LF is the lower fence, 𝑞ଵ, 𝑞ଷ are the first and the third quartiles of data sample, 
and w is the significant factor. And for upper fence UF [67]: 

3 3 1( ).UF q w q q   (45) 

The left part of Fig. 20 corresponds to significant factor 𝑤 = 1.5. The extreme obser-
vations are indicated by the red dots, and they can be classified as suspected outliers. 
The right side of Fig. 20 corresponds to the significant factor 𝑤 = 3, which may indi-
cate extreme outliers. Thus, the extreme outliers are not present in the data set. 
 The coordinates of the reference circle center (𝑥௖ , 𝑦௖) of each circle section were 
computed by the least square (LS) method based on 475 measured points. The radius 
variable 𝑟௜  for each measured point was calculated according to (28). For further data 
processing and simulation, a standardized radius was used:  

( )1000i ir r   , (46) 

where 𝑟̅ is the average value of radius. The probability density function (pdf) 𝑓(𝜌) 
was estimated with the kernel density estimator [43] according to (2) and (5) for

475N   observations. The estimation results of pdf for sections A, B, C are shown on 
Fig. 21 and Fig. 22. As can be observed from the figures, the variables are not nor-
mally distributed.  
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Fig. 21. Estimated pdf  𝑓መ஺ଵ(𝜌), 𝑓መ஻ଵ(𝜌), 𝑓መ஼ଵ(𝜌) with outliers 

 

Fig. 22. Estimated pdf  𝑓መ஺ଶ(𝜌), 𝑓መ஻ଶ(𝜌), 𝑓መ஼ଶ(𝜌) without outliers 
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3.2.2 Analytical approaches 
Several parametric tests for normality of distributions are available e.g. [68, 69]. The 
normality test of Andersen Darling method applied with data sets A2, B2, C2 gives 
the following p-values: 0.001, 0.138, 0.001. Only section B2 has a significant p-value 
(> 0.05), and the normal distribution can be assumed. 

By knowing all that, we can start selecting a method. Many methods for detection 
of outliers are available today [63]. Practically, the existing methods differ from each 
other with respect to the following properties:  

 the sample size for which the method is applicable
 the assumed distribution of the population
 detection of single or multiple outliers
 detection of an exact number of outliers, or an upper bound

According to these conditions, two of the most suitable methods such as Grubbs and 
Rosner were chosen for our study. The methods are recommended by ISO 16269-4, 
ISO 5725-2 [21, 66]. Both methods are based on estimation of the deviation from the 
sample mean and both have an assumption about the normal distribution. The strict-
ness of this assumption and a resistance to the masking / swamping effects has been 
examined in the Paper 2 [13]. 

3.2.3 Simulation of outlier procedures 
The estimators of pdf  𝑓෡𝐴2

(𝜌), 𝑓෡𝐵2
(𝜌), 𝑓෡𝐶2

(𝜌)  based on the data without outliers, are 
used as a basis for simulation of outlier detection. The estimated standard deviations 
for the data sets are: 𝑆஺ = 1.15, 𝑆஻ = 1.54, 𝑆஼ = 1.27. We have defined two cases for 
outliers, medium and large, based on the standard deviation of the data sets and uni-
form distribution. The medium and large values for the outliers are generated in the 
intervals 

 𝜌௠ ∈ [3.9𝑠 − 0.01, 3.9𝑠 + 0.01] ∪ [−3.9𝑠 − 0.01, −3.9𝑠 + 0.01] 
and 

𝜌௟ ∈ [4.5𝑠 − 0.1, 4.5𝑠 + 0.1] ∪ [−4.5𝑠 − 0.1, −4.5𝑠 + 0.1] 

 respectively. The successfulness of Rosner and Grubbs methods was estimated with 
510  iterations by summing up two possible results: 𝑆 = 𝑆 + 0 as a failure, or 𝑆 = 𝑆 +

1 as a success. If exactly the same number of outliers with the same indexes are de-
tected then such iteration is assigned by 1 (success). On the other hand, if only 1m
or less from a total number 𝑚 of outliers were detected correctly, then the iteration is 
assigned by 0 (fail). The efficiencies of Grubbs method 𝑒ீ and Rosner method 𝑒ோ 
were estimated simultaneously as a rate of the sum of successful iterations S to the 
total iteration number M: 𝑒ீ = 𝑆ீ /𝑀 and 𝑒ோ = 𝑆ோ/𝑀.  
 Several modifications of outlier simulations have been developed in this work. All 
simulation procedures were carried out in MATLAB and results were tabulated in 
Table 9, Table 10, Table 11, and Table 12. The simulation results were rounded to 
two decimals. The significance level 𝛼 = 0.05 was applied in all tests. The following 
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factors and conditions were used in the simulation to evaluate the efficiency of the 
Grubbs and the Rosner methods: 

 non-normal distribution of randomly generated data sample with 100 observations
were applied (Table 9, Table 10, and Table 11);

 various number of outliers (from 1 to 4) were randomly distributed around a mean
value of data with specified deviation values (Table 9 and Table 10);

 various number of outliers (from 2 to 4) were integrated as a block with deviation
values corresponding to the large value (Table 11);

 two outliers with random locations and large values were randomly integrated into
data of various sample sizes of 15, 30, 60 and 100 observations (Table 12).

Table 9. Efficiency rates 𝑒ீ , 𝑒ோ of outlier detection methods (randomly located outliers, medi-
um values, 100 observations) 

Number 
of  

outliers 
Method 

Section A 
𝝆ഥ𝒎

𝑨 = 𝟒. 𝟒𝟗 
Section B 

𝝆ഥ𝒎
𝑩 = 𝟔. 𝟎𝟎 

Section C 
𝝆ഥ𝒎

𝑪 = 𝟒. 𝟗𝟒 

1 

Grubbs 0.66 0.65 0.67 

Rosner 0.66 0.65 0.67 

2 
Grubbs 0.36 0.33 0.34 

Rosner 0.60 0.58 0.61 

3 
Grubbs 0.12 0.09 0.09 

Rosner 0.58 0.57 0.58 

4 
Grubbs 0.02 0.01 0.01 

Rosner 0.57 0.55 0.57 

Table 10. Efficiency rates 𝑒ீ , 𝑒ோ of outlier detection methods (randomly located outliers, large 
values, 100 observations) 

Number 
of  

outliers 
Method 

Section A 
𝝆ഥ𝒍

𝑨 = 𝟓. 𝟐 
Section B 
𝝆ഥ𝒍

𝑩 = 𝟔. 𝟗 
Section C 
𝝆ഥ𝒍

𝑪 = 𝟓. 𝟕 

1 

Grubbs 0.99 0.99 1.00 

Rosner 0.99 0.99 1.00 

2 
Grubbs 0.95 0.94 0.96 

Rosner 0.99 0.99 1.00 

3 
Grubbs 0.77 0.72 0.76 

Rosner 0.99 0.99 0.99 

4 
Grubbs 0.37 0.32 0.34 

Rosner 0.99 0.99 0.99 

The simulation procedure code corresponding to Table 9 (similar as for Table 10) is 
shown in Fig. 23. 
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Fig. 23. Code of the simulation procedure for Table 9 

For the simulation with locations of outliers as a block, only negative large values 
corresponding to the interval 𝜌௟ ∈ [−4.5𝑠 − 0.1, −4.5𝑠 + 0.1] were applied. Due to 
low skewness of data (Fig. 22) the simulation results for positive values were similar, 
and they are not presented in the report. The simulation results are given in Table 11. 

Table 11. Efficiency rates 𝑒ீ , 𝑒ோ of outlier detection methods (located as a block, large values, 
100 observations) 

Number 
of  

outliers 
Method 

Section A 
𝝆ഥ𝒍

𝑨 = 𝟓. 𝟐 
Section B 
𝝆ഥ𝒍

𝑩 = 𝟔. 𝟗 
Section C 
𝝆ഥ𝒍

𝑪 = 𝟓. 𝟕 

2 
Grubbs 0.95 0.92 0.96 

Rosner 1.00 1 1 

3 
Grubbs 0.6 0.52 0.55 

Rosner 1.00 0.99 1 

4 
Grubbs 0.07 0.07 0.06 

Rosner 1.00 0.99 1 
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The code for outlier detection procedures corresponding to Table 11 is shown in Fig. 
24. 

Fig. 24. Code of the simulation procedure for location of outliers as a block (Table 11) 

Finally, data of various sample sizes from 15 to 100 observations were randomly 
generated based on Kernel pdf estimators 𝑓෡

𝐴2
(𝜌), 𝑓෡

𝐵2
(𝜌), 𝑓෡

𝐶2
(𝜌). In order to equally 

test both methods, a low number of outliers were chosen (two outliers with large val-
ues). The outliers were integrated into data samples with random locations within 
intervals: 𝜌௟ ∈ [4.5𝑠 − 0.1, 4.5𝑠 + 0.1] ∪ [−4.5𝑠 − 0.1, −4.5𝑠 + 0.1]. The simulation 
results are given in Table 12.  
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Table 12. Efficiency rates 𝑒ீ , 𝑒ோ of outlier detection methods for various sample sizes (two 
outliers with random locations and large values) 

Sample 
size 

Method Section A 
𝝆ഥ𝒍

𝑨 = 𝟓. 𝟐 
Section B 
𝝆ഥ𝒍

𝑩 = 𝟔. 𝟗 
Section C 
𝝆ഥ𝒍

𝑪 = 𝟓. 𝟕 

15 

Grubbs 0.07 0.06 0.06 

Rosner 0.75 0.74 0.76 

30 
Grubbs 0.44 0.42 0.42 

Rosner 0.92 0.92 0.94 

60 
Grubbs 0.84 0.83 0.85 

Rosner 0.98 0.98 0.99 

100 
Grubbs 0.95 0.94 0.96 

Rosner 0.99 0.99 1.00 

The code for outlier detection procedures corresponding to Table 12 is illustrated in 
Fig. 25. 

Fig. 25. Code of the simulation procedure for outliers integrated into data of various sample 
sizes 
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3.2.4 Implementation 
The Rosner and Grubbs methods were also applied with the data set A1, B1, C1 with 
outliers. The result was that two outliers were removed in section A1 and one outlier 
was removed in sections B1 and C1. Some outliers (medium) were not detected by 
any of the methods e.g. sections A1, B1 though some of these suspected points disap-
peared after measurements were repeated e.g. section A2 (see Fig. 26, left). The im-
plementation of methods is shown in Table 13. 

Table 13. Implementation of outlier detection methods with real measurement data based on 
475 observations 

Outliers no 
Outlier 

parameters 
Section A1* Section B1* Section C1* 

Rosner Grubbs Rosner Grubbs Rosner Grubbs 

1 

Index 60 60 459 459 2 2 

Values [mm] 29.9881 29.9881 29.9829 29.9829 29.9835 29.9835 

2 
Index 61 61 - - - - 

Values [mm] 29.9876 29.9876 - - - - 

The implementation results are quite consistent with the simulation. A comparison of 
data in sections A1*, B1*, C1* (after outliers were removed by the analytical meth-
ods) with repeated measurements of the same sections A2, B2, C2 is given in Fig. 26. 

Fig. 26. Boxplot of the measurement data: A1*, B1*, C1* - after outliers removed by analytical 
methods; A2, B2, C2 – after repeated measurements 

According to the simulation and implementation, analytical methods are efficient for 
the large value outliers but less efficient for medium value outliers. Regarding to the 
results given in Table 9 and Table 10, the Grubbs method has a low efficiency rate 
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𝑒ீ  relative to the Rosner method. The Rosner method is to a very small degree affect-
ed by the masking effect, even for higher number of outliers in the data sample. The 
Rosner method is also stable to the block location of outliers, what is not the situation 
for the Grubbs method. The Rosner method has still efficiency rate 𝑒ோ about 0.75 for 
the fifteen-observation sample size while the Grubbs method has efficiency rate 𝑒ீ  
below 0.45 for the thirteen-observation sample. Any notable difference in the method 
efficiencies for the different sections (A, B, C) was not observed. Relaying on the 
simulation results, the swamping effect was not observed. 

The following results were observed with the Rosner (GESD) method in this study: 

 ability to work with various sample size including the small one (15 observations)
 ability to detect multi outliers when maximum outlier number is unknown for both

the random and block locations of outlier group
 efficiency above 90 % to detect large value outliers, which bring the most signifi-

cance influence on the data analyses
 stability to the masking and swamping effects

The experimental measurements with CMM also revealed that groups of multiple 
outliers can be expected at GD&T inspection. The Rosner (GESD) outlier detection 
procedure can be integrated into software application for coordinate measurements.  
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4 Substitute Elements (Minimum Volume Bounding Box) 

4.1 Overview of MVBB problem 

Measurement data is usually provided by the CMM as Cartesian coordinates (𝑥, 𝑦, 𝑧). 
In order to evaluate geometrical deviations, the coordinate points must be approxi-
mated by some basic substitute (reference) elements (e.g. lines, planes, circles, cylin-
ders, etc.). The method used for defining a substitute element may have significant 
influence on the measurement result.  

In this chapter, we discuss the circumscribing substitute methods for objects with 
rectangular parallelepiped form, which is relevant in calibration of standards for 
geometrical metrology. It was suggested by Dupuis [70] to use the term cuboid when 
referring to a rectangular parallelepiped. However, in the literature of the computa-
tional geometry, the term box is commonly associated with the rectangular parallele-
piped. In this text, we use the term side for the bounding box face. This term may be 
also used while referring to the physical cuboid object side. The term face is mainly 
used for the inscribed convex polyhedron faces, which are the product of 3D convex 
hull operation. All six sides (faces) of the box are rectangles and each side is parallel 
with the opposite side and orthogonal with the other four adjacent sides. These four 
adjacent sides comprise a “closed loop”. For example, the Top side has a “closed 
loop” of adjacent sides that consists of: Front, Left, Right, and Back. The opposite, 
Bottom side has the same “closed loop” of adjacent sides as the Top side. 

Together with other association criteria (e.g. minimum zone, least squares), the 
minimum volume criterion can be applied for estimation of the flatness deviation of 
mechanical parts in industry [71]. A minimum volume bounding box (MVBB) is an 
alternative principle for assessment of objects with the cuboid form. An estimation of 
the MVBB often includes an estimation of minimal area bounding rectangle (MABR). 
There are many applications in computer graphics, image processing, medicine, me-
trology, etc. based on these methods.  

Based on the proposals of Shamos [72] and Freeman and Shapira [73], Toussaint 
presented an elegant unambiguous MABR solution in [74]. This exact solution of the 
MABR problem has 𝑂(𝑛ଶ) computing time with the use of the rotating caliper algo-
rithm for n-point set in ℝଶ, and 𝑂(𝑛) time with the use of two pairs of rotating cali-
pers orthogonal to each other. A number of approximation algorithms and heuristic 
alternatives are suggested to solve the two-dimension problem. Among them, the 
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searching algorithms based on the R-tree data structures [75-77] and the principle 
components [78, 79]. 

The most exact solution of the MVBB problem for n-point set in ℝଷ with computa-
tion time 𝑂(𝑛ଷ) was provided by O’Rourke [80], which remains the state-of-the-art so 
far. Alternative approximation algorithms have been developed to reduce the compu-
tation time. Bespamyatnikh and Segal [81] suggested an efficient 𝑂(𝑛ଶ) approxima-
tion algorithm. A search based on Powell’s quadratic convergent method was pro-
posed by Lahanas et al. [82]. Later, Barequet and Har-Peled [83] presented an approx-
imating algorithm with 𝑂(𝑛 + 1/𝜀ସ.ହ) computation time, and a simplified version 
with 𝑂(𝑛 log 𝑛 + 𝑛/𝜀ଷ), where 0 < 𝜀 ≤ 1. Recently, Dimitrov et al. developed a 
faster algorithm based on the discrete and the continuous versions of principal com-
ponent analysis (PCA) [79, 84]. The continuous version guarantees a constant approx-
imation factor but it is still limited by 𝑂(𝑛 log 𝑛) – time required for computation of a 
convex hull. The commonly used solutions for MABR and MVBB are based on the 
convex hull operation [72, 85] in order to reduce the number of considered points and 
avoid redundant computation. 

4.1.1 Minimum-Area Bounding Rectangle 
As it was mentioned already, the solution of the three-dimension MVBB problem 

involves the two-dimension case. After the orientation of one side of the bounding 
box is locked in the MVBB algorithm, all points are projected onto this plane, and the 
orientations of other (closed-loop) adjacent sides of the bounding box can be found by 
the MABR algorithm as the two-dimension problem. 

The earliest known solution of the MABR problem was presented by Freeman and 
Shapira [73]. They presented and proved the following theorem, which is the basis for 
minimum bounding rectangle algorithms: The rectangle of minimum area enclosing a 
convex polygon has a side collinear with one of the edges of the polygon. 

The MABR solution is based on the 2D convex hull operation [72], which is ap-
plied as the first step. In the second step, we search for the minimum-area bounding 
rectangle circumscribing the convex polygon constructed by the convex hull algo-
rithm in the first step. The theorem mentioned above limits the number of bounding 
rectangles that are candidates for the minimum-area bounding rectangle. However, a 
solution is not always unique. An example with a unique MABR solution is shown in 
Fig. 27. 

 
Fig. 27. An example of the MABR solution for a point set in ℝଶ 
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4.1.2 Minimum-Volume Bounding Box 
The second theorem presented here was formulated and proved for the MVBB 

problem by O’Rourke [80]: A box of minimal volume circumscribing a convex poly-
hedron must have at least two adjacent faces (sides) flush with edges of the polyhe-
dron. 

              
(a)            (b) 

Fig. 28. The convex polyhedrons enclosed by MVBB: a) a regular tetrahedron with edge length 
√2  circumscribed by MVBB with edge length 1 (conventional units); b) the convex polyhe-
dron based on the regular cube with edge length 1 formed by chamfers with the distances 
0.1x0.1, the middle point of each side is above the other four points by 0.1, that is circum-
scribed by MVBB with edge length 1.02. 

It is not necessary that one of the sides of the bounding box is coplanar with one of 
the faces of the convex polyhedron. In fact, the bounding box with minimal volume 
circumscribing a regular tetrahedron has all six sides coplanar with the tetrahedron 
edges without flushing with any tetrahedron faces (Fig. 28a). 

However, in practise (to be shown in the experimental results, section 4.3.8), the 
minimal solution may also correspond to the case when one or more sides of the 
bounding box are coplanar with faces of the convex polyhedron. An example of the 
bounding box is shown in Fig. 28b, that has the minimal volume, and it has four sides 
coplanar with four faces (12 edges total) of the convex polyhedron. 

4.2 Matrix Linear Transformations 

The linear transformations are frequently used technique in geometrical metrology, 
which may include translations, rotations and sometimes reflections (reflection is not 
considered here). The basic objects of geometry are points, lines (vectors) and planes, 
which are presented by linear equations. In this work, we use Cartesian and Homoge-
neous coordinates to represent a position and an orientation of the basic objects in 
both ℝଶ  and ℝଷ spaces. 
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4.2.1 A rotation in space around the origin 
In order to perform a counterclockwise rotation of a vector v{𝑥, 𝑦} with an angle 𝜃  
around the origin in ℝଶ (two-dimension) space, a following rotation matrix 𝑅(𝜃) can 
be used [86]: 

 
cos( ) sin( )

( )
sin( ) cos( )

R
 


 

 
   

  (47) 

then, the complete operation can be written as: 

      cos( ) sin( )
' , cos( ) sin( ), cos( ) sin( ) ', '

sin( ) cos( )
x y x y x y x y

 
   

 
 

      
v . (48) 

The operation of the vector rotation is illustrated in Fig. 29.  
The transformation technique in homogeneous coordinates for ℝଶ is similar, and it 

is not considered here. The rotation around an arbitrary axis can be done in homoge-
neous coordinates for ℝଷ space, and it is described in the next sections. 

4.2.2 Homogeneous transformation in space 
In order to describe a position and an orientation of point set in ℝଷ (three-dimension) 
space for a new coordinate system (CS) relative to an old CS, homogeneous coordi-
nates can be employed. A general homogeneous transformation matrix for ℝଷ is rep-
resented as a four-by-four matrix. There are two types of operations to be considered 
here: translation and rotation. 

4.2.2.1 Translation operation.  
The translation is a transformation without any fixed points including the origin. 
While matrix multiplications have the origin as the fixed point. In order to work 
around this inconsistency, transformation matrices in homogeneous coordinates are 
used. The translation matrix in homogeneous coordinates for ℝଷ can be written in the 
following form: 

 

1 0 0 0

0 1 0 0
[ ]

0 0 1 0

1

xyzT

l m n

 
 
 
 
 
 

, (49) 

where l, m and n are the corresponding movements in x-, y-, and z-directions. Let us 
consider a vector v{𝑥, 𝑦, 𝑧}  drawn from the origin 𝑂 to some point P(x, y, z) in the old 
CS (see Fig. 30). The new CS is the result of a movement (without any rotations) the 

origin  𝑂(0,0,0) into the new origin 𝑂′(−𝑙, −𝑚, −𝑛) by the vector 𝑂𝑂′ሬሬሬሬሬሬሬ⃗  denoted as u. 
The axes of the CS 𝑂 are parallel to the axes of the CS 𝑂′. Then the translation opera-
tion in homogenous coordinates for the vector v{𝑥, 𝑦, 𝑧, 1} with the translation matrix 
T can be written as follows: 
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Fig. 29. The rotation of a vector v in ℝଶ  Fig. 30. The translation of a vector v into 
a new CS in ℝଷ

1

1 0 0 0

0 1 0 0
' [ ] [( ) ( ) ( ) 1] [ ' ' ' 1]

0 0 1 0

1

x y z x l y m z l x y z

l m n

 
 
      
 
 
   

v  (50) 

4.2.2.2 Basic rotation matrices. 
A rotation operation around one of the CS axis is often called a basic or unit rotation. 
Thus, there are three basic rotations taking place. The roll is a rotation around x-axis 
in the yz-plane.  The pitch is a rotation around y-axis in the xz-plane. The yaw is a 
rotation around z-axis in the xy-plane [87]. All three rotations are simply two-
dimension rotation based on (47). Then, the matrix of the counterclockwise rotations 
around x-axis, with an angle 𝛼 in homogeneous coordinates can be written as (roll): 

1 0 0 0

0 cos( ) sin( ) 0
[ ( )]

0 sin( ) cos( ) 0

0 0 0 1

xR
 


 

 
 
 
 
 
 

, (51) 

around y-axis with an angle 𝛽 (pitch) 

cos( ) 0 sin( ) 0

0 1 0 0
[ ( )]

sin( ) 0 cos( ) 0

0 0 0 1

yR

 


 

 
 
 
 
 
 

, (52) 

and around z-axis with an angle 𝛾 (yaw) 
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cos( ) sin( ) 0 0

sin( ) cos( ) 0 0
[ ( )]

0 0 1 0

0 0 0 1

zR

 
 



 
  
 
 
 

. (53) 

The basic rotations around x, y, z-axes are shown in Fig. 31. The homogeneous coor-
dinates for rotations are required only if the rotations matrices will be further used 
together with other homogeneous transformation matrices e.g. the translation matrix. 

(a) Roll (b) Pitch (c) Yaw

Fig. 31. Basic Rotations: a) Rotation around the x-axis with an angle 𝛼; b) Rotation around the 
y-axis with an angle 𝛽; c) Rotation around the z-axis with an angle 𝛾.

4.2.2.3 Compound transformations. 
Using the basic matrices given above as the building blocks, a more complex com-
pound transformation can be constructed. A frequently used operation in Geometrical 
Metrology is the rotation of objects around an arbitrary axis in ℝଷ. As long as the 
matrix multiplication is not a commutative operation, then the order of operations 
(transformation matrices) is important. The main idea is an alignment of an arbitrary 
axis (vector) with one of the CS-axes. 
 If some point 𝑃(𝑥଴, 𝑦଴, 𝑧଴) in ℝଷ belongs to an arbitrary vector u, then the rotation 
around u with an angle 𝜃 is carried out as follows: 

 apply the translation transformation in such way that the point 𝑃(𝑥଴, 𝑦଴, 𝑧଴) is co-
incident with the origin of the CS;

 apply the subsequent rotations around x-axis and y-axis to get the vector u align-
ment with z-axis;

 apply the rotation around z-axis with the angle 𝜃, which will correspond to the
rotation around the vector u.

Mathematically, all these transformations can be written as the product of translation 
𝑇௫௬௭, rotations 𝑅௫ , 𝑅௬ and 𝑅௭: 

 ( ) ( ) ( )u xyz x y zC T R R R               (54)



55 

4.2.2.4 A practical example of the compound transformation. 
The transformation procedure described below is representing a substantial part of 

the new developed metrological version of the Minimum Volume Bounding Box 
(MVBB) algorithm proposed in Paper 6 [23] (described in Section 4.3).  

There are two non-coplanar planes 𝜑ଵ and 𝜑ଶ based on four points 𝑃଴(𝑥଴, 𝑦଴, 𝑧଴), 
𝑃ଵ(𝑥ଵ, 𝑦ଵ, 𝑧ଵ),  𝑃ଶ(𝑥ଶ, 𝑦ଶ, 𝑧ଶ) and 𝑃ଷ(𝑥ଷ, 𝑦ଷ, 𝑧ଷ) defined in ℝଷas shown in Fig. 32. 

Fig. 32. Coordinate transformation of two adjacent planes 𝜑ଵ,  𝜑ଶ with the common edge 𝑒ଵ 

These two planes have the common edge 𝑃଴𝑃ଵ, and we will therefore perform the 
following operations: 

1. The alignment of the plane 𝜑ଵ with xy-plane of the CS;
2. The rotation of the planes 𝜑ଵ, 𝜑ଶ around the edge 𝑃଴𝑃ଵ to combine the plane 𝜑ଶ

with xy-plane of the CS.

First, we would like to define the smallest angle between the two planes, which can be 
found as the angle 𝜃 between two corresponding normal vectors 𝒏ଵ, 𝒏ଶ to the planes. 
Let us to define three non-collinear vectors 𝑃଴𝑃ଵ

ሬሬሬሬሬሬሬሬ⃗ , 𝑃଴𝑃ଶ
ሬሬሬሬሬሬሬሬ⃗  and 𝑃଴𝑃ଷ

ሬሬሬሬሬሬሬሬ⃗  based on the given 
points as the following 𝒆ଵ{𝑥ଵ − 𝑥଴, 𝑦ଵ − 𝑦଴, 𝑧ଵ − 𝑧଴}, 𝒆ଶ{𝑥ଶ − 𝑥଴, 𝑦ଶ − 𝑦଴, 𝑧ଶ − 𝑧଴} 
and 𝒆ଷ{𝑥ଷ − 𝑥଴, 𝑦ଷ − 𝑦଴, 𝑧ଷ − 𝑧଴} or in the shorter form 𝒆ଵ{𝑎ଵ, 𝑏ଵ, 𝑐ଵ}, 𝒆ଶ{𝑎ଶ, 𝑏ଶ, 𝑐ଶ} 
and 𝒆ଷ{𝑎ଷ, 𝑏ଷ , 𝑐ଷ}. Thus, the planes 𝜑ଵ and 𝜑ଶ can be also defined by pairs of two 
non-collinear vectors 𝒆ଵ, 𝒆ଶ and 𝒆ଵ, 𝒆ଷ. Then the normal vectors 𝒏ଵ, 𝒏ଶ to the planes 
can be found as the cross product of these vector pairs: 

 1 1 1 1 2 1 2 2 2

1 1 1

ˆˆ ˆ

, ,

i j k

A B C a b c

a b c

  n e e , (55) 

and 
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 2 2 2 2 1 3 1 1 1

3 3 3

ˆˆ ˆ

, ,

i j k

A B C a b c

a b c

  n e e . (56) 

Where A1, B1, C1, A2, B2, C2 are corresponding minors of the matrices given by (55) 
and (56) of the following forms: 

1 1 1 1 1 1
1 1 1

2 2 2 2 2 2

, ,
b c c a a b

A B C
b c c a a b

   (57) 

3 3 3 3 3 3
2 2 2

1 1 1 1 1 1

, ,
b c c a a b

A B C
b c c a a b

   (58) 

Then the sharp angle between the normal vectors 𝒏ଵ{𝐴ଵ, 𝐵ଵ, 𝐶ଵ} and 𝒏ଶ{𝐴ଶ, 𝐵ଶ, 𝐶ଶ} 
can be calculated as following [86]: 

2 2 2

2 2 2 2 2 2
2 2 2

arccos
AA BB CC

A B C A B C
 

    
     

 (59) 

In order to combine the plane 𝜑ଵ with xy-plane of the CS, we need to align the 
normal vector 𝒏ଵ with the positive z-axis. Then, the vector  𝒏ଵ must be displaced into 
the origin of the CS by using the translation matrix 𝑇௫௬௭ given by (49) and the coordi-
nates of the point 𝑃଴(𝑥଴, 𝑦଴, 𝑧଴): 

0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

1

xyzT

x y z

 
 
      
 
   

 . (60) 

Let us call the result of the transformation of 𝒏ଵ as vector 𝒏଴. The projections 
𝑛௬௭, 𝑛௫௭ of the vector 𝒏଴ on the planes yz (x=0) and xz (y=0) with their coordinates 
𝑛௫ , 𝑛௬ , 𝑛௭ respectively (see Fig. 32), give us two angles 𝛼 and 𝛽: 

2 2
arcsin arcsin

y y

yz z y

n n

n n n


              

, (61) 

and 
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2 2
arcsin arcsinx x

xz z x

n n

n n n


           
. (62) 

The calculated angles are substitute in the rotation matrices (51) and (52), and then 
the final transformation matrix to combine the plane 𝜑ଵ with xy-plane can be written 
as: 

[ ] ( ) ( )nz xyz x yA T R R           . (63) 

The second operation is the rotation of the planes 𝜑ଵ, 𝜑ଶ around the vector (com-
mon edge) 𝒆ଵ to combine the plane 𝜑ଶ with xy-plane of the CS. In order to do that, 
the vector 𝒆ଵ

ᇱ  (which is the vector 𝒆ଵ after transformation by (63)) must be aligned 
with x-axis. As long, as the vector 𝒆ଵ

ᇱ  lays in xy-plane with the beginning of the vector 
in the origin of CS ( |𝒆ଵ

ᇱ |: = 𝑒௫௬
ᇱ ), then the angle 𝛾 between 𝒆ଵ

ᇱ  and x-axis can be found 
by: 

' '

' '2 '2
arcsin arcsinx x

xy y x

e e

e e e


              

, (64) 

where 𝑒௫
ᇱ , 𝑒௬

ᇱ  are the corresponding coordinates of the vector 𝒆ଵ
ᇱ  on the x- and y-axes 

respectively (𝑒௫
ᇱ , 𝑒௬

ᇱ  are not shown in Fig. 32). Then, the vector 𝒆ଵ
ᇱ  can be aligned with 

x-axis by using the rotation matrix given by (53). The result of the transformation of
the two faces 𝜑ଵ, 𝜑ଶ into 𝜑ଵ

ᇱᇱ, 𝜑ଶ
ᇱᇱ is illustrated in Fig. 32.

After all necessary alignments are completed, the counterclockwise rotation of the 
planes 𝜑ଵ

ᇱᇱ, 𝜑ଶ
ᇱᇱ around the edge 𝒆ଵ

ᇱᇱ can be proceeded by using the basic rotation ma-
trix given by (51) with the angle 𝜃 calculated by eq. (59). Then, the compound trans-
formation including all operations described above can be written as the following: 
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2 2 2 2 2 2
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 

   
   
        
   
   

 . (65) 

4.3 Contributions to objective 3

The questions and objective related to the MVBB problem have been formulated in 
section 1.2.3 and 1.3.1. The formulated questions are relevant for those who deal with 
Computation Geometry related to the metrological applications.  

The approaches discussed in section 4.1 was mainly focused on reducing the com-
putation time, but at the expense of accuracy. The developed approach provided in 
this work for the minimum bounding box on reference standards used for calibration 
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of dimensional measuring systems; hence, the accuracy must be ensured. The elegant 
approach provided by O’Rourke is the accurate solution, but it does not take into ac-
count some metrological issues related to the discrete point measurement with CMM, 
which are discussed below. 

The physical edges (denoted by 1 in Fig. 33a) of the cuboid object are typically not 
measured and there is always a distance between the edges and the measured points. 
As a result, there is an intermediate space between the measured points on all pairs of 
the adjacent sides (e.g. side 2 and side 3, side 3 and side 4 in Fig. 33a) of the cuboid 
object. This intermediate space is transformed into a large number of the convex pol-
yhedron faces after appliance of the convex hull operation. Such newly constructed 
faces provide acute angles and look similar to “chamfers” faces (denoted by 5 in Fig. 
33b). These faces cut off the physical cuboid object and they will lead to unnecessary 
computation in the O’Rourke algorithm. Obviously, these “chamfer” faces cannot be 
a part of the minimum bounding box solution and these faces should be excluded 
from the algorithm. 

(a)               (b) 

Fig. 33. An example of the metrological issue: a) a cuboid object with CMM measured points; 
b) an example of the convex polyhedron with the chamfer faces after convex-hull operation; 1 –
edges; 2 – left side; 3 – top side; 4 – front side; 5 – “chamfer” polyhedron faces; 6 – ordinary 
polyhedron faces.

Paper 6 [23] proposed the algorithms for estimation of MVBB that takes into ac-
count the effect of the “chamfer” faces. The MVBB criteria is applied to the physical 
objects with an actual shape close to the perfectly rectangular bounding box. The 
developed accurate algorithm searches for the minimum solution according to the 
conditions defined by two theorems related to the MABR and the MVBB problems 
presented in sections 4.1.1 and 4.1.2 respectively. The brief description of three con-
ventional geometrical algorithms together with data pre-process algorithm is given 
further in sections 4.3.1-4.3.5. Implementation of the methods is presented in sections 
4.3.6-4.3.8 together with description of the experimental setup and the computational 
results. 

4.3.1 The computation methods 

Three methods for finding the Minimum Volume Bounding Box (MVBB) are pre-
sented here. The methods are denoted as the “side-” method (MVBBS), the “face-” 



59 

method (MVBBF) and the “edges-” method (MVBBE). All three methods differ from 
each other by accuracy, complexity and hence the computation time. The reason we 
consider these three methods is that their appliance depends on which measurement 
system and measuring procedure are going to be used. 

All the three methods utilize the MABR algorithm. Two of the methods (“face-”, 
“edges-”) include the specific data pre-processing algorithm (to be described fur-
ther), which distinguishes these methods from other known methods. Only the 
MVBBE method completely satisfies both theorems given in sections 4.1.1 and 4.1.2, 
and therefore it can be used as the reference for the other alternative methods. 

4.3.2 The Minimum Volume Bounding Box Side (MVBBS) Method 

This MVBBS approximation method is well known and often used in practice. It is 
fast and straightforward, based on an assumption that the test object has one perfectly 
flat side e.g. Bottom, which is aligned with the support surface (𝑍୫୧୬ ). Such assump-
tion allows a substantial simplification, in the measurement procedure and the compu-
tation procedure. However, because of such assumption the calculated minimal vol-
ume by this method is often overestimated. Groen et al. [88] developed an operational 
automatic system for measurement of parcels and suitcases on a conveyor belt based 
on this principle. 

The principle of this method is to define the height as 𝐻௠௜௡ = 𝑍௠௔௫ − 𝑍௠௜௡ and 
the smallest area 𝐴௠௜௡ of the bounding rectangle of the xy-projection of all measured 
points. As long as a single 2D projection of the convex polyhedron is considered, then 
the MABR algorithm is applied only once. 

4.3.3 Data pre-processing 

The main idea of the new developed approach is based on the data pre-processing 
algorithm. Generally, the most precise methods include a large number of computa-
tion operations and require a longer time. As it was mentioned above, many “cham-
fer” faces are created by the convex hull operation. These faces never become a part 
of the minimum bounding box solution. By excluding these faces from the MVBB 
algorithm, the computation time is compensated. This achievement is especially de-
sired for the “edges-” method (MVBBE), which provides the most optimal solution. 
Let us have a look at some details of the developed approach, which is focused on 
solving the minimum bounding box problem for physical objects that are rectangular 
objects close to the perfectly shaped bounding box. 

The following measurement procedure with CMM was applied. The measured 
points of the object sides are given as six sets of points: Front, Back, Right, Left, Top 
and Bottom. The data set of each side is a 𝑛 × 3 matrix containing x- y- and z-
coordinates for the 𝑛 number of points. 

The input of the convex hull operation are the point coordinates from the six sets 
of points jointed together as illustrated in the Fig. 34. The output from the convex hull 
operation is a matrix 𝑆௠,ଷ

௉௢௟  with m rows. Each row of the matrix is a convex polyhe-
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dron face 𝜑௜ defined by its three vertices. The vertices are given as indices that refer 
to the input data to the convex hull operation. 

Some of the faces of the polyhedron described by 𝑆௠,ଷ
௉௢௟ will have vertices from two 

or three adjacent sides of the physical cuboid object. For example, the measured 
points from the Top side may be combined with measured points from the Front side 
and Left side into common faces, or “chamfer” faces between the sides (Fig. 33b). 
When defining the minimum bounding box in measurement and calibration of rectan-
gular objects, these combined faces and their edges are not a part of the solution, and 
thus they can be excluded from the algorithm. 

Two data structures are constructed from the output matrix 𝑆௠,ଷ
௉௢௟ by the pre-

processing algorithm. The first structure represents six matrices 𝑆ி , 𝑆஻ , 𝑆ோ , 𝑆௅ , 𝑆் , 𝑆ெ 
of face vertices 𝑣௜,௝ separated according to the reference object sides (Front, 
Back,…Bottom) without common “chamfer” faces (Fig. 34, denoted by I); the second 
is a data matrix 𝑃௞,ସ with x- y- and z-coordinates for face vertices (Fig. 34, denoted by 
II). Such data structure allows to avoid a large number of unnecessary calculations.  

 

Fig. 34 The flowchart of the data pre-processing with the two data structures I and II 

4.3.4 The Minimum Volume Bounding Box Face (MVBBF) Method 

The MVBBF method developed by the author is based on the pre-process algorithm 
and therefor it is more efficient than other MVBBF methods based on the same as-
sumption. The main assumption of this method is that one side of the bounding box is 
coplanar with a face of the convex polyhedron. The accuracy of the method is better 
than the previously described MVBBS method, however it is still approximated solu-
tion. The flowchart of the algorithm of MVBBF method is shown in Fig. 35. 

The six matrices (𝑆ி , 𝑆஻  … 𝑆ெ) associated with the cuboid reference object sides 
are the output of the pre-processing algorithm (Fig. 34, denoted by I).  The algorithm 
searches through the six matrices 𝑆ி , 𝑆஻  … 𝑆ெ associated with sides of the measured 
cuboid object and checks all faces within each set. 
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Fig. 35. The flowchart of the MVBBF method 

Each newly selected face is aligned with xy-plane of CS by means of the transfor-
mation technique described in section 4.2.2.4. After the coordinate transformation is 
completed, all newly transformed points are projected into the xy-plane. Then the 
MABR algorithm (section 4.1.1) is applied for the projected points. It defines an ori-
entation of the closed-loop of adjacent sides and, hence the estimation of the width 
𝑊௞  and the length 𝐿௞ of the minimum bounding box. The height 𝐻௞ is defined as a 
difference between maximum and minimum z-values: 𝑍௠௔௫ − 𝑍௠௜௡, related to the 
current orientation of the point set. Thus, the volume is: 𝑉௞ = 𝐻௞ ∙ 𝑊௞ ∙ 𝐿௞. 

After all faces of all six matrices (𝑆ி , 𝑆஻  … 𝑆ெ) are examined for the volume val-
ue 𝑉௞ , then the smallest value 𝑉௠௜௡ is chosen as the final solution. 

4.3.5 The Minimum Volume Bounding Box Edge (MVBBE) Method 

The MVBBE method completely corresponds to the conditions of the theorem pre-
sented in section 4.1.2 and therefore this is the most accurate method, which guaran-
tees the global minimum solution. However, the algorithm is more complex and 
hence slower than two previous methods. In this case, the data pre-process becomes 
the most crucial part of the method due to a significant reduction of unnecessary 
computation of the “chamfer” faces and the corresponding edges of the convex poly-
hedron. The MVBBE algorithm is shown in Fig. 36. 
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Fig. 36. The flowchart of the MVBBE method 

In this case, the algorithm searches through the six matrices 𝑆ி , 𝑆஻  … 𝑆ெ  of the 
pre-process algorithm output and examines every single pair of faces with common 
edge. Each common edge of a newly selected pair of faces is align with x-axis in such 
way that one of these two faces is aligned with xy-plane at the same time. Then a 
counterclockwise rotation around the common edge of all points corresponding to the 
matrix 𝑃௞,ସ is applied with one degree step until the second face is compound with xy-
plane. The transformation technique utilized for these operations is described in sec-
tion 4.2.2.4 (A practical example of the compound transformation). In each step of the 
rotation, the height 𝐻௞ is defined as a difference between maximum and minimum z-
values, and all newly transformed points are projected into xy-plane. In order to esti-
mate the width 𝑊௞  and the length 𝐿௞  of the minimum bounding box, the MABR algo-
rithm (section 4.1.1) is applied for the projected points. Thus, the volume is calculated 
as: 𝑉௞ = 𝐻௞ ∙ 𝑊௞ ∙ 𝐿௞. After all pairs of faces in six matrices (𝑆ி , 𝑆஻  … 𝑆ெ) are exam-
ined for the minimum volume solution 𝑉௞ , then the smallest value 𝑉௠௜௡  is selected as 
the final solution. 

4.3.6 Implementation of the MVBB methods 

The algorithms described in the previous sections are implemented in MATLAB® 
programming environment based on CMM measurement. The measurements have 
been performed in a Leitz PMM-C-600 CMM with an analogue probe. The PC-DMIS 
software was utilized for operation of the CMM. 
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4.3.7 Experiment setup 
A cuboid object with the following nominal dimensions: length 210 mm, width 

140 mm, and height 120 mm was used for the experimental test. The test object is 
shown in Fig. 37. The measured data is arranged into separated data samples accord-
ing to the cuboid sides: Front, Back, Right, Left, Top and Bottom. Each sample is a 
𝑛 × 3 matrix with three columns and n-rows of xyz-coordinates corresponding to the 
n-measured points as shown in the Fig. 34. We have used a uniform distribution of 
measured points with 15 mm distance between the points. The total number of the 
measuring points is N = 650. 

In order to get complete measurements of all six sides of the test object in a com-
mon coordinate system, we have measured the object in two setups. The measure-
ments of the two setups can be combined by using common alignment points in the 
two setups. 

 

Fig. 37. The cuboid test object in CMM Fig. 38. The convex polyhedron after the 
convex hull operation 

4.3.8 Results 

The collected data is further exported to a MATLAB code as an input for the devel-
oped algorithms. The result of the convex hull operation for measured data is shown 
in the Fig. 38. There are 166 faces combined together into one convex polyhedron. 
There are 88 faces are left after applying of the data pre-process algorithm (almost 
50% of calculation is reduced). The computation results of all three methods are tabu-
lated in Table 14 (the results are rounded to 1e-3 order). 

We consider the Bottom side as the support side for the MVBBS method. The 
MVBBS method provides a significant overestimation of the volume 𝑉௦ of the bound-
ing box relative to the other two methods: ∆𝑉 = 𝑉௦ − 𝑉ா = 951.959 mm3. 
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 Table 14. The computation results of the MVBBS, MVBBF, MVBBE methods for the first test 

Method Width, 
mm 

Length, 
mm 

Height, 
mm 

Volume, 
mm3 

Number of 
solutions 

MVBBS 140.016 210.035 119.980 3528388.312 1 

      

MVBBF 139.997 210.010 119.978 3527436.353 1 

      

MVBBE 139.997 210.010 119.978 3527436.353 1 

There is no difference between estimated volumes from the MVBBF and the 
MVBBE methods. A possible reason for such coincidence may be a small form devia-
tion and as a result, a small, below one-degree, angle between the polyhedron faces. 

An extra test was applied for estimation of MVBB for the cuboid object with the 
same nominal dimensions but with larger flatness deviations. The computation results 
are given in Table 15. 

Table 15. The computation results of the MVBBS, MVBBF, MVBBE methods for the second test  

Method Width, 
mm 

Length, 
mm 

Height, 
mm 

Volume, 
mm3 

Number of 
solutions 

MVBBS 140.016 210.195 120.068 3533662.007 1 

      

MVBBF 139.995 210.195 120.054 3532743.929 1 

      

MVBBE 139.994 210.195 120.055 3532735.210 1 

We can observe a difference: ∆𝑉 = 𝑉ி − 𝑉ா = 8.675 mm3 between the solutions 
of MVBBF and MVBBE methods. The MVBBE method may provide the minimal 
solution and yet, it includes all solutions of the MVBBF method and therefor it is 
more reliable and accurate. 

Three methods have been proposed and demonstrated in this section to estimate the 
minimum volume of bounding box with the proposed data pre-process algorithm for 
the metrological applications. The first two methods are based on a number of as-
sumptions allowing decreasing of the computation time but often with overestimated 
results. The minimal and the most optimal solution is provided by the MVBBE meth-
od. Furthermore, the solution of the MVBBE method is based on theorems presented 
in this paper and hence, its estimation is the most accurate. Relying on an application, 
different methods may be applicable while the MVBBE method should stay as the 
reference. 

The original algorithm for the MVBBE may include relatively large number of 
computations due to the calculations on the “chamfer” faces. The proposed data pre-
process algorithm based on the specific metrological conditions (described above) 
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allows a significant reduction (almost 50%) of the amount of computation, preserving 
the initial accuracy at the same time. 

Thus, the MVBBE method should be used for those metrological tasks, where the 
accuracy is the critical factor, particularly when a large geometry form deviation is 
expected. The principles outlined in this work could also improve the functionality of 
operation software for the measuring systems. 
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5 Conclusion and Future Research 

New approaches and algorithms in geometrical inspection with CMM are proposed in 
this PhD thesis. In this section, some general comments and recommendations for 
further research are given. 

The following aspects of measurements were considered in this thesis: sample 
strategy, outlier detection methods, and algorithms for calculation of substitute ele-
ments. The new methods were developed according to various task definitions due to 
the tolerance types and the actual workpiece geometry deviations. As a result, five 
approaches have been developed and presented in this thesis: three methods related to 
the sample size problem, one approach estimating the most efficient outlier detection 
method in the CMM measurements, and one approach devoted to the MVBB prob-
lem. These approaches have been developed through the research presented in the 
scientific published papers provided in Part II of this thesis. 
  The influence of the sample size on the measurement uncertainty has been evaluat-
ed by three different approaches. The first approach (Paper 1) based on ISO16269-6 
allows to define the desired confidence level of a certain content of the radius varia-
tion due to the sample size for the circular profiles. The second approach (Paper 3) is 
developed in accordance with ISO14405-1 for the two-point diameter problem. The 
approach is not only able to estimate the necessary sample size for the two-point di-
ameter problem, but also it provides an opportunity for substantial reducing the num-
ber of measured points that could be especially useful for online measurements with 
CNC machine tool. However, these two approaches based on the statistical simula-
tions, have a number of constraints. The third approach (Paper 4), based on the Artifi-
cial Neural Network (ANN), do not have these constraints and it can provide the sim-
ulation results closer to the real measuring routine. 

The approaches described above will improve the reliability and accuracy of meas-
uring strategies for GD&T inspection. The approaches can be used to define the opti-
mal sample size based on the product specifications and manufacturing conditions. 
The optimal sample size can be set as the default parameter in the CMM operating 
software. The approaches can be further applied to develop a generalized measuring 
strategy through the collection of the measured data of workpieces produced by vari-
ous machine processes and workpiece materials. 
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 Paper 2 considers methods for detection of the outliers in the CMM measurements. 
The efficiency of the methods has been investigated based on experimental data and 
statistical simulations.  
  A new approach for analysis of measurement data of convex polyhedron objects 
has been presented in Paper 6. Several methods for computing of Minimum Volume 
Bounding Box (MVBB) have been developed based on the new approach. 

All presented methods are based on the experimental data and thus can provide the 
most realistic estimations of the actual geometry and dimensional deviations. Thereby 
their further implementation into the production will have both scientific and practical 
interest. 
 The ideas presented in this PhD thesis could contribute to the solution of some of 
the problems in geometrical inspection in the industry. However, there is still a large 
potential for further improvements and research. The solutions related to the outlier 
detection procedure, the optimal sample size and the MVBB problem can be integrat-
ed into the existing software for CMM such as PCDMIS, QUINDOS and similar. The 
ANN model presented in Paper 4 can be further utilized for simulation of various 
sample strategies to clarify their relationship with workpiece profiles derived from 
various machining processes. 

The final purpose of all these efforts is unambiguous inspection results, reduction 
of the measurement uncertainty, and improvement of their reliability with minimized 
time costs. 
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Abstract. The paper proposes the kernel probability density function approach to estimate the distribution of

measurements on a part which is measured in a coordinate measuring machine (CMM). The study is based on the 

experimental data derived from internal cylinder measurements. The distribution free model suggested by Wilks was 

used as a reference for the selection of the sample size. Three cross sections of a cylinder were measured regarding to 

this reference. The work defines the minimum required sample size for obtaining at least 0.95 proportion of radius 

variation for particular studied cylindrical part with 95% confidence level.  

1 Introduction 
The main goal of Geometric Dimensioning and 

Tolerancing (GD&T) inspection of a part is to assess if 

the geometry and dimensions of the part are inside of the 

specified tolerance limits to verify that an assembly fits, 

or that the intended functionality of the part is guaranteed. 

This paper deals with verification of radius size variation 

of internal cylinder.  

Coordinate measuring machines (CMMs) are 

universal and widely employed automated measuring 

systems in industry [1]. One of the most critical 

parameter of measuring strategy with CMM is the 

number of measuring points that is used to extract data 

from the part features. Obviously, a greater number of 

measuring points provides a better accuracy, however it 

leads to higher time consumption and costs. Since the 

accuracy requirement in a design specification is defined 

by the tolerance interval, within which the part dimension 

or geometry may vary, then evidently, it should exist a 

certain number of points sufficient enough to confirm 

with some given probability if the size is inside of the 

tolerance limits or not. 

The influence of sample size on the measurement 

result has been widely discussed, and several different 

approaches has been used to estimate the contribution to 

the measurement uncertainty. Approaches such as 

statistical methods [2,3] (for normal distribution), fuzzy 

logic [4], genetic algorithm [5], extended zone model 

optimization [6], adaptive sample strategy with use of 

Kriging models [7] and analytical methods with 

implementation uncertainty simulations [8, 9] have been 

suggested. However, a standard guide or criterion for 

sample strategy with CMM GD&T inspection has not 

been established yet. 

According to [10] “a statistical tolerance interval is 
an estimated interval, based on a sample, which can be 
asserted with confidence level 1 ��  to contain at least a 
specified proportion p of the items in the population. The 
limits of a statistical tolerance interval are called 
statistical tolerance limits.” Theoretically, the statistical 
tolerance interval for the case of normal distributed data 

set is the most well developed method [11, 12]. There are 

tabulated data in international standard ISO16269-6 for 

calculating both one-side and two-sided statistical 

tolerance intervals for sample size 2n �  and the at least

population proportion p  for such confidence levels

100(1 )%��  as 90%, 95%, 99%, 99.9%. However, if

other tolerance intervals (in form of k�� ) need to be

found, which are not provided by the standard, for 

example other p  and/or not typical 1 ��  value, or other

sample size, then the K.factor function from the

“tolerance” package in R programming language may be

employed to calculate the factor k .

This paper provides an approach for estimation of an 

optimal number of the measuring points for a two-sided 

statistical tolerance interval based on a distribution-free 

model. A continuous probability density function (pdf) 

from measurements from a workpiece was approximated 

by kernel density estimator (KDE). The estimated 

continuous pdf was further used to simulate different 

sample strategies and evaluation of the confidence level 

for detecting at least 0.95 content of total radius variation 

range.  

2 Data and experimental study 

1
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An internal cylindrical hole of an aluminum workpiece 
produced by a turning operation with nominal diameter 
60 mm and length 130 mm was inspected in a CMM 
(Leitz PMM-C-600) with an analogue probe to detect a 
largest possible deviation of radius variable. The cylinder 
axis was aligned with the vertical axis (z axis) of the 
CMM. Three cross sections of the cylinder are measured: 
the first close to the top (Section A), the second in the 
middle (Section B), and the third on the bottom (Section 

C).  

Table 1. Shapiro-Wilk normality test for 473 points sample 

Sections Section A Section B Section C 
P-value 5.392e-07 0.007842 0.01435 

 

There are uniformly distributed 473 points coordinates 

( , )i ix y  measured around the circle in each section, and a 

least squares circle (LSC) method was utilized to 

calculate the circle centre. The radius variable ir , for 

each measured point was calculated by: 

 2 2( ) ( )i i c i cr x x y y� � � �                      (1) 

The uncertainty of the CMM itself is about 10 times 

less than inspected radius variance range, and thus it is 

not considered in the analysis of sample size.  
Intuitively it is clear that less number of points may 

provide lower measurement accuracy due to the 
probability that extreme points on the feature are missing 
in the extracted data set. We have used MATLAB source 
for our simulation approach to investigate the degree of 
influence of sample size on the inspection confidence 
level and the detected radius variation range. 

It is always advisable to evaluate the normality of a 
distribution of the original data set in the very beginning. 
The Shapiro-Wilk normality test [13] was applied to the 
measured data sets by use of the shapiro.test function in 
the R programming language. The results are shown in 
Table 1. The extremely lower p-value (especially Section 
A and Section B) yields us a reason to reject the 
assumption about normal distribution of the 
measurements. 

2.1 Distribution-free model 

The distribution of the radius variable of the part is not 
known before we start the measurements. We will 
therefore suggest to use the Wilks criterion [14, 15] to 
define the minimum sample size. The criterion is based 
on the order statistic. It postulates the following: if an 
investigated random characteristic belongs to a 
population of any unknown continuous distribution 
function, then at least a content p  of the population 
included between the smallest observation minr  and the 
largest observation maxr  of the data sample with 
confidence level (1 )�� , and a required minimum sample 
size minn . For the two-sided tolerance interval with the 

conditions determined above, can be expressed by 
following [10]: 

	 
1
1min minn n

min minn p n p ��� � � � � .     (2) 

Results computed by (2) of minimal sample size for 
the two-sided statistical tolerance limits (between the first 
and n-th order of sample order statistic) with unknown 

continuous distribution, and predefined (1 )��  and p , 

are shown in Table 2. As long as the number of 
measuring points supposed to be the natural numbers 

( minn 
¥ ), negative solutions were not considered, and 

all results of Table 2 were rounded to the nearest upper 
integer. This particular fact together with the distribution 
independency of (2) provides a robust property of the 
method, which is further going to be confirmed by the 
expirement data and a simulation model. 

Table 2. Minimal sample size  minn   for proportion p  and 
confidence level 1 ��  

Confidence 
level , 

100(1 )%��  

Proportion of population, p 

0.500 0.750 0.900 0.950 0.990 

50 3 7 17 34 168 

75 5 10 27 53 269 

90 7 15 38 77 388 

95 8 18 46 93 473 

99 11 24 64 130 662 

 

 

Figure 1. A histogram and kernel density estmate of f(r) for 

Section A with sample size 473 points 
 
Regarding to the above description for the two-sided 

statistical tolerance interval with 0.99p �  and 

100 (1 )% 95 %�� � �  (the actual confidence level is 

95.02%), the minimum sample size is 473 (Table 2). That 

is the total number of measuring points we used in our 

inspection of the cylinder sections. 

2.2 Kernel density estimation  

In practice, the data distribution is often unknown and/or 

may contain outliers. Hence, it is reasonable to estimate 

the tolerance intervals based on more general 

assumptions when it is impossible to describe sample 

data with any known standard distribution functions. A 

possible solution in such case is an estimation of the pdf 

directly from the measured data sample. A non-

parametric statistic may be used in this way. One 

possibility to do that is the well-known histogram 

technique. However, the histogram suggests a distribution 
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interpretation only in form of bins and it is less useful for 

further appliance due to lack of continuity. Meanwhile a 

limited number of known pdf ( )f r  are available to

describe a continuous-valued random variable 

(logarithmic, exponential and so on). To avoid such 

restrictive assumptions about the form of ( )f r  the KDE

may be applied [16]. Further, using the kernel estimator 

based on original measured data, an opportunity appears 

to generate any different random data samples regarding 

to the initial data distribution. 

2.3 Kernels and weighting function

Similar to the histogram we need an estimator of ( )f r .

The probability that random variable is within of the 

interval r b�  can be written as following:

( ) ( ) 2 ( )

r b

r b

P r b R r b f d bf r� �
�

�

� � � � � �� ,  (3)

and hence 

1
( ) ( )

2
f r P r b R r b

b
� � � � � . (4) 

Alternatively, the frequency for the given interval 
could be estimated by the equation: 

1

1ˆ ( ) ( , ),

n

i
i

f r w r r b r
n �

� � �� � � �� (5)

where the estimator ˆ ( )f r  has the properties of a pdf, i.e.

positive for any r  and an integral area equal to 1. Then a

weighting function ( , )w b� can be generalized in this way:

1
( , )w b K

b b
�� � �� � �
� �

, (6) 

where b is the bandwidth or smoothing constant of

weighting function and K  is the standardized weighting

function (with 1b � ), which is the kernel.

2.4 Kernels’ parameters 

The degree of smoothing of ˆ ( )f r  depends on parameters

of ( , )w b� such as the kernel K and the bandwidth b,

which determine a shape and a width of the weighting 
function respectively. The proper choice of K and b is a
subject of an optimization problem. 

The accuracy of the kernel density estimator can be 
evaluated by mean squared error (MSE), mean integrated 
squared error (MISE) and asymptotic mean integrated 
squared error (AMISE). 
According to previous research [17] Epanechnikov
function was defined as the optimal kernel in respect to 

ˆ( )MISE f :

2

3
1

( ) (1 )4 5
5

0

K � �
�
�� ��
��

5

.

for
otherwise

� �
(7) 

The bandwidth b depends on different factors e.g.

unknown pdf ( )f r , kernel type, number of observations

in the sample and so on. There are a number of methods 
available to optimize the bandwidth parameter such like 

bias cross-validation (BCV), unbiased cross-validation 
(UCV), direct plug-in rule (DPI) and others. The methods 
can have a different performance dependently on the 

estimation function ˆ ( )f r used and the pdf ( )f r estimated.

Thus, we use Epanechnikov kernel and default MATLAB

bandwidth estimation in this study. 

2.5 Date estimation by kernel function 

The radius variable ir  used in simulation was computed

by (1) with assumption of a unique circle centre, which 
was obtained from LSC based on 473 measurements 
points. The rounding of the values by one decimal place 

( 4 11 10� ��  mm), on the one hand allows considering the 

cylinder form tendency and possible outliers, and on the 
other hand do not take into account unnecessary accuracy 
requirements to the data estimated circle centre 
coordinates. 

Figure 2. Kernel estimates ˆ ˆ ˆ( ), ( ), ( )A B Cf r f r f r  for three

sections based on 473 points sample size machine. 

Estimates of pdf ( )f r  for the three cylinder sections

based on Epanechnikov kernel and the sample size 473 
measuring points are shown on Fig. 2. Observing the 
curves one can notice a distinction of the distribution 
parameters such as the mean values, the variations and
the data spread for the cross-sections, which belong to the 
same cylinder. 

All these mentioned facts together with rounding of 
the sample point numbers give us the reason to presume 
that the small centre coordinate offsets can be neglected. 
The robustness of the simulation model is discussed in 
the next sections. 

2.6 Estimation of an optimal sample size 

In order to discover an optimal sample strategy for the 
inspection of the part, a statistical simulation was carried 
out in MATLAB, by using the KDE 

ˆ ˆ ˆ( ), ( ), ( ) ,A B Cf r f r f r  estimated from the CMM 

measurements of workpiece, see Fig. 2. 
The eight initially predefined different sample sizes 

{5; 10; 15; 30; 60; 90; 93; 95}n � were simulated with

510 iterations for each sample size in . The maximum

maxr  and the minimum minr values were detected for

every new generated sample. The population content p
for the each iteration was evaluated as a difference of the  

3
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Table 3. The statistical test simulation with 510 iterations for each in sample size  

Section A 

Sample size n 5 10 15 30 60 90 93 95 

Probability P%, (p≥0.95)a 2.2 8.5 16.8 44.9 81.2 94.5 95.3 95.5 

Section B 
Sample size n 5 10 15 30 60 90 93 95 

Probability P%, (p≥0.95) 2.1 8.5 16.4 44.3 80.9 94 95 95.4 

Section C 

Sample size n 5 10 15 30 60 90 93 95 

Probability P%, (p≥0.95) 1.9 8.5 18 45.1 81.3 93.6 94.9 95.5 

a. Probability P of covering a range with population content p 

cumulative distribution functions (cdf) of maximum and 

minimum random variable ir , based on KDE. Then 

conditions of equality/exciding 0.95 of total radius 
variation range was tested by: 

min max max min( ) ( ) ( ) 0.95R Rp r r r F r F r� � � � �  ,      (8) 

 where ( )RF r  is cdf of a real-valued (either maximum or 

minimum) random variable ir  , calculated with the kernel 

pdf estimator ˆ ( )f r . The number of successful iterations 

was assigned as 1 (or 0 – otherwise) and summed up as 

NSum . The final probability %P  for each sample size 

in  was calculated as a rate of /NSum M , where M  is 

the total iteration number.  

In spite of the predefined initial sample size (473 
points) taken from the Table 2 with given 0.99p �  and 

100(1 )% 95%�� � , the total area under the estimated 

kernel function is equal to 1 (from pdf properties). That 
gives as an opportunity to generate any size of data 
sample even larger than the initial sample size. This in 
turn leads to independency of our simulated results 
presented in Table 3 on the initial parameters of the 
model (2). 

3 Discussion of results 

Analysis of measurements obtained from cylinder 
sections shows that parts produced by a turning operation 
has unknown non-normal distribution of radius variables. 
The parameters (e.g. mean, variance, skewness) of the 
distributions in difference sections of the cylinder are 
apart from each other. However, the sample strategy 
according to table 3 for the sections is finally the same. 
Thus, the applied simulation model based on the 
experimental data confirms the robustness property of the 
method proposed by (2) in section 1. For example, Table 
3 shows that the optimal sample size is about 93 points 
for all sections, which agrees with the data in Table 2 (for 

100(1 )% 95%�� � , 0.950p � ). Thereby the simulation 

based on distributions estimated by kernel function 
confirms Wilks model given by equation (2). We can also 
notice that the probability to estimate at least 0.95 

fraction of radius variation range is only about 2% in the 
case of 5 points sample. 

This fact gives us the reason to expect that further 
research of cylindrical parts with larger radius values, 
from other machine operations and different materials of 
workpiece, most likely will provide the similar results. 

In the simulated model, the circle centre is assumed 
the same for any data samples. For different sample 
points the centre point would vary, but maximum 

possible range between minr  and maxr  remains a similar. 

In addition, the minimum number of points minn  (Table 2) 

was rounded to the nearest upper integer, thus it makes 
negligible the influence of the centre coordinates. Again, 
a good compliance of the simulation results with the 
distribution free model given in formula (2) demonstrate 
the insignificant influence of the assumptions about the 
centre of coordinates. That also confirm that the 
simulation model itself employs a robust principle. 
Namely, the identical optimal number of points (Table 3) 
for different sections with observably diverse 
distributions improves this statement. 

4 Conclusion 
The innovation of this work is to show the possibility to 
use the distribution free model (2) to predict the sample 
size, its least content and confidence level for GD&T 
inspection with CMM before any measurements are 
performed.  

In addition, the simulation model for robust 

estimation of the optimal sample size based on the 

experimental measuring date has been developed. The 

provided simulation procedure allows evaluating the 

sample sizes and their confidence levels for real 

cylindrical components in industry independently of their 

dimensions and machining process accuracy. Moreover, 

the finite sample sizes, which often used in industry, were 

evaluated. The obtained results demonstrate the particular 

low confidence level especially for the sample sizes from 

5 to 30 measuring points.  

The inspection sample size in production is often 

defined with cost and time-consumption in mind, and 

thereby it could be too small. The applied technique 

provide the demanded guidance criteria based on the 

confidence level and the real data distribution for 
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choosing the proper measuring sample strategy for 

GD&T inspection with CMM in manufacture. 
In solving of a practical problem, it is recommended 

to evaluate the distribution of the initial data in the very 
beginning. If the data distribution is close to the normal 
distribution then the standardized procedure (ISO16269-6) 
can be used to estimate the tolerance interval limits. 
Otherwise, the original distribution based on the CMM 
measurements with predefined confidence level 1 �� ,

the variation proportion p  and the minimum sample size

minn  should be estimated by (2). Then the smallest and

the largest order statistics of the sample should be used as 
the tolerance limits. 

References
1. Chiffre, L.D., Geometrical Metrology and Machine

Testing, DTU Mechanical Engineering, (2011)

2. Jiang, B. and S.-D. Chiu, Form tolerance-based
measurement points determination with CMM,

Journal of Intelligent Manufacturing, 13(2): p. 101-

108, (2002)

3. Hong-Tznong Yau, C.-H.M., An automated
dimensional inspection environment, (1992)

4. N. Cappetti, A.N., F. Villecco, Fuzzy approach to
measures correction on Coordinate Measuring
Machines: The case of hole-diameter verification,

Measurement, 93 (Elsevier Ltd.): p. 41-47, (2016)

5. Changcai Cui, S.F., Fugui Huang, Research on the
uncertainties from different form error evaluation
methods by CMM sampling, Int J Adv Manuf

Technol, 43: p. 136-145, (2008)

6. K. D. Summerhays, R.P. Henke, J. M. Baldwin, R.

M. Cassou and C. W. Brown, Optimizing discrete
point sample patterns and measurement data
analysis on internal cylindrical surfaces with
systematic form deviations,  Precision Engineering,

26(1): p. 105-121, (2002)

7. G. Barbato, E.M.B., P. Pedone, D. Romano, G.

Vicario, Sampling point sequential determination by
kriging for tolerance verification with CMM, in

Proceedings of the 9th Biennial ASME Conference

on Engineering Systems Design and Analysis,

ESDA08, ASME: Israel. p. 10, (2008)

8. S. Ruffa, G.D. Panciani, F. Ricci, and G. Vicario,

Assessing measurement uncertainty in CMM
measurements: comparison of different approaches,

Int.J.Metrol. Qual. Eng. 4, p. 163-168, (2013)

9. A.Weckenmann, M. Knauer, H. Kunzmann, The
influence of measurement strategy on the uncertainty
of CMM measurements, 47: p. 451-454, (1998)

10. ISO16269-6, Determination of statistical tolerance
intervals, in Statistical interpretation of data, (2014)

11. I. Janiga, I. Garaj, V. Witkovský, On Exact Two-
Sided Statistical Tolerance Intervals for normal
distributions with unknown means and unknown
common variability, Journal of Mathematics and

Technology, 3: p. 25-32, (2012)

12. Janiga, I., Garaj, I., On exact two-sided statistical
tolerance intervals for normal distributions with
unknown means and unknow common variability, In

2009 Quality and Productivity Research Conference,

Yorktown Heights, Nerw York: IBM Thomas J.

Watson Research Center, (2009)

13. Royston, P., An extension of Shapiro and Wilk's W
test for normality to large samples, Applied Statistics,

31: p. 151-124, (1982)

14. Wilks S.S., Determination of Sample Sizes for
Setting Tolerance Limits, AMS Ann. Math. Statist.,

12: p. 91-96, (1941)

15. Wilks S.S., Statistical Prediction with Special
Reference to the Problem of Tolerance Limits, AMS

Ann. Math. Statist., 13: p. 400-409, (1942)

16. Alexandre B.T., Introduction to Nonparametric
Estimation, New York: Spring-Verlag, (2009)

17. Wand M.P., Jones M.C., Kernel Smoothing,
Monographs on statistics and applied probability,

Boca Raton, FlaChapman&Hall/CRC, (1995)

5

  
 , 04001 (2018)MATEC Web of Conferences matecconf/201220 82200

ICMSC 2018

https://doi.org/10.1051/ 4001





Paper 2 

An investigation of outlier detection procedures for CMM measurement data  

Proceedings of the ICMSC 2018. The 2nd International Conference on Mechanical, System 
and Control Engineering, MATEC Web of Conferences, Volume 220 





An investigation of Outlier Detection Procedures for CMM Measurement 
Data 

Petr Chelishchev ,  Aleksandr Popov2  and  Knut Sørby1

1Department of Mechanical and Industrial Engineering, NTNU, NO-7491 Trondheim, Norway 
2Department of Mathematics, Baltic State Technical University, St. Petersburg, Russia 

Abstract. The paper analyses methods for outlier detection in dimensional measurement. The cross sections of an

internal cylinder were inspected by CMM (coordinate measuring machine), and received data sets were employed for 

further investigation. The efficiency of Rosner’s and Grubbs’ methods for excluding outliers from the measuring data

had been estimated. The method of Rosner had been defined as the most effective for this case study. The simulation 

results were confirmed by experimental verification.  

1 Introduction 
The purpose of this work is to analyze the efficiency of 

outlier test procedures for particular type of data sets 

received from inspection with CMM (coordinate 

measuring machine). The following inspection conditions 

are considered: 

� Varying sample size of measurements;

� Unknown number of outliers presented in the
sample;

� A spectrum of different distributions of original
data sets with unknown dispersion.

In the CMM inspection of the geometrical 

characteristics of components, the outliers are not 

necessarily incorrect measurements. The existence of an 

outlier could indicate that a further investigation of 

manufacturing processes, measurements procedure, or 

data analysis methods themselves is required. 

The estimation of different statistical parameters (e.g. 

sample standard deviation, sample mean and so on) may 

be affected by outlier presence in the measuring data. As 

a result, it can lead to the invalid estimation of a 

confidence interval and inflate the random uncertainty 

estimates as well, thus a good component may be 

erroneously rejected. That especially yields the particular 

case, when contact fit methods such as MIC (maximum 

inscribed circle) or MZ (minimum-zone) are utilized, 

which are based on the most extreme points and hence 

very sensitive to outliers.  

Outliers are extreme observations, which stay apart 

from the majority of other measurements. In a simple 

case, when only one outlier is presented, its inconsistence 

can be easily observed with respect to the rest of the data. 

However, when a group of outliers is present, it is 

difficult to detect them because of the masking effect, 

which will be described below. At the same time, an 

incorrect assumption about the original data distribution 

may lead to confusion of valid observations with outliers. 

According to ISO 16269-4 [1], the main causes for 

outliers are the following: 

� a measurement or recording error (imprecise
or/and incorrect);

� a distribution contamination (one or more
contaminating distributions);

� an incorrect distributional assumption;

� rare observations (extreme observations from
heavy-tailed original distribution).

In the particular case of measuring in manufacturing 

conditions, a contamination of a part surface is a frequent 

cause of outliers, even after attempt of surface cleaning. 

In addition, a masking and a swamping effect can 

occur during the data analysis with parametric statistical 

test. The masking effect can happen when too few 

outliers are specified in the outlier detection procedure. 

Then the test performance can be influenced by the other 

outliers and as result, no outliers will be detected. On the 

other hand, if too many outliers are specified in the 

parameters of outlier test, then some valid observations 

can be incorrectly labeled as outliers, which is the so-

called swamping effect. Therefore, to make a correct 

decision whether suspected observations are outliers or 

not can be a complicated task.  

2 Methods 

2.1 Graphical methods 

The first step, before any analytical outlier detection 

algorithms are applied it is a visual analysis of 

measurement data. There are a number of graphical 

methods available such as histogram, scatter diagram, dot 

1
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plot and so on [2]. The pox plot become a very popular 

descriptive tool to reveal the most suspected 

measurements [3]. In fact, the box plot is a hybrid based 

on both a model and the graphical method. The graphical 

interpretation of data helps to choose the most 

appropriate analytical algorithm i.e. identify whether a 

single outlier or a group of outliers are present in order to 

prevent an influence of the masking or swamping effects, 

as described in previous section. 

There are six data sets (with 475 observations in each) 

comparing with each other on Fig.1. The data sets 

denoted by A1, B1, C1 represent the first measurement 

results with outliers. After the contamination was 

physically removed from the workpiece surface, the 

measurements at the same sections and with the same 

point distribution were repeated with CMM. These data 

sets are denoted as A2, B2, C2 on Fig.1. The box plot 

gives a good demonstration of the influence on statistical 

parameters such as the sample mean, median, skewness, 

data spread, IQR (interquartile range). The relative 

displacement of these parameters can be easily observed. 

The lower and upper fences (lower and upper outlier 

cut-off) is expressed by following: 

( )
1 3 1

LF q w q q� � �    (1.1) 

3 3 1( )UF q w q q� � � ,            (1.2) 

where 1 3,q q  are the first (lower) and the second (upper)

quartiles of data sample, and w is the significant factor [4].

The extreme points, which are outside of these fences, are 

indicated by red dots. For example, with significant factor 

1.5w �  red dots can be classified as suspected outliers

(Fig.1, left), with 3w �  as extreme outliers (Fig.1, right)

[5]. The vertical box represents IQR of the data, the 

different between the lower and upper quartiles. Thus, we 

do not have extreme outliers in the studied case (Fig. 1, 

right), but there are some suspected observations in all 

sections. The section A represents the case with multiple 

potential outliers, section B with two, and section C with 

a single potential outlier (Fig.1, left). From now on, we 

can precede with selection of the most suitable outlier 

detection analytical algorithm for our particular problem. 

2.2 Analytical algorithms 

There are many outlier methods proposed in the last 

decade [6]. The difference between them can shortly 

formulated by following. 

� What a sample size can method be applied for
(only for small, only for large, or both)? 

� How strict is a requirement to the distribution of
data set?

� Can method be exploited whether for a single or
multiple outliers?

� In a case of multiple outliers method, it is either
necessary to provide exact number of outliers or
only an upper amount.

Two suitable outlier methods according to these 

conditions are considered in this research. These methods 

are Grubbs and Rosner/GESD (Generalized Extreme 

Studentized Deviate) tests, which are recommended by 

ISO [1, 7]. Both methods are based on an estimation of a 

distance deviation from the sample mean with 

assumption about an approximately normal distribution. 

The strictness of this normality assumption is examined 

in this paper. 

Figure 1. Boxplot of CMM measurements with and without

suspected observations. 

2.2.1 Grubbs method 

The Grubbs method is used to determine a single outlier 

in a normally distributed data set and can be utilized as 

sequentially outlier detection procedure for multiple 

outliers [7, 8]. It tests two types of hypothesis: null 

hypothesis 0H   – no outliers in the sample, alternative

1H   – the sample has a one outlier. The test statistic for

two-sided case computed by (2): 

max iG
s
� ��

� (2) 

where �  is the sample mean and s is the sample

standard deviation. The G statistic shows how many 

standard deviations are in an absolute distance of an 

individual observation from the sample mean. The null 

hypothesis must be rejected with a significance level� ,

if the following condition is met: 

2
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where 
, 2

2
n

n

t �� 	�
 �
� 


- the Student’s quantile given at

probability 
2n
�

and 2n�  degrees of freedom in the data

set with number of observations n . One of the

weaknesses of the method is the influence by the masking 

effect. 
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Figure 2. Kernel estimates 1 1 1
ˆ ˆ ˆ( ), ( ), ( )A B Cf f f� � �  based on 475

measuring points with outliers. 

Figure 3. Kernel estimates of 2 2 2
ˆ ˆ ˆ( ), ( ), ( )A B Cf f f� � �  based on

the repeated 475 measuring points after surface cleaning. 

2.2.2 Rosner method 

The Rosner (GESD) method is exploiting for detection of 

single and multiple outliers in nearly normal distributed 

data, when exact number of outliers are unknown. The 

only upper limit m  of expecting outliers is required to

indicate.  

In order to avoid the masking effect m  should not be

chosen too small. There are two hypothesis types: null 

hypothesis 0H  – no outliers in the sample, alternative

hypothesis 1H  – the sample has up to m  outliers. For two

sided case, the ESD test statistic is computed as a 

following [9]: 

max ii
i s

R
� ��

� , (4) 

where �  and s  are the sample mean and the standard

deviation, respectively. Excluding one observation, which 

maximized i� �� , the test statistic in (4) is

recalculated again for 1n�  data sample. This procedure

repeats m  times until all extreme measurements are

removed from the data set. The output of this 

computation will be the array of 1 2, , ... mR R R . Then the

critical value ik  for each single element of the vector iR
is calculated: 

� � � �

� �� � � �

,?

2

, 1
1 1

p n i
i

p n i

t n i
k

n i t n i

� �

� �

�
�

� 	
� � � � �
 �

� 


, 1,2,...i m�  (5)

where � �,pt �  is quantile of Student’s distribution with

degrees � of freedom and probability / 2
1

1
p

n i
�

� �
� �

. 

Thus the total number of outliers is the largest i  such

that i iR k� . Opposite to Grubbs test, GESD can be

influenced by the swamping effect (described above), but 

the influence of the masking effect is relatively neglected. 

Table 1. Efficiency rate of outlier detection (randomly located 
outliers, medium values, 100 observations) 

Number 
of 

outliers 
Method 

Section A 

4.49
A

m� �

Section B 

6.00
B
m� �

Section C 

4.94
C
m� �

1 

Grubbs 0.66 0.65 0.67

Rosner 0.66 0.65 0.67

2 
Grubbs 0.36 0.33 0.34

Rosner 0.60 0.58 0.61

3 
Grubbs 0.12 0.09 0.09

Rosner 0.58 0.57 0.58

4 
Grubbs 0.02 0.01 0.01

Rosner 0.57 0.55 0.57

Table 2. Efficiency rate of outlier detection (randomly located 
outliers, large values, 100 observations) 

Number 
of 

outliers 
Method 

Section A 

5.2
A

l� �

Section B 

6.9
B
l� �

Section C 

5.7
C
l� �

1 

Grubbs 0.99 0.99 1.00

Rosner 0.99 0.99 1.00

2 
Grubbs 0.95 0.94 0.96

Rosner 0.99 0.99 1.00

3 
Grubbs 0.77 0.72 0.76

Rosner 0.99 0.99 0.99

4 
Grubbs 0.37 0.32 0.34

Rosner 0.99 0.99 0.99

3 Data simulation and case study 
The data sets used in this study were derived from CMM 

(Leitz PMM-C-600) measurements ( , )i ix y taken from

three cross-sections (A, B, C) of an internal cylindrical 

surface. The cylinder axis was aligned with z axis. The

circle center coordinates ( , )c cx y for each section were

estimated with LSC (least squired circle) method by PC-

DMIS software based on 475 measured points. Then the 

radius variable for each measured point ir was calculated

by: 

2 2( ) ( )i i c i cr x x y y� � � �   .   (6) 

For practical convenience, the result data arrays of 
ir were standardized by ( ) 1000i ir r� � � �  , where r  is 
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the average radius in the cross section. The standardized 
radius variable i�  were further used in simulation tests. 

The data sets of repeated measurements A2, B2, and 

C2 were tested for normality distribution with Anderson-

Darling method [10]. This method is more sensitive to 

outliers and especially effective for detecting any 

departure in the tails of data distribution. Only one of 

three data sets (p-values: 0.001, 0.138, 0.001 for A2, B2, 

C2 correspondently) had p-value over specified 

significance level 0.05, thus the data are quite unlikely 

from a population with normal distribution.  

In order to obtain a form distribution of ( )f � for

standardized variable i� , the kernel density estimator 

ˆ ( )f �   was applied [11]:

1

1ˆ ( )

n
i

i

f K
bn b

� �
�

�

�� 	
� 
 �

� 

� ,  ��� � ��  (7) 

where K is the kernel smoothing function, b  is a

bandwidth and n  is the sample size. Epanechnikov

kernel was used as the smoothing function K with default

MATLAB bandwidth b and the sample size n with 475

observations. The estimates of pdf (probability density 

function) for sections A1, B1, and C1 with outliers are 

illustrated on Fig. 3, and Fig. 4 for repeated 

measurements of the same sections A2, B2, and C2, after 

the outlier issue was physically eliminated (no analytical 

algorithm were used so far). 

The estimated pdf objects 
2 2 2

ˆ ˆ ˆ( ), ( ), ( )A B Cf f f� � � were 

further used to generate random data samples to simulate 

workpiece measurements without outliers (Fig. 4). In 

addition, some of the data points were replaced by 

simulated outliers. The simulation of outliers was based 

on a uniform distribution around a specified deviation 

from the mean value of the random data sample. The 

effectiveness of outlier detection of the Grubbs and 

Rosner methods with different combination of correlated 

factors were estimated from 
510  iterations with summing 

two possible results: 0 – failure; 1 – success. In order to

meet success requirements the same number of outliers 

with identical indexes must be detected (e.g. if only three 

outliers from four detected correctly then result is 

considered as a failure). The efficiencies ,G Re e  (Grubbs

and Rosner method, respectively) were estimated 

simultaneously as a rate of number of success iteration 

,G RSum Sum to total iteration number ,M then

/G Ge Sum M� and /R Re Sum M� .

The following factors were considered in the test of 

the efficiency of outlier detection procedures: 

� non-normal distribution of random data samples;

� size variation of the random data samples;

� outliers randomly distributed around a mean value
of the random data sample with specified
deviation values;

� a defined number of outliers in each data set (from
1 to 4);

� outliers as randomly distributed data points or as a
block of data points.

The more detail description of these factors is given in 

the next section. 

Table 3. Efficiency rate of outlier detection (located as a block, 
large values, 100 observations) 

Number 
of 

outliers 
Method 

Section A 

5.2
A

l� �

Section B 

6.9
B
l� �

Section C 

5.7
C
l� �

2 
Grubbs 0.95 0.92 0.96

Rosner 1.00 1 1

3 
Grubbs 0.6 0.52 0.55

Rosner 1.00 0.99 1

4 
Grubbs 0.07 0.07 0.06

Rosner 1.00 0.99 1

Table 4. Efficiency Rate of Outlier Detection for Various 
Sample Sizes (2 Outliers with Random Locations, Large Values) 

Sample 
size Method 

Section A 

5.2
A

l� �

Section B 

6.9
B
l� �

Section C 

5.7
C
l� �

15 

Grubbs 0.07 0.06 0.06

Rosner 0.75 0.74 0.76

30 
Grubbs 0.44 0.42 0.42

Rosner 0.92 0.92 0.94

60 
Grubbs 0.84 0.83 0.85

Rosner 0.98 0.98 0.99

100 
Grubbs 0.95 0.94 0.96

Rosner 0.99 0.99 1.00

4 Simulation and experiment results  
The distribution of outliers in the simulations was based 

on a medium and a large deviation from the mean value

of the simulated measurements. The medium value for 

the outliers are generated in the interval 

3.90 0.01m s� � �  (Table 1) and the large value of the

outliers from an interval 4.5 0.1l s� � � (Table 2, 3),

where s is the estimated standard deviation of the

simulated measurements ( 1.15As � , 1.54Bs � , 1.27Cs �
for measurement sets A2, B2, and C2, correspondingly). 

There are different numbers of outliers tested both with 

randomly distributed locations (Table 1, 2) and with 

location as a block (Table 3). For the random location, 

two discrete values, m��  and l�� , were used, while for

the block location only negative l��  values were

integrated to meet the most typical conditions (associated 

with contamination). Due to low skewness, the 

simulation results for l��  were very similar thus, they

are not shown here. The simulation results of the 

influence of the sample size on an outlier detection 

performance were specified in Table 4. The significance 

level 0.05� �  was applied in all tests. All simulation

tests were carried out in MATLAB and results are 

tabulated in Table 1, 2, 3, and 4. The simulation results 

were rounded up to the second digit from decimal point. 

Both methods were also applied with the experimental 

measurements. The detected outliers were tabulated in 

Table 5. The comparing boxplot of data set after 

removing of outliers (A1*, B1*, C1*) with data samples 

of repeated measurements (A2, B2, C2) are illustrated on 

Fig. 4. There are two large outliers were removed in  
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Table 5. Appliance of the outlier methods with real measurement data (475 observations) 

Outliers 
no 

Outlier 
parameters 

Section A1* Section B1* Section C1* 
Rosner Grubbs Rosner Grubbs Rosner Grubbs 

1 

Index 60 60 459 459 2 2

Values [mm] 29.9881 29.9881 29.9829 29.9829 29.9835 29.9835 

2 
Index 61 61 - - - - 

Values [mm] 29.9876 29.9876 - - - - 

Figure 4. Boxplot of the measuring data: A1*, B1*, C1* - after removing of outliers; the repeated measurements A2, B2, C2 – after

cleaning of workpiece.

section A1 with both Rosner and Grubbs tests and by one 

outlier in section B1 and C1. There were number of 

medium outliers which not detected by any of the 

methods (Sections: A1* and B1*) though some of these 

suspected points disappeared after measurement were 

repeated (Section A2). This fact confirm the simulation 

results, which were obtained in Table 1, for medium 

values of outliers. 

5 Discussion
In the case of a single outlier, the Grubbs and Rosner 
tests have similar performance. For more than two 
outliers cases there was significant difference in the 
outlier detection efficiency. Both procedure had a lower 
efficiency rate for the medium outlier values (Table 1). 
Therefore, the parametric outlier tests must be used very 
carefully when small value of outliers are presented. 
However, Rosner method had at least 0.98 efficiency in 
whole range 1 – 4 of outliers in case of large outlier value, 
while the Grubbs method has 0.95 efficiency for two 
outliers, but even lower for larger number of outliers 
(Table 2). This is a good demonstration of the influence 
of the masking effect on the Grubbs procedure and the 
very low influence on Rosner method. 

According to the Table 3, the additional simulation 

test showed that outliers distribution either as the block or 

random had no notable influence on Rosner method 

performance what is opposite to the Grubbs method, 

which efficiency was fairly lower for the block location 

of outliers than for random distributed among the sample 

set. Meanwhile, there was a great influence of the sample 

size on efficiency rate observed for both of the methods 

as shown in Table 4. The consecutive outlier detection 

procedure (Grubbs) had efficiency below 0.5 for sample 

size with 30 observations or lower, while Rosner’s test 
could provide at least 0.75 efficiency rate even for 15 

observations sample. In spite of some differences in 

distribution, form and variation range between all three 

data sets the test performance did not distinguished so 

much within each individual method. That leads us to a 

conclusion that both methods have no any strict 

requirements to the normal distribution. 

There were no additional tests of masking or 

swamping effects presented for Rosner method in this 

paper. It is, however, a well-known fact that too small 

number of outliers initially applied in the Rosner test 

(relatively to the actual number of outliers in the sample) 

can lead to the masking effect. However, when the extra 

two outliers had been initialized with Rosner test 

(additionally to the actual number of outliers) during of 

simulation the swamping effect was not observed. 

6 Conclusion 
There are many different outlier procedures available for 

data analysis, but it is a difficult task for an 

unexperienced operator to choose the most suitable test 

for a particular problem. The following specific 

conditions were met for this study with considered 

methods: 

� the ability of the methods work with various
sample sizes;
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� the ability to detect multi outliers when maximum
outlier number is unknown;

� the stable efficiency (over 0.9) to detect the large
outliers, which bring the most significant
influence;

� the applicability for data from unknown non-
normal distributions;

� the stability to the masking and swamping effects.
The outlier detection procedures such as Grubbs and

Rosner can be successfully applied even with real 

workpiece measurements, which are difference from the 

normal distribution. However, the Rosner method is more 

reliable and hence preferable. Meanwhile the medium 

outliers should be double-checked before 

removing/accepting for further analysis. It is not 

recommended to use samples below 30 measuring points 

to avoid the low efficiency outlier detection procedure. 

The measurement tests conducted with CMM confirm the 

simulation results and all conclusions above. The 

research of experimental measurements also revealed that 

multiple outliers groups can be expected with CMM 

measurements. Therefore, the automated outlier detection 

procedure based on the Rosner / GESD method can be 

effectively applied with a geometry inspection routine. 
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Abstract. This paper presents algorithms for estimating the smallest volume of a bounding box 
based on a three-dimensional point set for metrological application. The aim of this work is to 
investigate method accuracy in order to reduce an unnecessary computation. The algorithms 
are demonstrated on an artefact measured by a coordinate measurement machine (CMM). The 
estimation results of reference objects can be used for calibration of dimensional measuring 
systems. The principles proposed in this paper may also be utilized to improve a software func-
tionality for the measuring systems. 

Keywords: minimum volume bounding box / minimum bounding rectangle / convex polyhe-
dron / CMM 

1 Introduction 

In various applications, it can be useful to circumscribe a given set of three-dimension co-
ordinate points by an ideal shape rectangular parallelepiped. It was suggested by Dupuis [1] to 
use the term cuboid when referring to a rectangular parallelepiped. However, in the literature 
of the computational geometry, the term box is commonly associated with the rectangular par-
allelepiped. In this text, we use the term side for the bounding box face. This term may be also 
used while referring to the physical cuboid object side. The term face is mainly used for the in-
scribed convex polyhedron faces, which are the product of 3D convex hull operation. All six 
sides (faces) of the box are rectangles and each side is parallel with the opposite side and or-
thogonal with the other four adjacent sides. These four adjacent sides comprise a “closed 
loop”. For example, the Top side has a “closed loop” of adjacent sides that consists of: Front, 
Left, Right, and Back. The opposite, Bottom side has the same “closed loop” of adjacent sides 
as the Top side. 

An estimation of the minimal volume bounding box (MVBB) often includes an estimation 
of the minimal area bounding rectangle (MABR). Both problems are commonly used in com-
puter graphics (e.g. collision detection, optimal layout detection etc.), image processing, medi-
cine (e.g. brachytherapy), metrology, automatic tariffing in goods-traffic and many other appli-
cations. Together with other association criteria (e.g. minimum zone, least squares), the 
minimum volume criterion can be applied for estimation of the flatness deviation of mechani-
cal parts in industry [2]. Depending on an application, the MVBB algorithm may be optimized 
either for computation time or for measurement accuracy. 

Based on the proposals of Shamos [3], Freeman and Shapira [4], Toussaint presented an el-
egant unambiguous MABR solution in [5]. This exact solution of the MABR problem has 

2( )O n  computing time with the use of the rotating caliper algorithm for n-point set in 2 , and 

( )O n time with the use of two pairs of rotating calipers orthogonal to each other. A number of 

approximation algorithms and heuristic alternatives are suggested to solve the two-dimension 



2  

problem. Among them, the searching algorithms based on the R-tree data structures [6-8] and 
the principle components [9, 10]. 

The most exact solution of the MVBB problem for n-point set in 3 with computation time 
3( )O n  was provided by O’Rourke [11], which remains the state-of-the-art so far. Alternative 

approximation algorithms have been developed to reduce the computation time. Bespa-

myatnikh and Segal [12] suggested an efficient 2( )O n  approximation algorithm. A search 

based on Powell’s quadratic convergent method was proposed by Lahanas et al. [13]. Later, 

Barequet and Har-Peled [14] presented an approximating algorithm with 4.5( 1/ )O n   com-

putation time, and a simplified version with 3( log / )O n n n  , where 0 1  . Recently, Di-

mitrov et al. developed a faster algorithm based on the discrete and the continuous versions of 
principal component analysis (PCA) [10, 15]. The continuous version guarantees a constant 
approximation factor but it is still limited by ( log )O n n  – time required for computation of a 

convex hull. The commonly used solutions for MABR and MVBB are based on the convex 
hull operation [3, 16], in order to reduce the number of considered points and avoid redundant 
computation. 

Some approximation algorithms may provide a large systematic error. The majority of ap-
proaches presented above are mainly focused on reducing the computation time, but at the ex-
pense of accuracy. In this paper, we consider calculation of the minimum bounding box on ref-
erence standards used for calibration of dimensional measuring systems; hence, the accuracy 
must be ensured. The elegant approach provided by O’Rourke is the accurate solution, but it 
does not take into account some metrological issues related to the discrete point measurement 
with CMM, which are discussed below. 

The physical edges (denoted by 1 in Figure 1a) of the cuboid object are typically not meas-
ured and there is always a distance between the edges and the measured points. As a result, 
there is an intermediate space between the measured points on all pairs of the adjacent sides 
(e.g. side 2 and side 3, side 3 and side 4 in Figure 1a) of the cuboid object. This intermediate 
space is transformed into a large number of the convex polyhedron faces after appliance of the 
convex hull operation. Such newly constructed faces provide acute angles and look similar to 
“chamfer” faces (denoted by 5 in Figure 1b). These faces cut off the physical cuboid object and 
they will lead to unnecessary computation in the O’Rourke algorithm. Obviously, these “cham-
fer” faces cannot be a part of the minimum bounding box solution and these faces should be 
excluded from the algorithm. 

(a)      (b) 

Figure 1. An example of the metrological issue: a) a cuboid object with CMM measured points; b) an example 

of the convex polyhedron with the chamfer faces after convex-hull operation; 1 – edges; 2 – left side; 3 – top 

side; 4 – front side; 5 – “chamfer” polyhedron faces; 6 – ordinary polyhedron faces. 



In this paper, we deal with the minimum bounding box problem for physical objects with 
an actual shape close to the perfectly rectangular bounding box. The proposed algorithms for 
estimation of MVBB take into account the effect of the “chamfer” faces. The most accurate al-
gorithm searches for the minimum solution according to the conditions defined by two theo-
rems related to the MABR and the MVBB problems presented in section 2. A detailed over-
view of the three conventional geometrical algorithms suggested by the author are given in 
section 3. Implementation of the methods is presented in section 4 with description of the ex-
perimental setup and computational results. 

2 Theoretical Background 

The solution of the three-dimension MVBB problem involves the two-dimension case. After 
the orientation of one side of the bounding box is locked in the MVBB algorithm, all points are 
projected onto the xy-plane, and the orientations of other adjacent sides of the bounding box 
can be found by the MABR algorithm as the two-dimension problem. 

2.1 Minimum-Area Bounding Rectangle 

The earliest known solution of the MABR problem was presented by Freeman and Shapira [4]. 
They presented the following theorem, which is the basis for minimum bounding rectangle al-
gorithms: The rectangle of minimum area enclosing a convex polygon has a side collinear with 
one of the edges of the polygon. 

The MABR solution is based on the 2D convex hull operation [3], which is applied as the 
first step. In the second step, we search for the minimum-area bounding rectangle circumscrib-
ing the convex polygon constructed by the convex hull algorithm in the first step. The theorem 
mentioned above limits the number of bounding rectangles that are candidates for the mini-
mum-area bounding rectangle. 

2.2 Minimum-Volume Bounding Box 

The second theorem presented here was formulated and proved for the MVBB problem by 
O’Rourke [11]: A box of minimal volume circumscribing a convex polyhedron must have at 
least two adjacent sides flush with edges of the polyhedron. 

It is not necessary that one of the sides of the bounding box is coplanar with one of the faces 
of the convex polyhedron. In fact, the bounding box with minimal volume circumscribing a 
regular tetrahedron has all six sides coplanar with the tetrahedron edges without flushing with 
any tetrahedron faces (Figure 2a). 

(a)  (b)   (c) 

Figure 2. Examples of convex polyhedrons: (a) a regular tetrahedron with edge length 2  circumscribed by 
minimal box with edge length 1 (conventional units); (b) convex polyhedron related to Model B; (c) convex 
polyhedron related to Model C; 1 – the edge is flush with the Top side; 2 – the edge is flush with the Left side 



4   

However, in practise (to be shown in the experimental part, section 4.2), the minimal solu-
tion may also correspond to the case when one or more sides of the bounding box are coplanar 
with faces of the convex polyhedron. An example, where each side of the bounding box is co-
planar with face of the polyhedron (Model B) is shown in Figure 2b. The vertex coordinates of 
this convex polyhedron are given as the Model B in Table 1. The Model B was derived from 
the reference Model A. The Model A is based on a regular cube with edge length 1 and cham-
fers with distances 0.1x0.1 (conventional units). So that each side of the Model A is given by 
five points. There is one point in the middle of a face, and there are four points in the corners 
of the face. The modified coordinates of Model B and Model C relative to the Model A are 
marked by bold text in Table 1. Figure 2c shows the other example, where two adjacent sides 
of MVBB are coplanar only with two edges 1 and 2 of the convex polyhedron. Optimization 
curves for the minimum volume versus an orientation angle between a bounding box side and a 
face of the Model C are illustrated in Figure 3. The relationship of the minimal volume versus 
the orientation angle of the Models may appear either linear (Figure 3a) or nonlinear (Figure 
3b). The beginning of both curves corresponds to the volume where one side of the bounding 
box is coplanar with the polyhedron face. The end of the curves corresponds to the volume 
where the same side of the bounding box is coplanar with its adjacent polyhedron face. The 
other points on the curves correspond to the volume for orientation angles where one side of 
the bounding box coincides with the polyhedron edge. 

 
          (a)                    (b) 

Figure 3. The optimization functions of volume versus orientation angle between two faces (Model C): (a) 

around the edge 2 on the Left side (small angle); (b) around the edge 1 on the Top side (large angle). 



 

Table 1. The coordinates of points for the theoretical models (in convention units) 

Side Model A Model B (Figure 2b) Model C (Figure 2c) 

 X Y Z X Y Z X Y Z 

Front 

0,90 0,40 0,5 0,91 0,40 0,5 0,91 0,40 0,5 

0,90 0 0,1 0,90 0 0,1 0,90 0 0,1 

0,9 0,8 0,9 0,9 0,8 0,9 0,9 0,8 0,9 

0,9 0,8 0,1 0,9 0,8 0,1 0,9 0,8 0,1 

0,9 0 0,9 0,9 0 0,9 0,9 0 0,9 

Back 

-0,1 0,4 0,5 -0,11 0,4 0,5 -0,11 0,4 0,5 

-0,1 0 0,1 -0,1 0 0,1 -0,1 0 0,1 

-0,1 0,8 0,9 -0,1 0,8 0,9 -0,1 0,8 0,9 

-0,1 0,8 0,1 -0,1 0,8 0,1 -0,1 0,8 0,1 

-0,1 0 0,9 -0,1 0 0,9 -0,1 0 0,9 

Left 

0,4 -0,1 0,5 0,4 -0,11 0,5 0,4 -0,11 0,5 

0 -0,1 0,1 0 -0,1 0,1 0 -0,1 0,1 

0,8 -0,1 0,9 0,8 -0,1 0,9 0,8 -0,1 0,9 

0,8 -0,1 0,1 0,8 -0,1 0,1 0,8 -0,1 0,1 

0 -0,1 0,9 0 -0,1 0,9 0 -0,1 0,9 

Right 

0,4 0,9 0,5 0,4 0,91 0,5 0,4 0,91 0,5 

0 0,9 0,1 0 0,9 0,1 0 0,95 0,1 

0,8 0,9 0,9 0,8 0,9 0,9 0,8 0,95 0,9 

0,8 0,9 0,1 0,8 0,9 0,1 0,8 0,9 0,1 

0 0,9 0,9 0 0,9 0,9 0 0,9 0,9 

Top 

0,4 0,4 1 0,4 0,4 1,01 0,4 0,4 1,01 

0,8 0,8 1 0,8 0,8 1 0,8 0,8 1 

0 0 1 0 0 1 0 0 1 

0,8 0 1 0,8 0 1 0,8 0 1,5 

0 0,8 1 0 0,8 1 0 0,8 1,5 

Bottom 

0,4 0,4 0 0,4 0,4 -0,01 0,4 0,4 -0,01 

0 0,8 0 0 0,8 0 0 0,8 0 

0,8 0 0 0,8 0 0 0,8 0 0 

0 0 0 0 0 0 0 0 0 

0,8 0,8 0 0,8 0,8 0 0,8 0,8 0 

3 Computation methods 

In the following sections, three methods for finding the Minimum Volume Bounding Box 
(MVBB) are considered. The methods are denoted as the “side-” method (MVBBS), the “face-
” method (MVBBF) and the “edges-” method (MVBBE). All three methods differ from each 
other by accuracy, complexity and hence the computation time.  

All the three methods utilizes the MABR algorithm [4]. Two of the methods (“face-”, “edg-
es-”) include the specific data pre-processing algorithm (section 3.3), which distinguishes 
these methods from other known methods. Only the MVBBE method completely satisfies to 
both theorems given in section 2.1 and 2.2, and therefore it can be used as the reference for the 
other alternative methods. 
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3.1 The Minimum Area Bounding Rectangle (MABR) algorithm  

The MABR algorithm is based on 2D convex hull operation [3]. After a convex polygon P is 
constructed, the angles i between the polygon edges and the x-axis are calculated as follows: 

1 1atan 2( , ) ,i i i i iy y x x             (1) 

where atan2 is the four-quadrant tangent inverse function. The polygon vertices 1 2( , ,... )np p p  

are rotated in such way that the first convex polygon edge 1e  is parallel with the x-axis. Then 

at least three other points ip  with extreme ( , )x y  coordinates are defined – two in orthogonal 

direction to the x-axis ( max min,y y ), and another two coordinates in orthogonal direction to the 

y-axis ( min max,x x ). The polygon vertices continues rotating with angle i  in clockwise direc-

tion from one edge ie  to another 1ie   until all polygon edges are checked. The two-dimension 

rotation matrix is a follows: 
cos( ) sin( )

( )
sin( ) cos( )

i i
i

i i

R
 


 

 
   

     (2) 

 A new rectangle area iA  is calculated for each rotation.  The corresponding rectangle length 

max miniL x x  and width max miniW y y  are updated, when a new minimum area 

min i iA L W   is obtained. An example of the MABR is shown in Figure 4. One of the edges of 

the polygon is collinear with one of the sides of the bounding rectangle. The algorithm also 
checks whether the solution is unique or not. 

 
Figure 4. The MABR of a convex polygon based on 2D point set 

3.2 The Minimum Volume Bounding Box Side (MVBBS) Method 

This MVBBS approximation method is well known and often used in practice. It is fast and 
straightforward, based on an assumption that the test object has one perfectly flat side e.g. Bot-
tom, which is aligned with the support surface ( minZ ). Such assumption allows a substantial 

simplification, both the measurement procedure and the computation procedure. However, be-
cause of the assumption of one perfectly flat side, the estimated minimal volume by this meth-
od can be not accurate. Groen et al. [17] developed an operational automatic system for meas-
urement of parcels and suitcases on a conveyor belt based on this principle. The flowchart of 
the MVBBS method is illustrated in Figure 5. 

The principle of this method is to define the height as min max minH Z Z   and the smallest 

area minA of the bounding rectangle for the xy-projection of all measured points. As long as we 



 

consider a single 2D projection of the convex polyhedron, then the MABR algorithm (section 
3.1) is applied only once. 

 
Figure 5. The flowchart of the MVBBS method with the MABR algorithm 

3.3 Data pre-processing 

In this paper, we focus on solving the minimum bounding box problem for physical objects 
that are rectangular objects close to the perfectly shaped bounding box. The measurement 
points of each side of the objects are given as six sets of points: Front, Back, Right, Left, Top 
and Bottom. The data set of each side is a 3n  matrix containing x- y- and z-coordinates for 
the n number of points.  

In order to reduce the number of points for further computation, the 3D convex hull opera-
tion is applied. The input of the convex hull operation are the point coordinates from the six 
sets of points jointed together as illustrated in Figure 6. The output from the convex hull opera-

tion is a matrix ,3
Pol
mS  with m rows. Each row of the matrix is a convex polyhedron face i  de-

fined by its vertices. The vertices are given as indices that refer to the input data to the convex 
hull operation. 

Some of the faces of the polyhedron described by ,3
Pol
mS will have vertices from two or three 

sides of the physical object. For example, the measured points from the Top side may be com-
bined with measured points from the Front side into common faces, or “chamfer” faces be-
tween the sides. When defining the minimum bounding box in measurement and calibration of 
rectangular objects, these combined faces and their edges will not contribute to the solution, 
and they should not be used in the permutation part of the algorithm.  
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Two data structures are constructed from the output matrix ,3
Pol
mS  by the pre-processing al-

gorithm. The first structure represents six matrices , , , , ,F B R L T MS S S S S S  of face vertices 

,i jv separated according to the reference object sides (Front, Back,…Bottom) without common 

faces (Figure 6, denoted by I); the second is a data matrix ,4kP with x- y- and z-coordinates for 

face vertices (Figure 6, denoted by II).  

Figure 6. The flowchart of the data pre-processing with the output of two data structures I and II 

3.4 The Minimum Volume Bounding Box Face (MVBBF) Method 

The MVBBF method developed by the author is more accurate than the MVBBS method, but 
it is still an approximation version. The flowchart of the algorithm of MVBBF method is 
shown in Figure 7.  

The theorem presented in section 2.2 does not provide an upper limit for how many edges 
that can be coplanar with one side of the bounding box, and then we may assume that one side 
is coplanar with more than one edge. It is a well-known fact that two distinct but intersecting 
lines uniquely determine a plane. Hereby, if a side is coplanar with two edges then it is copla-
nar with a face of the convex polyhedron. Obviously, one side of the bounding box cannot be 
coplanar with more than one face of the convex polyhedron. The second adjacent bounding 
box side must flush with at least one edge or face of the convex polyhedron.  

In order to compensate the computation complexity of the MVBBF method, first we apply 
the data pre-processing (section 3.3). Then, the MVBBF algorithm searches through the six 

matrices , ,...F B MS S S associated with sides of the measured object and checks all faces within 
each sample. When a side and the first face   of the polyhedron are chosen, three vertices 

1,1 1,2 1,3, ,v v v  of the face are defined. Two vectors    1 1 1 1 2 2 2 2, , , , ,a b c a b ce e are constructed

based on the three given points 1 1 1 1 2 2 2 2 3 3 3 3( , , ), ( , , ), ( , , )P x y z P x y z P x y z , Figure 8. The cross 

product of the two vectors in 3  is a new vector n , which is perpendicular to both given vec-
tors [18], and this vector n  is a normal vector to the face  : 

1 2 2 1 2 1 2 1 1 1 1

3 1 3 1 3 1 2 2 2

ˆ ˆˆ ˆ ˆ ˆi j k i j k

x x y y z z a b c

x x y y y y a b c

      
  

n e e .  (3) 

Then coordinates of the normal vector  , ,A B Cn  can be found as the minors of the matrix in 

(3) as following:

2 2 2 2 2 2

1 1 1 1 1 1

, ,
b c c a a b

A B C
b c c a a b

   . (4)



 

 

Figure 7. The flowchart of the MVBBF method 

 

 
Figure 8. Coordinate transformation of an arbitrary polyhedron face 
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In order to combine the polyhedron face   with an associated bounding box side (e.g. xy 

plane), we need to align the normal vector n  with positive z-axis Figure 8. The first step is to 
move the vector n  to the origin by using a translation matrix M with the row vector coordi-
nates of the point 1 1 1 1( , , )P x y z , [19]: 

1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

1

M

x y z

 
 
 
 
 
   

 , (5) 

which gives us a vector 0n . The projections ,n n   of the vector 0n on planes yz (x=0) and zx 

(y=0) respectively (Figure 8), give us two angles and  : 

2 2
arcsin arcsiny y

z y

n n

n n n


             

  (6) 

2 2
arcsin arcsinx x

z x

n n

n n n


  
         

. (7) 

Then a rotation matrix ( )xR   with the angle  for rotating counterclockwise around x-axis 

can be written: 
1 0 0 0

0 cos( ) sin( ) 0
( )

0 sin( ) cos( ) 0

0 0 0 1

xR
 


 

 
 
 
 
 
 

.    (8) 

A rotation matrix ( )yR   with the angle   for rotating clockwise around y-axis can be ex-

pressed in the following way: 
cos( ) 0 sin( ) 0

0 1 0 0
( )

sin( ) 0 cos( ) 0

0 0 0 1

yR

 


 

 
 
 
 
 
 

. (9) 

The final transformation matrix T  to combine the polyhedron face   with xy-plane as the 

bounding box side will be as follows (equivalent to alignment of n with z-axis): 

  ( ) ( )x yT M R R         .    (10)

The transformed face   and normal vector n  are denoted as ' and 'n  in Figure 8. In order to 

rotate the convex polyhedron, the transformation matrix T is applied to the matrix ,4kP  

(Figure 6, denoted by II) of the unique polyhedron vertices. 
After the coordinate transformation is completed, all newly transformed points are project-

ed into the xy-plane. Then the MABR algorithm (section 3.1) is applied for these projected 
points. It defines an orientation of the “close-loop” of adjacent sides (section 1) and, hence the 
estimation of width kW and length kL of the minimum bounding box. The height kH is defined 



as a difference between maximum and minimum z-values: max minZ Z . Thus, the volume is: 

k k k kV H W L   .  

The described procedure is repeated for each face of the chosen matrix and for all six ma-

trices ( , ,...F B MS S S ).  The minimum volume kV  is calculated in each iteration. After all itera-

tions are completed, the smallest value minV  is chosen as the solution. 

3.5 The Minimum Volume Bounding Box Edge (MVBBE) Method 

The third method corresponds to the conditions of the theorems presented in section 2.2 and 
therefore this is the most accurate method, which guarantees the global minimum solution. 
However, the algorithm is more complex and hence slower than two previous methods. In this 
case, the data pre-process (section 3.3) becomes the crucial part of the algorithm due to a sig-
nificant reduction of unnecessary computation of the “chamfer” faces and corresponding edges 
of the convex polyhedron. The MVVBE algorithm is shown in Figure 9. 

Figure 9. The flowchart of the MVBBE method 

The MVBBE method is applied after the 3D convex hull operation and the data pre-process 

are completed. As before, we use six matrices ( , ,...F B MS S S ) associated with the cuboid ref-

erence object sides as the output of the data pre-processing algorithm (Figure 6, denoted by I). 
The algorithm checks for each pair of faces with common edges. Since such pair of two faces 
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with their vertices 1 1,1 1,2 1,3 2 2,1 2,2 2,3, , , , ,v v v v v v        are found, it gives us the four non-

collinear points 0 0 0 0( , , ),P x y z 1 1 1 1( , , ),P x y z 2 2 2 2( , , ),P x y z 3 3 3 3( , , )P x y z  and three non-

collinear vectors corresponding to the polyhedron edges  1 1 0 1 0 1 0, ,x x y y z z  e ,

 2 2 0 2 0 2 0, ,x x y y z z  e and  3 3 0 3 0 3 0, ,x x y y z z  e or as a simplified

form  1 1 1 1, ,a b ce ,  2 2 2 2, ,a b ce  and  3 3 3 3, ,a b ce  respectively, (Figure 10).

Thus, the plane corresponding to the face 1  can be defined by the two non-collinear vec-

tors 2 1,e e  in the following parametric form: 

0 0 0

2 2 2

1 1 1

0

x x y y z z

a b c

a b c

  
  , (11) 

and similarly by 1 3,e e for the face 2 : 

0 0 0

1 1 1

3 3 3

0

x x y y z z

a b c

a b c

  
 . (12) 

The angle   between the faces 1 and 2  is the angle between the normal vectors 

   2 2 2 2, , , , ,A B C A B Cn n   [18]:

2 2 2

2 2 2 2 2 2
2 2 2

arccos
AA BB CC

A B C A B C
 

    
     

(13) 

where 2 2 2, , , , ,A B C A B C   are three corresponding minors of matrix (11) and (12), which can 

be calculated by using of equation (4). 

Figure 10. Coordinate transformation of two arbitrary polyhedron faces 1 2,  with the common edge e1 



In order to find the minimum volume solution, the polyhedron points ,4kP  need to be rotat-

ed around the common edge 1e  to the angle  , from the face 1  to the face 2 . A one-degree 

step is used for each iteration, but at least three iterations are applied if the angle   is less than 
2 . 

A certain alignment may be done to simplify the rotation of the polyhedron around the 
edge. First, xy-plane is made flush with the face 1  by alignment of the normal vector n  with 

z-axis. The same technique is applied as it was described in section 3.4. The vector n  moves to
the origin by the translation matrix 0 0 0( , , )M x y z  in (5), rotate counterclockwise with an-

gle around x-axis by using the rotation matrix ( )xR   in (8), and clockwise with angle 
around y-axis by using the rotation matrix ( )yR   in (9). The next, the common edge 1e is 

aligned with x-axis by following rotation matrix ( )zR  around z-axis with angle, for clockwise 

(the example in Figure 10 has positive  - counterclockwise): 

cos( ) sin( ) 0 0

sin( ) cos( ) 0 0
( )

0 0 1 0

0 0 0 1

zR

 
 



 
 
 
 
 
 

(14) 

Thus, a full transformation matrix eT  for alignment of normal vector n  with z-axis and the 

polyhedron edge 1e  with x-axis, can be written in this way: 

   ( ) ( ) ( )e x y zT M R R R          (15) 

A result of transformation of the two faces 1 2,  into 1 2'', ''   and the edge 1e into 1'e is 

shown in Figure 10.  
The alignments of the face 1 ''  with xy-plane, and the edge 1'e  with x-axis provide a trans-

formed edge denoted as 1''e  (Figure 10). Then, the rotation of all points ,4kP  around the edge 

1''e  with one-degree step angle /180d    can be proceeded by using the rotation matrix 

( )xR d  given earlier in eq. (8). After each rotation step, newly transformed points are project-

ed into xy-plane and the MABR algorithm (section 3.1) is applied for the projected points to 
estimate the width kW and the length kL of the minimum bounding box. The height kH  is de-

fined as a difference between maximum and minimum max minZ Z values. Finally, the volume 

of the bounding box is: k k k kV H W L   .  

The above procedure is carried out for each common edge of all six matrices , ,...F B MS S S  

(Figure 6, denoted by I). The volume kV  is calculated in each rotation step, and the smallest 

volume minV  is the solution. 

4 Implementation 

The algorithms described in the previous sections are developed and implemented in 
MATLAB® programming environment based on CMM measurement data. The measurements 
have been performed in a Leitz PMM-C-600 CMM with an analogue probe. The PC-DMIS 
software was utilized for operation of the CMM. 
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4.1 Experiment setup 

For the experimental tests, we have used a cuboid object with the following nominal dimen-
sions (the true values are unknown): length 210 mm, width 140 mm, and height 120 mm. The 
test object is shown in Figure 11. The measured data is arranged into separated data samples 
according to the cuboid sides: Front, Back, Right, Left, Top and Bottom. Each sample is a 3n  
matrix with three columns and n-rows of xyz-coordinates corresponding to the n-measured 
points as shown in Figure 6. We have used a uniform distribution of measured points with 15 
mm distance between the points. The total number of the measured points is N = 650.  

In order to get complete measurements of all six sides of the test object in a common coor-
dinate system, we have measured the object in two setups. The measurements of the two setups 
have been combined by using common alignment points in the two setups. 

Figure 11. CMM measurement of the test object Figure 12. The result of the 3D convex hull operation 

4.2 Results and Discussion 

The collected date is further exported to a MATLAB code as an input for the developed algo-
rithms. The first MVBBS method can be applied straightforward on the data – no data pre-
process is required. We consider only the Bottom side as a support side. For the other two 
methods, we apply the data pre-process algorithm after the 3D convex hull operation. The re-
sult of the convex hull operation for measured data is shown on Figure 12. There are 166 faces 
combined together into one convex polyhedron and 88 faces after applying of the data pre-
process algorithm (almost 50% of calculations were reduced). The computation results of all 
three methods are tabulated in Table 2 (the results are rounded to 1e-3). 

The MVBBS method provides a significant overestimation of the volume SV  of the bound-

ing box relative to the other two methods: S EV V V     951.959 mm3. Meanwhile, there is 

no difference between estimated volumes from the MVBBF and the MVBBE methods. A pos-
sible reason for such coincidence may be a small form deviation and as a result, small angles 
between polyhedron faces. 



Table 2. The computation results of the MVBBS, MVBBF, MVBBE methods for the first test 

Method Width, 
mm 

Length, 
mm 

Height, 
mm 

Volume, 
mm3 

Number of 
solutions 

MVBBS 140.016 210.035 119.980 3528388.312 1

MVBBF 139.997 210.010 119.978 3527436.353 1

MVBBE 139.997 210.010 119.978 3527436.353 1

An extra test was applied for estimation of MVBB for the cuboid object with the same 
nominal dimensions but with larger flatness deviations. The computation results are given in 
Table 3. 

Table 3. The computation results of the MVBBS, MVBBF, MVBBE methods for the second test 

Method Width, 
mm 

Length, 
mm 

Height, 
mm 

Volume, 
mm3 

Number of 
solutions 

MVBBS 140.016 210.195 120.068 3533662.007 1

MVBBF 139.995 210.195 120.054 3532743.929 1

MVBBE 139.994 210.195 120.055 3532735.210 1

The second test demonstrates the difference between MVBBF and MVBBE methods. The 
following difference can be observed from Table 3: F EV V V   = 8.675 mm3, where FV  is 

the solution of the MVBBF method and EV  is the solution of the MVBBE method. 

In order to verify the proposed approaches, the developed methods were applied on Model 
B and Model C, which are illustrated in Figure 2(b, c). The vertex coordinates of the theoretical 
models are given in Table 1. The computation results for estimation of MVBB based on the 
developed methods for Model B and Model C are given in Table 4 (the results are rounded to 
1e-4). 

It can be observed a difference between the solutions for MVBBS, MVBBF and MVBBE 
methods for Model C. The MVBBE method provides the smallest solution for Model C. The 
results for Model B and for all three methods are equal.  

The MVBBE method may provide the minimal solution and yet, it includes all solutions of 
the MVBBF method and therefor it is more reliable and accurate. 
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Table 4. The computation results of the developed methods for Model B and Model C 

Method Width, 
mm 

Length, 
mm 

Height, 
mm 

Volume, 
mm3 

Number of 
solutions 

MVBBS (Model B) 1.0197 1.0197 1.02 1.0605 2 

MVBBS (Model C) 1.02 1.06 1.51 1.6326 1 

MVBBF (Model B) 1.0197 1.02 1.0197 1.0605 4 

MVBBF (Model C) 1.0197 1.0600 1.5195 1.6424 1 

MVBBE (Model B) 1.0197 1.02 1.0197 1.0605 4 

MVBBE (Model C) 1.0198 1.0598 1.5098 1.6319 1 

5 Conclusion 

Three methods have been proposed and demonstrated in this work for estimation of the mini-
mum volume of bounding box with the proposed data pre-process algorithm for the metrologi-
cal applications. The first two methods are based on a number of assumptions allowing de-
creasing of a computation time but often with overestimated results. The minimal and the most 
optimal solution is provided by the MVBBE method. Furthermore, the solution of the MVBBE 
method is based on theorems presented in this paper (sections 2.1 and 2.2 ) and hence, its esti-
mation is the most accurate. Relying on type of dimensional measurement system, different 
methods may be applicable while the MVBBE method should utilize as the reference.  

However, the MVBBE method includes a large number of an additional calculation. The 
proposed pre-process data algorithm (section 3.3) based on the specific metrological conditions 
(described in section 1) allows a significant reduction of the computation (about 50 %) preserv-
ing the initial accuracy at the same time. Thus, the MVBBE method should be used for those 
metrological tasks, where the accuracy is the critical factor, particularly when a large geometry 
form deviation is expected. The principles outlined in this work could also improve the func-
tionality of operation software for the measuring systems. 
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