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Abstract—In this article, we present a new procedure for the
derivation of the linearized kinematics and dynamics of a flexible
industrial robotic manipulator. We introduce the Lie groups of dual
rotation and dual homogeneous transformation matrices, which
are the basis for the derivation of dual twists. In addition, dual
screws and dual screw transformation matrices are introduced,
which are used for the development of a general and systematic
linearization procedure for both kinematics and dynamics. This
leads to expressions that are linearized in all the states associated
with the elastic motion. The dynamic modeling procedure is based
on Kane’s method, where the partial velocities and partial angular
velocities are given as dual screws arranged as columns of dual
projection matrices. The elasticity of the links is modeled by the
assumed mode method. The presented procedure is implemented
numerically for a 4-degrees of freedom manipulator and the simu-
lation results are given.

Index Terms—Dynamics, flexible robots, kinematics,
linearization, screw theory.

I. INTRODUCTION

ROBOTIC manipulators are widely used in industrial ap-
plications. In some applications manipulators need to be

lightweight and need to have large configuration space. Such
long-reach lightweight manipulators may have significant elas-
ticity, which has to be accounted for in the derivation of manip-
ulator kinematics and dynamics. Modeling the elasticity of links
leads to more complex expressions with additional higher order
terms, which have little contribution to the dynamical simulation
results. Often it is reasonable to partly linearize the dynamics
by removing those higher order terms, which are the products of
elastic displacements and velocities. In this article, we present
the systematic procedure for derivation of linearized kinematics
and dynamics of flexible robotic manipulators.

Dynamic behavior of flexible manipulators has been investi-
gated by many researchers in the recent decades. Flexible links
of manipulators posses an infinite number of degrees of free-
dom (DOFs) and are governed by partial differential equations.
The equations are normally solved by discretization, where the
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assumed mode method (AMM), finite-element method (FEM),
or lumped parameter method [1] are normally used [2].

Modeling flexibility of manipulators by FEM can lead to
accurate results, however large number of finite elements and
DOFs may be needed. The advantage of FEM is the ability
of modeling complex systems with nonuniform link geometry
[3]. Alternatively, using AMM for modeling the flexibility may
result in a smaller number of DOFs. In [4], the authors compare
AMM and FEM formulations for a flexible manipulator and
conclude that for manipulators with uniform cross-sectional area
of the links AMM leads to a system with fewer equations and
is a preferred option. However, the problem of choosing the
proper mode shapes might be complex for manipulators with
several links and variable cross-sections. In [5], the authors
discussed the two main alternatives for mode shapes in terms
of boundary conditions, that is pinned-free (or pinned-mass)
and clamped-free (or clamped-mass) modes. It was found that
clamped boundary condition at the controlled end of a link leads
to significant simplifications in the design of the controlled.
Similarly in [6], it was concluded that a clamped boundary
condition at the controlled end of a link leads to more accurate
predictions of closed-loop behavior. In [4], [7], the authors
suggested that eigenmodes of a clamped-free Euler–Bernoulli
beam are often used for flexible serial manipulators with high
hub-to-link mass ratio, however, it was highlighted that using
clamped-mass boundary conditions is more correct. AMM can
also be applied for modeling flexible robotic manipulators with
telescopic joints [8].

The assumption of small deformations is often adopted in
flexible manipulator models, which leads to the elimination of
high-order terms related to elastic displacements and velocities.
The dynamic equation of motion linearized in the terms associ-
ated with elastic motion for a multilink planar manipulator was
presented in [7], [9], and [10], where the Euler–Lagrange formu-
lation and AMM was used. In most of the reviewed references,
the small deformation assumption was adopted, however no
explicit discussion on the linearization procedure was presented.

Kane’s equation of motion (or Kane’s method) [11] is a
variation of the Newton–Euler formulation, where a minimal
set of ODE’s (ordinary differential equations) is obtained by
elimination of workless constraint forces. The constraint forces
are eliminated by d’Alembert’s principle and principle of virtual
work. In practice it is done by premultiplication of the equations
of motion with the partial velocities, which serve as projection
operators mapping the forces on the directions of generalized
speeds. Kane’s method was formulated for flexible systems
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[12]–[14], and a particular example of a flexible beams on a
moving base was given in [15], where the authors also included
the effect of geometric stiffening. Additionally, the authors pro-
posed a simplified method for linearization of dynamic equations
of motion in all elastic displacements and velocities.

Lie group theory [16] for modeling of robot kinematics is a
well-established field [17]–[19]. This includes the application of
the Lie algebra se(3) to describe the differential kinematics and
dynamics of multibody systems, where derivations of differen-
tial kinematics rely on the fact that the vector representation of
se(3) is a twist, which can be transformed by an adjoint map
AdSE(3). This was used for rigid mechanisms in [20], [21],
and [22], and for flexible systems in [23] and [24]. The fact
that a twist is a screw given in Plücker coordinates allows for
an alternative formulation in terms of screw theory [25], [26],
where the geometrical interpretation of the derivations may be
more evident.

The review articles [2] and [27] reveal the amount of research
done in the field of modeling of flexible manipulators and
flexible multibody systems. It is generally accepted that the
equations of motion are highly nonlinear due to the coupling
between the DOFs of the system. In this article, we propose
a method for linearization of equations of motion of flexible
manipulators by eliminating higher order terms formed by the
products of elastic deflections and velocities. The kinematic
framework of the method is based on the Lie groups of dual
rotation and dual homogeneous transformation matrices, which
are the basis for the derivation of dual twists. The method is an
extension of the previous work [25], [28], [29] and is based on the
linearization procedure proposed in [12] and [15]. The advantage
of the proposed method is that we propose to use screw theory
and dual linear algebra for the derivations, which is easier to
implement computationally than the original formulation in
[12] and [15] where coordinate-free vectors and dyadics were
used. This advantage becomes more apparent for large systems
with many links. Another advantage of the proposed method
is that the expressions are linearized at each step of derivation.
The method does not require a readily derived fully nonlinear
model before the linearization is performed [30], which is a
quite common approach. The method can also be used for the
derivation of models which are partly nonlinear in some elastic
states or velocities.

In the end of this article, we present a numerical example,
where the method is implemented for a four-link manipulator
with two flexible and two rigid links.

II. PRELIMINARIES

A. Dual Numbers, Dual Vectors, and Dual Matrices

A dual number [31], [32] is given by x̂ = rx+ ε dx, where rx
and dx are real numbers, and the dual unit ε satisfies ε �= 0 and
ε2 = 0. A dual vector of dimensionn is given by v̂ = rv + ε dv,
where rv and dv are vectors of dimension n. In the same way, a
dual n× nmatrix is defined by D̂ = rD+ ε dD, where rD and
dD are n× n matrices. Calculations on dual numbers, vectors
and matrices are done by treating the expressions as polynomials
in ε, and using ε2 = 0.

Duality can be applied in linearization. In this article, we will
in particular use this by defining dual matrices, where the real
part is a zero-order term and the dual part is a first-order term.
Then, the product of two dual matrices will have a real part
which is of order zero, and a dual part which is of order one.

In this article, we define elastic coordinates and velocities
as dual parts. Then, the products of elastic coordinates and
velocities vanish from the equations, after each multiplication
operation during the model derivation. For example, let p̂1 =
r1 + εe1 and p̂2 = r2 + εe2 be some position vectors given in
the dual from, where ri is the rigid displacement, and ei is the
elastic deformation. Then, the product of those two terms is
found as p̂1p̂2 = r1r2 + ε(r1e2 + e1r2), which is linear in ei
as the term ε2e1e2 is vanished.

B. Matrix Lie Groups

Consider a matrix Lie groupG ⊂ GL(n,R), whereGL(n,R)
is the linear group of invertiblen× nmatrices with real elements
[16], [33]. Then, if G, Ḡ ∈ G, it follows that GḠ ∈ G, and
there is an inverse G−1 ∈ G so that GG−1 = I ∈ G, where I
is the identity matrix of the appropriate dimension. Let U be
an element of the associated Lie algebra g ⊂ M(n,R), where
M(n,R) is the algebra of n× nmatrices with real elements. Let
U ∈ g be the logarithm of G, which means that G = exp(U).
The logarithmic map is the inverse map of the exponential map,
and gives U = log(G). The logarithm U can be represented by
the vector u ∈ Rn. The conversion between U ∈ g and u ∈ Rn

is done with the notation U = [u]∧ and u = [U]∨ .
Let A,B be elements of the Lie algebra g, and let a = [A]∨,

b = [B]∨ be the vector representations. Then, the adjoint map
Ad(G) is defined by [Ad(G)b]∧ = GBG−1. The adjoint
operatorad(a) is defined by [ad(a)b]∧ = [A,B], where [A,B]
is the Lie bracket.

The time derivative of a Lie group element G ∈ G is given
by Ġ = VlG = GVr, where Vl ∈ g is the left velocity [33],
which is also called the spatial velocity [18], and Vr ∈ g is the
right velocity, which is also called the body velocity. The corre-
sponding velocity vectors vl = [Vl]

∨ ∈ Rn and vr = [Vr]
∨ ∈

Rn are vl = Ψl(ad(u))u̇ and vr = Ψr(ad(u))u̇, where Ψl is
the left Jacobian and Ψr is the right Jacobian of G [34].

The well-established matrix Lie groups used in robotics are
SO(3) and SE(3), which are discussed in, e.g., [16], [19], and
[34].

C. Twists and Screw Transformations

The displacement of Frame b relative to Frame a is described
by the homogeneous transformation matrix Ta

b ∈ SE(3) [17].
The time derivative of the homogeneous transformation matrix
is given by Ṫa

b = [taab/a]
∧Ta

b = Ta
b [t

b
ab/b]

∧, where [taab/a]
∧ ∈

se(3) is the left velocity, and [tbab/b]
∧ ∈ se(3) is the right velocity.

The transformation from the right to the left velocity is given by
[taab/a]

∧ = Ta
b [t

b
ab/b]

∧(Ta
b )

−1. The left and right velocities can

be represented by the twist vectors taab/a ∈ R6 and tbab/b ∈ R6

from a to b, which transform according to tbab/b = Ad(Ta
b )t

b
ab/b,

where Ad(Ta
b ) is a matrix representation of the adjoint map in
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SE(3). A twist vector is in general given by [34]

tiab/r =

[
ωi

ab

vi
ab/r

]
∈ R6 (1)

where ωi
ab is the angular velocity of b relative to a, and vi

ab/r is
the velocity of b relative to a referenced to r. The superscript i
indicated that the vectors are given in the coordinates of Frame
i.

The twist vector is a screw [32], [34], which satisfies the screw
transformation

tiab/r = Vij
rst

j
ab/s (2)

with the screw transformation matrixVij
rs = R̄i

jU
j
rs. This trans-

formation involves a change of coordinates, which is due to

R̄i
j =

[
Ri

j 0

0 Ri
j

]
∈ R6×6 (3)

and a change of the reference point, which is due to

Uj
rs =

[
I 0

pj×
rs I

]
∈ R6×6 (4)

where pj
rs is a vector from r to s given in the coordinates of

Frame j. It is straightforward to verify that the twists of the
composite displacement Ta

c = Ta
bT

b
c can be added according

to [25]

tiac/r = tiab/r + tibc/r (5)

under the condition that the twists are referenced to the same
point r, and are given in the coordinates of the same Frame i.

D. Wrenches

A wrench is a screw representation of forces and torques
acting on a rigid body [32], [35]. The wrench with a line of
action through the origin of Frame j, referenced to j and given
in the coordinates of j is given as

wj
j/j =

[
f jj
nj
j/j

]
∈ R6 (6)

where f jj is a force acting at the origin of Frame j and nj
j/j

is a torque acting on Link j, both given in the coordinates
of j. A wrench is a screw and it satisfies screw transforma-
tions. The wrench (6) can be referenced to the COG (center
of gravity) of link i and expressed in the coordinates of i as
wi

j/mi
= Vi,j

mi,j
wj

j/j .

E. Projection Matrices for Rigid Manipulators

Consider two Frames j − 1 and j that are fixed in two robotic
links connected by a 1-DOF revolute joint. Let the direction
vector of the joint be the unit vector ajj through the origin of
Frame j. Then, the line through the joint axis referenced to the
origin of Frame jwill be Lj

j/j = [(ajj)
T 0T]T, where the moment

is zero since the line passes through the reference point. The twist
of the link displacement Tj−1

j can be given in terms of Lj
j/j as

tjj−1,j/j = Lj
j/juj , whereuj = q̇j is the generalized speed of the

rotation in Joint j [25], [26].
The line Lj

j/j can be referenced to the COG of any subse-

quent Link i and expressed in the coordinates of i as Li
j/mi

=

Vi,j
mi,j

Lj
j/j . Then, the twist of Link i relative to the inertial frame,

referenced to the COG of Link i and expressed in the coordinates
of i can be given as ti0i/mi

= Piu, where u = [u1 . . . un]
T is a

vector of generalized speeds [11] and the projection matrix [25],
[26], [28] is given by

Pi =
[
Li
1/mi

. . . Li
i/mi

06×(n−i)

]
. (7)

The projection matrix (7) have two main functions in the deriva-
tion of the equations of motion. First, it serves as a geometric
Jacobian [34], which maps the robot joint space velocities into
Cartesian velocities of the point mi and angular velocities of
Link i. Second, it serves as an operator for projecting the external
and inertial wrenches on the direction of the joint lines. In
the following sections of this article, we will introduce the
Jacobian form and the projecting form of projection matrices,
which are different in the case of linearized dynamics of flexible
manipulators.

III. LINEARIZED KINEMATICS OF FLEXIBLE MANIPULATORS

IN TERMS OF DUAL SCREWS

In this section, we present a novel derivation procedure for
linearized kinematics of flexible manipulators, where the equa-
tions include only the first-order effects of elastic deflections and
velocities. This includes the introduction of two Lie Groups: the
group of dual rotation matrices and the group of dual homo-
geneous transformations matrices. The group velocity for the
group of dual homogeneous transformation matrices is derived
as a dual twist, which can be given in terms of dual screws.

The development of this section starts with the introduction
of the Lie groups. At this stage, the Lie groups are given as
mathematical objects without any particular reference to flexible
manipulators. Then, the concepts of dual rotation and dual ho-
mogeneous transformation matrices with application to flexible
manipulators are first introduced in the dual matrix form. Later
it is demonstrate that dual rotation and dual homogeneous trans-
formation matrices can alternatively be represented as members
of the proposed Lie groups, that is matrices in the dual form
are represented by real matrices which allows using basic linear
algebra for the derivations. In addition, Lie algebras associated
with the proposed Lie groups are derived in both vector and
matrix forms, which are also used in the derivations.

We consider serial link manipulators with elastic links. The
elastic links are described as Euler–Bernoulli beams with the as-
sumed mode approach, where elastic deformations are modeled
by a set of eigenmodes for a constrained beam with clamped-free
or clamped-mass boundary conditions [7].
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A. Definition of the Matrix Lie Group G1

Consider the matrix Lie group G1, where the group element
is given as

X =

[
A 0

θ×A A

]
∈ R6×6 (8)

where A ∈ SO(3) and θ× ∈ R3×3 is skew-symmetric. The no-
tation X = (A,θ×A) ∈ G1 will also be used for the group
element in (8). Let X1 = (A1,θ

×
1A1) and X2 = (A2,θ

×
2A2)

be elements of G1. The group operation is matrix multipli-
cation and the product is given by X1X2 = (A1A2, (θ

×
1 +

A1θ
×
2A

T
1 )A1A2) ∈ G1. The inverse of a group element

is X−1 = (AT,−(ATθ×A)AT) ∈ G1 and XI = X−1X =
(I,0) ∈ G1 is the identity element of the group, which means
that XXI = XIX = X. The derivative of (8) with respect to
time is given by

Ẋ = X[ω̂]∧ (9)

where the right velocity

[ω̂]∧ = X−1Ẋ =

[
ω× 0

(ATθ̇)× ω×

]
∈ R6×6 (10)

is in Lie algebra g1, ω× = ATȦ and (ATθ̇)× = ATθ̇
×
A.

From (10), it is seen that a vector representation of [ω̂]∧ is

ω̂ =

[
ω

ATθ̇

]
∈ R6. (11)

From

Xω̂t∧ =

[
Aω

θ×Aω + θ̇

]∧
=

[
Aω×AT 0

[θ×Aω]× + θ̇
×

Aω×AT

]

and (a×b)× = a×b× − b×a× it is then straightforward to verify
that [Xω̂]∧ = X[ω̂]∧X−1, and it follows that the adjoint map on
G1 is

[AdG1
(X)ω̂]∧ = X[ω̂]∧X−1 (12)

where AdG1
(X) = X.

Consider the two matrices

[â]∧ =

[
a×1 0

a×2 a×1

]
∈ g1, [b̂]

∧ =

[
b×
1 0

b×
2 b×

1

]
∈ g1

and let â = [aT1 aT2 ]
T ∈ R6 and b̂ = [bT

1 bT
2 ]

T ∈ R6 be the
corresponding vectors. The following property is verified by
direct computation

[â]∧b̂ = −[b̂]∧â =

[
a×1 b1

a×1 b2 + a×2 b1

]
. (13)

As well-established Lie groups used in robotics (SO(3) and
SE(3)), the group G1 has the exponential and logarithmic maps.
Although these maps are not directly used in this article, they
are still derived for the sake of generality in Appendix A.

It is noted that the Lie group G1 has the same structure as the
adjoint representation of SE(3). The difference will however

become more apparent later in this article, where the group will
be used as a dual rotation matrix for coordinate transformation
of dual vectors. Then, the vector θ is a rotation angle between
two frames, rather than a distance vector in SE(3). Then, the
derivations and expressions in this chapter obtain a new kine-
matic interpretation and, therefore, are presented. Equivalent
derivations for the adjoint representation of SE(3) are given in
[34]. It is also noted that the R4×4 representation of G1 cannot
be interpreted as the Euclidean transformation since the vector
θ is an angle.

B. Definition of the Matrix Lie Group G2

Consider the matrix Lie group G2, where the group element
is given as

Y =

[
X v̂

0T 1

]
∈ R7×7 (14)

where X ∈ G1 and v̂ ∈ R6. The notation Y = (X, v̂) ∈
G2 will also be used. Let Y1 = (X1, v̂1) ∈ G2 and Y2 =
(X2, v̂2) ∈ G2 be elements of G2. Then, the product is
given by Y1Y2 = (X1X2, v̂1 +X1v̂2) ∈ G2. The inverse is
Y−1 = (X−1,−X−1v̂) ∈ G2 and Y−1Y = (XI ,0) = YI ∈
G2, whereYI is the identity element of the group, which satisfies
YYI = YIY = Y.

The time derivative of the group element (14) is given by

Ẏ = Y[̂t]∧ (15)

where the right velocity is [̂t]∧ = Y−1Ẏ, which gives

[̂t]
∧
=

[
X−1Ẋ X−1 ˙̂v

0T 0

]
=

[
[ω̂]∧ X−1 ˙̂v

0T 0

]
∈ R7×7 (16)

which is in the Lie algebra g2. A vector representation of the
right velocity is

t̂ =

[
ω̂

X−1 ˙̂v

]
∈ R12 (17)

where the notation [[̂t]∧]∨ = t̂ will also be used. The adjoint map
AdG2

(Y), which satisfies

[AdG2
(Y)̂t]∧ = Y[̂t]∧Y−1 (18)

is given by

AdG2
(Y) =

[
X 0

[v̂]∧X X

]
∈ R12×12. (19)

This is verified from

AdG2
(Y)̂t =

[
Xω̂

[v̂]∧Xω̂ + ˙̂v

]
(20)

and

Y[̂t]∧Y−1 =

[
X[ω̂]∧X−1 −X[ω̂]∧X−1v̂ + ˙̂v

0T 0

]
(21)

in combination with (12) and [v̂]∧Xω̂ = −[Xω̂]∧v̂, which
follows from (13).
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Fig. 1. Two flexible robotic links connected by a 1-DOF rotational joint:
undeformed shapes is shown in grey and deformed - in black.

Similarly as for G1, the group G2 has the exponential and
logarithmic maps, which are not directly used in this article,
they are also derived for the sake of generality in Appendix A.

C. Linearized Dual Rotation Matrices

Consider an elastic robotic link given in Fig. 1. Define the
orthogonal rotation matrix Rj

j′ ∈ SO(3) from the body-fixed
Frame j attached at the controlled end of Link j to the body-fixed
Frame j′ attached to the distal end of Link j. The rotation matrix
given in terms of the angle-axis parameters (θj′ ,k

j
j′) is [17]

Rj
j′ = I+ sin(θj′)k

j×
j′ + (1− cos(θj′))k

j×
j′ k

j×
j′ . (22)

It is assumed that the elastic deformations are small θj′ → 0,
and therefore a first-order approximation of the rotation matrix
will be used. This leads to sin(θj′) → θj′ , cos(θj′) → 1, and
linearization of (22) gives R̃j

j′ = I+ θj′k
j×
j′ . Assume that this

linear rotation matrix is given as a product of three consecutive
linearized rotations about the xj , yj , and zj axes as

R̃j
j′ = (I+ θx,j′x

×
j )(I+ θy,j′y

×
j )(I+ θz,j′z

×
j )

= I+ θx,j′x
×
j + θy,j′y

×
j + θz,j′z

×
j + h.o.t

= I+ θj×j′ + h.o.t (23)

where θjj′ = [θx,j′ θy,j′ θz,j′ ]
T and the skew-symmetric form

is θj×j′ ∈ so(3). A similar approximation of the rotation matrix
was given in [36]. The higher order terms (h.o.t) in (23) can be
omitted, and the linearized rotation matrix can be formulated as
a dual matrix

R̂j
j′ = I+ εθj×j′ (24)

where the zero-order term I ∈ SO(3) is the real part, the first-
order term θj×j′ is the dual part. The inverse of the rotation matrix

will have the angle-axis parameters (−θj′ ,kj
j′), and it follows

that the first-order approximation of the inverse is

(R̂j
j′)

−1 = I− εθj×j′ = (R̂j
j′)

T. (25)

It is noted that

(I+ εθj×j′ )(I− εθj×j′ ) = I− ε2(θj×j′ )
2 = I. (26)

The time derivative of the rotation matrix and its first-order
approximation is given by

˙̂R
j

j′ = (I+ εθj×j′ )εθ̇
j×
j′ = εθ̇

j×
j′ = εωj×

j,j′ (27)

where θ̇
j

j′ = ω
j
j,j′ . The first-order vector εωj

j,j′ can be expressed
in the coordinates of j ′ as

εωj′
j,j′ = R̂j′

j εω
j
j,j′ = (I− εθj×j′ )εω

j
j,j′ = εωj

j,j′ (28)

which leads to the first-order approximationωj′
j,j′ = ω

j
j,j′ . Sim-

ilarly, the first-order vector εθjj′ can be expressed in the coordi-
nates of j′ as

εθj
′

j′ = R̂j′
j εθ

j
j′ = (I− εθj×j′ )εθ

j
j′ = εθjj′ (29)

which leads to another first-order approximation θj
′×

j′ = θj×j′ .
This elastic deflection can be combined with rigid motion

described with the second dual rotation matrix R̂j′
i = Rj′

i from
j ′ to i, where i is a frame fixed at the controlled end of Link
i, which is attached to Link j through a single-DOF rotational
joint. The dual rotation matrix from j to i is then given as

R̂j
i = R̂j

j′R̂
j′
i = Rj′

i + εθj
′×

j′ Rj′
i (30)

where (29) is used and θj
′×

j′ Rj′
i ∈ T

Rj′
i

SO(3).

D. Linearized Dual Rotation Matrices as Elements of G1

The dual composite rotation matrix R̂j
i can be given as

[R̂j
i ] = [R̂j

j′ ][R̂
j′
i ] =

[
Rj′

i 0

θj
′×

j′ Rj′
i Rj′

i

]
∈ G1. (31)

It is noted that [R̂j
i ]
−1 �= [R̂j

i ]
T and for a general dual rota-

tion matrix R̂j
i ∈ G1 the following holds [R̂j

i ]
−1 = [R̂i

j ]. The
inverse of (31) is given as

[R̂j
i ]
−1

=

[
(Rj′

i )
T 0

−(Rj′
i )

Tθj
′×

j′ (Rj′
i )

T

]
(32)

and the time derivative of (31) is given as

[ ˙̂R
j

i ] =

[
Ṙj′

i 0

θ̇
j′×
j′ Rj′

i + θj
′×

j′ Ṙj′
i Ṙj′

i

]
. (33)

The right velocity (10) for the dual rotation matrix (31) is found
as

[ω̂i
ji]

∧ = [R̂j
i ]
−1[ ˙̂R

j

i ] =

[
ωi×

j′,i 0

ωi×
j,j′ ωi×

j′,i

]
. (34)

The right velocity (34) can be given in a vector form as

ω̂i
ji =

[
ωi

j′,i

ωi
j,j′

]
(35)
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which corresponds to the dual form ω̂i
ji = ω

i
j′,i + εωi

j,j′ , where
the real term is of order zero and the dual term is of order one
in θj

′
j′ or θ̇

j′

j′ . Denote the real term as rωi
ji = ω

i
j′,i and the dual

term as dωi
ji = ω

i
j,j′ , then (35) can alternatively be written

ω̂i
ji =

[
rωi

ji
dωi

ji

]
. (36)

E. Coordinate Transformation of Dual Vectors

Consider the dual vector from the origin of Frame i to some
point ai fixed in Link i given in the coordinates of i as âii,ai

=

rii,ai
+ εdi

i,ai
. The real term rii,ai

is of order zero and the dual
term di

i,ai
is of order one in di

i,ai
. The term di

i,ai
describes the

displacement due to elastic deformations, which are assumed to
be small. The dual vector âii,ai

can be given in R6 as

âii,ai
=

[
rii,ai

di
i,ai

]
∈ R6 (37)

and can be given in a matrix form as

[â]∧ =

[
ri×i,ai

0

di×
i,ai

ri×i,ai

]
∈ g1. (38)

The vector (37) can be expressed in the coordinates of j as

âji,ai
= [R̂j

i ]â
i
i,ai

=

[
Rj′

i r
i
i,ai

θj
′×

j′ Rj′
i r

i
i,ai

+Rj′
i d

i
i,ai

]
(39)

where R̂j
i is given by (31). The real term of (39) is of order

zero and the dual term is of order one in either θj
′

j′ or di
i,ai

. It is
straightforward to verify that the inverse transformation is

âii,ai
= [R̂j

i ]
−1âji,ai

(40)

where [R̂j
i ]
−1 is given by (32). Alternatively, the dual skew-

symmetric matrix (38) can be expressed in the coordinates of j
as

[[R̂j
i ]â

i
i,ai

]
∧
= [R̂j

i ][â
i
i,ai

]∧[R̂j
i ]
−1 (41)

which follows from (12) since [R̂j
i ] ∈ G1 and [âii,ai

]∧ ∈ g1.

F. Linearized Dual Homogeneous Transformation Matrices

Let T = (R,p) ∈ SE(3) be the pose of an undeformed elas-
tic link which has a body-fixed frame. Suppose that the link
has an elastic deflection, such that the elastic displacement and
rotation of the frame is described by the vector δ = [θT,dT]T,
so that the deflected pose is

Tδ = exp([δ]∧)T. (42)

If a first-order approximation of the elastic deflection is used,
then Tδ ∈ SE(3) is approximated by T̃δ = (I+ [δ]∧)T, which
is formulated in a dual form as

T̂ = T+ ε[δ]∧T =

[
R r

0T 1

]
+ ε

[
θ×R θ×r+ d

0T 0

]
(43)

where the real partT ∈ SE(3) is a homogeneous transformation
matrix, which is the rigid pose, and the dual part is the linearized
elastic deflection [δ]∧T ∈ TTSE(3). The matrix T̂ will be
referred to as a dual homogeneous transformation matrix in the
following. Let T̂1 = T1 + ε[δ1]

∧T1 and T̂2 = T2 + ε[δ2]
∧T2

be two dual homogeneous transformation matrices. Then, the
composite dual homogeneous transformation matrix will be

T̂1T̂2 = T1T2 + ε
(
[δ1]

∧ +T1[δ2]
∧T−1

1

)
T1T2. (44)

Consider the dual homogeneous transformation matrix T̂j
j′ from

j to j′ given as

T̂j
j′ =

[
I rjji
0T 1

]
+ ε

[
θj

′×
j′ dj

ji

0T 0

]
(45)

where (29) is used and the reference for the notations is made
to Fig. 1. The dual vector p̂j

ji = rjji + εdj
ji can alternatively be

expressed by a dual coordinate transformation

p̂j
ji = R̂j

j′ p̂
j′
ji = rj

′
ji + ε(θj

′×
j′ rj

′
ji + dj′

ji) (46)

then (45) can be written as

T̂j
j′ =

[
I rj

′
ji

0T 1

]
+ ε

[
θj

′×
j′ θj

′×
j′ rj

′
ji + dj′

ji

0T 0

]
. (47)

The dual homogeneous transformation matrix T̂j′
i from j ′ to i

is

T̂j′
i =

[
Rj′

i 0

0T 1

]
. (48)

Then, the dual homogeneous transformation matrix T̂j
i is found

from (45) and (48) to be

T̂j
i = T̂j

j′T̂
j′
i =

[
Rj′

i rjji
0T 1

]
+ ε

[
θj

′×
j′ Rj′

i dj
ji

0T 0

]
. (49)

G. Linearized Dual Homogeneous Transformation Matrices
as Elements of G2

Consider the dual homogeneous transformation matrix T̂j
i in

(49) given as [T̂j
i ] ∈ G2

[T̂j
i ] = [T̂j

j′ ][T̂
j′
i ] =

⎡
⎢⎣ Rj′

i 0 rjji
θj

′×
j′ Rj′

i Rj′
i dj

ji

0T 0T 1

⎤
⎥⎦ ∈ G2. (50)

The inverse of (50) is found to be

[T̂j
i ]
−1

=

⎡
⎢⎣ (Rj′

i )
T 0

−(Rj′
i )

Tθj
′×

j′ (Rj′
i )

T

0T 0T

−(Rj′
i )

Trjji
(Rj′

i )
Tθj

′×
j′ rjji − (Rj′

i )
Tdj

ji

1

⎤
⎥⎦ (51)
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and the time derivative is

[ ˙̂T
j

i ] =

⎡
⎢⎣

Ṙj′
i 0 vj

j′,i/i

ωj′×
j,j′R

j′
i + θj

′×
j′ Ṙj′

i Ṙj′
i vj

j,j′/i

0T 0T 0

⎤
⎥⎦ (52)

where the identity ωj′×
j,j′ = θ̇

j′×
j′ is used, see (27) and (28). The

Lie algebra [̂t
i

ji/i]
∧ = [T̂j

i ]
−1[ ˙̂T

j

i ] ∈ g2 is then

[̂t
i

ji/i]
∧ =

⎡
⎢⎣
ωi×

j′,i 0 vi
j′,i/i

ωi×
j,j′ ωi×

j′,i vi
j,j′/i

0T 0T 0

⎤
⎥⎦ ∈ g2 (53)

where the following dual coordinate transformation p̂i =
[R̂j

i ]
−1p̂j is used[
vi
j′,i/i

vi
j,j′/i

]
=

[
(Rj′

i )
Tvj

j′,i/i

−(Rj′
i )

Tθj
′×

j′ vj
j′,i/i + (Rj′

i )
Tvj

j,j′/i

]
. (54)

The Lie algebra (53) is alternatively written as

[̂t
i

ji/i]
∧ =

⎡
⎢⎣
rωi×

ji 0 rvi
ji/i

dωi×
ji

rωi×
ji

dvi
ji/i

0T 0T 0

⎤
⎥⎦ =

[
[ω̂i

ji]
∧ v̂i

ji/i

0T 0

]
(55)

which can be given in a vector form as a dual twist

t̂
i

ji/i =

[
ω̂i

ji

v̂i
ji/i

]
∈ R12 (56)

where ω̂i
ji = [(rωi

ji)
T (dωi

ji)
T]T and v̂i

ji/i =

[(rvi
ji/i)

T (dvi
ji/i)

T]T.

IV. LINEARIZED DIFFERENTIAL KINEMATICS

In this section, we propose a method where dual screws and
dual screw transformations are used to describe the differential
kinematics of flexible manipulators. All dual matrices in this
section are given in a matrix form, and Â notation will for
simplicity be used instead of [Â] notation as in previous sections.

A. Dual Twists of Rotary Joints and Dual
Screw Transformations

Consider the system given in Fig. 2 where the adjacent elastic
Links j − 1 and j are connected with Joint j, and Links j and
j + 1 are connected with Joint j + 1. Link j + 1 is referred to
as Link i and Joint j + 1 is referred to as Joint i to simplify the
notation. The rotary Joint j is a rotation from Frame (j − 1)′

fixed in the distal end of Link j − 1 to Frame j fixed in the
controlled end of Link j. The rotary Joint i is a rotation from
Frame j ′ fixed in the distal end of Link j to Frame i fixed in the
controlled end of Link i. The dual twist of the rigid motion due
to rotation in Joint j is found as in the rigid case given in [25]
to be

t̂
j

(j−1)′,j/j = L̂
j

j/juj (57)

Fig. 2. Elastic links j − 1, j, and j + 1 (where j + 1 is referred to as i for
simplicity) connected with rotary joints. The undeformed links j and i are shown
in gray, while the deformed links are shown in black.

where uj is the generalized speed of Joint j and the dual line of
Joint j is

L̂
j

j/j =

[
âjj

m̂j
j/j

]
∈ R12. (58)

The real parts of the dual line are rajj = [0 0 1]T and rmj
j/j = 0,

which are also the axis and the moment of the real line Lj
j/j

as given in Section II-E, while the dual parts are dajj = 0

and dmj
j/j = 0. The dual line (58) can be transformed to be

referenced to the origin of Frame j′ by

L̂
j

j/j′ = Ûj
j′,j L̂

j

j/j
(59)

where

Ûj
j′,j =

[
I6×6 0

[p̂j
j′,j ]

∧ I6×6

]
∈ R12×12 (60)

is a dual screw reference transformation matrix, which moves
the point of reference from j to j′, and [p̂j

j′,j ]
∧ is a matrix form

(38) of the dual vector p̂j
j′,j , which is given as

p̂j
j′,j =

[
rpj

j′,j
dpj

j′,j

]
∈ R6. (61)

Here, rpj
j′,j is a vector from j ′ to j when the link is undeformed,

and dpj
j′,j is a vector from j ′ in the deformed state to j ′ in the

undeformed state. This means that the total distance from j′ to
j in the deformed state is pj

j′,j =
rpj

j′,j +
dpj

j′,j .
The dual line (59) can be expressed in the coordinates of

Frame j′ by

L̂
j′

j/j′ =
ˆ̄R
j′

j L̂
j

j/j′
(62)

where

ˆ̄R
j′

j =

[
R̂j′

j 0

0 R̂j′
j

]
∈ R12×12 (63)
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is the dual screw coordinate transformation matrix, and R̂j′
j

is the dual rotation matrix. The dual line (62) can be further
transformed as

L̂
j′

j/i = Ûj′
i,j′ L̂

j′

j/j′ , L̂
i

j/i =
ˆ̄R
i

j′ L̂
j′

j/i, L̂
i

j/ie
= Ûi

ie,i
L̂
i

j/i

(64)
which gives a the dual line of Frame j, referenced to the origin
of Frame ie and expressed in the coordinates of Frame i. The
dual transformations (59), (62), and (64) can be generalized by
the dual screw transformation matrix

L̂
i

j/ie
= V̂i,j

ie,j
L̂
j

j/j
(65)

where

V̂i,j
ie,j

= Ûi
ie,i

ˆ̄R
i

j′Û
j′
i,j′

ˆ̄R
j′

j Û
j
j′,j .

(66)

Then, the dual twist of Frame j relative to Frame (j − 1)′, refer-
ence to the origin of Frame ie and expressed in the coordinates

of i can be given as t̂
i

(j−1)′,j/ie = L̂
i

j/ie
uj .

B. Dual Twists Due to Elastic Deformation

The dual twist of Frame j ′ relative to Frame j due to elastic
deformation, referenced to j′ and expressed in the coordinates
of j is given as

t̂
j

j,j′/j′ = Ŝj
j′/j′u

bj (67)

where ubj = [ubj1 . . . ubjn ]T is the vector of generalized speeds
associated with elastic motion of Link j, and

Ŝj
j′/j′ = Êj

j/jΨj′ (68)

is the dual screw matrix, which is given as a product of the dual
screw basis

Êj
j/j = N

[
L̂
j

xj/j
n L̂

j

yj/j
n L̂zj/jn N̂

j

xj/j
n

N̂
j

yj/j
n N̂

j

zj/j
n
]

(69)

and the matrix of assumed mode shape functions Ψj′ evaluated
at the origin of Frame j′. The dimensions of n = [1 . . . 1] in
(69) depend on the number of assumed modes as given by Ψj′ .
The auxiliary matrix N interchanges the real and dual parts of
the vectors in a screw, and it is defined as

N =

[
Π 0

0 Π

]
, Π =

[
0 I

I 0

]
∈ R6×6 (70)

where it is noted that N2 = I. For an elastic link, where only
flexural and torsional elasticity is taken into account, Ψj′ can be
given as

Ψj′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψjx(Lj) 0 0

0 0 ψ′
jz(Lj)

0 ψ′
jy(Lj) 0

0 0 0

0 ψjy(Lj) 0

0 0 ψjz(Lj)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(71)

where (·)′ notation refers to a partial derivative with respect to the
spatial coordinate, ψj·(Lj) = diag[ψj·,1(Lj) . . . ψj·,n(Lj)],

where n is a number of assumed modes. The dual lines L̂
j

·/j
and dual screws N̂

j

·/j in (69) have zero dual parts

L̂
j

xj/j
=
[
1 0 0 01×3 0 0 0 01×3

]T
L̂
j

yj/j
=
[
0 1 0 01×3 0 0 0 01×3

]T
L̂
j

zj/j
=
[
0 0 1 01×3 0 0 0 01×3

]T
N̂

j

xj/j
=
[
0 0 0 01×3 1 0 0 01×3

]T
N̂

j

yj/j
=
[
0 0 0 01×3 0 1 0 01×3

]T
N̂

j

zj/j
=
[
0 0 0 01×3 0 0 1 01×3

]T
. (72)

It is noted that assigning the coordinate axes directions to the real
parts in (72) is a convention we use for the given notation. In fact,
velocities associated with the elastic deformations should be
defined as dual parts in (68). Therefore, N matrix is introduced
in (69) to interchange the real and dual parts. Since all columns
of (69) are dual screws, and Ψj′ are scalar values of functions
evaluated at the defined point, it follows that the columns of
the dual screw matrix Ŝj

j′/j′ are dual screws, which means that
the matrix satisfies dual screw transformations. The dual screw
matrix (68) can be transformed to be referenced to the origin of
Frame ie and expressed in the coordinates of i as

Ŝi
j′/ie = V̂i,j

ie,j′ Ŝ
j
j′/j′ (73)

then the dual twist of Frame j′ relative to Frame j, reference to
the origin of Frame ie and expressed in the coordinates of i can

be given as t̂
i

j,j′/ie = Ŝi
j′/ieu

bj .

Consider the dual twist t̂
i

(j−1)′,ie/ie of Frame ie relative to
Frame (j − 1)′, referenced to the origin of Frame ie and given
in the coordinates of i. This will include the rigid motion due

to rotation in Joints j and i, given by the twists t̂
i

(j−1)′,j/ie and

t̂
i

j′,i/ie which are referenced to the origin of Frame ie and given
in the coordinates of i. In addition, this will include the elastic
motion between Frames j and j′ described by t̂

i

j,j′/ie , and the

elastic motion between Frames i and ie described by t̂
i

i,ie/ie
, both

referenced to the origin of Frame ie and given in the coordinates

of i. Then, the dual twist t̂
i

(j−1)′,ie/ie can be found as a sum

t̂
i

(j−1)′,ie/ie = t̂
i

(j−1)′,j/ie + t̂
i

j,j′/ie + t̂
i

j′,i/ie + t̂
i

i,ie/ie

= L̂
i

j/ie
uj + Ŝi

j′/ieu
bj + L̂

i

i/ie
ui + Ŝi

ie/ie
ubi

(74)

where L̂
i

j/ie
is given by (65), Ŝi

j′/ie is given by (73), L̂
i

i/ie
can

be found in a similar manner as L̂
i

j/ie
, and Ŝi

ie/ie
is given as

Ŝi
ie/ie

= Êi
i/iΨie (75)
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where the dual basis Êi
i/i is defined as (69). The matrix of

assumed mode functions of Link i Ψie is defined as in (71)
and the assumed mode functions are evaluated at the origin of
Frame ie. It is straightforward to extend this procedure for a

case of t̂
i

0,ie/ie
, which is a dual twist of Frame ie fixed in Link

i relative to the inertial frame, reference to ie and given in the
coordinates of i. This will be done in the next section.

C. Derivatives of Dual Lines and Dual Screws

The time derivative of a dual line is given as an extension of the
time derivative of a real line [25]. The geometric differentiation
procedure given in this section is more computationally efficient
for symbolic expressions than using the build-in differentiation
commands in Matlab and the chain rule. The comparison of the
calculation times is given in Section VI. The time derivative of
the dual line of Joint j referenced to the point ai on Link i and
expressed in the coordinates of i (see Fig. 3) can be expressed
in terms of the dual line as

˙̂Li
j/ai

= [ˆ̄di
ji]L̂

i

j/ai
(76)

where

[ˆ̄di
ji] =

[
[ω̂i

ij ]
∧ 0

−[υ̂i
ai,j

]∧ [ω̂i
ij ]

∧

]
∈ R12×12 (77)

will be referred to as the dual differentiation operator, and υ̂i
ai,j

will be referred to as the auxiliary dual velocity vector, which is
given as

υ̂i
ai,j

= v̂i
i,ai

, for i = j

υ̂i
ai,j

= [ω̂i
ij ]

∧p̂i
ai,i

+ v̂i
i,ai

+

i−j∑
k=1

[
[ω̂i

(i−k)′,j ]
∧p̂i

i−k+1,(i−k)′

]

+ v̂i
j,j′ , for i = j + 1

υ̂i
ai,j

= [ω̂i
ij ]

∧p̂i
ai,i

+ v̂i
i,ai

+

i−j−1∑
k=1

[
[ω̂i

i−k,j ]
∧p̂i

(i−k)′,i−k

+ v̂i
i−k,(i−k)′

]
+

i−j∑
k=1

[
[ω̂i

(i−k)′,j ]
∧p̂i

i−k+1,(i−k)′

]

+ v̂i
j,j′ , for i ≥ j + 2.

(78)
It is noted that if Link i is rigid, then ω̂k

i′,j = ω̂
k
i,j , which means

that the rotation of the frames at the start and the end of the link
is the same.

The derivative of the dual screw matrix with respect to time
can be expressed in terms of the dual screw matrix as

˙̂
Si
j′/ai

= [ˆ̄di
ji]Ŝ

i
j′/ai

. (79)

In this case, the dual differentiation operator [ˆ̄d
i

ji] is given by
(77) with the term v̂i

j,j′ in (78) being equal to zero.

Fig. 3. Frame numbering convention for calculation of the dual line derivative.

D. Dual Wrenches

A dual wrench is a dual screw representation of forces and
torques, which is an extension of (6). Consider a dual wrench

ŵj
j/j =

[
f̂ jj
n̂j
j/j

]
(80)

which can alternatively be given as

ŵj
j/j = L̂j

j/jρr (81)

where the matrix L̂j
j/j is a dual screw basis, which is given as

L̂j
j/j =

[
L̂
j

xj/j
L̂
j

yj/j
L̂
j

zj/j
N̂

j

xj/j
N̂

j

yj/j
N̂

j

zj/j

]
(82)

and ρr is a vector of magnitudes of forces and torques given as

ρr =
[
ρf1 ρf2 ρf3 ρm1 ρm2 ρm3

]T
. (83)

The dual lines and screws corresponding to the directions of
coordinate frame axes in (82) are given by (72).

The dual screw basis (82) can be transformed to be referenced
to the point ai on Link i and expressed in the coordinates of i as

L̂i
j/ai

= V̂i,j
ai,j

L̂j
j/j (84)

where the dual screw transformation matrix is defined in a
similar manner as in (66). The dual wrench ŵi

j/ai
referenced

to the point ai and expressed in the coordinates of i can then be
given as

ŵi
j/ai

= L̂i
j/ai

ρr. (85)

In this article, application of dual screw transformations on dual
wrenches is limited to coordinate transformations only.

V. LINEARIZED DYNAMICS

In this section, we use the proposed kinematic formulation to
derive the linearized equations of motion for a flexible robotic
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manipulator. This is based on Kane’s method [11] where dual
projection matrices are used to represent the partial velocities.
The model is based on linear elastic kinematics, where the linear
Euler–Bernoulli beam model and engineering theory of torsion
is used. The final equations of motion are derived such that they
include the terms up to the order.

1) O(‖qe‖‖qr‖‖q̈e‖), O(‖qe‖‖qr‖‖q̈r‖), which stem from
the mass matrix.

2) O(‖qe‖‖qnr ‖‖q̇2r‖), O(‖qnr ‖‖q̇r‖‖q̇e‖), which stem from
the Coriolis and centrifugal force matrix, and n is any
power of a rigid coordinate.

3) O(‖qe‖‖qnr ‖), which stem from the vector of gravity
forces.

4) O(‖qe‖), which stem from the stiffness matrix.
In this definition of the order, we have used symbolic notation

of qr for rigid DOF and qe for elastic DOF. It is noted the order
above is defined for the final terms obtained by multiplication
of the system matrices with the vectors of generalized accelera-
tions, speeds, or coordinates.

The discussion on the necessity of inclusion of the higher
order terms in a model based on linear elastic kinematics will
be addressed in Section VI.

The model is similar to the standard models used in majority
of dynamic codes and software [37]. Such models can give
sufficiently accurate simulation results for flexible manipulators
with slower actuation and smaller end-effector load. In the case
when a manipulator is exposed to high velocities, accelerations
or end-effector loads, the so-called effect of dynamic stiffening
needs to be introduced to the equations of motion [36], [37].
In this article, we consider slower manipulators where dynamic
stiffening effects can be neglected.

Often the dynamical models presented in the literature are
linearized to a certain order. A good discussion on type of
nonlinearities was given in [36]. However, what is common for
linearized models is that: first, the nonlinear model is derived
and, then, linearized to a desired order [30]. Some methods
suggest that linearization can be done in several steps during
the derivation, e.g., [15]. In this article, we propose a procedure,
where both kinematic and dynamic expressions are linear to a
given above order at each step of derivation.

A. Dual Projection Matrices

Consider an open-chain robotic manipulator consisting of nq
links, where some of the links are assumed to be rigid, and
some are assumed to be elastic. The configuration space of the
manipulator is defined by the vector of generalized coordinates

q =
[
q1 . . . qnq

(qbk)T (qb,k+1)T . . .
]T

(86)

where qi are rigid rotations in the joints, qbk = [ qbk1 . . . qbknk ]
T

are the elastic coordinates of elastic Link k (which is the first
elastic link in the chain), andnk is the number of assumed modes
for Link k. The corresponding vector of generalized speeds is
given as

u =
[
u1 . . . unq

(ubk)T (ub,k+1)T . . .
]T

(87)

where ui = q̇i. The dual line of Joint j referenced to the point
ai on Link i and expressed in the coordinates of i is

L̂
i

j/ai
= V̂i,j

ai,j
L̂
j

j/j . (88)

The dual screw matrix of Frame j′ referenced to the point ai on
Link i and expressed in the coordinates of i is

Ŝi
j′/ai

= V̂i,j
ai,j′ Ŝ

j
j′/j′ . (89)

The dual twist of Link i relative to the inertial frame, referenced
to the point ai on Link i and expressed in the coordinates of i
can be given as a sum

t̂
i

0i/mi
=

i∑
j=1

L̂
i

j/mi
uj +

i−1∑
j=1

Ŝi
j′/mi

ubj , if Link i is rigid

t̂
i

0i/ie
=

i∑
j=1

L̂
i

j/ie
uj +

i−1∑
j=1

Ŝi
j′/ieu

bj + Ŝi
ie/ie

ubi

if Link i is elastic
(90)

where ubi = [ubi1 . . . ubini ]
T. The dual twist (90) can be alter-

natively given in terms of the Jacobian form of the projection
matrix P̂i as

t̂
i

0i/ai
= P̂iu (91)

where ai is the COG point mi for a rigid link and the origin of
Frame ie for an elastic link. The projection matrix P̂i for Link
i is defined as

P̂i =
[
L̂
i

1/mi
. . . L̂

i

i/mi
012×(nq−i) Ŝ

i
1′/mi

. . .

Ŝi
(i−1)′/mi

012×...

]
, if Link i is rigid,

P̂i =
[
L̂
i

1/ie
. . . L̂

i

i/ie
012×(nq−i) Ŝ

i
1′/ie . . .

Ŝi
ie/ie

012×...

]
, if Link i is elastic (92)

where nq is a number of links.
In addition to the Jacobian form of the dual projection ma-

trix (92), we define the projecting form of the dual projection
matrix, which serves as a projection operator of wrenches on
the directions of generalized speeds. The projecting form of the
dual projection matrix for Link i is defined as

P̆i =
[
L̂
i

1/mi
. . . L̂

i

i/mi
012×(nq−i) S̆

i
1′/mi

. . .

S̆i
(i−1)′/mi

012×...

]
, if Link i is rigid

P̆i =
[
L̂
i

1/ie
. . . L̂

i

i/ie
012×(nq−i) S̆

i
1′/ie . . .

S̆i
ie/ie

012×...

]
, if Link i is elastic

(93)

where

S̆i
j′/ie = V̂i,j

ie,j′ S̆
j
j′/j′ (94)

and

S̆j
j′/j′ = Ĕj

j/jΨj′ , S̆i
ie/ie

= Ĕi
i/iΨie . (95)
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The dual screw basis matrix in this case is Ĕi
i/i = NÊi

i/i, where

Êi
i/i is given by (69) and N is given by (70).
The derivative of the twist (91) is given as

˙̂ti0i/ai
= P̆iu̇+ ˙̂Piu (96)

where the time derivative of the projection matrix is found by
the time differentiation of the dual lines and screws contained in
it, while the time derivation procedure for dual lines and screws
is discussed in Section IV-C.

B. Dynamics

1) Rigid Links: The equation of motion of a rigid Link i can
be derived using the Newton–Euler approach[

Mi
iω̇

i
0i + ω

i×
0iM

i
iω

i
0i −

∑
k n

i
bk/mi

mi[v̇
i
0i/mi

+ ωi×
0i v

i
0i/mi

]− f
i(g)
mi

]
− Fc = 0 (97)

where vi
0i/mi

is the linear velocity of the COG of Link i relative

to the inertial frame,ωi
0i is the angular velocity of Link i relative

to the inertial frame, and Mi
i is the inertia tensor of Link i. The

external gravity force f
i(g)
mi is applied at the COG, and external

control torque ni
bk/mi

is applied at the point bk on Link i and
referenced to the COG of Link i. The vector Fc is a vector
of constraint forces and torques. All terms are given in the
coordinates of Frame i. Consider an alternative formulation of
the equation of motion (97), where the dual terms are used⎡
⎣M̂i

i
˙̂ω
i

0i + [ω̂i
0i]∧M̂

i
iω̂

i
0i −

∑
k În̂

i
bk/mi

mi[Î ˙̂v
i

0i/mi
+ [ω̂i

0i]∧Îv̂
i
0i/mi

]− Îf̂
i(g)
mi

⎤
⎦− F̂c = 0

(98)
where

M̂i
i =

[
Mi

i Mi
i

Mi
i 0

]
, Î =

[
I I

I 0

]
(99)

and

[ω̂i
0i]∧ =

[
rωi×

0i
dωi×

0i

0 rωi×
0i

]
(100)

which satisfies the identity Î[ω̂]∧ = [ω̂]∧Î. The equation of
motion (98) contains linearized form of equations (97) and, in
addition, the equations formed by only real parts of the terms.
The advantage of this formulation will become evident when
the linearized equation of motion of the whole system will be
derived.

The equation of motion (98) can alternatively be formulated
using the dual screw notations as

D̂ri
˙̂ti0i/mi

+ ŴriD̂rît
i

0i/mi

= Π̂

[
ŵi(g)

mi/mi
+
∑
k

ŵi
bk/mi

+
∑
k

ŵi(c)
ck/mi

]
(101)

where

D̂ri =

[
M̂i

i 0

0 miÎ

]
, Π̂ =

[
0 Î

Î 0

]
(102)

and

Ŵri =

[
[ω̂i

0i]∧ 0

0 [ω̂i
0i]∧

]
. (103)

The dual screw ŵi(g)
mi/mi

is the dual gravity wrench, ŵi
bk/mi

is

the dual control input wrench and ŵi(c)
ck/mi

is the dual wrench of
constraint forces.

2) Elastic Links: The equation of motion of an elastic Link
i is derived using the Newton–Euler approach

ρi

∫ Li

0

[
Ji
iω̇

i
0ie

+ Ji
iω

i×
0iω

i
0ie

+ ωi×
0ie

Ji
iω

i
0ie

Ai[v̇
i
0ie/ie

+ ωi×
0i v

i
0ie/ie

]−Aif
i(g)
ie

]
dx

+

∫ Li

0

[−∑b δ(x− pb)n
i
b,ie/ie

0

]
dx+ FK − Fc = 0

(104)
where vi

0i/ie
is the linear velocity of the origin of Frame ie

relative to the inertial frame, ωi
0ie

is the angular velocity of
Frame ie relative to the inertial frame. The terms Ai and Ji

i

are the area and the matrix of second moments of area of the
cross-section at ie. The term f

i(g)
ie

is the normalized external
gravity force, ni

b,ie/ie
is the control torque b applied at the point

pb. All terms are given in the coordinates of Frame i. The density
ρi of Link i material is assumed to be constant. The term δ(x)
is the Dirac delta function. The forces associated with potential
strain energy are denoted FK , and Fc are the forces and torques
of constraint. Consider again an alternative formulation of the
equation of motion (104), where the dual terms are used

ρi

∫ Li

0

⎡
⎣Ĵi

i
˙̂ω
i

0ie
+ Ĵi

i[ω̂
i
0i]

∧ω̂i
0ie

+ [ω̂i
0ie

]∧Ĵi
iω̂

i
0ie

Ai[Î ˙̂v
i

0ie/ie
+ Î[ω̂i

0i]
∧v̂i

0ie/ie
]−AiÎf

i(g)
ie

⎤
⎦ dx

+

∫ Li

0

[−∑b δ(x− pb)n̂
i
b,ie/ie

0

]
dx+ F̂K − F̂c = 0.

(105)
The equation of motion (105) can be formulated using the dual
screw notations as∫ Li

0

[
D̂ei

˙̂ti0ie/ie + D̂eiŴ
I
ei t̂

i

0ie/ie
+ ŴII

eiD̂eît
i

0ie/ie

]
dx

+ F̂K =

∫ Li

0

Π̂

[
ŵi(g)

ie/ie
+
∑
b

ŵi
b,ie/ie

+
∑
c

ŵi(c)
c,ie/ie

]
dx

(106)
where

Ĵi
i =

[
Ji
i Ji

i

Ji
i 0

]
, D̂ei =

[
ρiĴ

i
i 0

0 ρiAiÎ

]
(107)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON ROBOTICS

and

ŴI
ei =

[
[ω̂i

0i]
∧ 0

0 [ω̂i
0i]

∧

]
, ŴII

ei =

[
[ω̂i

0ie
]∧ 0

0 0

]
. (108)

3) Linearized Equation of Motion for the Whole System: In
further derivations of equations of motion (101) and (106), it
should be taken into account that product of two dual terms
d(·)d(·) is equal to zero due to ε2 = 0. This property again
leads to cancellation of all higher order terms associated with
the elastic displacements and velocities.

The linearized vector of generalized forces is formulated as
the following sum:

τ =
∑
i

P̆T
i Π̂

[
ŵi(g)

mi/mi
+
∑
k

ŵi
bk/mi

]

+
∑
j

∫ Lj

0

P̆T
j Π̂

[
ŵj(g)

je/je
+
∑
b

ŵj
b,je/je

]
dx (109)

where the wrenches of constraint are cancelled from the equa-
tion of motion due to D’Alembert’s principle. The linearized
equation of motion for the entire system is formulated as

∑
i

P̆T
i

[
D̂ri

˙̂t
i

0i/mi
+ ŴriD̂rît

i

0i/mi

]

+
∑
j

∫ Lj

0

P̆T
j

[
D̂ej

˙̂t
j

0je/je
+ D̂ejŴ

I
ej t̂

j

0je/je

+ ŴII
ejD̂ej t̂

j

0je/je

]
dx+Kq = τ . (110)

Substitution of (91) and (96) into (110) leads to the following
matrix formulation of the equation of motion:

Mu̇+Cu+Kq = τ (111)

where the mass matrix M, the centrifugal and Coriolis force
matrix C, and the stiffness matrix K are defined as

M =
∑
i

P̆T
i D̂riP̆i +

∑
j

∫ Lj

0

P̆T
j D̂ejP̆jdx

C =
∑
i

P̆T
i

[
D̂ri

˙̂Pi + ŴriD̂riP̂i

]

+
∑
j

∫ Lj

0

P̆T
j

[
D̂ej

˙̂Pj + D̂ejŴ
I
ejP̂j + ŴII

ejD̂ejP̂j

]
dx

K =
∑
j

∫ Lj

0

[
GjIxj(Θ

′
j,1)

TΘ′
j,1 + EjIyj(Θ

′
j,2)

TΘ′
j,2

+ EjIzj(Θ
′
j,3)

TΘ′
j,3

]
dx (112)

where Θ′
j,n = ∂(θ′j,n)/∂q.

The proposed modeling procedure is summed up in
Algorithm 1.

Algorithm 1: Modeling Procedure.
1: Define the vectors of generalized coordinates q (86)

and generalized speeds u (87)
2: Define geometric and mechanical parameters: link

lengths Li, COG distances di, link masses mi,
cross-section areas Ai, second moments of area Ii,
modulus of elasticity Ei and material density ρi

3: Define assumed deformation modes for elastic links
and define the matrices Ψj′ and Ψie (71)

4: Calculate the dual joint lines L̂
i

j/ie
(65) for all

manipulator links as well as the dual screw matrices
Ŝi
j′/ie (73) and Ŝi

i/ie
(75) for elastic links

5: Calculate derivatives of the dual lines and dual screw
matrices ˙̂Li

j/ai
(76) and ˙̂

Si
j′/ai

(79)

6: Formulate the dual projection matrices P̂i (92), P̆i

(93) and their time derivatives ˙̂Pi

7: Calculate the local dual inertia matrices D̂ri (102) and
D̂ei (107)

8: Calculate the auxiliary dual velocity matrices Ŵri

(103), ŴI
ei and ŴII

ei (108)
9: Formulate the system matrices M, C and K (112)

10: Define the dual wrenches of gravity, actuation and,
eventually, other external forces (85). See also the
wrench definitions in Section VI-A

11: Calculate the vector of generalized forces τ (109)
12: Formulate the equations of motion (111)

VI. IMPLEMENTATION EXAMPLE: 4-DOF MANIPULATOR

The goal of this section is to give a reader more details on how
the proposed method can be implemented. The discussion on
the best practices how the assumed modes and mass distribution
have to be selected is outside the scope of this work.

A. Modeling

Consider a robotic arm system given in Fig. 4. The open-chain
system consists of 4 links. Link 1 is modeled as a rigid body,
Link 2 and Link 3 are modeled as elastic bodies, and Links 4
is modeled as a rigid body. The joints between the links are
assumed to be rigid. Each Link i has a body-fixed Frame i at-
tached in the controlled end of the link. Elastic links additionally
have a body-fixed Frame i′ attached at the distal end of the link
and a body-fixed Frame ie attached at the point located at a
distance x from i along xi axis. The elasticity is modeled by
the Euler–Bernoulli beam model and the AMM, where elastic
axial elongation is neglected. Two modes are considered for
each type of vibrations, where the modes are derived using the
clamped-mass boundary conditions [7] for flexural modes and
clamped-free for torsional modes.

The vector of generalized coordinates (86) is given as

q =
[
q1 . . . q4 q

b2
1 . . . qb26 qb31 . . . qb36

]T (113)

where qi is a rigid-body rotation in Joint i, qbxi for i = 1, 2 are
the generalized coordinates for torsional oscillations, qbxi for
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Fig. 4. Frame notations for a 4-DOF robotic manipulator, where Links 1,4 are
rigid and Links 2,3 are elastic.

i = 3, 4 are the generalized coordinates for flexural oscillations
in xy plane and qbxi for i = 5, 6 are the generalized coordinates
for flexural oscillations in xz plane. The corresponding vector
of generalized speeds (87) is defined accordingly.

Consider that the dual rotation matrix

R̂ =

[
R1 0

R2 R1

]
(114)

can be alternatively represented as R̂ = (R1,R2), then the
coordinate transformations between the frames are defined by
the following dual rotation matrices. The dual rotation matrix
from Frame 0 to Frame 1 is R̂0

1 = (Rz(q1),0), where q1 is the
rotation angle about the z1 axis. The dual rotation matrix from
Frame 1 to Frame 2 is R̂1

2 = (Rx(−π/2)Rz(−π/2)Rz(q2),0),
where q2 is the rotation angle about the z2 axis. The dual rotation
matrix from Frame 2 to Frame 2′ is R̂2

2′ = (I,θ2
′×

2′ ), where
θ2

′
2′ = [θ1,2′ θ2,2′ θ3,2′ ]

T is a vector of rotation angles due to
elastic deformations about x2, y2 and z2 axes. The dual rotation
matrix from Frame 2′ to Frame 3 is R̂2′

3 = (Rz(q3),0), where
q3 is the rotation angle about the z3 axis. The dual rotation
matrix from Frame 3 to Frame 3′ is R̂3

3′ = (I,θ3
′×

3′ ), where
θ3

′
3′ = [θ1,3′ θ2,3′ θ3,3′ ]

T is a vector of rotation angles due to
elastic deformations about x3, y3 and z3 axes. The dual rotation
matrix from Frame 3′ to Frame 4 is R̂3′

4 = (Rz(q4),0), where
q4 is the rotation angle about the z4 axis.

The dual line of Joint j referenced to j and expressed in the
coordinates of j for j = 1, 2, 3, 4 is defined as

L̂
j

j/j =
[
0 0 1 0 0 0 01×6

]T
. (115)

The dual line (115) can be expressed in the coordinates of Frame
i and referenced to the COG of Link i for i = 1, 4, or to the origin

of Frame ie for i = 2, 3 by the dual screw transformations

L̂
i

j/mi
= V̂i,j

mi,j
L̂
j

j/j , L̂
i

j/ie
= V̂i,j

ie,j
L̂
j

j/j . (116)

The dual screw matrix for elastic motion of Frame j′ can be
expressed in the coordinates of Frame i and referenced to the
COG of Link i for rigid links, or to the origin of Frame ie for
elastic links by the dual screw transformations

Ŝi
j′/mi

= V̂i,j
mi,j′ Ŝ

j
j′/j′ , Ŝi

j′/ie = V̂i,j
ie,j′ Ŝ

i
j′/j′ (117)

while the projecting form is defined as

S̆i
j′/mi

= V̂i,j
mi,j′ S̆

j
j′/j′ , S̆i

j′/ie = V̂i,j
ie,j′ S̆

i
j′/j′ . (118)

The Jacobian form of the dual projection matrix for the rigid
Link 1 is given as

P̂1 =
[
L̂
1

1/m1
012×15

]
. (119)

The Jacobian form of the dual projection matrix for the elastic
Link 2 is given as

P̂2 =
[
L̂
2

1/2e
L̂
2

2/2e
012×2 Ŝ2

2e/2e
012×6

]
. (120)

The Jacobian form of the dual projection matrix for the elastic
Link 3 is given as

P̂3 =
[
L̂
3

1/3e
L̂
3

2/3e
L̂
3

3/3e
012×1 Ŝ3

2′/3e Ŝ3
3e/3e

]
.

(121)
The Jacobian form of the dual projection matrix for the rigid
Link 4 is given as

P̂4 =
[
L̂
4

1/m4
L̂
4

2/m4
L̂
4

3/m4
L̂
4

4/m4
Ŝ4
2′/m4

Ŝ4
3′/m4

]
.

(122)
The projecting form of the projection matrix P̆i is obtained as in
(93) by using the dual screw matrices of projecting form (118)
instead of corresponding dual screw matrices of Jacobian form
(117).

The derivatives of the projection matrices are formulated by
differentiating the dual lines and screws contained in the matrix.
The derivatives are found by (76) and (79). An example of

calculation of the dual line derivative for the case of ˙̂L4
1/m4

is
given in Algorithm 2. It is noted that the calculation of derivatives

of all dual projection matrices ˙̂Pi for i = 1 . . . 4 as symbolic
expressions using the procedure given in Section IV-C took in
total 11 s of the CPU time using MATLAB. The calculation of
the same matrices using diff command and the chain rule took
181 s.

The gravitational dual wrench of Link i expressed in the
coordinates of i, applied at the COG of Link i for i = 1, 4 and
at the origin of Frame ie for i = 2, 3 is

ŵi(g)
mi/mi

= V̂i,0
mi,mi

ŵ0(g)
mi/mi

, ŵi(g)
ie/ie

= V̂i,0
ie,ie

ŵ0(g)
ie/ie

(123)

where the dual screw transformation V̂i,0
·,· = R̂i

0 is, in fact,
only transforming the coordinates of the dual wrench. The dual
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Algorithm 2: Derivative of a Dual Line: ˙̂L4
1/m4

Case.

1: ω̂4
41 =

−R̂4
2ω̂

2
12 − R̂4

2ω̂
2
2,2′ − R̂4

3ω̂
3
2′,3 − R̂4

3ω̂
3
3,3′ − ω̂4

3′,4

2: ω̂4
3′1 = −R̂4

2ω̂
2
12 − R̂4

2ω̂
2
2,2′ − R̂4

3ω̂
3
2′,3 − R̂4

3ω̂
3
3,3′

3: ω̂4
31 = −R̂4

2ω̂
2
12 − R̂4

2ω̂
2
2,2′ − R̂4

3ω̂
3
2′,3

4: ω̂4
2′1 = −R̂4

2ω̂
2
12 − R̂4

2ω̂
2
2,2′

5: ω̂4
21 = −R̂4

2ω̂
2
12

6: v̂4
33′ = R̂4

3v̂
3
33′

7: v̂4
22′ = R̂4

2v̂
3
22′

8: p̂4
m4,4

= −p̂4
4,m4

9: p̂4
3′3 = −R̂4

3p̂
3
33′

10: p̂4
2′2 = −R̂4

2p̂
2
22′

11: p̂4
43′ = 0

12: p̂4
32′ = 0

13: υ̂4
m4,1

= [ω̂4
41]

∧p̂4
m4,4

+ [ω̂4
31]

∧p̂4
3′3 + [ω̂4

21]
∧p̂4

2′2 +

[ω̂4
3′1]

∧p̂4
43′ + [ω̂4

2′1]
∧p̂4

32′ + v̂4
33′ + v̂4

22′

14: ˆ̄d4
14 is formulated by (77)

15: ˙̂L4
1/m4

= ˆ̄d4
14L̂

4

1/m4

wrenches ŵ0(g)
mi/mi

and ŵ0(g)
ie/ie

are defined as

ŵ0(g)
mi/mi

=
[
0 0 −mig 01×9

]T
ŵ0(g)

ie/ie
=
[
0 0 −ρiAig 01×9

]T
(124)

where g = 9.81 m/s2 is the acceleration of gravity.
The dual wrenches of the input torques of Link 1 expressed

in the coordinates of 1 and referenced to the COG of Link 1 are

ŵ1
b1/m1

=
[
01×6 0 0 T1 01×3

]T
ŵ1

b2/m1
= R̂1

2

[
01×6 0 0 −T2 01×3

]T
(125)

where the point b1 stands for the origin of Frame 1 and the point
b2 is the distal end of Link 1. The dual wrench of the input torques
of Link 4 expressed in the coordinates of 4 and referenced to the
COG of Link 4 is

ŵ4
b1/m4

=
[
01×6 0 0 T4 01×3

]T
(126)

where the point b1 stands for the origin of Frame 4. The dual
wrenches of the input torques of Link i for i = 2, 3 expressed in
the coordinates of i and referenced to the origin of Frame ie are

ŵi
1,ie/ie

= δ(x)
[
01×6 0 0 Ti 01×3

]T
ŵi

2,ie/ie
= δ(x− Li)

[
01×6 0 0 −Ti+1 01×3

]T
(127)

where Ti is the magnitude of the input torque of Joint i.
Once the external dual wrenches (123) and (125)–(127) are

defined, the vector of generalized external forces τ can be

TABLE I
SYSTEM PARAMETERS USED IN SIMULATION

Fig. 5. Manoeuvre of the manipulator used in the simulation. Dashed gray lines
show the initial configuration, solid gray lines—the intermediate configuration
and black lines—the final configuration.

formulated by (109). The rest of the modeling procedure is given
in Section V.

B. Simulation

In this section, the simulation of the proposed manipulator is
carried out. To highlight the advantage of the linearized model,
we have implemented the same model without any linearization
and compared the simulation results and the simulation times.
In addition, to demonstrate the effect of linearization for the
symbolic expressions, we have presented the explicit nonlinear
expression for the velocities 	v0,2e and 	v0,3e and their linearized
versions in Appendix B. These specific velocities were selected
as an example.

The geometrical and mechanical constants of the manipulator
which were used in the simulation are given in Table I. The
numerical simulation was performed in the following order,
see Fig. 5. The manipulator was initiated at (q1, q2, q3, q4) =
(0, π/6, 2π/3, π/6) rad, while qi = 0 for i = 5 . . . 16 and q̇i = 0
for i = 1 . . . 16. The implemented PD (proportional derivative)
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Fig. 6. Values of generalized coordinates and generalized speeds associated
with rigid motion during the simulation. The results of linearized model are
shown with solid lines, the results of nonlinear model—with dashed lines. The
dashed lines are not visible as the results are superimposed.

Fig. 7. Values of generalized coordinates and generalized speeds associated
with elastic flexural motion in xy plane during the simulation. Only the first
3 s of simulation are presented as the values do not change afterwards. The
results of linearized model are shown with solid lines, the results of nonlinear
model—with dashed lines. The smaller plots show the zoomed-in parts of the
graphs marked with the black-dashed rectangles.

controller was commanded the desired position of qi for i =
1 . . . 4 equal to the initial value. The control of flexible manip-
ulators is not the aim of this work, therefore the details of the
controller are omitted. Then, at time t = 0.5 s, the desired posi-
tion of qi for i = 2, 3, 4was set to (q2, q3, q4) = (π/3, π/3, π/3)
rad and the manipulator started the manoeuvre. In addition, at
time t = 3 s, the desired position of q1 was set to q1 = π/4
rad. The simulation was stopped at time t = 6 s. The values of
generalized coordinates and generalized speeds throughout the
simulation are given in Fig. 6, where the units are converted to
deg and deg/s for convenience.

The manipulator was initiated in the underformed position,
and after time t ≥ 0 some osculations were initiated in local yi
direction of Link i due to the force of gravity, see Fig. 7. After
time t ≥ 0.5 s, the manipulator started moving in Joints 2, 3,
and 4, which can be seen in Fig. 6. Since the slew motion was
absent, the manoeuvre was performed in xy planes of Links 2, 3,
and 4. Such motion additionally excited flexural oscillations in

Fig. 8. Values of generalized coordinates and generalized speeds associated
with elastic torsional motion during the simulation. The results of linearized
model are shown with solid lines, the results of nonlinear model—with dashed
lines. The smaller plots show the zoomed-in parts of the graphs marked with the
black-dashed rectangles.

Fig. 9. Values of generalized coordinates and generalized speeds associated
with elastic flexural motion in xz plane during the simulation. The results of
linearized model are shown with solid lines, the results of nonlinear model—with
dashed lines. The smaller plots show the zoomed-in parts of the graphs marked
with the black-dashed rectangles.

the local yi direction of Links 2 and 3, see Fig. 7, while torsional
osculations, as well as flexural oscillations in zi direction of Link
i were equal to zero, see Figs. 8 and 9. After time t ≥ 3 s, the
slew motion started, which excited both torsional oscillations
of Link 2 and 3, as well as flexural oscillations in the local zi
direction of the same links, see Figs. 8 and 9. The control input
torques throughout the simulation are given in Fig. 10.

The results presented in Figs. 6–10 have shown that the
difference in simulation results between the nonlinear and lin-
earized models is small, while the linearized model is more
computationally efficient. For the comparison of computational
efficiency the CPU time of simulations was measured. Sim-
ulation of the nonlinear model took 3901 s of the CPU time
in Matlab/Simulink, while the same implementation of the lin-
earized model took 314 s to simulate. In addition, for the case
of the linearized model optimization of the code for symbolic
functions using matlabFunction allowed for the more compu-
tationally efficient implementation which took 14 s of the CPU
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Fig. 10. Values of input torques during the simulation. Only the first 4 s of
simulation are presented as the values do not change afterwards. The results of
linearized model are shown with solid lines, the results of nonlinear model—with
dashed lines. The smaller plot shows the zoomed-in part of the graph marked
with the black-dashed rectangle.

time to simulate. An attempt of equivalent code optimization
of the symbolic functions for the nonlinear model was taking
impractically long time and was not possible to finalize with the
available personal computer.

VII. CONCLUSION

In this article, we presented a systematic and general method
for deriving kinematics and dynamics of flexible manipulators,
where the final equations are linearized in all elastic displace-
ments and velocities. To form the mathematical background of
the method we introduced dual rotation and dual homogeneous
transformation matrices, which were presented as matrix Lie
groups. The velocities and angular velocities of links were given
in terms of dual twists, which are the vector representation of Lie
algebra associated with the group of dual homogeneous trans-
formation matrices. Dual twists were conveniently transformed
using dual screw transformations, which led to a systematic
procedure. The dynamical formulation was based on Kane’s
equation of motion, where partial velocities and partial angular
velocities were given as dual screws, which were arranged as
columns of dual projection matrices. The proposed method can
also be used for open-chain multibody systems with both rigid
and elastic bodies, including the cases when the rotational inertia
of cross-sections in elastic links has to be accounted for. This was
demonstrated in the implementation example, where a 4-DOF
manipulator with two rigid and two elastic links was modeled.
The method provided significant simplification in model deriva-
tion process compared to the original formulation, which allows
for modeling of more complex systems.

The application of the method is limited to open-chain ma-
nipulators, where linear elastic kinematics is used and geometric
stiffening effects are not taken into account. In the presented for-
mulation, elasticity can only be modeled by the AMM, however
modifications of the method for implementing FEM can be seen
as a part of the future work.

APPENDIX A
EXPONENTIAL AND LOGARITHMIC MAPS FOR G1 AND G2 LIE

GROUPS

Recall an element of the Lie group G1 given by (8) as

X =

[
A 0

θ×A A

]
∈ G1.

The logarithm [Ω̂]∧ = log(X) ∈ g1 is written in the form

[Ω̂]∧ =

[
U 0

W U

]
∈ g1 (128)

where U and W are skew-symmetric matrices, while u = [U]∨

and w = [W]∨ are the corresponding vector representations.
The expressions for U and W will be derived in the following
based on the derivation of the time derivative of the exponential
map in [16]. It can be verified by direct computation that the kth
power of (128) is given as

([Ω̂]∧)k =

[
Uk 0∑k−1

j=0 U
k−j−1WUj Uk

]
, for k ≥ 1. (129)

Let the element (2,1) of the matrix (129) be denoted by Zk

Zk =

k−1∑
j=0

Uk−j−1WUj =

k−1∑
j=0

Lj
UR

k−1−j
U W (130)

where LUW = UW and RUW = WU are the left and right
translation maps. From ad(U)W = UW −WU it follows
that:

Lj
U = (RU + ad(U))j =

j∑
i=0

(
j

i

)
Rj−i

U (ad(U))i. (131)

From the identity

k−1∑
j=i

(
j

i

)
=

(
k

i+ 1

)
(132)

it follows that (130) can be written as

Zk =

k−1∑
i=0

(
k

i+ 1

)
Rk−1−i

U (ad(U))iW (133)

which leads to
∞∑

k=1

1

k!
Zk =

( ∞∑
k=1

1

k!

k−1∑
i=0

(
k

i+ 1

)
Rk−1−i

U (ad(U))i

)
W

=

( ∞∑
k=0

1

k!
Rk

U

)[ ∞∑
k=0

(ad(u))k

(k + 1)!
w

]∧

= [Ψl(ad(u))w)]∧ exp(U) (134)

where Ψl(ad(u)) is the left Jacobian in SO(3) [33] and [38].
The exponential of (128) is then given as

exp([Ω̂]∧) = I+

∞∑
k=1

1

k!

[
Uk 0

Zk Uk

]
(135)

which, given the result (134), leads to

exp([Ω̂]∧) =

[
exp(U) 0

[Ψl(ad(u))w]∧ exp(U) exp(U)

]
. (136)

It can be concluded that the logarithm of (8) is given by

log

([
A 0

θ×A A

])
=

[
φ× 0

[Ψ−1
l (φ×)θ]× φ×

]
∈ g1 (137)
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where ad(φ) = φ× and φ× = log(A), and the inverse of the
left Jacobian in SO(3) is given in [33].

The alternative derivation of the closed-form solutions for
exponential and logarithmic maps (136) and (137) for the case
of adjoint representation of SE(3) is given in [34].

Recall an element of the Lie group G2 given by (14) as

Y =

[
X v̂

0T 1

]
∈ G2. (138)

The logarithm in G2 is given by

[Υ̂]∧ =

[
[Ω̂]∧ v̂0

0 0

]
∈ g2. (139)

It is seen that the kth power of (139) is given as

([Υ̂]∧)k =

[
([Ω̂]∧)k ([Ω̂]∧)k−1v̂0

0 0

]
. (140)

The exponential representation is then found from the series
expansion to be

exp([Υ̂]∧) =

[∑∞
k=0

1
k! ([Ω̂]∧)k

∑∞
k=0

1
(k+1)! ([Ω̂]∧)kv̂0

0 0

]

=

[
exp([Ω̂]∧) Ψl,G1

([Ω̂]∧)v̂0

0 0

]
(141)

where

Ψl,G1
([Ω̂]∧) =

∞∑
k=0

([Ω̂]∧)k

(k + 1)!
(142)

is the left Jacobian of G1. The closed-form solution for (142) is
found in the same way as the closed-form solution for the left
Jacobian in SE(3) [39]

Ψl,G1
([Ω̂]∧) =

[
Ψl(φ

×) 0

Q Ψl(φ
×)

]
(143)

where

Q =
1

2
γ× +

φ− sin(φ)

φ3
(φ×γ× + γ×φ× + φ×γ×φ×)

− 1− φ2

2 − cos(φ)

φ4
(φ×φ×γ× + γ×φ×φ× − 3φ×γ×φ×)

− 1

2

(
1− φ2

2 − cos(φ)

φ4
− 3

φ− sin(φ)− φ3

6

φ5

)

· (φ×γ×φ×φ× + φ×φ×γ×φ×)
(144)

where γ× = [Ψ−1
l (φ×)θ]× and φ,θ are given in (137).

This shows that if [Ω̂]∧ = log(X) and v̂0 = Ψ−1
l,G1

([Ω̂]∧)v̂,
then

log

([
X v̂

0T 1

])
=

[
[Ω̂]∧ Ψ−1

l,G1
([Ω̂]∧)v̂

0T 0

]
∈ g2. (145)

APPENDIX B
LINEARIZATION OF VELOCITY

In this Appendix, the velocity of the origin of Frame 3e is
derived using coordinate-free vectors and then linearized as
given in Kane’s method [15]. This velocity is selected as an
example to demonstrate the reduction of symbolic expressions
due to linearization. It is noted, that the reduction of symbolic
expressions for the final equations is even more significant. The
used notations are given in Section VI.

The linear velocity of the COG of Link 1 relative to the inertial
frame is 	v0,m1

= 0.
The velocity of the origin of Frame 2 relative to the inertial

frame is 	v0,2 = 0. The distance from the origin of Frame 2 to the
origin of Frame 2e is 	p2,2e = x	x2 + r2	y2 + r3	z2, where r2(x, t)
and r3(x, t) are the elastic deformations along the y2 and z2 axes.
Then the velocity of the origin of Frame 2e relative to the inertial
frame is

	v0,2e = 	v0,2 +
2d	p2,2e
dt

+ 	w02 × 	p2,2e

= ṙ2	y2 + ṙ3	z2 − u1r3	x1 + u1(xs2 + r2c2)	z2

+ u2(x	y2 − r2	x2) (146)

where 	w02 = u1	z1 + u2	z2 and ci = cos(qi), si = sin(qi). The
velocity of the origin of Frame 2′ relative to the inertial frame is
found similarly to (146) as

	v0,2′ = ṙl2	y2 + ṙl3	z2 − u1rl3	x1 + u1(L2s2 + rl2c2)	z2

+ u2(L2	y2 − rl2	x2) (147)

where 	p2,2′ = L2	x2 + rl2	y2 + rl3	z2 and rli = ri(L2, t) are the
elastic deformations along the y2 and z2 axes at the distal end
of Link 2.

The distance from the origin of Frame 2′ to the origin of Frame
3 is 	p2′,3 = 0, then the velocity of the origin of Frame 3 relative to
the inertial frame is	v0,3 = 	v0,2′ . The linearization of (147) gives
	̃v0,3 = 	v0,3, i.e., in this case, the linear and nonlinear velocities
are equal. The rotation from Frame 2 to Frame 2e due to elastic
deformation is described by three angles θi, for i = 1, 2, 3 about
the x2, y2, and z2 axes, respectively.

The distance from the origin of Frame 3 to the origin of Frame
3e is 	p3,3e = x	x3 + k2	y3 + k3	z3, then the velocity of the origin
of Frame 3e relative to inertial frame is

	v0,3e = 	v0,3 +
3d	p3,3e
dt

+ 	w03 × 	p3,3e = 	v0,3 + k̇2	y3 + k̇3	z3

− u1x [s3(cθ3sθ1 + cθ1sθ2sθ3) + c3(sθ1sθ3 − cθ1cθ3sθ2)] 	x1

+ u1x [c3(c2(cθ1sθ3 + cθ3sθ1sθ2) + cθ2cθ3s2)

+ s3(c2(cθ1cθ3 − sθ1sθ2sθ3)− cθ2sθ3s2)] 	y1

+ u1k2 [s3(sθ1sθ3 − cθ1cθ3sθ2)− c3(cθ3sθ1 + cθ1sθ2sθ3)] 	x1

+ u1k2 [c3(c2(cθ1cθ3 − sθ1sθ2sθ3)− cθ2sθ3s2)

− s3(c2(cθ1sθ3 + cθ3sθ1sθ2) + cθ2cθ3s2)] 	y1
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− u1k3cθ1cθ2	x1 + u1k3 [sθ2s2 − cθ2sθ1c2] 	y1

+ (u2 + θ̇3)x [−s3(cθ1cθ3 − sθ1sθ2sθ3)− c3(cθ1sθ3

+ cθ3sθ1sθ2)] 	x2 + (u2 + θ̇3)x [cθ2cθ3c3 − cθ2sθ3s3] 	y2

+ (u2 + θ̇3)k2 [s3(cθ1sθ3 + cθ3sθ1sθ2)− c3(cθ1cθ3

− sθ1sθ2sθ3)] 	x2 + (u2 + θ̇3)k2 [−cθ2cθ3s3 − cθ2sθ3c3] 	y2

+ (u2 + θ̇3)k3cθ2sθ1	x2 + (u2 + θ̇3)k3sθ2	y2

+ u3x	y3 − u3k2	x3

− θ̇1x [s3(cθ3sθ1 + cθ1sθ2sθ3) + c3(sθ1sθ3 − cθ1cθ3sθ2)] 	y2

+ θ̇1x [s3(cθ1cθ3 − sθ1sθ2sθ3) + c3(cθ1sθ3 + cθ3sθ1sθ2)] 	z2

+ θ̇1k2 [s3(sθ1sθ3 − cθ1cθ3sθ2)− c3(cθ3sθ1 + cθ1sθ2sθ3)] 	y2

+ θ̇1k2 [c3(cθ1cθ3 − sθ1sθ2sθ3)− s3(cθ1sθ3 + cθ3sθ1sθ2)] 	z2

− θ̇1k3cθ1cθ2	y2 − θ̇1k3cθ2sθ1	z2

+ θ̇2x [s3(cθ3sθ1 + cθ1sθ2sθ3) + c3(sθ1sθ3 − cθ1cθ3sθ2)] 	x2

+ θ̇2x [cθ2sθ3s3 − cθ2cθ3c3] 	z2

+ θ̇2k2 [c3(cθ3sθ1 + cθ1sθ2sθ3)− s3(sθ1sθ3

− cθ1cθ3sθ2)] 	x2 + θ̇2k2 [cθ2cθ3s3 + cθ2sθ3c3] 	z2

+ θ̇2k3cθ1cθ2	x2 − θ̇2k3sθ2	z2

− θ̇3x [s3(cθ1cθ3 − sθ1sθ2sθ3) + c3(cθ1sθ3 + cθ3sθ1sθ2)] 	x2
(148)

where 	w03 = (u1	z1 + u2	z2 + u3	z3 + θ̇1	x2 + θ̇2	y2 + θ̇3	z2)
and cθi = cos(θi), sθi = sin(θi). Linearization of (148) in
terms of θ̇i and θi leads to

	̃v0,3e = 	̃v0,3 + k̇2	y3 + k̇3	z3 + u1x [−s3θ1 + c3θ2] 	x1

+ u1x [c3(c2θ3 + s2) + s3(c2 − θ3s2)] 	y1

+ u1k2 [c3c2 − s3s2] 	y1 − u1k3	x1

+ u2x [−s3 − c3θ3] 	x2 + u2x [c3 − θ3s3] 	y2

− u2k2c3	x2 − u2k2s3	y2 + u3x	y3 − u3k2	x3

+ θ̇1xs3	z2 − θ̇2xc3	z2 − θ̇3xs3	x2 + θ̇3xc3	y2. (149)

The linearized expression (149) can be obtained using the proce-
dure proposed in this article directly, i.e., without the derivation
of the nonlinear expression (148) first.
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