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Abstract

0%-methylguanine DNA methyltransferase (MGMT) promoter
methylation is an important favorable predictive marker in patients
with glioblastoma (GBM). We hypothesized that MGMT status
could be a surrogate marker of pretreatment tumor biology observed
as histopathological and radiological features. Apart from some ra-
diological studies aiming to noninvasively predict the MGMT status,
few studies have investigated relationships between MGMT status
and phenotypical tumor biology. We have therefore aimed to inves-
tigate such relationships in 85 isocitrate dehydrogenase (IDH) wild-
type GBMs. MGMT status was determined by methylation-specific
PCR and was assessed for associations with 22 histopathological
features, immunohistochemical proliferative index and microvessel
density measurements, conventional magnetic resonance imaging
characteristics, preoperative speed of tumor growth, and overall sur-
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vival. None of the investigated histological or radiological features
were significantly associated with MGMT status. Methylated MGMT
status was a significant independent predictor of improved overall
survival. In conclusion, our results suggest that MGMT status is not
related to the pretreatment phenotypical biology in IDH wild-type
GBMs. Furthermore, our findings suggest the survival benefit of
MGMT methylated GBMs is not due to an inherently less aggressive
tumor biology, and that conventional magnetic resonance imaging
features cannot be used to noninvasively predict the MGMT status.

Key Words: Angiogenesis, Glioblastoma, Histopathology, Mag-
netic resonance imaging, MGMT promoter methylation, Tumor
growth.

INTRODUCTION

Glioblastomas (GBMs) are the most common of the pri-
mary malignant brain tumors in adults (1). The overall sur-
vival is only 14-16months despite standard treatment of
surgical resection and adjuvant concomitant radiation and che-
motherapy (temozolomide) (2, 3). GBMs are biologically
highly complex and aggressive tumors, illustrated by their
rapid growth (4) and heterogeneous histological and molecular
pathology (5-7).

O°-methylguanine DNA methyltransferase (MGMT)
promoter methylation is an important predictive biomarker of
improved response to temozolomide in GBMs (8, 9). MGMT
is a DNA-repair enzyme that removes alkylated guanine resi-
dues on DNA, and hence counteracts the effect of alkylating
agents, such as temozolomide (10). Methylation of the MGMT
promoter leads to inactivation of the enzyme, which is be-
lieved to cause the predictive effect (10). However, it is not
yet established whether it is purely a predictive marker or in
part prognostic by itself, as previous studies have shown con-
flicting results regarding its prognostic value among patients
who did not receive chemotherapy (8, 11-15). As MGMT pro-
moter methylation status guides treatment decisions regarding
chemotherapy (9), several radiological studies have sought to
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noninvasively predict the methylation status. However, results
from these studies have also been conflicting (16).

We hypothesized that MGMT promoter methylation sta-
tus could be a surrogate marker of pretreatment phenotypical
tumor biology assessed by histopathology and magnetic reso-
nance imaging (MRI) in GBMs. Apart from some radiological
studies, few studies have investigated such relationships. By
exploring these potential relationships using tissue material
and MRI scans collected before treatment, we aimed to dis-
cover if there are differences in the inherent aggressiveness
between MGMT methylated and unmethylated patients (i.e. a
prognostic value). Moreover, such potential biological differ-
ences may also partially explain the different responses to che-
motherapy. Our study could also further elucidate whether
MGMT status can be predicted from preoperative MRI scans.
In a cohort of treatment-naive, isocitrate dehydrogenase (IDH)
wild-type (wt) GBMs previously assessed for preoperative
growth characteristics (4), we have therefore aimed to investi-
gate whether MGMT status was associated with histological
and radiological features.

MATERIALS AND METHODS

Patients and Samples

The selection of patients was based on the previous
work by Stensjgen et al in which the preoperative growth dy-
namics of GBMs were investigated (4). Patients were retro-
spectively selected from all patients >18 years operated for
newly diagnosed GBMs at St. Olav’s University Hospital,
Trondheim, Norway between January 2004 and May 2014
(n=262) (4). Patients with >2 preoperative contrast-
enhancing T1-weighted (T1wGd) MRI scans taken >14 days
apart were eligible, and patients without contrast enhancement
and/or gliomatosis cerebri were excluded (4). All cases were
microscopically revised and IDH mutation status assessed
according to the 2016 World Health Organization (WHO)
Classification of Tumors of the Central Nervous System (17).
IDH mutation status was first assessed using immunohisto-
chemistry (18), and all immune-negative patients <55 years
(18 patients) were additionally sequenced using Sanger se-
quencing according to previously described methods (using
the BigDye Terminator v3.1 cycle sequencing kit and the
3130 genetic analyzer from Applied Biosystems, Foster City,
CA) (19). Three patients were IDH mutated and were there-
fore excluded from the study. In 5 patients, IDH2 could not be
sequenced; however, these were all IDHI wt on sequencing.
Due to the very low frequency of IDH2 mutations in newly di-
agnosed GBMs (20, 21), these were categorized as IDH wt
and included in the study. The collection of clinical data re-
garding survival, treatment, sex, age at diagnosis, and Karnof-
sky performance status have previously been accounted for
(18). Furthermore, of the 106 patients (4) analyzed for MGMT
promoter methylation status, 18 were excluded (17%) due to
inconclusive results. Hence, 85 patients were included in the
current study.
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DNA Extraction and MGMT Methylation-Specific
PCR

For DNA isolation, an area of central tumor morphology
(visually 100% tumor cells) was marked on hematoxylin and
eosin (H&E) slides from formalin-fixed paraffin-embedded
(FFPE) tissue blocks for each patient. Necrotic areas were
avoided. Due to a lack of tumor material, 4 cases had a tumor
cell content of 40%—70% in the marked areas. The marked
areas were manually dissected, and tumor DNA then extracted
using the QIAamp DNA FFPE Tissue Kit (Qiagen, Hilden,
Germany). QIAcube (Qiagen) was used for automated spin
column process of DNA purification following the manufac-
turer’s instructions.

Methylation-specific PCR (MSP) was performed fol-
lowing bisulfite treatment of the isolated DNA using the Epi-
Tect Fast Bisulfite Conversion kit (Qiagen). According to the
method by Esteller et al (22), PCR amplification was per-
formed using specific primers covering methylation of the
MGMT promoter and exon 1 region. Methylated and unmethy-
lated PCR products were detected with 4% agarose gel. An
MGMT methylation-positive and a negative tissue control
were applied during the whole process. The investigator who
analyzed and interpreted the MSP data was blinded to other
data.

Histopathology and Immunohistochemistry

All available H&E-stained FFPE sections from each
case were assessed for the presence of 22 histopathological
features. Definitions of each feature can be found in our previ-
ous publication (23). Most features were defined as either pre-
sent or absent, while cellular density and atypia were
semiquantitatively graded. Mitoses were counted in 10 high-
power fields in hotspots. In 32 cases (38%), the amount of tis-
sue on H&E slides has previously been subjectively catego-
rized as sparse (23). This semiquantitative categorization was
based on the collective area of viable (i.e. nonnecrotic) tumor
tissue on all available H&E slides from each patient. Sparse
tissue amount was often due to the patient being biopsied or
having extensive necrosis in the resected material (23).

The immunohistochemical examinations of IDHI
R132H (monoclonal, IDH1 R132H/H09, 1:100, Dianova,
Hamburg, Germany) (18), Ki-67/MIB-1 (monoclonal, Ki-67/
MIB-1, 1:800 or 1:50, Dako, Glostrup, Denmark) (18), and
CD105/endoglin (monoclonal, CD105/endoglin/SN6h, 1:50,
Dako) (24) have previously been done and described in detail.
The proliferative index (PI) of Ki-67/MIB-1 was quantified as
described in our previous publication (18). The degree of an-
giogenesis has previously been quantified using microvessel
density measurements of endoglin/CD105 (24). In short, the
microvessel density was computed as the mean count of the
number of vascular structures within a grid for 3 high-power
fields in hotspots at X400 magnification.

MRI Characteristics and Preoperative Tumor
Growth

The MRI segmentations of total tumor volumes, vol-
umes of the contrast enhancing and noncontrast enhancing
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compartments, and estimation of speed of tumor growth have
previously been accounted for (4, 18). The software Brain-
Voyager QX (Brain Innovation, Maastricht, the Netherlands)
was used for the volume segmentations (4). The tumor vol-
umes were segmented from 2 preoperative T1wGd MRI scans
from each patient (first scan taken at radiological diagnosis
and the second preoperative scan for neuronavigation). The
MRI characteristics assessed for associations with MGMT sta-
tus were segmented from the second, preoperative scan. Total
tumor volume was defined as the combined volume of the
contrast enhancing rim and the noncontrast enhancing (ne-
crotic) core. Preoperative speed of growth was estimated from
the total tumor volumes at both scans and the interval between
them (4, 18). A fitted Gompertzian growth curve from 106
patients was used to dichotomize the patients into having
tumors growing faster or slower than expected, as previously
described (18).

Statistical Analyses

Statistical analyses were performed using Stata version
16 (StataCorp LLC, College Station, TX). Statistical signifi-
cance was set at p < 0.05. Associations between MGMT status
and categorical variables were analyzed using Chi-square/
Fisher’s exact tests, while associations between MGMT status
and continuous variables were assessed using Mann-Whitney
U analyses. A Kaplan-Meier plot and the log-rank test were
used for the univariable analyses between MGMT status and
overall survival and a Cox proportional hazard model was
used for multivariable survival analyses. The selection of vari-
ables in the multivariable model has previously been
accounted for (18). All included variables followed the pro-
portional hazard assumption, which was tested using Schoen-
feld residuals in Stata.

Ethics

This study was approved by the Regional Ethics Com-
mittee (Central) as part of a larger project (reference numbers
2011/974 and 2013/1348) in accordance with the 1964 Hel-
sinki declaration and later amendments. Most of the patients
had provided written informed consent to be included (refer-
ence 2011/974), and the Regional Ethics Committee waived
informed consent for retrospective evaluation of patient data
for the remaining patients.

RESULTS
MGMT and Clinical and Radiological Factors

In the 85 included patients, the distributions of age, sex,
Karnofsky performance status, Ki-67/MIB-1 PI, and micro-
vessel density of CD105 corresponded to previous reports (18,
24). The relationships between MGMT status and clinical and
radiological factors are shown in Table 1. MGMT status was
not significantly associated with any of the clinical factors or
MRI volumetrics (Table 1). There was no significant associa-
tion between MGMT status and MRI assessed preoperative
speed of growth (Table 1).

MGMT and Histological Features

Distributions of the 22 histopathological features and
the immunohistochemical markers (Ki-67/MIB-1 PI and
microvessel density of CD105) in the MGMT methylated and
unmethylated groups are presented in Table 2. There were no
significant associations between MGMT status and any of the
histological features assessed (Table 2). The difference in the
presence of microvascular proliferation in the MGMT methyl-
ated and unmethylated groups was likely confounded by
sparse tissue amount. In our previous work, we found that mi-
crovascular proliferation was significantly less present in

TABLE 1. MGMT and Clinical and Radiological Factors. Distributions of Clinical and Radiological Parameters Within the MGMT

Methylated and Unmethylated Patient Groups

Methylated MGMT Unmethylated MGMT p Value Test Performed
(n=31) (n=54)

Mean age (SD) 65 (10.4) 63 (11.2) 0.230 Two-sample #-test
Male 71% 69% 0.814 Chi-square
Median preoperative total tumor volume (range) 28.8 mL (1.0-243.5) 31.6 mL (1.0-153.0) 0.777 Mann-Whitney U
Median preoperative contrast enhancing volume (range) 16.6 mL (1.0-215.4) 18.3 mL (0.9-63.9) 0913 Mann-Whitney U
Median preoperative necrotic core volume (range) 9.7 mL (0.0-89.9) 8.1 mL (0.1-106.5) 0.695 Mann-Whitney U
Median preoperative percentage necrosis (range) 27.8% (1.4-78.6) 34.9% (3.5-69.9) 0.204 Mann-Whitney U
Fast-growing tumors® 48% 50% 0.886 Chi-square
Median KPS (range) 7.5 (4-10) 8 (5-10) 0.552 Mann-Whitney U
GTR 35% 26% 0.352 Chi-square
Chemotherapy 81% 81% 0.924 Chi-square
Radiotherapy 90% 94% 0.664 Fisher’s exact
Median survival 15.9 months 10.2 months 0.048* Log-rank

95% CI (12.5-26.2)

95% CI (8.6-13.7)

MGMT, Oﬁ-methylguanine DNA methyltransferase; SD, standard deviation; KPS, Karnofsky performance status; GTR, gross total resection; CI, confidence interval.
“Speed of tumor growth was estimated from segmented tumor volumes from 2 preoperative MRI scans and the interval between them. A fitted Gompertzian growth curve based
on the volume data was used to dichotomize the tumors into growing faster or slower than expected from the curve (18).

*Statistically significant, p <0.05.
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TABLE 2. MGMT and Histological Features. Distributions of the Histological Features Within the MGMT Methylated and Unme-

thylated Patient Groups

Methylated Unmethylated p Value Test Performed
MGMT (n=31) MGMT (n=54)
Necrosis
Small 84% 81% 0.781 Chi-square
Large 94% 89% 0.705 Fisher’s exact
Palisades® 84% 2% 0.206 Chi-square
Microvascular proliferation” 100% 90% 0.249 Fisher’s exact
High cellular density 42% 33% 0.428 Chi-square
Severe atypia 16% 26% 0.297 Chi-square
Median mitotic count (range) 16.0 11.5 0.109 Mann-Whitney U
(0-43) (0-65)
Vascular features
Thrombosis 81% 87% 0.534 Fisher’s exact
Hemorrhage 87% 78% 0.290 Chi-square
Pseudorosettes® 29% 25% 0.726 Chi-square
Secondary structures of Scherer? 70% 71% 0911 Chi-square
Desmoplasia 65% 67% 0.840 Chi-square
Leukocytes
Macrophages 97% 91% 0.409 Fisher’s exact
Lymphocytic infiltrates 58% 76% 0.085 Chi-square
Small cell glioblastoma 23% 17% 0.502 Chi-square
Cell types
Gemistocytes 29% 19% 0.263 Chi-square
Small cells 29% 22% 0.483 Chi-square
Sarcomatous cells 13% 20% 0.385 Chi-square
Myxomatoid 6% 17% 0.314 Fisher’s exact
Giant cells 6% 11% 0.705 Fisher’s exact
Primitive neuronal component 6% 11% 0.705 Fisher’s exact
Oligodendroglial cells 10% 6% 0.664 Fisher’s exact
Median Ki-67/MIB-1 PI (range) 17.5% 13.2% 0.333 Mann-Whitney U
(4.3-40.7) (1.4-57.3)
Median microvessel density count of CD105° (range) 15.2 11.8 0.216 Mann-Whitney U
(4-42.7) (0.7-50)

MGMT, O°-methylguanine DNA methyltransferase; PI, proliferative index.
“Includes only tumors with central tumor morphology in the analysis (n = 84) (23).

®Tumors with sparse tissue amount were excluded from the analysis (53 included cases), because sparse tissue amount was likely a confounder of the association between micro-

vascular proliferation and MGMT status.

“Includes only tumors with paraffin sections with viable central tumor morphology (n = 82) (23).
9Recorded as present when >1 of the following features were observed: Perineuronal satellitosis, angiocentric structures, or subpial clustering, as previously defined (23). Only

recorded in tumors containing infiltration zones into gray matter (n = 55).

“Includes only tumors with enough tissue amount or adequate morphology for the microvessel density assessment (n = 82) (24).

cases with sparse tissue amount (p < 0.001, Chi-square test,
unpublished student thesis). In addition, there was a near-
significant trend of more MGMT unmethylated cases in cases
with sparse tissue material (p =0.088, Chi-square test) in the
current study. To avoid this confounding effect, microvascular
proliferation was redefined to only include well-sampled cases
(Table 2). Microvascular proliferation was significantly asso-
ciated with methylated MGMT status when not corrected for
tissue amount (p = 0.018, Chi-square test).

MGMT and Survival
The median overall survival was 13.3 months (95% con-
fidence interval [CI] 9.9-15.7). Methylated MGMT status was
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significantly associated with overall survival both in the uni-
variable analysis (Table 1; Fig. 1) and in the multivariable
Cox model (Table 3).

DISCUSSION

MGMT promoter methylation is a pivotal predictive
marker in /IDH wt GBMs. However, we did not find any
significant associations between the MGMT promoter
methylation status and several biological parameters in treat-
ment-naive patients. These parameters included 22 histopatho-
logical features, proliferative activity, degree of angiogenesis,
quantitative MRI volumetrics, and preoperative speed of ra-
diological tumor growth. Altogether, these findings suggest
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MGMT and survival
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FIGURE 1. Kaplan-Meier plot of overall survival of MGMT methylated (blue line) and MGMT unmethylated (red line) patients.
MGMT methylated patients survived significantly longer than unmethylated (p=0.048, log-rank test). MGMT, O°-

methylguanine DNA methyltransferase.

TABLE 3. Survival Analyses. Univariable and Multivariable Cox Analyses

Univariable HR (95% CI) p Value Multivariable HR (95% CI) p Value
Age 1.01 (0.99-1.03) 0.332 1.00 (0.98-1.03) 0.790
KPS 0.68 (0.57-0.82) <0.001* 0.75 (0.60-0.95) 0.017*
Preoperative tumor volume 1.01 (1.00-1.01) 0.042* 1.00 (0.99-1.01) 0.956
GTR 0.69 (0.42-1.14) 0.150 0.66 (0.37-1.18) 0.162
Chemotherapy 0.17 (0.09-0.32) <0.001* 0.27 (0.13-0.58) 0.001*
Radiation 0.05 (0.02-0.14) <0.001* 0.12 (0.04-0.38) <0.001*
Methylated MGMT status 0.62 (0.39-1.00) 0.051 0.60 (0.37-0.97) 0.038*

HR, hazard ratio; CI, confidence interval; KPS, Karnofsky performance status; GTR, gross total resection; MGMT, O(’—melhylguanine DNA methyltransferase.

*Statistically significant, p <0.05.

that MGMT status is not a surrogate marker of the pretreat-
ment phenotypical biology of IDH wt GBMs.

Tumor biology has been extensively studied using ex-
perimental models; however, these models will never fully
mimic the unique micro-environment of human GBMs (25).
In this study, tissue samples were obtained from the first sur-
gical intervention and only preoperative MRI scans were
assessed. Hence, the assessed biological features were unaf-
fected by radiochemotherapy. Nevertheless, 82% (n=70)
were preoperatively treated with corticosteroids, and there
was a nonsignificant trend (p=0.144) of more corticoste-
roid use in MGMT methylated tumors (data not shown).
Therefore, we cannot entirely exclude corticosteroid use as a
confounding factor. In summary, our study enabled us to
study links between the phenotypical biology and MGMT
status occurring during the natural history of human IDH wt
GBMs.

MGMT and Histology

We could not find any significant associations between
MGMT status and the histopathological features or immuno-
histochemically assessed degree of proliferation and angio-
genesis (Table 2). Few previous studies have investigated
relationships between MGMT status and histological features.
However, Hegi et al investigated such relationships by looking
at 13 morphological features in newly diagnosed GBM
patients (26). Yet, they only found a significant association be-
tween methylated MGMT status and higher Ki-67/MIB-1 PL
However, this association is limited by various aspects of the
assessments of Ki-67/MIB-1 PI (23, 27, 28). Pistollato et al
found a higher MGMT expression (corresponding to unmethy-
lated tumors) in the hypoxic, inner core of GBMs (29). They
also found that cells derived from these areas were more resis-
tant to temozolomide, which was further related to the higher
MGMT expression (29). In our previous studies, we found that
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thromboses independently predicted faster tumor growth,
which indicated that hypoxia drives faster tumor growth (23,
24). Because our previous publications included /DH mutant
tumors and that thromboses have been found to associate with
IDH1 wt status (30), we reanalyzed the data from our previous
publications while including only IDH wt GMBs. The reanaly-
sis showed similar results, suggesting that thromboses pro-
mote aggressiveness also among IDH wt GBMs. Interestingly,
neither thromboses nor faster preoperative growth were asso-
ciated with MGMT status in the current study (Tables 1 and 2).
Previous experimental studies have also linked MGMT
expression to increased hypoxia (31-33) and decreased angio-
genesis (34) in GBM cell lines. However, these results are
conflicting, as hypoxia is known to be an important inductor
of angiogenesis (35). Furthermore, a recent comprehensive ge-
nomic study showed considerable differences in mRNA ex-
pression profiles and DNA methylation profiles between
GBM patient material and the in vitro and in vivo models de-
rived from it (36). These findings illustrate challenges in ex-
trapolating findings from experimental models on MGMT
methylation status and expression. Altogether, the inconsistent
results from previous pathological and experimental studies
are in line with our findings, which suggest MGMT methyla-
tion status is not linked to pretreatment histology in GBMs.

MGMT and MRI

We found no significant associations between MGMT
status and total tumor volumes, contrast enhancing volumes,
necrotic volumes, the percentage of necrosis, or preoperative
speed of growth (Table 1). As mentioned, previous radiologi-
cal studies have aimed to noninvasively predict MGMT status
using conventional and advanced MRI characteristics. How-
ever, results have been conflicting and derived no expert con-
sensus (16). Still, most studies have found significant
associations between unmethylated MGMT status and MRI
parameters indicating increased aggressiveness, such as more
necrosis (37) and higher vascularity. Higher vascularity was in
these studies measured as (i) ring enhancement (37, 38), (ii)
higher normalized relative cerebral blood volume (39), (iii)
higher relative cerebral blood flow (16), (iv) more edema (40),
and (v) lower apparent diffusion coefficient (also indicating
increased cellularity) (16, 41). On the contrary, others have
found methylated MGMT status to significantly associate with
necrosis (16), lower apparent diffusion coefficient (42), and
higher relative cerebral blood volume (43). In line with our
study, others found no significant associations between
MGMT status and conventional MRI features (44—47). Never-
theless, machine learning approaches might be a way to ad-
vance and have thus far shown both promising (47-50) and
negative results (45). In summary, our results along with the
previous conflicting studies indicate that MGMT status cannot
yet be noninvasively predicted from MRI scans.

MGMT and Survival

MGMT promoter methylation was an independent pre-
dictor for improved survival when adjusted for several clinical
factors in the multivariable analyses (Table 3). However, this
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does not necessarily mean that methylated MGMT status is an
independent prognostic factor, as MGMT status may have af-
fected the temozolomide use in the studied patients. As de-
fined by Clark, a prognostic factor is “associated with clinical
outcome in the absence of therapy or with the application of a
standard therapy that patients are likely to receive” (51).
Hence, it is a feature of the natural history of the disease. A
predictive factor is “associated with response or lack of re-
sponse to a particular therapy” (51). Ideally, predictive factors
should be studied in randomized controlled trials (RCTSs), iso-
lating the effect of the potential biomarker related to treat-
ment. Prognostic factors are better studied in cohort studies
where treatment is not dependent on the studied biomarker. In
our study, most patients received chemotherapy regardless of
the MGMT status (Table 1). However, among elderly GBM
patients, the Stupp protocol is more seldom given and patients
with MGMT methylated tumors may be selected for chemo-
therapy alone (12). Second-line chemotherapy is also more
likely to be given to patients with MGMT methylated lesions.
Thus, since MGMT status is to some extent used for treatment
decisions, the seemingly independent effect of MGMT status
on survival in the multivariable analyses may be colored by
the use of MGMT status for treatment selection.

Our finding that MGMT status was not related to pre-
treatment phenotypical tumor biology indicates that methyl-
ated MGMT status is not associated with an intrinsically less
aggressive tumor biology. This further suggests methylated
MGMT status is not a prognostic factor by itself but merely a
predictive marker. As mentioned, previous studies have shown
conflicting results regarding the prognostic value of MGMT
status among patients who were not treated with chemother-
apy. Three RCTs on elderly patients (11-13) and a retrospec-
tive cohort from the preStupp area (14) did not find a
significant difference in overall survival according to MGMT
status in the radiotherapy-only treated group. Conversely, the
EORTC-NCIC RCT on younger patients (8, 52) and a retro-
spective study by Rivera et al (15) found a prognostic value of
MGMT status within the same patient group. However,
second-line therapy with temozolomide was given to a higher
percentage of the radiotherapy-only patients in the EORTC-
NCIC trial (~60%) than in the 3 other RCTs (~30% in all)
(11-13). Furthermore, in the EORTC-NCIC trial, they argue
that the survival benefit is probably due to an effect of second-
line chemotherapy, as the progression-free survival was short
and the overall survival relatively long in the MGMT methyl-
ated cases in the radiotherapy-only group (8, 52). Moreover,
Rivera et al found that methylated MGMT status also predicted
an increased response to radiotherapy (15). They further spec-
ulated whether methylated MGMT status could represent a
surrogate marker of improved treatment response in general or
of undiscovered processes causing an inherently less aggres-
sive tumor biology (15). However, our study suggests the lat-
ter speculation is not the case in IDH wt GBMs. Moreover,
our results also indicate that the increased response to chemo-
therapy in MGMT methylated GBMs is not due to pretreat-
ment differences in phenotypical tumor biology. Altogether,
our findings along with previous studies indicate the increased
survival of MGMT promoter methylated patients is due to an
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increased response to therapy, and not due to an intrinsically
less aggressive tumor biology.

Methodological Aspects

To date there is no consensus regarding the best assay
for detecting the MGMT methylation status (53, 54). We used
MSP, which has been related to survival in several pivotal
clinical studies (8, 10, 22, 53). The finding of 36% MGMT
methylated cases corresponds to the 30%-60% in previous
studies (10). Interestingly, there was a near-significant trend
of more MGMT unmethylated tumors when tumor material
was sparse (p = 0.088). This association is perhaps due to the
assay’s propensity toward more false negatives when the
amount of isolated DNA is low. Intratumoral heterogeneity in
MGMT status has also been reported (55, 56), which may con-
tribute to a higher risk of false negative results in cases with
sparse tissue. Further technical limitations of the MSP assay
have been elaborated elsewhere (10, 54, 57). Still, the primers
used in this study correspond to an area of the promoter found
to best correlate with survival and MGMT expression in
patients with GBM (58, 59).

Limitations regarding the collection of clinical data, the
histopathological and immunohistochemical assessments, the
segmentation of tumor volumes and different tumor compart-
ments, and the estimation of growth rates have previously
been described in detail (4, 18, 23, 24). The relatively large
population of treatment-naive patients with a population-
based referral and the preoperative MRI assessments are the
main strengths of the study. Important limitations are potential
selection biases, preoperative corticosteroid treatment, sam-
pling errors and interobserver variability of the histological
assessments, and the explorative nature of the statistical analy-
ses. We chose not to correct for multiple statistical testing de-
spite the increased risk of false positive findings. Interestingly,
based on the set p value of <0.05, one would expect at least
one false positive finding of the 29 performed statistical tests
between MGMT status and biological features. Hence, the fact
that none of these tests were significant further supports our
conclusion that MGMT status is not related to pretreatment
phenotypical tumor biology. Assuming a standardized effect
size of 0.8, the power was estimated to be ~90% for each anal-
ysis between MGMT status and the biological features. The
results should be validated in future studies.

Conclusion

In conclusion, we did not find any significant associa-
tions between MGMT promoter methylation status and histo-
logical or MRI features in treatment-naive /DH wt GBM
patients. These findings suggest MGMT status is not related to
the pretreatment phenotypical biology in IDH wt GBMs,
which indicate that the increased survival of MGMT methyl-
ated patients is not due to an inherently less aggressive tumor
biology. Also, our findings suggest that preoperative conven-
tional MRI characteristics cannot be used for noninvasive pre-
diction of the MGMT status.
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