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Abstract: This paper presents a review and analysis of large-scale air convection tests and the
establishment of intrinsic permeability in coarse open-graded materials. Natural air convection
can make a significant contribution to heat transfer during cooling periods. In seasonally freezing
environments this can result in excessive frost penetration and subsequent frost-related problems.
Intrinsic permeability largely defines the onset of convective heat transfer in granular materials.
Conventional methods for measuring intrinsic permeability cannot be applied to very coarse materials.
Large-scale laboratory experiments on natural air convection can serve as an alternative method for
determining this crucial parameter. This paper gives an overview of four different experimental test
setups for measuring natural air convection, all differing in physical shape, boundary conditions and
heat flux/temperature measurement devices. Comparison between these is difficult because the air
convection pattern can differ and in some cases the shape and number of convection cells cannot be
validated. Most of the studies available in the literature use theoretical equations to approximate
intrinsic permeability. A method based on the analytical Nu-Ra number relationship is employed
to establish the values of intrinsic permeability. Tests that provide enough data to enable the use of
the Nu-Ra relationship are very limited. The overall results show a reasonable correlation between
experiment-based intrinsic permeability and theoretical approximation. However, several issues must
be addressed: first, differences may exist between the intrinsic permeability of natural and of crushed
materials due to the shape effect. Second, the method used is in theory valid only for two-dimensional
air convection within a square enclosure heated from below. Yet the results show that this method
could be extended to other conditions with a certain degree of confidence. Third, a good estimate of
intrinsic permeability is possible only with accurate experimental measurement.

Keywords: natural air convection; heat transfer cell; coarse mineral materials

1. Introduction

Thermal conduction is the major heat transfer mode in conventional road and railway construction
materials [1,2]. However, when coarse open-graded materials are used, other heat transfer types
may contribute significantly to the overall heat transfer rate. Natural air convection has been a
topic of interest for road and railway engineers for the last few decades because it is a temperature
gradient-dependent heat transfer mode (upward heat flow). In addition, it considerably increases
the overall heat transfer extraction rate only during the cooling periods. This in turn can yield
favorable effects only in permafrost conditions, contributing to the ground cooling rate and maintaining

Minerals 2020, 10, 767; doi:10.3390/min10090767 www.mdpi.com/journal/minerals

http://www.mdpi.com/journal/minerals
http://www.mdpi.com
https://orcid.org/0000-0002-6784-0333
https://orcid.org/0000-0001-7118-4132
http://dx.doi.org/10.3390/min10090767
http://www.mdpi.com/journal/minerals
https://www.mdpi.com/2075-163X/10/9/767?type=check_update&version=2


Minerals 2020, 10, 767 2 of 22

subzero temperatures under road or railway structures [3]. The same process in a seasonally freezing
environment can result in excessive frost-penetration depth [4], leading to frost heave problems.
In permafrost conditions, air convection embankment (ACE) is a typical example of how free air
convection can be employed. ACE is constructed of granular material of large and mainly uniform
particle size. Highly porous material has high intrinsic permeability, which ensures the initiation of
convective heat transfer at low temperature gradients. As a result convection contributes to ground
cooling when the ground temperature is higher than the air temperature [5]. Figure 1 shows the pattern
of air convection cells contributing to heat extraction from the ground. The same physical process in
terms of air circulation can also occur in a seasonally freezing environment if the intrinsic permeability
of the material is high enough to initiate and enable convective heat transfer.
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Thermal design in seasonally freezing environments has the opposite goal to that in permafrost
conditions: to prevent excessive ground cooling by controlling or reducing the freezing of
frost-susceptible subgrade soils. Convective heat transfer in this case would contribute to excessive
heat extraction during wintertime, with no heat input possible during summertime. Therefore the
primary objective in terms of heat transfer is to limit heat flow to conduction conditions.

Intrinsic permeability is the key parameter of materials that defines the onset of convection.
Estimating permeability can be difficult because conventional methods such as measuring hydraulic
conductivity cannot be applied to very coarse materials. In addition, extending theoretical models
developed for fine materials to coarse fractions introduces large variations. An alternative method for
estimating permeability was introduced by Côté et al. (2011) [6]. The method is based on natural air
convection tests in combination with the analytical Nu-Ra relationship. The literature provides only a
limited number of tests with enough data to allow the use of the Nu-Ra relationship.

This paper presents an overview of the establishment of the intrinsic permeability of coarse
open-graded materials based on laboratory experiments. It first gives the background to natural
air convection phenomenon occurring in coarse granular materials. Theoretical models for the
approximation of intrinsic permeability are provided. The paper then describes four experimental
studies on this topic in the chronological sequence in which they were carried out in recent decades.
It then presents the experimental results of all of the studies and the established intrinsic permeability
values based on a method proposed by Côté et al. (2011) [6]. A discussion of the effect of particle
gradation follows. Finally, general conclusions regarding large-scale air convection tests and the
establishment of intrinsic permeability are given.

2. Natural Air Convection in Porous Media

Johansen (1975) [2] established the limits of different heat transfer mechanisms that can take place
in soils in field conditions. He proposed defining the domains of each of these mechanisms as a function
of effective particle diameter (d10) and degree of saturation (Sr). This is shown in Figure 2 as follows,
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according to the various regions numbered from 1 to 6: (1) conduction; (2) temperature-driven vapor
diffusion; (3) humidity-driven vapor diffusion; (4) free water convection; (5) natural air convection;
(6) radiation. Johansen (1975) [2] also defined the d10 size of 0.01 m as the limit above which natural
convection and radiation can make a significant contribution to overall heat transfer.
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(2011) [6]).

2.1. Natural Air Convection

Natural air convection in porous materials used in road and railway construction may occur
only if certain conditions are met [2]. The principal condition is the temperature gradient along the
thickness of a particular material layer. Natural air convection is buoyancy-driven, meaning that the
fluid flow is the result of density variations along the temperature gradient. The presence of convective
heat flow in superstructures represents the ground cooling period. During this period the ground
temperature is higher than the air temperature, creating unstable pore-air density gradients [4]. As a
result, the lighter warm air from the ground may rise while the denser cold air penetrates the ground.
Fluid flow is strongly associated with heat flow. The circulating pore air carries a certain amount of
heat stored in the structural layers and subsoil. As a result, the rise of warm air can speed up the
ground-cooling process considerably. An increased temperature gradient will increase the density
variations, resulting in higher air velocity and in turn increasing the heat extraction rate.

In laboratory conditions the samples are tested in both upward and downward heat flow conditions
to evaluate the magnitude of convection. For downward heat flow conditions, the heat is transferred by
a combination of thermal conduction and radiation [7] that can be considered an equivalent conduction
term. For upward heat flow conditions, in addition to effective thermal conduction, heat can be
transferred by natural air convection. Under the same temperature gradient, heat flux from the opposite
movements can be expressed as a ratio called the Nusselt number (Nu, no units) as showed in Equation
(1). The Nu number describes the increase in heat transferred due to convection compared to pure
conduction. If Nu number is greater than 1 it means that convection is contributing to the upward
heat flow.

Nu =
q ↑
q ↓

(1)

where q ↑ and q ↓ are the upward and downward heat fluxes (W/m2) respectively.
The magnitude of convection can be expressed by a Rayleigh number (Ra, no units). According to

Nield and Bejan (2013) [8], the Ra number is calculated as follows:

Ra =
gβCKH2

∇T
νke

(2)
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where H (m) is the height of the sample, ∇T is the temperature gradient (◦C/m), g is gravitational
acceleration (m/s2), K and ke is the intrinsic permeability (m2) and effective thermal conductivity
(W/m◦C) of the material, and β, C and ν are the thermal expansion (K−1), heat capacity (J·m−3

·K−1)
and kinematic viscosity of the fluid respectively. Estimation of effective thermal conductivity and the
intrinsic permeability are presented in the following section.

Schubert and Straus (1979) [9] have demonstrated that convection can be initiated in a square
enclosure heated from below only when the Ra number exceeds 4π2 (~40). A strictly two-dimensional
convection is steady for Ra number values of up to 320. In a cube, a maximum Ra number of 200
makes two-dimensional convection possible, and when the Ra value exceeds 200, perturbations in an
orthogonal direction lead to unsteady conditions. Under such conditions steady-state convection in a
three-dimensional enclosure can be maintained only when the ratio of the width of a sample to the
dimension of the square’s cross section is below 0.38. Above the critical Ra number value, convection
becomes unsteady and the Nu number value fluctuates increasingly with increasing Ra values [9–11].

2.2. Effective Thermal Conductivity

In coarse open-graded materials tested under downward heat flow conditions, the heat is
transferred by conduction and radiation and the rate of heat flow is governed by the effective thermal
conductivity (ke), which is the sum of the contributions of thermal (kc) and radiant (kr) conductivity as
follows:

ke = kc + kr (3)

Numerous models have been developed for the approximation of pure thermal conductivity of
dry, moist and saturated soils. The materials discussed in the experimental studies have been tested in
dry conditions, enabling the use of the two-phase model proposed by Côté and Konrad (2009) [12].
For a two-phase material consisting of a solid part (rock) and a fluid part (air), thermal conductivity kc

can be approximated as follows:

kc =

(
κ2pks − k f

)
(1− n) + k f

1 +
(
κ2p − 1

)
(1− n)

(4)

where ks and kf are the thermal conductivity (W/m◦C) of the solid and the fluid (air phase) respectively,
n is porosity (no units), while κ2p is a structure parameter (no units) obtained as follows:

κ2p = 0.29
(15k f

ks

)ϕ
(5)

where ϕ is empirical factor set equal to 0.54 for crushed materials.
Radiation in a porous media can be assimilated to diffusion process and estimated through

diffusion approximation [13,14]. Radiant conductivity (kr), as stated by Tien (1988) [15] can be
calculated as follows:

kr = 4Ed10σT3 (6)

where E is the exchange factor, σ is the Stephan–Boltzmann constant equal to 5.67 × 10−8 W m−3 K−4

and T is the mean sample temperature. Numerous equations are available for approximation of the
exchange factor. Fillion et al. (2011) [7] has shown that the equation proposed by Argo and Smith
(1953) [16] fits best the experimental data obtained in their own study and the results of the study by
Johansen (1975) [2]. The equation proposed by Argo and Smith (1953) [16] is as follows:

E =
ε

(2− ε)
(7)

where ε is surface emissivity.
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Equations (1)–(7) are used in the analysis of the experimental data presented later in this paper.

2.3. Intrinsic Permeability

Many of the parameters taken into account by the Rayleigh number can be measured easily
or obtained from published tables. Most existing theoretical models for approximating intrinsic
permeability are based on experimental measurement of much finer soils (e.g., [10,11]) and therefore
should be used with caution when extended to a range of coarse materials. Moreover, conventional
experimental methods such as hydraulic conductivity measurement cannot be applied to coarse
materials. In such experiments turbulent flows can form at relatively small hydraulic gradients,
as shown by Dudgeon (1966) [17] in uniform materials with a particle size larger than 20 mm. However,
Côté et al. (2011) [6] have shown that large-scale air convection tests can work as a substitute for the
determination of this essential parameter.

Most studies involving natural air convection rely on estimated values of intrinsic permeability
obtained using the Kozeny–Carman model, as derived by Carman (1956) [18] from Kozeny (1927) [19],
Equation (8), or a modified version proposed by Chapuis (2004) [20] Equation (9):

K =
C
f 2 d2

10
n3

(1− n)2 (8)

where C/f2 accounts for tortuosity as well as pore and particle shape (no units) and d10 is the effective
particle diameter (m). This theoretical model was used in the studies by Johansen (1975) [2] and NGI
(1999) [21] covered in this paper.

K = 0.000125α0.7825 (9)

where α is defined as d2
10n3/(1− n)2.

The two theoretical models for the estimation of intrinsic permeability presented here are compared
to experimental data from various studies.

3. A Method for Determining the Intrinsic Permeability from Natural Air Convection Tests

This section describes a method of analysis for establishing the values of intrinsic permeability
based on measurement of heat convection in large-scale laboratory tests. The method is proposed
by Côté et al. (2011) [6] as an alternative way of defining the intrinsic permeability of coarse
open-graded materials.

Schubert and Straus (1979) [9] proposed the analytical Nu–Ra number relationship for natural air
convection within a square enclosure heated from below and provided numerical values for the Nu
and Ra numbers. Côté et al. (2011) [6] modelled the Nu–Ra relationship by best fit-analysis using a
log-function:

Nu = 1.735 ln(Ra) − 5.38 (10)

Figure 3 shows the analytical Nu–Ra number relationship together with laboratory results from
various studies on natural air convection [8,22–25]. The laboratory results deviate relatively widely
from the analytical solution. The scattering may be attributed to external effects such as variation in
vertical wall temperatures [6]. In addition, to establish the Ra number values, different theoretical
models are used for the approximation of intrinsic permeability. This could also explain the deviation
from the analytical solution. The numerical values for Nu and Ra as well as the equation derived
are strictly for two-dimensional convection within a square enclosure heated from below. Based on
Schubert and Straus (1979) [9] the Nu–Ra relationship is applicable to a cubical enclosure if the
Ra number value does not exceed 200. Below the critical Ra number no orthogonal perturbation
is expected.
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Figure 3. Experimental and analytical Nu–Ra relationships in porous media in a square enclosure
heated from below (Côté et al., 2011 [6]).

Substituting the Nu and Ra numbers with their corresponding equations (Equations (1) and (2))
yields (Côté et al., 2011 [6,26]):

q ↑
q ↓

= 1.735 ln
(

gβCKH2
∇T

νke

)
− 5.38 (11)

Equation (11) can easily be used to best fit experimental data to obtain the value of intrinsic
permeability. The values of q ↑ and q ↓ can be obtained from laboratory tests as an average heat
flux value of the whole horizontal cross section of the sample. The values of β, C and ν can be read
from material property tables using the corresponding reference temperature taken as the average
temperature between the upper and lower boundary conditions. H is the sample height, while ∇T is
the corresponding temperature gradient at which the values of heat flux are defined. The value of ke

can be obtained from the downward heat flow conditions where there is no convection.
The Nu–Ra number relationship given above is geometry- and boundary-condition-dependent

and theoretically applicable only in certain conditions. Different numbers of convection cells within a
given geometry will result in different Nu–Ra relationships [8]. However, as shown later, the same
Nu–Ra relationship can be applied to other geometry and air convection cell conditions to yield
reasonable intrinsic permeability values [6,27].

Figure 4 is a schematic of typical experimental results of natural downward (no air convection)
and upward (with air convection) heat transfer tests on coarse open-graded materials. The slope of the
solid line is the value of effective thermal conductivity (ke). The line can be established as a best fit line
for downward heat flow measurements at various values of temperature gradient. The dashed line
represents the upward heat flow conditions when natural air convection is initiated above a certain
temperature gradient. The experimental results provide data points with mean heat flux values and
the average temperature gradient over the sample. The dashed line can be obtained by employing
Equation (11) and using K as best fit parameter. The best-fit line for upward heat flow conditions is
slightly curved because Equation (11) has a logarithmic term. The intercept point of the two lines
defines the minimum temperature gradient necessary for the initiation of convective heat transfer.
The intercept point refers to the critical temperature gradient (Tc).
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Figure 4. Typical experimental results of natural air convection tests.

4. Large-Scale Laboratory Experiments

4.1. Experiments by Johansen (1975)

Johansen’s (1975) [2] experiments were conducted at the Norwegian University of Science and
Technology (NTNU). While the majority of Johansen’s doctoral thesis was concerned with the thermal
conductivity of soils, a minor part was dedicated to other modes of heat transfer in soils. Among these,
air convection was tested in laboratory experiments under both free and forced conditions. Johansen’s
work on this phenomenon has been used as the basis of studies discussed later in this paper.

Figure 5 shows the geometry of Johansen’s (1975) large-scale experimental test setup. The internal
size of the heat transfer cell was 1.8 m in width and 2.2 m in length and allowed the testing of a 0.48 m
thick layer of crushed-rock material. The vertical heat flow was measured using 9 heat flow gauges
placed below the sample and the temperature profile was measured in 7 horizontal planes spaced 8 cm
apart. Each cut contained 22 temperature sensors. The experimental setup for forced convection tests
is displayed in Figure 5. The same setup without the fans was used for the natural air convection tests.
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Figure 5. Experimental setup for forced and free convection tests (Johansen, 1975 [2]).

The material tested was crushed rock with particle sizes ranging from 20 to 80 mm. The material
was loosely packed, resulting in a dry density of 1500 kg/m3 and porosity of 0.44. In total, the sample
was subjected to nine different temperature gradients for upward heat flow (convection) conditions.
The upper boundary condition was set by the room temperature, while the lower boundary was
controlled by fluid circulating in a plate heat exchanger. Only four tests were performed with an
impermeable upper boundary (closed system); in the other five tests the upper surface was held open,
exposing the air flow to room conditions (open system).
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Johansen’s (1975) [2] analysis of the experimental data was limited to calculation of the Ra and Nu
numbers. Johansen (1975) [2] calculated the Rayleigh numbers for both exposed and covered surface
conditions and defined the critical Ra numbers. The intrinsic permeability values were approximated
using the Kozeny–Carman equation (Equation (8)), as when the study was conducted no analytical
Nu–Ra relationship such as that proposed by Schubert and Straus (1979) [9] was available. Therefore no
additional analysis of the intrinsic permeability of coarse materials was possible for Johansen (1975) [2].
Although the experiments on natural convection were limited to just one test sample, Johansen (1975)
was able to show the importance of this heat transfer in coarse materials and later defined the limits of
convection in terms of material properties such as Sr and d10 [2].

4.2. Experiments by the Norwegian Geotechnical Institute (NGI)

During the winter of 1995/96 frost heave problems occurred on some newly built railway lines in
the south of Norway. The Norwegian Railway Administration formed a research group to investigate
the problem. The Norwegian Geotechnical Institute (NGI) had a mandate to conduct a study on thermal
conductivity on various crushed rock materials. Their findings are reported in NGI (1996) [28–30].
During the winter of 1996/97 frost heave problems occurred again on some parts of the railway lines.
The NGI’s general conclusion was that heat loss during the winter and the freezing of frost-susceptible
soils had been driven by coupled heat and mass transfer (conduction and natural convection) in coarse
open-graded materials.

The NGI was assigned to further investigate heat transfer mechanisms in coarse crushed materials.
The outcome of this substantial study has been published in numerous reports. Report 982519-1 [14]
summarizes the laboratory investigations into natural convection in coarse crushed rock materials and
the reported data are analyzed in this paper.

Figure 6, below, shows the experimental heat transfer cell, while Figure 7 shows a vertical cross
section. The specimen tested had a horizontal area of 1 × 1 m and a height of 0.75 m. The top and
bottom heat exchange plates were equipped with fluid-circulating tubes to create cold temperatures
(temperature boundary condition) and an electrical heating (heat flux boundary condition) cable
to create high temperatures. Electrical input was accurately monitored during the tests to allow
calculation of the total heat input. This gave the average value of the heat flux for the whole horizontal
cross section of the sample. The test sample was equipped with 8 thermistors, placed in pairs and
spaced 0.25 m apart from the bottom to the top and all located 5 cm from the center line. The report
provides the average values of each pair of thermistors.

Minerals 2019, 9, x FOR PEER REVIEW 8 of 23 

 

impermeable upper boundary (closed system); in the other five tests the upper surface was held open, 
exposing the air flow to room conditions (open system). 

Johansen’s (1975) [2] analysis of the experimental data was limited to calculation of the Ra and 
Nu numbers. Johansen (1975) [2] calculated the Rayleigh numbers for both exposed and covered 
surface conditions and defined the critical Ra numbers. The intrinsic permeability values were 
approximated using the Kozeny–Carman equation (Equation (8)), as when the study was conducted 
no analytical Nu–Ra relationship such as that proposed by Schubert and Straus (1979) [9] was 
available. Therefore no additional analysis of the intrinsic permeability of coarse materials was 
possible for Johansen (1975) [2]. Although the experiments on natural convection were limited to just 
one test sample, Johansen (1975) was able to show the importance of this heat transfer in coarse 
materials and later defined the limits of convection in terms of material properties such as Sr and d10 

[2]. 

4.2. Experiments by the Norwegian Geotechnical Institute (NGI) 

During the winter of 1995/96 frost heave problems occurred on some newly built railway lines 
in the south of Norway. The Norwegian Railway Administration formed a research group to 
investigate the problem. The Norwegian Geotechnical Institute (NGI) had a mandate to conduct a 
study on thermal conductivity on various crushed rock materials. Their findings are reported in NGI 
(1996) [28–30]. During the winter of 1996/97 frost heave problems occurred again on some parts of 
the railway lines. The NGI’s general conclusion was that heat loss during the winter and the freezing 
of frost-susceptible soils had been driven by coupled heat and mass transfer (conduction and natural 
convection) in coarse open-graded materials. 

The NGI was assigned to further investigate heat transfer mechanisms in coarse crushed 
materials. The outcome of this substantial study has been published in numerous reports. Report 
982519-1 [14] summarizes the laboratory investigations into natural convection in coarse crushed rock 
materials and the reported data are analyzed in this paper.  

Figure 6, below, shows the experimental heat transfer cell, while Figure 7 shows a vertical cross 
section. The specimen tested had a horizontal area of 1 × 1 m and a height of 0.75 m. The top and 
bottom heat exchange plates were equipped with fluid-circulating tubes to create cold temperatures 
(temperature boundary condition) and an electrical heating (heat flux boundary condition) cable to 
create high temperatures. Electrical input was accurately monitored during the tests to allow 
calculation of the total heat input. This gave the average value of the heat flux for the whole horizontal 
cross section of the sample. The test sample was equipped with 8 thermistors, placed in pairs and 
spaced 0.25 m apart from the bottom to the top and all located 5 cm from the center line. The report 
provides the average values of each pair of thermistors. 

 

Figure 6. Experimental setup developed by Norwegian Geotechnical Institute (NGI, 1999 [21]). Figure 6. Experimental setup developed by Norwegian Geotechnical Institute (NGI, 1999 [21]).



Minerals 2020, 10, 767 9 of 22
Minerals 2019, 9, x FOR PEER REVIEW 9 of 23 

 

 
Figure 7. Center cross-section of experimental setup used by NGI (Goering et al., 2000 [4]). 

The NGI study used three different crushed rock materials: (i) ballast material 25–63 mm; (ii) 
crushed rock 20–120 mm; (iii) blasted rock 0–250 mm. Figure 8 shows the gradations of all three 
materials used and shows that the 0–250 material has a well-graded particle distribution.  

 

Figure 8. Gradation of materials tested by the NGI (redrawn according to NGI (1999) [21]). 

Table 1 gives the approximate values of effective particle size (d10) and mean particle size (d50) 
obtained from the gradation curves. 

Table 1. d10 and d50 of test materials 

Material d10, mm d50, mm 
25–63 mm 26.2 36.8 

20–120 mm 19.0 42.2 
0–250 mm 0.7 53.1 

The study found that the 0–250 mm material did not allow for convection heat transfer under 
the temperature gradients at which it was tested. This agrees with Johansen’s (1975) [2] findings that 
the d10 value was considerably lower than the theoretical limit (10 mm). The other two materials had 
a d10 value higher than the limit suggested by Johansen (1975) [2] and were therefore found prone to 
convective heat transfer at relatively low temperature gradients. Laboratory measurements of these 
two materials are presented in the results section. 

4.3. Experiments by Côté et al. (2011) 

Figure 7. Center cross-section of experimental setup used by NGI (Goering et al., 2000 [4]).

The NGI study used three different crushed rock materials: (i) ballast material 25–63 mm;
(ii) crushed rock 20–120 mm; (iii) blasted rock 0–250 mm. Figure 8 shows the gradations of all three
materials used and shows that the 0–250 material has a well-graded particle distribution.
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Table 1 gives the approximate values of effective particle size (d10) and mean particle size (d50)
obtained from the gradation curves.

Table 1. d10 and d50 of test materials.

Material d10, mm d50, mm

25–63 mm 26.2 36.8
20–120 mm 19.0 42.2
0–250 mm 0.7 53.1

The study found that the 0–250 mm material did not allow for convection heat transfer under the
temperature gradients at which it was tested. This agrees with Johansen’s (1975) [2] findings that the
d10 value was considerably lower than the theoretical limit (10 mm). The other two materials had a
d10 value higher than the limit suggested by Johansen (1975) [2] and were therefore found prone to
convective heat transfer at relatively low temperature gradients. Laboratory measurements of these
two materials are presented in the results section.
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4.3. Experiments by Côté et al. (2011)

One of the most recent experimental studies and analyses of its kind was conducted by Côté et al.
(2011) [6] at Laval University in Quebec City, QC, Canada. It was carried out to evaluate the heat
transfer mechanisms involved in undesired artificial formation of permafrost conditions in rock-fill
embankment dams. It is worth mentioning that Côté et al. (2011) [6] largely based their research on
those of Johansen (1975) [2] and the NGI (1999) [21], emphasizing the importance of continuity and
development of the particular domain of heat and mass transfer in coarse particulate media.

Compared to the previous studies, the heat transfer cell built by Côté et al. (2011) [6] had few
improvements. First, the dimensions of the sample were almost cubical with a 1 × 1 m horizontal area
and a height of 0.94 m. These proportions were found reasonable to allow the use the analytical Nu–Ra
number relationship proposed by Schubert and Straus (1979) [9] to establish intrinsic permeability
based on the experimental data. Second, as in Johansen’s (1975) [2] test setup, but unlike the NGI
setup, it was solely temperature-controlled at the top and bottom using fluid-circulating heat exchange
plates. Third, it had four heat flux sensors each measuring 0.4 × 0.4 m at the top of the sample covering
65% of sample’s top surface area. Fourth, the temperature profiles were measured using five vertical
thermistor strings, with one placed in the center of the sample and the other four placed 0.1 m from
each of the vertical faces. Finally, the heat transfer cell was also equipped with a line heat source at one
of the bottom edges, allowing initiation of convection in the desired direction. All of this allowed the
shape and direction of the convective cell to be initiated and validated, and monitoring of the heat
transfer rates and temperature gradients at various locations.

The materials used by Côté et al. (2011) [6] were natural granite cobbles with particle sizes ranging
from 75 to 205 mm. Four different samples were prepared with the corresponding d10 values of 0.092,
0.100, 0.128 and 0.150 m. The particle gradation of all four samples is shown in Figure 9. Porosity ranged
from 0.37 to 0.41. The variation of d10 was expected to influence the rate of the experimental convective
heat transfer and subsequently the value of the back-analyzed intrinsic permeability.
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Figure 10 shows the sample preparation phase for the study by Côté et al. (2011) [6] and Fillion et al.
(2011) [7].
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4.4. Experiments by Rieksts et al. (2017)

The latest study investigating natural air convection in coarse open-graded aggregates under
laboratory conditions was conducted at the Norwegian University of Science and Technology (NTNU).
The main objective of these laboratory experiments was to test road construction materials (crushed
rock and lightweight aggregates) for their convective heat transfer characteristics. The study used a
large-scale heat transfer cell designed based on that used by Côté et al. (2011) [6]. The vertical and
horizontal cross sections of the experimental setup are shown in Figure 11. To increase the general
accuracy, the heat transfer cell was equipped with nine heat flux plates, each measuring 0.3 × 0.3 m,
allowing for a detailed characterization of overall convective heat flow. Figure 12 shows the heat flux
sensors placed between two Plexiglas sheets.
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To increase the general accuracy, the heat transfer cell was equipped with nine heat flux plates,
each measuring 0.3 × 0.3 m, allowing for a detailed characterization of overall convective heat flow.
Figure 12 shows the heat flux sensors placed between two Plexiglas sheets. Vertical temperature
gradients throughout the sample were measured using thermocouples placed in levels by five
thermocouples per level and spaced 0.16–0.17 m apart. At each level one thermocouple was located
in the center of the sample and the other four were located about 0.16–0.17 m from each inner wall.
The thermocouples were located below the midpoint of the heat flux sensor above (see Figure 12).

The study conducted at NTNU was carried out in three phases. The first phase included a test
using pure sand for validation of conductive heat transfer. The second phase was the validation of
convective heat transfer, the results of which are reported in Rieksts et al. (2017) [27]. Figure 13 shows
the heat transfer cell partially filled with natural cobbles of 0.09–0.21 m particle diameter, with a d10 of
0.12 m and a porosity of 0.36. The general objective of this validation was to compare the results with
the those obtained by Côté et al. (2011) [6].
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After the first two initial phases to validate the experimental setup, the study continued with
tests using road construction materials. The results of the third phase are reported in Rieksts et al.
(2020) [31]. These tests included crushed rock materials with particle gradations of 20/120, 40/120 and
20/250 mm.

4.5. Summary of Experimental Setup Overviewed

The four different test setups reviewed in this paper mainly vary in their physical dimensions,
boundary condition settings, and the instrumentation used to measure heat flux and temperature
distribution. Table 2 gives a summary of the general characteristics of all four test setups.

Table 2. Summary of experimental laboratory test setups.

Johansen (1975) [2] NGI (1999) [21] Côté et al. (2011) [6] Rieksts et al. (2017) [27]

Sample width 1.8 m 1 m 1 m 1 m

Sample depth 2.2 m 1 m 1 m 1 m

Sample height 0.48 m 0.75 m 0.94 m 0.98 m

Boundary
conditions

Temperature controlled
on both sides

Heat flux controlled on
warm side/temperature
controlled on cold side

Temperature controlled
on both sides

Temperature controlled
on both sides

Heat flux
measurements

Nine heat-flux gauges
(size not specified)

Measurement of
electrical current

converted to heat flux

Four heat flux plates
(each 0.4 × 0.4 m)

covering 65% of sample
surface

Nine heat flux plates
(each 0.3 × 0.3 m)

covering 90% of sample
surface

Temperature
measurements

Temperature sensors in
layers with 22 sensors in

each layer

Thermistors only along
the centerline

Thermistors placed in
layers with five sensors

in each layer

Thermocouples placed in
layers with five sensors

in each layer

5. Establishment of Intrinsic Permeability from Experimental Convection Results

5.1. Study by Côté et al. (2011)

One of the main objectives of Côté et al.’s (2011) [6] experimental study was to develop and
validate a new method for determining intrinsic permeability, as described in detail in Section 3 above.

Figure 15 shows a q-∇T plot of experimental data on the coarsest material with a d10 value of
0.15 m. Two different specimens of the same material were tested to validate repeatability. As shown
in the figure, the data points for upward heat flow in both tests lie fairly closely along the same line.
Interpolation of the experimental data shows that the critical upward thermal gradient to initiate
convection would be a little higher than 4 ◦C/m.
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All the tests on different samples and different thermal gradients were conducted at an average
sample temperature of 20◦C, for which the parameters C, β and ν were set to 1211 J/m3◦C, 0.00343 1/◦C
and 1.5 × 10−5 m2/s respectively. For the data shown in Figure 15, with downward thermal gradients
ranging from 3 to 23 W/m2, it was possible to establish that the equivalent thermal conductivity was
equal to 1.02 W/m◦C (see slope of the dotted line), while the upward thermal gradients ranging from 7 to
15 ◦C/m allowed the establishment of the intrinsic permeability at a value of 3.9 × 10−6 m2, as obtained
using Equation (11). Table 3 summarizes the sample characteristics, experimental results, and values
of the established intrinsic permeability of the materials tested by Côté et al. (2011) [6]. The values in
Table 3 show that, for a porosity in the same range, the intrinsic permeability increases with increasing
d10, which is in agreement with Carman (1956) [18] and Chapuis’s (2004) formulations [20].

Table 3. Sample characteristics, experimental results and back-calculated values of intrinsic permeability.

Material n d10, m ke, W/m◦C ∇T q↑, W/m2 q↓*, W/m2 K, m2

1 (sample 1) 0.41 0.150 1.02
6.8 16.9 7.0

3.9 × 10−6
10.8 28.7 11.1
15.4 45.9 15.9

1 (sample 2) 0.41 0.150 1.02
10.1 30.3 10.4
15.4 51.4 15.9

2 0.41 0.128 0.95
21.7 60.0 20.6

2.1 × 10−6
28.0 89.2 26.6

3 0.39 0.092 0.71 25.3 53.0 17.9 1.5 × 10−6

4 0.37 0.100 0.83 24.5 77.6 20.3 2.9 × 10−6

* calculated based on ke and ∇T.

5.2. Reanalysis of Johansen’s (1975) Data by Côté et al. (2011)

To further validate the intrinsic permeability model, Côté et al. (2011) [6] re-analyzed Johansen’s
(1975) [2] experimental data. Figure 16 shows a q-∇T plot of the experimental data obtained by
Johansen (1975) [2] as represented by Côté et al. (2011) [6]. As the figure shows, the lowest value of
heat flux for upward heat movement is in the region of the temperature gradient at which convection
is not initiated. In this case the value of Nu is not higher than 1. These results clearly show the extent
of natural convection in coarse materials, as well as its contribution to the overall heat transfer rate.
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To establish intrinsic permeability, Côté et al. (2011) [6] used C, β and ν values of 1345 J/m3◦C,
0.00385 1/◦C and 1.23 × 10−5 m2/s respectively. These values refer to the average testing temperature
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of −13.5 ◦C. Effective thermal conductivity as measured and reported by Johansen (1975) [2] was
0.45 W/m◦C. Table 4 summarizes sample characteristics, experimental results and the established
K value. The dashed line in Figure 16 shows the best fit of K using Equation (11). As reported by
Côté et al. (2011) [6] the best-fit value of K is equal to 0.71 × 10−6 m2. This value is fairly close to that
used by Johansen (1975) [2] using Equation (8). The established K value also emphasizes the effect
of decreased value of d10. The porosity of the material used by Johansen (1975) [2] was in the same
range as that of the materials used by Côté et al. (2011) [6]. However, the d10 of the material used by
Johansen (1975) was considerably lower, resulting in a lower permeability, resulting in a higher critical
temperature to initiate air convection (26◦C/m in Figure 16 with a d10 of 0.03 compared to 4◦C/m in
Figure 15 with a d10 of 0.15 m).

Table 4. Sample characteristics, experimental results and back-calculated values of intrinsic permeability.

Material n d10, m ke, W/m◦C ∇T q↑, W/m2 q↓*, W/m2 K, m2

1 (sample 1) 0.44 0.03 0.45
6.8 26.7 12.0

0.71 × 10−610.8 36.3 16.3
15.4 40.8 18.4

* calculated based on ke and ∇T.

Johansen (1975) [2] provided limited data on the formation of his convection cell. The width and
depth of the heat transfer cell were several times greater than its height, and hence it is very likely that
multiple convection cells formed within the test sample. The method proposed by Côté et al. (2011) [6]
employs a Nu–Ra relationship for a square enclosure. Therefore one should be critical of the intrinsic
permeability value obtained using Equation (11).

5.3. Studies by Rieksts et al. (2017, 2020)

Figure 17 shows the experimental data for upward and downward heat flux as a function of
temperature gradient in the validation test case. The study reports that convection was not initiated
from face to face as it was in the work by Côté et al. (2011) [6]. Due to the lack of power for the
line heat source, convective heat transfer initiated freely. Based on the temperature distribution and
heat flux readings it was concluded that the air flow was in a diagonal direction. The convection cell
has the upward flow in one corner and the downward heat flow in the diagonally opposite corner.
The subsequent tests reported by Rieksts et al. (2020) [31] had much more stable convection initiation.
A stronger line heat source was used for these experiments, which successfully initiated convection in
a 2-dimensional pattern and remained stable throughout the test.
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Table 5 summarizes the material characteristics, experimental results and established K values
of the tests reported by Rieksts et al. (2017, 2020) [27,31]. Using Equation (11) to establish K gives
a best-fit value of 3.38 × 10−6 m2. It must be emphasized here that similar to Johansen’s (1975) [2]
case, the convection pattern is not in agreement with the conditions in which Schubert and Straus’s
(1979) [9] analytical solution should be applied. However, the study showed that the established K
value is very close to that of Côté et al.’s (2011) [6] with very similar materials. This test served as the
basis for validating convective heat transfer with the equipment used by Rieksts et al. (2017) [27].

Table 5. Sample characteristics, experimental results and back-calculated values of intrinsic permeability
(Rieksts et al., 2017 [27]).

Material n d10, m ke, W/m◦C ∇T q↑, W/m2 q↓*, W/m2 K, m2

Cobbles 0.39 0.121 0.89
7.0 14.0 6.2

3.38 × 10−614.1 39.2 12.6
17.0 49.7 15.1

Crushed rock
20–120 mm

0.45 0.030 0.54
10.9 13.5 5.8

2.2 × 10−616.4 20.1 8.8
21.3 36.4 11.4

Crushed rock
0.45 0.038 0.59

9.0 14.0 5.1
1.1 × 10−6

40–120 mm 17.8 34.5 10.6

Crushed rock
20–250 mm

0.40 0.028 0.72
9.4 5.7 5.7

0.9 × 10−615.2 16.9 11.0
19.9 29.8 14.5

* calculated based on ke and ∇T.

5.4. Reanalysis of Experimental Data by NGI (1999) and Goering et al. (2000)

This section presents a full reanalysis of the NGI’s (1999) [21] experimental data using Côté et al.’s
(2011) method [6]. Figure 18 shows the experimental data obtained by NGI (1999) [21]. As mentioned
before, only the data for 25–63 and 20–120 mm material are presented here, because the 0–250 material
did not allow initiation of convection within the temperature gradients made possible by the heat
transfer cell. The slope of the solid lines in Figure 18 depict the effective thermal conductivity.
As reported by NGI (1999) [21] the ke is 0.80 and 0.85 W/m◦C for the 25–65 and 20–120 mm materials
respectively. The dashed line is a best-fit curve based on Equation (11) with K the fitting parameter.
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Table 6 presents the material characteristics, experimental results and established K values from
tests performed by NGI (1999). The best fit K for the 25–63 mm material is established for a mean
experimental temperature of 25.9 ◦C. At this temperature β, C and ν are 0.00335 1/◦C, 1189 J/m3◦C and
0.000016 m2/s respectively. The best fit of Equation (11) yields a K value of 1.14 × 10−6 m2. On the other
hand, the best fit K for the 20–120 mm material is determined at an average testing temperature of
22.9◦C, with values of β, C and ν at this temperature being 0.0039 1/◦C, 1201 J/m3◦C and 0.000015 m2/s
respectively. The best fit of Equation (11) gives a K value of 1.11 × 10−6 m2.

Table 6. Sample characteristics, experimental results and back-calculated values of intrinsic permeability.

Material n d10, m ke, W/m◦C ∇T q↑, W/m2 q↓*, W/m2 K, m2

25–63 mm 0.38 0.026 0.80
18.0 14.9 14.4

1.14 × 10−628.0 33.6 22.4
30.7 41.4 24.6

20–120 mm 0.34 0.019 0.85
18.7 17.9 15.9

1.11 × 10−6
30.0 39.0 25.5

* calculated based on ke and ∇T.

The NGI’s (1999) [21] tests give limited observations, preventing characterization of the shape and
direction of the convection cells, as the setup only provides one mean heat flux value. In addition the
temperature gradient was measured only at the centerline. However, in another study, Goering et al.
(2000) [4] developed a three-dimensional numerical model based on the NGI’s (1999) [21] laboratory
experiments on 25/63 mm material. He found good agreement between the experimental and the
numerical results and stated that convective heat transfer in the 25–63 mm material formed as four
individual air convection cells. He describes the upward stream as concentrated in the center of the
sample, while the downward streams flowed towards each corner of the sample. Yet again, this is
a significant deviation from a single-cell convection occurring in a square enclosure. Hence one
should be critical of the established K values for these based on the NGI’s (1999) experimental results.
In addition, the tests performed by NGI (1999) [21] show some discrepancies and overestimation of
effective thermal conductivity, as discussed further in Section 6.2.

6. Discussion

6.1. Effect of Particle Gradation

The data presented and that reanalyzed in Section 5 were obtained from materials with different
particle size distributions. Figure 19 shows a plot compiled with selected experimental q-∇T
relationships to illustrate a broad spectrum of critical temperature gradients. Table 7 gives a summary
of the material characteristics, critical temperature gradients and established K values of different
studies. The materials discussed can be generally grouped as: (a) materials with d10 close to or above
0.10 m (cobbles), and (b) materials with d10 equal to or below 0.03 m (crushed rock). The variation
in the porosity (0.34 to 0.44) of all the materials is minimal compared to the variation of d10 (0.019 to
0.15). The d10 values are one degree of magnitude higher for the cobbles than for the crushed rock
materials discussed in this study. Hence the increased value of d10 (with increasing pore size) will have
a much greater impact on the resulting permeability than variations in porosity. This in turn allows
for the initiation of convective heat transfer at lower temperature gradients. The effect of d10 can also
be seen in theoretical equations (Equations (8) and (9)) where d10 is raised to a higher power than
porosity. The comparison in Figure 19 clearly shows the effect of particle size in terms of the critical
gradient for the initiation of convective heat transfer. For instance, for the cobbles tested by Côté et al.
(2011) [6] and Rieksts et al. (2017) [27] the critical temperature gradient is about 4◦C/m, whereas
convection in the crushed materials tested by NGI (1999) [21] and Johansen (1975) [2] is initiated only
when the temperature gradient exceeds 20◦C/m. This agrees with Johansen’s (1975) [2] findings shown
in Figure 2. The convective heat transfer becomes predominant and plays a larger part in coupled
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heat transfer (conduction, convection and radiation), with increasing d10 values. With a constant
temperature gradient, convective heat transfer will be higher in material with a larger d10 value.
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Table 7. Material characteristics and established K values of different studies.

Study Material Type Material Size, mm d10, m Porosity ∇Tcrit, ◦C/m K (× 10−6), m2

Côté et al. (2011) [6] Cobbles

120–200 0.150 0.41 4 3.90
110–155 0.128 0.41 7 2.10
70–140 0.092 0.39 8 1.50
75–200 0.100 0.37 5 2.90

Rieksts et al. (2017) [27] Cobbles 90–210 0.121 0.39 4 3.38

Rieksts et al. (2020) [31] Crushed rock
20–120 0.030 0.45 5 1.50
40–120 0.038 0.45 6 2.20
20–250 0.038 0.45 11 1.10

Johansen (1975) [2] Crushed rock 20–80 0.030 0.44 26 0.71

NGI (1999) [21] Crushed rock
25–63 0.026 0.38 20 1.14

20–120 0.019 0.34 19 1.11

6.2. Intrinsic Permeability

The values of the experimental intrinsic permeability of coarse rock materials were established
using convection test results together with an analytical solution to natural convection in a square
enclosure. It is worth comparing these experimental K values with estimated values in the most-used
models in the literature, as developed for cohesionless and uniform materials. Figure 20 shows the
reported and re-analyzed values of intrinsic permeability as a function of parameter α (d2

10n3/(1− n)2),
similar to Côté et al. (2011) [6]. The values are compared to Kozeny–Carman (Equation (8)) and
Chapius (Equation (9)) models. In addition, the figure includes experimental data by Côté et al.,
2011 [32]) for the low range of intrinsic permeability. The low range of K is the extent of experimental
data based on which Equations (8) and (9) were developed.
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As Figure 20 shows, the experimental K value from Rieksts et al. (2017) [27] agrees fairly well with
those obtained by Côté et al. (2011) [6]. In general, the K values in both studies lie between the two
theoretical models. The good agreement of the results of the two very similar tested materials indirectly
validates Rieksts et al.’s (2017) [27] experimental procedure, allowing for confident measurement of
different coarse aggregates as reported in Rieksts et al. (2020) [31].

Figure 20 also shows that the re-analyzed K value obtained from data by Johansen (1975) [2] fits
the Kozeny–Carman model very well. However, it seems that the re-analyzed K values from the NGI
(1999) [21] study are higher than those of both theoretical models. Several factors could explain this.
First, one could speculate that particle shape could be a reason, as the materials tested by NGI were
crushed rock. However, the results from the crushed rock tested by Johansen (1975) [2] were very
similar to those that Rieksts et al. (2017) [27] and Côté et al. (2011) [26] obtained using natural cobbles,
which are fairly rounded. Also, Côté et al (2011) [6] clearly demonstrated that particle shape only
affects K on the low spectrum of values, several orders of magnitude lower than the values of coarse
materials discussed in this study. Second, of all the studies covered in this paper, only the experiments
by Côté et al. (2011) [6] and Rieksts et al. (2020) [31] fit the conditions for the Nu–Ra relationship
proposed by Schubert and Straus (1979) [9]. In the tests performed by Johansen (1975) [2] and NGI
(1999) [21] the sample was not cubical. In addition, the studies lack experimental data to validate the
formation, number and shape of the convection cells; in Rieksts et al. (2017) [27] the sample size was
cubical, but the convection cell was diagonal (not square-shaped). Hence one should be critical of
established K values, as the Nu–Ra relationship changes with changing convection cell patterns [14].
Finally NGI’s (1999) [21] overestimation of experimental K values could originate from a malfunction
in the experimental setup, as discussed in the next section.

6.3. Possible Discrepancies in NGI Data

The experimental K values found after re-analyzing the data from NGI (1999) [21] were found
to be higher than would normally be obtained from the studied materials. This is mostly based on
comparison with theoretical K values and the results of other studies. The discrepancies found gave a
reason for discussion of the accuracy of measurements in the NGI setup, and this can easily be done
by comparing the effective thermal conductivity measurements with results from other studies and
established theoretical models. NGI (1999) [21] provides thermal conductivities of 0.80 and 0.85 W/m◦C
for 25–63 and 20–120 mm materials, obtained at porosities of 0.37 and 0.34 and with d10 of 0.026
and 0.019 m respectively. Table 8 summarizes experimental ke values from different studies together
with the theoretical contribution of pure thermal conductivity (Equation (4)) and radiant conductivity
(Equation (6)). The studies did not provide the ks value necessary for the calculation of pure thermal
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conductivity using Equation (4). Hence an arbitrary ks value of 3.0 W/m◦C was used for all materials to
calculate the theoretical kc values. However, the variation of ks has a fairly low impact on the resulting
kc.

Table 8. Experimental and theoretical values of effective conductivity from different studies.

Study Material
Size, mm

ke, W/m◦C
Experimental

kc, W/m◦C
(Equation (4))

kr, W/m◦C
(Equation (6))

ke, W/m◦C
(Equation (3))

Côté et al. (2011) [6]

120–200 1.02 0.23 0.70 0.93
11–155 0.95 0.23 0.60 0.83
70–140 0.71 0.25 0.43 0.68
75–200 0.83 0.27 0.47 0.74

Rieksts et al. (2017) [27] 90–210 0.89 0.25 0.57 0.82

Rieksts et al. (2020) [31]
20–120 0.54 0.34 0.11 0.45
40–120 0.59 0.34 0.18 0.52
20–250 0.72 0.38 0.14 0.51

Johansen (1975) [2] 20–80 0.45 0.34 0.10 0.44

NGI (1999) [21] 25–63 0.80 0.39 0.13 0.52
20–120 0.85 0.45 0.09 0.54

As can be seen, the experimental ke values for the materials tested by NGI (1999) [21] are
significantly higher (by 35–36%) than the theoretical values. This again suggests that the measurements
may not be accurate. To further validate this assumption, experimental data from Johansen (1975) [2]
were compared with data from NGI (1999) [21], as the materials tested had similar characteristics.
Based on the laboratory experiments, the value of effective conductivity reported by Johansen (1975) [2] is
only 0.45 W/m◦C. The porosity and d10 of the specimen were approximately 0.44 and 0.03 m respectively.
The average testing temperature was −13.5 ◦C. Using theoretical equations, the contribution of thermal
conduction is 0.34 W/m◦C, while that of radiant conduction is only 0.10 W/m◦C. The corresponding
effective thermal conductivity is 0.44 W/m◦C. in this case, the theoretical value of ke is only slightly
lower than the experimental value. This is contrary to the ke values in NGI (1999) [21] where the
experimental values are much higher than the theoretical ones. The two studies using cobbles have
experimental values 4–13% higher than the theoretical studies. This once more suggests that the
experimental values obtained by NGI (1999) [21] might be somewhat overestimated.

Furthermore, examining Figures 16 and 18 shows that convective heat transfer is initiated at about
26 ◦C/m in the material tested by Johansen (1975) [2] and about 20 ◦C/m in the material tested by NGI
(1999) [21]. Given that the material tested by NGI (1999) [21] had a lower porosity and d10, it should
have: (a) a lower intrinsic permeability, (b) a higher critical upward thermal gradient to initiate natural
convection, and (c) a lower effective thermal conductivity compared to Johansen’s material. However,
the experimental results show the opposite: Johansen’s results agree fairly well with those of Rieksts
et al. (2017) [27] and Côté et al. (2011) [26]. This once more confirming that the experimental results
provided by NGI may be corrupted by measurement errors.

7. Conclusions

Natural air convection can considerably increase the rate of heat extraction from road and railway
structures during the cold season. This can result in excessive frost penetration depth and undesirable
frost heave in frost-susceptible soils. The onset of convection in construction materials is largely
dependent on the intrinsic permeability (K) of granular materials used in the construction of roads and
railways. This paper concentrates on establishing K values for coarse open-graded materials, based on
laboratory measurements. The paper reviews some available large-scale laboratory experiments on
free air convection in both natural and crushed materials. The laboratory setups are presented followed
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by the experimental results and the establishment of K values using the method proposed by Côté et al.
(2011) [6] employing a Nusselt (Nu)–Rayleigh (Ra) relationship for a square enclosure.

In total, four different experimental test setups have been reviewed. Côté et al. (2011) [6] successfully
applied the method of establishing K values to natural cobbles. In addition, they reanalyzed Johansen’s
(1975) [2] data and found a good agreement with theoretical intrinsic permeability models. Furthermore,
Rieksts et al. (2017) [27] conducted an experimental study to verify new test equipment for natural
air convection. The established K values were in good agreement with those obtained by Côté et al.
(2011) [6] using similar materials. Rieksts et al. (2020) [31] also tested several other road construction
materials and reported the results. Moreover, the present study performed a reanalysis of another set
of experiments conducted on crushed rock materials by NGI (1999) [21].

This paper has shown the effect of particle gradation on established intrinsic permeability values.
Cobble-sized materials have a much higher d10 value than crushed rock materials, as discussed in
this paper. Higher d10 results in higher permeability and a lower critical temperature gradient for the
initiation of convective heat transfer. This has been clearly shown by comparing the q-∇T relationships
of different studies.

This paper has also shown that the experimental K values of materials tested by NGI (1999) [21]
seem to be higher than those in the study by Johansen (1975) [2] using similar materials. In addition,
the experimental K values did not show good agreement with theoretical K values compared
to other studies. This suggests possible discrepancies in the NGI’s (1999) measurements [21].
Further investigation and the experimental effective thermal conductivity values and their comparison
with theoretical ones have shown that the NGI’s (1999) [21] measurements may be overestimated,
leading to inaccurate K values.

Although all the laboratory experiments considered here investigate the same physical phenomena,
comparing them is complicated. The foremost reason for this is the different geometries of the
experimental setups and variations in the measurement systems. Different geometries results in
different shapes and possibly different numbers of convection cells. In addition, due to limitations
in measurement capacity it is not possible to evaluate the convection conditions of some studies.
The method for establishing K values relies on a Nu–Ra relationship with a particular geometry.
As shown in this paper, disregarding the testing conditions, the method gives a reasonable estimate
of K values. However, one should be critical when the proposed method is applied to different
geometrical setups.
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