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a b s t r a c t

Optics-based systems may provide high spatial and temporal resolution for close range object detection
in underwater environments. By using a monocular camera on a low cost underwater vehicle
manipulator system, objects can be tracked by the vehicle and handled by the manipulator. In this
paper, a monocular camera is used to detect an object of interest through object detection. Spatial
features of the object are extracted, and a dynamic positioning system is designed for the underwater
vehicle in order for it to maintain a desired position relative to the object. A manipulator mounted
under the vehicle is used to retrieve the object through a developed kinematic control system.
Experimental tests verify the proposed methodology. A stability analysis proves asymptotic stability
properties for the chosen sliding mode controller and exponential stability for the task error.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The need for subsea inspection, maintenance, and repair (IMR)
operations in the ocean industries is high, and is expected to
increase further in the coming years. A great deal of IMR op-
erations can be carried out by an underwater vehicle equipped
with one or more manipulator arms, often referred to as an
underwater vehicle manipulator system (UVMS). This emphasizes
the necessity for research and further development of this type
of technology. Fully autonomous, semi-autonomous, and tele-
operated UVMSs are of interest to the maritime industry, as they
may increase safety and reduce operational costs significantly [1].

In many cases, it is desired to combine tele-operation with
semi-autonomy, especially where fully autonomous robots seem
unreliable or are too costly to be developed or utilized efficiently.
The vehicle should provide visual and sensory feedback to the op-
erator, who may assess the situation, make decisions, and execute
high level tasks, while the robot carries out the lower level tasks.
Whether the system is fully autonomous, semi-autonomous, or
tele-operated, several functionalities need to be developed. One
of the most important sensors for situational awareness and
understanding how to perform certain operations is the camera
system, while various types of acoustic sonars also has seen
considerable use [2–4]. The camera system quality and software
become increasingly more important as we move towards higher
levels of autonomy. Recent technological advances within camera
systems and image processing techniques prove that the camera
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is the preferred sensor type for short range navigation, as they de-
liver information with high spatial and temporal resolution [3,5].
Low cost cameras and state-of-the-art graphical processing units
have now made its way into the commercial market. Together
with several open source object detection frameworks, they pro-
vide quick and reliable methods for developing and performing
object detection, classification, perception, and situational aware-
ness in underwater operations. Simultaneously, developments
within commercial underwater vehicle products have surfaced,
such as the BlueROV2 by Blue Robotics [6], which simplifies
integration of optics-based detection with underwater vehicles.
When low cost underwater vehicles, optics-based solutions, and
manipulators are combined, the barrier for conducting research
and experimental testing on such systems is lowered. This may
have important consequences for how IMR operations within the
ocean industries will be performed in the future.

A UVMS consists of the vehicle body and one or more ma-
nipulator arms. Usually, it has a tether for power and/or topside
communication, and is tele-operated while featuring some basic
autonomous-like functionality, e.g., automatic depth or heading
control. The vehicle has 6 degrees of freedom (6 DOF), while
the manipulator arm has n DOF, depending on the number of
joints that can move. This means that the UVMS has 6 + n
DOF and is therefore a kinematically redundant system, which
means that the system has more DOF than needed to accomplish
a single task. Typically, such a kinematically redundant system
is managed using kinematic control [7]. This control method
utilizes the kinematic relations of the system through its Jacobian,
which enables control of position, velocity, and acceleration of the
manipulator to some desired state based on, e.g., velocity refer-
ences and a low level controller. Kinematic control paired with
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Fig. 1. Object detection methodologies.

Fig. 2. Machine learning methodologies.

object detection for the UVMS is one way to enable autonomous
gripping functionality.

Currently, underwater object detection based on optics is
a very interesting field due to its wide array of applications,
e.g. within research, various subsea industries, and for hobbyists.
The most popular vision based techniques depend on monocular
(2D) or stereo (3D) vision, while some 2.5D methods have been
proposed as well, which mainly involve projecting 2D images
to reconstruct 3D environment features [8]. Object detection
methods range from edge [9,10] or color [11] detection to smarter
solutions such as optical flow [12] and machine learning ap-
proaches, e.g. classification [13], salient feature detection [14],
and object detection [15,16]. Within machine learning there are
several detection methodologies, which can be distinguished into
two main categories — Region proposal networks (RPNs) and
regression/classification (see Fig. 1). These two methodologies
both arrive from the supervised learning branch of machine
learning (see Fig. 2), where known datasets are used for training
in order to make predictions in new datasets, i.e. the goal is to
learn the mapping from an input x to an output y. The governing
difference between these two categories is that classification
approaches try to learn the mapping to a discrete or categorical
output (e.g. whether an object belongs to a certain class), while
regression aims to learn the mapping to a continuous or numer-
ical output. A collection of the most essential methods for RPN
and regression/classification approaches can be found in [13].

The first category, namely RPN-based methods, follows the
traditional object detection procedure where region proposals
are identified and classified into object categories. Such methods
behave similarly to the methodologies that are used by the hu-
man brain, utilizing an initial scan of the entire scene before it
is separated into regions of interest. Some of the most popular
methods for the RPN are region proposals convolution neural net-
work (R-CNN), Fast R-CNN, and Faster R-CNN. According to [17],
both R-CNN and Fast R-CNN use a selective search algorithm,
which is a time-consuming process. This may render the CNN
methods a bit too slow for real-time object detection tasks, but
it depends heavily on the available hardware. The difficulty of
achieving real-time object detection with R-CNN and Fast R-CNN
with the available hardware (also with respect to cost) was the
main motivation for further research on RPN-based methods, that
eventually led to the development of Faster R-CNN. Faster R-CNN
instead uses a separate network to predict the region proposals

and yields a significantly faster network, which makes it better
suited for real-time object detection compared to R-CNN and Fast
R-CNN.

The second machine learning category contains classifica-
tion/regression approaches, where some of the methods are Sin-
gle Shot Detector (SSD) and You Only Look Once (YOLO) ver-
sions 1, 2, and 3. SSD uses an approach based on classifica-
tion/regression that does not necessitate object proposals and en-
capsulates all computation in a single network [18]. This method
is fast, reliable, and achieves accurate object detection in real-
time. The YOLO object detection method was first presented
in [19], where object detection was conducted as a regression
problem instead of classification. In this article YOLOv3 [20]
has been used, which combines three neural networks into a
network with 53 convolution layers called Darknet-53. This net-
work predicts bounding boxes and class probabilities, considering
and evaluating the whole image once. The process that follows
is a bounding box prediction using dimension clusters as the
anchor boxes, where four coordinates are calculated for each
bounding box. Training is performed by summing the squared
error loss, and the class prediction loss is calculated using binary
cross-entropy loss. For each bounding box an objectness score is
calculated, which is a measure that describes the detectors ability
to identify the locations and classes of objects [21]. The system
predicts the classes that may be contained within each box
through multi-label classification. This multi-label classification
method is chosen instead of a softmax function, which enables
detection of objects with overlapping bounding boxes. Overall,
YOLOv3 achieves an average precision (AP) score that is close to
other SSD methods, but is approximately three times as fast [19].

Kinematic control of manipulator arms has been researched
thoroughly [22], but an UVMS allows for additional manipulation
operations due to the mobile base of the manipulator, and some
of the largest contributions are given in the following. Most
of the work within the UVMS operation community has been
conducted in large projects, as equipment tend to be expensive
and the integration of this with smart software solutions require
interdisciplinary collaboration. One of the first autonomous ma-
nipulation operations was carried out by the SAUVIM project [23].
The work presented a recovery operation where the mission was
to grasp a spherical object using a UVMS with a camera mounted
on the arm’s wrist. The object was detected by combining im-
age filtering to reduce noise, Canny edge and color detection,
and a method for circle detection. The TRIDENT project [24]
demonstrated an object recovery operation using a stereo camera
solution and task-priority with activation functions for managing
several tasks at once, exploiting the redundancy of the system. In
the MARIS project [25] a pipe grasping mission was conducted
through three campaigns for day and night light conditions in
calm waters. All of the experiments were conducted in pools,
where the use of a Doppler velocity logger improved vehicle
and end-effector control, leading to an increase in the grasping
success rate of the object from around 30% to 70%. A camera in
the gripper and an optoelectronic sensor in the wrist were used
to determine when to grasp the object. They also integrated a
task-priority framework with activation functions that defined
the current active task, and reported a considerable improvement
in robustness compared to the TRIDENT project. The GIRONA 500
I-AUV (Intervention autonomous underwater vehicle) is one of
the first lightweight (approximately 150 kg) AUVs with inter-
vention capabilities. Reportedly, it has performed intervention
panel manipulation using visual servoing and panel detection,
valve turning and connector plugging/unplugging, docking, opti-
cal surveying, target tracking, and multiple vehicle cooperation
for large object transportation, to mention some if its accomplish-
ments [26,27]. Furthermore, additional autonomous features are
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Table 1
BlueROV2 and SeaArm specifications.
Parameter Value

BlueROV2

L × H × W 457 × 254 × 575 [mm]
Weight in air 11.5 [kg]
Thrusters T-200
Battery 14.8 [V], 10 [Ah]
Depth rating 100 [m]
Camera Raspberry Pi Camera V2.1
On-board Computer Raspberry Pi 3B and Navio2

SeaArm

Degrees of freedom 3
Weight (air) 2.4 [kg]
Weight (submerged) 0 [kg]
Max reach (end-effector) 580.7 [mm]
Servos 5 × electric servos
Stall torque at 14.8 V 10 [Nm]
Depth rating 100 [m]

still heavily researched for this vehicle. One of the most recent
works in autonomous solutions for UVMS intervention operations
is the DexROV project [28], which focuses on reducing the gap
between autonomy and tele-operation when controlling ROVs
in underwater manipulation operations. This project has utilized
several technologies for fine manipulation of objects in the wa-
ter column, such as stereo camera solutions, inertial navigation
system, set based task priority control, obstacle avoidance, and a
high-end gripper with force/contact sensors [29,30].

This paper studies and develops grasping of a known object
using a monocular camera through machine learning and a small
UVMS. One of the main goals is to provide an effective solution
for object retrieval mission for a small, low cost UVMS (≤ $
20.000 USD). This paper follows from the work of [31], which
presented a large image dataset of the object of interest, an
automatic labeling procedure of the images, training of the model
and the object detection procedure. Furthermore, this paper uti-
lizes the state-of-the-art object detection framework YOLOv3 [20]
to find a known object. The object is detected in a laboratory
basin with a monocular camera inside a BlueROV2 underwater
vehicle [6], and the spatial features of the object relative to the
vehicle are estimated. The object is then grasped with the SeaArm
manipulator arm [32,33] that is mounted on the vehicle. This
procedure removes the need for a local positioning system and
works seamlessly with tele-operations, while still incorporating
autonomous functionality. A dynamic positioning (DP) system is
designed to maintain the vehicle’s desired position and velocity
relative to the object, and a kinematic control system is developed
for the manipulator in order to retrieve the object.

The main contributions of this paper are summarized below:

(1) Design of a navigation, guidance, and control system for the
vehicle to maintain a desired position relative to an object
detected through monocular vision and machine learning

(2) A stability proof that ensures exponential convergence of
the task errors and asymptotic convergence to the sliding
mode controller’s sliding surface

(3) Experimental testing that proves the effectiveness of the
proposed solution for grasping the object with a low cost
underwater vehicle manipulator system

The paper is structured as follows. Section 2 provides brief
specifications for the underwater vehicle, the manipulator arm,
the camera system, and the object detection system used in
the experimental work. Section 3 presents the kinematic control
system, Section 4 describes task definitions and the control sys-
tem and Section 5 presents the stability analysis for the sliding

Fig. 3. The BlueROV2 underwater vehicle equipped with the SeaArm
manipulator arm.

Table 2
Denavit–Hartenberg parameters.
i αi−1 [rad] ai−1 [mm] di [mm] θi [rad]

1 0 0 55.3 θ1
2 −π/2 0 0 −π/2
3 0 142.4 42.1 θ2 − π/2
4 π/2 142.4 0 −π/2
5 −π/2 0 13 θ3 + π

6 π/2 0 42.1 π/2
7 0 0 −139.6 θ4 − π/2
8 0 101 −59.6 0

mode controller and the task error. The experimental testing
procedure and results are presented in Section 6 and a discussion
of the proposed methodology and experimental findings is given
in Section 7. Conclusions and suggestions for further work are
provided in Section 8.

2. Specifications

This section briefly describes the specifications of the UVMS,
the camera system, and the approach for detecting the object
of interest. The experiments have been conducted in the Marine
Cybernetics Laboratory (MC-lab) at the Norwegian University of
Science and Technology (NTNU) in Trondheim, Norway [34].

2.1. The BlueROV2 and SeaArm manipulator arm

The BlueROV2 is a 6 DOF, slightly positively buoyant, small-
sized ROV, and the SeaArm is a fully electric and neutrally buoy-
ant 3 DOF manipulator arm. In this work, the SeaArm is mounted
on the bottom left side of the vehicle as can be seen in Fig. 3.
The main features of the UVMS can be found in Table 1, and the
Denavit–Hartenberg (DH) parameters of the manipulator arm are
presented in Table 2. SeaArm has an in-built velocity controller
based on damping least squares for singularity avoidance, and
uses reference positions to estimate the joint velocities.

2.2. The camera system and computer vision framework

The camera used in this paper is mounted inside the BlueROV2
and is a standard Raspberry Pi Camera Module V2.1. Table 3
shows some of the most important specifications related to the
camera and the object’s position within the image. The ma-
chine learning approach used for object detection is presented



4 B.O.A. Haugaløkken, M.B. Skaldebø and I. Schjølberg / Robotics and Autonomous Systems 131 (2020) 103589

Fig. 4. Recall vs. IoU threshold values.

Table 3
Specifications of the Raspberry Pi Camera V2.1.
Parameter Definition Value

FOVw Field of view — width (horizontal) 62.6 [deg]
FOVh Field of view — height (vertical) 48.8 [deg]
Cw Total pixel width of camera frame 640 [px]
Ch Total pixel height of camera frame 480 [px]
Pobj,w Object pixel position in width direction 0 - 640 [px]
Pobj,h Object pixel position in height direction 0 - 480 [px]

in [31] and is briefly summarized here. The method utilizes an
image dataset of 7071 images retrieved by splitting long video
sequences into images. An automatic labeling procedure was used
to find the object within the image based on color contours (color
detection). An interactive user interface was used to quickly verify
each labeled image and to remove incorrect labels. The object of
interest was characterized by a cylindrical shape and a distinct
orange color. All of the images were converted from the RGB
space to hue-saturation-brightness values to create a color map
that was easier to analyze and to make sure the object was
apparent in the images.

The object detector that has been used here is YOLOv3 [20].
The algorithm in YOLOv3 was trained for 5000 iterations with
a batch size of 64 and subdivision set to 16. One full batch is
considered between every weights update in the neural network.
The model was built and validated using the Darknet framework,
which provided a model that has achieved an average precision
(AP) of 97.7% in the pool [31]. This AP was provided by the
built-in validation method in Darknet where the intersection over
union (IoU) threshold value was set to 0.5. An IoU threshold value
sets a boundary for successful detection by requiring minimum
overlapping ratios between the suggested bounding box from the
detector and the ground truth. The AP value is very high, and
should be considered with some constraints. The algorithm was
validated on a subset of the complete dataset, which means that
the validation images embodies almost identical features as the
training images. The high value may also imply an over-fitted
model. However, the object detection system is able to detect the
object of interest in the pool accurately. In addition to AP, the
recall rate was recorded and with different threshold values for
IoU. The recorded recall rates for the various IoU threshold values
can be seen in Fig. 4.

The detector was set to run on an HP Laptop with Intel Core
i7-7700HQ with 16GB RAM and an NVIDIA GeForce GTX 1060
(6GB GDDR5 dedicated) GPU. The system managed to analyze 30–
40 frames per second for 1080 × 720 resolution video, which
provided real-time compatibility.

3. Equations of motion

The model of the UVMS applied here has been based on [35],
where the states of the UVMS base are described by the position
η = [pT θT

]
T and velocity ν = [vT ωT

]
T vectors. The vector p =

[x, y, z]T is the position and Θ = [φ, θ, ψ]
T is the orientation in

Euler angles of the camera frame expressed relative to the object,
i.e. the object-relative (OR) frame. Furthermore, v = [u, v, w]

T

represents the linear velocity and ω = [p, q, r]T denotes the
angular velocity of the camera frame expressed in the OR frame.
The states of the manipulator are described by the joint angles
q = [q1, q2, q3]T and joint angular rates q̇ = [q̇1, q̇2, q̇3]T . The
pose (position and orientation) of the manipulator’s end-effector
is defined relative to the camera frame, as ηee = [pT

ee,Θ
T
ee]

T ,
where pee = [xee, yee, zee]T and Θee = [φee, θee, ψee]

T is the
end-effector position and orientation, respectively. The combined
system is then written as

η̇ = JR(η)ν (1)

η̇ee = J e(q, η)ζ , (2)

where J e =
[
J1(q) J2(η)

]
, and ζ = [q̇T νT

]
T represents the

velocity of both the UVMS body and the manipulator. JR denotes
the Jacobian for the UVMS and J e is the Jacobian relating the
end-effector time derivative to ζ, allowing for velocity based
control of the end-effector position through inverse kinematics.
The position data for the vehicle is only valid when the object
is detected because of the nature of monocular cameras and the
lack of an external positioning system in the proposed setup. The
position of the UVMS is defined as

x = SA (3)

y = x sin (ψ) (4)

z = x sin (θ). (5)

where ψ is the heading angle and θ is the pitch angle relative
to the object, and where SA is a scaling function that is used to
estimate the camera’s distance to the object. Data used to gen-
erate the scaling function was gathered manually by measuring
and relating the camera’s distance to the object and the corre-
sponding pixel area of the object in the image frame. A piece-wise
cubic Hermite interpolation polynomials (PCHIP) function was
applied to scale an arbitrary pixel area value to a specific distance
based on the gathered data, and a graphical illustration of SA is
presented in Fig. 5. This distance is defined as the vehicle’s x-
position. The y- and z-position are obtained by exploiting the
geometrical relations through (3)–(5) and the heading and pitch
angles relative to the center of the object in the image frame,
where the latter two are defined as

ψ =
FOVw
Cw/2

· Pobj,w − FOVw (6)

θ =
FOVh

Ch/2
· Pobj,h − FOVh . (7)

In (6)–(7), FOVw and FOVh are the camera’s field of view (FOV),
Pobj = [Pobj,w, Pobj,h] refers to the pixel position, and Cw and Ch
relate to the pixel position that the angles should be measured
relative to in width (horizontal) and height (vertical) direction,
respectively. With this setup, the heading angle ψ and pitch
angle θ both represent a zero angle in the center of the camera
image. By the assumption that angles are small for the majority
of the object detection procedure, a standard Kalman filter was
implemented to estimate the vehicle’s velocity ν based on the
relative position and angle estimates in (3)–(7).
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Fig. 5. Visual representation of the scaling function. The object area [px2/1000]
is plotted along the x-axis with the corresponding distance to the object [cm]
on the y-axis. The original measured data is shown in blue and the area scaling
function based on the PCHIP is visualized in orange [31]. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

4. Control system

This section describes the task definition, reference velocity
generation, and the control system for the UVMS. The objective
is to keep a fixed position and heading angle relative to an object
of interest using an underwater vehicle, and then grip the object
using the manipulator. It is important to note that the position is
only defined during successful detection of the object. A simple
Kalman filter is implemented for estimating the vehicle’s velocity
and a sliding mode controller based on the velocity estimates is
responsible for controlling the vehicle. The Kalman filter incor-
porates the process noise matrix Q = diag(32, 42, 52) and mea-
surement noise matrix R = diag(0.5, 0.5, 0.5), in which the input
to the Kalman filter is estimated position and orientation data in
[cm] and [deg]. Automatic pitch and roll proportional–integral–
derivative controllers stabilize the vehicle in roll and pitch based
on data from an internal measurement unit. Consequently, roll
and pitch motions are handled by a lower level inertial navigation
system, and are not discussed further. Instead, the assumption
that the vehicle has a zero roll and pitch angle is employed. The
manipulator has an integrated proportional controller based on
desired position in task space to control joint velocities and uses
damping least squares for avoiding singularities.

4.1. Task definition and kinematic control

The guidance system generates appropriate velocity references
for the vehicle and desired end-effector positions for the manip-
ulator through pre-defined tasks. Velocity references are derived
by a simple technique similar to what was done in [33], while
manipulator joint angular rates are computed and tracked by its
in-built controller with the task variable as input. In general, an
arbitrary task χ can be defined through a generic variable as

σχ = σχ (η, q) (8)

and the task-specific Jacobian

σ̇χ = Jχ (η)ζ , (9)

where the value χ refer to the task number or the priority of
the task in a task priority hierarchy. The tasks considered in this
paper are UVMS base x- and z-position and heading ψ , in addition
to end-effector x-, y- and z-position. The vehicle’s position and
heading are based on the object’s estimated position, which leads
to the following task variable and Jacobian

σ1 =
[
x z ψ

]T (10)

J1 = I3×3 , (11)

where the simple design of J1 is based on the assumption that ori-
entation angles are small. End-effector control can be described
by a task variable as follows

σ2 =
[
xee yee zee

]T
, (12)

where the task Jacobian J2 for the manipulator is calculated based
on the DH-parameters (Table 2) and the homogeneous transfor-
mation matrix. The reference velocities are calculated using the
pseudo-inverse

ζr = J†χ (η)σ̇χ,r . (13)

The pseudo-inverse is given as

J†χ = J Tχ (Jχ J
T
χ )

−1 , (14)

Note that the notation for (η, q) is now omitted for enhanced
readability. The parameter σ̇χ,r corresponds to the reference task
velocity. This is used as a feedback to increase convergence to-
wards the desired position and heading values of the vehicle, and
according to [7], it can be chosen as

σ̇χ,r = −Kχ σ̃χ , (15)

where Kχ is a gain matrix. Furthermore, the task error is chosen
as σ̃χ = σχ,d − σχ , where σχ,d represents the desired values
for task χ . The part of σχ,d that is concerned with end-effector
desired position is rotated from the manipulator base frame to the
camera frame, such that the end-effector moves to the object’s
location. As previously mentioned, the manipulator has an inter-
nal control system that moves the end-effector to a desired task
position based on a proportional controller and damping least
squares, which is incorporated in the Jacobian of the manipula-
tor J2 and calculated based on the DH-parameters presented in
Table 2, similar to [32]. In this way, the pseudo-inverse in (14)
becomes

J†χ = J Tχ (Jχ J
T
χ + λ)−1 , (16)

where λ is the damping factor. This prohibits the manipulator
from entering a singularity, and instead slows down and stops the
manipulator movement, where a low value for λ allows the ma-
nipulator to move closer to a singularity before stopping. Avoid-
ing singularities is crucial in order to maintain motion capabilities
of the manipulator and provide feasible velocity commands. An-
other possible control approach for avoiding singularities is to
utilize task-priority related techniques, e.g. the task priority re-
dundancy resolution technique [7,33]. The reference velocity ζr
for the vehicle is given as

ζr = −J†1K1σ̃1 , (17)

where K1 is a gain matrix. Furthermore, the combined vehicle and
manipulator system can in this case be considered a decoupled
kinematic system, where all end-effector motions are carried
out solely by the manipulator, meaning that vehicle motions are
treated as a disturbance. A method that incorporates vehicle ve-
locity tracking errors into end-effector control has been presented
in simulations [36] and in experiments [33], but is not considered
here due to the absence of currents and other environmental
forces. It is a general assumption that the environment is calm
and that the main mission is combined control of both vehicle and
manipulator to grip the desired object, only using a monocular
camera and a labeled and trained image dataset.

4.2. Sliding mode controller

The control system for the vehicle consists of a sliding mode
controller (SMC), which makes the states of the vehicle converge
to the desired values. This control law is highly applicable for
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underwater vehicles, where motions tend to be slowly varying
and where hydrodynamic parameters do not need to be known
in advance. Furthermore, knowing these parameters accurately is
either difficult or impossible [7,37]. The way the SMC works is by
controlling the states of the vehicle to a sliding manifold, which
has been chosen as

s = (νr − ν) + Λ

∫ t

0
(νr − ν) dτ , (18)

where νr is the reference velocities and Λ is an integral gain
matrix. Finally, the control law [7] is then given as

τ = KDs + ĝ(Θ) + K Ssat(s, ϵ). (19)

In (19), KD and K S are positive definite gain matrices. By assum-
ing that the vehicle is neutrally buoyant and that velocities will be
small, restoring forces and moments represented by ĝ(Θ) can be
omitted. Furthermore, the function sat(s, ϵ) refers to a saturation
function of s with lower and upper bound of ±ϵ, and replaces the
signum function to avoid chattering [33,38].

5. Stability analysis

This section studies the stability properties of the sliding mode
controller and the task error in the sense of Lyapunov stability. A
stability proof for a sliding mode controller for a non-holonomic
mobile robot based on kinematic position control and for an un-
derwater vehicle controlled through both kinematics and kinetics
was derived in [39] and [40], respectively. The stability properties
of the proposed sliding mode controller share similarities with
the controller in [40], but here contains integral action as well.
The proof holds for both vehicle and manipulator, and is based on
the object-relative navigation system that is to be expected when
performing navigation, guidance and control through a monocu-
lar camera. Furthermore, the proof holds for sliding mode control
based on velocity control both with and without integral action.
The assumption that desired velocities are tracked perfectly has
been used, as is common in closed loop inverse kinematics [41].
This assumption is typically not valid for underwater vehicles,
which have slow dynamics, but may still hold true for such
vehicles for low velocities and good tracking capabilities.

In order to study the stability properties of the proposed slid-
ing mode controller, consider the following Lyapunov candidate
function (CLF)

V =
1
2
sT s > 0 , ∀s ̸= 0 , (20)

The dynamics of (20) can now be studied by differentiating w.r.t.
time, inserting for s using (18) and letting ν̃ = νr − ν as follows

V̇ = sT ṡ (21)

For increased readability the calculation of s and ṡ are done
separately. s is found by recognizing that ν̃ = J† ˙̃σ :

s = ν̃ + Λ

∫ t

0
ν̃dτ (22)

= J† ˙̃σ + ΛJ†σ̃dτ . (23)

By applying σ̃ = σd −σ and assuming perfect velocity tracking, it
is possible to find an expression for perfect velocity tracking by
inserting (15) into σ̇ = Jνr . This leads to the equation σ̇ = −K σ̃,
and (23) is reduced to

s = J†(K + Λ)σ̃ . (24)

Here it is assumed that λ in (16) is chosen small s.t. J J† ≈ I . In
the next step the behavior of ṡ is studied, which can be written
as

ṡ = ˙̃ν +
d
dt

(
Λ

∫ t

0
ν̃dτ

)
. (25)

The Eqs. (9), (13), (15), and ν̃ = νr − ν are now inserted into (25)
in order to obtain

ṡ = −J†K ˙̃σ − J†σ̈ + Λ(−J†K σ̃ − J†σ̇) . (26)

By assuming slowly changing velocities it follows that σ̈ ≈ 0, and
with σ̃ = σd − σ where σd is constant, (26) is further reduced to

ṡ = J†K σ̇ − ΛJ†K σ̃ − ΛJ†σ̇ . (27)

Furthermore, assuming perfect velocity tracking and applying
(15) to (27) yields

ṡ = −J†K 2σ̃ . (28)

Finally, (21) is now computed by combining the reduced equa-
tions for s in (24) and ṡ in (28), which yields

V̇ = sT ṡ (29)

=
(
J†(K + Λ)σ̃

)T (
−J†K 2σ̃

)
(30)

= −σ̃TM σ̃ , (31)

where M =
(
K 2(K + Λ)T

)
is a positive definite matrix. It then

follows that V̇ is negative definite and that there is an asymp-
totic convergence towards the sliding surface s = 0 given that
limt→∞ σ̃ = 0. To prove that the latter condition holds, consider
the following the CLF

V ∗
=

1
2
σ̃T σ̃ . (32)

Differentiation of (32) w.r.t. time and utilizing the fact that σ̇d is
constant yields

V̇ ∗
= σ̃T ˙̃σ (33)

= −σ̃T σ̇ . (34)

By inserting (9), (13), (15) into (34), and assuming that λ is
sufficiently small, it follows that (34) becomes

V̇ ∗
= −σ̃TK σ̃ (35)

Hence, with K chosen as positive definite, V̇ ∗ is negative definite,
and σ̃ = 0 is exponentially stable. It follows that the sliding
surface converges asymptotically to zero. Note that the results
only hold locally, i.e. if σ belongs to a compact set, as σ̃ cannot
take on all values in R. The task error has a limit on the distance to
the object and the object must be within the camera’s horizontal
and vertical FOV for σ (and σd) to exist (i.e. the object must be
seen).

6. Experimental testing

This section presents the experimental testing results, repre-
sented by two case studies. Case study 1 has been dedicated to
vehicle DP, while case study 2 also examined end-effector control
and grasping. In both of these cases, it was assumed that the
object’s position was constant. The desired position relative to the
object was chosen as

[
xd zd ψd

]
=

[
0.18 m −0.05 m −5◦

]
for all the experimental tests. The desired relative position im-
plies that the vehicle’s camera should keep a relative distance
of 18 cm to the object, with the object being 5 cm below the
center of the camera in the vertical direction and -5 degrees from
the center of the camera in the camera’s horizontal direction
(width). The reason for choosing these desired values was based
on the assumption that the manipulator would have an easy
time reaching the object, as it was mounted below the vehicle
on its left side. The end-effector position has been plotted in the
manipulator base frame to more easily see the motions provided
by the arm. A flow chart presenting the procedure is found in
Fig. 6, and the applied tuning parameters are presented in Table 4.
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Fig. 6. A flow chart showing the experimental testing procedure.

Table 4
Tuning parameters used for the reference velocity generation and sliding mode
controller.
Parameter Value

K 1
[
2.5 2.5 0.3

]
Λ

[
0.02 0.12 0.2

]
KD

[
7.2 · 10−4 4.5 · 10−3 3.6 · 10−6

]
K S

[
3 · 10−3 1.9 · 10−2 1.5 · 10−5

]
Table 5
RMSE for the vehicle’s relative position and velocity during the vehicle DP
operation.
Position Value Velocity Value

RMSEx 0.025 [m] RMSEu 0.027 [m/s]
RMSEz 0.025 [m] RMSEw 0.024 [m/s]
RMSEψ 6.7 [deg] RMSEr 2.0 [deg/s]

In total, seven grasping experiments were conducted and two
of these led to a successful grasp, yielding a grasp success rate
of 29%. If only actual grasping attempts are used as a basis for
estimating grasp success rate, the rate is increased to 67%.

6.1. Case study 1: Vehicle DP

The first case study examines the performance of vehicle DP
during object detection in terms of relative position and velocity
tracking errors. The results show that there are small errors in
both position and orientation in Fig. 7 and linear and angular
velocity in Fig. 8, with small oscillations in z-direction. The root
mean square error (RMSE) is 2.5 cm in x- and z-direction, and
around 6.7 degrees for the heading angle, as can be seen in
Table 5. No difficulties were encountered during this test, and the
object was detected at every recorded frame. Low tracking errors
report a stable DP control system and increases the probability
that a successful grasp can take place.

6.2. Case study 2: Vehicle DP and object grasping

For the object grasping experiments, it was decided that the
gripper should be closed manually, making this a semi-

Fig. 7. Vehicle error position in x- and z-direction [m] and heading angle ψ
[deg] during the vehicle DP operation.

Fig. 8. Vehicle velocity error in surge and heave [m/s] and yaw rate ψ [deg/s]
during the vehicle DP operation.

autonomous operation. Manual gripping of the object was per-
formed in order to decrease the time before the object would
be grasped and to increase the probability of a successful grasp.
With the low number of DOF, circumventing camera occlusion
became difficult, and since no sensor existed near the end-
effector to accurately determine when the gripper should close
(autonomously) in order to grasp the object was ambiguous. For
this case study, seven experimental tests were conducted, where
two tests succeeded in grasping the object. The five grasping
experiments that failed were terminated because the arm en-
countered errors, and no attempts to perform the grasp was
made here. Therefore, it is argued that these tests should not
be conclusive to whether the object could actually be grasped if
errors were avoided. Furthermore, it is argued that if these errors
had been avoided, the grasping success rate would have increased
significantly, as the object would be grasped given enough time.
The errors encountered by the manipulator were either related
to motions that made it hit the vehicle that turned off the servo
motors or entering too close to a singularity configuration. In
the first successful test, the system used a lot of time to grasp
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Fig. 9. Vehicle error position in x- and z-direction [m] and heading angle ψ
[deg] during the first grasping operation.

Table 6
RMSE for relative vehicle position and velocity and end-effector position during
the first grasping test.
Position Value Velocity Value Position Value

RMSEx 0.14 [m] RMSEu 0.13 [m/s] RMSEee,x 0.09 [m]
RMSEz 0.08 [m] RMSEw 0.07 [m/s] RMSEee,y 0.07 [m]
RMSEψ 28 [deg] RMSEr 8 [deg/s] RMSEee,z 0.17 [m]

the object, while this was achieved much faster in the second
successful test. By considering all seven experiments, the case
study reports a grasping rate of 29%, but by considering only
actual grasping attempts, the grasping rate is 67%.

Object grasping - Test 1
For the first object grasping experiment, vehicle position and

orientation is presented in Fig. 9, while linear and angular velocity
is shown in Fig. 10. The end-effector position, its desired position,
and the gripper angle are shown in Fig. 11. The RMSE values are
presented in Table 6. The experiment yields an RMSE for the end-
effector position of 9.4 cm, 7.5 cm and 16.9 cm in x-, y- and
z-direction, respectively. In this test, the object was successfully
grasped after approximately 65 s.

In the early stages of the experiments, velocity references
were tracked slowly and the vehicle struggled reaching the de-
sired distance and heading angle. The integral effect built up
slowly, and cable drag prevented the vehicle from reducing the
error as the produced surge force was too low. Once the errors
were reduced, the end-effector was attempted moved to the
object’s position. It can be seen in Figs. 9–10, which was also
observed during testing, that the relative position and velocity
errors suddenly started changing at a constant rate, e.g. between
t = 27 s–43 s, at around t = 54 s and t = 60 s. This occurred due
to full or partial occlusion of the object by the manipulator. Full
occlusion led to no position data, while a partially detected object
resulted in either no position data or a bad position estimate.
Shortly after t = 60 s the object was visible and close to the
end-effector, as can be seen in Fig. 11. The vehicle position and
manipulator joint angles now allowed a grasp to take place. It can
be seen that if the challenge with occlusion at the corresponding
time instances was solved, the time before a grasp could be
attempted would have been reduced significantly.

Fig. 10. Vehicle velocity error in surge and heave [m/s] and yaw rate ψ [deg/s]
during the first grasping operation.

Fig. 11. The real end-effector (blue) and desired (red) position in x-, y-, z-
direction during the first grasping operation. The star-symbol marks the point
in time where the successful grasp of the object took place. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Object grasping - Test 2
In the second test, the desired relative position was chosen

to be the same as for the previous experiment in order to better
compare the two tests. The results from this test are very similar
to findings in the previous test, however, this time the object was
grasped much sooner. Little occlusion was observed during this
operation, and it is reasonable to believe that this caused early
object grasping attempts. In total, two grasping attempts were
performed (at t = 14.5 s and t = 22 s). The velocity plot of
the vehicle is not included here, as it follows the behavior of the
position plot.

The position error of the vehicle can be seen in Fig. 12 and
the end-effector position is presented in Fig. 13. The RMSEs for
this test are shown in Table 7, and the values are found to be
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Fig. 12. Vehicle error position in x- and z-direction [m] and heading angle ψ
[deg] during the second grasping operation.

Fig. 13. The real end-effector (blue) and desired (red) position in x-, y- and z-
direction during the second grasping operation. The star-symbol marks the point
in time where the successful grasp of the object took place. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

slightly lower in this test compared to the previous experiment.
The system experienced some difficulties reaching the desired
position, and a rapid increase in the position errors can be found
after about 10 s, and were due to partial occlusion of the object.
Partial occlusion did not stop the manipulator from moving, but
instead allowed motions to be executed. This led to less object
occlusion, and an attempt to grasp the object was performed
after around t = 15 s. However, the grasp failed and the object
was pushed outside grasp range. The system then attempted to
reposition the end-effector in order to perform a new grasp, and
managed to grasp the object after approximately 22 s. Images
from this test show a successful grasps, both from the outside
and inside the vehicle, in Figs. 14–15.

Table 7
RMSE for relative vehicle position and velocity and end-effector position during
the second grasping test.
Position Value Velocity Value Position Value

RMSEx 0.15 [m] RMSEu 0.17 [m/s] RMSEee,x 0.09 [m]
RMSEz 0.04 [m] RMSEw 0.04 [m/s] RMSEee,y 0.07 [m]
RMSEψ 27 [deg] RMSEr 8 [deg/s] RMSEee,z 0.11 [m]

Fig. 14. The UVMS successfully grasping the object seen from the outside during
the second grasping operation.

Fig. 15. The UVMS successfully grasping the object seen from the vehicle’s
camera during the second grasping operation.

7. Discussion

7.1. Grasping success rate

In total, seven experiments were conducted in the MC-lab
pool in calm waters and lighting conditions similar to the MARIS
project [25] during the day. A test was considered successful
if the object was grasped. Two of these experiments led to a
successful grasp, yielding a grasp success rate of 29%. This is
similar to the results achieved by the MARIS project [25] under
the same environmental conditions where the Doppler velocity
logger was not used. The five unsuccessful experiments failed
when the manipulator stopped, either by entering and being
unable to escape a singularity or hitting the vehicle (servo max
torque limit was reached, which led to a safety shutdown of
the corresponding servo). The fact that the manipulator stopped
may be inconclusive to whether the grasp experiment would be
successful, given that the system had more time and stopping was
avoided. This means that the success rate should be estimated by
at least one alternative method.

It is also possible to estimate the grasping success rate by only
considering the actual grasping attempts. In the first (successful)
grasping test, only one grasp attempt was made, which led to
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a successful grasp. In the second test, two attempts were made
with one being successful. With this method, the grasping success
rate increases to 67%, which is 3% below the results reported
by [25] when assisted by a Doppler velocity logger. If only actual
attempts of grasping should be considered, the grasp success
rate is 67%, but a larger sample size is needed to conclude the
effectiveness of the proposed setup. If given a larger sample size
and the actual success rate would lie close to 90%, there are still
several improvements that must be seen before such a system is
utilized in a real case setting.

Nevertheless, these failed attempts show one of the weak-
nesses with the proposed setup and the manipulator, where
occlusion avoidance presents itself as the greatest challenge.

7.2. Overall performance and challenges

When it comes to performance and challenges, it is important
to note that it was decided that a simulation study would not be
carried out before conducting experiments. The methods applied
were deemed as simple yet powerful, and the main expected
challenge, i.e. occlusion, would be challenging to replicate in a
simulation environment in a realistic fashion. The results from a
simulation study could have provided knowledge when it comes
to tuning of control parameters and enhanced control behavior,
but would still run into challenges of overcoming occlusion. Some
potential solutions will be addressed in this section.

From the results it can be seen that the UVMS is able to
perform DP relative to the object and reach it with the end-
effector. As can be seen from Fig. 7, the vehicle position error is
low when only the vehicle is actively tracking the object. There
are some oscillations in the z-position, which implies that the
gains could have been tuned a bit more, and a small spike in
the heading angle error after approximately 55 s due to cable
drag. The remaining part of the testing shows quick convergence
to the desired states, good vehicle velocity tracking, and that the
desired position is maintained with small errors. However, when
the manipulator arm is actuated and end-effector positions are
attempted reached, there are some problems that arise. The time
it takes to perform a successful grasp varies for each test, but
the system still manages to maintain a desired position relative
to the object and grasp it given enough time, as can be seen by
comparing the end-effector and gripping results in Figs. 11 and
13.

From the first test in case study 2, it can be seen from Fig. 9
that the object was not found for the period between approxi-
mately 27 and 43 s, which led to a constant position change over
time for the given duration. This problem occurred a few more
times, e.g. after around 53 and 60 s. These incidents occurred
due to occlusion of the object by the manipulator arm. Around
the 43 s mark the desired end-effector position was reached,
but because of partial occlusion wrong position estimates were
made. This resulted in a sudden change in the vehicle’s and
manipulator’s estimated x- and z-positions, while the heading
angle was approximately the same. It is clear that this is what
happened, as the estimated x- and z-positions both depend on
the area of the object in the image frame, while the heading angle
is estimated through the center of the observed object in the
image. In the second test, the object was partially occluded after
approximately 10 s, which is given by the sudden jump in the
position errors in Figs. 12–13. Attempts could have been made to
remove the data where object position was not found in order to
reduce the presented RMSE values, but it was found important to
show the effect occlusion had on the given system. A low-pass
filter was added for relaxing sudden spikes that occurred due to
a partially covered object, but it caused a delay on the system
that was seen as unwanted. A better approach here may have

been to include an outlier detection filter. Optimally, the detector
should not have detected the object in this case, or it should have
smoothed out the position estimate to reduce the spike.

Several different desired positions were tested, and it was
found that the object needed to be at some distance away from
the vehicle while also being within the manipulator’s workspace.
After a few initial tests, desired relative position and heading
angle were set to

[
xd zd ψd

]
=

[
0.18 m −0.05 m −5◦

]
.

The manipulator arm was mounted under the vehicle on its left
side, which made it reasonable to try keeping the object close to
the arm, within the view of the vehicle camera, and the arm’s
maximum length. It should also be noted that the proposed
relative position and orientation estimation procedure is not 100%
accurate. This means that the position and orientation angles
had some uncertainties, and the same argument holds for the
presented RMSE values. The interpolation that was applied to
generate a function to map pixel area to object distance was
based on measurements on land with the vehicle’s camera. While
the object distances were short both in air and water, there
would still be a misalignment when estimating the object’s po-
sition below the surface. Furthermore, it was assumed that light
bending and attenuation effects were so small that they could be
neglected because of the dome in front of the camera, while it
can be seen from light bending effects Fig. 15 that the system
may have benefited from a camera calibration procedure.

The proposed method still resulted in good object tracking,
especially when object occlusion was avoided, and grasping of the
object. It is worth mentioning that the position or vehicle errors
do not need to be zero for the vehicle when the grasp takes place,
as can be seen from the second test in case study 2 in Fig. 12.
Here, the heading error is around 50 degrees at the time of the
grasp, but ultimately, it is the position of the end-effector that
determines whether a grasp can be successful. This implies that as
long as the object is seen, a grasp may still be possible. However,
keeping a small vehicle position error is believed to increase the
chance of a successful grasp taking place, as the object has a
lower probability of escaping the camera image. An interesting
point worth mentioning here is that in both of successful grasp
tests, the heading angle error is negative and quite large. This may
imply that a different (and larger) desired heading angle for the
vehicle should have been chosen in order for the manipulator to
grasp the object sooner.

When it comes to the stability properties of the system, it is
important to mention the assumption of perfect velocity tracking.
It clear that the velocity is not tracking the reference velocity
perfectly. However, as can be seen in the beginning of the vehicle
DP procedure in case study 1 in Fig. 8, the errors admit to
taking small values, with RMSEs of 0.027m

s , 0.024
m
s and 2 deg

s in
surge, heave, and yaw rate, respectively (see Table 5). Therefore,
the assumption of perfect velocity tracking should hold when
occlusion is avoided and when the object is within the camera’s
field of view, which is also the reason stability properties only
hold locally. A similar stability proof could be made for the
manipulator and the combined system, e.g. with the approach
presented here or with the inclusion of end-effector stabilization
by consulting [33]. However, the stability properties of the ma-
nipulator were not studied here because the manipulator has an
in-built velocity controller.

7.3. Possible solutions and improvements

The main difficulty with reaching the desired end-effector
position and grasping the object was related to the combination
of the arm occluding the object and the arm only having 3
DOF. In general, object occlusion implies wrong or non-existent
position estimates, while a low number of DOF leads to a small
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workspace and a higher probability that the arm approaches
singularities. The damping least squares method was applied
to avoid singularities, which made the manipulator joints stop
when the manipulator was close to a singularity configuration.
Attempts could have been made to tune the damping factor λ in
order to reduce the risk and consequence of the arm reaching a
singularity. Nevertheless, controlling a 3 DOF manipulator arm in
the 3D task space is difficult, and while exploiting the kinematic
redundancy of the UVMS is possible, it is not straight-forward
how this should be conducted with the proposed setup.

Overall, no particular action was taken when governing dis-
turbing effect, occlusion, took place. There are several ways this
problem can be dealt with, but the effectiveness of each method
will vary. Returning the manipulator to its initial position or
simply moving the arm away from the camera constitute simple
methods for reestablishing the control behavior, but do not deal
with the situation directly. Actively circumventing occlusion can
be done by masking a model of the object over the occluded part
or including occlusion as a task in the task priority framework,
but this was not investigated here. Occlusion avoidance is difficult
to achieve in a 3D end-effector positioning task with a 3 DOF ma-
nipulator, where the system may become underactuated because
of the constraints on the vehicle’s DOF. With the requirement that
the object must be seen by the vehicle’s camera, vehicle motions
are limited, and exploiting the extra DOF becomes difficult. By
utilizing a manipulator with a higher number of DOF, occlusion
avoidance becomes easier to achieve, which also allows for end-
effector path-following or tracking during vehicle DP. Another
interesting idea is to have a camera near the end-effector. Not
only is this a possible solution to the occlusion problems en-
countered here, it may also be regarded as an interesting control
problem where vehicle and manipulator control can be conducted
through the end-effector camera. Naturally, occlusion avoidance
is crucial if such a system is to be utilized in a real world appli-
cation, where damage to structures, ecosystems and equipment
are realistic consequences of failure.

Another difficulty with using the manipulator was that its
motions led to hydrodynamic drag on the whole system, which
slightly pushed both vehicle and end-effector away from the
desired positions. While the detector was able to detect the
object, partly or full occlusion of the object resulted in wrong or
no position data. This incorrectly led to errors and contributed
to high RMSE values. When the object was seen after it had
been occluded by the arm, estimated and reference positions
jumped to undesired values, which gave sudden motion by the
vehicle and manipulator. Furthermore, the drag force created
by arm motions could have been reduced by limiting the joint
angle velocities, but was not seen as a hindrance in these tests.
Cable drag was also an issue that had to be dealt with, which
was the main motivation for incorporating integral effect in the
controller. In an environment where slowly varying disturbances
exist (e.g. an UVMS with tether or weak currents) integral effect
is a necessity.

As can be seen from Table 1, the arm has 5 servo motors,
which would make the arm 4 DOF. However, the fourth servo
motor is responsible for the roll angle of the gripper, and it
was chosen to set this angle to 0 in order to align it with the
object’s roll angle (making the manipulator 3 DOF). Naturally,
controlling a 3 DOF manipulator in 3D space is not recommended,
but it is of interest to study the potential of such a system
in an autonomous or semi-autonomous operation as presented
here. In certain applications it might be desired to have short
manipulators, e.g. within a confined space such as a fish cage
where manipulation operations take place on or close to the net
structure. In these experiments, there were no environmental
forces that disturbed the system. However, there is still room for

improvement, especially when it comes to robustness, inclusion
of environmental disturbances, occlusion avoidance, incorpora-
tion of the procedure in a large scale mission through field trials
and increased level of autonomy.

8. Conclusions and further work

In this paper, a method for tracking and grasping an object
of interest using a UVMS and monocular camera object detection
is presented and verified through experimental testing. Images
containing an object of interest were labeled through a previously
developed automatic labeling procedure. A model of the object
was trained and the object was detected using the YOLOv3 object
detection framework. The testing results show that the object
can be grasped using the proposed method with a 3 DOF ma-
nipulator arm. However, the manipulator occasionally occluded
the camera, which led to wrong or no relative position estimates.
Moreover, the manipulator reached singularities and stopped in
some of the tests which led to failed attempts. By using a single
monocular camera, which is common in most small-sized under-
water vehicles, grasping objects with a light-weight manipulator
in an autonomous fashion is possible, even without the need
to implement stereo camera solutions. A stability analysis con-
ducted for the sliding mode controller proves local exponential
and asymptotic stability properties of the task error and sliding
surface, respectively.

With the proposed setup it is a challenge to perform end-
effector position control and grasping without occluding the cam-
era. Further work should study the proposed methodology with
a higher DOF manipulator and may include end-effector path-
following or tracking. It may also incorporate a camera occlusion
task in a task priority framework in order to reduce occlusion
effects. It is possible to place a camera near the end-effector
and use this camera for grasping. Furthermore, vehicle and end-
effector position control can also be done through a camera on
the manipulator’s end-effector, preferably in conjunction with an
algorithm for estimating optimal grip position on the object of
interest. Experimental testing may be conducted with such or
other improvements, in addition to adding current forces and
end-effector stabilization, before moving to field trials. Further-
more, the proposed approach can be applied for other missions as
well, e.g., subsea cleaning operations with a brush tool, hot-stab
operations within the oil and gas industry, and repairing holes in
a fish cage net.
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