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ABSTRACT In this study, a novel method is proposed to detect and classify the threats for fiber optic
distributed acoustic sensing (DAS) systems. In the study, phase-sensitive optical time-domain reflectometry
(phase-OTDR) is realized for the sensing system. The proposed method is consisted of three main stages.
In the first stage, Wavelet denoising method is applied for noise reduction in the measured signal, and
difference in time domain approach is used to perform high-pass filtering. Autocorrelation is then used
for comparing the signal with itself over time in each bin to remove uncorrelated signals. Next, the power of
the correlated signals at each bin is calculated and sorted where maximum valued bins are considered as the
event signal. In the second stage, Variational Mode Decomposition (VMD) technique is used to decompose
the detected event signals into a series of band-limited modes fromwhich the event signals are reconstructed.
From the reconstructed event signals, higher order statistical (HOS) features including variance, skewness,
and kurtosis are extracted. In the last stage, the threats are discriminated by implementing Linear Support
Vector Machine (LSVM)-based classification approach to the extracted features. In order to evaluate the
effects of proposed method on the classification performance, different types of activities such as digging
with hammer, pickaxe, and shovel collected from various points of a buried fiber optic cable have been used
under different Signal-to-Noise Ratio (SNR) levels (−4 to −18 dB). It has observed that the classification
accuracy at high/moderate (−4 to −8 dB) and low (−8 to −18 dB) SNR levels are 79.5% and 75.2%,
respectively. To the best of authors’ knowledge, this research study is the first report to use VMD technique
for threat classification in phase-OTDR-based DAS systems.

INDEX TERMS Distributed acoustic sensing, optical time-domain reflectometry, Rayleigh backscattering
light, support vector machine, threat classification, variational mode decomposition.

I. INTRODUCTION
In recent years, use of fiber optic distributed acoustic sensing
(DAS) has been attracting intensive attention in the field of
vibration detection. Basically, it is based on the measurement
of Rayleigh scattering that occurs when the light travelling in
fiber optic cable is backscattered due to imperfections (known
as ‘‘scattering centers’’) along the cable [1]. Theoretically,
the mechanical vibrations due to the physical activities or
events taken place around the cable cause fluctuations in
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the backscattered light. Interrogating these fluctuations then
enable to detect and classify such activities. In this context,
phase-sensitive optical time-domain reflectometry (phase-
OTDR) technique has been developed for DAS during the last
two decades [2], [3]. Unlike conventional OTDR, in phase-
OTDR, pulses of highly coherent lights are used to transmit
into a fiber optic cable, and for this reason, it is sensitive to
relative phases of reflected fields from the scattering centers.
Hence, it provides an efficient way for the monitoring of
multi-point acoustic vibrations along the cable. Its effective-
ness has been demonstrated in various applications such as
crack detection of structures [4], [5], railroad monitoring [6],
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[7], traffic flow detection [8], vehicle detection [9], and intru-
sion detection [10]–[18].

It has already known that the backscattered signal sensed
in a phase-OTDR based DAS system has generally quite low
signal-to-noise ratio (SNR) which highly affects the vibration
detection capability of the systems. Thus, several methods
such as heterodyning [4], Fourier transforming [5], multi-
dimension comprehensive analysis [7], polarization diver-
sity detection [10], two-dimensional edge detection [11],
Raman amplification [12], signal-noise separation [13], adap-
tive temporal/match filtering [14], [15], Wavelet denois-
ing [6], [8], [9], [16], multi-scale permutation entropy and
the zero-crossing rate [17], and difference in time-frequency
domain [18] have been used to improve the threat/event detec-
tion performance. Although thesemethods provide promising
results, it is still necessary to open new corridors in order to
improve the quality of weak Rayleigh backscattered signal in
event detection.

On the other hand, classifying physical events/threats con-
stitutes an important stage of a phase-OTDR based DAS
system which directly affects the system performance. Obvi-
ously, efficient techniques or approaches are required to
achieve better classification accuracy. In this context, using
advanced signal processing techniques can pave the way for
improving the classification accuracy. One of the potential
processing approaches could be an improved decomposition
technique which is called as Variational Mode Decomposi-
tion (VMD) [19]. It is based on the concepts of Wiener filter-
ing, analytic signal and frequency mixing or heterodyning.
Due to its efficiency, it has been offered to apply in various
applications including emitter identification [20], fluctuation
analysis [21], and RF fingerprinting [22], [23]. So far, there
is no evidence to use VMD technique in phase-OTDR-based
DAS systems. Particularly, it can be employed to improve
the accuracy of the features extracted from the detected event
signals. Thus, with the help of the extracted features, it can
be possible to achieve high classification accuracy.

In this study, it is aimed to propose an alternative method
to detect and classify the threats for fiber optic DAS sys-
tems based on phase-OTDR. Unlike the other methods, this
method uses Wavelet denoising, difference in time domain
approach, and autocorrelation process together in event detec-
tion stage for the first time. Besides, to our best knowledge,
this is the first method that uses VMD technique for threat
classification. Basically, the proposed method is mainly con-
sisted of three main stages. In the first stage of the proposed
method, Wavelet denoising method is applied to remove the
noise from the measured backscattered signal, and difference
in time domain approach is used to perform high-pass filter-
ing. In this stage, autocorrelation is also used for improving
interferometric visibility of the events in all ranges (bins)
along the fiber cable. Further, the power of the correlated
signals at each bin is calculated and sorted. Hence, the maxi-
mum valued bins are considered to be the event signal. In the
second stage, the detected event signals are decomposed into
a series of band-limited modes by using VMD technique,

FIGURE 1. Phase-OTDR-based DAS system for threat detection.

and from these modes, the event signals are reconstructed.
Moreover, from the reconstructed event signals, higher order
statistical (HOS) features including variance, skewness, and
kurtosis are extracted. In the last stage, Linear Support Vector
Machine (LSVM)-based classification approach is imple-
mented to the extracted features for discriminating the threats.
In order to measure the effects of the proposed method on
the classification performance, different types of activities
collected from various points of a fiber optic cable have
been used under different SNR levels. The results show the
effectiveness of the proposed method in threat detection and
classification.

The paper is organized as follows: In Section 2, the archi-
tecture of DAS system is overviewed. In Section 3, the
proposed method is presented, and then experimental results
are discussed to evaluate its overall performance. Lastly, in
Section 4, conclusions are provided.

II. A BRIEF OVERVIEW OF DISTRIBUTED ACOUSTIC
SENSING (DAS) SYSTEM
A typical phase-OTDR-based DAS system for threat
detection is shown in Fig. 1. Components of the illus-
trated system have been already well defined in several
sources [10], [13], [18]. Fundamentally, light pulses emitted
from a narrow line width (< 1 kHz) continuous-wave (CW)
laser source are amplified by an Erbium doped fiber amplifier
(EDFA). The amplifier output is then sent to the acousto-
optic modulator (AOM) which creates optical pulses before
sending to buried sensing fiber bymeans of a circulator (Cir.).
While travelling in the fiber, the optical pulse is exposed
to Rayleigh scattering that causes a random intensity opti-
cal signal. When there is an external disturbance (typically
vibrations on the ground nearby the fibre), the power of the
Rayleigh backscattered signal generated from this external
event is much larger than the background noise. The external
disturbances (events) might be any vibration, such as walk-
ing, hitting, digging, etc. Time-frequency-energy variation of
these disturbances induces phase changes on the backscat-
tered light. Therefore, time-frequency energy characteristics
of some expected events should be characterized well in
order to develop a pattern recognition system. All these are
discussed in detail in [24]. Next, the intensity of the optic
lights modulated by these changes is easily detected by a
photodetector (PD). The output of the PD is digitized using
an analog-to-digital converter (ADC) to process the signal so
that the threat can be detected, a direct detection approach
using the backscattered light intensity directly is used without
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FIGURE 2. A raw DAS data.

any demodulation in this paper since it is easy to implement.
However, in practice, it is not easy to extract a real event
signal from the nonlinearly mixed signals. The proposed
method that could be an alternative to alleviate this problem
is presented in the following section.

III. THE PROPOSED METHOD
As mentioned previously, the proposed method is mainly
consisted of three main stages: a) Event detection, b) Event
reconstruction and feature extraction, and c) Event classifi-
cation. Details of these stages are provided in the following
subsections.

A. STAGE I–EVENT DETECTION
In the first step of the event detection, backscattered signal
due to external events (y (t)) is needed to be extracted from
the measured backscattered signal (x (t)). Simply, the rela-
tionship between x (t) and y (t) can be expressed as

x (t) = y (t)+ n (t) (1)

where n (t) is considered as background noise that is typi-
cally presence in the cable due to thermal noise and cable
characteristics. The aim is then to extract y (t) from x (t) by
suppressing n (t). To that end, the proposed method begins
with removing noise from x (t) by applying Wavelet denois-
ing method [16] to clean up the signal. Wavelets are able
to localize signal features to different scales. Hence, while
removing noise from the signal, it is possible to preserve
significant signal features. It is already known that a large
number of wavelets can be used for both continuous and
discrete analysis. In this study, DAS data for each channel
is decomposed at level 5 using sym5 symlet wavelets [18].
As an illustration, a raw data of manual digging activity
with pickaxe and denoised data obtained by applyingWavelet
denoising are shown in Fig. 2 and 3, respectively.

After applying Wavelet denoising, difference in time
domain approach is used to implement high-pass filter and

FIGURE 3. Denoised data.

also extract abrupt changes in the signal [18]. Before using
this approach, the signal x (t) needs to be digitized:

x [c,m] = y [c,m]+ n [c,m] , (2)

where c is the measurement point on the cable (c ∈ Z+), and
m is the digital time index. The differencing in time domain
between consecutive pulses can be then expressed as

xd [c,m]

= x [c,m+ 1]− x [c,m] ,

= (y [c,m+ 1]+ n [c,m+ 1])− (y [c,m]+ n [c,m]) ,

= (y [c,m+ 1]− y [c,m]+ (n [c,m+ 1]−n [c,m]) ,

= yd [c,m]− nd [c,m] . (3)

It should be noted that the differencing between consec-
utive pulses is relied on an assumption. According to this
assumption, the background noise, due to external distur-
bance on the cable, does not change in a short time interval
as opposed to Rayleigh backscattered signal. This case can be
attributed to Parseval’s relation which can be stated as∑N−1

m=0
|yd [c,m]|2 �

∑N−1

m=0
|nd [c,m]|2 , (4)

where N denotes the number of samples utilized in signal
power estimation. Hence, in this method, a specific function
to suppress the noise is not used. Obviously, only time domain
differencing is used to perform high-pass filtering and extract
abrupt changes. Fig. 4 shows a graphics illustrating difference
in time domain approach for the denoised data obtained in
Fig. 3.

As can be seen from the figure, although the events
occurred in some bins can be recognized, further processes
are required for improving interferometric visibility of the
activities in all bins. In fact, as discussed in [18], it is nec-
essary to apply time-domain low-pass filtering in order to
remove high frequency components due to the noise which
is amplified by high-pass filtering. Instead, in this study,
autocorrelation is used for comparing the signal with a
time-delayed version of itself in each bin. Indeed, this yields
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FIGURE 4. Difference in time domain approach applied on denoised data.

to comprehend the significant changes of the signals to reveal
whether there is a significant relation between the signals
or not. Theoretically, if N points are considered in time, the
autocorrelation functionR (c, τ ) for a discrete signal xd [c,m]
is calculated by [25], [26]

R (c, τ ) =
1
N

∑N

m=1
xd [c,m] xd [c,m+ τ ], (5)

where τ is lag number. Then, highly correlated signals
(xdc [m]) exceeding a predefined threshold (0) for each bin
are decided:

xcor [c,m] =

{
xd [c,m] , R (c, τ ) > 0

0, otherwise
(6)

Thus, unwanted (uncorrelated) signals are removed so that
the bins where the events are occurred can be detected as
shown in Fig. 5. When compared to Fig. 4, it is clear that
the unwanted signals presence in bins between 200 – 250 is
completely removed, and thus interferometric visibility of the
activities occurred in bins between 10 – 150 is considerably
improved.

In the last phase of the event detection, power of the
correlated signals at each bin, Px (c), is calculated as

Px (c) =
∑N−1

m=0
|xcor [c,m]|2 . (7)

Then, the corresponding values are sorted in a vector E as

E = sort {Px (c)} (8)

where sort {·} denotes the sorting operator that sorts the
values of Px (c) in descending order as a sequence.

Finally, the maximum-valued bins are obtained by taking
the maximum of the elements in E (max {E}). Therefore,
the maximum-valued bins selected in E correspond to the
candidates of event detection. The signals observed at these
bins are then considered as the event signals.

B. STAGE II-EVENT RECONSTRUCTION AND FEATURE
EXTRACTION
In this stage, the detected event signals are processed before
classification. In fact, this stage has a vital importance in
enhancing the detection performance of the system. Thus,
the goal is to achieve robust features to be used in the event
classification. To this end, the event signals detected from
previous stage are decomposed and reconstructed, and then,
HOS features are extracted from these reconstructed signals.

1) RECONSTRUCTION OF THE DETECTED EVENT SIGNALS
In order to reconstruct the event signals, VMD technique
provided in [19] is utilized. Basically, it decomposes any real-
valued signal s into a number of discrete modes sz where
z = 1, . . . ,Z . These modes have specific properties for
reproducing the input signal, and has also limited bandwidth
in frequency domain where each of them compacts around a
center frequency ωz. The bandwidth of a mode is evaluated as
a specific norm of its Hilbert complemented. Then, by means
of complex harmonic, the analytic signal is shifted. Alternate
direction method of multipliers (ADMM) approach is used
in order to solve the variational problem. Besides, to update
the modes, Wiener filtering along with a filter are applied.
Hence, each ωz is updated as the center of gravity of the sz
power spectrum. Therefore, the Lagrangian multiplier that
enforces the reconstruction of the input signal is updated.
Briefly, to create a mode, the following scheme is applied:
• The corresponding analytic signal for eachmode is com-
puted by Hilbert transform,

• Frequency spectrum of the mode is shifted to baseband
by heterodyning,

• The bandwidth of the mode is estimated by smoothing
the demodulated signal which is also known as Wiener
filtering.

Thus, the constrained variational problem is written as

min
{sz},{wz}

{∑
z

∥∥∥∥∂t [(δ (t)+ j
π t

)
∗ sz (t)

]
e−jωzt

∥∥∥∥2
2

}
,

s.t.
∑

z
sz = f . (9)

The optimization problem is then transformed into
an unconstrained form by introducing the augmented
Lagrangian L:

L ({sz} , {ωz} , λ)

= α
∑

k

∥∥∥∥∂t [(δ (t)+ j
π t

)
∗ sz (t)

]
e−jωzt

∥∥∥∥2
2

+

∥∥∥∥∥f (t)−∑
k

sz (t)

∥∥∥∥∥
2

2

+ 〈λ(t), f (t)−
∑
k

sz(t)〉

+〈λ(t), f (t)−
∑

k
sz(t)〉 (10)

where α is the balancing parameter, and λ is the Lagrangian
multiplier. The solution for the problem in (10) is found by
employing a sequence of iterative sub-optimizations which is
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called as ADMM) To employ this method, subproblems with
respect to sz and ωz are required to solve. In this context, sz is
rewritten as a minimization problem such that:

ŝn+1z = argmin

{
α

∥∥∥∥∂t [(δ (t)+ j
π t

)
∗ sz (t)

]
e−jωzt

∥∥∥∥2
2

+

∥∥∥∥f (t)−∑i
si (t)+

λ (t)
2

∥∥∥∥2
2

}
. (11)

After following the approaches given in [19], which are not
stated here for the sake of simplicity, the resulting quadratic
optimization problem can be written as in the following:

ŝn+1z = argmin
{∫
∞

0
4α (ω − ωz)2

∣∣ŝz (ω)∣∣2 + 2
∣∣∣f̂ (ω)

−

∑
i
ŝi (ω)+

λ̂ (ω)

2

∣∣∣∣∣
2

dω

 . (12)

The quadratic problem can be then solved by

ŝn+1z (ω) =
f̂ (ω)−

∑
i 6=z ŝi (ω)+

λ̂(ω)
2

1+ 2α (ω − ωz)2
. (13)

As for the subproblem with respect to ωz, minimization
problem is rewritten as:

ωn+1z = argmin

{
α

∥∥∥∥∂t[(δ (t)+ j
π t

)
∗ sz(t)

]
e−jωzt

∥∥∥∥2
2

}
(14)

which can be solved, after the problem is transformed into a
quadratic problem given that the optimization takes place in
Fourier domain, as

ωn+1z =

∞∫
0
ω
∣∣ŝz (ω)∣∣2 dω

∞∫
0

∣∣ŝz (ω)∣∣2 dω . (15)

Therefore, by substituting the solutions given in (13) and
(15) into the ADMM method, an algorithm for VMD can be
achieved. It can be summarized as provided in the following
procedure [22]:

• Set n to 0 for initializing the modes (ŝ1z , ω
1
z , and λ̂

1
z )

• Update ŝn+1z (ω) provided in (13)
• Update ωn+1z provided in (15)
• Update Lagrange multiplier:
λ̂n+1 (ω)← λ̂n (ω)+τ

(
f̂ (ω)−

∑
z ŝ
n+1
z (ω)

)
until the

convergence
∑

z

∥∥ŝn+1z − ŝnz
∥∥2
2.

2) FEATURE EXTRACTION
Once the event signals are reconstructed, the next step is to
extract distinctive signal features from the reconstructed sig-
nals by exploiting instantaneous signal characteristics such as
instantaneous amplitude a(n), instantaneous frequency f (n),
and instantaneous phase ∅ (n). For a real-valued discrete

signal in time domain s(n), the analytic signal sa (n) can be
expressed as

sa (n) = saI (n)+ js
a
Q (n) (16)

where I and Q are the in-phase and quadrature components,
respectively. These components are given by saI (n) = s (n),
saQ (n) = H {s (n)} where H {·} denotes Hilbert Transform.
Therefore, the instantaneous signal characteristics (a (n),
φ (n), f (n)) can be calculated as

a (n) =

√(
saI (n)

)2
+

(
saQ (n)

)2
, (17)

∅ (n) = tan−1
[ saQ (n)
saI (n)

]
, (18)

f (n) =
1
2π
∅ (n)− ∅ (n− 1)

1n
. (19)

Further, the biases superimposed by the data collection
system are removed. To do that, receiver-induced linear com-
ponent of the instantaneous phase is eliminated, and all char-
acteristics are normalized [22]. Then, three HOS features
(skewness, kurtosis, and variance) are calculated from a(n),
∅ (n), and f (n). Hence, a total of nine feature vectors are
created to be used in event classification.

C. STAGE III–EVENT CLASSIFICATION
In the event classification stage of the proposed method, it is
aimed to measure the effects of the proposed method on the
classification performance. Although several approaches or
techniques have been proposed for classification purposes,
it is still necessary to achieve accurate results in classification
of the detected events especially under realistic noise condi-
tions. To that end, in the following subsections, the procedure
for creating data under different noise conditions is described,
and the details of the classification method employed to
identify the events are presented.

1) DATA CREATION
Three types of activity were recorded from different points
of a buried fiber cable. These events are: (1) Digging with
hammer, (2) Digging with pickaxe, (3) Digging with shovel.
Different levels of the channel noise were then added ran-
domly to the records. While doing this, three datasets for
each event were created by varying SNR levels. The ranges
for the SNR levels were defined as: (a) low SNR (−8 to
−18 dB), (b) high/moderate SNR (−4 to −8 dB). At each
SNR range, there were 120 samples for each event. It should
be also noted that SNR values of each dataset are distributed
in approximately Gaussian distribution.

2) CLASSIFICATION AND RESULTS
Before making classification, the feature sets created in
Stage II are divided into training and test sets for each event.
Here, the feature sets are trained in order to make a relation-
ship between the feature sets and the events, whereas, the test
sets are used for estimating the performance of the classifier.
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FIGURE 5. The detected bins where the events are occurred.

FIGURE 6. Confusion matrix for low SNR (−8 to −18 dB).

FIGURE 7. Confusion matrix for high/moderate SNR (−4 to −8 dB).

For classification, LSVM classifier has been employed due
to its efficiency [22], [23]. Each training set consists of 70
(58%) out of 120 samples per event. The corresponding test
set consists of the remaining 50 (42%) samples.

LSVM was trained with the training set, and its deci-
sion function was determined. The test set was then used to

measure the classification accuracy. The confusion matrices
of the LSVM classifier for the datasets under low SNR and
high/moderate SNR are shown in Fig. 6 and Fig. 7, respec-
tively. In confusion matrices, the number and the percentage
of misclassified samples are represented by red coloured cells
while the number and the percentage of correctly classified
samples are represented by green coloured cells.

When the confusion matrices are analysed, it is observed
that the classification accuracy at high/moderate and low
SNR levels are 79.5% and 75.2%, respectively. It is clear
that the accuracy is decreased by ∼4% under low SNR level.
On the other hand, almost the same rates, 65.1% and 64.3%,
are observed as the lowest classification accuracy at low and
high/moderate SNR level, respectively.

IV. CONCLUSION
This paper presents a novel method to detect and classify
the threats for phase-OTDR based fiber optic DAS systems.
In the proposed method, threat detection is provided by a
different approach which combines Wavelet denoising and
difference in time domain methods with the autocorrelation
process. For threat classification, on the other hand, VMD
technique is used to extract HOS features (skewness, kurtosis,
and variance) from the detected threats. In order to identify
the threats, LSVM classifier is employed under different SNR
levels. According to the classification performance results,
it has obtained that the system becomes effective at iden-
tifying of physical activities such as digging with hammer,
pickaxe, and shovel which are taken place around the buried
fiber cable. More specifically, it has observed that better
performance (∼4% higher accuracy) could be achieved at
higher SNR levels (−4 to −8 dB). But still, it has shown that
acceptable classification performance (75.2%) could also be
achieved at lower SNR levels (−8 to −18 dB).
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