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Introduction
Spatial statistics is the field of statistics analyzing data that are connected
to geographical locations (Cressie, 1993; Gelfand et al., 2010; Banerjee
et al., 2004). It is used within a range of scientific fields, e.g. for modeling
the spatial distribution of diseases (Moraga, 2019; Berke, 2004; Clements
et al., 2006), mapping weather phenomena and natural resources (Gandin,
1960; Kyriakidis et al., 2001; Skøien et al., 2006; Goovaerts, 1997; Paciorek
and Schervish, 2006), mapping the behavior or habitat of animal species
(Sicacha Parada et al., 2020; Bellier et al., 2010; Jullum et al., 2020) or
for mapping the spatial distribution of demographic variables like income
level, birth rate and child mortality across geographical regions (Wakefield
et al., 2017; Kerry et al., 2010).

A common problem in spatial statistics is to predict a target variable at
locations where there are no observations. To make predictions, relevant
observations are gathered from nearby locations. With the development
of GPS, satellite technology, Internet and citizen science, the availability
of information is larger than ever. This means that it often is possible
to combine several data sources when building a spatial model. However,
this comes with challenges. The spatial observations might come in dif-
ferent forms, where some are point referenced, some are areal referenced
and some are connected to grid units. Some data are aggregated and/or
include information about averages over regions. There can also be large
differences in how the data are collected and the measurement uncertainty
associated with them: The uncertainty of a satellite observation is prob-
ably very different from the uncertainty of an observation reported by a
person contributing to citizen science. Using different data types together
in a spatial model, requires that the data are connected in a mathemat-
ically consistent way that gives an appropriate uncertainty quantification
for the predicted quantity.

The variable of interest might also have other important properties that the
researcher want to include the spatial model. For example can the target
variable be subject to constraints, e.g. it follows preservation laws for mass
and energy. Another possibility is that the variable follows repeated trends
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over time, due to for example topography or other constant, underlying
factors. Including such dependency structures and constraints in a spatial
model is often computationally expensive.

In this thesis, we build Bayesian spatial models. The goal of Bayesian
inference is to assess the posterior distribution of the target variable, given
a set of observations (Gelman et al., 2004; Gamerman and Lopes, 2006).
The benefits of using the Bayesian framework is that it enables a full
uncertainty quantification for both the target variable and its underlying
model parameters. It also makes it possible to include expert knowledge
about e.g. observation uncertainties through prior distributions. However,
the drawback is that Bayesian models often provide slow inference and
predictions. A main goal of the thesis is to develop spatial models that
account for different data types and data structures, but that also are
computationally feasible for operational use.

The spatial models we present in our work, are motivated by challenges
from hydrology and runoff estimation. Runoff is a hydrological variable
that is driven by precipitation: When it rains or snows, some of the pre-
cipitation evaporates, some of it is stored (temporarily) as snow while the
rest flows towards a river as runoff, either on the ground surface as surface
runoff or within the soil as subsurface runoff or interflow. This process
can be expressed through a basic water balance equation given by

P = Q+ E + S, (1)

where P is precipitation, Q is runoff, E is evapotranspiration and S is
the change in stored water (determined by processes like snow melt and
snow accumulation) (WMO, 1992). In our work, we mostly consider an-
nual runoff. Annual runoff is typically given for hydrological years that
are defined such that we can neglect the storage component S in the wa-
ter balance equation. In this definition it is assumed that the snow that
came during the hydrological year has melted before the beginning of the
next hydrological year. With S ≈ 0, we see that runoff can be observed
through precipitation and evaporation data, two data types that are point
referenced. However, it is more common to observe runoff through areal
referenced streamflow measurements. These contain information about the
average runoff within a catchment area. In addition is annual runoff a mass
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conserved variable restricted by water balance constraints. Hence, runoff
is a spatial variable that has many of the properties discussed above.

In our studies, we consider Norwegian annual runoff data. In Norway more
than 90 % of the electrical energy produced comes from hydroelectricity
(NVE, 2020), and runoff estimates and forecasts are needed to plan the
hydropower production. Estimates of mean annual runoff give informa-
tion about the long-term water availability across the country. This can be
useful when determining the best location for building hydropower plants.
Furthermore, it is important to estimate runoff and runoff extremes for
flood security reasons: Infrastructure should be built such that it can han-
dle floods with return periods of e.g. 100 or 200 years. Existing models
used by the Norwegian water resources and energy directorate (NVE) have
shown that mean annual runoff is one of the most essential predictors for
runoff extremes (Engeland et al., 2020). In addition are (annual) runoff
estimates used in the planning of domestic, agricultural and industrial wa-
ter supply all over the world. The variability in annual runoff is also a key
for understanding runoff’s sensitivity to driving climatic factors in today’s
climate and can be used to make inference about the runoff variability for
future climates (Blöschl et al., 2013).

Although runoff is of interest for a variety of reasons, most catchments in
the world lack runoff measurements, and runoff must be estimated. This
defines a key challenge in hydrology known as the prediction in ungauged
basins problem (PUB) (Blöschl et al., 2013). This thesis contains three
papers (Paper A-C) where all of them address the PUB problem. The
papers are closely linked, but each contains a new contribution towards
finding a better strategy for (annual) runoff interpolation.

In our work with runoff estimation, it was one problem that stood out as
particularly interesting: The problem of exploiting short records of runoff
(Vogel and Stedinger, 1985; Blöschl et al., 2013). For hydrologists it is
often of interest to estimate the long-term behavior of runoff, e.g. the
mean annual runoff. The long-term behavior, typically the behavior over
a 30 year period, says something about the climate in the study area and
the overall water availability. However, in some catchments there only
exist 1, 3, 10 or 28 years of data when it is of interest to have 30 annual
observations. These data records are what hydrologists refer to as short
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records.

In Norway, the Norwegian Water Resources and Energy Directorate (NVE)
are responsible for making mean annual runoff maps. In the latest versions
of this map, short records have been omitted from the analysis (Beldring
et al., 2002). The reason is that the short records have been considered
as too uncertain and/or too complicated to include in an analysis with
the existing methods for runoff interpolation. However, omitting the short
records represents a reduction in the number of observation locations of
more than 50 % in Norway. It is also known that the annual runoff in
Norway, and in many other countries, tends to follow repeated spatial
patterns over time suggesting that there can be a lot information in a tiny
piece of data. Hence, the there is a potential of improving the existing
geostatistical models in terms of exploiting short data records.

Motivated by the challenge of exploiting short records, we developed a
Bayesian spatial model for annual runoff that models several years of runoff
simultaneously with two spatial fields: One that represents the long-term
average spatial variability of runoff, i.e. the climate, and one that repre-
sents year-specific spatial variability. The spatial model borrows strength
in time through the climatic field, and can be though of as something
between a spatial model and a spatio-temporal model.

During our work we have seen that the proposed two field model has several
interesting properties that we present throughout the thesis. The study of
the two field model can hence be considered a main statistical contribution
of our work. To illustrate that the two field model can be used outside
the field of annual runoff interpolation, the thesis includes a Technical
note that focuses on more general properties of the model. Here, we also
present examples of other environmental variables for which the model can
be useful.

In addition to the study of the two field model, the thesis explores meth-
ods for combining different data sources in a spatial model. We consider
how observations of different spatial support (point and areal observations
of runoff) can be combined in a mathematically consistent way that ac-
counts for basic preservation laws. We also explore how simulations from a
physics-based hydrological model can be incorporated into a geostatistical
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framework.

A main motivation behind the work was to develop models that were com-
putationally feasible for operational use. This is not trivial when sug-
gesting Bayesian models that include two spatial fields, models with areal
referenced observations and models that consider up to 30 years of runoff
simultaneously. To solve the computational problems, we use two rela-
tively recent developments: (i) Integrated nested Laplace approximations
(inla) and (ii) the stochastic partial differential equation (spde) approach
to spatial modeling (Rue et al., 2009; Lindgren et al., 2011). While inla
is a tool for making approximate inference on a specific class of Bayesian
models, the spde approach is used to approximate Gaussian random fields
(grfs) by Gaussian markov random fields (grmfs) through solving a spde
numerically. These approximations come with computational benefits that
are crucial to fit our suggested models.

While not a main topic of the thesis, we also wanted the models to be
easy to handle in terms of prior specification. The idea is that this will
contribute to making the models more available for operational use for e.g.
hydrologists and other users that are not experts in statistics. Based on
this we have used interpretable priors for most of the parameters, more
specifically the recently developed pc priors suggested by Simpson et al.
(2017). pc priors make it possible for the user to express prior believes
through quantiles and probabilities in a simple manner. Knowledge-based
priors are also used in this thesis to weight observation types differently
in our spatial models, based on what we know about measurement uncer-
tainties across data types.

Before describing our contributions, we give an overview of spatial statis-
tics, grfs, gmrfs, inla, the spde approach, pc priors and other relevant
statistical models and tools that are used to build our hydrological mod-
els. This can be found in Section 1. Next, in Section 2 we present the
challenges that exist in runoff modeling that have motivated our work.
Here, we also refer to how other researchers have addressed these issues
and describe our contributions towards the field. Finally, in Section 3 we
summarize the work, paper by paper, and suggest how the models can be
used, also outside the field of runoff interpolation, and for further research.
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Notation

In this introduction we use the following notation unless otherwise speci-
fied: Bold type lower case letters refer to vectors, while bold higher case
letters refer to matrices. For example, y denotes a set of observations
(y1, ..., yn) while Σ refers to a covariance matrix with matrix element (i, j)
given by Σi,j . To denote a spatial location in R2, we use u which is
a vector containing an x-coordinate and a y-coordinate. For probability
density functions, we use π(·), and to express conditional probabilities we
use π(·|·). An observation likelihood given conditional on some variables
x and parameters θ is for example written as π(y|x,θ).

1 Methodological background

1.1 Spatial statistics

In this thesis we mostly consider models for spatial data that are continu-
ously indexed, often referred to as geostatistical models. Geostatistics has
it origins at L’École des Mines in France, where Georges Mathéron devel-
oped models for predicting the outcome of mining operations (Mathéron,
1955, 1963). His models were inspired by the work of D.G. Krige who used
statistical methods for mineral exploration (Krige, 1966). Independently of
Mathéron, the Swedish statistician Bertil Matérn established geostatistical
models for forestry (Matérn, 1960). Here, we find the development of the
Matérn correlation function that is commonly used to model correlation
between locations.

A central assumption in spatial statistics is that locations that are close in
space have more in common than locations that are far apart. This follows
Tobler’s first law of geography that states that "everything is related to ev-
erything else, but near things are more related than distant things" (Tobler,
1970). Assuming {x(u);u ∈ R2} is a spatial process of interest, Tobler’s
law can be included in a spatial model by modeling how the dependency
between x(ui) and x(uj) decays with distance for any two locations ui

and uj . Such dependencies can be modeled by Gaussian random fields
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(grfs), a commonly used model for processes that vary continuously in
space and/or time. Gaussian random fields are often used as building
blocks in Kriging methods, a set of spatial prediction methods named af-
ter D.G. Krige. In Kriging approaches, the spatial process of interest can
be modeled as a grf, and a prediction at an unobserved location can be
obtained through a weighted sum of observations from nearby locations
(see e.g. Cressie (1993); Gelfand et al. (2010)).

While Gaussian random fields are used to model continuously indexed
spatial data, Gaussian Markov random fields (gmrfs) are used to model
spatial data that are discretely indexed, for example data that are con-
nected to a grid or a graph. The spatial processes we model in this thesis
are modeled as grfs, but gmrf approximations are used to achieve com-
putational benefits. Introductions to grfs and gmrfs are given in the two
next subsections.

1.2 Gaussian random fields (grfs)

A Gaussian random field (grf) is a probability model for a variable that
varies over a continuous domain (see e.g. Stein (1999); Cressie (1993); Dig-
gle and Ribeiro Jr (2007); Gelfand et al. (2010); Lieshout (2019)). Before
defining a Gaussian random field, we define the well-known multivariate
Gaussian distribution. A random vector x ∈ Rn has a Gaussian distribu-
tion, denoted N (μ,Σ), if its probability density function is given by

π(x;μ,Σ) = (2π)−n/2|Σ|−1/2 exp
(
−1

2
(x− μ)TΣ−1(x− μ)

)
, (2)

where μ is the mean vector and Σ is a n×n covariance matrix. The covari-
ance matrix is symmetric positive semi-definite with element (i, j) given
by Cov(xi, xj) where xi and xj are element i and j in x. If two variables
xi and xj are independent, Cov(xi, xj)=0. For the multivariate normal
distribution we also have that Cov(xi, xj) = 0 implies independence.

We now define a grf: A continuous field {x(u);u ∈ D} defined on a spatial
domain D ∈ Rd is a grf if for any collection of locations u1, ...,un ∈ D
the vector (x(u1), ..., x(un))

T follows a multivariate normal distribution,

7



i.e.
(x(u1), ..., x(un))

T ∼ N (μ,Σ). (3)

The elements in the covariance matrix can be constructed from a covari-
ance function that defines the dependency between the locations in the
spatial domain, and the covariance function is often characterized by two
parameters; a spatial range ρ and a marginal standard deviation σ. The
spatial range ρ defines how correlation decays with distance and is defined
as the distance at which the correlation between two locations has dropped
to almost zero. The marginal standard deviation σ quantifies spatial vari-
ability.

The mean μ and the covariance model of a grf can represent either sta-
tionary or non-stationary properties. A grf is stationary if it has constant
mean in the spatial domain and a covariance function that only depends
on the distance between two locations ui and uj , i.e.

E{x(ui)} = μ,

Var{x(ui)} = σ2,

Cov{x(ui), x(uj)} = C(ui − uj),

for any i and j where C(·) is a covariance function. If we add the require-
ment that C{x(ui), x(uj)} = C(||ui − uj ||), where ||uj − ui|| is the Eu-
clidean distance between the locations uj and ui, the field is also isotropic.
On the contrary, if the mean and/or the covariance depend on location,
the grf is non-stationary.

There exist several covariance functions that can be used to construct
stationary or non-stationary grfs, with the Gaussian, exponential and
Matérn covariance function being the most common. In the work pre-
sented in this thesis we use a stationary, isotropic Matérn covariance func-
tion to model the dependency structure of runoff. The stationary Matérn
covariance function is given by

C(ui,uj) =
σ2

2ν−1Γ(ν)
(κ||uj − ui||)νKν(κ||uj − ui||), (4)

where ||uj −ui|| is the Euclidean distance between two locations ui,uj ∈
Rd, Kν is the modified Bessel function of second kind and order ν > 0,
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Γ(·) is the gamma function and σ2 is the marginal variance (Guttorp and
Gneiting, 2006). The parameter κ is a scale parameter, and it can be
shown empirically that the spatial range can be expressed as ρ =

√
8ν/κ,

where ρ is defined as the distance where the spatial correlation between
two locations has dropped to 0.1 (Lindgren et al., 2011).

The reasons for using the Matérn covariance function in our hydrological
models are twofold: 1) The Matérn class of covariance functions has several
useful properties and Stein (1999) strongly advices to use it. 2) Using the
Matérn covariance function makes it possible to apply the spde approach
to spatial modeling, which is based on approximating grfs by gmrfs to
achieve computational benefits. The spde approach is outlined in Section
1.5.2.

1.3 Gaussian Markov random fields (gmrfs)

While Gaussian random fields are connected to continuously indexed lo-
cations, Gaussian Markov random fields (gmrfs) are discretely indexed.
gmrfs take spatial dependency into account through a neighborhood
structure, and are often used for image analysis or to model areal level
data. As gmrfs have Markov properties, computations with gmrf can be
very efficient. We here define important concepts related to gmrfs. The
definitions presented here are taken from Rue and Held (2005), and we
refer to this book for further details.

Before presenting the formal definition of a gmrf, we define condi-
tional independence and a conditional independence graph. Two vari-
ables x and y are called conditionally independent given z if and only
if π(x, y|z) = π(x|z)π(y|z). In the following, we denote this property as
x ⊥ y|z. Furthermore, let G = (V, E) denote a labeled graph with edges E
and nodes V = {1, ..., n} that represent the elements of the random vector
x = (x1, ..., xn)

T. Let E be such that there is no edge between node i and
j if and only if xi ⊥ xj |x−ij , i.e. if and only if xi is independent of xj
conditional on x−ij , where x−ij denotes vector x without element xi and
xj . The graph {V, E} now defines a conditional independence graph.

The formal definition of a gmrf can now be formulated as follows (Defi-
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nition 2.1 from Rue and Held (2005)):

A random vector x = (x1, ..., xn)
T ∈ Rn is called a gmrf with respect to

a labeled graph G = (V, E) with mean μ and symmetric positive definite
precision matrix Q, if and only if its density has the form

π(x) = (2π)−n/2|Q|1/2 exp
(
−1

2
(x− μ)TQ(x− μ)

)
(5)

and
Qij �= 0 ⇐⇒ {i, j} ∈ E for all i �= j,

where Q is the inverse of the covariance matrix, Q = Σ−1 and Qij denotes
matrix element (i,j).

Comparing Equation (2) to Equation (5) we see that a gmrf is a grf
parametrized through the precision matrix instead of the covariance ma-
trix. The gmrf parameterization is convenient because the precision ma-
trix Q gives information about conditional independence properties of x,
i.e. the Markov properties. This can be seen if we compare the definition
of the conditional independence graph with the gmrf definition. More
specifically, Qij = 0 if and only if xi is independent of xj conditional on
x−ij . The Markov properties of a gmrf can be summarized through the
following theorem (Theorem 2.4 from Rue and Held (2005)):

Let x be a gmrf with respect to a labeled graph G = {V, E}. Then the
following are equivalent.
1. The pairwise Markov property:

xi ⊥ xj |x−ij if i �= j and {i, j} /∈ E .
2. The local Markov property:

xi ⊥ x−{i,ne(i)}|xne(i) for every i ∈ V.
3. The global Markov property:

xA ⊥ xB|xC

for all disjoint sets A, B and C where C separates A and B, and A and
B are non-empty. Here, xA = {xi : i ∈ A} and similarly for xB and
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xC . Furthermore, ne(i) is all nodes in G with an edge to node i, i.e. the
so-called neighbors of node i.

The above theorem implies that for a gmrf, the conditional distribution
of xi given x−i can simply be expressed as the conditional distribution of
xi given its neighbors, i.e. as

π(xi|x−i) = π(xi|xne(i)).

This property can also be read from the precision matrix Q of the gmrf,
through its zero elements, or equivalently through the edges of the graph
G that only exist between nodes that are conditionally dependent.

It is the many zero elements of Q (hence the gmrf’s Markov properties)
that give gmrfs computational benefits: There exist efficient algorithms
for matrix operations on matrices with many zeros. For a grf with a dense
n×n covariance matrix the cost of matrix operations on Σ is O(n3). The
computational cost of matrix operations on the precision matrix of a gmrf
depends on the gmrf itself and its conditional independence structure, but
the computational cost is typically O(n3/2) for a two dimensional gmrf,
a large reduction compared to the grf. This is also the reason for using
gmrfs in the models in thesis: Through the spde approach to spatial
modeling, a grf with a dense precision matrix can be approximated by a
gmrf with a sparser precision matrix. See Section 1.5.2 for more on the
spde approach, and Rue and Held (2005) for fast algorithms for gmrfs.

1.4 The Bayesian framework

The goal of any statistical analysis is to use observations to gain knowl-
edge about a process of interest and/or to do predictions related to this
process. There are two main approaches to statistics: The frequentist
and the Bayesian. The frequentist approach can be considered as the
more classical approach, while the Bayesian approach has gained more
popularity in research communities later years. The reason for the in-
creased popularity is related to recent developments in computer science
and mathematics: Traditionally Bayesian inference and predictions were
computationally expensive. Now there exist fast algorithms and servers
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with more computational power, which have made "infeasible" Bayesian
models computationally feasible. In this thesis, we operate in the Bayesian
framework.

1.4.1 Bayesian statistics

In the traditional frequentist approach, a variable of interest x is consid-
ered fixed, but unknown. To make inference about the unknown quantity
x, relevant data y are collected. Based on knowledge about the process of
interest, x and y are connected through an observation likelihood π(y|x),
which expresses the probability of observing y for given values of the un-
known variables x. Next, by using e.g. maximum likelihood procedures x
can be estimated based on y,

What is different in the Bayesian framework, is that the variable of inter-
est x is not longer considered as fixed, but as a quantity whose variation
can be expressed through a probability distribution (see e.g. Casella and
Berger (1990); Berger (1985)). Before performing the statistical analysis,
this probability is expressed through a so-called prior distribution π(x).
This can be constructed based on expert knowledge about the variable(s)
of interest. The goal of the Bayesian analysis, is to update the prior dis-
tribution based on data y. By using Bayes’ theorem

π(x|y) = π(x)π(y|x)
π(y)

∝ π(x)π(y|x), (6)

the posterior distribution π(x|y) is obtained. Here, ∝ means proportional
to. The posterior distribution expresses the degree of belief in each possible
value of x given the data. To obtain the marginal distribution for any
element xi ∈ x, the remaining variables are integrated out, and a prediction
of xi can be summarized through e.g. the mean, median or the mode of
the posterior distribution π(xi|y).
Three appealing properties of the Bayesian approach is that 1) we obtain
a full predictive distribution for the variable of interest x, 2) it provides a
convenient framework for hierarchical modeling which is further described
in Section 1.4.2 and 3) the possibility to incorporate expert opinions into
the modeling through the prior distributions. However, the latter requires
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knowledge about how subjective prior beliefs should be translated into
mathematically formulated prior distributions. The Bayesian approach
can also produce posterior distributions that are heavily influenced by the
priors. Another challenge is the computational complexity associated with
many Bayesian models. We discuss prior modeling and the computational
challenges in Bayesian statistics in Section 1.4.3 and Section 1.5 respec-
tively.

1.4.2 Hierarchical modeling and latent Gaussian models
(LGMs)

The class of hierarchical models represents a popular and flexible model-
ing framework that is used both within the Bayesian and the frequentist
approach to statistics. In a hierarchical model, the statistical model is
formulated in multiple levels, i.e. in a hierarchical form (see e.g. Gelman
et al. (2004); Gelman and Hill (2007); Banerjee et al. (2004)). Each level
is given a distribution and can be considered as a sub-block of the full
model. By multiplying the distributions of all sub-blocks together, the
joint distriution of the model quantities of interest is obtained. This way
complicated processes can be modeled as a sequence of simpler sub-models.

A hierarchical model is often characterized by three stages. The first stage
is the data model : Data y = (y1, .., yn) are observed with conditionally
independent likelihood π(y|x,θ) given a latent (unobserved) process x
and some model parameters θ. The second stage is the process model or
the latent model. This consists of the probabilistic model for the latent,
underlying process x given the parameters: π(x|θ). The third stage is the
parameter model π(θ), a model for the parameters. In a Bayesian setting,
the parameter model π(θ) and the process model π(x|θ) are given by the
prior distributions of x and θ.

To make inference about the unknown parameters θ and variables x in a
hierarchical model, Bayes’ rule is used:

π(x,θ|y) = π(y|x,θ)π(x|θ)π(θ)
π(y)

∝ π(y|x,θ)π(x|θ)π(θ). (7)
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Through marginalization, the distributions π(x|y) and π(θ|y) are ob-
tained. Within the Bayesian framework, these are the posterior distri-
butions of the quantities of interest.

If using the frequentist approach for computing π(x,θ|y), or an empiri-
cal Bayesian approach, the parameters θ are typically estimated first by
using e.g. maximum likelihood procedures. Next, θ is treated as fixed
in Equation (7), with value equal to the estimated value θ̂. This means
that the uncertainty of θ is not taken into account in the assessment of
π(x|y). This is different from the fully Bayesian approach, where both
θ and x are associated with prior and posterior distributions. The full
uncertainty specification for the parameters provided by the Bayesian ap-
proach, is one of the reasons why the Bayesian framework is particularly
suitable for hierarchical statistical modeling.

In this thesis, (fully) Bayesian hierarchical models are used to build hy-
drological models, and we use a specific class of hierarchical models called
latent Gaussian models (lgms). An lgm is a natural modeling choice
when considering spatial processes that can be modeled as grfs. Another
main motivation for using lgms is that it makes it possible to use inla to
make faster inference and predictions (Rue et al., 2009).

The inla approach supports lgms where the mean μi of the observation
yi is linked to a linear predictor through a link function g(·) on the form:

g(μi) = ηi = β0 +

nβ∑
k=1

βkzki +

nf∑
j=1

f (j)(uij) + εi, (8)

where x = (β0, {βk}, {f (j)(·)}, {ηi}) defines the latent field of the hierarchi-
cal model. Here, β0 is an intercept, {f (j)(·)} are functions of {uij} that can
be used to model e.g. spatial or temporal dependency structures, {βk} are
the linear effects of some covariates {zki} and {εi} are independent and
identically distributed error terms. All components in x must be given
Gaussian priors in order to obtain an lgm. Based on the latent model de-
fined in Equation (8), the observation likelihood of the lgm can be written
as π(yi|x,θ) ∼ π(yi|ηi,θ). The third stage of the lgm is given by the prior
of the model parameters π(θ) as before. The additive structure of several
components, introduced by the linear predictor in Equation (8), allows for
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a large range of models with different dependency structures. The inla
approach is outlined in Section 1.5.1.

1.4.3 Knowledge-based, interpretable priors

One of the challenges in Bayesian modeling, is to specify reasonable prior
distributions. The prior distributions should reflect what the researcher
knows about the parameters of interest. In a hierarchical Bayesian frame-
work, it is often relatively simple to select a suitable prior π(x|θ) for the
latent process. Constructing priors for the model parameters θ however,
is typically less intuitive.

A prior for θ can be informative, vague or non-informative (see e.g. Chap-
ter 5 in Lesaffre and Lawson (2012) or Chapter 3 in Blangiardo and
Cameletti (2015)). Non-informative priors are typically used if the re-
searcher has limited information or intuition about the parameters of in-
terest and/or want the data to determine. A non-informative prior can be
constructed by assigning an equal probability to all possible values of the
parameter of interest by using a uniform distribution. However, a problem
with the uniform distribution is that it is not invariant to transformations.
As an alternative to the uniform distribution, several non-informative pri-
ors that are transformation invariant have been suggested. Two popular
choices are Jeffreys’ prior (Jeffreys, 1946) and the reference prior suggested
by Bernardo (1979). While Jeffreys’ prior is a function of the Fisher in-
formation, and hence also the observation likelihood, the reference prior
is constructed by maximizing the Kullback–Leibler distance between the
prior and the posterior. A drawback of Jeffreys’ and Bernardo’s priors how-
ever, is that they often are improper, i.e. they don’t integrate to 1. This
is problematic because it for certain models also can result in improper
posterior distributions. To avoid improper posteriors, so-called vague pri-
ors can be used as approximations for non-informative priors. An example
of a vague prior can e.g. be a Gaussian prior distribution for a regression
coefficient with (very) large prior variance. However, despite of being con-
structed to be vague, these priors often lead to quite informative priors
(Gelman, 2006; Fong et al., 2009).

When the researcher has information about the process of interest, infor-
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mative priors can be used to incorporate his or her knowledge into the
Bayesian model. The information can be based on e.g. results from pre-
vious experiments, knowledge about the measurement uncertainty of the
variable(s) of interest, or if it is a spatial model, knowledge about the study
area. An informative prior for a parameter that has been estimated to be
in the interval [0,10] for similar experiments, can for example simply be a
Gaussian distribution centered around 5.

Specification of priors is a major challenge in Bayesian statistics and a
source of criticism from frequentists. In many applications priors are set
in an ad-hoc manner, and/or default priors in computer software such as
r-inla are used (Rue et al., 2009). This can lead to overfitting, prior sen-
sitive results and it often makes prior assumptions unavailable for other
researchers or users. Later years, research has been done to make prior
specification easier. One of the contributions here is the pc prior sug-
gested by Simpson et al. (2017). The penalized complexity (pc) prior is
based on penalizing the increased complexity of a model induced by devi-
ating from a simpler base model. This is done by using a function of the
Kullback-Leibler divergence to measure the increased complexity between
a base model and the proposed, more flexible model. The goal here is
to control against overfitting. Another benefit of the pc prior is that it is
relatively easy to interpret for the user. The prior can be specified through
a probability α ∈ (0, 1) and a quantile U > 0 on the form

Prob(Q(ξ) > U) = α (9)

where Q(·) is an interpretable transformation of the parameter of interest
ξ. To demonstrate how this is done, we use the pc prior for a Gaussian
effect N (0, τ−1) as an example. This is given by the density

π(τ) =
λ

2
τ−3/2 exp(−λτ−1/2), τ > 0, λ > 0, (10)

where λ is a parameter that determines the penalty of deviating from the
base model. However, the parameter λ, and hence also the pc prior for τ ,
can simply be specified through Prob(1/

√
τ > U) = α, where 1/

√
τ is the

standard deviation of the Gaussian effect and where λ = − ln(α)/u. Hence,
the user only needs to have a intuition about the standard deviation of the
Gaussian effect N(0, τ−1) and can formulate his/her thoughts through α
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and U . In this thesis, pc priors are used for the variance or precision
parameters in our models.

In our work, we also apply the joint pc prior suggested by Fuglstad et al.
(2019b) to specify priors for the range ρ and the marginal standard devia-
tion σ of a grf. This pc prior can be specified through the quantiles Uρ,
Uσ and probabilities αρ, ασ as

Prob(ρ < Uρ) = αρ; Prob(σ > Uσ) = ασ,

where uρ, Uσ, αρ and ασ are quantiles and probabilities that must be
specified by the modeler.

The fact that the pc priors can be specified through quantiles and proba-
bilities makes prior specification, and hence also the Bayesian framework,
more available for researchers that don’t have a strong mathematical back-
ground. Prior assumptions also become easier to communicate to users
(e.g. hydrologists) and/or to criticize. In the field of making prior specifi-
cation simpler, more interesting work is going on. One example is the hier-
archical decomposition (hd) prior that was recently developed by Fuglstad
et al. (2019a). The hd prior framework can be used to construct priors for
the total variance in an additive model by decomposing the total variance
through a tree structure of the underlying, individual model components.

1.5 Computational challenges in Bayesian statistics and in
spatial modeling

The goal in Bayesian analysis is to determine the (marginal) posterior dis-
tributions of the latent field π(x|y) and/or the parameters π(θ|y). To
achieve this analytically, an evaluation of π(y) is needed (Equation (6)).
However, π(y) is often not analytically tractable: To obtain π(y) one has
to integrate the joint distribution π(y,x,θ) over θ and x, where the di-
mension of θ and x can be large. For this reason, Bayesian analysis on
complex models was not available until the 1990s when computational
sampling algorithms were developed. Among these we find the well-known
Gibbs sampling procedure and other Markov chain Monte Carlo (mcmc)
approaches (Gelfand and Smith, 1990; Casella and George, 1992). These
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have gained popularity through user friendly computer programmes like
bugs (Spiegelhalter et al., 1999), jags (Plummer, 2003) and Rstan (Car-
penter et al., 2017). For many applications, sampling-based mcmc meth-
ods still represent the best approach available for performing Bayesian
analysis. However, if the Bayesian model is complex with large dependen-
cies between the components and/or if the dimension of x and θ is large,
mcmc can be slow and computationally unfeasible within reasonable time.

There are also computational challenges related to fitting geostatistical
models involving grfs. The computational complexity is connected to the
matrix operations that are required on the covariance matrix Σ to do pre-
dictions and inference. Inverting a dense n× n covariance matrix Σ has a
computationally complexity of O(n3) when using standard inversion algo-
rithms. In spatial analysis, n is the number of target locations (observation
and prediction locations), and this number is often large.

In this thesis, we mostly consider Bayesian hierarchical models involving
not only one, but two grfs. The number of target locations n is also
large, considering that we for example are interested in making a runoff
map for the whole country of Norway for up to 30 different years. Con-
sequently, our models are computationally demanding. These challenges
would have made the suggested runoff models computationally unfeasi-
ble only a decade ago, at least for many operational applications and for
cross-validation assessments. However, relatively recent developments in
statistics enable (approximate) inference and predictions on more complex
Bayesian and/or spatial models. We here particularly refer to the inla
approach developed by Rue et al. (2009), and to the spde approach to
spatial statistics developed by Lindgren et al. (2011). While inla is used
to make Bayesian inference, the spde approach is used to overcome the
challenges related to inversion and multiplication of dense covariance ma-
trices. In the following two subsections, we give an overview of inla and
the spde approach.

1.5.1 Integrated nested Laplace approximations (inla)

inla is a tool for making approximate Bayesian inference on lgms and
was suggested by Rue et al. (2009). It can be used for lgms with linear
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predictors on the form expressed in Equation (8) if each component of the
latent field x is given a Gaussian prior distribution.

The goal of any Bayesian analysis is to compute the posterior marginal
distributions

π(xi|y) =
∫

π(xi|θ,y)π(θ|y)dθ, i = 1, ..., nx (11)

π(θk|y) =
∫

π(θ|y)dθ−k, k = 1, ...nθ, (12)

where θ is the parameter vector from Section 1.4.2 and x is the latent field.
Here, xi denotes element i of vector x and x−i denotes vector x without
element xi. Similarly, θk denotes element k of vector θ and θ−k denotes
the parameter vector without element θk.

To evaluate the two densities above, evaluations of π(θ|y) and π(xi|θ,y)
are needed. The inla approach computes these densities by using Laplace
approximations. A Laplace approximation can be used to approximate any
density g(x) with a normal distribution (see Tierney and Kadane (1986)).
In inla this is used to express the posterior density π(θ|y) from Equation
(11) and (12) as

π(θ|y) ∝ π(y|x,θ)π(x|θ)π(θ)
π(x|θ,y) ≈ π(y|x,θ)π(x|θ)π(θ)

π̃(x|θ,y)
∣∣∣∣
x=x∗(θ)

, (13)

where π̃(x|θ,y) is the Laplace approximation of the density π(x|θ,y),
and x∗(θ) is its mode for a given θ. The inla methodology finds suitable
evaluation points for θ by using a numerical optimization algorithm. See
Rue et al. (2009) for details.

Next, π(xi|θ,y) in Equation (11) must be evaluated to make inference,
for for i = 1, .., nx. This is more difficult and computationally expensive
because the dimension of x typically is larger than the dimension of θ. To
approximate π(xi|θ,y) three approaches are suggested by Rue et al. (2009):
The first approach is to use a Gaussian approximation for π(xi|θ,y). This
is already available through π̃(x|θ,y) from Equation (13). However, this
approximation often leads to inaccurate results. A second approach is to
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use

π(xi|θ,y) ∝ π(x,θ|y)
π(x−i|xi,θ,y) ≈ π(x,θ|y)

π̃(x−i|xi,θ,y)
∣∣∣∣
x−i=x∗

−i(xi,θ)

=: π̃(xi|θ,y),
(14)

i.e. the density π(x−i|xi,θ,y) is approximated by a Laplace approximation
and evaluated at its mode x∗−i(xi,θ). This approximation is good, but the
drawback is that it requires an evaluation of π̃(x−i|xi,θ,y) for all values
of θ and x. This is computationally expensive. Finally, the third approach
is to use the simplified Laplace approximation, which is based on a Taylor’s
series expansion of the Laplace approximation π̃(xi|θ,y) in Equation (14).
The latter is the default approach in the R package r-inla and is quite
fast and accurate for most model types.

After approximating π(θ|y) and π(xi|θ,y), the integrals in Equation (11)
and (12) must be evaluated. This is done based on numerical integration
schemes, and we again refer to Rue et al. (2009) for more.

In the calculations described above, inla relies on using the fast algorithms
for matrix operations on gmrf’s from Rue and Held (2005). Hence, in
order to obtain fast inference and predictions with inla, the latent field
of the lgm x should be a gmrf with sparse precision matrix. Another
requirement for achieving fast predictions is that the number of so-called
hyperparameters θ in the model should not be too large, say smaller than
15. The reason is that we in Equation (11) and (12) need to integrate
over the hyperparameter space in order to obtain the results, and this is
computationally infeasible if the dimension of θ is large.

Apart from this, inla is in general accurate and fast for most lgms (Rue
et al., 2009; Martino et al., 2011; Eidsvik et al., 2012; Huang et al., 2017),
and has been successfully used within several fields of science (see e.g.
Khan and Warner (2018); Opitz et al. (2018); Yuan et al. (2017); Guillot
et al. (2014); Ingebrigtsen et al. (2014); Myrvoll-Nilsen et al. (2020); Jullum
et al. (2020)). However, inla has faced problems for some (more extreme)
models with binomial or Poisson data (Fong et al., 2009; Ferkingstad and
Rue, 2015). In this thesis, we use Gaussian likelihoods which implies that
the Laplace approximation is exact. The accuracy of inla is then only
determined by the accuracy of the numerical integration schemes used
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to evaluate Equation (11) and (12), and we can expect inla to provide
reliable results.

The inla methodology is available through the R package r-inla, and we
refer to Blangiardo and Cameletti (2015), Krainski et al. (2018) and the
web page www.r-inla.org for r-inla tutorials and examples.

1.5.2 The spde approach to spatial modeling

The inla approach to Bayesian inference requires that the precision ma-
trix of the latent Gaussian field is sparse in order to work fast. This is
typically not the case for spatial models that involves grfs. However, the
spde approach to spatial modeling suggested by Lindgren et al. (2011),
makes it possible to approximate grfs by gmrfs with a sparser preci-
sion matrices. The approach is based on the following stochastic partial
differential equation (spde)

(κ2 −Δ)α/2τx(u) = W(u), u ∈ Rd, κ > 0, (15)

whose exact and stationary solution x(u) is a grf with Matérn covariance
matrix (Equation (4)) as shown by Whittle (1954, 1963). In Equation (15),
W(·) is spatial Gaussian white noise, Δ is the Laplacian, α is a smoothness
parameter, κ is the scale parameter from the Matérn covariance function
from Equation (4), d is the dimension of the spatial domain and τ is a
parameter controlling the variance. The parameters τ , κ, α and d of the
above spde are connected to the parameters of the Matérn covariance
function in Equation (4) through

σ2 =
Γ(ν)

Γ(α)(4π)d/2κ2ντ2
; ν = α− d/2, (16)

where σ2 is the marginal variance of the Matérn covariance function, ν is
its smoothness parameter and Γ(·) is the gamma function.

In Lindgren et al. (2011) the spde in Equation (15) is solved numerically
by using the finite element method (fem) (see e.g. Brenner and Scott
(2008). Through fem, an approximation of the solution can be written as

x(u) =
m∑
k=1

φk(u)wk. (17)
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Figure 1: The finite element method is used to find an approximate solution of
the spde in Equation (15). The solution is expressed through a basis function
representation defined on a triangular mesh. Above we see an example mesh for
Norway. The number of mesh nodes m determines the computational complexity
of performing inference and predictions on the approximative gmrf solution of
the spde. Also note that the above example mesh has an outer layer to handle
boundary effects.

This is a basis function representation of the grf x(u) defined on a tri-
angulation of the domain D, where m is the number of vertices in the
triangulation, φk for k = 1, ..,m are basis functions and wk for k = 1, ..m
are zero mean Gaussian distributed weights. The weights are approxima-
tions of the grf x(u) at the mesh nodes, and the basis functions transfer
the approximation from the mesh nodes to other locations of interest u.
An example triangulation mesh is shown in Figure 1. The basis functions
φk are chosen such that they are piecewise linear in each mesh triangle
and have a local support. That means that φk = 1 at vertex k and 0 at all
other vertices. This ensures that the approximation in Equation (17) has
Markov properties and forms a gmrf. Assuming Neumann boundary con-
ditions, and α = 2 in Equation (15), the precision matrix for the Gaussian
weights (w1,...,wm) is given by

Q = τ2(κ4C + 2κ2G+GC−1G),

where C is a diagonal matrix with elements given by Cii =
∫
φi(u)du

and G is a sparse matrix with elements Gij =
∫
Δφi(u)Δφj(u)du with Δ

denoting the gradient. The precision matrix Q is sparse, hence w1, .., wm

and also the approximation in Equation (17) forms a gmrf.
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The possibility of approximating grfs by gmrfs through the spde ap-
proach has made many complex Bayesian spatial models computationally
feasible. The computational cost of matrix operations on the gmrf ap-
proximation from Equation (17) is O(m3/2), where m is the number of
nodes in the triangulation mesh. Recall that for a grf with dense covari-
ance matrix, the computational cost of matrix operations is O(n3), where
n is the number of target locations. Hence, it is the mesh size determines
the computational complexity of the problem in the spde approach, and
not the number of observation and prediction locations. In a typical set-
ting can m be smaller than n and the spde approach still gives accurate
predictions. However, if the mesh is too coarse it of course affects the ac-
curacy of the results: The edges in the mesh should be defined such that
they are short enough to capture the spatial variability in the study area.
The mesh should also be extended outside the target area, as in Figure 1,
such that it is wide enough to handle the boundary effects that can occur
from solving the spde numerically.

Since the spde approach’s introduction it has been used in several appli-
cations (see e.g. Wakefield et al. (2017); Bakka et al. (2018); Moraga et al.
(2017); Jullum et al. (2020); Lenzi et al. (2018)), and it is available in
the R package r-inla together with the inla approach. One of the ben-
efits of the spde approach, in addition to the computational benefits, is
that it makes it simple to introduce non-stationary models by allowing the
spde parameters τ and κ to vary in space e.g. as functions of explanatory
variables (Ingebrigtsen et al., 2014, 2015; Bakka et al., 2019). As non-
stationarity can be expressed through the spde parameters, we don’t need
to explicitly construct a valid, positive definite covariance matrix. This is
automatically ensured.

The spde approach is developed to handle the computational complexity of
geostatistical models. There also exist other approaches that try to handle
computational expensive spatial models, like fixed rank Kriging (Cressie
and Johannesson, 2008), predictive process models (Banerjee et al., 2008)
and covariance tapering (Furrer et al., 2005). Presenting these methods
are outside the scope of this thesis, but we include them here as a reference.
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2 Contributions towards annual runoff interpo-
lation and the prediction in ungauged basins
problem

This thesis contains three papers, Paper A-C, where all of them are moti-
vated by the prediction in ungauged basins problem in hydrology, i.e. the
problem of predicting runoff in areas that lack runoff observations. In the
following subsections we explain some of the challenges that exist in runoff
modeling, and how other researches have addressed them. We also describe
how our work has contributed towards the field, and how the statistical
tools described in Section 1 are used to build new hydrological models.

2.1 Areal referenced runoff models (Paper A-C)

Every point in the landscape contributes to runoff generation, and we can
think of runoff as a continuous process in space. However, when measuring
runoff, it is done by measuring the volume of water per unit time that flows
through a cross-section of a stream or river. These observations are typi-
cally given in mm per time unit or in m3/s and contain information about
the average runoff in the drainage area of the target river, i.e. what we
call a catchment area. Runoff observations are therefore areal referenced.
Furthermore, catchments are organized in a nested structure such that the
runoff observations often come from catchments that overlap. This has
two major consequences in a modeling setting:
1) The nestedness of catchments affects the dependency structure of runoff.
2) Mass preservation laws matter. It is impossible to have a larger water
volume in a small subcatchment than in a larger overlapping catchment.

The above challenges are well known by hydrologists and are typically ac-
counted for in commonly used hydrological process-based models like the
hbv model (Sveriges Meteorologiska och Hydrologiska Institut, 1992) and
wasmod (Widén-Nilsson et al., 2007). However, for most statistical runoff
models the situation is different. Methods like multiple linear regression
(Engeland et al., 2020; Merz and Blöschl, 2005) don’t ensure consistent
predictions over nested catchments, and neither does the roi approaches
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(Zrinji and Burn, 1994; Merz and Blöschl, 2005). Within the geostatisti-
cal framework, many of the models consider runoff observations as point
referenced instead of areal referenced (see e.g. Merz and Blöschl (2005);
Skøien et al. (2003); Adamowski and Bocci (2001)). Here, the catchment
centroids or the locations of the stream gauges are used as the observation
locations, and the modeler risks a violation of conservation laws and a poor
uncertainty model. However, there exist a few geostatistical models that
take the nested structure of catchments into account in the runoff interpo-
lation. Central examples are the models in Skøien et al. (2006); Sauquet
et al. (2000); Gottschalk (1993a,b). The Top-Kriging approach suggested
by Skøien et al. (2006) has given particularly good results (Viglione et al.,
2013; Blöschl et al., 2013), and is considered as one of the best interpolation
methods for hydrological data.

As the name suggests, Top-Kriging is a Kriging approach. In Kriging
approaches, the spatial variable of interest x(u) is often modeled as a
grf. A prediction of the target variable x(u0) at an unobserved location
u0 ∈ R2 is given by a weighted sum of the observed values at u1, ...,un,
i.e. as

x̂(u0) =

n∑
i=1

λix(ui), (18)

where the λi’s are interpolation weights that must be determined and the
x(ui)’s are observations from nearby locations. The interpolation weights
are estimated by requiring that x̂(u0) is the Best Linear Unbiased Estima-
tor (blue) of x(u0), which means that x̂(u0) is estimated by finding the
weights that both minimize the mean squared error and give zero mean
expected error (Cressie, 1993). This requires evaluations of the covariance
function of the involved grf. What makes Top-Kriging different from
other hydrological Kriging approaches in this context, is that Top-Kriging
accounts for the nested structure of catchments in the covariance (vari-
ogram) calculations by interpreting the runoff observations as areal refer-
enced instead of point referenced. The catchment areas are discretized,
and the distance between two catchments is measured by calculating pair-
wise distances between the grid nodes contained by the target catchments’
discretizations. By this, a subcatchment gets a higher Kriging weight λi

than a nearby, non-overlapping catchment.
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Apart from the geostatistical models in Skøien et al. (2006); Sauquet et al.
(2000); Gottschalk (1993a,b), there are few established geostatistical mod-
els in hydrology that treat runoff as areal referenced, and there is more
work that can be done within this field. One of the reasons for the little
amount of research, might be that an areal referenced model often rep-
resent a substantial increase in computational complexity compared to a
point referenced model. However, such models are now more available
through tools as inla and the spde approach to spatial modeling.

In Paper A - C we suggest Bayesian interpolation models for annual runoff
that treat runoff as areal referenced. In our models, annual runoff q(u) is
modeled as a continuous spatial process {q(u) : u ∈ D} that can be defined
for any point in the landscape D ∈ R2. However, runoff is observed at
catchment level, and we model the true runoff generated inside a catchment
A as

Q(A) =
1

|A|
∫
u∈A

q(u)du ≈ 1

nA

∑
u∈LA

q(u), (19)

i.e. as the average point runoff q(u) over the catchment, where |A| is
the catchment area. The model is given conditional on the model param-
eters. To make the model computationally feasible, the catchments are
discretized, and the integral in Equation (19) is replaced by a sum over
the discretization grid LA, where nA is the number of grid nodes in the
discretization of catchment A. The spatial models we use for q(u) are
specified later, in Section 2.3 and Section 2.4, but for now we only assume
that q(u) is a stationary, continuous spatial model that does not depend
on any explanatory variables.

The true runoff from Equation (19) is not observed directly, but through
noisy streamflow observations. We use the following observation likelihood
for runoff, that is given conditional on Q(A):

zi = Q(Ai) + εzi (20)

π(zi|Q(Ai), σz) ∼ N (Q(Ai), s
z
i σ

2
z).

Here, zi is the observed runoff in catchment Ai, εzi are independent and
identically distributed as N (0, szi σ

2
z), σ2

z is a variance parameter and szi is
a fixed, predetermined scale that is specific for catchment Ai allowing for
differences in measurement uncertainty over different catchments.
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River

Figure 2: Conceptual figure of four discretized catchments where each grid node
u1, ...u5 represents one areal unit. Assume that we have the following observations
of annual runoff from A1, A2 and A3: Q(A1)=2000 mm/year, Q(A2)=1000 mm/year
and A3=2000 mm/year. In order to fulfill the water balance constraints in Equation
(19), imposed by the likelihood in Equation (20), the predicted mean annual runoff
in the ungauged catchment (A4) must be around 2500 mm/year if we assume a low
observation uncertainty. Mark that we use a very coarse grid here to make the example
more intuitive.

Compared to Top-Kriging, the above model formulation gives a similar
covariance model. It decreases the posterior uncertainty inside the areas of
the observed catchments, not only at certain gauging points which is what
a point referenced model would do. It also weights an observation from
a subcatchment more than an observation from a nearby non-overlapping
catchment when making predictions, similar to Top-Kriging. On the other
hand, our model formulation is different from Top-Kriging by that we
impose soft constraints on the predicted runoff within the areas of the
observed catchments. This is done through the process model in Equation
(19) and the observation likelihood in Equation (20). The equations in
(19) and (20) actually correspond to water balance constraints.

The consequence of imposing water balance constraints in our model, is
that the model is influenced to follow basic preservation laws. This gives
consistent runoff predictions (posterior mean) over nested catchments. An
additional consequence of imposing water balance constraints, is that the
proposed model is able to predict larger values than any of the observed val-
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ues without using explanatory variables. One simplified example is shown
in Figure 2. Here, we assume that we have three observations of runoff on a
simplified grid: 2000 mm/year in Catchment A1, 1000 mm/year in Catch-
ment A2 and 2000 mm/year in Catchment A3. Using equations (19) and
(20), we can specify three soft constraints, one per observed catchment. It
can be shown (and also understood intuitively from Figure 2) that in order
to fulfill the constraints, the predicted runoff in the unobserved catchment
A4 must be:

Q̂(A4) =
q(u4) + q(u5)

2
+ uncertainty = 2500 mm/year + uncertainty (21)

where the uncertainty term is determined by the observation uncertainty
for a fixed set of marginal variances and ranges. Hence, we can obtain a
prediction that is larger than any of the observed values if the observation
uncertainty is sufficiently small. This property is not held by most other
geostatistical methods that only rely on spatial smoothing. In Paper B
we also explain how we construct informative priors with narrow credible
intervals on the measurement uncertainty szi σ

2
z in order to make the water

balance constraints stronger.

Top-Kriging does not constrain the runoff over nested catchments as in the
example above. Hence, its predictions can more easily violate the water
balance. This can either represent a benefit or a drawback relative to our
method, depending on what kind of variable we want to model: Not all
hydrological variables are mass conserved. Another existing hydrological
model that considers water balance constraints in the interpolation, is the
geostatistical model for annual runoff from Sauquet et al. (2000). This is
a Kriging approach where mass balance constraints are used as additional
constraints in the Kriging system of equations.

2.2 Combining point and areal referenced data (Paper A)

Using precipitation and evaporation data as observed values when per-
forming runoff interpolation is something that in general has been avoided
by Top-Kriging and other interpolation methods used in hydrology. The
reason is expressed in Viglione et al. (2013) as follows:
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"The main advantage of statistical methods for estimating runoff in un-
gauged basins is that they avoid the use of uncertain input variables such
as precipitation and potential evaporation".
Precipitation data are uncertain and biased due to undercatch (Wolff et al.,
2015), while evaporation is seldom observed directly, but provided by al-
gorithms that use meteorological observations from satellites as input (see
e.g. Mu et al.; Zhang et al. (2009)). In spite of the uncertainties linked
to these observation types, evaporation and precipitation are the main
drivers behind runoff as we can see from the basic water balance equation
in (1). Hence, it is reasonable to assume that precipitation and evapora-
tion data can provide useful information about runoff, particularly in areas
of the world where there are few streamflow observations of runoff avail-
able. However this requires that the precipitation and evaporation data
are linked to runoff in a clever way. A geostatistical model for runoff that
allows evaporation and precipitation in the observations likelihood also has
to take into account that precipitation and evaporation data are observed
at point locations, while streamflow observations are areal referenced: The
observations of different spatial support should be connected such that the
model is mathematically consistent over different data types and in terms
of water balance.

In Paper A we explore if it is possible to increase the predictability of
annual runoff by including point referenced precipitation and evaporation
data in the geostatistical runoff modeling. In the model we propose, pre-
cipitation and evaporation data are used together with areal referenced
streamflow observations. The areal referenced runoff observations are mod-
eled as described in Section 2.1, while the precipitation and evaporation
data are included by using the basic water balance equation in (1): The
observed point runoff is the observed evaporation extracted from the ob-
served precipitation, assuming storage effects are 0. The latter is realistic
on an annual scale, for a hydrological year. Recall that the hydrological
year is defined such that the precipitation that came as snow during the
year has melted before the beginning of the next hydrological year, min-
imizing storage effects. Based on the above, we specify an observations
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likelihood for point referenced annual runoff yk as follows:

yk = Pk − Ek = q(uk) + εyk (22)

π(yk|q(uk), σy) ∼ N (q(uk), s
y
kσ

2
y),

where q(uk) is the underlying true runoff at point location uk and the
εyk’s are independent and identically distributed error terms with prior
N (0, sykσ

2
y) where {syk} are fixed predetermined scales and σ2

y is a variance
parameter. The variables Pk and Ek are the observed precipitation and
evaporation respectively. The true point runoff q(u) is given by a sta-
tionary and continuous spatial model that is further specified in Section
2.3.

A combined point and areal model can next be achieved by multiplying
the likelihood for the point observations (Equation (22)) with the like-
lihood for the areal observations (Equation (20)) for all target locations
and catchments. Both observation likelihoods are given conditional on the
same underlying stationary spatial model q(u); for the areal model implic-
itly through Q(A) which is given by a weighted sum of point runoff q(u),
according to Equation (19). This model formulation gives a mathemati-
cally consistent runoff model for which the water balance is preserved for
the predicted runoff at any point in the study area.

Furthermore, to influence the model to weight the streamflow observations
more than the more uncertain point observations, knowledge-based priors
are used for the measurement uncertainties szi σ

2
z and sykσ

2
y in Equation

(20) and Equation (22): In Paper A we specify a pc prior with a lower
prior mean observation uncertainty for the areal runoff szi σ

2
z , compared

to the prior observation uncertainty for the point runoff sykσ
2
y (relative

to the observed value). The prior credible interval for areal runoff szi σ
2
z

is also more narrow. The scales syk and szi are included such that it is
possible to let the prior (and posterior) measurement uncertainties increase
with the observed value, which is a reasonable assumption for hydrological
data. This way hydrological assumptions are incorporated into the model
through knowledge-based prior distributions.

In the statistics literature, there exist other Bayesian geostatistical mod-
els that combines point and areal observations. Here, it is the model in
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Moraga et al. (2017) that is most similar to the work presented here. Also
these authors build a model for which the spatial variable at areal level
is defined as a spatial average of the variable at point level, as in Equa-
tion (19). Other similarities are that their model is a Bayesian hierarchical
model and that they use inla and spde to make inference and predictions.
However, they use a different model for the linear predictor q(u) than we
do, and they demonstrate their model by simulation studies and by mod-
eling the spatial risk pattern for respiratory diseases and lung cancer in
Zürich. Another Bayesian geostatistical model that combines point and
areal referenced data is found in Wang et al. (2018). Here, the Bayesian
model is fitted by using Rstan and demonstrated for epidemiological data.
Furthermore, in Goovaerts (2010), a Kriging approach that combines point
and areal data is presented. The papers by Moraga et al. (2017); Wang
et al. (2018); Goovaerts (2010) all conclude that a combination of point
and areal data can lead to a better predictive performance compared to
when using one of the data types alone, but it requires that the observa-
tion types are compatible and modeled in a consistent way. Our results in
Paper A support their conclusions: We find that when we predict runoff
by only using point observations of runoff according to Equation (22), this
gives poor results. Predicting runoff by only using areal observations gives
better predictions. However, when combining the point observations with
areal referenced streamflow observations, it leads to an increased predictive
performance on average, compared to using one of the data types alone.
Some of the increase in predictive performance can be explained by the
mass conserving properties of the model, illustrated in Section 2.1.

In spite of the promising results in Paper A, precipitation and evaporation
data were not included in the runoff interpolation in Paper B. For Paper B
we had substantially more streamflow data available, and the precipitation
and evaporation data turned out to contribute to a (small) decrease in pre-
dictive performance compared to when not using them. Consequently we
decided to omit the precipitation and evaporation data from the analysis
in Paper B. Our experience is that precipitation and evaporation data can
improve the runoff predictions in areas with few streamflow observations.
However, when there are more streamflow data available, the precipitation
data are redundant and/or can affect the predictions negatively in our
proposed model. Based on this, more research should be done around this
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topic, to find the best way to connect precipitation and evaporation data
to runoff in a geostatistical model. A key challenge here is probably to find
a clever way to account for that precipitation gauges often are located a
relatively low elevations. Hence, there is often a lack of information about
the precipitation field at high elevations. At the same time, we typically
find the most extreme precipitation and the largest spatial variability in
mountainous areas.

2.3 Exploiting short records - Introducing the two field
model (Paper A-B)

Hydrologists are often interested in the long-term behavior of a catchment,
and mean annual runoff is a key hydrological quantity (Blöschl et al.,
2013). The mean annual runoff is typically calculated based on a 30 year
period, as an average over 30 years represents a climate (WMO, 1992).
Calculating this is straight forward for catchments where there are 30 years
of observations available. However, most catchments in the world don’t
have runoff observations or only have so-called short records of annual
runoff which means that the catchments only have a few years of data
available. We refer to these catchments as partially gauged.

As mentioned in the introduction, short records have been omitted from
analyses of mean annual runoff in Norway (Beldring et al., 2002). The
reason is that averages based on 1-29 years of data are regarded as un-
reliable estimates of the true mean annual runoff for the 30 year target
period. However, omitting partially gauged catchments from an analysis
means that a lot of potential information might be lost. Hence, research
on how much information that actually is stored in the Norwegian short
records and how to include them in the runoff modeling, is highly relevant.

In the literature there exist several approaches for exploiting short records
of runoff data. These are known as record augmentation techniques. As-
sume that a partially gauged catchment has n annual runoff observations
y1, .., yn from n years. The first step in most record augmentation meth-
ods is to find one or several so-called donor catchments for the target
catchment. These should have longer time series of runoff than the tar-
get catchment, and for a time period that overlaps with the observations
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of y1, ..., yn. The donor catchments are selected based on proximity in
space and/or catchment similarity, i.e. that the donor and target catch-
ments have similar vegetation, precipitation patterns, slope, elevation or
other catchment characteristics. The idea is that catchments with similar
characteristics also have similar runoff patterns.

After selecting suitable donors, the next step is to develop a relationship
between the target catchment and the donor catchment(s). Here, several
approaches are available. An obvious approach is to develop a linear re-
lationship yi = β0 + β1xi by simple linear regression, where yi and xi are
observations from the target and donor catchment respectively, and β0
and β1 are regression coefficients that must be estimated. A slightly more
sophisticated approach is to use move methods. Here, the coefficients β0
and β1 are estimated by assuming that the sample mean and the sample
variance of the target catchment are maintained over time. The move
estimators are shown to have better properties than the linear regression
estimators (Hirsch, 1982).

In addition to the above methods, there exist a variety of other record
augmentation procedures. Many of them are based on utilizing the corre-
lation between the target catchment and the donor catchment(s) and/or
on finding a suitable ratio for weighting the time series of runoff between
the target and the donor relative to each other. We refer to some of the
approaches here: Fiering (1963); Laaha and Blöschl (2005); Vogel and
Stedinger (1985); Matalas and Jacobs (1964).

In Paper A and Paper B we present spatial models for annual runoff that
also can be considered as record augmentation techniques. The spatial
models are designed to be particularly suitable for datasets with many
missing values. This is achieved by constructing a two field model that
simultaneously models several years of runoff, and that includes a spatial
component that is able to capture repeated runoff patterns over time.
More specifically, assume that qj(u) is the true runoff in year j at a point
location u ∈ D. The annual runoff is modeled as

qj(u) = βc + c(u) + βj + xj(u); j = 1, .., r, (23)

conditional on the model parameters, where βc is an intercept common
for all years and c(u) is a spatial field common for all years. These com-

33



ponents model long-term averages of runoff, or the climate in the study
area, and we often refer to c(u) as the climatic spatial field. Similarly are
βj and xj(u) a year specific intercept and a year specific spatial field re-
spectively. These model the the annual runoff that cannot be explained by
long-term patterns, i.e. the spatial variability due to more year dependent,
random effects. The field xj(u) is referred to as the year specific spatial
field or as the replicated spatial field. Both spatial fields are modeled as
stationary Matérn grfs given the underlying parameters: c(u) with range
parameter ρc and marginal variance σ2

c , and xj(u) with range parameter
ρx and marginal variance σ2

x. The spatial fields xj(u) for j = 1, ..r are
regarded as independent realizations or replicates of the underlying grf.
The same applies for the year specific intercepts βj for j = 1, ..., r that
are regarded as replicates of the same normal prior distribution. Conse-
quently, Cov(xj(u),xv(u))=0 and Cov(βj ,βv)=0 conditional on the model
parameters, as long as j �= v.

The annual runoff in Equation (23) is observed through point and/or areal
referenced observations with uncertainty, and the observation models are
already discussed in Section 2.1 and 2.2. To achieve a joint runoff model
for year j = 1, ..r, the observation likelihoods for the observed runoff are
simply multiplied together for all years j = 1, ...r and target locations
and/or catchments.

It is the climatic part of the model in Equation (23) that makes the model
particularly suitable for record augmentation. If there is a few annual
observations available from the target catchment, the climatic part of the
model captures the magnitude of runoff here compared to nearby locations.
This information is transferred across time. Hence, if the study area is
dominated by repeated runoff patterns explained by c(u) with σc � σx,
short records can have a large impact on the predictions for all study years.
On the other hand, if xj(u) is the dominating spatial effect with σc � σx,
the proposed model behaves as a standard spatial model: The short records
will only have an impact on the results for the years where we have data.

To demonstrate when the suggested model is particularly useful, we show
an example in Figure 3. Here, we see time series of annual runoff from 8
Norwegian catchments from 1996-2005. What is interesting in this dataset,
is that the spatial variability is high. The variability over time is also quite
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Figure 3: Time series of annual runoff from 8 Norwegian catchments from 1996-
2005.

large. However, the time series of annual runoff are almost parallel over
time and the ranking between stations (from wet to dry) is approximately
constant. The latter indicates that the annual runoff follows a strong,
repeated spatial pattern. Consequently, if we have information from a
catchment for one year, this tells a lot about the runoff at this location
relative to neighboring locations for other years as well, in spite of the large
spatial and temporal variability.

The Norwegian annual runoff tends to follow patterns like we see in Figure
3, and in Paper B we show that including a short record of length one for
a target catchment, can lead to a 50 % reduction in rmse in the proposed
model compared to a situation where we have no data from the target
catchment. This result tells us two things: 1) The information nve looses
by not including short records in the modeling of annual runoff in Norway
is substantial and 2) the proposed model is able to capture and exploit the
kind of pattern we see in Figure 3.

The benefit of the model in Equation (23) as a record augmentation pro-
cedure, is that it is a flexible model that borrows strength both in space
and time. It is able to detect long-term spatial variability and adjusts the
two spatial fields c(u) and xj(u) relative to each other. Consequently, it
is quite risk-free to include (very) short records in the modeling. This is
different from other hydrological models where it has been looked upon as
risky to include short records of length e.g. 1-5 years in the modeling of
long-term averages of 30 years. Another property of the proposed model
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is that it allows short records of length one. Other record augmentation
procedures like linear regression and correlation based methods require at
least two pairs of observations from the target catchment and the donor
catchment to give meaningful results. In the proposed model, we also
avoid the challenge of selecting suitable donor catchments, which is a key
challenge for other comparable record augmentation methods.

Comparing the proposed model to geostatistical models used for runoff
interpolation, these are typically not able to exploit short records. In
Top-Kriging it is possible to include short records in the interpolation
of mean annual runoff by simply using the average of the short record
as an approximation for the long-term mean annual runoff. Next, this
observation’s uncertainty is set based on record length (Skøien et al., 2006).
However, this approach should be more sensitive to the record length and
to extreme observations than our approach. Furthermore, it is not straight
forward how short records can be incorporated into Top-Kriging if we are
interested in predicting runoff for individual years. Hence, the main novelty
of the model in Equation (23) is its property to exploit short records within
a geostationary framework in a robust and relatively risk-free way.

A model class in statistics that is based on similar ideas as the two field
model in Equation (23), is co-regionalization models (see e.g. Schmidt
and Gelfand (2003); Wackernagel (1998); Gelfand et al. (2010)). A co-
regionalization model can be used to build a joint model for two or more
variables that don’t need to be measured at the same spatial locations,
e.g. precipitation, runoff and elevation (Adhikary et al., 2017). The target
variables share a spatial component that quantifies the cross-correlation
between them. When the cross-correlation is large, the co-regionalization
model can improve the predictability of the target variables compared to
when modeling each of the variables separately. In the model in Equation
(23), we can we think of the spatial component c(u) as a component that
exploits cross-correlation. However, this cross-correlation is computed be-
tween different locations across time, rather than across different target
variables. Hence, we only need one data type for using the two field model
(as in Paper B where we model areal runoff), but we have also shown
that it is possible to combine two data types (as in Paper A where we
model point runoff and areal runoff together). Our model however, re-
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quires spatio-temporal data to be able to exploit cross-correlation, unlike
co-regionalization models that can be built both for spatial and spatio-
temporal data.

Since the two field model is made for analyzing spatio-temporal data it
also makes sense to compare it to spatio-temporal models. Compared to a
standard separable spatio-temporal model that changes in time according
to a first-order autoregressive process (Blangiardo and Cameletti, 2015),
the suggested two field model is considerably faster to run. The two field
model also gives a different uncertainty model that might be more realis-
tic when studying long-term averages and variables that follow repeated
spatial patterns. More discussion around this topic can be found in the
Technical note.

2.4 Incorporating process-based information into a geosta-
tistical framework (Paper C)

In additional to statistical approaches, there is one other main class of
approaches to runoff estimation, namely process-based approaches. In
process-based models, fundamentals laws of physics are used to estimate
runoff. These models are typically built on equations that connect runoff
to variables like precipitation, temperature, vegetation and land use, and
account for processes like snow storage, snow melt, evapotranspiration and
soil infiltration. Conservation laws like preservation of mass and energy are
used to e.g. ensure that the water balance is preserved over nested catch-
ments. Furthermore, runoff data from gauged catchments are typically
used to calibrate model parameters such that the global error between
the model and the observed runoff is minimized (Beldring et al., 2003;
Doherty, 2004; Lawrence et al., 2009). Some process-based models that
are commonly used in Norway are the hbv model (Sveriges Meteorolo-
giska och Hydrologiska Institut, 1992) and wasmod (Widén-Nilsson et al.,
2007).

The strength of process-based models is their ability to take mass balance
properties into account and connect the variables together in a consistent
way. Geostatistical models are on the other hand typically better at pro-
viding a good fit between the model and the data in areas where there are
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observations available, and also provide uncertainty quantification. Mo-
tivated by the strength and weaknesses of these two model classes, there
exist several attempts on combining process-based models and geostatis-
tics in the hydrology literature. For example, in Pannecoucke et al. (2020)
a process-based model was used to simulate flow a number of times. Next,
the results were used to build an empirical variogram to be used for Kriging.
The approach was successfully used to estimate the level of contamination
within the soil. In Rivest et al. (2008) a simple conceptual flow model
was solved numerically, and the results were next used for external drift
Kriging. External drift Kriging was also used in Laaha et al. (2013) to
interpolate streamflow temperature. Here, a physical relationship between
mean annual stream temperature and stream gauge altitude was incorpo-
rated into the model and combined with the Top-Kriging approach.

The idea behind the methods mentioned above, is that a combination
model performs better than a geostatistical or process-based model alone.
This was also confirmed by their results. However, few combination models
for mean annual runoff were found in our literature search. Some mod-
els exist, for example the model in Qiu et al. (2018) where the authors
combined a process-based Budyko water balance model with a geostatis-
tical approach. In Sauquet (2006) mean annual runoff was estimated by a
Kriging approach that is able to incorporate basin characteristics through
a function g(·) and residual Kriging. The method was demonstrated with
catchment elevation as input to g(·), but more complex covariates can be
included. Operationally in Norway, mean annual runoff has been esti-
mated by using the process-based hbv model. Next, the ratio between the
observed runoff and the runoff estimated by the hbv model has been inter-
polated from gauged to ungauged catchments by using an inverse distance
method Beldring et al. (2002). This is a non-statistical method without
uncertainty quantification (see e.g. Dingman (2015); Lu and Wong (2008)).
However the inverse distance interpolation could easily be replaced by geo-
statistical interpolation, resulting in a combined process-based and geosta-
tistical approach for mean annual runoff.

In Paper C we present a model for mean annual runoff that incorporates
the simulations from a process-based model into a geostatistical frame-
work. This is done by using mean annual runoff as a response variable and
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simulations of runoff from a process-based model as a covariate. The co-
variate is available on a regular grid for the area of interest. In our model,
we assume that the ratio between the process-based runoff simulations and
the true streamflow varies in the study area. This is achieved by connect-
ing the response variable and the covariate through a regression coefficient
that is allowed to vary in space, hence it is a spatially varying coefficient
(svc).

A variety of applications of spatially varying coefficients are reported in
the literature (Gelfand et al., 2003; Ferguson et al., 2009; Hastie and Tib-
shirani, 1993; Finley, 2011; Lu et al., 2009; Su et al., 2017). There are
also several ways a svc model can be implemented. The simplest option
is to divide the study area into regions and let each region have its own
regression coefficient like in e.g. Gamerman et al. (2003). However, how
the study area should be partitioned is not always intuitive. Another ap-
proach is found in Gelfand et al. (2003). Here, a svc is introduced by
modeling the regression coefficient as a Gaussian random field. Hence, the
relationship between the response and the covariate follows a dependency
structure defined by a grf and its covariance function.

In Paper C we adopt the approach from Gelfand et al. (2003) and use it
to interpolate the ratio between the process-based runoff estimate and the
observed streamflow, from gauged catchments to ungauged catchments.
The model also includes an additional spatial field. More specifically the
model is given by

q(u) = β0 + (β1 + α(u)) · h(u) + x(u), (24)

where q(u) is the true mean annual runoff at a location or grid cell u ∈ R2,
h(u) is a simulation from a process-based model for the same grid cell
u, and α(u) is a grf that together with the fixed effect β1 defines the
spatially varying coefficient. Further is the variable β0 an intercept and
x(u) is another grf. The model is given conditional on model parameters
that are given informative prior distributions. The true streamflow in
a catchment Ai is observed through noisy areal referenced observations
zi, similarly as in Equation (19) and Equation (20). Hence, the nested
structure of catchments is taken into account, and we interpolate data
between catchments areas and point referenced grid cells in a consistent
way.
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In Beldring et al. (2002) the ratio zi/h(Ai) between the simulated stream-
flow h(Ai) from a process-based model, and the observed streamflow from
gauged catchments zi, were interpolated to improve the mean annual runoff
estimates in Norway. The model from Equation (24) hence does something
similar through the spatially varying coefficient β1+α(u) as it models the
spatial structure of the ratio between the streamflow and the process-based
simulations in the study area. However, as we use a geostatistical approach
we also obtain uncertainty quantification, differently from Beldring et al.
(2002) where they used a non-statistical inverse-distance approach. Fur-
thermore, the model in Equation (24) is able to account for one additional
dependency structure between the process-based estimate and the stream-
flow, through the GRF x(u). The dependency structure captured by x(u)
is not so different from what we would obtain from performing residual
interpolation. i.e. interpolation of zi − h(Ai). Residual interpolation is
another approach used in hydrology to improve the results from an initial
model (see e.g. the Georegression approach in Merz and Blöschl (2005)).

In Paper C, the so-called svc model from Equation (24) was used to pre-
dict mean annual runoff in ungauged and partially gauged catchments in
Norway, and simulations from the hbv model were used as the covariate
h(·). The two field model from Equation (23) was used as a preprocess-
ing step for record augmentation of short records before further analysis
with the svc model: This way we were able to include information from
both fully gauged catchments and partially gauged catchments in the ob-
servation likelihood. Our findings in Paper C support the conclusions
from the work by Pannecoucke et al. (2020); Rivest et al. (2008); Qiu et al.
(2018): The combination model from Equation (24) performed better than
a purely geostatistical approach (Top-Kriging and the two field model) and
a purely process-based model (the hbv model) when making predictions
for ungauged catchments. For partially gauged catchments however, the
two field model from Equation (23) gave better predictions than the svc
model. It is not surprising that a purely data-driven method performs bet-
ter than a method with explanatory variables at locations where there are
a few years of data available. This is one of the strengths of purely geosta-
tistical methods. The results in Paper C also confirmed that the two field
model can be used as a preprocessing step for partially gauged catchments
before further analysis with other models (such as the svc model).
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3 Overview of the scientific work and suggested
areas of use beyond annual runoff interpolation

Section 2 explains the contributions of the thesis towards annual runoff
estimation. We now discuss contributions outside the field of annual runoff
interpolation and suggest topics for further research. We start by giving a
brief overview of the contents of Paper A-C and the Technical note.

Paper A: We develop a two field model for annual runoff that supports
both areal referenced streamflow observations of runoff and point refer-
enced precipitation and evaporation observations. The model is tested on
a small dataset from western Norway, and we demonstrate the model’s
mass preserving properties by a real case example. Through a simulation
study we illustrate how the parameters of the two field model can be used
to understand systematic prediction bias over time. The paper is written
for statisticians.

Paper B: We demonstrate how the two field model can be used for inter-
polation of (mean) annual runoff, and the main focus is on showing how the
model is particularly useful for exploiting short records. This time we only
use streamflow observations of runoff (not precipitation and evaporation
data), and compare the results to Top-Kriging. The model is evaluated for
a larger dataset consisting of catchments from all over Norway. The paper
is written for hydrologists.

Paper C: In this paper we incorporate process-based hydrological sim-
ulations into a geostatistical framework for mean annual runoff. This is
done by developing a linear relationship between the observed mean annual
runoff (response variable) and a gridded runoff product that is simulated
by a process-based hydrological model (covariate). The linear relationship
is allowed to vary in space according to a grf, i.e. the regression coefficient
is a spatially varying coefficient (svc). The two field model from Paper
A and B is used as a preprocessing step for record augmentation for the
partially gauged catchments before further analysis with the svc model.
The paper is written for hydrologists.

Technical note: We investigate properties of the two field model that
were considered outside the scope of Paper A and B. In the note, the
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two field model is compared to a simpler one field spatial model and to
a comparable spatio-temporal model. We illustrate when and why the
two field model can be useful and provide a collection of case examples.
Through simulation studies, general properties of the model are explored,
such as parameter identifiability. The note also contributes with r-inla
code for implementing the two field model. It is written for statisticians.

An important part of the field of statistics is to contribute with methods for
data analysis for other scientific disciplines, and in this thesis we combine
different state-of-the-art statistical methods to develop new approaches
for runoff interpolation. The models introduced in Paper A-C all have
the same methodological foundation: They are three-staged geostatistical
Bayesian hierarchical models that use two grfs to model the process of
interest. Newly developed priors (pc priors) are used to incorporate expert
knowledge. To increase the predictability of runoff, several data sources are
combined, e.g preprocessed short records, point and areal referenced data
and simulations from a process-based model, giving a variety of approaches
for spatial interpolation. Due to developments like inla and the spde
approach to spatial modeling, we are able to not only run the proposed
models, but also to perform large cross-validation assessments on them.

In the above paper summaries, we see that all papers utilize the two field
model from Equation (23), and that each work presents a new aspect of
it. Hence, in addition to contributing to improving the existing runoff
models, the thesis offers a comprehensive study of the two field model
which turns out to have several interesting properties. The Technical note
was included in the thesis to illustrate the generality of the work: It is not
only runoff that follows repeated spatial trends over time. The patterns
we see in Figure 3 also occur for other environmental variables, typically
due to repeated wind patterns and the topography in the study area. This
is the case particularly for environmental variables measured over longer
temporal scales, such as annual and monthly data. Hence, the two field
model could be useful outside the field of runoff interpolation, and we
present a collection of case examples in the Technical note.

In the Technical note we also illustrate what happens if we use a simple
spatial model or a spatio-temporal model for the kind of data we see in Fig-
ure 3. This was done to demonstrate when the two field model has benefits
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over comparable models. In short, the two field model has useful proper-
ties when modeling environmental variables that are driven by repeated
spatial patterns over time, and the available dataset has several missing
values. It is also particularly suitable for modeling long-term averages.
In a setting like this a spatial model is not able to transfer information
from short records across time, while a spatio-temporal model typically
assumes an increasing uncertainty over time. The latter is not necessarily
realistic when modeling long-term averages for variables that follow strong,
repeated spatial patterns like the data in Figure 3.

In Paper A we present a simulation study on how the parameters of the
climatic spatial field σc, ρc and the parameters of the replicated spatial field
σx, ρx from Equation (23) can provide interesting information about the
study area and the variable of interest. To give an example; assume that
it is of interest to interpolate annual precipitation for a 10 year period
to a location without observations. The predictions are done based on
observations from nearby precipitation gauges. If the spatial pattern of
precipitation mainly comes from long-term patterns (such as in Figure 3)
and the spatial range ρc is low, it is a relatively large probability that the
precipitation predictions for the target location are systematically biased
over time: Strong long-term patterns means that the weather pattern in
the area repeats itself (σc � σx), implying that also prediction errors
tend to repeat themselves, as long as the observation set-up is unchanged.
Hence, a poor precipitation prediction in year j probably means that you
obtain a poor precipitation prediction for all other years as well, unless
new measurement locations become available. This example illustrates
that two field model and its parameters can provide an understanding
about the predictive biases and uncertainties we see in a study area. It
can for example be used as a tool for understanding whether prediction
biases are due to repeated long-term patterns of the underlying variable,
or due to mismatch between the model and the data. See Paper A for
more.

Furthermore, in Paper B we show how (very) short records often have a
large impact on the predictions for a target location in areas where most
of the spatial variability can be explained by long-term effects, i.e. in ar-
eas where σc � σx. Again, particularly if the climatic range ρc is small
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relative to the spatial variability. This was the case for the Norwegian an-
nual runoff, and also for other environmental variables that we have tested.
Motivated by this finding, the parameters of the two field model could be
used by decision-makers to indicate the value of installing a new measur-
ing station for an environmental variable of interest. A new measuring
station could improve the long-term estimates of the target variable only
a year after installation for certain climates, as demonstrated in Paper B.
For a study area with such properties, the cost of setting up a new mea-
suring station might be lower than the potential cost of a poor prediction.
Similarly could the two field model also be used to evaluate whether a
measuring station could be shut down to save money, motivated by that
we already know enough about the spatial variability for that location (rel-
ative to neighboring stations). The above examples are related to the field
of decision theory and assessing the value of information (Eidsvik et al.,
2015). Utilizing the two field model and its parameters to find optimal
observation designs might be an interesting topic for further research.

One of the most essential tasks for hydrologists is to build models for flood
and flood forecasting. This is important for building robust infrastructure
and for our security. Hydrologists typically model flood and their return
periods by using generalized extreme value distributions (gev), such as the
Gumbel distribution. In Norwegian flood models, explanatory variables are
used to estimate the location parameter in the selected gev distribution
(Engeland et al., 2020; Thorarinsdottir et al., 2018), and in the currently
used nve models described in Engeland et al. (2020), mean annual runoff
is the explanatory variable that is weighted the most. In this thesis, we
have demonstrated how a few annual runoff observations can contribute
to substantial improvements in the long-term estimates of mean annual
runoff, using the proposed two field model. Based on this, a logical next
step would be to investigate if a few annual observations also can improve
the accuracy of flood models, implicitly through improved mean annual
runoff estimates. This is another relevant topic for further research.
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Abstracts

Paper A

A geostatistical two field model that combines point
observations and nested areal observations, and quantifies
long-term spatial variability - A case study of annual runoff

predictions in the Voss area

Thea Roksvåg, Ingelin Steinsland and Kolbjørn Engeland
(In revision in a statistics journal)

We estimate annual runoff by using a Bayesian geostatistical model for
interpolation of hydrological data of different spatial support. That is,

streamflow observations from catchments (areal data), and precipitation
and evaporation data (point data). The model contains one climatic
spatial effect that is common for all years under study, and one year

specific spatial effect. Hence, the framework enables a quantification of
the spatial variability caused by long-term weather patterns and processes.
This can contribute to a better understanding of biases and uncertainties
in environmental modeling. The suggested model is tested by predicting 10

years of annual runoff for around Voss in Norway and through a
simulation study. We find that on average we benefit from combining
point and areal data compared to using only one of the data types, and
that the interaction between nested areal data and point data gives a
spatial model that takes us beyond smoothing. Another finding is that

when climatic effects dominate over annual effects, systematic under- and
overestimation of runoff over time can be expected. On the other hand, a
dominating climatic spatial effect implies that short records of runoff from
an otherwise ungauged catchment can lead to large improvements in the

predictions.
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Paper B

Estimation of annual runoff by exploiting long-term
spatial patterns and short records within a geostatistical

framework

Thea Roksvåg, Ingelin Steinsland and Kolbjørn Engeland
Accepted for publication in Hydrology and Earth System Sciences

In this article, we present a Bayesian geostatistical framework that is
particularly suitable for interpolation of hydrological data when the

available dataset is sparse and includes both long and short records of
runoff. A key feature of the proposed framework is that several years of
runoff are modeled simultaneously with two spatial fields: One that is

common for all years under study that represents the runoff generation
due to long-term (climatic) conditions, and one that is year specific. The
climatic spatial field captures how short records of runoff from partially

gauged catchments vary relative to longer time series from other
catchments, and transfers this information across years. To make the
Bayesian model computationally feasible and fast, we use integrated

nested Laplace approximations ( inla) and the stochastic partial
differential equation ( spde) approach to spatial modeling.

The geostatistical framework is demonstrated by filling in missing values
of annual runoff and by predicting mean annual runoff for around 200

catchments in Norway. The predictive performance is compared to
Top-Kriging (interpolation method) and simple linear regression (record
augmentation method). The results show that if the runoff is driven by

processes that are repeated over time (e.g. orographic precipitation
patterns), the value of including short records in the suggested model is
large. For partially gauged catchments the suggested framework perform
better than comparable methods, and one annual observation from the

target catchment can lead to a 50 % reduction in rmse compared to when
no observations are available from the target catchment. We also find that

short records safely can be included in the framework regardless of the
spatial characteristics of the underlying climate, and down to record

lengths of one year.
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Paper C

A geostatistical spatially varying coefficient model for
mean annual runoff that incorporates process-based

simulations and short records

Thea Roksvåg, Ingelin Steinsland and Kolbjørn Engeland

We present a Bayesian geostatistical model for mean annual runoff
predictions that uses the observed streamflow as a response variable and
that incorporates the simulations from a process-based hydrological model
through a covariate. The regression coefficient of the covariate is modeled

as a spatial field such that the relationship between the covariate
(simulations from a hydrological model) and the response variable

(observed streamflow) is allowed to vary within the study area. Hence, it
is a spatially varying coefficient. A preprocessing step for including short

records in the modeling is also suggested.

The geostatistical model is demonstrated by predicting mean annual runoff
for 1981-2010 for 127 catchments in Norway based on observations from
411 catchments. Simulations from the process-based hbv model on a 1

km × 1 km grid are used as input. We found that on average the proposed
approach outperformed a purely process-based approach (hbv) when
predicting runoff for ungauged and partially gauged catchments: The

reduction in rmse compared to the hbv model was 20 % for ungauged
catchments and 58 % for partially gauged catchments, where the latter is

due to the preprocessing step. For ungauged catchments the proposed
framework also outperformed a purely geostatistical method with a 10 %
reduction in rmse compared to the geostatistical method. For partially
gauged catchments however, a purely geostatistical method performed

equally well as the proposed approach. In our evaluation, we also show
how the suggested model is able to construct runoff maps (with

uncertainty quantification) that preserve the details provided by the
original process-based hydrological input model. This is a benefit over

purely geostatistical methods that only do spatial smoothing.
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Technical note

An overview of a geostatistical two field model for
interpolation of environmental variables

Thea Roksvåg

In this note, we explore the properties of a Bayesian geostatistical two
field model for spatio-temporal data. It is suitable for interpolating

environmental variables that follow repeated spatial patterns over time
and for modeling long-term averages. The two field model was first

presented in Roksvåg et al. (2020a,b) where it was used for interpolation
of annual runoff. In this note we answer some questions that were

considered outside the scope of these articles: For example, we illustrate
when the two field model is useful compared to other statistical models for
spatial and spatio-temporal data. This is done by simulation experiments

and by presenting a new collection of case examples. General model
properties such as parameter identifiability are also investigated, and we

provide R code for for implementing the model in r-inla. This represents
new contributions compared to the work in Roksvåg et al. (2020a,b).
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A geostatistical two field model that combines
point observations and nested areal observations,
and quantifies long-term spatial variability - A
case study of annual runoff predictions in the

Voss area.

Thea Roksvåg1, Ingelin Steinsland1 and Kolbjørn Engeland2

1 Department of Mathematical Sciences, ntnu, Norway
2The Norwegian Water Resources and Energy Directorate (nve)

Abstract

We estimate annual runoff by using a Bayesian geostatistical
model for interpolation of hydrological data of different spatial sup-
port. That is, streamflow observations from catchments (areal data),
and precipitation and evaporation data (point data). The model con-
tains one climatic spatial effect that is common for all years under
study, and one year specific spatial effect. Hence, the framework en-
ables a quantification of the spatial variability caused by long-term
weather patterns and processes. This can contribute to a better un-
derstanding of biases and uncertainties in environmental modeling.

The suggested model is tested by predicting 10 years of annual
runoff for around Voss in Norway and through a simulation study.
We find that on average we benefit from combining point and areal
data compared to using only one of the data types, and that the
interaction between nested areal data and point data gives a spatial
model that takes us beyond smoothing. Another finding is that when
climatic effects dominate over annual effects, systematic under- and
overestimation of runoff over time can be expected. On the other
hand, a dominating climatic spatial effect implies that short records
of runoff from an otherwise ungauged catchment can lead to large
improvements in the predictions.
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1 Introduction

Data related to meteorology, geology and hydrology are often connected
to geographical locations. The data are typically linked to point locations,
but there are also data observed over an areal unit, e.g. over a crop field,
a forest, a grid from a satellite observation or an administrative unit like a
country. While point referenced data give information about the process
of interest at one specific location, the areal referenced data impose a
constraint on the process and/or contain information about aggregated or
mean values in a larger area.

For some processes, there exist point data and areal data that give in-
formation about the same underlying process, and studies show that both
observation types should be taken into account when making statistical in-
ference and predictions (Moraga et al., 2017; Wang et al., 2018). There are
several challenges connected to simultaneously use data of different spatial
support: The data types must be connected to the process of interest in
a meaningful way, and expert opinions about the involved measurement
uncertainties should be taken into account. In addition, information about
how the point and areal data are related to each other is important, such
that the observation types can be combined in a mathematically consistent
way that preserves basic physical laws (i.e. the conservation of mass and
energy).

In this article we consider runoff, which is an example of a process that
can be observed through point and areal data. Runoff is defined as the
part of the precipitation that flows towards a river on the ground surface
(surface runoff) or within the soil (subsurface runoff or interflow) (WMO,
1992). Every point in the landscape contributes to runoff generation, and
on an annual scale runoff can be approximated by the estimated point
precipitation minus the actual point evaporation at a location of interest
(Sauquet et al., 2000). With this interpretation, runoff is a continuous
point referenced process in space. However, runoff accumulated over an
area is typically observed by measuring the amount of water that flows
through the outlet of a stream. The observed value does not primarily
provide information about the runoff at the location of the stream outlet:
It primarily provides information about the runoff generating process in
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the whole drainage area which is called a catchment. Such observations of
runoff are therefore areal referenced.

Since most catchments in the world are ungauged (i.e. without runoff ob-
servations), a common task for hydrologists is to predict runoff in these
catchments. In this article we consider predictions of annual runoff which
is a key hydrological signature. The annual runoff gives information about
the total amount of water available in an area of interest and is funda-
mental for water resources management, i.e. in the planning of domestic,
agricultural, and industrial water supply, and for allocation of water be-
tween stakeholders. Annual runoff is also commonly used as a key variable
when predicting other runoff properties in ungauged catchments, i.e. low
flows and floods (Blöschl et al., 2013). Furthermore, the variability in an-
nual runoff is interesting as it is a key quantity for understanding runoff’s
sensitivity to driving climatic factors in today’s climate, and can be used
to make inference about the runoff variability also for future climates.

There are several approaches to predict runoff in ungauged catchments
in hydrology, e.g. process-based methods (Beldring et al., 2003; Widén-
Nilsson et al., 2007) and geostatistical methods (Gottschalk, 1993; Sauquet
et al., 2000; Skøien et al., 2006). In this article, we choose a geostatisti-
cal approach. Within the geostatistical framework, runoff predictions in
ungauged catchments have typically been done by interpolation of areal
referenced runoff data by using Kriging methods (see e.g. Skøien et al.
(2006) or Sauquet et al. (2000)). This has shown promising results. In
these methods, precipitation data have often been avoided as an informa-
tion source because these data are known to be uncertain and/or biased
(see e.g. Neff (1977), Groisman and Legates (1994) or Wolff et al. (2015)).
Evaporation data are even more uncertain: It is seldom observed directly,
but derived from meteorological observations and process-based models
like in e.g. Mu et al. or Zhang et al. (2009). In spite of the large uncertain-
ties linked to precipitation and evaporation measurements, precipitation
and evaporation are the main drivers behind runoff, and it is reasonable
to believe that these data sources can contribute to an increased under-
standing of the runoff generating process if used cleverly. Particularly in
areas with few streamflow observations.

Motivated by this, we present a Bayesian geostatistical model for annual
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runoff where we in addition to runoff data, use precipitation and evapo-
ration data for spatial interpolation. The suggested model is a Bayesian
hierarchical model where the observation likelihood consists of areal ref-
erenced runoff observations from catchments and/or point observations of
runoff, where the point observations are annual evaporation subtracted
from annual precipitation. Informative priors based on expert knowledge
are used on the measurement uncertainties to express our doubt on the
precipitation and evaporation data, and to put more weight on the runoff
observations that are considered more reliable.

The catchments we study in this article are located around Voss in western
Norway. Voss is a mountainous area, and the areas west for Voss are among
the wettest in Europe with annual precipitation around 3 m/year. This
makes Voss flood exposed, and accurate runoff models are of high impor-
tance. Voss is also a challenging area when it comes to runoff estimation
due to large spatial variability and low stream gauge density. However,
there are several precipitation gauges in the area that can be exploited to
increase the hydrological understanding. This makes the Voss area a good
candidate for performing spatial interpolation of runoff by also including
precipitation and evaporation data.

The large annual precipitation in western Norway is mainly caused by the
orographic enhancement of frontal precipitation formed around extratrop-
ical cyclones. The orographic enhancement is explained by steep moun-
tains that create a topographic barrier for the western wind belt, which
transports moist air across the North Atlantic (Stohl et al., 2008). The
topography and the elevation differences result in prominent patterns in
precipitation and runoff.

Motivated by the strong orographic effect, we include a spatial component
in the model that is constant over the years for which we have runoff obser-
vations. This represents the spatial variability of runoff caused by climatic
conditions in the study area. Furthermore, it is reasonable to assume that
not all of the spatial variability can be explained by the climate, and we
include an additional spatial effect to describe the annual discrepancy from
the climate.

The climatic part of the model is interesting because it let us quantify how
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much of the spatial variability that can be explained by long-term effects.
Separating long-term spatial variability from year dependent effects can
lead to a better understanding of systematic biases and uncertainties that
occur in the prediction of environmental variables due to weather patterns
and processes that are more or less apparent each year. A consequence of
including the climatic component is also that we obtain a model for which
it is possible to exploit short records of data: The climatic component
captures how the short records vary relatively to longer data series from
nearby catchments. This is a valuable property because sparse datasets
are common in hydrology. There are several studies on how short records
of runoff can be used to estimate different hydrological signatures (Fier-
ing, 1963; Laaha and Blöschl, 2005), but our framework represents a new
approach by incorporating the short records into a geostatistical frame-
work where several years of runoff are modeled simultaneously through a
climatic spatial field.

Making inference and predictions with geostatistical models often lead to
computational challenges due to matrix operations on (dense) covariance
matrices, and in our suggested model we have not only one, but two spatial
fields. Our solution to the computation challenges is to use the spde-
approach to spatial modeling from Rue et al. (2009). Rue et al. (2009)
utilizes that a Gaussian random field (grf) with a Matérn covariance
function can be expressed as the solution of a stochastic partial differential
equation (spde). By approximating the solution of the spde by using
the finite element method (Brenner and Scott, 2008), the involved GRFs
can be expressed as Gaussian Markov random fields (gmrfs). The gmrf
approximations enable fast simulation and inference (Rue and Held, 2005),
and integrated nested Laplace approximations (inla) can be applied (Rue
et al., 2009).

In geostatistical methods used for runoff interpolation it is common to link
the involved catchments to point locations in space, not to areas (see e.g.
Merz and Blöschl (2005) or Skøien et al. (2003a)). However, interpret-
ing catchment runoff as point referenced can lead to a violation of basic
conservation laws: A significant property of catchments is that they are or-
ganized into subcatchments, and for annual runoff the water balance must
be conserved for all subcatchments. That is, the total amount of annual
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runoff in a subcatchment cannot be larger than the total annual runoff in
the main catchment. In the Top-Kriging approach developed by Skøien
et al. (2006) the nested structure of catchments is taken into account by
computing the covariance between two catchments based on the pairwise
distance between all the grid nodes in a discretization of the target catch-
ments. This way, information from a subcatchment is weighted more than
information from a nearby non-overlapping catchment. The Top-Kriging
approach is currently one of the leading interpolation methods for runoff,
and has outperformed other methods in predicting several hydrological
signatures in Austria (Viglione et al., 2013).

Our model is similar to the Top-Kriging approach by that we consider
streamflow observations as areal referenced and compute the covariance
between two catchments accordingly. However, our methodology differs
from Top-Kriging and other hydrological interpolation methods by using
precipitation (point) data in the interpolation framework in addition to
nested streamflow (areal) data. As this is an important difference, one of
the main objectives of this paper is to:
1) Explore how the runoff predictions in Voss are influenced by the two
different observation types (point and areal observations), and assess if
the combination of point and areal data can contribute to an increased
predictive performance.

Furthermore, the model we suggest ensures that the water balance is pre-
served for any point in the landscape by defining annual runoff in a catch-
ment as the integral of the point runoff over the catchment’s area. Top-
Kriging and other geostatistical models don’t necessarily provide a full
preservation of the water balance. A second objective is therefore to:
2) Show by example how the interaction between point observations and
nested areal observations can contribute to improved predictions of annual
runoff because the water balance is taken into account.

A geostatistical model that combines point and areal data in the same way
as we do already exists in the literature in Moraga et al. (2017). What is
new in our model in terms of statistical modeling is the climatic spatial
component. A final objective of the paper is thus to:
3) Present a model for which the spatial variability due to long-term spatial
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patterns can be quantified, and show how this can be used as a tool for
understanding the uncertainty and biases in the modeling of environmental
variables, and for exploiting short records of data.

In the section that follows, we present the study area and the available
data. Next, we introduce the theoretical background needed to develop
the suggested runoff model that is presented in Section 4. In Section 5
the suggested model is fitted to the Voss data. Based on some observation
schemes described in Section 5.1, the predictability of annual runoff in Voss
is evaluated and discussed. To further demonstrate the value of including
a climatic spatial field in the model, a simulation study was carried out.
This is presented in Section 6. Finally, our key findings are discussed in
Section 7.

2 Study area and data

When modeling hydrological processes on an annual scale, it is common
to use the hydrological definition of a year. The basic water balance equa-
tion is given as P = Q + E + S, where P is precipitation, Q is runoff, E
is evapotranspiration and S is the change in stored water (i.e. snow, or
groundwater). A hydrological year is defined such that the storage compo-
nent in the water balance equation can be neglected, i.e. S is much smaller
than P and Q. In Norway a hydrological year starts September 1st and
ends August 31st, e.g. 1988 begins September 1st 1987 and ends August
31st 1988.

In this analysis, we have runoff data from the hydrological years 1988-
2014. The dataset was provided by the Norwegian Water Resources and
Energy directorate (nve) and consists of annual runoff observations from
five catchments where three of them are nested (see Figure 1). The unit
of the data is m/year and gives the spatial average of the runoff within a
catchment. The observations from 1988-1997 are used to make statistical
inference, while the observations from 1998-2014 are used as a test set for
assessing the model’s ability to predict runoff for future years.

The annual runoff data were created by aggregating daily streamflow mea-
surements. The stream gauges that gather the daily observations, don’t

7



Longitude

La
tit

ud
e

−10 0 10 20

50
55

60
65

(a) The study area is located
around Voss in Western Norway.

0 20000 40000 60000 80000

67
20

00
0

67
40

00
0

67
60

00
0

67
80

00
0

68
00

00
0

Easting

N
or

th
in

g Brandset

Modalen
GullbraaFjellanger

Reimegrend
Voss

Bulken

Brekkhus
Ovstedal

NedreAalvik

Granvin

Eidfjord

Kinsarvik

Aurland

Eksingedal

0.5

1.0

1.5

2.0

2.5

3.0

1

2

3

4
5

1
2
3
4
5

Catchments
Maalset
Svartavatn
Slondalsvatn
Kinne
Bulken

Precipitation gauges

(b) Mean annual observations [m/year].

Figure 1: Mean annual runoff from 5 catchments and mean annual precip-
itation minus evaporation (m/year) at 15 precipitation gauges for 1988-
1997. Catchment 3 is a subcatchment of Catchment 4 and 5, and Catch-
ment 4 is a subcatchment of Catchment 5. Catchment 1 and Catchment
2 don’t overlap with any of the other catchments. The coordinate system
in Figure 1b is utm33N.

measure runoff directly: They measure the river’s daily stage. Runoff
observations are then obtained by using a rating curve that gives the re-
lationship between the stage of the water and the discharge or runoff at a
specific point in the stream. The stage-discharge relationship is developed
empirically by measuring the discharge across a cross-section of the specific
river for a range of stream stages.

Errors in the observed runoff are composed of errors related to the river
stage measurement process and errors in the rating curve model. However,
on an annual time scale, the river stage measurement errors tend to average
out, and the main contribution to errors originates from uncertainties in
the rating curve. The dataset provided by nve includes an estimate of the
standard deviation of the observation uncertainty for each (annual) runoff
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observation, and the standard deviations are relatively small ranging from
0.65 % to 3.2 % of the corresponding observed value. This information
is used to make informative priors for the measurement uncertainties in
Section 4.3. We refer to Reitan and Petersen-Øverleir (2009) for details on
how the observation (rating curve model) uncertainty is obtained.

In addition to runoff data, we have precipitation data from 15 precipitation
gauges. Daily precipitation data were downloaded from www.eKlima.no
which is a web portal maintained by the Norwegian Meteorological Insti-
tute. The observations were aggregated to annual values for the hydrolog-
ical years 1988-1997. The observed precipitation ranges from 0.55 m/year
to 4.6 m/year.

The evaporation data used, originate from the satellite remote sensing-
based evapotranspiration algorithm presented in Zhang et al. (2010). The
dataset consists of global monthly land surface evapotranspiration with
spatial resolution of 1 degree (longitude, latitude). Evaporation data for
the locations of the precipitation gauges around Voss were extracted, and
monthly values were aggregated to hydrological years (1988-1997). As
the spatial resolution of the gridded evaporation dataset is 1 degree and
the study area is rather small, the observed annual evaporation within
a specific year is the same for almost all of the precipitation gauges.
The observed evaporation ranges from 0.23-0.32 m/year with mean 0.25
m/year and standard deviation 0.02 m/year. This means that approxi-
mately 12% of the annual precipitation evaporates around Voss, which is
a small amount in a global perspective. The observations of evaporation
must be considered as approximative estimates of the actual evaporation
in the area of interest, with large uncertainties.

Figure 1 shows the 5 catchments where we have measurements of runoff and
the locations of the 15 precipitation gauges. Mean annual values for areal
referenced runoff and point referenced runoff (precipitation-evaporation)
for 1988-1997 are included. We see a spatial pattern with high values
of annual runoff in the western part of the study area and low values in
the eastern part. This pattern is prominent for all years for which we
have data, and indicates that climatic spatial effects dominate over annual
spatial effects around Voss.
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3 Background

We propose a Latent Gaussian model (lgm) for annual runoff that is com-
putational feasible due to a stochastic partial differential equation (spde)
formulation of Gaussian random fields (grfs). In this section we give a
brief introduction of these concepts and other relevant background theory
and notation for developing and evaluating the model for annual runoff
that is presented in Section 4.

3.1 Latent Gaussian Models

In this article we suggest a Latent Gaussian model (lgm) for combining
point and areal observations of annual runoff. An lgm can be represented
in a hierarchical structure consisting of three levels (see e.g. Gelman et al.
(2004)). The first level is the observation likelihood, in this case consisting
of two data types (y1, ..., yn) and (z1, ..., zm). The data are observed with
conditional independent likelihood Πn

i=1π(yi|qi,θy
1 )Π

m
j=1π(zj |Qj ,θ

z
1) given

two linear predictors qi and Qj , and some parameters (θy
1 ,θz

1) which we
refer to as hyperparameters. The two linear predictors depend on the
same set of latent variables x, but connect the data to the latent field
differently, through different projection matrices, e.g. qi = Aix and Qj =
Bjx. Here, A and B are matrices that link elements in the latent field to
the observations, and Ai and Bj denote row number i and j of the two
matrices. The second level of the lgm is formed by the prior of the latent
field x and is on the form π(x|θ2) ∼ N (μ(θ2),Σ(θ2)), i.e. it is Gaussian
conditioned on some hyperparameters θ2. The third level is given by π(θ)
which is the prior distribution of the hyperparameters θ = (θy

1 ,θ
z
1 ,θ2).

3.2 Gaussian random fields

We use Gaussian random fields (grfs) to model the spatial variability of
annual runoff. A continuous field {x(u);u ∈ D} defined on a spatial do-
main D ∈ R2 is a grf if for any collection of locations u1, ...,un ∈ D
the vector (x(u1), ..., x(un)) follows a multivariate normal distribution
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(Cressie, 1993), i.e. (x(u1), ..., x(un)) ∼ N (μ,Σ). The covariance ma-
trix Σ defines the dependency structure in the spatial domain, and can
be constructed from a covariance function C(ui,uj). Furthermore, the
dependency structure for a spatial process is often characterized by two
parameters: The marginal variance σ2 and the range ρ. The marginal
variance gives information about the spatial variability of the process of
interest, while the range gives information about how the correlation be-
tween the process at two locations decays with distance. If the range and
marginal variance are constant over the spatial domain, we have a station-
ary grf.

One popular choice of covariance function is the Matérn covariance func-
tion which is given by

C(ui,uj) =
σ2

2ν−1Γ(ν)
(κ||uj − ui||)νKν(κ||uj − ui||), (1)

where ||uj −ui|| is the Euclidean distance between two locations ui,uj ∈
Rd, Kν is the modified Bessel function of the second kind and order ν > 0,
Γ(·) is the gamma function and σ2 is the marginal variance (Guttorp and
Gneiting, 2006). The parameter κ is the scale parameter, and it can be
shown empirically that the spatial range can be expressed as ρ =

√
8ν/κ,

where ρ is defined as the distance where the spatial correlation between
two locations has dropped to 0.1 (Lindgren et al., 2011). Using a Matérn
grf is convenient because it makes it possible to apply the spde approach
to spatial modeling which is outlined in the next subsection.

3.3 The spde approach to spatial modeling

Making statistical inference and predictions on models including grfs in-
volve matrix operations on the covariance matrix Σ. This can lead to
computational challenges if the covariance matrix is dense. In this paper,
we suggest a model for annual runoff that includes not only one, but two
grfs. Consequently, some simplifications have to be done to make the
model computationally feasible. To achieve this, we use that the exact
solution of the spde

(κ2 −Δ)
α
2 τx(u) = W(u), u ∈ Rd, κ > 0, ν > 0, (2)
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is a Gaussian random field with Matérn covariance function. Here, W(·)
is spatial Gaussian white noise, Δ is the Laplacian, α is a smoothness
parameter, κ is the scale parameter in Equation (1), d is the dimension
of the spatial domain and τ is a parameter controlling the variance. The
parameters of the Matérn covariance function in Equation (1) is linked to
the spde through

σ2 =
Γ(ν)

Γ(α)(4π)d/2κ2ντ2
; ν = α− d/2,

where we will use that d = 2 and set α = 2, such that ν is fixed to ν = 1.
The parameter ν is fixed because it is difficult to identify from data, and
α = 2, ν = 1 are commonly used values for these parameters (Ingebrigtsen
et al., 2014; Blangiardo and Cameletti, 2015).

The link between the above spde and the Matérn grf, which was de-
veloped by Whittle (1954, 1963), is used by Lindgren et al. (2011) to
show that a grf can be approximated by a Gaussian Markov random field
(gmrf). This is done by solving the spde in Equation (2) by the finite
element method (fem) (see e.g Brenner and Scott (2008)). A gmrf is
simply a multivariate Gaussian vector that is parametrized by the preci-
sion matrix Q, which is the inverse Σ−1 of the covariance matrix. The
term gmrf is most used for Gaussian processes with sparse precision ma-
trices, i.e. matrices that contain many zero elements. The zero elements
correspond to Markov properties, in this case conditional independence be-
tween locations in the spatial domain. It is convenient to work with gmrfs
because there exist computationally efficient algorithms for sparse matrix
operations (Rue and Held, 2005). Hence, through the spde approach from
Lindgren et al. (2011) a grf with a dense precision matrix can be replaced
by a gmrf with a sparser precision matrix with computational benefits.

3.4 pc priors

As we use a Bayesian approach, the hyperparameters θ from Section 3.1
must be given prior distributions. For the majority of the hyperparameters
we use penalized complexity (pc) priors. pc priors are proper prior dis-
tributions developed by Simpson et al. (2017). The main idea behind pc
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priors is to penalize the increased complexity induced by deviating from a
simple base model. One of the goals is to avoid overfitting.

The pc prior for the precision τ of a Gaussian effect N (0, τ−1) has density

π(τ) =
λ

2
τ−3/2 exp(−λτ−1/2), τ > 0, λ > 0, (3)

where λ is a parameter that determines the penalty of deviating from the
base model. The parameter λ can be specified through a quantile u and
probability α by Prob(1/

√
τ > u) = α, where u > 0, 0 < α < 1 and

λ = −ln(α)/u. Here, 1/
√
τ is the standard deviation of the Gaussian

distribution.

As the range and the marginal variance are easier to interpret than the
Matérn covariance function parameters κ and τ in Equation (1), we parametrize
our model through ρ and σ. For ρ and σ we use the prior suggested in
Fuglstad et al. (2019). This is a joint prior for the spatial range ρ and the
marginal variance σ constructed from pc priors. The joint prior can be
specified through

Prob(ρ < uρ) = αρ; Prob(σ > uσ) = ασ,

where uρ, uσ, αρ and ασ are quantiles and probabilities that must be
determined.

3.5 Evaluating the predictive performance

To evaluate the predictive performance of the suggested runoff model, we
use two criteria: The first criterion is the root mean squared error (RMSE).
The RMSE measures the difference between a point prediction ŷi and the
observed value yi by

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2,

where n is the total number of pairs of predictions and observations. We
use the posterior mean as a point prediction when computing the RMSE.
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The second criterion is the continuous ranked probability score (CRPS).
The CRPS is defined as

CRPS(F, y) =

∫ ∞

−∞
(F (s)− 1{y ≤ s})2ds,

where F is the predictive cumulative distribution and y is the observed
value (Gneiting and Raftery, 2007). The CRPS takes the whole poste-
rior predictive distribution into account, not only the posterior mean or
median, and is penalized if the observed value falls outside the posterior
predictive distribution. Both the RMSE and the CRPS are negatively
oriented, and a smaller value indicates a better prediction.

3.6 Interpolation by using Top-Kriging

The focus of this article is mainly on highlighting properties of the sug-
gested point and areal runoff model. However, we also compare some of our
results to the predictive performance of Top-Kriging. Top-Kriging (Skøien
et al., 2006) is one of the leading methods for runoff interpolation. It is a
Kriging approach (Cressie, 1993) where it is assumed that the variable of
interest can be modeled as a grf. A prediction of the target variable at an
unobserved location is given by a weighted sum of the available observa-
tions, and the interpolation weights are estimated by finding the so-called
best linear unbiased estimator (blue).

In the computation of the interpolation weights, the Top-Kriging approach
calculates the covariance between two catchments based on the distance
between all the grid nodes in a discretization of the involved catchments.
As a consequence, a subcatchment get a higher Kriging weight than a
nearby, non-overlapping catchment. This is different from other Kriging
approaches traditionally used in hydrology, for which streamflow observa-
tions have been treated as point referenced (see e.g. Merz and Blöschl
(2005); Skøien et al. (2003a); Adamowski and Bocci (2001)).

While the suggested Bayesian approach for runoff interpolation supports
both areal and point observations, Top-Kriging only considers runoff (areal)
data. Furthermore, Top-Kriging estimates the covariance (or variogram)
empirically, while we take a fully Bayesian approach where the latent field
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and the parameters are estimated jointly. Another main difference is that
Top-Kriging treats each year of runoff data separately, while we can model
several years of runoff simultaneously through our two field model.

4 Statistical Model for Annual Runoff

In this section we present the proposed lgm for annual runoff which is
suitable for combining observations of different spatial support and that
has a climatic spatial field that let us quantify long-term spatial variability.

4.1 Spatial model for runoff

Let the spatial process {qj(u) : u ∈ D} denote the runoff generating
process at a point location u in the spatial domain D ∈ R2 in year j. The
true runoff generation at point location u is modeled as

qj(u) = βc + c(u) + βj + xj(u), j = 1, ..., r. (4)

Here, the parameter βc is an intercept common for all years j = 1, ..., r,
while c(u) is a spatial effect common for all years. These two model com-
ponents represent the runoff generation caused by the climate in the study
area. Mark that the term climate here covers all long-term effects, i.e.
both long-term weather patterns and patterns that are repeated due to
catchment characteristics. Further, we include a year specific intercept βj
and a year specific spatial effect xj(u) for j = 1, ..r to model the runoff
generation due to the annual discrepancy from the climate. Both spatial
effects c(u) and xj(u) are modeled as grfs with zero mean and Matérn
covariance functions given the model parameters; c(u) with range param-
eter ρc and marginal variance σ2

c , and xj(u) with range ρx and marginal
variance σ2

x. The spatial fields xj(s), j=1,...,r, are assumed to be inde-
pendent realizations, or replicates of the same underlying grf. The same
applies for the year specific intercepts βj which are assumed to be indepen-
dent and identically distributed as N (0, τ−1β ) given the parameter τβ with
β1, ..., βr being independent realizations of this Gaussian distribution.
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The true mean runoff generated inside a catchment A in year j can be
expressed as

Qj(A) =
1

|A|
∫
u∈A

qj(u)du, j = 1, ..., r, (5)

where |A| is the area of catchment A. By interpreting catchment runoff as
an integral of point referenced runoff qj(u), we obtain a mathematically
consistent model where the water balance is conserved for any point in the
landscape.

4.2 Observation model

Annual precipitation and evaporation are observed at n locations ui ∈ D
for i = 1, ..n and for r years j = 1, ..r . The observed annual runoff
generation at point location ui, year j, is modeled as the difference between
the observed annual precipitation pij and annual evaporation eij ,

yij = pij − eij = qj(ui) + εyij i = 1, ..., n; j = 1, ..., r, (6)

where qj(ui) is the true annual point runoff from Equation (4). The error
terms εyij are independent and identically distributed as N (0, syij · τ−1y ) and
independent of the other model components. The measurement uncertain-
ties for precipitation and evaporation are assumed to increase with the
magnitude of the observed value, and we want to include this assumption
in the model. This is done by scaling the precision parameter of the error
terms τy with a fixed factor syij , that is further described in Section 4.3.

Runoff at catchment level is observed through streamflow data from K
catchments denoted A1, ...,AK for r years denoted j = 1, .., r. We use the
following model for the annual runoff observed in catchment Ak in year j

zkj = Qj(Ak) + εzkj k = 1, ...,K; j = 1, ..., r, (7)

where Qj(Ak) is the true annual areal runoff from Equation (5). The
measurement errors εzkj are independent and identically distributed as
N (0, szkj ·τ−1z ) and independent of the other model components. As for the
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point referenced observations, the precision parameter of the error terms
τz is scaled with a fixed factor szkj that is further described in the next sub-
section. This way the uncertainty estimates that the data provider nve
has for each annual observation can be included in the modeling.

In Equation (7) the variable Q(A) defines an areal representation of the
annual runoff in catchment Ak. Hence, through the likelihood, the annual
runoff in catchment area Ak is constrained to be close to the actually
observed value (with some uncertainty).

So far we have defined the observation likelihoods for the point and areal
observations separately. To construct a joint model for point and areal
runoff, we multiply the likelihoods defined in Equation (6) and (7) together
as described in Section 3.1. This is done for all n precipitation gauge
locations i = 1, ..n, for all catchments k = 1, ..K and for all years j = 1, ..r
such that we obtain a model that simultaneously models several years of
runoff. Different years are linked together through the climatic part of the
model c(u) + βc from Equation (4).

4.3 Prior distributions

In the suggested model for annual runoff there are 8 parameters (τy, τz,ρc,
ρx, σc, σx, βc,τβ) that must be given prior distributions. We start by
formulating priors for the measurement errors for the point and areal ob-
servations.

The variance of the measurement error of the point referenced observation
from precipitation gauge i, year j, is given by syijτ

−1
y where τy is a hyper-

parameter and syij is a deterministic value that scales the variance based on
expert opinions from nve about the measurement errors for precipitation
and evaporation.

The precipitation data are obtained by observing the amount of water or
snow that falls into a bucket, but the buckets often fail to catch a large
proportion of the actual precipitation, particularly for windy snow events
(Neff, 1977; Groisman and Legates, 1994; Wolff et al., 2015). Based on this
and recommendations from nve, the standard deviation of the observation
uncertainty for precipitation is assumed to be 10% of the observed value
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pij . The evaporation data are obtained from satellite observations and
process-models, and are more uncertain than the precipitation data. We
assume that the standard deviation for evaporation is 20% of the observed
value eij . The prior knowledge about the point data is used to specify the
scale syij for the point observation yij at location i and year j as follows

syij = Var(yij) = Var(pij − eij)

= Var(pij) + Var(eij)− 2 · Cov(pij , eij)
= (0.1pij)

2 + (0.2eij)
2 − 2 · Cov(pij , eij).

Here, the covariance between the observed precipitation and evaporation
is estimated by

Cov(pij , eij) =
√

Var(pij) ·
√

Var(eij) · Cor{(pi1, ..., pir), (ei1, ..., eir)},

where Cor{·, ·} is the Pearson correlation between all available observa-
tions of precipitation and evaporation at precipitation gauge i. Further,
we assign the precision τy the pc prior from Equation (3) with α = 0.1
and u = 1.5. With this prior, a prior 95 % credible interval for the stan-
dard deviation

√
syijτ

−1
y of the measurement error for point runoff becomes

around (0.002-30)% of the corresponding observed value yij . This interval
corresponds well to what nve knows about the measurement uncertainty
for precipitation and evaporation.

The same approach is used to make a prior for the variance of the mea-
surement error for the areal referenced observations zkj . The precision
τz is given a pc prior with α = 0.1 and u = 1.5, while the scale szkj for
catchment k, year j is given by

szkj = Var(zkj). (8)

For the streamflow data, information about the variance of the observations
is directly available through the dataset provided by nve. These data are
inserted into Equation (8). With the suggested prior, a prior 95 % credible
interval for the standard deviation

√
szkjτ

−1
z of an areal observation, is

approximately (0.002,4.0) % of the corresponding observed value zkj . This
is an informative prior that just covers the range of values suggested by
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nve. We have chosen a low prior standard deviation in order to try to
put more weight on the runoff observations than to the point observations.
There are only 5 areal observations available for each year in the dataset,
but 15 point observations, and the aim is to avoid that the more unreliable
point data dominate over the areal data.

For the spatial ranges and the marginal variances of the spatial fields xj(u)
and c(u), the joint pc prior from Fuglstad et al. (2019) is used. The pc
priors for σx, ρx, σc and ρc are specified through the following probabilities
and quantiles:

Prob(ρx < 10 km) = 0.1, Prob(σx > 2 m/year) = 0.1,

Prob(ρc < 10 km) = 0.1, Prob(σc > 2 m/year) = 0.1.

The percentages and quantiles are chosen based on expert knowledge about
the spatial variability in the area. The study area is approximately 80 km ×
80 km, and it is reasonable to assume that there is a correlation larger than
0.1 between two locations that are less than 10 km apart. Furthermore,
the spatial variability in the study area is large, and we can observe runoff
values from 0.8 m/year to 3.2 m/year within the same year. However,
it is reasonable to assume that the marginal standard deviation of the
runoff generating process does not exceed 2 m/year. The parameters of
the climatic grf c(u) and the annual grf xj(u) are given the same prior
as it is difficult to identify if the spatial variability mainly comes from
climatic processes or from annual variations. We also want the data to
determine which of the two effects that dominates in the study area.

As described in Section 4.1, the year specific intercept βj has prior N (0, τ−1β )
for all years j = 1, ..r. Its precision τβ is given the pc prior from Equa-
tion (3) with u = 10 and α = 0.2. This is a weakly informative wide
prior with a prior 95% interval (0.002,40.5) m/year for the standard de-
viation

√
τ−1β of βj . Finally, the climatic intercept βc is given a normal

prior, βc ∼ N (2, 0.52). This gives a prior 95% credible interval of (1.0,3.0)
m/year for βc which covers all reasonable mean values of annual runoff
around Voss.
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4.4 Inference

In order to make the model computationally feasible, some simplifications
of the suggested model are necessary. In Section 4.1 the annual runoff for
a catchment Ak was modeled as the integral of point referenced runoff over
the catchment area. In practice, the integral in Equation (5) is calculated
by a finite sum over a discretization of the target catchment. More specif-
ically, let Lk denote the discretization of catchment Ak. The total annual
runoff in catchment Ak in year j is approximated by

Qj(Ak) =
1

Nk

∑
u∈Lk

qj(u), (9)

where Nk is the total number of grid nodes in Lk and qj(u) is the point
runoff at grid node u ∈ Lk. It is important that a subcatchment shares
grid nodes with the main catchment in order to preserve the water balance.
The discretization used in this analysis has 1 km spacing and is shown in
Figure 2a.

The model suggested for annual runoff, is a latent Gaussian model with
the structure described in Section 3.1. Modeling annual runoff as a lgm is
convenient because it allows us to use integrated nested Laplace approx-
imations (inla) to make inference and predictions. inla can be used for
making Bayesian inference on lgms and is a faster alternative to mcmc
algorithms (Gamerman and Lopes, 2006). The approach is based on ap-
proximating the marginal distributions by using Laplace or other analytic
approximations, and on numerical integration schemes. The main compu-
tational tool is the sparse matrix calculations described in Rue and Held
(2005), such that in order to work fast, the latent field of the lgm should
be a gmrf with a sparse precision matrix. In our case, sparsity is ob-
tained by using the spde approach from Section 3.3 to approximate the
grfs xj(u) and c(u) by gmrfs. This is done through the finite element
method (fem), and the triangulation used for fem is shown in Figure 2b.
In order to obtain accurate approximations of the underlying two grfs,
this triangular mesh must be dense enough to capture the rapid spatial
variability of annual runoff around Voss. If the mesh is too coarse, unreal-
istic results such as negative runoff can occur, or we can get into numerical
problems.
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(a) Discretization of catchments
used to model areal runoff. We
use a regular grid with 1 km
spacing.

(b) Triangulation of the spatial domain
used for FEM. The red points are the
locations of the precipitation gauges.

Figure 2: Discretization and triangular mesh used to make the model
computationally feasible.

The R-package r-inla was used to make inference and predictions for the
suggested model. This package provides a user-friendly interface for ap-
plying inla and the spde approach to spatial modeling without requiring
that the user has deep knowledge about spdes. See r-inla.org or Blan-
giardo and Cameletti (2015) and Krainski et al. (2018) for tutorials and
examples. In particular, Moraga et al. (2017) is recommended for a de-
scription of how a model with point and areal data can be implemented in
r-inla.

5 Case study of annual runoff in Voss

The model presented in Section 4 is used to explore the predictability of
annual runoff in the Voss area. Recall that the main goals are to inves-
tigate how the predictions are affected by the two different observation
types (point and areal data), to demonstrate how the water balance con-
siderations can be beneficial, and to explore the properties of the climatic
part of the model. To address this, we perform four tests that are inspired
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by common applications in hydrology. These are presented in the next
subsection. In Section 5.2 the results from the tests are presented and
discussed.

5.1 Model evaluation

To explore how the two different observation types influence the predictions
of annual runoff around Voss, we compare three observation designs: An
observation design where only point referenced observations are included
in the likelihood (P ), an observation design where only areal referenced
observations are included in the likelihood (A) and an observation design
where all available observations are included in the likelihood (P +A). Re-
call that using only areal observations (A) corresponds to what typically
has been done in hydrological applications, and we want to investigate if
we can improve the predictability of runoff by also including point observa-
tions in the likelihood (P +A). Including P as an observation design gives
information about what influence the point data have on the predictions.
The three observation designs are evaluated according to four tests that
are described as follows:

T1 - Inference: The model from Section 4 is fitted to all available obser-
vations between 1988 and 1997 from Figure 1. This is done for P , A and
P + A, such that we get information about how the different observation
types affect the posterior estimates of the parameters.

T2 -Spatial predictions in ungauged catchments: In hydrological
applications, the main interest is on estimating runoff at catchment level.
Motivated by this, we perform spatial predictions of annual runoff for each
of the five catchments A1, ...,A5 by leave-one-out-cross-validation for P ,
A and P + A. That is, data from the target catchment are left out and
the catchment of interest is treated as ungauged. Runoff predictions are
done for the target catchment for 1988-1997 and are based on observations
from the remaining 4 catchments and/or point data from 1988-1997. The
predictive performance is assessed by computing the RMSE and CRPS for
each catchment based on the 10 years of predictions.
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In T2, we also compare our results to the Top-Kriging approach described
in Section 3.6. For Top-Kriging, we fit the default covariance function (or
variogram) from the R package rtop. This is a multiplication of a modified
exponential and fractal variogram model (Skøien et al., 2006). Recall that
Top-Kriging only supports areal referenced (runoff) observations.

T3u- Future predictions in ungauged catchments: In T2 we esti-
mate the runoff that was generated in ungauged catchments in the past.
However, quantifying the annual runoff we can expect in the future is more
interesting for most hydrological applications. In T3u we therefore esti-
mate annual runoff for a future year, i.e. for a year for which there are
no observations of runoff, precipitation or evaporation. For an unobserved
year (j > 10) the posterior means of the year specific effects βj and xj(u)
are zero. Thus, the posterior predicted future runoff is given by the pos-
terior means of the climatic components βc and c(u). However, all four
model components as well as the observation uncertainty contribute to the
predictive uncertainty.

In T3u the catchment of interest is treated as ungauged and left out of
the dataset, and we use the remaining observations from 1988-1997 to pre-
dict annual runoff for 1998-2014. This is done for catchment A1, ...,A5 in
turn. The predictive performance is evaluated by computing the RMSE
and CRPS for predictions of runoff for each of the 5 catchments for 17
future years. The average RMSE and CRPS over the 5 catchments are
used as summary scores. As the posterior mean for an unobserved year is
given by the posterior mean of the climatic effects βc and c(u), this test
lets us quantify the climatology in the study area.

T3g - Future predictions in partially gauged catchments: We pre-
dict annual runoff in catchment A1, ...,A5 for a future year as in T3u.
However, we allow the observation likelihood to contain 1 to 10 annual
runoff observations from the catchment in which we want to predict runoff.
This way, we assess the model’s ability to exploit short records of runoff,
which is a property enabled by the climatic component of the model. We
denote this test T3g, for gauged, as opposed to T3u for ungauged.
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The test is carried out by drawing i observations between 1988-1997 ran-
domly from the target catchment. Next, these observations are used to-
gether with the other point and/or areal observations of P , A and P + A
from 1988-1997 to predict the annual runoff in 1998-2014 for this particular
catchment. As the experimental results might depend on which runoff ob-
servations we pick from the target catchment, the experiment is repeated
10 times such that different observations are included for each experiment.

The above procedure is carried out with an increasing number of years
included in the short record, i.e. for i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The pre-
dictive performance is then evaluated for each i by computing the RMSE
and CRPS for each catchment A1, ...,A5 based on 17 years of future pre-
dictions. The average RMSE and CRPS over 5 catchments and 10 exper-
iments are reported as summary scores.

For our experiments we use the posterior mean as the predicted value when
computing the RMSE. Furthermore, when evaluating the CRPS and when
computing the coverage of the predictions, we assume that the posterior
distributions are Gaussian with mean given by the posterior mean and
standard deviation given by the posterior standard deviation. In the pos-
terior standard deviation, we take the measurement uncertainty given by
szkjτ

−1
z into account, in addition to the uncertainty of the model compo-

nents of the linear predictor in Equation (4). The Gaussian distribution
should be a good approximation for the resulting posterior distributions as
they typically are symmetric with neither particularly short or long tails.

5.2 Results from the case study

We now present the results from the case study for our four tests T1, T2,
T3u and T3g in turn.

Table 1 shows the posterior medians and the 0.025 and 0.975 quantiles
for the hyperparameters for P (point observations), A (areal observations)
and P + A (point and areal observations) when all respective available
observations from 1988-1997 are used to make inference (T1). In general,
P gives lower runoff values with a posterior median of the climatic intercept
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(a) Posterior mean [m/year].
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(b) Posterior standard deviation [m/year].

Figure 3: Posterior mean and standard deviation for annual runoff for a future
unobserved year when all available observations of point observations (P , left),
areal (A, middle) and both point and areal observations (P + A, right) from
1988-1997 are used, i.e. all catchments are treated as gauged for A and P + A,
but ungauged for P (test T1).

βc equal to 1.87 m/year compared to A giving βc equal to 2.21 m/year.
Furthermore, the posterior median of the marginal standard deviation of
the climatic grf σc is considerably larger for P with σc = 0.97 m/year
compared to A and P + A which give posterior medians 0.63 m/year and
0.76 m/year respectively. The posterior median of the range of the climatic
grf ρc is also larger for P with 70 km compared to values around 20 km
for A and P +A.

The spatial runoff patterns corresponding to these parameter values are
shown in Figure 3. These figures show the posterior mean and standard
deviation for runoff for an unobserved, future year. We see that larger
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Table 1: Posterior median (0.025 quantile, 0.975 quantile) when all available
point (P), areal (A) and both point and areal (P+A) referenced observations from
1988-1997 are used for making inference (test T1). The precision parameters are
transformed to standard deviations to make them more interpretable. Recall
that the posterior estimates of the standard deviations 1/

√
τy and 1/

√
τz of the

measurement uncertainties are multiplied with the root of the unitless scales from
Section 4.3 in order to obtain the final posterior observation uncertainty with unit
[m/year].

Parameter [unit] Posterior median (0.025 quantile, 0.975 quantile)

P A P+A

ρx [km] 236 (148, 379) 104 (32, 262) 102 (41, 249)
σx [m/year] 0.27 (0.20, 0.38) 0.34 (0.18, 0.56) 0.29 (0.19, 0.44)
ρc [km] 70 (30, 180) 25 (9, 74) 20 (9, 46)
σc [m/year] 0.97 (0.56, 1.79) 0.63 (0.34, 1.34) 0.76 (0.53, 1.1)
βc [m/year] 1.87 (1.13, 2.68) 2.21 (1.57, 2.82) 1.96 (1.40, 2.50)
1/

√
τy [m/year] 0.48 (0.40, 0.57) × 0.37 (0.22, 0.54)

1/
√
τz [m/year] × 3.6 (2.3, 5.1) 5.3 (3.8,6.8)

1/
√
τβ [m/year] 0.26 (0.01, 0.78) 0.61 (0.31,1.0) 0.48 (0.24, 0.75)

values for ρc and σc lead to a more prominent spatial pattern for P with
large runoff values in the western part of the study area and lower values
in the eastern part. A high climatic range ρc also leads to a reduction
of the posterior predictive uncertainty in a larger part of the study area
for P , as can be seen in Figure 3b. The maps show that the choice of
observation scheme (P , A or P + A) has a large impact on the resulting
predictions of annual runoff in terms of posterior mean and/or posterior
standard deviation.

In T2 we perform spatial predictions of annual runoff in 1988-1997 for a
catchment that is left out of the dataset. The predictive performance for
spatial predictions is summarized in Figure 4. For four out of five catch-
ments, P + A gives the lowest RMSE and CRPS, or a RMSE and CRPS
that is approximately as for A, P or Top-Kriging (TK). We see that the
Top-Kriging approach performs similar to A, which is reasonable as Top-
Kriging only considers areal observations and uses a similar interpretation
of covariance as our suggested model.
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Figure 4: Predictive performance for spatial predictions of runoff in 1988-1997
when the target catchment is treated as ungauged (test T2) for P, A and P+A.
Here, we have also included results from the reference method Top-Kriging (TK)
that only considers areal observations. Dashed lines mark the average perfor-
mance over all catchments.

In Figure 4 we particularly highlight Catchment 3 because it provides an
example of how the water balance properties of the model can be beneficial.
Figure 4 shows that for Catchment 3, P gives a RMSE around 0.9, while A
gives a RMSE around 0.4. Considering the posterior prediction intervals
for Catchment 3 in Figure 5, we see that P leads to an underestimation of
the annual runoff. This can be explained by looking at the observations
in Figure 1: The point observations close to Catchment 3 all have mean
values lower than the true mean annual runoff in this catchment. Next,
considering the results for the areal observations (A), Figure 5 shows that
also these lead to an underestimation of Catchment 3’s runoff. Intuitively,
we would thus expect that combining P and A would result in underesti-
mation. Instead, we get a large improvement in the predictions in Figure
5 when P and A are combined, with a RMSE around 0.1 (Figure 4). The
predictions for Catchment 3 also turn out to be larger than any of the
nearby observed values.

The result can be understood by looking at the nested structure of the
catchments in the dataset. Catchment 4 and Catchment 5 cover Catch-
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Figure 5: The posterior mean for spatial predictions in Catchment 3 (test T2)
with corresponding 95 % posterior prediction intervals for observation design P
(left), A (middle) and P +A (right).

ment 3, and through our model formulation they put constraints on the
total runoff in this area. As Figure 1 shows, there are two precipitation
gauges inside Catchment 5 for which the point runoff generated is lower
than the mean annual runoff in the surrounding two catchments. To pre-
serve the water balance, the predicted annual runoff in the remaining parts
of Catchment 4 and Catchment 5 has to be larger than any of the values
that are observed in the surrounding area. This interaction between nested
areal observations and point observations makes the model able to correctly
identify Catchment 3 as a wetter catchment than any of the nearby catch-
ments, and we have demonstrated that we have a geostatistical model that
does more than smoothing.

This does not mean that the interaction between point and areal observa-
tions always lead to improved predictions (see e.g. Catchment 5 in Figure
4). However, overall the results in Figure 4 show that on average we ben-
efit from including all available data (P +A) in the analysis when making
spatial predictions, and that using only point observations gives poor pre-
dictions. P performs considerably worse than A, P + A and Top-Kriging
for three of the catchments (Catchment 3, 4 and 5)

The scatterplots in Figure 6 compare the spatial predictions from 1988-
1997 (T2) to the actual observations for each (ungauged) catchment for P ,
A and P+A. Overall, observation designs A and P+A provide predictions
that are symmetric around the corresponding observed runoff. However, if
we look more closely at the predictions for each catchment, we see that A
and P +A tend to either overestimate or underestimate the annual runoff
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Figure 6: The posterior mean for spatial predictions in ungauged catchments for
P (left), A (middle) and P + A (right) compared to the corresponding observed
value (T2).

within a catchment. This is seen most clearly for Catchment 1 where the
annual runoff is overestimated for A and P+A, and for Catchment 2 where
the runoff is underestimated for A. Top-Kriging is not visualized here, but
this reference approach gives similar results as observation scheme A.

The results in Figure 6 show that the same systematic prediction error
typically is done each year for a specific catchment. The biases are however
small enough that the actual observations are covered by the corresponding
95% posterior prediction intervals for A and P + A for most catchments.
This can be seen in Table 2.

For P the situation is different: Figure 6 shows that the annual runoff
is underestimated for all catchments. In addition, the posterior standard
deviation for runoff is typically unrealistically small for P contributing to
narrow posterior prediction intervals. Large biases combined with small
posterior standard deviations lead to a low empirical coverage for the spa-
tial predictions for P , and on average the coverage of a 95% posterior
prediction interval is as low as 42%. For P , neither the posterior mean nor
the posterior variance reflects the properties of the underlying process.

In tests T3g and T3u annual runoff was predicted for unobserved future
years (1998-2014) when 0-10 observations from the target catchment be-
tween 1988 and 1997 were included in the likelihood, together with obser-
vations of P and/or A from other locations and catchments. The resulting
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Table 2: The proportion of the observations that falls into the corresponding 95%
posterior prediction interval for spatial predictions of runoff (T2) in catchment
A1, ..,A5 for 1988-1997 when the target catchment is treated as ungauged.

A1 A2 A3 A4 A5 All
P 1 0.5 0.5 0.1 0 0.42
A 1 0.7 1 0.9 1 0.92
P +A 1 1 1 1 0.60 0.92

predictive performance is visualized in Figure 7. As for the spatial predic-
tions, P +A gives the lowest RMSE and CRPS on average. For ungauged
catchments (when 0 years of observations from the target catchment are
included), P and A perform considerably worse than P + A. However,
when we include some years of observations from the target catchment, we
see a large drop in the RMSE and CRPS for P and A. The posterior mean
for a future year is given by the posterior mean of

∫
u∈Ak

(βc+ c(u))du, i.e.
the plots show that we get a large change in the climatic part of the model
when we include information from a new location or catchment.

This result can be understood from the results from the parameter estima-
tion in T1: The posterior median of the standard deviation of the climatic
grf σc is approximately twice as large as the median of the marginal stan-
dard deviation for the annual grf σx for all observation designs (Table 1).
Hence, the potential value of a new data point from an unobserved loca-
tion can be large, as the new observation affects the climatic part of the
model that has a substantial impact on the predictions for all years under
study. Furthermore, the large spatial climatic effect can also be a possible
explanation for the systematic errors we saw for the spatial predictions in
Figure 5 and Figure 6 (T2). A strong climatic field c(u) indicates that
the same spatial runoff pattern is repeated each year, and if we fail to
characterize it, systematic errors are a reasonable consequence.
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Figure 7: Predictive performance for future runoff (1998-2014) in catchment
A1, ...,A5 when 0-10 years of observations from the target catchment between
1988 and 1997 are included in the observation likelihood together with other
observations of P and/or A (tests T3u and T3g ).

6 Simulation study

One of the objectives of this paper was to show how quantifying long-term
spatial variability can be used as a tool for understanding the uncertainty
and biases in the modeling of environmental variables. In the case study
we have already suggested that a strong climatic field c(u) can be an ex-
planation for the systematic over- and underestimation we saw for some
of the catchments. In the simulation study we present here, we aim to
investigate this further, i.e. we explore if the over- and underestimation
actually is a model property, and that it is not only caused by e.g. mis-
match between the model and the runoff data in Voss. More specifically,
if the true underlying process is driven by two different spatial processes,
one climatic (common for all years) and one annual (different each year),
can these systematic predictive biases be expected for a given catchment
and set of observation locations?

In the simulation study, we explore the model properties for different values
of the spatial parameters ρc, ρx, σc and σx. The parameters could repre-
sent different environmental variables or different study areas. By this, we
aim to show what insight one can obtain about a spatio-temporal environ-
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mental variable of interest and the corresponding study area by separating
climatic spatial variability from year dependent effects.

6.1 Experimental set-up

In the simulation study, we simulate from the model described in Section
4 for 9 different configurations of the range parameters ρc, ρx and the
marginal standard deviations σc and σx. These are shown in Table 3. We
here refer to the proportion σ2

c/(σ
2
c +σ2

x) as the climatic spatial dominance
as it represents a quantification of how large the climatic spatial effect c(u)
is relative to the year specific spatial effects xj(u). Note that Parameter
set 1 with σc = 0.8, σx = 0.3, ρc = 20 and ρx = 100 corresponds to the
posterior medians obtained for the real case study for P+A (Table 1). The
other parameter sets could represent the dependency structure of another
climatic variable, e.g. temperature or monthly runoff, or the annual runoff
in another part of the world.

Table 3: Parameters used for the simulation study. Parameter set 1 corresponds
to the parameters obtained for the case study for P +A in Table 1. We refer to
the proportion σ2

c/(σ
2
c + σ2

x) as the climatic spatial dominance.

Parameter set σc [m/year] σx [m/year] ρc [km] ρx [km] σ2
c/(σ

2
c + σ2

x)

1 0.8 0.3 20 100 0.88
2 0.5 0.5 20 100 0.50
3 0.3 0.8 20 100 0.12
4 0.8 0.3 50 100 0.88
5 0.5 0.5 50 100 0.50
6 0.3 0.8 50 100 0.12
7 0.8 0.3 100 100 0.88
8 0.3 0.5 100 100 0.50
9 0.5 0.8 100 100 0.12

The remaining two parameters are set to βc = 2 and τβ = 5 for all ex-
periments, i.e. similar to the posterior medians for P + A in Table 1.
Furthermore, we assume that the measurement errors of the point ob-
servations are normally distributed with standard deviation 15% of the
corresponding simulated value, while the measurement errors of the areal
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observations are normally distributed with standard deviation 3% of the
corresponding simulated value. These estimates are set based on recom-
mendations from the data provider nve regarding the measurement errors
we typically see for precipitation and runoff.

For all 9 parameter configurations, annual runoff is simulated for the point
and areas in Figure 1. This way we obtain a realistic distribution of ob-
servations. In total 50 datasets were generated for each parameter set, i.e.
there are 50 simulated climates c(u) + βc, and for each climate there are
10 replicates of the year specific component xj(u) + βj .

In our experiments, we predict runoff for two of the catchments in Figure
1: Catchment 1 that is not nested and located relatively far from most
point observations, and Catchment 4 that is nested and located in the
middle of the study area with many surrounding observations. In turn,
Catchment 1 or Catchment 4 is left out of the dataset, and 10 years of
annual runoff (1988-1997) are predicted for the target catchment based on
all point observations and the remaining areal observations from the same
time period (1988-1997). That is, we use the setting P+A for all simulated
experiments. Furthermore, the predictions are done both when the target
catchment is treated as ungauged with 0 annual runoff observation included
in the likelihood, and when the target catchment is treated as partially
gauged with 1 randomly drawn annual runoff observation (out of 10 years)
included in the likelihood.

In order to investigate the relationship between the model parameters and
prediction bias over time, we quantify bias as follows: For each of the
50 climates, we predict runoff for Catchment 1 and Catchment 4 for 10
years. Then, we compute the empirical probability that all of the 10 true
(simulated) values of annual runoff are either below or above the 10 cor-
responding posterior medians for a specific catchment. We refer to this as
the probability of systematic bias, i.e.

Prob(Systematic bias) = Prob(All 10 simulated values are either below or above
the 10 posterior medians).

Systematic biases were common in the case study, and can be seen for
example for Catchment 5 in Figure 6 for P+A. We report the probability
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of systematic bias as one value per parameter set, estimated based on 100
events (50 climates and 2 target catchments).

6.2 Results from the simulation study

We first present the overall 95 % coverage for the simulation study, based
on predictions of 10 years of runoff for 2 catchments and 50 climates.
These are shown in Table 4, and we find that the empirical coverages are
close to 95 % for all the parameter sets in Table 3. If we next consider a
scatter plot of the 1000 true and predicted values (not included here), the
predictions are also unbiased with respect to the true runoff values. The
95 % coverages and the scatter plots confirm that the model behaves as
expected asymptotically for all parameter sets.

Table 4: Overall 95 % coverage for the simulation study over 50 climates, 2
catchments and 10 years of predictions for P + A. For ungauged catchments,
there are 0 observations from the target catchment in the likelihood while for
partially gauged catchments there is 1 annual observation available from the
target catchment.

Parameter set 1 2 3 4 5 6 7 8 9
Ungauged catchments 0.96 0.96 0.94 0.94 0.98 0.96 0.96 0.96 0.96
Partially gauged catchments 0.93 0.93 0.94 0.95 0.95 0.96 0.96 0.96 0.95

Next, Figure 8a shows an visualization of the systematic bias obtained
for the simulation study when the target catchments (Catchment 1 and
Catchment 4) are treated as ungauged. Recall that systematic bias here is
measured as the probability that all 10 true annual runoff values are either
below or above the corresponding predicted value for a specific climate and
catchment. We see a clear relationship between this bias and the climatic
spatial dominance given by the proportion σ2

c/(σ
2
c + σ2

x): When annual
spatial effects dominate over climatic spatial effects and σc � σx, the
probability of systematic bias is close to zero (around 0.2 %). However,
when most of the spatial variability is due to the climate (σc � σx),
this probability increases to 30-65% depending on the values of the range
parameters ρc and ρx. For the parameters corresponding to the Norwegian
case study, the probability of systematic bias was 65 %. Hence, systematic
errors like we saw for e.g. Catchment 5 (P+A) in Figure 6, can be expected
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quite often for these parameter values. Figure 8a also shows that the
probability of systematic bias is largest when the climatic range ρc is low,
i.e. when the information gain from the neighboring catchments is low.

From a statistical point of view, the above results are intuitive: If most of
the spatial variability can be explained by climatic conditions, there are
large dependencies between years. Either we typically perform accurate
predictions all years, or poor predictions all years. Considering all un-
gauged catchments in Norway, we can expect that 95% of the true runoff
values are inside the corresponding 95% posterior prediction intervals on
average (Table 4), but if we consider predictions for individual catchments
over time, a large proportion of the predictions will be biased in one di-
rection or the other (Figure 8a). The simulation study shows that the
systematic bias we obtained for the case study are not necessarily a result
of mismatch between the data and the fitted model, but can indeed be a
result of the strong climate around Voss (σc � σx).
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Figure 8: The empirical probability that all of the 10 true annual values are either
above or below the posterior median value for Catchment 1 and Catchment 4 over
50 climates for ungauged catchments (Figure 8a) and partially gauged catchments
(Figure 8b). The black circle corresponds to the parameter values we have for the
case study from Voss. The black dashed line is the theoretical probability that
all the observed values are above or below the posterior median when studying
a process that actually is independent over years (2 · 0.510 = 0.2% ). This is
included as a reference.
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So far we have considered the probability of systematic bias when there
are no data from the target catchments available. Next, in Figure 8b, we
present the probability of systematic bias when there is one annual obser-
vation included in the likelihood. For σc � σx, i.e. when σ2

c/(σ
2
c + σ2

x) is
close to zero, we see that the probability of systematic bias in general is
low for both ungauged catchments (Figure 8a) and partially gauged catch-
ments (Figure 8b). For this scenario, a new data point from the target
catchment don’t have a considerable impact on the probability of system-
atic bias. However, if σc � σx as in Voss, we find that the extra data point
on average leads to a large reduction in the systematic bias probability in
Figure 8b compared to the systematic bias probability we saw for the un-
gauged catchments in Figure 8a. This is found for all combinations of ρc
and ρx, but the tendency is strongest if ρc � ρx as in Voss. The results in
Figure 8 are thus comparable to the results in Figure 7 for the case study,
and illustrate the potential value of data from a new location for different
parameter values.

7 Discussion

In this paper we have presented a model for annual runoff that consis-
tently combines data of different spatial support. The suggested model is
a geostatistical model with two spatial effects: A climatic long-term effect
and a year dependent effect that describes the annual discrepancy from
the climate. The model was used to estimate mean annual runoff in the
Voss area in Norway.

The main focus of the study was on exploring how the combination of
point and nested areal observation affects runoff predictions, to demon-
strate that our model has mass-conserving properties and to show how
quantifying long-term spatial variability can be used as a tool for under-
standing biases in environmental modeling and for exploiting short records
of data. There are three key findings: 1) On average we benefit from in-
cluding all available observations in the likelihood, both point and areal
data. P +A performed better than P and A in terms of RMSE, CRPS and
the coverage of the 95 % posterior prediction intervals in our case study.
P +A also performed better than the referenced method Top-Kriging that
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only supports areal observations. 2) The suggested model that combines
point and areal observations is particularly suitable for modeling the nested
structure of catchments. The case study showed that the model was able
to identify Catchment 3 as a wetter catchment than any of the surrounding
catchments and precipitation stations. This was a consequence of using in-
formation from two overlapping catchments to constrain and distribute the
annual runoff correctly. The interaction between the point and nested areal
observations gives a geostatistical model that does more than smoothing.
The linear constraints also represent a main difference to Top-Kriging that
does not ensure mass preserved predictions. 3) How dominating climatic
spatial effects are compared to annual spatial effects has a large influence
on the predictability of runoff. If most of the spatial variability can be
explained by long-term (climatic) weather patterns and processes, system-
atic biases for a location over time can be expected as long as the same
observation design is used.

The fact that P +A performed better than A for most catchments around
Voss, indicates that the point and areal observations of runoff were suffi-
ciently compatible for most catchments, i.e. that evaporation subtracted
from precipitation was a valid approximation of point runoff. This inter-
pretation of point runoff is reasonable in areas like Voss where the an-
nual precipitation is considerably larger than the annual evaporation. The
evaporation data are uncertain and should not make a large impact on
the resulting predictions. In many areas of the world, the observed annual
evaporation is more than 50 % of the annual observed precipitation. In
such areas, our framework could provide negative point observations and
results that are hard to interpret. Negative runoff can in general be a
problem in our Gaussian model. Log transforming the data is a solution if
considering only point data (P ), but is not an option when modeling areal
data (A and P + A) because the log transformation does not work well
with the linear aggregation in Equation (9). For areas with observed values
close to zero, extra caution should therefore be taken regarding negative,
non-physical results. To avoid negative predictions it is also important to
make sure that the mesh used in the spde approach (Figure 2b) is fine
enough to capture the rapid spatial variability in the study area.

Precipitation observations are often avoided as an information source when
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performing interpolation of runoff in hydrological applications, but the re-
sults presented here show that the point observations can contain valuable
information when used together with areal observations. At least in data
sparse areas with few streamflow observations. However, there is still room
for improvement in the compatibility between the two observation types:
The observation designs including only point observations P provided a
clear underestimation of annual runoff for most catchments in the case
study. It was also seen that the spatial field provided by the precipitation
observations (P ) was smoother than the spatial field provided by the runoff
observations (A) in Figure 3a, which is a typical result: The increase in
spatial variability from precipitation to runoff is mainly explained by small
scale variability introduced by soil and vegetation (Skøien et al., 2003b).
Consequently, if the point data are allowed to dominate over the areal
data, the point data can cause a runoff field that is too smooth, which
affects both the posterior mean and the posterior standard deviation dis-
advantageously.

Furthermore, it is worth mentioning that all of the available precipitation
gauges are located at a lower elevation than the mean elevation of the
five catchments in the dataset. This is a common problem. Precipitation
gauges are often located at low elevations, close to settlements where the
gauges are easy to maintain. It is known that the amount of precipitation
typically increases with elevation. There is therefore a lack of information
about precipitation at high elevations in the data. Adding the fact that
the precipitation gauges often fail to catch a large proportion of the precip-
itation, in particular when it comes as snow and it is windy (Kochendorfer
et al., 2017), essential information about the precipitation and runoff field
could be lost. To solve the compatibility issues, elevation was considered as
a covariate in a preliminary study (Ødegård, 2017), but this did not lead
to significant improvements, and the results are not included here. An-
other option could be a preferential sampling approach where we assume
that the locations of the precipitation gauges are distributed according to
a log-Gaussian Cox process that depends on the response variable, here
through elevation implicitly (Diggle et al., 2010).

Elevation is also known to be a factor that affects the spatial dependency
structure of precipitation, and Voss is a mountainous area. The spatial
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range is typically larger in lowlands and decreases with elevation. A non-
stationary model similar to the one presented in Ingebrigtsen et al. (2014)
with a range and a marginal variance that changes with elevation could be
considered. This can easily be implemented within the inla-spde frame-
work. However, in this case the dataset is small and the complexity of the
spatial variability large. We also have a model with only one replication
of the climatic spatial effect which was the dominating spatial component.
A non-stationary model would probably be too complicated and lead to
identifiability issues (Ingebrigtsen et al., 2015).

Regardless of the increased complexity in an extended model, it is reason-
able to believe that an accurate representation of the climatic conditions at
a target location is crucial when predicting annual runoff and other climate
related variables. In the simulation study, we demonstrated how system-
atic under- and overestimation of a target variable can be expected over
time when we fail to characterize the underlying climate in areas where the
climatic spatial field’s marginal standard deviation σc is large relatively to
the other model standard deviations. We also found a clear relationship
between the model parameters of the suggested model, and systematic
prediction bias over time. This shows that the two field model (and its
parameters) can contribute with useful insight about the properties of a
study area and/or an environmental variable of interest.

In spite of the large biases documented for annual runoff predictions in
this article, a dominating climate also gives opportunities. In this article a
model with a climatic component was suggested. The climatic component
included a spatial effect that was common for all years of observations.
This component made it relatively simple to exploit short records of data,
and the runoff predictions could easily be improved by including a few
observations from the target catchments. Time series from several years are
not needed because one or two observations from a new catchment updates
the climatic component that has a large impact to the final model if σc
dominates over the other model variances. Here, we again note how the
model parameters can contribute with useful information about the study
area and/or the environmental variable of interest: The potential gain of
collecting a new data point from a new location, i.e. a short record, can be
indicated from the spatial parameters, in particular from the proportion

39



σ2
c/(σ

2
c + σ2

x).

The ability to exploit short records is another main benefit of the suggested
model over existing spatial models used for runoff interpolation, like e.g.
Top-Kriging. For practitioners, a model with the described properties can
be useful in situations where there exist one or few observations from a
catchment of interest. Short duration runoff observations are quite com-
mon in hydrological datasets, e.g. from planned short duration missions for
water resources assessments, or from gauging stations that are closed after
a revision of the gauging network. Large infrastructure projects measuring
a few years of annual runoff for a relevant catchment is also achievable.
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Abstract

In this article, we present a Bayesian geostatistical framework
that is particularly suitable for interpolation of hydrological data
when the available dataset is sparse and includes both long and short
records of runoff. A key feature of the proposed framework is that
several years of runoff are modeled simultaneously with two spatial
fields: One that is common for all years under study that represents
the runoff generation due to long-term (climatic) conditions, and one
that is year specific. The climatic spatial field captures how short
records of runoff from partially gauged catchments vary relative to
longer time series from other catchments, and transfers this infor-
mation across years. To make the Bayesian model computationally
feasible and fast, we use integrated nested Laplace approximations
(INLA) and the stochastic partial differential equation (SPDE) ap-
proach to spatial modeling.

The geostatistical framework is demonstrated by filling in miss-
ing values of annual runoff and by predicting mean annual runoff for
around 200 catchments in Norway. The predictive performance is
compared to Top-Kriging (interpolation method) and simple linear
regression (record augmentation method). The results show that if
the runoff is driven by processes that are repeated over time (e.g. oro-
graphic precipitation patterns), the value of including short records
in the suggested model is large. For partially gauged catchments the
suggested framework perform better than comparable methods, and
one annual observation from the target catchment can lead to a 50 %

1



reduction in RMSE compared to when no observations are available
from the target catchment. We also find that short records safely can
be included in the framework regardless of the spatial characteristics
of the underlying climate, and down to record lengths of one year.

1 Introduction

Characteristic values for streamflow are used for various purposes in water
resources management. High flow indices or design flood estimates are
needed for flood risk assessments and design of infrastructure and dams,
low flow indices are needed for assessment of environmental flow and relia-
bility assessment of water supply, while mean annual flow is an important
basis for water resources management and a key for design of water supply
systems and allocation of water resources between stakeholders. Mean an-
nual flow can also be used as a predictor for low flow and high flow indices
(Sælthun et al., 1997; Engeland and Hisdal, 2009).

At locations with measurements, the streamflow indices can be estimated
based on observations. However, streamflow is only measured at a lim-
ited number of locations, and in many applications we need to predict
the streamflow indices at ungauged locations. This is a central problem
in hydrology and known as the Prediction in Ungauged Basins problem
(Blöschl et al., 2013). Often it is of interest to estimate flow indices that
represent the long-term average behavior in a catchment. If this is the
case, using only a few years of data from the target catchment might lead
to biased estimates. The reason is climate variability over short time scales
combined with sample uncertainty. Often a minimum record length is rec-
ommended for estimation of long-term indices, but a substantial part of
the available streamflow gauges in the world have too short records to
provide reliable estimates. These short data series can, however, provide
useful information if they are used together with longer time series from
other catchments (Laaha and Blöschl, 2005). Motivated by this, we pro-
pose a framework for runoff interpolation particularly suitable for datasets
including data series of this type, more specifically runoff datasets includ-
ing a mix of fully gauged catchments (with data available from the whole
study period) and partially gauged catchments (with data available from
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a subset of the study period). We suggest a framework for runoff inter-
polation that unifies two commonly used statistical approaches for runoff
estimation: Geostatistical approaches and approaches for exploiting short
records of data.

Within the geostatistical framework, Gaussian random fields (GRFs) are
often used to model hydrological phenomena that are continuous in space
and/or time. The hydrological variable of interest is a GRF if a vector
containing a random sample of length n from the process follows a Gaus-
sian distribution with mean vector μ and covariance matrix Σ (Cressie,
1993). The elements in the covariance matrix are typically determined
by a covariance function that is specified based on the pairwise distances
between the n target locations. For most environmental variables it is
straight forward to compute these distances. However, for runoff related
variables the measure of distance is ambiguous because the observations
are related to catchment areas, some of them nested, and not to point
locations in space. Traditionally, this challenge has been solved by simply
interpreting runoff as a point referenced process linked to the catchment
centroids or stream outlets (see e.g. Merz and Blöschl (2005); Skøien et al.
(2003); Adamowski and Bocci (2001)). The problem with these methods
is that they can lead to a violation of basic conservation laws, and several
alternatives approaches are suggested for making an interpolation scheme
that takes the nested structure of catchments into account (Sauquet et al.,
2000; Gottschalk, 1993; Skøien et al., 2006). In particular, the Top-Kriging
approach suggested by Skøien et al. (2006) has shown promising results for
interpolation of hydrological variables (Viglione et al., 2013). In the Top-
Kriging approach, information from a subcatchment is weighted more than
information from a nearby non-overlapping catchment when performing
runoff predictions for an ungauged catchment.

In the literature, there exist several techniques to exploit short records of
runoff, and these are known as record augmentation techniques. The first
step in a record augmentation procedure is often to find one or several
donor catchments with longer time series of runoff. The donor catchments
are typically selected based on runoff correlation, catchment similarity, or
proximity in space. By applying e.g. linear regression approaches and/or
computing the correlation between time series, a relationship between the
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target catchment and the donor catchments is developed. Next, the longer
time series from the donor catchment(s) are used to perform predictions
for the target catchments for years/months/days without measurements
(see e.g. Fiering (1963), Hirsch (1982), Matalas and Jacobs (1964), Vogel
and Stedinger (1985) or Laaha and Blöschl (2005)). The regression and/or
correlation analysis is performed based on runoff observations that is of
the same type as the target flow index, i.e. for annual runoff, short records
of annual runoff are used (Blöschl et al., 2013).

In this paper, we suggest a geostatistical Bayesian framework that rep-
resents a new way of exploiting short records of data. The framework is
constructed to exploit long-term spatial patterns stored in sparse datasets,
i.e. hydrological datasets with several missing values. A key feature of
the suggested framework is that it simultaneously models several years of
runoff. This is done by using two statistical spatial components or GRFs in
the hydrological model: The first GRF is common for all years under study
and models the long-term spatial variability of runoff. We denote this the
climatic GRF as it represents the spatial variability over time, or what we
refer to as the climate in the study area. In this context the term climate
also includes the runoff generation due to catchment characteristics that
are static, like elevation and slope. The other GRF is year-specific and
models the annual discrepancy from the climate, and we denote this the
annual or year-specific GRF. If we have a study area for which the spatial
variability of runoff is stable over time, the climatic GRF will capture this
tendency. Hence, it will also capture how short records of runoff vary rel-
ative to longer data series from other catchments. On the other hand, if
there are no strong long-term trends present in the data, the year-specific
GRF will dominate over the climatic GRF. For this scenario, short records
from the target catchment(s) will have less impact on the final results. By
adjusting the two spatial fields relative to each other, our method repre-
sents a way for detecting long-term trends and uses this to exploit short
records in the runoff interpolation.

The framework we suggest is flexible and can be used for any hydrological
variable. However, its benefits are linked to exploiting long-term spatial
trends in the data, and in order to work better than other interpolation
methods, the hydrological variable of interest should be driven by processes
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that are repeated over time. For this reason, we develop our methodology
for annual runoff. This is a flow index that often has a prominent spa-
tial pattern over years, for example due to orographic precipitation and
topography that creates weather divides. To describe study areas and/or
variables like this, we hereby introduce the terms hydrologically spatially
stable and hydrological spatial stability. For hydrologically spatially sta-
ble areas, the difference in runoff between two locations for a given year
is close to the difference in runoff between these two locations any other
year. Be aware that a hydrologically spatially stable area can both have
large differences in annual runoff between two close locations, and have
large variability in annual runoff over years for a given location. The key
property is that the underlying spatial pattern is preserved over time.

While annual runoff represents a hydrologically spatially stable variable
for many countries, the spatial pattern for monthly runoff is typically
less stable. This is due to local weather patterns and the variability in
the seasonality of snow accumulation and snow melt. To demonstrate
our methodology for a variable with less hydrological spatial stability, we
therefore fit the framework to annual time series of monthly runoff. These
predictions allow us to discuss how the approach might work in different
regions.

In the following presentation, we introduce two versions of our framework,
i.e. two geostatistical models. The first model we propose is denoted the
areal model and is particularly suitable for mass-conserved hydrological
variables. It ensures that the water balance is preserved for the predicted
runoff for any point in the landscape, and defines the average runoff in a
catchment as the average point runoff integrated over (nested) catchment
areas. This way, the nested structure of catchments is taken into account,
and the interpretation of covariance between two catchments is similar to
the one of Top-Kriging. The areal model for annual runoff is already pre-
sented in Roksvåg et al. (2020) where its mass-conserving properties were
demonstrated through an example from Voss in western Norway. The
model’s ability to exploit short data records was also indicated in Roksvåg
et al. (2020), but the property was not tested for a larger dataset or com-
pared to any existing methods. This is a key contribution of this article.

As an alternative to the areal model, we also propose a model that de-
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fines runoff as a point referenced process for which distances are measured
between the catchment centroids. This model does not consider preserva-
tion of water balance, but on the other hand it can be used for any point
referenced environmental variable, and it is computationally faster than
the areal model. This model is more similar to models that have been
used traditionally in hydrology, and we denote this the centroid model.
Both the areal model and the centroid model have the ability to exploit
hydrological spatial stability, but have different benefits, drawbacks and
hence also area of use. These are discussed and highlighted throughout
the article.

The main objective of this work is to present and evaluate the new geosta-
tistical framework for exploiting short records and to compare its perfor-
mance to Top-Kriging (interpolation method) and simple linear regression
(record augmentation technique). In particular our goals are to:
1) Assess the two spatial models’ ability to fill in missing annual observa-
tions of runoff for ungauged and partially gauged catchments.
2) Assess the two spatial models’ ability to predict mean annual runoff for
a longer time period for catchments with varying record lengths.
Through 1) and 2) we also aim to:
3) Demonstrate the potential added value of including short records in the
modeling, compared to not using them or compared to using traditional
methods.

The framework is evaluated by using annual and monthly runoff data from
catchments in Norway. This dataset is presented in the section that fol-
lows (Section 2). Next, in Section 3, we briefly introduce relevant statis-
tical background theory and notation. In Section 4 the suggested model
for annual runoff is presented, before evaluation scores and experimental
set-up are presented in Section 5. Here, we have one experimental set-up
for annual predictions (Section 5.1) and one set-up for mean annual pre-
dictions (Section 5.2). In Section 6, the results are presented before they
are discussed in Section 7. Finally, we conclude in Section 8.
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2 Study area

The study is carried out by using a dataset from Norway provided by the
Norwegian Water Resources and Energy Directorate (NVE). It originally
consisted of daily runoff data from 1981-2010. To make the data suitable
for an analysis, a data preparation procedure was performed to construct
datasets for two purposes: For assessing the framework’s ability to fill in
missing annual data and for assessing the framework’s ability to predict
mean annual runoff.
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Figure 1: Mean annual runoff (1996-2005) from 180 fully gauged catchments in
Norway (1a) and annual runoff observations from all 180 catchments and years
(1b). These data are used to evaluate the framework’s ability to fill in missing
values for individual years. 30 % of the involved catchments are nested and most
of these are located in southern Norway as visualized in Figure 1c. In this figure,
colored catchments are subcatchments of at least one larger catchment, while the
black catchments are not subcatchments of any larger catchment (but might con-
tain 1 or 2 smaller catchments). In the visualization in Figure 1a, subcatchments
are plotted on top of larger catchments, and this is done throughout the article.
The coordinate system used is EUREF89 - UTM33N (EPSG 25833). See Fig-
ure 7 for a closer image of the observed mean annual runoff in southern Norway
(1996-2005).

To make a cross-validation dataset for the experiments related to infill of
missing annual data, the daily runoff data were aggregated to annual runoff
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data for hydrological years that start September 1th and end August 31st.
We chose to consider a study period from 1996-2005: For this period we
had the maximum number of fully gauged catchments, i.e. 180 catchments.
These 180 fully gauged catchments have areas ranging from 13 km2 to
15500 km2 and median elevations from 85 to 1562 m a.s.l. Among these,
none were significantly influenced by human activities in the time period
of interest. Regulated catchments were removed from the original dataset.

Figure 1a and Figure 1b show two visualizations of the annual data from
the 180 Norwegian target catchments. We see a large spatial variabil-
ity of runoff. The annual runoff (for individual years) ranges from 170
mm/year to 5050 mm/year, whereas the mean annual runoff ranges from
350 mm/year to 4230 mm/year, with the highest values of runoff in west-
ern Norway and more moderate values in east and north. In total 53 of
the 180 catchments were nested with at least one other catchment, i.e. the
degree of nestedness is 30 %. Most of these are located in southern Nor-
way, and the nested structure here is shown in Figure 1c. The remaining
127 catchments did not overlap with any other catchment.
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(b) Annual time series.

Figure 2: Time series of annual runoff from 7 selected catchments in western
Norway. The 7 lines are almost parallel (and barely cross) indicating that most
of the spatial variability can be explained by long-term spatial patterns. This
represents a good example of what we mean by hydrological spatial stability.

In the Norwegian annual data in Figure 1a we see an east-west pattern of
runoff. This is mainly caused by orographic enhancement of frontal pre-
cipitation formed around extratropical cyclones. The orographic enhance-
ment is driven by the steep mountains in western Norway that create a
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topographic barrier for the western wind belt, which transports moist air
across the North Atlantic (Stohl et al., 2008). Due to the orographic en-
hancement, the maximum precipitation is observed at distances 30-70 km
from the coast (Førland, 1979) and not necessarily at the highest elevations
since the air dries out due to precipitation. The topography results in a
spatial pattern of runoff that is stable over years, which means that there
exist long-term spatial patterns in the data that can be exploited.

Figure 2 shows time series of annual runoff from seven catchments in the
south-western part of the country. We see a year to year variation for all
catchments that is quite large. However, the seven time series are almost
parallel (and almost never cross), indicating that the difference in annual
runoff between stations is approximately constant over time. Hence, this
is a good example of what we mean by hydrological spatial stability. The
tendency we see in Figure 2 is typical for the annual runoff in many of the
areas in Norway.

To illustrate the framework’s properties for study areas and/or variables
that are driven by more unstable weather patterns or hydrological pro-
cesses, we also aggregated the daily runoff data to monthly runoff for the
180 catchments in Figure 1a. From this we made annual time series of
monthly runoff for 1996-2005 for three months: A winter month domi-
nated by snow accumulation (January), a spring month with snow melting
(April) and a summer month dominated by rain (June). The annual obser-
vations of monthly runoff for the selected months are presented in Figure
3, and we see that January has the lowest average runoff whereas June has
the highest. The variation in average monthly runoff describes a runoff
regime, and in Norway the combination of snow accumulation, snow melt,
and evapotranspiration processes control this regime (Gottschalk et al.,
1979). Along the west coast, the winter weather is typically rainy with tem-
peratures above the freezing point. In these regions the highest monthly
runoff is observed in October - December. The colder areas are found in
the interior of the country with winters dominated by snow accumulation.
In these regions the highest monthly runoff is observed for the snow melt
season (May – June).

Annual time series of monthly runoff from the 7 selected catchments from
Figure 2a are shown in Figure 4. We see that the spatial pattern is less
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Figure 3: Monthly runoff data (1996-2005) from 180 catchments in Norway for
January, April and June. These are used to evaluate the framework’s ability to
fill in missing values for hydrological variables and/or study areas that are driven
by more unstable weather patterns.
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Figure 4: Annual series of monthly runoff for January, April and June for
the 7 catchments in Figure 2a. The time series for January and April are less
parallel compared to the time series for June and for the annual runoff (Figure
2b). This suggests that the datasets from January and April represent a more
hydrologically spatially unstable setting.

stable on a monthly scale compared to the annual scale, particularly for
January: The difference in monthly runoff between stations over time is
not approximately constant for January, and the runoff in January hence
represents a more hydrologically spatially unstable variable in Norway. For
June however, the hydrological spatial stability is higher.

The cross-validation datasets described so far are used to assess the frame-
work’s ability to fill in missing annual observations for a 10 year period and
to illustrate how the models behave for different hydrological settings. In
addition, we also evaluate the framework’s ability to predict mean annual
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runoff, which is a key hydrological signature. This is done for a 30 year
period, from 1981 to 2010. As we consider a longer time period for this
assessment, a different subset of the original dataset was used: More specif-
ically annual data from 260 catchments located in southern Norway. These
are shown in Figure 5. Each of the 260 catchments in Figure 5 have at least
one observation of annual runoff between 1981-2010, but only 83 of them
are fully gauged in the time period of interest (i.e. have annual observa-
tions for all 30 years). Among the partially gauged catchments, the mean
record length is 15, while the median record length is 13. Furthermore,
20 of the involved catchments only have 1, 2 or 3 annual observations. As
for the previously described datasets, we removed regulated catchments
that were significantly influenced by human activity. Also note that we in
this experiment only consider catchments from southern Norway. This is
done to reduce the computational complexity of fitting 30 years of runoff
simultaneously in a cross-validation setting.

When using the data in Figure 5 to predict mean annual runoff, we do pre-
dictions by cross-validation for the 83 fully gauged catchments. However,
data from both partially gauged and fully gauged catchments are included
in the observation sample (see Section 5.2). For the 83 fully gauged catch-
ments in Figure 5, 53 % of the catchments were nested with a fully gauged
or a partially gauged catchment.
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Figure 5: Mean annual runoff for 1981-2010 for 260 catchments in southern
Norway where only 83 of them are fully gauged (i.e. have annual data for each
year in the study period). The 83 fully gauged catchments have black borders in
the above plot. In addition, there are data available from 177 so-called partially
gauged catchments. These have at least one annual observation between 1981-
2010 and are visible as catchments without borders in the above figure. Among
the 83 fully gauged catchments, 44 catchments are nested (53 %) while 39 catch-
ments don’t overlap with any other catchment in the dataset. Data from the
catchments in this figure are used to evaluate the framework’s ability to estimate
mean annual runoff.

3 Statistical methodology

In Section 4 we present two Bayesian geostatistical models for runoff inter-
polation particularly suitable for sparse datasets containing several missing
values. First, some statistical background is necessary.

3.1 Bayesian statistics and hierarchal modeling

The goal in hydrology is to learn about processes related to hydrological
variables like daily rainfall, annual runoff or the 5th percentile flow. To
gain knowledge about the different hydrological processes, relevant data
are collected. There are always uncertainties related to the data that must
be accounted for in an analysis, and which make a statistical analysis
appropriate.

Assuming x = (x1, ..., xn) is a vector consisting of hydrological variables of
interest, e.g. the annual runoff at several locations for a specific year, the

12



observation likelihood π(y|x) expresses how the data y = (y1, ..., yn) are
connected to the truth x. In the classical frequentist stastistical approach,
the variables in x are considered as unknown, but fixed. In the Bayesian
approach however, x is considered to be a quantity whose variation can be
described by a probability distribution (see e.g. Casella and Berger (1990)).
Prior to the analysis, this probability distribution is expressed through
what is called a prior distribution π(x). This is constructed based on ex-
pert knowledge about the variable(s) of interest. The goal of the Bayesian
analysis is to update the prior distribution by using data. Through Bayes’
formula, the so-called posterior distribution of x is obtained:

π(x|y) = π(x)π(y|x)
π(y)

∝ π(x)π(y|x). (1)

Next, the marginal distribution π(xi|y) for xi ∈ x can be integrated out,
and a prediction of xi can be summarized through e.g. the mean, median
or the mode of the posterior distribution π(xi|y).
If a complex process is under study, it is sometimes easier to model it
by thinking of its mechanisms in a hierarchy of underlying processes or
distributions (Banerjee et al., 2004). The annual runoff x can e.g. be
thought of as a process that depends on some parameters θ that express
the spatial correlation between locations. Here, both x and θ are stochastic
variables with prior (and posterior) distributions. A Bayesian model of this
type is typically expressed as a three-staged hierarchical model where the
first stage consists of the observation likelihood π(y|x,θ), the second stage
is the prior distribution π(x|θ), often referred to as the latent model or
process model, while the third stage is the prior distribution of the model
parameters π(θ). As before, Bayes’ formula can be used to make inference
about the variables of interest x, but also about the model parameters
θ given the set of observations y. In this study we use a three-staged
hierarchical Bayesian model to model annual runoff.

3.2 Gaussian random fields

Gaussian random fields (GRFs) are commonly used to model environmen-
tal variables like precipitation, runoff and temperature or other phenomena
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that are continuous in space and/or time. In this analysis, the second stage
of the Bayesian hierarchical model consists of GRFs that model the spatial
dependency of runoff between catchments. A continuous field {x(u);u ∈
D} defined on a spatial domain D ∈ R2 is a GRF if for any collection of lo-
cations u1, ...,un ∈ D the vector (x(u1), ..., x(un))

T follows a multivariate
normal distribution (Cressie, 1993), i.e. (x(u1), ..., x(un))

T ∼ N (μ,Σ)
where μ is a vector of expected values and Σ is the covariance matrix.
The covariance matrix Σ defines the dependency structure in the spatial
domain, and element (i, j) is typically constructed from a covariance func-
tion C(ui,uj). The dependency structure for a spatial process is often
characterized by two parameters: The marginal variance σ2 and the range
ρ. The marginal variance provides information about the spatial variabil-
ity of the process of interest, while the range gives information about how
the covariance between the process at two locations decays with distance.
The range is defined as the distance at which the correlation between two
locations in space has dropped to almost 0. If the range and the marginal
variance are constant over the spatial domain, we have a stationary GRF.

In this study, the involved GRFs have their dependency structure specified
by a stationary Matérn covariance function that is given by

C(ui,uj) =
σ2

2ν−1Γ(ν)
(κ||uj − ui||)νKν(κ||uj − ui||). (2)

Here, ||uj − ui|| is the Euclidean distance between two locations ui,uj ∈
Rd, Kν is the modified Bessel function of the second kind and order ν > 0,
Γ(·) is the gamma function and σ2 is the marginal variance that controls
the spatial variability (Guttorp and Gneiting, 2006). The parameter κ is
the scale parameter, and it can be shown empirically that the spatial range
can be expressed as ρ =

√
8ν/κ, where ρ is defined as the distance at which

the correlation between two locations has dropped to 0.1. Using a Matérn
GRF is convenient for computational reasons because it makes it possible
to use the SPDE approach to spatial modeling from Lindgren et al. (2011)
which is briefly described in Section 4.3.
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3.3 Kriging and Top-Kriging

Within the geostatistical framework, Kriging approaches have shown promis-
ing results for interpolation of hydrological variables (see e.g. Gottschalk
(1993), Sauquet et al. (2000) or Merz and Blöschl (2005)). In Kriging
methods, the target variable is represented as a random field, typically a
Gaussian random field x(u) defined through a covariance structure and
some unknown parameters. The process of interest is observed at n loca-
tions u1, ...,un, and any unknown parameters can be estimated based on
e.g. maximum likelihood procedures. Furthermore, to estimate the value
of the variable x̂(u0) at an unobserved location u0 a weighted average of
the observations is used, i.e.

x̂(u0) =
n∑

i=1

λix(ui), (3)

where λi are interpolation weights and x(ui) for i = 1, ..n are observed
values. The interpolation weights are computed by assuming that x̂(u0) is
the Best Linear Unbiased Estimator (BLUE) of x(u0). That is, we deter-
mine x̂(u0) by finding the weights that both minimize the mean squared
error and that give zero mean expected error (Cressie, 1993). Mark that
the consequence of the latter, is that the Kriging weights are restricted to
sum to 1, i.e.

∑n
i=1 λi = 1 if we assume that the process is homogeneous

in space.

Further, to minimize the mean squared error of the Kriging-predictor in
Equation (3), the covariance function (or variogram) must be estimated
and evaluated. The covariance function typically depends on the distance
between the observations and the target locations, such that observations
measured close to the target location u0 are weighted more than obser-
vations further away. In many hydrological applications, the centroids of
the catchments are used to compute the catchment distances (Merz and
Blöschl, 2005; Skøien et al., 2003), but as mentioned in the introduction
this can lead to a violation of basic mass conservation laws. The reason is
that streamflow variables are connected to (catchment) areas, not single
point locations. Catchments are also organized into subcatchments, and
this should be considered when computing the Kriging weights.
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The Top-Kriging approach suggested by Skøien et al. (2006) is an ex-
ample of a method that takes the nested structure of catchments into
account. In this method, the streamflow observations are interpreted as
areal referenced, and the covariance is computed based on the pairwise
distances between all grid nodes in a discretization of the involved catch-
ments. This way, observations from a subcatchment can be weighted more
than observations from nearby, non-overlapping catchments. Top-Kriging
is currently one of the leading methods for interpolation of hydrological
variables (Viglione et al., 2013) and is therefore chosen as a benchmark
when we evaluate our new interpolation approach.

3.4 Methods for exploiting short records (record augmen-
tation techniques)

The framework we suggest is both a framework for spatial interpolation
and a framework for record augmentation. There exist several approaches
for record augmentation for which many of them are based on developing a
linear relationship between the target catchment and one or several catch-
ments with longer time series of runoff (Fiering, 1963; Laaha and Blöschl,
2005; Matalas and Jacobs, 1964). One class of approaches is the mainte-
nance of variance extension (MOVE) methods. MOVE methods are based
on developing a linear relationship between the target catchment and the
donor(s) catchment(s) by assuming that the sample mean and sample vari-
ance of runoff are maintained over time for the target catchment (Hirsch,
1982). There are different ways the sample mean and sample variance
can be estimated, giving different estimators for the predicted runoff. An-
other way to develop a linear relationship between a donor and a target
catchment, is to use simple linear regression (Hirsch, 1982). In this article,
we use simple linear regression as a benchmark method, in addition to
Top-Kriging.

Assume annual runoff is observed for year 1, ..., n in the target catchment
and that there exist annual runoff data from some other catchments for
year 1, ..., n + m. Simple linear regression is performed by first finding
a so-called donor catchment for the catchment of interest. This can be
e.g. the closest catchment in space or a catchment with similar catchment
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characteristics (elevation, annual precipitation, vegetation). Next, it is
assumed that there is a linear relationship between the annual runoff in the
target catchment and the donor catchment, yi = β0+β1xi+εi for i = 1...n,
where yi is the the annual runoff in the target catchment, xi is the annual
runoff in the donor catchment, εi is normal distributed measurement error
N (0, σ2) with fixed (but typically unknown) variance σ2, and β0 and β1 are
coefficients that must be estimated. The linear relationship between the
two catchments is developed by estimating β0 and β1 by minimizing the
sum of least squares,

∑n
i=1(yi− (β0+βxi))

2. Next, the linear relationship
can be used to estimate the runoff at the target catchment yn+1, ..., yn+m

based on xn+1, ..., xn+m with corresponding uncertainty estimates.

4 A geostatistical framework for exploiting long-
term averages and short records

In this section we present the suggested Bayesian geostatistical framework
for runoff interpolation. We start by developing a three staged hierarchical
model for annual runoff consisting of a process model, an observation likeli-
hood and prior distributions as described in Section 3.1. Next, we highlight
two model properties that make the suggested framework different from
most other methods used for interpolation in hydrology (Section 4.2) and
explain how the framework is made computationally feasible (Section 4.3).

4.1 Hierarchical model for annual runoff

4.1.1 True annual runoff (process models)

Let the spatial process {qj(u) : u ∈ D} denote the runoff generating
process at a point location u in the spatial domain D ∈ R2 in year j. The
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true annual runoff generated at point location u in year j is modeled as

qj(u) = βc + c(u) + βj + xj(u) j = 1, .., r, (4)

π(βc) ∼ N (0, (10000 mm/year )2);

π(βj |σβ) ∼ N (0, σ2
β)

π(c(u)|ρc, σc) ∼ GRF(ρc, σc)

π(xj(u)|ρx, σx) ∼ GRF(ρx, σx)

where βc is an intercept common for all years j = 1, ..r that models the
average runoff in the study area over time, while βj is a year specific in-
tercept that models the annual discrepancy from the long-term average
runoff. Likewise is c(u) a spatial effect that models the long-term spatial
variability of runoff that is caused by climatic conditions in the study area,
while xj(u) is a year specific spatial effect that models the spatial vari-
ability due to annual discrepancy from the climate. We emphasize that
in this context, climate is for simplicity used as a collective term that de-
scribes both runoff generation caused by long-term weather-patterns and
the runoff generation due to catchment characteristics like e.g. elevation
and slope. The two spatial effects are modeled as Gaussian random fields
(GRFs) with zero mean and stationary Matérn covariance functions with
ν = 1, given a range and a marginal variance parameter; c(u) with range
parameter ρc and marginal variance σ2

c , and xj(u) with range parameter
ρx and marginal variance σ2

x. Furthermore, the spatial fields xj(u) for
j = 1, .., r are assumed to be independent realizations, or replicates, of the
same underlying field to increase the identifiability of the model parame-
ters (Ingebrigtsen et al., 2015). The same applies for the year-dependent
intercepts βj that are all assigned a Gaussian prior N (0, σ2

β) given the vari-
ance parameter σ2

β . The intercept βc is assigned the weakly informative
wide Gaussian prior N (0, (10000 mm/year )2).

So far, runoff has been defined for point locations in space. However, runoff
observations are linked to catchment areas, and we need to define the true
average annual runoff generated inside a catchment A. We suggest two
alternative models: The first model is denoted the areal model. For the
areal model, the true annual runoff in catchment A in year j is given by
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the average point runoff over the catchment area, i.e.

Qj(A) =
1

|A|
∫
u∈A

qj(u)du, (5)

where |A| is the catchment area and qj(u) is the point runoff from Equation
(4). Interpreting annual runoff as an integral of point runoff ensures that
the water balance is approximately preserved for the posterior mean runoff
for any point in the landscape. Thus, the areal model is a model for mass-
conserved hydrological variables. It also gives a realistic representation
of distances and hence also the correlation between the catchments under
study (see Equation (2)).

The second model for the annual runoff generated inside a catchment area
is denoted the centroid model. For the centroid model, the true average
annual runoff inside a catchment A in year j is given by

Qj(A) = qj(uA), (6)

where qj(uA) is the point runoff from Equation (4), and uA is the centroid
of catchment A. This alternative does not provide a preservation of the
water balance for the posterior mean predicted runoff and can be used
for any point referenced environmental variable. Distances are measured
between catchment centroids, such that this method is more similar to the
traditional Kriging-methods described in Section 3.3.

4.1.2 Observation likelihood

The true annual runoff from Section 4.1.1 is observed with uncertainty
through streamflow data from n catchments which we denote A1, ...,An.
We use the following model for the observed runoff yij in catchment Ai in
year j

yij = Qj(Ai) + εij ; i = 1, ..n, j = 1, .., r. (7)

π(yij |σy) ∼ N (Qj(Ai), sijσ
2
y).

Here, Qj(Ai) is the true runoff from Equation (5) if we use the areal model,
or the true runoff from Equation (6) if we use the centroid model. The
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error terms εij are identically, independently distributed as N (0, sijσ
2
y)

given the parameter σ2
y , and we assume that each observation has its own

uncertainty by scaling the variance parameter σ2
y with a fixed factor sij

that is further specified in Section 4.1.3.

Through the observation likelihood and the areal formulation of annual
runoff from Equation (5), the areal model puts (soft) constraints on the
annual runoff over the catchment areas of the gauged catchments. This
way the areal model is able to influence the model to distribute the ob-
served annual runoff within the catchment areas and not only at certain
gauging points which is what the centroid model does. This represents a
potential benefit for the areal model compared to the centroid model when
modeling runoff. However, imposing constraints on areas also comes with
a computational cost.

4.1.3 Prior models

According to the model specification in Section 4.1.1 and 4.1.2, there are
6 model parameters in the suggested hierarchical model for annual runoff,
i.e. (σy, ρc, σc, ρx, σx, σβ). As we apply the Bayesian framework, these have
to be given prior distributions, and we use knowledge based priors for most
parameters. Note that since the priors are based on expert opinions about
the study area, they are specific for the Norwegian dataset and should be
modified before further use for other countries or environmental variables.

In the observation model for runoff in Equation (7), each observation is
allowed to have its own measurement uncertainty by scaling the variance
parameter σ2

y , with a fixed scale sij . This makes sense because the spatial
variability of mean annual runoff in Norway is large, with values ranging
from around 400 mm/year to 4000 mm/year, and heteroscedastic errors
can be expected (Petersen-Øverleir, 2004). In the specification of the prior
standard deviation

√
σ2
ysij , we assume that the measurement uncertainty

for runoff increases with the magnitude of the observed value yij . Based
on this we suggest the following scaling factors:

sij = (0.025 · yij/1000)2, (8)
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where yij is the observed runoff in catchment i in year j in mm/year. The
scaling factors are chosen based on what the data provider NVE believes
are realistic standard deviations for the observed values, around 2.5% of
the observed runoff. They are scaled down by 1000 to achieve appropriate
values for sijσ

2
y . For the variance parameter σ2

y , we use the penalized
complexity prior (PC prior) suggested by Simpson et al. (2017). The PC
prior is a prior constructed for the precision, i.e. the inverse of the variance,
and the PC prior for the precision τ of a Gaussian effect N (0, τ−1) has
density

π(τ) =
λ

2
τ−3/2 exp(−λτ−1/2), τ > 0, λ > 0, (9)

where λ is a parameter that determines the penalty of deviating from a
simpler base model. The parameter λ can be specified through a quantile
u and a probability α by Prob(σ > u) = α, where u > 0, 0 < α < 1 and
λ = − ln(α)/u. Here, σ = 1/

√
τ is the standard deviation of this Gaussian

distribution. In our case, we specify the PC prior for σy as

Prob(σy > 1500 mm/year) = 0.1. (10)

Recall that σy is scaled with sij in the final uncertainty model such that
a prior 95 % credible interval for the standard deviation

√
(σ2

ysij) for
the observed runoff in catchment Ai year j becomes (0.04, 6)% of the
observed value yij . This is a quite strict prior that is chosen in order to
influence the posterior observation uncertainty to be as low as possible.
The reason behind this modeling choice is further described in Section 4.2.
However, an observation uncertainty of 0.04-6 % of the observed value
also corresponds quite well to what NVE knows about the measurement
uncertainty for runoff in the study area. Percentages around 2.5% are as
mentioned realistic.

For the spatial ranges ρx and ρc and the marginal variances σ2
x and σ2

c for
the Gaussian random fields xj(u) and c(u), we use the joint informative
PC prior suggested in Fuglstad et al. (2019). It is specified through the
following probabilities and quantiles:

Prob(ρx < 20 km) = 0.1, Prob(σx > 2000 mm/year) = 0.1,

Prob(ρc < 20 km) = 0.1, Prob(σc > 2000 mm/year ) = 0.1.
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The percentages and quantiles are chosen based on expert knowledge
about the spatial variability in the area of interest. It is reasonable to
assume that locations that are less than 20 km apart are correlated when
it comes to runoff generation. In Norway the annual runoff varies from
around 300 mm/year - 6000 mm/year such that a marginal standard de-
viation that is below 2000 mm/year is reasonable. The parameters of the
climatic GRF c(u) and the year dependent GRF xj(u) are given the same
prior as it is difficult to identify if the spatial variability mainly comes
from climatic processes or from annual variations. We also want the data
to decide which of the two effects that dominates in the study area, and
in this way detect hydrological spatial stability or instability. Recall that
the phrase hydrological spatial stability here is used to describe a variable
and/or a study area that is characterized by an underlying spatial pattern
that is repeated over time.

As specified in Section 4.1.1, the year specific intercepts βj for j = 1, .., r
are all assigned the same Gaussian prior N (0, σ2

β) given the standard devi-
ation parameter σβ . The standard deviation σβ is given the PC prior
from Equation (9) specified by the wide prior P (σβ > 10 m/year) =
0.2. With this prior, the prior 95% credible interval is approximately
(0.002, 40.5) m/year for the standard deviation σβ of βj .

4.1.4 Feasible computation of catchment runoff for the areal
model

In the areal model in Equation (5), the true runoff is modeled as the
integral of point runoff over a catchment. To make the areal model com-
putationally feasible, the integral is calculated by a finite sum over a dis-
cretization of the target catchment. More specifically, if Li denote the
discretization of catchment Ai, the annual runoff in catchment Ai in year
j is calculated as

Qj(Ai) =
1

Ni

∑
u∈Li

qj(u), (11)

where Ni is the number of grid nodes in the discretization Li. In the
discretization of the catchments it is important that a subcatchment shares
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grid nodes with its overlapping catchment(s) such that the water balance
can be preserved. In our analysis, we use a regular grid with 4 km spacing.
It is also important that the discretization of the study area is fine enough
to capture the rapid changes of annual runoff in the study area. Otherwise,
non-realistic results such as negative runoff can occur.

4.1.5 Full model specification

Assuming that we observe runoff at n stream gauges for j = 1, ..r years and
that LD contains all grid nodes in the discretization of the catchments LAi

for i = 1, ..., n, the areal model in Section 4.1.1 - 4.1.4 can be summarized
as the following hierarchical geostatistical model:

π(y|x, σy) ∼
r∏

j=1

n∏

i=1

(I{Observation yij is available} · N (Qj(Ai), sijσ
2
y)

+ 1 · I{Observation yij is missing}) [Observation likelihood]

π(x|θ) = π (c(u1), ..., c(um)|ρc, σc) · π(βc) (12)

·
r∏

j=1

[π (xj(u1), ..., xj(um)|ρx, σx) · π(βj |σβ)] [Latent Model]

π(σy,θ) = π(ρx, σx) · π(ρc, σc) · π(σβ) · π(σy) [Prior]

where y is a vector containing all runoff observations yij from all catch-
ments i and years j, x is a vector containing all latent variables, i.e. the
intercepts βc, βj and the GRFs c(u·) and xj(u·) for all combinations of
grid nodes u1, ...,um ∈ LD and years j=1,..,r. Furthermore, Qj(Ai) is the
true annual runoff that is modeled as a function of the latent field x, while
I(·) is an indicator function that is equal to 1 if its argument is true, and
0 otherwise allowing for missing data and short records of runoff. Finally,
θ = (ρx, σx, ρc, σc, σβ). Together with σy it contains all model parameters.

The centroid model is summarized as a hierarchical model similarly, except
that the true annual runoff Qj(Ai) is given by Equation (6) instead of
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Equation (11). This also means that the grid nodes u1, ...,um in the above
hierarchical model must be replaced by uA1 , ...,uAn , i.e. the locations of
the centroids of the n catchments under study.

The purpose of Bayesian inference is to estimate the posterior distributions
of the latent variables x and the parameters θ based on the observations
y as described in Section 3.1. In this study, the resulting distributions are
used to quantify the variable of interest, the catchment runoff Qj(A). By
Equation (6) and Equation (11) we see that the catchment runoff is deter-
mined by the point runoff qj(u1), .., qj(um) which is again determined by
the latent field x through Equation (4). This means that in the process
of estimating the catchment runoff Qj(A) we always estimate the point
runoff qj(u) and the latent field x first. To clarify this process, consider
Figure 10 that is presented later in the article. This shows the posterior
mean runoff qj(u), or π(x|y) implicitly, for all points in the study area.
From these point estimates, predictions for the areal model Qj(A) are ob-
tained by taking the average of qj(u) over relevant grid nodes according
to Equation (11). For the centroid model, a catchment areal prediction
Qj(A) is obtained by simply extracting the value of qj(uA) at the catch-
ment centroid uA according to Equation (6). From the point referenced
predictions in Figure 10 we this way obtain catchment predictions like the
ones presented later in e.g. Figure 7.

From the hierarchical formulation in (12) we also note that the framework
takes the time dimension into account through multiplying the likelihood
for annual runoff over different years j = 1, ..r. These years don’t need
to be consecutive, which allows for e.g. combining old measurements from
closed stations with more recent data. Different years of data are connected
through the constant climatic component (c(u) + βc). Apart from this,
there is no temporal dependency in the model that assumes correlation
over time, and routing is not taken into account. This makes sense for
our suggested application, as there is no prominent time dependency for
annual runoff in Norway (see e.g. Figure 2b). Routing effects can typically
be neglected for time-aggregated runoff variables for longer time scales. For
shorter time scales for which routing has an impact, other spatio-temporal
models should be considered, for example the one in Skøien and Blöschl
(2007).
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4.2 Two model properties and contributions

In this section we highlight and describe two of the model properties that
make the suggested framework different from Top-Kriging and geostatisti-
cal interpolation methods that are typically used for hydrological applica-
tions.

4.2.1 Exploiting short records

The first property we highlight is how the model is particularly suitable for
exploiting short records of runoff, and this holds for both the areal model
and the centroid model. This property is already briefly addressed in
the introduction, and is enabled because we simultaneously model several
years of data with a spatial component c(u) that is common for all years
under study. The GRF c(u) represents the long-term spatial variability
of runoff. If most of the spatial variability can be explained by long-
term patterns, the marginal variance parameter σ2

c will dominate over
the marginal variance parameter σ2

x of the annual GRF xj(u) (and the
other model variances), i.e. σc � σx. Thus, a short record of runoff
from an otherwise ungauged catchment will have a large impact also for
predictions in years without data through c(u). On the other hand, if
most of the annual runoff is explained by year specific effects, xj(u) will
dominate over c(u) and short records will not have a large impact on
the final model. Hence, it is safe to include short records in the model
regardless of the weather-patterns in the study area.

Existing methods for exploiting short records are typically based on linear
regression or computing the correlation between the runoff in the target
catchment and one or several donor catchments, and in order to perform
these procedures the short record must be of length larger than one (Fier-
ing, 1963; Laaha and Blöschl, 2005). In the method we suggest, it is
possible to include a short record of length one, and it is already shown for
a smaller case study that this often is enough to see a large improvement
in the predictability of (annual) runoff for certain climates (Roksvåg et al.,
2020).
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Figure 6: Conceptual, simplified figure of a river network, for which the involved
catchments are discretized by 5 grid nodes u1, ..,u5, and each grid node represent
one areal unit. Catchment A1 contains all grid nodes u1, ..,u5, Catchment A2

consists of grid nodes u1 and u2, while Catchment A3 consists of grid nodes
u3,u4 and u5. Hence, this is a system of nested catchments where A1 covers
A2 and A3. Assume that there are observations of annual runoff at the outlet
of catchment A1 and catchment A2: Q(A1)=2000 mm/year and Q(A2)=1000
mm/year. Catchment A3 is ungauged. In order to fulfill water balance constraints
of the areal model from Equation (11), imposed by the likelihood in Equation
(7), the predicted mean annual runoff in catchment A3 must be around 2667
mm/year if we assume a low observation uncertainty.

4.2.2 The water balance constraints of the areal model

The second property we highlight only holds for the areal model, and is
related to its mass-conserving properties and its ability to do more than
smoothing: Runoff is in Equation (11) defined as an weighted sum of point
runoff. Through Equation (11) and the likelihood defined in Equation (7),
a (soft) constraint is put on the predicted annual runoff for the catchments
for which we have observations. This also has the consequence that the
suggested model allows us to predict values that are larger than any of the
observed values in the area of interest. As a conceptual example, consider
the river network in Figure 6, where each black node represents one areal
unit in the discretization of the catchments. The observed runoff is 1000
mm/year in the subcatchment and 2000 mm/year in the surrounding larger
catchment. That means that the constraints imposed by the observation
likelihood and Equation (11) are the following:
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1000 mm/year = (q(u1) + q(u2))/2 + uncertainty (13)
2000 mm /year = (q(u1) + q(u2) + q(u3) + q(u4) + q(u5))/5 + uncertainty.

As described in Section 4.1.3 we use a quite strict prior on the observation
uncertainty. This is done to try to force the above soft constraints to be
stronger. By solving this system of equations, it can be shown that the
predicted value in the ungauged catchment A3 must be

Q̂(A3) =
q(u3) + q(u4) + q(u5)

3
+ uncertainty = 2667 mm/year + uncertainty

where the above uncertainty term is determined by the observation uncer-
tainties for a fixed set of ranges and marginal variances. Hence, as long
as the observation uncertainty is sufficiently low, the predicted runoff in
the unobserved area A3 in Figure 6 is close to 2667 mm/year which is
larger than any of the observed values. This example illustrates that the
areal model is able to go beyond smoothing through its runoff constraints.
This makes the model different from many other interpolation methods,
that only rely on spatial smoothing. For the above example, such meth-
ods would typically produce a prediction between 1000 mm/year and 2000
mm/year.

The full areal model is of course slightly more complicated than the simple
example above, as prior distributions, covariance calculations and spatial
ranges must be taken into account. However the simple example illustrates
the general idea of how the observation likelihood interprets the areal ob-
servations and constrains runoff. That the full areal model actually is able
to conserve mass in practice, is demonstrated for a real case example from
Norway in Roksvåg et al. (2020).

The constraints in Equation (13) also show how the areal model ensures
consistent predictions over nested catchments: As the predicted runoff
in the main catchment A1 can be expressed as a weighted sum of the
predicted runoff in all its subcatchments depending on catchment areas,
i.e. as Q̂(A1) =

2
5Q̂(A2) +

3
5Q̂(A3), the water balance can not be violated

for the predicted runoff for any of the catchments in Figure 6. This means
that the equations in (13) correspond to water balance constraints.
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Compared to Top-Kriging, both Top-Kriging and the proposed method as-
sume that the underlying variable is linearly aggregated and mass-conserved
when performing covariance calculations. Top-Kriging is also able to pre-
dict larger values than any of the observed values by allowing negative
Kriging weights. However, Top-Kriging does not use constraints to en-
sure that the mass balance is preserved over nested catchments, as in the
above example. Consequently, the Top-Kriging predictions can more eas-
ily violate the water balance, which can have both benefits and drawbacks
depending on the target variable and the problem we are trying to solve.
Another hydrological model that uses water balance constraints, not un-
like the proposed method, is the Kriging approach in Sauquet et al. (2000)
where mass balance constraints are introduced as additional constraints in
the Kriging system of equations.

4.3 Inference

In order to make the framework described in Section 4 computationally
feasible, some simplifications of the suggested models are necessary. In
general, statistical inference on models including GRFs is slow when the
number of target locations is large because matrix operations on dense
covariance matrices are required. The computational complexity is partic-
ularly large for the areal model, because each grid node in the discretization
of the catchments can be regarded as a new target location, and because it
includes soft constraints. To solve the computational issues for the centroid
and areal model, we utilize that a GRF with a Matérn covariance function
can be expressed as the solution of a specific Stochastic partial differential
equation (SPDE) (Lindgren et al., 2011). This SPDE can be solved by us-
ing the finite element method (see e.g. Brenner and Scott (2008)), and the
result is a Gaussian Markov random field (GMRF). Working with GMRFs
is convenient because GMRFs have precision matrices (inverse covariance
matrices) that typically are sparse with more zero elements, and efficient
algorithms are available for sparse matrix operations (see e.g Rue and
Held (2005)). In this work, both GRFs xj(u) and c(u) are approximated
by GMRFs.

Another challenge with the suggested models, is that we suggest Bayesian
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models that include a large number of parameters for which the marginal
distributions must be estimated. Traditionally, Bayesian inference is done
by using Markov chain Monte Carlo-methods (MCMC), but inference can
be slow when the dimension of the problem is large (Gamerman and Lopes,
2006). These challenges are met by modeling runoff as a latent Gaussian
model (LGM). That is, the latent part x of the hierarchical model in
4.1.5 consists of only Gaussian distributions. More specifically, the prior
distributions for c(u) and xj(u) are modeled as GRFs, and the prior dis-
tributions for βj and βc are Gaussian given the model parameters (see
the equations in (4)). This is convenient, because it allows us to use in-
tegrated nested Laplace approximations (INLA) to make inference and
predictions. INLA is a tool for making Bayesian inference for LGMs (Rue
et al., 2009) and represents a fast and approximate alternative to MCMC
algoithms. The INLA approach is based on approximating the marginal
distributions by using Laplace or other analytic approximations, and on
numerical integration schemes. The main computational tool is the sparse
matrix calculations described in Rue and Held (2005), such that in order
to work fast, the latent field of the LGM should be a GMRF with a sparse
precision matrix. This requirement is fulfilled through the SPDE approach
as already outlined.

INLA in general provides approximations of very high accuracy for most
models (Rue et al., 2009; Martino et al., 2011; Eidsvik et al., 2012; Huang
et al., 2017), but has faced problems for some (more extreme) models
with binomial or Poisson data (Fong et al., 2009; Ferkingstad and Rue,
2015). For Gaussian likelihoods however, INLA is exact up to numerical
integration error. As we use Gaussian likelihoods in this work, we can
thus expect INLA to give reliable approximations. The SPDE approach
also provides accurate approximations (Lindgren et al., 2011; Huang et al.,
2017), but it is important that the mesh involved in the finite element
method computations is sufficiently dense relative to the spatial variability
and range in the study area.

Because of the high computational speed and accuracy, the INLA and
SPDE framework has become quite common to use within different fields
of science. See for example Khan and Warner (2018); Opitz et al. (2018);
Yuan et al. (2017); Guillot et al. (2014); Ingebrigtsen et al. (2014); Bakka

29



et al. (2018). We refer to the R-package r-inla for a user-friendly in-
terface for applying INLA and the SPDE approach to spatial modeling.
In particular, Moraga et al. (2017) is recommended for a description of
how a model with (catchment) areal data can be implemented in r-inla.
Furthermore, we have made code for the centroid model available on
http://www.github.com/tjroksva/runoffinterpolation (doi: 10.5281/zen-
odo.3630348) with example data from the catchments in Figure 1a.

5 Model evaluation

The main objectives of this article are to (1) evaluate the new framework’s
ability to fill in missing annual runoff observations and to (2) predict mean
annual runoff for catchments with varying record lengths. By this we also
want to (3) demonstrate the potential added value of including short runoff
records in the modeling compared to not using them. In this section we
present the experimental set-up and the evaluation criteria used to address
our research questions.

5.1 Experimental set-up for infill of missing annual obser-
vations (1996-2005)

To assess the framework’s ability to fill in missing values of annual runoff,
we do interpolation of runoff for the 10 hydrological years 1996-2005 for
the 180 fully gauged catchments shown in Figure 1a. This is done both
for series of annual runoff, and for the annual series of monthly runoff for
January, April and June described in Section 2.

The annual time series of monthly runoff are included in the analysis in
order to demonstrate the framework’s properties for hydrological variables
or areas that are driven by more unstable hydrological processes. For the
annual series of monthly runoff, the models from Section 4 are specified as
before: Considering predictions for January, Qj(Ai) in Equation (5) rep-
resents the true runoff in January for catchment Ai, year j, such that the
GRF c(u) represents the long-term spatial variability in January. Like-
wise, the GRF xj(u) represents the annual discrepancy from the climate
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in January, and yij is the observed runoff in January for catchment Ai year
j. The models for June and April are specified similarly, and for simplicity
we use the same prior distributions for all experiments.

In our assessment of the framework’s predictive performance for infill of
missing annual observations, the three following methods are compared:

Top-Kriging: Spatial interpolation with Top-Kriging. For Top-Kriging
each year (1996-2005) is interpolated independently from other years. Short
records on an annual (or monthly) scale don’t have an impact on years
without data. The default covariance function (or variogram) in the R
package rtop was fitted as this gave the most accurate results. This is a
multiplication of a modified exponential and fractal variogram model, the
same model as used in Skøien et al. (2006).

Areal model: Spatial interpolation with the model defined in Section 4
with true annual runoff given by the areal model from Equation (11). That
is, the annual runoff in a catchment is interpreted as the average point
runoff over the catchment area. All years are modeled simultaneously
(1996-2005) such that short records of data can influence years without
data.

Centroid model: Spatial interpolation with the model defined in Section
4 with true annual runoff given by the centroid model from Equation (6).
That is, annual runoff is interpreted as a process linked to point locations
in space (the catchment centroids), and not to catchment areas. All years
are modeled simultaneously (1996-2005) such that short records of data
can influence years without data.

The predictive performance of the three methods is evaluated by cross-
validation: The 180 catchments in Norway were divided into 20 groups or
folds, each containing 9 catchments. In turn each group was left out, and
annual or monthly runoff predictions were performed for these so-called
target catchments by using observations from the catchments in the other
groups. That is, we predict runoff for 1996-2005 for 9 target catchments
at once by using data from the remaining 171 fully gauged catchments,
and repeat the process for all 20 cross-validation folds. To evaluate and
compare the three methods described above, we do the following two tests:
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UG (ungauged): Assess the methods’ ability to fill in missing values for
ungauged catchments (denoted UG). That is, the target catchments are
treated as totally ungauged, and all their observations are left out of the
dataset when the predictions for 1996-2005 are performed.
PG (partially gauged): Assess the methods’ ability to fill in missing
values for partially gauged catchments (denoted PG). Each of the 9 target
catchments in the cross-validation group is allowed to have one annual
observation of runoff. That is, a short record of length one from the target
catchment is included in the observation likelihood in addition to the full
data series of runoff from the catchments in the other cross-validation folds.
The short record is drawn randomly from the ten years of observations
available for each target catchment. We perform predictions for 9 partially
gauged target catchments at once, for all 10 study years (for which one
of them is observed for each catchment), and repeat the process for all 20
cross-validation folds.

To make the results comparable, we use the same cross-validation groups
for both experiments (UG and PG) and methods (Top-Kriging, areal model
and centroid model), and remove the same set of annual observations for
PG across methods. For the PG-case, we also compare our models to
a method for exploiting short records from the target catchment. The
method we choose for comparison is simple linear regression, and we per-
form linear regression for the PG-case as follows:
Linear regression: The closest catchment in terms of catchment centroid
is used as a donor catchment and only catchments outside the target catch-
ment’s cross-validation group can be considered. Two annual observations
between 1996 and 2005 are randomly drawn from the target catchment,
and data from the donor catchment and target catchment are used to fit a
linear regression model on the form yi = β1xi+εi. Next, the model is fitted
as described in Section 3.4, and used to predict runoff for the target catch-
ment for 1996-2005 (where two of the years are observed). The reason for
using a short record of length two instead of one, is that at least two obser-
vations are required to fit a linear regression model with uncertainty. Also
mark that we have omitted the intercept β0 in the regression model, such
that we only have two unknown variables (β1 and σ2). We emphasize that
estimating the variables statistically based on only two pair of observations
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might not give the most reliable estimates, particularly when considering
σ2. However, the linear regression results can provide an intuition about
the target variable and how correlated the observation locations are over
time. A good performance for linear regression in this study, suggests that
the spatial pattern for the target variable is very stable and that a fair
prediction can be obtained by simply using the ratio of runoff between a
target catchment and a donor catchment for any chosen year to develop
a linear relationship between the two catchments. Hence, a short record
can be very valuable. Motivated by this, linear regression is treated as
an indicator for when our geostatistical method can be expected to per-
form particularly well, rather than as a recommended method for record
augmentation when having only two observations.

5.2 Experimental set-up for predictions of mean annual
runoff (1981-2010)

To assess the framework’s ability to estimate mean annual runoff, we use
annual data from 1981-2010 from the 260 catchments in Figure 5. Recall
that these catchments have at least one observation of mean annual runoff
between 1981 and 2010, but only 83 of them are fully gauged. This was
different from the experiments described in Section 5.1, where all the test
catchments were fully gauged before the cross-validation was performed.

For this experiment, we again compare the performances of Top-Kriging,
the areal and the centroid model. The areal model and the centroid model
are fitted for several years of annual runoff simultaneously, as before. As a
predictor for the mean annual runoff, we use the posterior distribution of
the climatic part of the model. This is given by c(uA)+βc for the centroid
model, where uA is the centroid of the catchment A of interest. For the
areal model it is given by the average c(ui) + βc over the grid nodes ui

in the discretization of the target catchment. Note that the climatic part
of the model must be re-estimated for each experiment or cross-validation
fold.

In order to interpolate mean annual runoff by using Top-Kriging, we have
to compute the mean annual runoff based on the annual observations for all
catchments before running the analysis. For catchments with less than 30
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annual observations we use the average of the 1-29 available observations
as an approximation for the mean annual runoff for 1981-2010. Next,
the mean annual runoff is interpolated by using Top-Kriging where the
uncertainty of the observations is specified as a function of record length.
This is the suggested approach from Skøien et al. (2006) for including short
records in the Top-Kriging framework. We set the observation variance
for a catchment with record length m to σ̂2/m, where σ̂ is the average
empirical standard deviation for the observed annual runoff taken over the
83 fully gauged catchments in our dataset, in this case σ̂ = 336 mm/year.
For the Top-Kriging experiments, we fit the same covariance model as in
Section 5.1.

The areal and centroid model and Top-Kriging are again evaluated by
cross-validation. The 83 fully gauged catchments from Figure 5 were di-
vided into 4 folds containing 20, 20, 20 and 23 catchments respectively, and
in turn observations from each fold were removed and predicted. This was
done for varying record lengths for the target catchments, more specifically
when 0, 1, 3, 5 or 10 randomly drawn annual observations from the target
catchments were included in the likelihood. We denote these settings UG,
PG1, PG3, PG5 and PG10. Note that while we only are able to assess
the predictive performance for the 83 fully gauged catchments in Figure 5,
data from the remaining 177 partially gauged catchments in Figure 5 are
used in the observation sample. This is in addition to the data from the
fully gauged catchments from the other folds.

5.3 Evaluation scores

To evaluate the predictions we use the root mean squared error (RMSE)
and the continuous rank probability score (CRPS). Having m pairs of
observations and predictions, the RMSE is computed as

RMSE =

√√√√ 1

m

m∑
j=1

(y∗j − ŷ∗j )2,

where y∗j is the observed value and ŷ∗j is the corresponding predicted value.
In our analysis, the posterior mean is used as a the predicted value for the
areal and centroid model.

34



The CRPS is defined as

CRPS(F, y∗) =
∫ ∞

−∞
(F (s)− 1{y∗ ≤ s})2ds,

where F () is the predictive cumulative distribution and y∗ is the actual
observation (Gneiting and Raftery, 2007). For the methods we test (areal,
centroid, Top-Kriging and linear regression), F () is a Gaussian distribution
with mean equal to the predicted value and standard deviation equal to
the standard deviation of the prediction.

For the experiments related to infill of individual years, the CRPS and
RMSE are first computed for each of the 180 catchments in the dataset
based on 10 pairs of predictions and observations. The average RMSE
and CRPS over all catchments are used as a summary scores. For the
experiments related to predictions of mean annual runoff, there is only one
(mean annual) prediction for each catchment, and the RMSE and CRPS
over all catchments are reported. Both the CRPS and the RMSE are
negatively oriented such that low scores mean better predictions.

To be able to compare the RMSE and CRPS across methods we use a
paired Wilcoxon Signed-Rank Test (Siegel, 1956). This is a non-parametric
test that does not require normal distributed data. The null hypothesis
of the test is that the median difference between pairs of data (in this
case pairs of RMSE or CRPS values) follows a symmetric distribution
around zero. The alternative hypothesis is that the difference between the
data pairs does not follow a symmetric distribution around zero. If the
null hypothesis is rejected, it indicates that one of the methods gives a
significantly smaller RMSE or CRPS than another method.

In addition to the RMSE and the CRPS, we report the 95 % coverage of the
experiments. The 95 % coverage is computed by calculating the amount of
the actually observed runoff values that are within the corresponding 95 %
posterior prediction intervals. Here, we make posterior prediction intervals
for Top-Kriging and linear regression by assuming that the predictions are
Gaussian. A 95 % coverage close to 0.95 is optimal and indicates that the
model provides an accurate representation of the underlying uncertainty.

We also want to compare our mean annual runoff results with other studies
of mean annual runoff, more specifically the studies collected in Blöschl
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et al. (2013). In Blöschl et al. (2013), the absolute normalized error (ANE)
and the squared correlation coefficient (r2) are used as evaluation scores.
The ANE is computed as

ANE =
|ŷ∗ − y∗|

y∗
, (14)

where y∗ and ŷ∗ are the observed and predicted value as before. The
ANE divides the absolute difference between the actual observation y∗ and
corresponding prediction ŷ∗ by the observed runoff, and is therefore scale
independent. An ANE close to zero corresponds to an accurate prediction.

Finally, the squared correlation coefficient between m pairs of observations
and predictions is computed as

r2 = (Cor{(y1, ..., ym), (ŷ∗1, ..., ŷ
∗
m)})2, (15)

where Cor(·, ·) denotes the Pearson correlation. An r2 close to 1 indicates
a high correlation between the predicted and observed values.

6 Results

6.1 Predictions for individual years (1996-2005)

We now present the results related to the framework’s ability to predict
runoff for individual, missing years for the annual time series of annual
and monthly runoff for a 10 year period (1996-2005). First, we present
the results for the ungauged catchments (UG), before we proceed to the
partially gauged catchments (PG) that have short records of length one.

6.1.1 Infill for ungauged catchments (UG)

For the ungauged case (UG), the target catchments are treated as to-
tally ungauged for the ten study years 1996-2005, and missing values are
predicted both for annual and monthly runoff. In Figure 7 the resulting
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Figure 7: Average posterior mean for Qj(A), average posterior standard devi-
ation for Qj(A) and average RMSE for each catchment for predictions of miss-
ing annual observations in southern Norway for j = 1, ..10 for the areal model
(A,left), the centroid model (C, middle) and Top-Kriging (TK, right) when the
target catchments are treated as ungauged (UG). The observed mean annual
runoff is also included as a reference (first plot).

average predicted annual runoff in southern Norway is presented for Top-
Kriging, the areal model and the centroid model. The three methods give
similar results for the posterior mean, and all are able to reproduce the true
spatial pattern of annual runoff. Furthermore, the RMSE plots in Figure 7
show that the three methods succeed and fail for many of the same catch-
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ments. Here, we should keep in mind that the RMSE is scale dependent
and might not give the best impression of the relative performance across
the study area. However, we note that many of the catchments with high
RMSE values typically are small catchments located in western Norway.
We will come back to these catchments in Section 6.1.2 to see how the
predictions here were affected when including a short record.

Table 1: Predictive performance for predictions of missing annual values in
ungauged catchments (UG) and partially gauged catchments (PG) for the areal
model, centroid model, Top-Kriging (TK) and simple linear regression (LR). The
best performance in each row is marked in bold. The RMSE and CRPS were
compared across methods by using a one sided paired Wilcoxon Signed-Rank
test for assessing the significance of the results. Results that were significantly
better than other results are marked with stars.

RMSE [mm/year] CRPS [mm/year] Coverage 95 %
Case Dataset Areal Centr. TK LR Areal Centr. TK LR Areal Centr. TK LR
UG Annual 337 343 310 * - 242 249 225* - 0.92 0.91 0.94 -
UG January 39 37 36 * - 26 25 24* - 0.92 0.89 0.93 -
UG April 38 38 37 - 25 25 24 - 0.89 0.85 0.93 -
UG June 87 96 82 * - 59 67 56 * - 0.91 0.84 0.91 -
PG Annual 171 ** 184 ** 290 178 ** 105** 113 ** 201 240 0.95 0.94 0.95 0.96
PG January 30** 30** 33 61 19** 20** 21 88 0.91 0.89 0.91 0.95
PG April 31** 33 ** 35 50 20 ** 21 ** 22 94 0.86 0.84 0.94 0.96
PG June 55 ** 63 ** 78 95 35 ** 42 ** 50 136 0.90 0.84 0.93 0.96

* The RMSE/CRPS is significantly lower than the RMSE/CRPS of the areal and the
centroid model on a 5 % significance level.
** The RMSE/CRPS is significantly lower than the RMSE/CRPS of Top-Kriging on
a 5 % significance level.

Considering the posterior standard deviation in Figure 7, we notice that
Top-Kriging and the areal model provide a similar quantification of the pre-
dictive uncertainty. Top-Kriging and the areal model take the nestedness
of catchments into account by interpreting the runoff data as areal refer-
enced, providing a predictive standard deviation of runoff that varies with
the size of the target catchment: Figure 7 shows that smaller catchments
typically have a larger predictive uncertainty, which is reasonable. For the
centroid model, runoff observations are point referenced and weighted inde-
pendently of catchment size. Consequently, the predictive uncertainty only
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depends on how the centroids of the observed catchments are distributed
in space, and decreases in areas where there are clusters of data. The pre-
dictive uncertainties provided by Top-Kriging and the areal method are
thus more intuitive and realistic considering the process we are studying.
The latter is also reflected in the coverage percentages presented in Table
1. The coverages show the amount of the actual observations that were
captured by the corresponding 95 % prediction intervals, and these are
slightly closer to 0.95 for Top-Kriging and the areal model compared to
the centroid model.

Table 1 also presents the summary scores for the predictive performance for
infill of missing values for ungauged catchments for all methods. According
to the RMSE and CRPS, Top-Kriging is a better interpolation method
than our two suggested methods for ungauged catchments. However, the
boxplots in Figure 8 illustrate the distribution of RMSE for all catchments,
and we see that on a monthly scale, the difference between Top-Kriging
and the two other methods is quite low from a practical point of view. For
January and April the differences are almost negligible.
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Figure 8: Distribution of RMSE [mm/year and mm/month] for infill of missing
values for all catchments and years (1996-2005) when the target catchments are
treated as ungauged (UG) in the cross-validation for the areal, centroid and Top-
Kriging (TK) method. The lower and upper quartiles correspond to the first and
third quartiles (the 25th and 75th percentiles), and the whiskers extend from the
quartiles no further than 1.5· IQR, where IQR is the distance between the first
and third quartile. The same applies for all boxplots presented in this paper.
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Figure 9: Distribution of RMSE [mm/year and mm/month] for infill of miss-
ing values for all catchments and years (1996-2005) for the areal model, centroid
model and for Top-Kriging (TK) when the target catchments are treated as par-
tially gauged (PG), i.e. a short record of length one from the target catchment is
included in the observation likelihood in the cross-validation. Results for linear
regression (LR) are also included here.

6.1.2 Infill for partially gauged catchments (PG)

For the partially gauged (PG) case, each target catchment is allowed to
have a short record of length one for Top-Kriging, the areal and centroid
model, and length two for linear regression. Before we comment the results
from the cross-validation in Table 1 and Figure 9, we consider the posterior
estimates of the range parameters (ρx and ρc) and the marginal variance
parameters (σx and σc) of the year-specific GRF xj(u) and the climatic
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GRF c(u) for our four datasets. These are shown in Table 2 and indicate
how much of the spatial variability that is captured by the climatic GRF
relative to the annual GRF. In particular, if σc dominates over σx, it
suggests hydrological spatial stability.

Table 2: The posterior mode of the range parameters ρc and ρx and the marginal
standard deviations σc and σx of the climatic and the annual GRFs c(u) and
xj(u) for the areal model (upper) and centroid model (lower). The posterior
standard deviations of the parameters are shown in parenthesis as a measure of
the uncertainty. The mode and standard deviations vary between the experiments
and groups in the cross-validation, and the values given here are the mean over all
folds and experiments (UG and PG). The spatial effect that dominates (annual
or climatic) is marked in bold.

Areal model ρc [km] ρx [km] σc [mm/year] σx [mm/year]
Annual 58 (7) 476 (65) 880 (56) 267 (23)
January 31 (7) 247 (22) 72 (6) 83 (4)
April 77 (14) 239 (32) 75 (6) 48 (3)
June 43 (5) 153 (22) 181 (9) 75 (3)

Centr. model ρc [km] ρx [km] σc [mm/year] σx [mm/year]
Annual 89 (12) 659 (77) 750 (57) 263 (22)
January 82 (15) 369 (44) 60 (6) 88 (7)
April 118 (19) 375 (51) 66 (4) 52 (5)
June 69 (9) 335 (47) 161 (12) 71 (6)

The estimates in Table 2 show that the hydrological spatial stability is
largest for June and for annual runoff, as expected from the time series in
Figure 2b and Figure 4. Here, the posterior mode for σc is more than twice
as large as the posterior mode for σx for both the areal and the centroid
model. Furthermore, we see in Table 2 that the climatic range ρc is only
around 12 % of the annual range ρx. In Figure 10 we have illustrated
the spatial pattern these parameters give for annual predictions in 1997
and 1998 for the whole study area. We see that the annual runoff for
1997 and 1998 have the same spatial pattern, and that this spatial pattern
mostly originates from c(u), i.e. climatic conditions including catchment
characteristics. The trend we see in Figure 10 can also be seen for the
remaining eight years in the dataset (1996,1999-2005), as well as for June.
A spatial pattern like this, with σc � σx and ρc < ρx, suggests that the
information gain from neighboring catchments further away is low for an
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Figure 10: From left to right: The climatic part of the model (common for
all years), the annual (year dependent) part of the model and the full model
qj(u) for annual runoff in 1997 and 1998 [mm/year]. Note that the scales of the
middle plots only cover 25 % of the scale of the other plots. We see that most
of the spatial variability of annual runoff for 1997 and 1998 can be explained by
climatic effects, and that the climatic range ρc is considerably smaller than the
year specific range ρx. The results above are produced by the centroid model, and
plots similar to these are behind all results presented for the areal and centroid
model in this article.

ungauged catchment, and that the potential information stored in short
records is high.

For January however the situation is different: The posterior mode of σx
is larger than the posterior mode of σc for both the areal and the centroid
model. The parameters show that for January, year-specific effects explain
a larger part of the spatial variability. This can be due to a more unstable
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hydrological setting with runoff driven by snow accumulation and snow
melt. For April, we have that σc > σx, but σc is less dominant than for
June and for the annual data.

In the areal and centroid model, the inclusion of a short record changes the
climatic spatial field c(u), and hence the predictions can be considerably
changed for the target catchment if the climatic effect is strong. The
parameter values thus suggest that the gain of including short records is
lower for April and January compared to the other two datasets. This
is confirmed by comparing the RMSE and CRPS for the areal and the
centroid model for the partially gauged case (PG), to the RMSE and CRPS
obtained for the ungauged case (UG) in Table 1. For all datasets, the
RMSE and CRPS for our two models are reduced for PG compared to
UG, but the reduction is lower for January and April than for June and
the annual data. For the annual predictions, the RMSE and CRPS are
reduced by more than 50% when a short record of length one from the
target catchment is included in the observation likelihood. The reduction
for June is also remarkable (around 35-40 %), while the reduction for
January and April is moderate (around 13-20 %). The results hold for both
the areal and centroid model, but the areal model seems to be somewhat
better than the centroid model in terms of exploiting short records of
data from the target catchment. This is again related to the parameter
estimates in Table 2, where we see that σc dominates more over σx in the
areal model than in the centroid model.

Considering the results for Top-Kriging in Table 1, we only obtain a small
reduction in the RMSE and CRPS for the partially gauged case (PG) com-
pared to the ungauged case (UG). This is because Top-Kriging treats each
year of data independently when considering infill of missing annual data.
A reduction in RMSE and CRPS is only seen for the specific year with
extra data. This is different from our framework where several years of
data are modeled simultaneously. The evaluation scores in Table 1 and
the boxplots in Figure 9 clearly show that our two suggested methods out-
perform Top-Kriging for the partially gauged case for annual predictions
and monthly predictions in June, which were the two time-scales with most
hydrological spatial stability (σc � σx). For January and April the three
models are more similar in predictive performance.
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For the PG case, we also compare the areal and the centroid model to sim-
ple linear regression. According to Table 1 and Figure 9 linear regression
performs quite well for the annual data, which represent the most hydro-
logically spatially stable dataset. Linear regression actually provides the
second lowest RMSE of all four methods for annual predictions. However,
recall that a short record of length two from the target catchment is needed
to use this method, while our areal model performs slightly better with a
short record of length one (and observations from other neighboring catch-
ments). For January, April and June, linear regression is outperformed by
the three other methods in terms of RMSE and CRPS (Table 1).
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Figure 11: All observations for 1996-2005 compared to the corresponding pre-
dictions for the ungauged case (UG, left) and the partially gauged case (PG,
right) for annual predictions (Figure 11a) and for April (Figure 11b). The pre-
dictions are performed by the areal model. The straight line represents a perfect
correspondence between prediction and actual observation.

To illustrate the possible gain of including (very) short records of data
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Figure 12: Average posterior mean Qj(A) (upper), average posterior standard
deviation (middle) and RMSE (lower) for j = 1, ..10 for predictions of missing
annual observations for the areal model for the ungauged case (UG, left) and the
partially gauged case (PG, right).

from the target catchment, we present four scatter plots that compare the
predicted values produced by the areal model to the actual observations of
runoff (Figure 11). For the annual predictions in Figure 11a, the predic-
tions for PG are considerably more concentrated around the straight line
that indicates a perfect fit, than the predictions for UG. There are similar
results for June, whereas the difference between the ungauged and partially
gauged case is not that prominent for April (see Figure 11b) and January.
Furthermore, the April scatter plots demonstrate that (very) short records
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don’t lead to a poorer predictive performance, even if April is a month
driven by more unstable hydrological patterns. The predictions are simply
not substantially affected by the new data points that are included in the
likelihood, as we can see in Figure 11b. In our model, the risk of including
very short records is low because climatic effects c(u) are adjusted rela-
tive to year specific effects xj(u) by statistical inference. This way short
records can safely be included in the modeling regardless of the underlying
weather patterns and the degree of hydrological spatial stability.

In Figure 7 we saw that all three interpolation methods were able to re-
produce the true spatial pattern of annual runoff when filling in missing
annual values for ungauged catchments (UG). However, all three methods
produced high RMSE values for some of the catchments. These were typ-
ically small catchments located on the western coast of Norway. Figure
12 shows the impact of including a short record of length one for these
catchments. It compares the annual predictions from the ungauged case
(UG) to the annual predictions from the partially gauged case (PG) for
the areal model. We see a large reduction in the RMSE for many of the
catchments, and a (realistic) reduction of the posterior standard deviation.
We also see that a few of the catchments obtain a decrease in predictive
performance when short records are included, but the overall tendency is
clear: The gain of including short records for annual predictions in Norway
is high, and the suggested framework is able to exploit this property.

6.2 Predictions of mean annual runoff (1981-2010)

So far, we have presented an evaluation of the framework’s ability to fill
in missing annual observations of runoff for a 10 year period (1996-2005).
We now present the evaluation of the framework’s ability to predict mean
annual runoff for a 30 year period as a whole (1981-2010), as described in
Section 5.2.

Figure 13 shows the RMSE and CRPS for the predictions of mean annual
runoff for Top-Kriging, the areal and the centroid model as a function
of record length (0, 1, 3, 5 and 10). The record length is the number
of annual runoff observations available from the target catchment in the
cross-validation. We find that Top-Kriging again performs best for the
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Figure 13: RMSE and CRPS as a function of record length (0, 1, 3, 5 and 10) for
predictions of mean annual runoff for 1981-2010 for 83 fully gauged catchments
in southern Norway.

ungauged case (short record length 0), while the centroid model performs
slightly better than the areal model for ungauged target catchments. Fur-
thermore, the RMSE and CRPS decrease with increasing record length
for all three methods. However, Figure 13 shows that our areal and cen-
troid models outperform Top-Kriging for record lengths larger than 0: The
overall difference between our framework and Top-Kriging is around 30-60
mm/year in terms of RMSE, which is a considerable difference when the
RMSE values are around 100-200 mm/year.

Furthermore, we notice the large increase in predictive performance when
including a (very) short record of length one (PG1 in Figure 13). The
reduction in RMSE and CRPS is 45-50 % from the UG to the PG1 case
for the areal and centroid model. These results are thus comparable to the
results we obtained for the experiments related to infill of missing annual
values (Section 6.1).

To be able to compare our findings with other studies, we also included
plots of the the absolute normalized error (ANE) and the squared correla-
tion coefficient (r2) for the experiments. These can be found in Figure 14
and 15, and are referred to in the discussion (Section 7.2). Also according
to these scale independent evaluation criteria the overall results are that
for ungauged catchments Top-Kriging performs best, while when there are
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short records available, our framework performs better.
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Figure 14: Absolute normalized error (ANE) for the areal model (A), centroid
model (C) and Top-Kriging (TK) for predictions of mean annual runoff in un-
gauged catchments (UG, left) and in partially gauged catchments with short
records of length one (PG1, middle) and length five (PG5 right).
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Figure 15: The squared correlation coefficient (r2) for predictions of mean annual
runoff for catchments in Norway with record length 0, 1, 3, 5 and 10.

7 Discussion

In this article we have presented a geostatistical framework particularly
suitable for hydrological datasets that include short records of data. Here,
we highlight four points for discussion: 1) the difference in performance
across methods and study areas, 2) comparing the findings with other
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studies, 3) shortcomings of the suggested framework and 4) suggested areas
of use.

7.1 Difference in performance across methods and study
areas

In our work, we evaluated two versions of our suggested framework by
predicting annual runoff and mean annual runoff for Norway. The results
showed that our areal referenced method and our point (or centroid) refer-
enced method gave very similar results in terms of posterior mean (see e.g.
Figure 7 and Figure 13). We did not find a trend describing when one of
the methods performed better than the others. In prior to the analysis, we
would expect the areal model to perform better than the centroid model
for ungauged, nested catchments since the areal model takes the water
balance and the nested structure of catchments into account. However,
these properties did not have a notable impact on the predicted posterior
mean runoff for this particular dataset. This is not an extraordinary result
as similar results have been obtained by other studies that have compared
Top-Kriging (areal referenced approach) to ordinary Kriging (point refer-
enced approach): The point referenced approaches often perform similarly
as the areal referenced approaches (Farmer, 2016; Skøien et al., 2014).

A possible explanation for the similar performance of the centroid and
areal model in this study, is that the proportion of nested catchments in
our datasets was relatively low: Only 30 % of the catchments in Figure 1
were nested, while the percentage of nested catchments was 53 % among
the fully gauged catchments in Figure 5. Furthermore, most of the nested
catchments only have one overlapping catchment. The water balance con-
straints of the areal model might be more important for datasets where
there is a higher percentage of nested catchments in an area with high
spatial variability. One example is shown in Roksvåg et al. (2020).

It is also possible that the water balance constraints of the areal model
have some drawbacks. One example is if there is poor data quality for a
subcatchment in the dataset. Then we impose an inaccurate, but relatively
strict constraint on the runoff in this catchment’s drainage area. This will
have an impact on the predictions for all overlapping catchments, and how
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the predicted runoff is distributed here. In this sense, the areal model is
less flexible than the centroid model and requires better data quality.

The water balance constraints of the areal model also makes it compu-
tationally more expensive than the two other models. Top-Kriging used
around 1 minute for the interpolation of mean annual runoff presented in
Section 6.2 for one cross-validation fold. The centroid model used around
30-40 minutes for the interpolation, but provided results for both mean
annual runoff and runoff for 30 individual years at the same time. Its run
time is thus similar to the run time of Top-Kriging per year. The areal
model on the other hand, used around 6-7 hours on the same computa-
tional server. Hence, from a practical point of view, the centroid model
might be the most convenient version of our suggested framework for many
applications. However, note that if the posterior uncertainty is important,
the areal model gives a more realistic representation of uncertainty than
the centroid model (see Figure 7). The centroid model also treats small and
large catchments equally, which can be problematic for some applications
and study areas.

When considering predictions for ungauged catchments, the results showed
that Top-Kriging provided better results than our two suggested models.
Figure 7 showed that the three methods failed and succeeded for many of
the same catchments, but that our models failed slightly more than Top-
Kriging on average. We also see an indication that our models fail more
than Top-Kriging for ungauged catchments that are located further away
from other catchments. See for example the catchment that is located
south-east in Figure 7. For ungauged catchments located far away from
other catchments (relative to the spatial range), the predicted value will go
towards the intercept βc for our two Bayesian models. For Top-Kriging, the
predicted value will always be a weighted sum of the observations from the
neighboring catchments. This can explain the difference in performance
here. Apart from this, we don’t find a pattern for which catchments Top-
Kriging performs better (mean elevation, location and the magnitude of
the observed value were investigated).

While Top-Kriging performed best for ungauged catchments, our frame-
work outperformed Top-Kriging when there were some available data from
the target catchment. This was the case both when predicting mean annual
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runoff, and runoff for individual years. The results showed that the poten-
tial gain of including (very) short records in the modeling in Norway was
large. An explanation is that the annual runoff in Norway is mainly con-
trolled by orographic precipitation. Since the orographic precipitation is
driven by topography and westerly winds are dominating, the precipitation
patterns are repeated each year and we obtain hydrological spatial stabil-
ity with σc � σx. The mountains in Norway also lead to rapid weather
changes in space, here expressed through a low climatic spatial range ρc.
Consequently, the information gain from neighboring catchments is often
low for ungauged catchments, and information from the target catchment
can be very valuable. It is also convenient that Norway has a humid climate
where only around 10-20 % of the annual precipitation evaporates.

The evaluation study based on annual time series of monthly runoff gave
us an indication of how the framework can be expected to behave for
other climates and countries: For areas where the annual runoff is driven
by unstable weather patterns and hydrological processes, short records can
not be expected to contribute to as large improvements in the predictions as
for the Norwegian annual data (see the predictions for April in Figure 11b).
This might be the case for countries and areas where most of the runoff can
be explained by convective precipitation, where the aridity index is large or
for variables for which storage effects are significant. However, the monthly
predictions for January and April also illustrated that we safely can include
(very) short records in the model, even if year specific effects explain most
of the spatial variability of runoff. By this we have demonstrated that
our models represent a framework for safe use of short records regardless
of record length and climate, and with the benefit that we don’t need to
consider the choice of donor catchment as in other comparable methods.

Norway is a country with a moderate gauging density. The framework
has not been tested for a more dense gauging density. We suppose that
there is less to gain from including short records if the gauging density
is large relative to the spatial range: Here the information obtained from
neighboring catchments could be sufficient. However, a high density of
gauged catchments and a close distance to neighboring catchments does
not always guarantee good predictability at an ungauged catchment (Patil
and Stieglitz, 2011). It is for example often difficult to predict runoff in
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ungauged catchments that are very small and/or located close to weather
divides. We believe that for such catchments, our method for including
short records can be useful regardless of gauging density (as long as the
study area is characterized by repeated runoff patterns over time).

7.2 Comparing the findings of this study with other studies

There exist several other studies of mean annual runoff in the literature,
and some of them are compared in terms of the absolute normalized error
(ANE) in the chapter about annual runoff in Blöschl et al. (2013). Accord-
ing to Figure 5.27 in Blöschl et al. (2013), an ANE between 0.05 and 0.5 is
a typical result for regions like Norway where the potential evapotranspira-
tion is less than 40 % of the mean annual precipitation. Figure 14 showed
that the median ANE obtained for our suggested models is around 0.12
for ungauged catchments, i.e. in the lower range of ANE values in Blöschl
et al. (2013). When a short record og length one or five was available (PG1
and PG5), the median ANE was as low as 0.05 and 0.03 for our methods.

In Figure 5.30 in Blöschl et al. (2013) there is also a subplot showing
the ANE for predictions of mean annual runoff for ungauged catchments
in Austria. Here, geostatistical models (Top-Kriging) and process-based
models (conceptual hydrological models) provided the best predictions ac-
cording to the ANE, with a median ANE around 0.1. The results we obtain
in Figure 14 for the ungauged catchments are thus comparable to the re-
sults from Austria. This is reasonable as the Austrian climate is humid,
like the Norwegian, and the western part of the country is dominated by
mountains (the Alps) and has similar climate characteristics as Norway.

Furthermore, Blöschl et al. (2013) reports an r2 (squared correlation coeffi-
cient) between 0.60 and 0.99 for studies done by cross-validation of around
250 catchments, or for studies using models based on spatial proximity
like our suggested framework (Figure 5.25 and Figure 5.26 in Blöschl et al.
(2013)). The r2 for our two models was shown in Figure 15, and we see
that it lies between 0.91-0.99. This is in the higher range of values obtained
by comparable studies.
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7.3 Shortcomings

In this article, we proposed two models for runoff that are Gaussian. How-
ever, runoff is truncated at zero and typically not Gaussian distributed
which we also can see from the histograms in Figure 1b and Figure 3.
The consequence of the Gaussian assumptions is that there is nothing in
the models that prevents them from predicting negative runoff. Negative
values appear for both the areal and the centroid model due to the uncer-
tainty given by σy, but this is also a problem for the Top-Kriging technique.
Another source for negative values is that the climatic part of the model
(c(u) + βc) can be negative in some areas. This is a fully valid result be-
cause the other model components could still ensure positive predictions
for most catchments and years. However, it can become a problem if we
are unlucky and the year specific GRF doesn’t make up for the negative
climatic GRF for one specific year. To avoid negative values, it is possible
to log transform the data before performing an analysis. However, this is
only valid for the centroid model, as the log transform is not compatible
with the linear aggregation performed by the areal model (Equation (11)).

In the areal model, negative values also appear as a consequence of requir-
ing preservation of water balance. If there are inconsistent or poor data
over nested catchments, negative runoff in parts of a catchment can be
the only option to fulfill the water balance requirements. To avoid nega-
tive runoff it is important that the discretization of the study area is fine
enough to capture rapid changes in runoff over nested catchments. Catch-
ments that are significantly influenced by human activities should also be
removed from the analysis as these can influence both the water balance
and the significance of the climatic field c(u) relative to the annual field
xj(u).

In our study, some negative values were produced for the monthly pre-
dictions as we can see in Figure 11b. However, this is not common and
happened for only 1.2 % of the predictions of missing monthly data, and
for a few data points for the missing annual data for the areal and cen-
troid model. For predictions of mean annual runoff, negative values almost
never appear as such effects typically are averaged out. Note that unphys-
ical results also appear for Top-Kriging and other interpolation methods,
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either in terms of violating the water balance or in terms of negative val-
ues. These model weaknesses should be remarked such that the modeler is
able to choose what is most important in a real modeling setting. In this
case it is a choice between 1) avoiding negative values by log transforming
the data before using Top-Kriging or the centroid model or 2) to impose
water balance constraints through the areal model.

7.4 Suggested areas of use

Finally, we want to highlight what we think are the main areas of use for
our suggested framework. First, our results showed that our main benefit
compared to Top-Kriging was connected to exploiting short records from
the target catchment. For this reason, we think that our method is suitable
as a preprocessing method for making inference about the (mean) annual
runoff in partially gauged catchments before doing a further analysis with
other statistical tools or process-based models. One possible approach for
runoff estimation could for example be a two step procedure where we
(i) use the centroid or areal model as a record augmentation technique to
predict runoff for the partially gauged catchments in the dataset, and (ii)
use Top-Kriging to predict runoff in ungauged catchments. Here, the re-
sults from step (i) can be used as observed values in Top-Kriging together
with data from fully gauged catchments. Differences in observation uncer-
tainty between fully gauged- and partially gauged catchments should here
be taken into account.

Secondly, we see that the parameter values of the suggested model provides
interesting information about the study area. More specifically, if the
marginal variance of the climatic GRF σc dominates over the marginal
variance of the year specific GRF σx, it suggests that the spatial variability
is stable over time, and that short records of runoff can have a large impact
on the model, particularly if also ρc < ρx. This information can be used
by decision-makers to e.g. motivate the installation of a new (possibly
temporary) gauging station as this might improve the long-term estimates
only a year after installation for this catchment. Likewise can the model
and its parameters be used to assess whether a gauging station is redundant
and can be shut down. However, to exactly quantify the importance of a
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gauging station, all model variances (σ2
x, σ2

c , σ2
β , σ2

y) and ranges (ρx, ρc)
must be taken into account, as well as the distances between the donor
catchments and the target catchment. Computing this gain is outside the
scope of this article, but an interesting topic for further research that is
related to the field of decision theory and the value of information (Eidsvik
et al., 2015).

8 Conclusions

We have presented a geostatistical framework for estimating runoff by mod-
eling several years of runoff data simultaneously by using one (climatic)
spatial field that is common for all years under study, and one (annual)
spatial field that is year specific. By this, we obtain a framework that is
particularly suitable for runoff interpolation when the available data origi-
nate from a mixture of gauged and partially gauged catchments, and that
can be used to estimate runoff at ungauged and partially gauged locations.
We evaluated the framework by 1) its ability to fill in missing values of an-
nual runoff and 2) its ability to predict mean annual runoff for ungauged
and partially gauged catchments. The case study from Norway showed
that the suggested framework performs better than Top-Kriging for catch-
ments that have short records of data, both for predictions of mean annual
runoff and when filling in missing annual values. For totally ungauged
catchments, Top-Kriging performed best. We also 3) demonstrated the
potential value of including short records in the modeling and found that
the value of (very) short records was high in Norway: An average reduction
of 50 % in the RMSE was reported when a short record of length one was
available from the target catchment, compared to when no annual observa-
tions were available. The reason for the large reduction is that the annual
runoff in Norway is mainly driven by hydrological processes that are re-
peated each year. For such areas, our methodology has its main benefits,
and we can use it as a tool for motivating the installation of new gauging
stations: The new gauging stations might improve the long-term estimates
at the target catchments only a year after installation. Furthermore, the
results also show that the framework represents safe use of short records
down to record lengths of one year, regardless of the underlying climatic
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conditions in the area of interest.

Code availability

Example code for fitting the centroid model with example data is available
on https://github.com/tjroksva/RunoffInterpolation (doi: 10.5281/zen-
odo.3630348). The remaining data are available upon request.
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1 Introduction

Environmental variables like temperature, precipitation and runoff are in
many areas of the world driven by weather patterns that are repeated over
time. These weather patterns are typically caused by wind patterns, season-
ality of temperature and the topography in the study area. In this note, we
highlight a specific spatial model that is particularly suitable for modeling
(environmental) variables of this type. It is a Bayesian hierarchical model
for modeling spatio-temporal data that consists of two spatial fields: One
of the fields is constant over time and captures the long-term spatial vari-
ability or the climate in the study area. The other spatial field is connected
to a specific time unit, typically a year, and is used to model the spatial
variability that cannot be explained by long-term effects. Because of the
geostatistical model’s two characteristic spatial fields, we refer to it as the
two field model.

The two field model was developed and presented in Roksvåg et al. (2020a,b)
where it was successfully used for interpolation of Norwegian annual runoff,
a hydrological variable that tends to follow repeated spatial patterns over
time due to orographic precipitation and the topography in the study area.
During our work with these papers, we did some experiments that showed
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that the two field model can be useful also outside the field of runoff interpo-
lation: Environmental variables such as annual and monthly precipitation or
temperature follow similar spatial patterns as the Norwegian annual runoff.
For this type of data structures, the two field model has some beneficial
properties that other spatial and spatio-temporal models don’t have. The
aim of this note is to highlight some of these properties and explore the
two field model further. By this we answer some of the questions that were
considered outside the scope of Roksvåg et al. (2020a,b), where the main
focus was on performing runoff predictions.

One of the central questions is how the two field model performs compared
to other statistical models for spatial and spatio-temporal data. In the note
we investigate this through an illustrative case example where we highlight
model differences between the two field model, a standard one field spatial
model and a comparable spatio-temporal model. We describe for what
kinds of data structures the two field model has its benefits, and when
the two other models can be used instead. To explore the models we also
use simulated data such that we can control the model parameters and the
observation set-up. In Roksvåg et al. (2020a,b) the two field model was only
compared to state-of-the-art hydrological interpolation approaches and not
to the approaches we discuss in this note. Hence, the experiments presented
here represent new contributions.

Next, we investigate if the two field model is well behaved in terms of pa-
rameter identifiability. This was another unanswered question from Roksvåg
et al. (2020a,b). To investigate the parameter identifiability, we present a
simulation study. We are particularly interested in confirming that it is
possible to separate the two spatial fields from each other in the two field
model. This is important as the parameters of the two spatial fields turn
out to be closely linked to the predictability of the target variable, as we
soon will see.

The major objective of this note is to give an overview of the two field model
and describe for what data and applications it can be useful. Based on our
experiments and the work in Roksvåg et al. (2020a,b), we hence suggest
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some areas of use. We also present a collection of new case examples. Fi-
nally, we provide a tutorial for implementing the two field model in r-inla.
This is a commonly used R package for performing approximate inference
on Bayesian hierarchical models that are computationally demanding (Rue
et al., 2009).

Before presenting the experiments and case examples outlined above, we
specify the two field model, the spatial reference model and the spatio-
temporal reference model. In the following we assume that the reader has
knowledge about Gaussian random fields and Bayesian hierarchical models.
We refer to Roksvåg et al. (2020a,b) for more methodological background
and detailed reference lists.

2 Models under discussion

In this section we present the two field model from Roksvåg et al. (2020a,b)
and two reference models. The two field model is applicable for spatio-
temporal data. Hence, we compare it to a spatio-temporal model. How-
ever, often are spatio-temporal data modeled by simply interpolating the
data for different time units independently, without considering temporal
dependency. This is done either because the temporal dependency is dif-
ficult to see from the data or because most spatio-temporal models are
computationally demanding. Motivated by this, we also compare the two
field model to a standard spatial one field model. The comparison is partic-
ularly relevant because the environmental data we discuss in this note are
associated with a temporal dependency structure that is less intuitive from
studying the data.

We operate in a Bayesian hierarchical framework and the three models are
specified such that they are suitable for approximate inference with INLA
and SPDE (Rue et al., 2009; Lindgren et al., 2011). See Section 2.4 for
more.
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2.1 The two field model

The model we discuss in this note, is the two field spatial model from
Roksvåg et al. (2020a,b). It is a Bayesian geostatistical model with two
spatial fields, where one of the spatial fields represents the climate of the
variable of interest, while the other spatial field represents the discrepancy
from the climate for a specific time unit. To make the model more intuitive
and the presentation simpler, we use annual precipitation as an example
response variable throughout the text.

Let the spatial process {ηj(s) : s ∈ D} denote the true annual precipitation
at point location s in the spatial domain D ∈ R2 in year j. The true annual
precipitation at location s in year j is modeled as

ηj(s) = βc + c(s) + βj + xj(s) (1)
π(c(s)|ρc, σc) ∼ GRF(0,Σ(ρc, σc)) π(βc) ∼ N (·, ·)
π(xj(s)|ρx, σx) ∼ GRF(0,Σ(ρx, σx)) π(βj |τ−1β ) ∼ N (·, τ−1β ).

Here, the parameter βc is an intercept common for all years j = 1, ..., r,
while c(s) is a spatial effect common for all years. These two model compo-
nents represent the part of the spatial process that is caused by long-term
patterns, or the climate in the study area. Further, we include a year
specific intercept βj and a year specific spatial effect xj(s) to model the
annual discrepancy from the climate in year j. We denote c(s) the climatic
spatial field and xj(s) the replicated spatial field. Both spatial fields are
modeled as stationary Gaussian random fields (GRFs) given the model pa-
rameters, with zero mean and covariance matrix Σ. The covariance matrices
are constructed by a covariance function; c(s) with range parameter ρc and
marginal variance σ2

c , and xj(s) with range parameter ρx and marginal vari-
ance σ2

x. Furthermore, the spatial fields xj(s) for j, ..., r, are assumed to be
independent realizations, or replicates of the underlying GRF. This implies
that the covariance between xj(si) and xv(sk), conditional on the model
parameters for any two locations si and sk, is zero for v �= j. Similarly,
are the year specific intercepts {βj} treated as replicates over time. More
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specifically are they assumed to be independent and identically distributed
as N (0, τ−1β ) given the parameter τβ , with β1, ..., βr being independent re-
alizations of this Gaussian distribution.

To gain knowledge about the true annual precipitation ηj(s), precipitation
is observed at n locations si ∈ D for i = 1, .., n over r years j=1,..r. The
observations are associated with measurement uncertainty, and we model
the observed precipitation as

yij = ηj(si) + εij , (2)

where yij is the observation at location si for year j, ηj(si) is the true annual
precipitation, and εij are error terms that are assumed to be independent
and identically distributed with prior N (0, τ−1ε ). From this, the observation
likelihood of the suggested model can be written as

π(y|x∗, τ−1y ) ∼
n∏

i=1

r∏
j=1

(I{Observation yij is available} · N (ηj(si), τ
−1
ε )

(3)

+ 1 · I{Observation yij is missing}),

where y holds the observed annual precipitation yij for all observation lo-
cations i = 1, ..., n and years j = 1, ..., r, ηj(si) is the underlying true
annual precipitation from Equation (1) and x∗ is a vector containing all
latent variables, i.e the intercepts βc, βj and the GRFs c(s·) and xj(s·) for
all observation locations and years. Furthermore, we include an indicator
function I(·) that is equal to 1 if its argument is true, and 0 otherwise. This
allows for missing data: For some of the n locations there might be less
than r observations available.

We operate in a Bayesian framework and specify the suggested model as a
Bayesian hierarchical model with six so-called hyperparameters
θ = (τε, ρx, σx, ρc, σc, τβ). The hierarchical model has three stages that
are built by the data model defined in Equation (3), the process model
defined in Equation (1) and the prior distributions of the hyperparameters
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π(θ). We will not discuss prior specification for hyperparameters in this
note. Also mark that the intercept β0 is considered as a part of the process
model, and not as a hyperparameter, as this fits into the INLA framework.
For an introduction to hierarchical modeling and spatial statistics we refer
to Banerjee et al. (2004) and Cressie (1993); Gelfand et al. (2010); Lieshout
(2019) respectively.

2.2 Spatial reference model: A one field model

As a reference model for the two field model, we use a simpler spatial model
that we denote the one field model. To specify the one field model, we use the
same framework as in Section 2.1, except that we omit the climatic spatial
field in Equation (1). Hence, in this model the true annual precipitation in
year j is given by

ηj(s) = βc + βj + xj(s), (4)

and the prior distributions of βc, βj and xj(s) are as in Equation (1). The
observation likelihood is also specified similarly as in Equation (3). The one
field model treats each time unit j of data independently, except that xj
and βj are modeled as replicates of underlying processes that are driven by
the same parameters for year j = 1, ..r. This is different from the two field
model that in addition accounts for time dependency through the climatic
spatial field c(s).

2.3 Spatio-temporal reference model

The two field model is able to borrow strength in time and space, and it
therefore makes sense to also compare it to a spatio-temporal model. A
comparable spatio-temoral model is defined here.

Let the spatio-temporal process {η(s, j), (s, j) ∈ D ∈ R2 × R} denote the
annual precipitation at a point location s ∈ R2 in year j ∈ R. For simplicity
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we denote the process ηj(s), such that the notation is similar to the notation
used in the previous two models. We define a comparable spatio-temporal
model for the true annual precipitation at location s in year j as follows:

ηj(s) = βc + βj + wj(s) (5)
wj(s) = awj−1(s) + xj(s); j = 2, .., r.

Here, βc is an intercept common for all years while the βj ’s for j = 1, .., r are
year specific intercepts. These two model components are defined as before
in Section 2.1. The component wj(s) represents the spatio-temporal part
of the model and changes in time according to a first-order autoregressive
process that depends on the previous time step wj−1(s) through a parameter
a. Here, |a| < 1, and the first time step is distributed as w1(s) ∼ N (0, σ2

1−a2 ).
The component xj(s) in Equation (5) is a Gaussian field that follows the
following covariance model:

Cov(xj(si), xv(sk)) =

{
0 if j �= v

Cov(xj(si), xj(sk)) if j = v.
(6)

Over different time units, the covariance of the GRF is 0 (j �= v). Hence,
the spatio-temporal covariance model is separable and can be written as
the product of a purely spatial and a purely temporal covariance function.
The covariance Cov(xj(si), xj(sk)) between two locations si and sk within a
specific year j = v is given by element (i, k) in a covariance matrix Σ(ρx, σ

2
x).

To make the models comparable, we use the same covariance model here as
we use for the GRF xj(s) in the models defined in Section 2.1 and Section
2.2.

The spatio-temporal model is formulated as a Bayesian hierarchical model
similarly as in Section 2.1, except that we use the process model from Equa-
tion (5) instead of the process model from Equation (1). We refer to Blan-
giardo and Cameletti (2015) for more on spatio-temporal models.
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2.4 Approximate inference

The three models formulated in the previous subsections are three-staged
Bayesian hierarchical models. Making inference on them implies assess-
ing the posterior distributions of their model parameters and their spatial
field(s) at all target locations, given data. This is computationally demand-
ing. To solve the computational challenges, we fit the models by using inte-
grated nested Laplace approximations (INLA). The INLA methodology was
suggested by Rue et al. (2009) and is a tool for making approximate Bayesian
inference on latent Gaussian models (LGMs), i.e. hierarchical models where
the process model consists of components that are given Gaussian priors.
As the latent field x∗ in Equation (3) holds the Gaussian random fields
xj(s) and c(s) and intercepts βj and βc with Gaussian priors, the above
models are LGMs suitable for INLA.

In order to achieve fast predictions with INLA, the precision matrix (i.e.
the inverse covariance matrix) of the latent field x∗ should be sparse with
many zero elements. This is typically not the case when working with
Gaussian random fields. To solve this problem, we use the SPDE approach
to spatial statistics. The SPDE approach was suggested by Lindgren et al.
(2011). It can be used to approximate Gaussian random fields (GRFs) with
Matérn covariance functions by Gaussian Markov random fields (GMRFs).
This is achieved by solving a stochastic partial differential equation (SPDE)
numerically. The SPDE approach comes with computational benefits, as
GMRFs typically have precision matrices with more zero elements: Efficient
algorithms for matrix operations on such matrices exist (Rue and Held,
2005). We refer to Rue et al. (2009) and Lindgren et al. (2011) for details
on the INLA and SPDE approaches.
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3 Illustrative example: Interpolation of annual pre-
cipitation with a dataset with missing values

In this section, we illustrate some of the differences between the two field
model, the one field model and the spatio-temporal reference model by a
motivational example. For this purpose, we use real annual precipitation
data from Voss in western Norway and perform predictions in time and
space. In addition we comment the two field model’s parameter estimates.

3.1 Data and set-up

To illustrate the differences between the three models from Section 2, we use
a small dataset consisting of observations of annual precipitation from the
Voss area in Norway from 1980-2001, i.e ηj(s) is the annual precipitation
in year j = 1, ...22. The observations were downloaded from eklima.no, a
web page that gives free access to the climate database of the Norwegian
Meteorological Institute. In the selected dataset, there are observations of
annual precipitation from n = 15 point locations for r = 22 years, but
none of the precipitation stations have observations for all years in the time
period of interest. This is a typical situation for environmental variables.
The locations of the precipitation gauges are shown in Figure 1a with cor-
responding time series in Figure 1b. We also include the full dataset in
matrix form in Figure 1c. The goal in this example is to perform spatial
interpolation of precipitation and make predictions for locations that lack
observations, i.e. to fill in the NA’s in the data matrix in Figure 1c. We also
use our models to make predictions for unobserved future years. Mark that
the same dataset were used in Roksvåg et al. (2020a) to construct point
referenced runoff observations, but the precipitation observations were not
analyzed independently as in this example.

In the motivational example we use a stationary Matérn covariance func-
tion to construct the covariance matrices Σ(ρx, σx) and Σ(ρc, σc) for our
models. Matérn covariance matrices make the models suitable for approx-
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. Brandset Modalen Gullbraa Eksingedal Fjellanger Reimegrend Voss Bulken Brekkhus Ovstedal NedreAalvik Granvin Eidfjord Kinsarvik Aurland
1980 1342 2754 1829 2264 2387 1448 1149 1684 2432 2773 2452 1778 1029 1236 648
1981 1404 3098 2019 2491 2556 1536 1343 1940 2686 3017 2645 NA 1183 1342 684
1982 1199 2256 1620 1977 2057 NA 1008 1474 1882 2262 1862 NA 862 1041 592
1983 1693 3136 2107 2562 2691 1744 1324 1951 2589 3148 2655 NA 1239 1433 714
1984 1536 3054 2051 2470 2513 NA 1414 1984 2557 3197 2664 NA 1266 1312 700
1985 1546 3172 2064 2492 2524 NA 1383 1868 2606 3073 2676 NA 1076 1325 661
1986 2232 NA 2799 3395 3351 NA 1913 2571 3240 3750 3264 NA 1610 1811 920
1987 1073 2288 1499 1822 1849 NA NA 1417 1811 2154 1535 NA 674 765 473
1988 1498 3027 2044 2391 NA NA NA 1852 NA 3084 NA NA 1137 1319 693
1989 1089 2468 1411 1926 2485 NA NA 1404 2618 2359 2520 NA NA 1058 487
1990 1416 2812 1888 2251 NA NA NA 1693 NA 3041 NA NA NA 1129 576
1991 1858 NA 2693 3249 NA NA NA 2528 NA 4022 NA NA NA NA 789
1992 1285 2816 1733 NA NA NA NA 1668 NA 2781 NA NA NA 1038 620
1993 2084 4027 2890 3280 NA NA NA 2681 NA 4144 NA NA NA 2060 990
1994 1773 3246 2270 2815 NA NA NA 2024 NA 3353 NA NA NA 1500 815
1995 1730 NA 2133 2374 NA NA NA 2035 NA 2935 NA NA NA NA 638
1996 1219 NA 1547 NA NA NA NA 1481 NA 2436 NA NA NA NA 567
1997 1674 NA 2205 NA NA NA NA 1956 NA 3195 NA NA NA NA NA
1998 2041 NA 2750 3251 NA NA NA 2753 NA 3921 NA NA NA NA 916
1999 NA NA 1945 2369 NA NA NA NA NA 2885 NA NA NA NA 602
2000 NA NA 2204 2508 NA NA NA NA NA NA NA NA NA NA 705
2001 NA NA 2902 3359 NA NA NA 2390 NA 4144 NA NA NA NA 914

(c) Full dataset.

Figure 1: Precipitation data from Norway [mm/year] for the illustrative example.
The coordinate system is utm33N given in km.

imate inference with the SPDE approach to spatial modeling. Prior spec-
ification is not discussed in this note, but for completeness and further
reference we specify the prior distributions we use for the analysis here.
For most of the parameters we use PC priors (Simpson et al., 2017). For
the precision of the year specific intercept τβ we use a PC prior speci-
fied as Prob(1/√τβ > 1000 mm/year) = 0.2 while for the precision of the
measurement uncertainty τε we use a PC prior specified as Prob(1/

√
τε >

1000 mm/year) = 0.1. For the parameters of the two Matérn fields c(s)
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and xj(s) we use the joint PC prior for the spatial range and the marginal
variance suggested by Fuglstad et al. (2019). These priors are specified as
Prob(ρx < 10 km ) = 0.1, Prob(σx < 2000 mm/year ) = 0.1, Prob(ρc <
10 km ) = 0.1 and Prob(σc < 2000 mm/year ) = 0.1, i.e. we use the same
priors for the two spatial fields. For the climatic intercept βc we use a nor-
mal prior N (0, 107 mm/year). We use the same priors for all models in
this illustrative example: The two field model, the one field model and the
spatio-temporal model. For the a parameter of the spatio-temporal model
we use the default R-INLA prior, loggamma(1, 5 · 10−5).

3.2 Comparing the prediction results across models

The one field model, the two field model and the spatio-temporal model
were fitted to the dataset in Figure 1. Figure 2 shows the average posterior
mean precipitation for 1981-2010. Here, the two field model and the spatio-
temporal model look similar, although the spatio-temporal model seems to
give a larger spatial range. The one field model however, looks more different
from the two other models, particularly around the location Nedre Aalvik,
located south in the study area. At this location, the spatio-temporal and
the two field model predict larger values of annual precipitation than the
one field model. The difference from the one field model is around 600
mm/year on average over our study period.

As Nedre Aalvik is the location where the models were most different in
terms of posterior mean, we take a closer look at the predictions here. In
Figure 3a we visualize the posterior median at Nedre Aalvik with 95% poste-
rior prediction intervals. We don’t know the true, underlying precipitation
at Nedre Aalvik in 1988 and after 1989. However, in the years where we have
data, Nedre Aalvik is among the three or four wettest locations according
to Figure 1b. The posterior medians in Figure 3a show that this tendency
is captured by the two field model and the spatio-temporal model: They
both predict Nedre Aalvik to be among the wetter locations, also in years
without data. The tendency is not captured by the one field model as it
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Figure 2: Average posterior mean precipitation [mm/year] around Voss over 22
years for the two field model (left), the one field model (middle) and the spatio-
temporal model (right).

does not account for temporal dependencies. The results given by the more
complicated models hence seem more reasonable.

In terms of predictive uncertainty, Figure 3a shows that the posterior uncer-
tainties provided by the three models are similar for the years for which we
have observations from Nedre Aalvik. In years without data, the posterior
uncertainty of the two field model is lower than the posterior uncertainty
of the one field model. This is reasonable when we look at the gray lines
in Figure 3a that represent the underlying data: The Norwegian precipita-
tion tend to follow strong, repeated spatial patterns. This can be seen by
noticing that the time series are almost parallel, and the ranking between
the stations (from wet to dry) is approximately unchanged over time. A
relatively low uncertainty is hence realistic at locations where there are a
few years of observations available.

Figure 3a further shows that also the spatio-temporal model is capable of
giving a more realistic uncertainty than the one field model for our target
location. However, the spatio-temporal model assumes that the posterior
uncertainty increases over time. This is easier to see in Figure 3b where
we visualize the width of the 95 % posterior prediction intervals for Nedre
Aalvik. An uncertainty that increases as a function of time does not seem
realistic for the annual precipitation in Norway as long as repeated weather
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(a) Posterior median for Nedre Aalvik with 95 % prediction intervals. The gray
lines mark the observations from the other precipitation gauges from Figure 1b.
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(b) Width of the 95 % posterior prediction intervals at Nedre Aalvik.

Figure 3: The first plot shows the predicted precipitation at the location Nedre
Aalvik for the two field model, the one field model and the spatio-temporal model.
Nedre Aalvik has 9 observed values and 13 missing values between 1980 and 2001.
The lower plot shows the corresponding widths of the 95 % posterior prediction
intervals.

patterns are present. The observed data pattern suggests that the uncer-
tainty model provided by the two field model best reflects the long-term
behavior of annual precipitation in Norway.

Furthermore, the three models have different interpretations of future pre-
dictions. We illustrate this in Figure 4 where we have predicted runoff for
20 future years (2002-2021) for the location Granvin from Figure 1a. Mark
that there is only one annual observation available from Granvin (1980).
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First of all, the one field model does not support future predictions as it is
a model only constructed for spatial interpolation. Next, considering the
results from the spatio-temporal model, we again see that its posterior un-
certainty increases with time. We also see that its posterior median slowly
moves towards the global intercept βc as the time since the last Granvin
observation increases. This is different from the two field model, as we see
in Figure 4: For the two field model, a future prediction is given by the
estimated mean annual precipitation at the target location. The latter is
given by the posterior median (or mean) of the climatic part of the model
βc+ c(s). The year specific part of the model βj +xj(s) has zero mean and
median for unobserved years. Hence, in the two field model each location
can have its own long-term median or mean that is given by βc+ c(s). This
way it avoids regression towards the global intercept βc over time. When
studying variables that are driven by repeated weather patterns, this might
be a more intuitive model for the future posterior median, than the posterior
median provided by the spatio-temporal model. Also mark that although
the posterior median for the two field model is given by βc+c(s) for a future
year, all model components βc+c(s)+βj+xj(s) contribute to the posterior
uncertainty.
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Figure 4: Posterior median with 95 % prediction intervals at the location Granvin
that only has 1 annual observation of precipitation and 21 missing observations
between 1980 and 2001. The gray lines mark the observations from the other
precipitation gauges from Figure 1b. In this plot we have also included predictions
for future years, i.e. for years after 2001 where we don’t have data. The red vertical
line marks the difference between the years where we have data and future years.
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3.3 Parameter inference for the Voss example

We now study the parameter estimates of the three models for the Voss
case example. In Table 1, the posterior quantiles of the parameters are
shown. The posterior quantiles of the parameters of the climatic field c(s)
and the replicated field xj(s) are interesting here: We see that the posterior
median of the marginal standard deviation σc is approximately 5 times
larger (1083 mm/year) than the posterior median of σx (219 mm/year)
for the two field model. This means that most of the spatial variability
of annual precipitation around Voss can be explained by weather patterns
that are repeated over time, i.e. the climate in the study area. This is not
surprising considering the time series in Figure 1b where we see that the
ranking between the locations (from wet to dry) is approximately constant
over time. Table 1 also shows that the posterior median range of the most
dominating spatial field c(s) is smaller than the posterior median spatial
range of the other spatial field xj(s) (96 km and 194 km respectively).

The above parameter values can be linked to the prediction results we saw
in Section 3.2. Because the climatic field dominates in the study area
(σc � σx), one or a few annual observations can have a large impact on
the predictions at a target location. This was seen in Figure 3a where the
climatic field c(s) captured how the observations from Nedre Aalvik varied
relative to the other study locations. This made the two field model able
to predict Nedre Aalvik among the three or four wettest locations, also in
years without data from Nedre Aalvik. Note that the strong, repeated spa-
tial patterns of precipitation also are reflected in the parameter a for the
spatio-temporal model in Table 1. This parameter is a measure of tem-
poral dependency, and we see that it is close to 1. This means that the
spatial pattern of annual precipitation is almost unchanged from one year
to another.
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Table 1: Posterior medians and (0.025 quantiles , 0.975 quantiles) for the param-
eters of the three models for the motivational example.

Parameter [unit] Two field model One field model Spatio-temporal model
ρc [km] 96 (40,245) - -
σc [mm/year] 1081 (573,2144) - -
ρx [km] 195 (149,266) 89 (66,115) 164 (109, 244)
σx [mm/year] 219 (180,273) 993 (854,1159) 1559 (1002,2474)
β0 [mm/year] 1722 (-1191,3794) 1818 (1433,2205) 1359 (-2673,4813)
τβ [1/(mm/year)2] 74 (10,1632) ·10−6 69 (6,3233) ·10−6 11 (4,31) ·10−6

a [1] - - 0.99 (0.98,1)
τε [1/(mm/year)2] 88 (65,118) ·10−6 172 (40,1652) ·10−6 75 (50,108) ·10−6

4 Simulation study: A more formal exploration of
the two field model’s properties

To explore the two field further, we present some simulation examples that
were done to understand the relationship between the parameters of the two
field model and its predictive performance. These are presented in Section
4.1 and Section 4.2. Next, in Section 4.3, we perform a simulation study to
investigate if the two field model’s parameters are identifiable.

4.1 Predictive performance and parameter values

In the illustrative example from Section 3, we connected the prediction re-
sults of the two field model to the strong climate around Voss (σc � σx). We
now investigate the connection between the parameter values and the pre-
dictive performance of the model more formally, through a simulation study.
This let us test other parameter settings, e.g. settings where σc � σx, and
different observation designs. In our simulation study, we are particularly
interested in investigating the model’s ability to perform accurate predic-
tions when there are a few years (or time units) of data available from the
target location, such as for Nedre Aalvik and Granvin in the Voss exam-
ple. It is in a setting like this the two field model should have its benefits,
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according to existing results in Roksvåg et al. (2020b).

Experimental set-up

Table 2: Parameter used for simulating data from the two field model. For all 15
parameter configurations we use βc = 2, τβ = 5 and τε = 9, while the parameters
below are tested for the spatial fields xj(s) and c(s). The last column shows the
percentage of the spatial variability that can be explained by the climatic spatial
field.

Parameter set ρc ρx σc σx σ2
c/(σ

2
c + σ2

x)

1 50 100 0.2 0.8 0.06
2 50 100 0.5 0.8 0.28
3 50 100 0.5 0.5 0.50
4 50 100 0.8 0.5 0.72
5 50 100 0.8 0.2 0.94
6 100 100 0.2 0.8 0.06
7 100 100 0.5 0.8 0.28
8 100 100 0.5 0.5 0.50
9 100 100 0.8 0.5 0.72
10 100 100 0.8 0.2 0.94
11 100 50 0.2 0.8 0.06
12 100 50 0.5 0.8 0.28
13 100 50 0.5 0.5 0.50
14 100 50 0.8 0.5 0.72
15 100 50 0.8 0.2 0.94

For this simulation study, we simulate data from the two field model from
Section 2.1 and we use the same values for τβ , τε and βc for all experiments.
These values are set to βc = 2, τβ = 5 and τε = 9, and are chosen based on
values that are realistic according to a study of annual runoff in the Voss
area of Norway (Table 1 in Roksvåg et al. (2020a)), where runoff was given
in m/year. For the parameters of the two GRFs ρc, ρx, σc and σx, different
values are tested. The parameters are chosen such that the replicated field
xj(s) dominates for some experiments (σc � σx), the climatic field c(s)
for others (σc � σx), and for some experiments the two spatial fields are
equally dominant with the same marginal variance (σx = σc). Similarly, we
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also do experiments with ρc > ρx, ρc < ρx and ρc = ρx for all configurations
of marginal variances. Recall that ρc and ρx are the ranges of the climatic
spatial field and the replicated spatial field respectively. Likewise are σc
and σx the marginal standard deviations of the two fields. In total, we
simulate from 15 configurations of marginal variances and ranges, and the
parameters configurations are shown in Table 2.

For the assessment of predictive performance, we generate 50 simulated
datasets for each of the 15 parameter sets in Table 2. Each of the 50
datasets has one climatic spatial field c(s) and ten replicated fields xj(s)
j = 1, .., r with r = 10. We simulate data for the 15 locations from Figure
1a, i.e. the locations of the 15 precipitation gauges around Voss in Norway.
We use this set-up such that the distribution of observation locations is
realistic.

In the experiment, we make predictions of ηj(s) for j = 1, .., 10 at three of
the locations in Figure 1a: Voss, Brandset and Aurland. Voss and Brandset
are located in the middle of the study area and have several close neighbor-
ing stations, while Aurand is located a bit further from the other observation
locations. We predict ηj(s) at either Voss, Aurland or Brandset by using
observations from the remaining 14 locations from j = 1, ..10, and we ex-
plore two settings (S1 and S2):
S1: All the observations from Voss, Brandset or Aurland are removed from
the dataset. This is equivalent to leave-one-out cross-validation.
S2: All the observations from Voss, Brandset or Aurland are removed from
the dataset, except one. That is, there is one annual observation from the
target location included in the observation likelihood. This is drawn ran-
domly from the ten observations available.

We perform S1 and S2 for the one field model from Section 2.2 and the two
field model from Section 2.1 to see how they differ in predictive performance
for different parameter values. The spatio-temporal model from Section
2.3 is omitted from this larger simulation study due to its computational
complexity. We perform S1 to explore if the two field model is well behaved
for a standard spatial interpolation setting with totally unobserved target
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locations. S2 is interesting because it is for locations that have a couple of
observations available the two field model should have its benefits, begin able
to transfer information across time through c(s). The prior distributions we
use for the simulation study, are similar to the ones used for the illustrative
example from Section 3 (only rescaled to give predicted values in m/year
instead of mm/year).

In the evaluation of the predictive performance of the one- and two field
model, we use the root mean squared error (RMSE). We compute the RMSE
for each of the 3 target locations (Voss, Brandset, Aurland) as

RMSE
(b)
i =

√√√√1

r

n∑
j=1

(η
(b)
j (si)− η̂

(b)
j (si))2, (7)

where η
(b)
i (si) is the true simulated value and η̂

(b)
i (si) is the corresponding

predicted value for location si, year j and simulation b = 1, ...50. The
posterior mean is used as the predicted value. The RMSE is computed for
each target location for each of the 50 simulated dataset, i.e. there are
150 RMSE evaluations in total per parameter configuration. As a summary
score, the average RMSE(b)

i over these 150 experiments is used, which we
denote RMSE. Low RMSE values correspond to an accurate predictions.

Results

Figure 5 summarizes the results from the simulation study of the predictive
performance: In this figure, the difference in RMSE between the two field
model and the one field model is plotted for the different parameter sets.
The results show that the two field model only gives a slightly lower RMSE
than the simple model for S1, i.e for the leave-one-out cross-validation set-
ting where no observations from the three target locations are included in
the likelihood. This holds for all parameters configurations. A low difference
in RMSE between the model types is as expected here. Having information
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about the climatic spatial field c(s) does not affect the predictive perfor-
mance considerably when full data series from the observation locations are
available. However, when there is one observation available from the target
location, as in setting S2, the climatic spatial field does matter: In Figure 5
we see that as the fraction σ2

c/(σ
2
c + σ2

x) increases, the difference in RMSE
between the one field- and the two field model increases. Particularly when
the climatic field’s range is low (ρc=50) this is apparent. This is intuitive:
If most of the spatial variability can be explained by the climate (σc � σx),
and the climatic range ρc is low, it is less to learn from the neighboring sta-
tions compared to when the climatic range is large. One observation from
the target location will thus have a large impact on c(s) and consequently
also a large (positive) impact on the predictive performance for the target
location in the two field model. The one field model does not have this
property as it does not account for temporal dependencies.
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Figure 5: Difference in RMSE for predictions at Voss, Brandset and Aurland
(two field model - one field model). More negative means that the two field model
performs better. For S1, there are 0 observations from the target location in the
likelihood, while for S2 there is 1 observation available out of 10. Predictions are
performed for 50 datasets, each with one climatic field and j = 1, ..10 replicated
fields.
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Figure 6: RMSE
(b)
i for Voss, Brandset and Aurland for the one field model (x-axis)

and the two field model (y-axis) for 50 simulated datasets for setting S2, i.e when
one observation from the target location is included in the likelihood. Voss and
Brandset are located in the middle of the study area in Figure 1a, while Aurland
is located further away from the other observation locations. The two field model
gives a better predictive performance than the one field model for points that are
located under the black line.

In Figure 6 a more detailed comparison of the RMSE
(b)
i between the two

models is shown for the S2 case. We see that the models are approximately
equally good when σc < σx. As we move rightwards in the plot, i.e as
the fraction σ2

c/(σ
2
c + σ2

x) increases and the climatic effects become more
dominating, the difference between the one field- and the two field model
increases. The main trend is that the RMSE

(b)
i is lower for the two field

model than for the one field model, but we also see that the one field model
"wins" sometimes. The larger variability in predictive performance right-
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wards in the plot can be explained by the fact that if one of the models give
a poor prediction for one year j, it typically also gives poor predictions for
other years j = 1, ..r, as long as climatic effects are dominating. That is,
if we fail to characterize the underlying climate, the same systematic error
is performed over time. This happens both for the one field model and the
two field model. However, the two field model tends to miss less often than
the one field model on average, according to Figure 5 and Figure 6.

4.2 Simulation study from Roksvåg et al. (2020a)

The results from the above simulation study are related to the simulation
study presented in Roksvåg et al. (2020a). Here, the connection between the
two field model’s parameters and systematic prediction bias was explored.
It was shown that when the climatic field dominates over the replicated
fields (σc � σx), there is a large probability of obtaining systematic biases
for a prediction location over time. This holds as long as the observation
set-up is the same. The reason is that when climatic effects dominate, the
study area is driven by repeated weather patterns and the spatial pattern
is approximately constant for j = 1, ..r. Hence, when taking a new set of
measurement for a new time unit r+1, we don’t really get any new informa-
tion about the underlying spatial process unless we change our observation
locations. Consequently, we also tend to do systematic prediction errors
over time for unobserved locations, until new measurement locations are
included in the likelihood. The prediction errors can be particularly severe
if the study area has a low climatic range ρc and a large marginal variance
σc. In this situation the information gain from neighboring locations is low.
This is a similar conclusion as the one obtained from Figure 6 in the above
simulation study.
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4.3 Parameter identifiability

The two above simulation studies demonstrate that the parameter values of
the two field model can give us information about the predictability of the
target variable (Figure 5 and Figure 6). A next step is to verify that we
actually can trust our parameter estimates. Motivated by this, we present
a simulation study on the parameter identifiability of the two field model
to make sure that it is well behaved. In particular, we are interested in
investigating if we are able to separate the climatic spatial field from the
replicated spatial field. In order to conclude that the two fields are separable,
we require that we are able to correctly identify the parameters of the two
spatial fields c(s) and xj(s), i.e ρc, σc, ρx and σx.

Experimental set-up

6700

6725

6750

6775

0 25 50 75

Figure 7: The 150 sampled study locations used for the simulation study that
was carried out to investigate the identifiability of the model parameters.

In our exploration of identifiability of the parameters, we use a study area of
size approximately 100 × 100 and we generate observations for 150 randomly
drawn locations. The study area is shown in Figure 7. For all 15 parameter
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combinations in Table 2, we generate 100 datasets from the two field model,
for which each dataset has r = 10 replicates of the replicated field xj(s)
(j = 1, ..., 10) and one climate c(s). That is, we use the same configuration
of parameters as in the experiment presented in Section 4.1. We also use
the same priors.

Identifiability results

Table 3 shows the average posterior medians for the parameters in the sim-
ulation study. The results show that the parameter τβ is difficult to identify
correctly. This is the precision of the year specific intercept βj . For τβ , the
posterior median is often more than twice as large as the true underlying
parameter. However, transforming the precision estimates to standard de-
viations 1/

√
τβ , the predicted values are not that far away from the true

standard deviation 1/
√
5.

Table 3 further shows that the climatic range ρc is a bit hard to identify for
some of the parameter configurations (Parameter set 1, 6 and 11). These are
parameter configurations where the climatic spatial field has small spatial
variability (σc = 0.2) compared to the replicated spatial field (σx = 0.8).
It makes sense that the range ρc can be difficult to identify when the spa-
tial field c(s) only has a marginal impact on the final model: Some of its
variability might be absorbed as random noise. It also makes sense that it
is more difficult to identify ρc than ρx as we have several replicates of the
replicated field xj(s), but only one realization of the climate c(s). However,
the estimated values for ρc for parameter sets 1 ,6 and 11 are not really that
far away from the true range (around 10 units which is 10-20 % of the true
range).

For the remaining parameters, the posterior medians are very close to the
true underlying values. This indicates that the model is able to separate the
two spatial fields xj(s) and c(s) from each other. However, we have not in-
vestigated how our prior specification affects our results. For this simulation
study we used the same priors for σc and ρc as for σx and ρx respectively
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(see Section 3.1). We also used the same priors across experiments, regard-
less of the true simulated values of the parameters. With this in mind, it is
a good sign that the spatial field parameters seems to be identifiable for all
the tested parameter configurations. The parameter estimates don’t look
considerably drawn towards the underlying priors.

Table 3: Average posterior medians for the simulation study for parameter set
1-15. Each estimate is an average of 100 simulations. The number in parenthe-
sis is the difference between the true value of the parameter and the estimated
value (average posterior median minus true value). Thus, a positive value implies
overestimation while a negative value implies underestimation. If the over- or
underestimation is particularly high, the number in parenthesis is marked in red.

Param. set ρc ρx σc σx τβ τε βc
1 63.0 (+13) 101.7 (+1.7) 0.24 (+0.04) 0.80 10.5 (+5.5) 9.0 1.9 (-0.1)
2 52.8 (+2.8) 101.8 (+1.8) 0.52 (+0.2) 0.81 (+0.01) 12.6 (+7.6) 9.0 2.0
3 51.8 (+1.8) 99.3 (-0.7) 0.51 (+0.01) 0.49 (-0.01) 10.4 (+5.4) 9.1 (+0.1) 2.0
4 53.0 (+3.0) 100.9 (+0.9) 0.84 (+0.04) 0.50 12.6 (+7.4) 9.0 2.0
5 52.6 (+2.6) 107.3 (+7.3) 0.83 (+0.03) 0.20 7.0 (+2.0) 9.0 2.0
6 88.4 (-11.6) 100.3 (+0.3) 0.18 (-0.02) 0.80 10.7 (+5.7) 9.0 1.9 (-0.1)
7 99.6 (-0.4) 101.3 (+1.3) 0.50 0.81 (+0.01) 12.1 ( +7.1) 9.1 (+0.1) 1.9 (-0.1)
8 97.9 (-2.1) 101.0 (+1.0) 0.49 (-0.01) 0.50 10.9 (+5.9) 9.1 (+0.1) 1.9 (-0.1)
9 96.6 (-3.4) 99.4 (-0.6) 0.77 (-0.03) 0.50 14.5 (+9.5) 9.0 1.9 (-0.1)
10 98.3 (-1.7) 100.0 0.78 (-0.02) 0.20 6.5 (+1.5) 8.9 (+0.1) 1.9 (-0.1)
11 88.7 (-11.3) 51.8 (+1.8) 0.21 (+0.01) 0.81 (+0.01) 15.6 (+10.6) 8.9 (-0.1) 1.9 (-0.1)
12 94.3 (-5.7) 51.7 (+1.7) 0.46 (-0.04) 0.81 (+0.01) 14.7 (+9.6) 9.0 2.0
13 95.6 (-4.4) 53.0 (+3) 0.48 (-0.02) 0.51 (+0.01) 8.0 (+3) 9.0 1.9 (-0.1)
14 96.7 (-3.3) 51.1 (+1.1) 0.75 (-0.05) 0.50 7.0 (+2) 9.0 2.0
15 108.7 (+8.7) 52.9 (+2.9) 0.83 (+0.03) 0.20 5.9 (+0.9) 9.0 1.9 (-0.1)

5 Recommendations: When to use a two field model?

We have presented one illustrative case example and a simulation study,
which should give some intuition about the two field model. We now de-
scribe an ideal dataset for the two field model and propose some model
applications.
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5.1 Data structure

The Norwegian annual precipitation dataset in Figure 1 was chosen for
the illustrative example because it was particularly suitable for the two
field model. The reason is that the Norwegian annual precipitation follows
repeated spatial patterns over time due to orographic precipitation that is
driven by the country’s topography. The repeated spatial patterns can be
recognized from the time series in Figure 1b by that the time series from the
different locations almost are parallel. The ranking between the stations,
from wet to dry locations, is also approximately constant over time. This
spatial trend can be transferred across time through the spatial field c(s),
which is the dominating model component for a spatial pattern like this.

Borrowing strength in time is particularly important if the target location
has data available for some time units, but lacks data for most of the study
period. If the climate is strong, only one (annual) observation could be
enough to see large improvements in the predictability of a target variable,
according to the results in Roksvåg et al. (2020b). This conclusion is valid
in spite of large spatial variability. This was also indicated in the illustrative
example, where only a few data points from Nedre Aalvik were needed in
order to capture that this was among the wetter locations in the dataset
(Figure 3a). Hence, several missing values is another property of the dataset
in Figure 1 that makes the Norwegian annual precipitation data particularly
suitable for using the two field model. For such datasets the two field model
makes a difference compared to a one field model.

Finally, we note that there is no clear temporal dependency structure in the
Voss data in Figure 1: Considering any location, it does not look like year j
depends on year j− 1. The two field model is most useful for variables that
follow spatial patterns that are approximately constant over time, i.e. when
there are no apparent increasing or decreasing temporal trend. If there is
a decreasing or increasing temporal trend in the data, the two field model
is able to give reasonable interpolation results, but not reasonable future
predictions. An example related to this is shown later (see Example 2 in
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Section 6).

Comparing the two field model to the alternative models, the one field
model is not able to capture repeated spatial trends over time. The spatio-
temporal model is on the other hand able to capture the spatial patterns,
but is considerably slower than the two field model. It also provides re-
gression towards the global intercept βc (Figure 4) and assumes increasing
uncertainty over time which is not necessarily realistic for a dataset like the
one in Figure 1b. However, if there in fact are temporal dependencies in
data (in addition to the underlying climate), a spatio-temporal model is the
best option among the three discussed models, at least if future predictions
are of interest.

We emphasize that if there are no repeated spatial patterns over time in the
data, the two field model can still be used. However, in this case σx � σc
and the replicated field xj(s) dominates over the climatic field c(s). The
two field model will hence provide similar results as the one field model,
as shown in Figure 5 and Figure 6, but at a higher computational cost.
The simulation study also showed that the two field model and the one
field model perform similarly when making predictions for locations that
are totally unobserved. It is at locations where there are at least one or a
few (annual) observations available that the two field model outperforms the
one field model. Particularly will the two field model perform well compared
to the one field model if the spatial variability σc is high, and the spatial
range ρc is low, as shown in Figure 6. For such parameter configurations,
the information gain from neighboring observations is low and a tiny piece
of information from an otherwise unobserved location can be extremely
valuable.

Based on the above discussion and the work in Roksvåg et al. (2020a) and
Roksvåg et al. (2020b), we summarize how an ideal dataset for the two field
model should look like.
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Indications of a situation where using the two field model is suit-
able:
(i) The target variable follows a (constant) spatial pattern that is (partially)
repeated over time. Mark that the year-to-year variability still can be large:
It is the spatial pattern that should be stable.
(ii) For any given observation location in the dataset, there is no apparent
temporal dependency. This is most relevant if the user is interested in fu-
ture predictions and not only spatial interpolation.
(iii) If the user is primarily interested in predictions (not inference), the
dataset should have some missing values. An ideal target location has a few
observations available, but lack observations for most of the study period.
However, long time series from nearby locations should be available.

The dataset from Figure 1 has all the above properties and can be used as
a reference dataset.

5.2 Suggested applications

Based on Roksvåg et al. (2020a,b) and the above examples, we also suggest
some areas of use for the two field model.

Infill of missing data: Infill of missing data in environmental datasets is
the two field model’s primary area of use, i.e. to fill in missing observations
for locations where there only are short data records available, but where
there are longer time series of data available from neighboring locations.
Here, the model has major advantages compared to other statistical mod-
els, as demonstrated in the simulation study. The user should note that the
data included in an analysis don’t need to be consecutive: If there for ex-
ample are some data available from 1940, this year can be modeled together
with data from 1980-1990 to include more observation locations. The two
field model was successfully used for infill of missing values for a dataset of
Norwegian annual runoff in Roksvåg et al. (2020b).
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Modeling long-term averages: In many applications it is of interest
to study the long-term average of an environmental variable, typically over
a 30 year period, as this defines a climate (WMO, 1992). For the two field
model the predicted long-term average of the variable can be read directly
from the distribution of βc + c(s). The long-term average is also what the
two field model gives as the (posterior mean) future prediction (see Fig-
ure 4). Based on this, the two field model should be particularly suitable
for modeling long-term averages, such as mean annual/monthly precipita-
tion, mean annual/monthly runoff and mean annual/monthly temperature.
Long-term averages also tend to respond slowly to climatic changes, and it
is often a reasonable assumption that the spatial pattern of an environmen-
tal variable of interest is repeated annually over e.g. a 10 or 20 year period.

Understanding biases in environmental modeling: The two field
model quantifies how much of the spatial variability that can be explained
by climatic trends through the parameters of the spatial fields σx, σc, ρx
and ρc. This can be a useful tool for understanding prediction biases in en-
vironmental modeling, as described in Section 4.2 and further documented
Roksvåg et al. (2020a). More specifically, if climatic effects dominate and
the range ρc is low, systematic prediction biases can be expected over time
for many of the prediction locations.

The value of information (VoI): The increase in predictive performance
associated with one (annual) observation from the target location can be
large when σc � σx, but low if σc � σx. Hence, the model and its param-
eters can be used to motivate the installation or shutdown of a measuring
station. If σc � σx the installation of a new measuring station could im-
prove the predictions at this location short time after installation. The
above example is related to decision theory and assessing the value of in-
formation connected to gathering new observations (Eidsvik et al., 2015).
Using the two field model for finding an optimal observation design could
be an interesting topic for further research.
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6 Other case examples

We have demonstrated the two field model for simulated data and for Norwe-
gian annual precipitation. Existing work also shows that the two field model
is useful for modeling annual runoff in Norway (Roksvåg et al., 2020a,b).
In this section we use the two field model to model four other target vari-
ables with corresponding study areas. These target variables follow similar
spatial trends as the Norwegian annual precipitation data in Figure 1b. In
the first example we also identify a potential model weakness.

Example 1: Annual precipitation in the state of Washington

Figure 8 shows annual precipitation data from 1980-1997 from the
state of Washington in the US. The data were downloaded from
http://www.image.ucar.edu/Data/US.monthly.met/. This dataset was also
used in Fuglstad et al. (2015) to fit a non-stationary precipitation model.
The time series in Figure 8b indicates that there are climatic trends in the
data that can be exploited. Furthermore, there are several missing values
in the Washington dataset, which makes the data suitable for a further
analysis with the two field model.

A potential problem with the Washington dataset however, is that there
are quite large differences in temporal variance across the study area. This
can be seen in Figure 8b: Precipitation stations with low measurements of
annual precipitation tend to have lower temporal variance than precipitation
stations with high measurements. This is probably a common property
for larger, environmental datasets, and it is not clear how the two field
model handles this. To investigate this further, we did an experiment where
we predicted precipitation for three of the stations in Washington. We
chose three locations that were located in areas with different temporal
variability (low, medium and high). The stations also only had 1 or 2
annual precipitation observations available (out of 18 years), i.e. there were
many missing values that we could predict.
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(a) Average precipitation from 140 locations in Washington state from 1980-1997.
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(b) Time series from 21 of the locations.

Figure 8: Annual precipitation from Washington state from 1980-1997. The
distances on the left map are given in degrees [◦].

The two field model from Section 2.1 was fitted to the dataset, and gave the
following posterior means for the parameters of the spatial fields: ρc = 0.85◦

(long/lat), ρx = 2.1◦ (long/lat), σc = 865 mm/year and σx = 171 mm/year.
Hence, as σc � σx most of the spatial variability can be explained by re-
peated weather patterns. This is similar to the Norwegian precipitation
data. Further, the predictions for the three selected precipitation stations
in Washington are visualized in Figure 9. The results indicate that the two
field model is able to handle differences in temporal variability across the
study area for years where we have data (1980-1997): There are clearly dif-
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Figure 9: Posterior median annual precipitation with corresponding 95 % poste-
rior prediction intervals for three precipitation stations in Washington. The black
points are the observed values from the three target locations, while the gray lines
are observations from some selected nearby locations. The two field model seem to
be able to capture different temporal variances in years where we have data (1980-
1997). However, the uncertainty model for future, unobserved years (1998-2008)
is similar for the three target locations. This might not be realistic.

ferences in the temporal variability for the three precipitation stations, also
for the predicted time series. Next, considering predictions for future years
without data (1998-2008), the model seems to give reasonable predictions in
terms of the posterior median (Figure 9). Recall that the posterior median
for a future prediction is given by the climatic component βc+ c(s) and can
be interpreted as the long-term annual precipitation for the target location.
However, considering the future prediction intervals, the width of these are
almost equal for the three locations, i.e. the locations have similar poste-
rior variances for 1997-2008. This might not be realistic and a potential
model weakness for a dataset like this. To improve the uncertainty esti-
mates for future predictions, a climatic field with a non-stationary spatial
variance could be implemented. However, this represents a large increase in
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the computational complexity of the problem. In addition, non-stationary
fields are often difficult to identify without replicates (Ingebrigtsen et al.,
2014, 2015), and we necessarily only have one realization of our underlying
climate.

Example 2: Increasing trend
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Figure 10: The data from Figure 1b with an increasing temporal trend added to
them. We explore if the two field model is able to capture a pattern like this.
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Figure 11: Posterior mean for Nedre Aalvik for 1980-2001 with 95 % posterior
prediction intervals for the two field model. The gray lines marks the precipitation
observations from the 14 remaining locations. The red line marks future years
(after 2001).
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In this example we use the data in Figure 1 again, i.e. the precipitation
data from Voss. However, we have added an increasing temporal trend to
the data to see how the two field model handles this. The trend is simulated
each year from a normal distribution with mean 200 mm/year and standard
deviation 10 mm/year, and aggregated over the years j = 1, ..r. The data
can be seen in Figure 10.

The two field model model was fitted to the data in Figure 10, and used to
predict the target variable at the location Nedre Aalvik from Figure 1 for
1980-2001. The posterior means are shown in Figure 11. We see that the
suggested framework is able to capture the increasing trend, also for years
for which there are no measurements from Nedre Aalvik. This is possible
due to the year specific intercept βj . At the same time, the model is able
to capture the underlying spatial pattern, i.e. the ranking between the
observation locations: Nedre Aalvik is correctly predicted among the wetter
locations in the study area. The posterior uncertainty also looks reasonable.

However, if future predictions are of interest (and not only spatial interpo-
lation), a spatio-temporal model with an increasing trend is a better model.
The two field model is not able to give reasonable predictions for future
years when an increasing trend is present, as Figure 11 shows.

Example 3: Annual runoff in Austria

In Figure 12 we see time series of annual runoff from 1996-2005 for 18
catchments in the western part of Austria. The data are freely available
at ehyd.gv.at. The time series in Figure 12b indicate that the runoff in
western Austria is driven by spatial patterns that are repeated annually.
This is confirmed by fitting the two field model to the data (with the catch-
ment centroids as observation locations): The posterior mean of σx is 116
mm/year while the posterior mean of σc is 604 mm/year. As for the Nor-
wegian annual precipitation, the posterior estimate of ρc is smaller than the
posterior estimate of ρx with posterior means 13 km and 51 km respectively.

34



3e+05

4e+05

5e+05

2e+05 4e+05 6e+05
Easting

N
or

th
in

g

500
1000
1500
2000

mm/year

(a) 18 catchments in Austria and their
average annual runoff from 1996-2005.
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(b) Time series for the 18 Austrian
catchments.

Figure 12: Annual runoff data from Austria from 1996-2005. The distances on
the left map are given in meters.

Example 4: Maximum monthly temperature in Norway
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(b) Time series from 18 of the loca-
tions.

Figure 13: Maximum temperature for January for southern Norway (2009-2018)
for 111 locations. The distances on the left map are given in km.

Figure 13 shows the average maximum temperature in January for southern
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Norway for 2008-2019. The data were downloaded at eklima.no, a web page
maintained by the Norwegian Meteorological institute. The time series in
Figure 1b show that there also for this variable are repeated spatial trends
as the time series vary systematically compared to each other. Fitting the
two field model to this data gives posterior means ρx = 181 km, σx = 0.9 ◦C,
ρc = 111 km and σc = 4.5 ◦C, i.e. most of the spatial variability can be
explained by repeated weather patterns (σc � σx). Hence, this is another
dataset that should be suitable for further analysis with the two field model.

7 Implementing the two field model in r-inla

Finally, we show how the two field model can be implemented in the R pack-
age R-INLA (www.r-inla.org). The main contribution of this section is to
demonstrate how to specify the two spatial fields xj(s) and c(s) and high-
light the differences in the specification of these two. For a more in-depth
presentation of the different R-INLA functions used in our implementation,
we refer to Blangiardo and Cameletti (2015); Krainski et al. (2018). Ex-
ample code and example data for the two field model are also available on
https://github.com/tjroksva/RunoffInterpolation. Here, we use the
annual runoff data from Roksvåg et al. (2020b) as example data and specify
priors for all model parameters. Prior specification for all parameters are
not covered in the code below.

Assume we are going to fit the two field model to the dataset in Figure 1c.
We upload the precipitation data as follows (with unit m/year):

> library(INLA)
>
> precipdata=as.matrix(read.table("precipdata.txt",header=TRUE))/1000
> r=dim(precipdata)[1]
> n=dim(precipdata)[2]
> coords=as.matrix(read.table("precip_coords.txt",header=TRUE))
> y=as.vector(t(as.matrix(precipdata)))
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where precipdata is a matrix organized as in Figure 1c with each column
representing a location 1,...,n and each row representing a year or time
unit 1,...,r. Missing values are specified as NA’s. The matrix coords is a
n x 2 matrix that contains the x- and y- coordinates of the measurement
locations. These coordinates are given in the same order as the columns in
precipdata. Furthermore, in r-inla the observations have to be stored in
a vector, and we therefore make vector y. In this vector, all the observations
from year 1 come first, then all the observations from year 2, all up to year
r.

Next, we construct a suitable triangulation mesh for the spatial domain
such that we can use the SPDE approach to spatial modeling:

> mesh=inla.mesh.2d(loc.domain=coords,cutoff=3,max.edge=c(5,15),
> offset=c(20,30))

Here it can be useful to type mesh$n to see the number of mesh nodes in the
triangulation. This number should be large enough to capture the spatial
variability in the study area, but if it is too large, inference is slow. We refer
to Blangiardo and Cameletti (2015) for more on mesh construction. To be
able to transfer approximations from the mesh nodes to the target locations
in coords, we make a projection matrix A. This is done by the command

> A=inla.spde.make.A(mesh,loc=coords,
> index=rep(1:n,times=r),repl=rep(1:r,each=n))

So far we have only used standard R-INLA commands. Now we show how
to construct a replicated field xj(s) for year j=1,..r:

> spde.x=inla.spde2.pcmatern(mesh=mesh,alpha = 2,
> prior.range = c(10,0.1),
> prior.sigma = c(2,0.1))
> x.index=inla.spde.make.index(name="x.field",
> n.spde=spde.x$n.spde,n.repl=r)

Note that the PC prior for the spatial parameters is specified in
prior.range and prior.sigma. The climatic field c(s) is constructed sim-
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ilarly:

> spde.c=inla.spde2.pcmatern(mesh=mesh,alpha = 2,
> prior.range = c(10,0.1),
> prior.sigma = c(2,0.1))
> c.index=inla.spde.make.index(name="c.field",
> n.spde=spde.c$n.spde,n.repl=r)
> c.index$c.field.repl=rep(1,times=mesh$n*r)

Both the replicated field represented by x.index and the climatic field rep-
resented by c.index are lists of three vectors. The first vector is similar
for the two fields: x.index$x.field and c.index$c.field are given by
rep(1:mesh$n,times=r), i.e. they are vectors counting from 1 to the num-
ber of mesh nodes, r times. The second vector is also the same for the two
fields: x.index$x.field.group and c.index$c.field.group are given by
rep(1,times=r*mesh$n), i.e. it is only a vector of ones.

It is the third vector that distinguishes the replicated field xj(s) from
the climatic field c(s). For the replicated field, the third vector
x.index$x.field.repl is given by rep(1:r,each=mesh$n). That is, the
first mesh$n elements are 1’s and the next mesh$n elements are 2’s. This
continues up to r. This way we mark the r replicates of the spatial field
xj(u) from j=1,..r. For the climatic field however, the third vector is just a
vector of 1’s, i.e. c.index$c.field.repl= rep(1,times=r*mesh$n). This
is done to mark that we don’t have any replicates of the climate (the cli-
mate is assumed constant), and that all mesh nodes represent the same
realization (realization 1 or replicate 1).

After making indices for the two spatial fields, we specify indices for the
replicated intercept βj as follows:

> iid.index=list(iid=rep(1,times=mesh$n*r),
> iid.repl=rep(1:mesh$n,each=r))

Here, the vector iid.repl is specified similarly as the replicated field’s index
x.index$x.field.repl. This is to mark that we have r replicates of βj .

38



At this point, we have specified the necessary indices for all model compo-
nents. The indices and the data y are next inserted into a stack together
with the projection matrix A:

> stack=inla.stack(data=list(y=y),
> effects=list(c(x.index,c.index,iid.index,intercept=1)),
> A=list(A),tag="obs")

The linear predictor ηj(s) = βc + xj(s) + c(s) + βj can now be specified as
follows

> formula = y~ -1 +intercept+
> f(x.field, model=spde.x,replicate=x.field.repl)+
> f(c.field,model=spde.c)+
> f(iid,model="iid",replicate=iid.repl,fixed=FALSE)

and we run the analysis by writing

> res=inla(formula,family=c("gaussian"),
> control.compute=list(config = TRUE),
> data=inla.stack.data(stack),
> control.predictor=list(A=inla.stack.A(stack),compute=TRUE))

To get the posterior mean and the posterior standard deviation on the same
format as the data in Figure 1c, write:

> index.results=inla.stack.index(stack,tag="obs")$data
> postmean=matrix(res$summary.fitted.values[index.results,"mean"],

byrow=TRUE,ncol=n,nrow=r)
> postsd=matrix(res$summary.fitted.values[index.results,"sd"],

byrow=TRUE,ncol=n,nrow=r)

The parameter estimates are found in:

> res$summary.hyperpar
> res$summary.fixed
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This concludes the implementation of the two field model. For reference
we also include how the simple spatial model from Section 2.2 and the
spatio-temporal model from Section 2.3 can be implemented by making
some modifications in the code above.
One field model: To implement the simple spatial reference model, remove
the component f(c.field,model=spde.c) from the formula. Also omit
the specification of spde.c and remove the component c.index from the
stack.
Spatio-temporal model: Do the same modifications as for the one field
model. In addition, replace the x.index specification by the following:
x.index=inla.spde.make.index(name="x.field", n.spde=spde.x$n.spde,

n.group=r)
Also replace the f(x.field,model=spde.x,replicate=x.field.repl) in
the formula by:
f(x.field, model=spde.x,group=x.field.group,

control.group=list(model="ar1")).

8 Conclusions

In this note, we have explored the properties of a geostatistical two field
model for modeling spatio-temporal data. It is suitable for modeling en-
vironmental variables that follow repeated spatial patterns over time and
for modeling long-term averages. The two field model was first presented
in Roksvåg et al. (2020a,b) where it was used for interpolation of annual
runoff. In this note we have answered some questions that were considered
outside the scope of these articles: We have for example illustrated when
the two field model is useful compared to other statistical models for spa-
tial and spatio-temporal data, and shown that the most important model
parameters are identifiable. Furthermore, we have illustrated the model for
new target variables and given a tutorial on how the model can be imple-
mented in r-inla. This represents new contributions compared to the work
in Roksvåg et al. (2020a,b).
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