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ABSTRACT Autonomous underwater vehicles can perform seabed surveys with a higher resolution and
quality than from equivalent ship-mounted sensors. Although high-grade inertial navigation systems aided
by Doppler velocity logs can operate without external position references for extended durations, this may
still be required to meet survey specifications. This paper presents a trajectory planning algorithm for
an autonomous surface vessel with the purpose of aiding the navigation of one or multiple underwater
vehicles using ultra-short baseline acoustic positioning. The trajectory planning problem is formulated as a
nonlinear program for the single-vehicle tracking scenario and mixed-integer nonlinear program for tracking
of multiple vehicles. In the absence of external acoustic positioning, the horizontal uncertainties of all
targets increase as functions of time and heading. The optimal placement of the surface vessel is calculated
by considering the propagated acoustic measurement uncertainty, which varies according to the range and
direction towards the target. The trajectories are generated by minimizing the uncertainty of all targets, while
also considering penalties on the control inputs and obeying vessel kinematics. The approach is demonstrated
through a series of simulations.

INDEX TERMS Acoustic measurements, autonomous vehicles, marine navigation, optimal control, path
planning, position measurement, trajectory optimization, unmanned underwater vehicles.

I. INTRODUCTION
Autonomous underwater vehicles (AUVs) are untethered sen-
sor carrying platforms capable of performing surveys in high
proximity to the seabed. Moving the sensor carrying plat-
form closer to the seabed can increase the resolution of the
collected data significantly. This may be a requirement for
certain applications, such as geomorphological studies where
small-scale features of interest are not resolved in sufficient
detail by hull-mounted instruments on ships. Examples of
such applications may be the study of erosive processes over
time, submarine landslides, hydrothermal vents, mid-ocean
ridges, mud volcanoes and cold-water coral mounds [1].

Microwaves are absorbed rapidly in water, and a large
caveat with data collection on underwater vehicles is the loss
of global navigation satellite systems (GNSS) for positioning.
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AUVs equipped with state of the art inertial navigation
systems (INS) may operate for extended durations with
an external velocity reference from a Doppler velocity log
(DVL). These measurements can be fused using a probabilis-
tic state estimation filter, e.g. a Kalman filter. For high-end
DVL-INS systems, the main contributors to horizontal posi-
tion drift are errors in body-fixed velocities and heading due
to low-frequency errors of the DVL and gyro bias dynamics.
The best DVL-INS systems can achieve a drift of 0.1%
of distance traveled when running in a straight line with
bottom lock, which is the worst-case scenario in terms of
bias estimation [2]. Micro delta-position aiding can provide a
pseudo-velocity measurement with less long-term drift than
the DVL, where a displacement as measured by a synthetic
aperture sonar or camera is used [3]. Instruments capable
of bathymetric measurements may also be used along with
a known map in terrain aided navigation (TAN) or pre-
viously visited locations through simultaneous localization
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and mapping (SLAM) techniques [4]. These approaches are
promising but may have trouble with robustness due to sensor
outliers and ambiguities.

For surveys performed at modest depths, an alternative
strategy is to periodically resurface for a position update. This
may not be feasible given mission constraints, ship traffic,
survey depth, and is perhaps undesirable due to the interrup-
tion of data collection. For deep-sea surveys where the AUV
operates for long durationswithout aDVL bottom lock during
the dive and ascent, or instances where the INS system is not
providing acceptable performance, external acoustic position
references can be used. The time of flight of an acoustic wave
relative to a transducer with a known position is then used
together with a measured sound of speed in water to estimate
the position. Multiple acoustic measurements are combined
to compute this estimate; either by measuring distinct pulses
or bymeasuring the same pulse multiple times in a baseline of
transducers. The former is known as single transponder nav-
igation or virtual baseline navigation, which requires relative
movement between the target and transponder to resolve the
direction [2]. When the baseline in the latter is made up by
multiple integrated transducers, it is referred to as ultra-short
baseline (USBL) systems. In this work we focus on the USBL
acoustic measurement principle, where a measured range and
direction is used to estimate the position. The transducer
is assumed to be mounted on a movable surface vessel,
capable of following the underwater vehicle throughout its
mission. Pairing an autonomous underwater vehicle with an
autonomous surface vessel (ASV) acting as a communication
and navigation aid (CNA) has been regarded as a natural step
forward in automating surveys and freeing the AUV from the
survey vessel. Recently, a concept where an underwater vehi-
cle is launched and recovered from an autonomous surface
vehicle has been demonstrated, further removing the need
for a manned ship during launch, recovery, and transit [5].
Long-term deployments of a CNA across multiple AUV dives
have been demonstrated by equipping a Wave Glider ASV,
utilizing wave energy for propulsion, with acoustic modems
and satellite communications [6]. CNAs have been used to
provide persistent communications across a wide range of
unmanned underwater, surface, and aerial vehicles [7], [8].

In this work, the propagated measurement uncertainty is
derived based on uncertainties in the orientation of the surface
vessel, measured acoustic direction, and measured acoustic
range. This is in turn used to solve the path planning prob-
lem for an ASV in order to provide positioning updates to
one or more underwater vehicles. The uncertainty of each
vehicle is tracked in order to generate paths that weight
the minimization of uncertainty against the energy expen-
diture of the vessel, while obeying kinematic constraints.
The path planning problem is formulated as a nonlinear
program (NLP) in the CasADi symbolic math and algo-
rithmic differentiation framework [9]. Two formulations are
proposed. The first assumes that all targets are continuously
ranged using interleaved measurements, while the second
makes an explicit decision of which target to track. The latter

results in a mixed-integer nonlinear program (MINLP). The
NLP is solved using the IPOPTCasADi backend [10], and the
MINLP is solved using the BONMIN CasADi backend [11],
[12]. The Harwell Subroutine Library (HSL) MA57 linear
solver is used for both backends [13].

A. RELATED WORK
This work deals with the question of where to optimally
position the topside vehicle in order to minimize the hori-
zontal uncertainty of one or more underwater vehicles. Pre-
vious research has primarily focused on range-only acoustic
localization. Since range-only measurements only places the
target on a sphere surrounding the recipient, the relative
direction between the target and surface vessel must change
in order to bound the navigational drift. Although the mea-
surement principle differs, there are similar considerations to
be made for the path planning. An early development for a
range-only solution was repeating patterns of zig-zag motion
or circular motion around the horizontal location of the target
underwater vehicle [14]. While a heuristic policy such as
this may bound the navigational drift for a single vehicle,
it does not minimize the fuel consumption or directly extend
to a multi-vehicle tracking scenario. If the surface vessel is
also used to collect complementary data (e.g. water-column
acoustic profiling), the data quality may also be impacted.
To account for these aspects in a planning algorithm, it is
necessary to quantify the current uncertainty of the target
vehicles, as well as a method to evaluate the reduction in
uncertainty for a given trajectory. Waypoint generation based
on the difference between the prior and posterior covariance
matrices has been demonstrated [15]. There, the reduction in
uncertainty was evaluated over a grid of reachable waypoints.
The grid extent was determined by the maximum speed of
the vehicle. At each step the waypoint yielding the largest
reduction in variance was selected greedily. This enabled
the algorithm to consider tracking of multiple vehicles, but
suboptimal choices could be made depending on the paths
of the target vehicles due to the one-step greedy planning.
Later, a multi-step path planner was demonstrated over a set
of discrete turn angles [16]. Two proposed algorithms were
presented, one where the path planning problem was solved
through Dynamical Programming (DP) over a finite horizon,
and another where a Markov Decision Process (MDP) was
used to pre-compute a heuristic decision policy. The sum of
the variance along the major and minor axes of the posterior
covariance matrix at each step was used as a cost function
when learning the MDP policy. The two underwater vehicles
were assumed to operate at the same fixed depth. More
recently, a path planning approach based on a priority based
random expansion of possible paths was developed [17]. The
presented algorithm samples new points within a feasible
circle, limited by the upper speed of the vehicle. Expansion
continues along a predetermined number of best samples,
selected in a greedymanner based on a cost function. The cost
function used was composed of two terms. The first penalized
the angle between the major axis of the covariance ellipse
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and the direction towards the vehicle in the horizontal plane.
The second added a penalty when the distance to the vehicle
was above or below a fixed threshold. The time-evolution of
the covariance matrix over the planning horizon was simu-
lated by an extendedKalmanfilter (EKF)without considering
the depth of the vehicle. The cost function was evaluated for a
discrete set of times for every ping, thus indirectly optimizing
over a set of discrete speeds.

Aside from considering USBL instead of range-only mea-
surements, we improve on the previous work in one or more
of the following areas. First, the vertical position of the under-
water vehicle is considered in the propagation of uncertainty.
The vehicle depth can also vary throughout the planning
horizon. The path planning problem is discretized in time, but
the decision variables are continuous. We include an energy
penalty term as a function of vessel speed, enabling a trade-off
between reduction in uncertainty and energy expenditure.
The effect of an offset in the sound velocity profile on the
measurements is also considered.

B. INS-USBL LOCALIZATION: ERROR SOURCES
In this section we highlight some of the primary sources
of localization errors in a USBL-INS setting. We are pri-
marily concerned with errors that can be influenced through
the position of the surface vessel. More complete treat-
ments of the uncertainties for hydrographic surveys are
available [18], [19]. We assume that the involved systems
are calibrated, and that no large discrepancies exist in the
mounting offsets and orientations of the sensors.

The underwater vehicle follows its planned path based on
an estimate of its position, with an associated uncertainty.
The USBL system measures the propagation time, eleva-
tion and bearing to the underwater vehicle. Since the USBL
modem is rigidly attached to a surface vessel, the roll, pitch,
heading, and position of the surface vehicle must also be
estimated to compute the position of the underwater vehicle.
All these measurements have some degree of uncertainty.
The speed of sound in water is used with the time mea-
surements to compute the distance to the target. Generally,
the speed of sound varies with depth due to a changing
water density and compressibility. This is described through
a sound velocity profile (SVP), typically calculated based
on conductivity-temperature-depth (CTD) measurements or
measured directly using a sound speed probe. The SVP can
also be used to correct for acoustic ray-bending, which occurs
if the SVP has a non-zero vertical gradient. For measurements
near the vertical (nadir), this effect is negligible, but becomes
progressively worse for larger elevation angles. Even if the
SVP is measured accurately initially, the true profile may
change over time or upon moving to a new location. Out-
liers may occur due to multi-path propagation, in which
the acoustic wavefront is received via the seabed, surface,
or floating objects such as icebergs. Multi-path propagation
is not addressed in this work, and these events are assumed to
be discarded by the underlying system.

The presence of systematic errors in the INS and USBL
system can be divided into the following four scenarios under
steady-state conditions. These are illustrated in Fig. 1.

1) UNBIASED INS AND UNBIASED USBL
The USBL system applies accurate sound-speed and
ray-bending corrections. Given regular acoustic position
updates, the AUV correctly estimates the biases in its
body-fixed velocity and heading. The USBL measurements
and INS estimates are in agreement.

2) BIASED INS AND UNBIASED USBL
The navigational sensors are either of poor quality or the INS
is incorrectly tuned, and the AUV INS is therefore unable to
estimate its bias states. The AUV continuously drifts away
from its estimated position. At every USBL update, the esti-
mated position jumps towards the USBL update. The navi-
gational drift is still bounded, but has a periodic component
determined by the magnitude of the bias states and the rate
and quality of the acoustic measurements.

3) UNBIASED INS AND BIASED USBL
The USBL system applies the wrong overall sound speed or
applies the wrong ray-bending corrections. Given acoustic
position updates that are biased, but consistent, the INS tends
towards the biased position. For example, if the topside vessel
and underwater vehicle are moving in a fixed formation in the
same direction.

4) BIASED INS AND BIASED USBL
As the previous scenario, the USBL system includes inherent
biases depending on the acoustic conditions, and the AUV
INS does also not fully take all sources of bias into account.
Normally we operate in this scenario to a varying degree.

C. PRELIMINARIES
Matrices are written in bold capital letters and vectors are
written in bold small letters. The short-hand notation cψ and
sψ is used for cosines and sines with respect to the specified
angle, ψ . A variable in the Euclidean space with dimension n
is denotedRn, while matrices of dimension n×m are denoted
Rn×m. The time derivative of a variable x(t) is denoted ẋ.
Superscript in curly brackets denotes the reference frame
to which a given vector is expressed. For example, p{n} is
a position in the north-east-down (NED) frame. The refer-
ence frames used are: NED (n), BODY (b), and USBL (u).
A rotation matrix Rba ∈ SO(3) between reference frames uses
a subscript for the frame transformed from, and superscript
for the frame transformed to. For example, rotating from
BODY to NED is denoted Rnb(2) = Rz,ψRy,θRx,φ where
2 = [φ, θ, ψ]T is the Euler angle parametrization following
the zyx-convention. The same notation is used for rotation by
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FIGURE 1. Four different scenarios involving systematic biases in the top-side acoustic positioning system and on-board inertial navigation system. The
true vehicle position is shown in black, the estimated position of the INS system is shown with a dashed outline, and the USBL position estimate is
shown as an elliptical projection onto the apparent position of the vehicle. Red is used to indicate an inherent bias. The illustrations are 1) Unbiased
USBL and INS, 2) Unbiased USBL and biased INS, 3) Biased USBL and unbiased INS, 4) Biased USBL and INS.

other angles about the same principal axes.

Rx,φ1 0 0
0 cφ −sφ
0 sφ cφ


Ry,θ cθ 0 sθ

0 1 0
−sθ 0 cθ


Rz,ψcψ −sψ 0

sψ cψ 0
0 0 1


We additionally take the matrix R2 ∈ SO(2) to mean
the rotation matrix in the (horizontal) plane for a possibly
time-varying heading.

G(t) = R2(ψ(t)) =
[
cψ(t) −sψ(t)
sψ(t) cψ(t)

]
The skew-symmetric matrix S(λ) ∈ SS(3) denotes the

vector cross product operator defined as follows.

S(λ) =

 0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0

 , λ =

λ1λ2
λ3


The derivative of a rotation matrix Rp(f (θ )) with respect

to an angle θ about a principal axis is equivalent to matrix
multiplication by a skew-symmetric matrix, where Ee is the
basis vector corresponding to the principal axis of rotation.

d
dθ

Rp(f (θ )) = S
(
df
dθ
Ee
)
R(f (θ ))

II. METHODS
In this section, the approach taken to solve the path planning
problem is described. Kinematic models are used both for
the surface vessel and the underwater vehicle. The kinematic
model for the surface vessel is used in the motion planning
to compute the response in position and heading to inputs
in forward velocity and heading rate of change. The under-
water vehicle model on the other hand is not used directly
during optimization but is used to propagate the position
forwards in time along the planned mission path. The result
of this simulation is input into the path planning problem
and assumed to be fixed. Ambiguity in the planned path of
the vehicle is not considered, and the planned waypoints of
the vehicle is therefore assumed to be known. The plan can
either be exchanged prior to launch or over an acoustic link,
where the latter allows for online replanning in response to
dynamic mission objectives. A simple error model in terms

of uncertainty in the body-fixed linear velocities is described
and used to represent the increase in horizontal uncertainty
between USBL updates. An expression for the propagated
uncertainty for the acoustic positioning is derived based on
linearization of the measurement equation. Finally, the path
planning problem for a surface vessel following one or more
underwater vehicles is presented in the form of a non-linear
program (NLP).

A. SURFACE VESSEL KINEMATIC MODEL
The planning horizon for the tracking objective formulated in
this work is performed over relatively long time horizons. For
this reason the short-term dynamics becomes less important.
A simple underactuated kinematic model of the vessel is
therefore adopted to represent physical constraints. The state
of the vehicle is taken to be the north position, east position,
and heading respectively; ηS = [N ,E, ψ]T . The inputs to
be calculated are the forward velocity (surge) and yaw rate;
νS = [u, r]T .

η̇S = J (ηS )νS =

cψ 0
sψ 0
0 1

[u
r

]
(1)

The vessel is assumed to have negligible side-slip and lateral
motion due to currents.

B. UNDERWATER VEHICLE KINEMATIC SIMULATION
The following model is used to simulate the underwater
vehicle towards a known set of waypoints. It is propagated
forwards in time according to a kinematic vehicle model with
north position, east position, depth, pitch angle, heading angle
as states; ηU = [N ,E,D, θ, ψ]T . The inputs are surge veloc-
ity, sway velocity, pitch rate, and yaw rate; νU = [u, v, q, r]T .

η̇U = J (ηU )νU =


cψcθ −sψ 0 0
sψcθ cψ 0 0
−sθ 0 0 0
0 0 1 0
0 0 0 c−1θ



u
v
q
r

 (2)

In the model above, we assume the underwater vehicle to
be passively stabilized in roll with negligible roll dynamics.
Taking the kinematic equations in 6 degrees of freedom as a
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starting point [20], the model can be derived by solving for
φ̇ = 0 and taking this to be the input to the body-fixed angular
velocity about the forward axis, p. Setting the initial value of
the vehicle roll and heave linear velocity to be zero, the model
simplifies to the above. The inputs are computed based on
path following using line-of-sight (LOS) control, decoupled
in the horizontal and vertical plane [21]. The kinematic model
ensures that the generated trajectories have continuous first
derivatives. Bounds should be placed on the input variables to
approximately reflect the physical parameters of the system.

C. UNDERWATER VEHICLE ERROR MODELING
The horizontal drift in position of an AUV aided by external
velocity measurements from a Doppler velocity log (DVL)
is mainly determined by low frequency errors of the DVL
(alignment, sound speed scaling) and heading error (gyro bias
dynamics, magnetic deviation) [2]. The survey pattern may
also influence the long-term drift, as velocity errors become
observable during turns due to the centripetal acceleration.
Biases can also cancel out if the survey pattern is designed
with alternating directions. Here we consider the worst-case
scenario, straight-line navigation, and derive a simple error
model given uncertainties in the body-fixed velocity and
heading. [

Ṅ + ˙δN
Ė + ˙δE

]
= R2(ψ + δψ)

[
u+ δu
v+ δv

]
(3)

The angle sum trigonometric identities are used with a
first-order small-angle approximation to the heading devia-
tion δψ .

cψ+δψ ≈ cψ − δψsψ , sψ+δψ ≈ sψ + δψcψ

The nominal lateral velocity is taken to be zero (v = 0),
since the focus is on under-actuated vehicles with primarily
forward thrust and negligible side-slip. The deterministic part
of the rotation matrix can then be separated out.[

Ṅ + ˙δN
Ė + ˙δE

]
= R2(ψ)

([
u+ δu
δv

]
+ δψ

[
−δv
u+ δu

])
(4)

The cross-terms δψδu and δψδv are considered to be neg-
ligible compared to the other terms since they are products
of two small quantities. Keeping only the non-deterministic
terms leads to the error model below.[

˙δN
˙δE

]
= R2(ψ)

[
δu

δv+ δψu

]
(5)

The long-term accuracy in the DVL velocity can be described
by σδu = κu + ε where κ describes errors that scale with
the velocity and a constant additive noise term ε [22]. Note
that these specifications include a wide range of effects, and
interpreting them as normally distributed uncorrelated noise
is not correct in a statistical sense. It does however help in
defining an approximate expectation on the long-term devi-
ation. Increasing the frequency of the DVL generally reduce
these errors, but also the attainable range. Modern DVLs with

200m range can for example have scale factors κ between
0.002 and 0.004, and σ (ε) between 1mm/s to 2mm/s [2].

The nature of the heading error depends on the measure-
ment principle in use; for underwater inertial navigation this
is typically either a low-cost gyroscope aided by a magnetic
compass to improve long-term stability or a gyrocompass
capable of directly measuring Earth’s rotation [23]. The for-
mer is cheaper, but is susceptible to deviation in the local
magnetic field, solar winds, and self-induced magnetic vari-
ations due to varying electrical currents. A gyrocompass is
not as susceptible to external influences, but the presence of
gyro bias causes drift in the heading over time. For high-end
INS the DVL induced position error is close to a magnitude
larger than that of the accelerometers and gyroscopes for
straight-line trajectories [24]. The performance of a gyro-
scope can be specified by its angular random walk (ARW)
and bias instability. The former appears as additive zero-mean
noise on the measured angular rates, and the latter as a bias
varying at low frequencies [25]. The bias can be modeled
as a zero-mean first order Gauss-Markov process in which
its values are exponentially correlated with its past values,
i.e. colored noise. In the Kalman filter, which only supports
white (uncorrelated) noise directly, it is common to augment
the state vector by additional states purely driven by noise
to obtain the desired frequency characteristics [26]. In this
work, dynamic states are avoided in order to derive analytical
expressions for the steady-state covariance, which proves
useful in solving the path planning problem. For this reason,
the following approximation is applied for the uncertainty a
gyrocompass [22].

σδψ = σδψ,IMU + σδψ,DVL

≈
1ω

ωIE cosµ
+
δv
u

(6)

Here, 1ω is the bias stability per specifications, ωIE =
7.2921× 10−5 rad/ sec is the rotation rate of Earth rela-
tive to the inertial frame, and µ is the latitude taken to be
45 deg. The second term is an induced heading error by the
DVL across-track error relative to the surge speed. Since
we assume no nominal velocity in the across-track direction,
this is taken to be the constant part of the DVL long-term
accuracy specification. The nominal surge speed, u, is taken
to be 2.0m/s.

Take the matrix Q to mean the body-fixed velocity covari-
ance matrix.

Q =
[
σ 2
x 0
0 σ 2

y

]
=

[
σ 2
δu 0
0 σ 2

δv + uσ
2
δψ

]
(7)

The time-derivative of the north-east covariance Ṗ can then
be represented as the projection of the body-fixed linear
velocity errors onto the north-east axes provided that the true
heading is known. The projection can be represented by a
two-dimensional rotation matrix, G(t) = R2(ψ(t)).

Ṗ
{n}
= Cov

{
G(t)

[
δu

δv+ δψu

]}
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= G(t) Cov
{[

δu
δv+ δψu

]}
GT (t)

= G(t)QGT (t) (8)

This time-varying equation can be integrated exactly for the
case of constant turn rate, ψ̇ = r with ṙ = 0. This is given by

P t0+τ = P t0 +

{
f r (τ )− f r (0) for r 6= 0
G(t0)QGT (t0)τ otherwise

(9)

where

f r (τ ) =

[
−s2ψ 2c2ψ
2c2ψ s2ψ

]
σ 2
y − σ

2
x

4r
+

(σ 2
x + σ

2
y )τ

2
I2

and ψ = ψ0 + rτ . If the variances along the body axes are
identical, i.e. σ 2

x = σ
2
y , the above reduces to P t0+τ = P t0 +

τσ 2I2.

D. USBL ACOUSTIC POSITIONING
The position of the vehicle is estimated based on themeasured
acoustic range and direction. The range can be obtained from
time-of-flight measurements based on one-way or two-way
ranging. The direction of the wavefront can be measured by
the phase shift of the incoming signals measured in a base-
line formed by several transducers. With these measurements
being known, the position of the target in the NED frame can
be computed. The acoustic direction and range is taken to cor-
respond to the direct path to the vehicle, i.e. that ray-bending
has already been corrected for. The position of the ship is
given by p{n}S , and the mounting offset of the USBL system
in the body frame is given by p{b}U . With the range expressed
in vector form as r{u} =

[
0, 0, r

]T and the measured bearing
and elevation given by α and β respectively, the position of
the target vehicle can be calculated as follows.

p{n}T = p{n}S + R
n
b(2)

[
p{b}U + R

b
u(α, β)r

{u}
]

(10)

Since the range in vector form is expressed along the
z-axis of the USBL-frame ({u}), the measurement can be
related to the body frame through the following rotation
Rbu(α, β) = Rz,αRy,β . The bearing and elevation measure-
ments are assumed to be alignedwith the body axes of the ship
but can trivially be rotated from a different frame if necessary.
The measurement uncertainties present in the acoustic range,
acoustic direction, and ship attitude are assumed to be ade-
quately described as zero-mean additive white noise. Since
Gaussian distributions are only valid under linear transforma-
tions, the propagated uncertainty is approximated based on a
first-order Taylor expansion of (10).

Cov
{
p{n}T

}
≈ JU6JTU (11)

where JU is the Jacobianwith respect to the non-deterministic
variables and 6 is the associated covariance matrix. This is a
reasonable approximation for modest angular uncertainties.
For larger angular uncertainties the projected probability
distribution becomes curved and is no longer accurately

described through linearization. While it is tempting to com-
pute the partial derivatives with respect to the variables in (10)
directly, the derivatives with respect to the spherical coordi-
nate parametrization of the bearing and elevation does not
necessarily reflect the physical uncertainty in the directional
measurement. In the zy-parametrization there is a singularity
along the z-axis, i.e. β = 0. Here, the partial derivative
with respect to the z-rotation becomes zero and gives no
net contribution to the measurement uncertainty along the
y-axis. Instead, we want to represent a perturbation in the
direction of the incoming wavefront, such that the directional
uncertainty forms a cone towards the target irrespective of
direction. We therefore make the following modification to
the parametrization of the body-USBL rotation matrix.

Rbu(α, β, δ1, δ2) = Rz,αRy,βRy,δ2Rx,δ1 (12)

Here δ1 ∼ N (0, σ 2
δ1
) and δ2 ∼ N (0, σ 2

δ2
) are zero-mean

perturbed angles about the direction of the incoming wave-
front. The rotation to body frame according to the bearing and
elevation is then performed as before, under the assumption
that there is no uncertainty in these parameters. In this work,
we apply these equations in a forward simulation, where this
is always the case since the (unbiased) mean position of the
underwater vehicle is known.

The partial derivative with respect to the angle of a rotation
matrix can be calculated as the product of a skew symmetric
matrix and the rotation matrix. The derivative with respect
to the Euler angle φ about the x-axis can for example be
computed as follows, where the coordinate frames have been
omitted for brevity.

δpT
δφ
= Rz,ψRy,θS(î)Rx,φ

[
pU + R

b
ur
]

(13)

The partial derivatives can similarly be computed for the other
variables. The full Jacobian of (10) can then be computed
with respect to x = [φ, θ, ψ, δ1, δ2, r]T . These are the Euler
angles of the ship, acoustic perturbation and acoustic range
respectively. The uncertainty in the position of the ship is
omitted as its already in the NED frame, and is constant no
matter where the surface vessel is positioned.

J =


∂pT ,n
∂φ

· · ·
∂pT ,n
∂r

∂pT ,e
∂φ

· · ·
∂pT ,e
∂r

∂pT ,d
∂φ

· · ·
∂pT ,d
∂r

 (14)

The Jacobian can be simplified by taking the roll and pitch
to be zero, as the forward simulation does not include these
degrees of freedom. Note that the uncertainty in the surface
vessel pitch and roll is still propagated along the direction
of the USBL measurement. If the body coordinate frame is
additionally taken to be centered on the USBL, it can be
simplified further. Under the assumptions above, the follow-
ing Jacobian in NED can be derived for the Euler angles,
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directional perturbation, and range respectively.

JU =


rsψcβ −rcψcβ rsαsβ
rcψcβ rsψcβ −rcαsβ
−rsβsα+ψ rsβcα+ψ 0
rsα+ψ −rcα+ψ 0
rcβcα+ψ rcβsα+ψ −rsβ
sβcα+ψ sβsα+ψ cβ



T

(15)

Assuming independence between the variables, the vector
x may be described by a multivariate Gaussian distribution
with a diagonal covariance matrix.

6 = diag(σ 2
φ , σ

2
θ , σ

2
ψ , σ

2
δ1
, σ 2
δ2
, σ 2

r ) (16)

Equation (11) can now be used to calculate the approximate
propagated measurement uncertainty. This will be used to
evaluate the reduction in uncertainty for the path planning.

E. DISCRETE-TIME USBL UPDATE VARIANCE
At each acoustic position update the prior belief of the under-
water vehicle position can be fused with the measurement.
The prior distribution can be taken to be the uncertainty
at the last USBL negotiation plus the increase in uncer-
tainty between the updates, calculated by (9). The measure-
ment uncertainty is taken to be described by the linearized
approximation in (11). The posterior distribution can then
be computed based on Bayes theorem. Since both the prior
and measurement distributions are taken to be multivariate
Gaussian, the posterior probability distribution is given by the
scaled product of two Gaussian probability density functions.
This result is another Gaussian distribution, as it is conjugate
to itself. The variance of the posterior is equal to the recipro-
cal sum of the reciprocal of the variances [27].

6 = (6−11 +6
−1
2 )−1

= 616
−1
1 (6−11 +6

−1
2 )−16−12 62

= 61(61 +62)−162 (17)

The Sherman-Morrison-Woodbury inverse matrix modifica-
tion formula can then be used to transform this equation into
the following [28].

6 = (6−11 +6
−1
2 )−1

= 61 −61(61 +62)−161 (18)

This is in fact equivalent to the Kalman filter error covari-
ance update equation; the minimum mean-square error esti-
mator for linear-Gaussian systems. Inserting for the prior
distribution and the measurement uncertainty yields the fol-
lowing expression for the posterior horizontal uncertainty
conditioned on the measurement.

Pk+1 = P+k − P
+

k

(
P+k + Rd,k

)−1 P+k (19)

Here, Rd = JU ,k6kJTU ,k is the linearized measurement
covariance as derived in the previous section. The prior
covariance, P+k , is given by (9). For an AUV following a
straight path this is given by P+k = Pk + G(ψk )QGT (ψk )τ .

The attained reduction in variance by positioning the ASV at
a series of locations can now be estimated, provided that the
acoustic negotiation is successful.
The steady-state covariance can be calculated by taking the

measurement Jacobian, update rate, and uncertainty increase
between updates to be fixed in time. The expression for
the steady-state covariance is derived in Appendix A, and
restated below.

Pd,∞ = Qd

[(
Q−1d Rd +

1
4
I
) 1

2

−
1
2
I

]
(20)

Here, Qd is the covariance increase between USBL measure-
ments. The principal square root is used, for which every
eigenvalue has a non-negative real value. This square root is
unique for positive semi-definite matrices.

The steady-state standard deviation evaluated on a square
grid of horizontal offsets is presented in Fig. 2 with the AUV
fixed at the center at 100m depth. If the body-fixed velocity
errors are identical, the steady-state covariance in the north
and east directions are the same, except rotated 90◦. Moving
along the east or north axes causes the steady-state covariance
to remain low along the respective axis. The reason for this
can be explained by considering a measurement with the
target at the surface. The projected angular measurement
uncertainty is then decomposed along the z-axis and the
orthogonal direction in the horizontal plane. The projected
uncertainty in the direction of the target is fully defined by the
range uncertainty. In this work, we assign constant variance
to the range measurement regardless of distance to the target.
In practice the range uncertainty can vary slightly according
to the signal strength (dB). We compensate for this by using
a conservative value for the range uncertainty.

Using the steady-state covariance, the measurement
covariance performed at a different update-rate can be calcu-
lated. This measurement is equivalent in a steady-state sense,
but may deviate if there are strong transients. This will be
used in the path planning to effectively decouple the problem
formulation from the true rate of the measurements.

Rz(∞) = Pd,∞Q−1z Pd,∞ + Pd,∞ (21)

An example of the posterior covariance with USBL
updates at different rates is shown in Fig. 3. There, an ASV
and AUV pass across each other in a straight line along the
east-west axis, with the AUV at a fixed depth. Note that both
the body-fixed velocity uncertainty and measurement uncer-
tainty have been increased relative to the other simulations to
produce transients.

F. TRAJECTORY PLANNING
In this section, we formulate an optimal control prob-
lem (OCP) for the trajectory planning with USBL aiding.
The OCP is implemented as a NLP through a direct multi-
ple shooting approach. Direct methods discretize the control
problem into time intervals called shooting intervals prior
to optimizing and solves each sub-problem separately. Con-
tinuity along the solution trajectory is ensured by equality
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FIGURE 2. Steady-state standard deviation for an AUV at 100 meters depth, with a varying horizontal offset in north and east from -1000 m to 1000 m.
The figures from left to right are; the steady-state uncertainty in north, east and root-sum-square,

√
σ2

N,∞ + σ
2
E,∞, of the two. At the center of the

figures, the ASV is positioned directly on top of the AUV, causing a minima along both axes. Both the ASV and AUV are headed north. The isolines are
spaced at 0.1 m intervals.

FIGURE 3. Comparison of the USBL update equation at different update
rates using a modified measurement covariance based on the
steady-state covariance. The AUV and ASV crosses on a straight path
along the east axis, with the AUV remaining at a depth of 50 m
throughout. The true USBL updates (2 s) are shown as small zig-zag lines,
the dashed lines are modified measurements at 30 s intervals. The solid
lines are steady-state equivalent continuous covariance updates solved
using implicit Runge-Kutta 5 (see Appendix B).

constraints in the NLP. In our formulation, every shooting
node has free decision variables, which is referred to as full
discretization [29].

The multiple shooting approach considers both the con-
trol inputs and states to be decision variables. This results
in a problem with a larger size and more degrees of free-
dom, but less nonlinear dependency on the control inputs.
This improves the convergence for nonlinear problems as
well as the numerical stability [30]. Since the states are

taken to be decision variables, an initial guess can also be
provided to speed up the convergence. A moving horizon
approach is used, where the problem is solved over a finite
time horizon. After solving, the horizon is shifted into the
future, and warm-started using the previous solution. The
prediction horizon is partitioned into np shooting intervals
[tk , tk + τ ] , 0 ≤ k ≤ np. Here, τ is the time step, i.e. the
duration of the shooting interval. The inputs, surge velocity
and turn rate, are taken to be piecewise constant on each inter-
val νS (t) = qk = (us, rs)k . An initial value problem (IVP) is
solved on each shooting interval to compute the response in
position and heading.

ẋk (t) = fk (xk , qk ), xk (tk ) = sk (22)

Here, sk are the states at the shooting interval boundaries. The
initial values of each interval are constrained to be equal to
the solution of the previous interval. In this work, the kine-
matic IVPs are solved through an explicit Runge-Kutta
order 4 (RK4) numerical integration. An exact integration
was attempted but found to converge slower than RK4 with a
negligible increase in accuracy.

The covariance of each AUV is propagated according
to (19). Let the matrix Pk,j be the covariance at the beginning
of shooting interval k , where j ∈ {1, . . . , nt } denotes the tar-
get. Two formulations are considered. The first formulation
assumes that all vehicles are ranged at equal rates throughout
the shooting horizon. In that case, the nominal USBL rate is
reduced according to the number of vehicles being tracked.
The second formulation only ranges a single vehicle per
shooting horizon. Binary decision variables are introduced,
turning the formulation into a mixed-integer nonlinear pro-
gram (MINLP). The binary decision variables bk,j ∈ {0, 1}
are used to select the vehicle to range over each shooting
interval. An inequality constraint is added to allow ranging to
at most a single vehicle at a time (25h). Using an inequality
instead of an equality allows for the option of ranging none
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of the vehicles. This may for example occur if an energy cost
is added when the USBL system is active. This aspect is not
considered here, and ranging a vehicle is never considered
negative, no matter how high the measurement covariance
becomes.

Pk+1,j = P+k,j − bk,jP
+

k,j

(
P+k,j + Rd,k,j

)−1
P+k,j (23)

Let the vector ck,j represent the flattened covariance matrix
for each target j, at the beginning of each shooting interval k .
The states of the NLP at each shooting node are then taken to
be described by the following vector.

sk =
[
ηk ; ck

]
=
[
ηk ; ck,1; . . . ; ck,nt

]
(24)

The positions of the underwater vehicles are supplied as
fixed parameters in the NLP given a known plan and forward
simulation by integrating (2). The uncertainty increase over
each shooting interval is pre-computed for each underwa-
ter vehicle with (9). The NLP and MINLP are summarized
below. The last inequality is exclusive to the MINLP formu-
lation.

min
s,q

np∑
k=1

{
Lk (sk , qk )

}
+ V∞(snp ), (25a)

s.t. (25b)

x0 = s0, (25c)

FRK4(tk , ηk , qk ) = ηk+1 0 ≤ k < np, (25d)

FC (tk , ηk+1, ck ) = ck+1 0 ≤ k < np, (25e)

q
¯k
≤ qk ≤ q̄k 0 ≤ k < np, (25f)

1u
¯k
≤ uk − uk−1 ≤ 1ūk 0 ≤ k < np, (25g)

1 ≥
nj∑
j=1

bk,j 0 ≤ k < np (25h)

From top to bottom the constraints are; initial value con-
straint, shooting constraints FRK4 for the kinematic equa-
tions, shooting constraints FC for the covariance equations,
input constraints (surge and heading rate), surge rate of
change constraint. The final inequality limits the number
of targets that can be ranged simultaneously in a shooting
horizon, which is only included in the MINLP formulation.
The propagation of covariance only depends on the state at
the end of each shooting interval, and not any intermediate
values. This means that the Jacobian is evaluated given the
position of the surface vessel and underwater vehicles at that
time. It is possible to introduce intermediate shooting nodes
to increase the resolution of the update rate of the propagated
uncertainty without increasing the input space. Alternatively,
the duration of the shooting intervals can be reduced, but
constraining a number of adjacent intervals to have equal
inputs in order to avoid increasing the dimensionality of the
input space. The latter is known as input blocking or move
blocking [31].

The objective to be minimized is defined as a sum over
a function, Lk (sk , qk ), evaluated at the end of each shooting
interval. The following objective function is used.

Lk (sk , qk ) =
1
nt

nt∑
j=1

Tr
{
Pk,j(sk , qk )

}
+wuu3k + wdu(uk − uk−1)

2

+wrr2k + wdr (rk − rk−1)
2 (26)

Here, the trace of the horizontal covariance matrices are
minimized across all vehicles. The trace is equal to the sum
of the eigenvalues of the covariance matrix, e.g. variance
along the major and minor axis. In this work, the uncertainty
across the vehicles are weighted equally, but one vehicle can
easily be prioritized by adding a vehicle-dependent weight
inside the summation. The term is normalized by the number
of vehicles for consistency in tuning of vehicle parameters.
The second line adds penalties on the surge inputs and the
change in velocity. The third line adds penalties on the turn
rate inputs and the change in turn rate. The surge penalty
is intended to represent the energy required to maintain the
speed, whereas the other three are introduced to prefer paths
without excessive changes to heading or speed. The cube of
surge velocity is used to quantify the effective horsepower, i.e.
the power required to tow a ship overcoming its resistance.
A coarse approximation can be described by the following
expression in salt water [32].

Pe = 0.0697CtSV 3
knots [kW] (27)

The coefficient S denotes the wetted surface area (m2), and
Ct is a resistance coefficient which typically varies with
the speed-to-length ratio of the ship. In this work, we are
operating in a low speed regime, and this is taken to be
described as a constant wu which also scales the penalty
relative to the covariance in the objective function. A more
realistic resistance coefficient can be specified through a
regression model, providing that it is sufficiently smooth and
convex. The efficiency of the propulsion system can also be
considered. An alternative strategy could be to replace the
kinematic ship model with a dynamical model and define the
energy in terms of the work done by the actuators [33].

The function V∞(snp , qnp ) is a terminal cost computed at
the end of the horizon. This is taken to be the average of
the traces of the steady-state covariance matrices across all
vehicles, computed at the end of the final shooting interval.

V∞(snp , qnp ) =
w∞
nt

nj∑
j=1

Tr
{
P∞,j(snp , qnp )

}
(28)

The use of a terminal cost has been well studied with respect
to optimality and stability in finite horizon model predictive
control [34]. In this work, the terminal cost has been found to
improve convergence and path stability, especially for shorter
planning horizons. In the MINLP formulation, the terminal
cost is still taken to be the average steady-state variance
across all vehicles, and not just the target being tracked,
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FIGURE 4. Sound velocity profiles (SVP) at the Arctic Mid-Ocean
Ridge (AMOR) measured between August 22nd and September 1st

of 2016. The SVPs are calculated based on conductivity, temperature, and
depth (CTD) measurements onboard an AUV. The profiles have been fitted
to splines but are not overly smooth and are representative of the raw
measurements.

to encourage a position that is advantageous for all vehicles
towards the end of the prediction horizon.

G. SOUND VELOCITY PROFILE
If the SVP is perfectly known, non-constant sound speed
and ray-bending can be accounted for. The SVP can change
over time or at different locations, however. Acoustic waves
emitted directly at nadir are not ray-bended. For this reason,
placing the surface vessel directly on top of the estimated
horizontal position of the underwater vehicle is generally
recommended. In this work, we want the topside vehicle to
be able to deviate from that recommendation, and the induced
errorsmust therefore be quantified in someway. The variation
of the SVP is highly dependent on the location, season,
and weather conditions. Actual profiles measured across the
span of a week are therefore used as examples of possible
variation in open ocean conditions. These profiles can be seen
in Fig. 4. The profiles weremeasured at theArcticMid-Ocean
Ridge (AMOR) in August/September of 2016 in approxi-
mately the same area. The BELLHOP ray trace software is
used to compute the acoustic propagation for these profiles
over a wide range of launch angles [35].

For each pair of SVP profiles, the first is taken to be the true
profile and the second the one in use by the USBL system.
The time of intersection by a specified depth layer in the true

FIGURE 5. Horizontal errors resulting from ray trace using SVPs from
Fig. 4. The horizontal errors have been calculated for each pair of profiles,
where one is taken to be the true profile and the other is the one used by
the USBL system. The first plot shows the errors at 2000 m, while the
bottom plot shows standard deviations across a set of depths. The x-axis
is the elevation directly to the true position. The circles in the bottom plot
correspond to a third order polynomial fit of the standard deviations.

profile is found. The horizontal position at the same time for
the same launch angle is then found in the ray trace for the
USBL system. The horizontal offset between the true and
measured profile can be seen in Fig. 5.

The x-axis is the elevation angle directly towards the true
position of the underwater vehicle (without ray-bending). The
upper plot is an example of the offsets at 2000m for all pairs
of profiles. The plot is symmetric about zero since the each
pair is evaluated in both directions. The standard deviation of
the horizontal error, plotted at multiple depths, can be seen in
the lower plot. The horizontal errors are fitted to third order
polynomials without the constant term at discrete depths. This
expression is then used to penalize the horizontal distance to
the underwater vehicle.

σh(rh, z) = c1(z)rh + c2(z)r2h + c3(z)r
3
h (29)

Adding depth as a regressor is possible, for example by
assuming a linear sound velocity profile in the isothermal
layer. The SVP error is added to the measurement uncertainty
along the axis corresponding to the horizontal direction to the
underwater vehicle.

Rd = JU6JTU + R2(ψ + α)
[
σ 2
h 0
0 0

]
RT2 (ψ + α) (30)
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FIGURE 6. Position and inputs of simulation 1. The horizontal position of the AUV is plotted in black. The two ASV paths, in blue and red, are computed
trajectories when the AUV is at 100 m and 1000 m respectively. The circles with the same colors corresponds to a shooting node in the NLP. At these
locations, the Jacobian is evaluated in the NLP. The initial positions are (0, 0).

One benefit is that the current uncertainties about the
north/east axes are taken into account when considering the
SVP errors. The downside is that the SVP error is treated
as zero-mean additive Gaussian noise, when in reality it is
a systematic error. Increasing the measurement covariance
will nonetheless discourage large elevation angles and have
the effect we seek. The standard deviations are taken to be
fixed in time. This is obviously not the case in a real setting,
as the uncertainty will be low immediately after measuring
the profile and become more uncertain as time goes on. In a
practical implementation, the magnitude of the SVP error can
be increased as a function of time since the last measurement
to make the trajectories more conservative as time goes on.

III. SIMULATION
The methods presented so far are demonstrated through a
series of simulations. The parameters for the uncertainties
can be found in Table 1 and the NLP parameters in Table 2.
The INS uncertainty is taken to be somewhere between a
low-end and high-end system. This is done in order to have
a tangible increase in the uncertainty of the targets within
the planning horizon. Reasonable settings for the uncertainty
may be obtained by measuring the position of the underwater
vehicle on a straight-line trajectory without sending the mea-
surements to the INS. The tuning of the NLP parameters was
done by first setting the surge and yaw rate constraints to sen-
sible values for a mid-sized craft and tuning the surge penalty

TABLE 1. Uncertainty parameters.

to generate sensible trajectories. The remaining parameters
were then tuned to prefer trajectories with smooth turns and
moderate changes in surge. The kinematic constraints should
reflect the attainable performance of the underlying dynam-
ical system. All simulations were performed using a moving
horizon approach, where the trajectory was shifted forwards
one step at each iteration. The solver was warm-started based
on the solution at the previous iteration. The first iteration
used a solution obtained by minimizing the horizontal dis-
tance to the targets.

A. SIMULATION I: SINGLE UNDERWATER VEHICLE
The first scenario consists of a single underwater vehicle
moving in a lawn-mover pattern, a pattern commonly used
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FIGURE 7. Standard deviations for simulation 1. The top figures and bottom figures are for the AUV at 100 m and 1000 m respectively (blue, red). The
gray lines are USBL updates performed at the true USBL update rate (5 s) and the black lines are the steady-state standard deviations calculated at that
exact point.

TABLE 2. NLP parameters.

in seabed surveys. The scenario is simulated twice; once for
an AUV at 100m depth, and once for an AUV at 1000 meters
depth. Since only one vehicle is being tracked, the MINLP
formulation is not considered. The position and inputs of
the two simulations can be seen in Fig. 6. The two paths
differ in the turns. The reason for this is that the angular
uncertainties increase with range. A horizontal displacement
directly affects the range more at smaller depths. A conse-
quence of this is that the surface vessel can cut the corner
more while tracking the deeper underwater vehicle, with a
negligible increase in the measurement covariance.

The estimated standard deviations for both simulations can
be seen in Fig. 7. The upper plots are the north-east standard
deviations at 100m, and the plots on the bottom are for the

AUV at 1000m. The gray lines are the standard deviations
for updates performed at the true update rate (5 s). The black
lines are the steady-state standard deviations calculated at
each position. The fluctuations are dominated by the change
in heading of the underwater vehicle, as the forward surge
uncertainty is larger than the sway uncertainty. The spikes in
the steady-state standard deviation occurs because the AUV
turns past the north/east axis, causing a maximum when
aligned with the axis.

B. SIMULATION II: MULTIPLE UNDERWATER VEHICLES
Here we consider a multi-tracking objective with two under-
water vehicles. Both vehicles have the same parameters and
maintains the same speed (2.0m s−1) and depth (150m)
throughout the simulation. Three trajectories for surface ves-
sels are generated and is presented in Fig. 8 along with
the computed inputs. The crosses indicate the end of each
trajectory. The first trajectory (blue) is generated based on
an objective function that only takes the sum of steady-state
variances for both vehicles into account at every step. Since
both targets are at the same depth, this trajectory follows the
horizontal mid-point between them. This trajectory is used as
a base-case. The second trajectory is generated based on the
NLP formulation (red). The third trajectory is based on the
MINLP formulation (cyan). The colors of the circles indicate
which underwater vehicle was ranged in the previous shoot-
ing horizon. As expected, the MINLP formulation results in a
trajectory that is more focused towards one vehicle at a time
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FIGURE 8. Position and inputs of simulation 2. The dashed lines are the horizontal positions of the AUVs, both at 150m depth throughout the
simulation. The trajectory labeled as ASV 1 (blue) is the path planned by only considering the steady-state covariance at each step. The trajectories
labeled as ASV 2 (red) and ASV 3 (cyan) are paths planned by considering the covariance along the trajectory with the steady-state covariance as a
terminal cost. The circles with the same colors corresponds to a shooting node in the NLP. The crosses mark the end of the simulation for each path.

FIGURE 9. Standard deviations for simulation 2. The top figures and bottom figures are for the first and second AUV, respectively.

and utilizes more surge input to alternate between the two.
The NLP on the other hand must track each vehicle longer
before switching since the update rate per vehicle is lower.
This comes at a cost however, as the MINLP is inherently
more difficult to solve. The computational requirements are
compared in Section IV-B. The first solution is computed
based on a look-ahead horizon of 60 s. The solution does

not change for longer horizons. The last two trajectories are
computed using a look-ahead horizon of 600 s.

The covariance for all three trajectories is presented
in Fig. 9. The sum of variances across the entire solution
is 134m2, 123m2, and 117m2 for the base-case, NLP, and
MINLP solutions, respectively. TheMINLP can capitalize on
targeting a specific vehicle at a time.
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FIGURE 10. Position and inputs of simulation 3. Solution 1 (left) has no sound velocity error penalty. Solution 2 (middle) adds the SVP error to the
measurement covariance of the target being tracked. Solution 3 (right) adds the SVP error to the measurement covariance of the target being tracked,
except scaled 10 times.

C. SIMULATION III: SOUND VELOCITY ERRORS
In this simulation, the effect of the SVP penalty is investi-
gated. The simulations so far have already added the sound
velocity errors to the measurement covariance. The presented
solutions have not been notably affected by this due to the
small horizontal distances. In this simulation the length of
the plan and distance between the targets have therefore been
increased. The solutions are presented in Fig. 10.

Solution 1 (left) presents a trajectory without considering
any SVP errors, as a reference. Solution 2 (middle) adds the
SVP error to the measurement covariance of the target vehi-
cle, as before. Solution 3 (right) also adds the SVP error to the
measurement covariance but scales it 10 times. This is done to
highlight the effects of an increased SVP error. The trajectory
without the SVP penalty decides to occasionally range from
one side to the other, and therefore only moves across twice.
When the SVP penalty is added, the solution moves across
a third time at the end. For the second trajectory, there is
still some benefit to ranging across, whereas for the scaled
SVP error this is no longer the case, instead focusing fully
on the nearest target. The penalty is added on the horizontal
axis corresponding to the direction of the ranging. This also
provides some incentive to range in the direction of the minor
axis of the target covariance matrix.

IV. DISCUSSION
A. LOCALIZATION AND TRACKING
This section links back to the scenarios outlined in Fig. 1.
The focus in this work has been on solving the path planning
problem with basis in the expected error growth for the target
over time, calculated measurement uncertainty, and penalties
on the control inputs. The localization problem has not been
considered. In other words, the positions used throughout
the simulations are deterministic. Since the onboard INS

on the vehicle has access to high-rate inertial and velocity
measurements in addition to the acoustic positioning, it will
generally be able to estimate its position more accurately than
an external observer. For this reason, it may be tempting to
transmit the INS estimate over an acoustic link at regular
intervals to reset the estimate onboard the surface vessel. One
drawback of this is that it introduces a feedback loop between
the INS system and surface vessel path. Consider an under-
water vehicle and surface vessel moving in the same direction
at some fixed horizontal offset. If the sound speed profile has
a negative gradient, e.g. in a thermocline, the sound will be
refracted downwards. This causes a systematic error in the
horizontal position estimate towards the surface vessel. The
INS estimate may therefore diverge from the true location,
if the INS adjusts its position or bias estimates in response
to the measurements. Although this is an extreme example,
it illustrates the need to decouple the tracking from the INS
of the target system. One possible approach is to use the INS
estimate and progress along the plan to simulate the trajectory
forwards in time, but shift the result corresponding to the
observed offset from the USBL measurements. This can for
example be realized by modeling the error state between the
INS position and USBL measurement as a Gauss-Markov
process. Since the acoustic waves cannot be bent past nadir,
tracking the horizontal location of the acoustic position mea-
surements is never a bad strategy. The pitch and heading of
the underwater vehicle can be estimated based on the change
in position and depth, but it is likely better to update these
over an acoustic link.

B. PERFORMANCE
The mixed-integer problem is solved based on a branch-
and-bound approach, and its efficiency depends on how
quickly it is able to discard sub-optimal branches. Another
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caveat with the MINLP is that each new target to track adds
np − 1 new binary decision variables. The NLP formula-
tion on the other hand does not increase the dimensional-
ity of the input space for each new vehicle, only adding
new shooting constraints. For tracking of a single vehi-
cle, there is no reason to consider the MINLP formulation.
The second simulation is used to quantify the computational
requirements. On an Intel(R) Core(TM) i5-4670K@ 4.0GHz
CPU, a single horizon of 600 s was on average computed in
0.004 s, 0.031 s, 0.065 per horizon for the base-case, NLP, and
MINLP respectively. The MINLP took approximately twice
as long to compute compared to the NLP. To evaluate the
applicability for embedded use, the same simulation was also
performed on a Raspberry Pi 3B with a 1.2GHz Broadcom
BCM2837 ARMv8 CPU. The evaluation times are now on
average 0.034 s, 0.31 s, 0.55 s per horizon. Although this
nearly increases the computational times by 10x, the time
it takes to solve for a single horizon is still well below
a second on average. The surface vessel can compute the next
horizon while executing the first step of the previous solution.
Since the shooting intervals are 30 s, there should be enough
computational headroom. Obviously, the solution times may
depend on the paths of the targets and should only be used
as an indication of the performance. The simulations were
implemented in Python and can be re-implemented using the
C++ CasADi interface or by using its code-generation utili-
ties to further improve performance. Reducing the look-ahead
horizon is an obvious way to tune performance but may
impact the quality of the generated trajectories. The pos-
sibility of online re-planning is essential to account for
uneven progress along the plan. Examples include varying
bathymetry or unforeseen interruptions such as anti-collision
behavior.

C. SCALABILITY
A conventional USBL scheme does not scale well with the
number of underwater vehicles, as a message exchange is
necessary to transmit the measured position to the vehicle.
Using one-way travel time inverted-USBL is a possible solu-
tion if scalability is needed, as the range and direction can
be calculated onboard each vehicle based on a broadcasted
position from a the topside beacon at a known time [36], [37].
This requires synchronized clocks with high accuracy and
USBL capability on each underwater vehicle, however.

The scalability also depends on the physical parameters of
the surface vessel. The surface vessel may need to maintain
a reduced speed, both due to the drag introduced by the pro-
truding transceiver head and the formation of bubbles under
the transceiver at higher speeds. If the transceiver head can
physically retract into the hull, one may be able to maintain
a higher speed whilst moving between vehicles. In any case,
there is a physical limit to how many vehicles can reasonably
be tracked simultaneously by a single surface vessel. How
closely each vehicle needs to be tracked also depends on the
quality of the onboard INS. A simulation where four vehicles
are tracked with the MINLP formulation is shown in Fig. 11.

FIGURE 11. Trajectory generated for tracking of four vehicles at the same
depth (150 m) and speed (2 ms−1) using the MINLP formulation.

V. FUTURE WORK
The dropout rate of the acoustic communication and ranging
is not taken explicitly into account in the planning prob-
lem. However, it is possible to set the initial covariance for
the next horizon based on the actual number of successful
position updates. While this may cause that target to be
prioritized in the next horizon, it does not integrate the notion
of a range-dependent error. Instead, the error rate may be
modeled as a function of the signal strength (dB) or signal
integrity. The signal strength can then be estimated online
as a function of range, either from the acoustic measure-
ments or by calculating the absorption in seawater based
on CTD measurements. It is also possible to update the
covariance from the INS system onboard the vehicles over
an acoustic link. Multi-path propagation has not been con-
sidered, which may pose a problem especially in shallow
water. It may be possible to position the surface vessel such
that multi-path effects via the surface and seabed are mini-
mized. This is difficult to include however, since the penalty
would be dependent on the bathymetry and may introduce
significant non-convexity in the optimization problem due
to shadow-zones and caustics. The sound velocity errors
have been treated as zero-mean additive noises. Although
this penalizes large elevation angles, it does not consider
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the cumulative effect of ranging along the same direction in
the body frame of the target for prolonged periods. If the
systematic offset in position always appears on the same side
in the body-frame, erroneous biases may be estimated in the
vehicle INS. While it is possible to design the survey pattern
with this in mind, it may also be possible to add a state to
the optimization problem that keeps track of the induced bias
over time, and then seek tominimize this by either positioning
the surface vessel on top of the vehicle or ranging from the
opposite direction.

VI. CONCLUSION
In this work, a trajectory planning procedure has been pre-
sented for an autonomous surface vessel. The planned trajec-
tories minimize the horizontal uncertainty for one or multi-
ple underwater vehicles. The surface vehicle is assumed to
be equipped with an ultra-short baseline transceiver capable
of measuring the direction and range to the vehicles. The
objective and constraints are formulated as an optimization
problem. This is solved under the assumption that the move-
ment of each vehicle is known within the planning horizon,
e.g. by knowing the next waypoints. Two formulations are
proposed, one where all vehicles are assumed to be ranged
continuously, and one where an explicit decision of which
vehicle to track is made. The latter has been found to provide
better solutions in conventional ultra-short baseline setups for
multiple vehicle tracking. The optimization problem has been
found to be stable and quickly converge to a solution, even
on an embedded system. The solution is thus suitable for
real-time replanning in order to account for dropouts, uneven
progress along the plan, or unforeseen interruptions.

APPENDIX A
STEADY-STATE COVARIANCE AND EQUIVALENT
MEASUREMENT COVARIANCE
In this section, an expression for the steady-state covariance
is derived. This result is subsequently used to compute a
measurement covariance at a different sample-rate, which is
equivalent at steady-state conditions. The discrete measure-
ment covariance,Rd = JU6UJTU , is taken to be fixed in time.
We take the matrix Qd (∞) =

∫ τ
0 G(∞)QGT (∞)dt to mean

the increase in uncertainty between USBL updates at steady-
state. Covariance matrices are only required to be positive
semi-definite. In the following we require the covariance
matrices, i.e. Pd , Rd , Qd , to be positive definite and thus
non-singular and invertible.We now proceedwith the discrete
covariance update equation.

Pk+1 = Rd,k (Pk + Qd,k + Rd,k )
−1(Pk + Qd,k )

Since the covariance is at steady state, the update brings the
covariance back to the same level as the previous update.
We can therefore make the following substitution Pk+1 =
Pk = P. Rearranging the equation above on the left-hand
side gives the following quadratic matrix equation.(

Pd + Qd + Rd
)
R−1d Pd = Pd + Qd

PdR−1d Pd + QdR
−1
d Pd − Qd = 0

We make the following algebraic manipulations to put the
equations on a different form.(

Pd + Qd
)
R−1d Pd = Qd[(

Pd + Qd
)
R−1d Pd

]−1
= Q−1d

P−1d Rd
(
Pd + Qd

)−1
= Q−1d

PdQ−1d (Pd + Qd )− Rd = 0

PdQ−1d Pd + Pd − Rd = 0

The above is a quadratic matrix expression with coupled
cross terms. The expression is similar to the algebraic Riccati
equation. We left-multiply by Q−1d and define Z = Q−1d Pd .

Q−1d PdQ−1d Pd + Q−1d Pd − Q−1d Rd = 0(
Q−1d Pd

)2
+ Q−1d Pd − Q−1d Rd = 0

Z2 + Z− Q−1d Rd = 0

By completing the square, we can put the expression into the
following form.(

Z+
1
2
I
)2

= Q−1c Rc +
1
4
I

Which can be solved as follows.

Z =
(
Q−1d Rd +

1
4
I
) 1

2

−
1
2
I

Pd,∞ = Qd

[(
Q−1d Rd +

1
4
I
) 1

2

−
1
2
I

]
Note that in general, the square root of a matrix can

have many possible solutions. Here, we refer to the principal
square root, for which every eigenvalue has a nonnegative real
value. This square root is unique for positive semi-definite
matrices. Using the following expression, the measurement
covariance at a different sample rate than the true rate can
now be calculated.

Rz(∞) = Pd,∞Q−1z Pd,∞ + Pd,∞

Here, Rz and Qz denotes the measurement covariance and
increase in uncertainty between measurements respectively.
The latter can be calculated by replacing the integration
limits for Qd (∞). Obviously, these equations are based on
steady-state conditions and may deviate if the covariance is
in a transient phase, for example during initialization or if
the measurement covariance suddenly changes. In this work,
the measurement covariance changes as a function of a rela-
tively slow-moving process, and has not been found to be an
issue within the control horizon.

For the above to work the principal square root must exist,
e.g. the operand must have positive eigenvalues. The inverse
of a symmetric positive definite matrix is also symmetric
positive definite [38]. The product of two symmetric positive
definite matrices has positive eigenvalues [39]. The product
of Q−1d and Rd therefore has positive eigenvalues, but is not
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necessarily symmetric anymore. Adding a positive diagonal
matrix only increases the eigenvalues. The principal square
root therefore always exists for the above expression, pro-
vided that Qd and Rd are positive definite. The principal
root for non-singular square matrices can be computed based
on the Schur decomposition of the matrix [40], [41]. For a
matrix in R2 x 2 an efficient approach based on the matrix
characteristic equation also exists [42]. The principal square
root can be obtained by selecting the result with eigenvalues
in the open right half-plane.

To prove that the discrete steady-state covariance matrix is
valid, we can first verify that it is symmetric. Take B to be the
operand of the matrix square root.

Pd,∞ = PTd (∞)

QdB
1
2 =

[
B

1
2

]T
QTd

B
1
2 = Q−1d

[
B

1
2

]T
Qd

B = Q−1d
[
B

1
2

]T
QdQ

−1
d

[
B

1
2

]T
Qd

B = Q−1d BTQd

B = Q−1d

(
RdQ−1d +

1
4
I
)
Qd

B = B

The steady-state covariance equation is therefore symmetric.
To verify that the result is positive definite, e.g. with positive
eigenvalues, we can place the following upper bound on the
expression.

Pd,∞ = Qd

[(
Q−1d Rd +

1
4
I
) 1

2

−
1
2
I

]

> Qd
(
Q−1d Rd

) 1
2

= Q
1
2
d

(
Q
−

1
2

d RdQ
−

1
2

d

) 1
2

Q
1
2
d

The last equality is an identity for the matrix geometric
mean (often denoted asQd#Rd ). Given positive definite input
matrices, the geometric mean is also positive and unique;
see [43]. We can therefore conclude that Pd,∞ is a valid
covariance matrix for all positive definite Qd and Rd .

APPENDIX B
CONTINUOUS-TIME USBL ERROR COVARIANCE
We can also extend the result in the previous section to a
continuous-time error covariance equation. If the rate of the
updates are high relative to the simulation horizon or the
cumulative effect of multiple USBL updates is more impor-
tant than exactly representing individual updates, one can
model the error covariance matrix as a continuous-time dif-
ferential equation. The Kalman-Bucy filter is the continuous
version of the Kalman filter [44]. The continuous Kalman
filter can be derived from a discrete state space formulation
[26, Appendix B.1].

Ṗ = FP + PFT − PHTR−1HP + GQGT

Here the matrix F describes the continuous-time linear
dynamics. In our case, all entries are equal to zero, as we
have a system purely driven by its inputs plus noise. The
measurement matrix, H is equal to the identity matrix since
all states are directly measured. This leads to the simple
differential equation below.

Ṗ = G(t)QGT (t)− P(t)R−1c (t)P(t)

In the original derivation, the measurement covariance was
modified to account for the increase in sample rate, by set-
ting Rc(t) ≈ JU (t)6UJTU (t)1tU . This differential equa-
tion approximately tracks the mid-point between covariance
updates. If we are interested in having the it track the bottom
of the updates instead (e.g. the posterior values), we can com-
pute a different measurement covariance by setting the differ-
ential equation equal to zero and inserting for the steady-state
covariance.

Rc(∞) = Pd,∞Q−1c Pd,∞

The continuous-time error covariance equation can be used
to evaluate the variance reduction by following a given path
but must be solved using numerical integration. Since the
measurement equation is linearized, the equation is related to
an extended Kalman-Bucy filter, without the linear dynamics.
A comparison of the discrete and continuous error covariance
equations is included in Fig. 3, where an AUV and ASV cross
over each other in a straight line.
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