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Abstract—Background:In medicine, karyotyping chromosomes is important for medical diagnostics, drug development, and
biomedical research. Unfortunately, chromosome karyotyping is usually done by skilled cytologists manually, which requires
experience, domain expertise, and considerable manual efforts. Therefore, automating the karyotyping process is a significant and
meaningful task.
Method:This paper focuses on chromosome classification because it is critical for chromosome karyotyping.In recent years, deep
learning-based methods are the most promising methods for solving the tasks of chromosome classification. Although the deep
learning-based Inception architecture has yielded state-of-the-art performance in the 2015 ILSVRC challenge, it has not been used in
chromosome classification tasks so far. Therefore, we develop an automatic chromosome classification approach named CIR-Net
based on Inception-ResNet which is an optimized version of Inception. However, the classification performance of origin
Inception-ResNet on the insufficient chromosome dataset still has a lot of capacity for improvement. Further, we propose a simple but
effective augmentation method called CDA for improving the performance of CIR-Net.
Results:The experimental results show that our proposed method achieves 95.98% classification accuracy on the clinical G-band
chromosome dataset whose training dataset is insufficient.Moreover, the proposed augmentation method CDA improves more than
8.5% (from 87.46% to 95.98%) classification accuracy comparing to other methods.In this paper, the experimental results demonstrate
that our proposed method is recent the most effective solution for solving clinical chromosome classification problems in chromosome
auto-karyotyping on the condition of the insufficient training dataset. Code and Dataset are available at
https://github.com/CloudDataLab/CIR-Net.

Index Terms—Chromosome Classification,Inception-ResNet,Biomedical Image Analysis,Chromosome Image Augmentation.
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1 INTRODUCTION

HUMAN chromosomes contain human genetic informa-
tion, which are commonly used for analyzing human

genetic diseases. In general, there are 23 pairs of chromo-
somes in a healthy human body, including 22 pairs auto-
somes and a pair of sex chromosomes (X and Y chromosome
in male cells and double X in female cells) [1]. Karyotype
analysis, illustrated by Figure 1, is a fundamental approach
for clinical cytogeneticists to diagnose human chromosomes
genetic diseases, which is generated by arranging these
chromosomes after extracting them from the metaphase
chromosome images [2]. For cytogeneticists, karyotyping is
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laborious work, many researchers have dedicated to auto-
karyotyping using computation techniques [3], [4], [5], [6],
[7], [8] for years. This paper focuses on chromosome classi-
fication because it is a very significant but a labor-intensive
stage in auto-karyotyping.

Although many researches [1], [8], [9], [10] have made
some contribution for chromosome classification tasks, clas-
sifying chromosomes accurately and robustly in the clini-
cal application on the condition of the insufficient labeled
dataset is still a challenging task for the following reasons:

• Rich deformations of chromosome shape. Chromo-
somes in stained cell microphotographs have non-
rigid intrinsic nature, so it is very common that chro-
mosomes of the same type have completely different
shapes and orientations.

• Difficulty to collect a large amount of labeled data.
As chromosome images are highly correlative to the
individual privacy of patients, it is very difficult
for researchers to correct enough data from medical
institutions to train their classifiers.

To solve the above problems, we propose an end-to-end
classification approach named CIR-Net based on Inception-
ResNet [11] architecture and design a data augmentation
algorithm CDA using affine transformation for improving
the performance of the classifier.
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Fig. 1. (a)stained cell microphotograph G-band chromosome image, (b)chromosome karyotype

Additionally, to improve the clinical applicability, we de-
sign an image adaptive interface(IAI) module for converting
an arbitrary size of the input image into the target input size
of Inception-ResNet without any preprocessing.

At last, we quantitatively analyze the performance of
our method compared with others’ researches evaluating by
general metrics (precision, recall, f1). Moreover, we qual-
itatively analyze discriminating the capacity of our model
using t-SNE [12].

According to mentioned explorations, this paper makes
the following contributions:

• We propose CIR-Net for automatically classifying
chromosomes in an end-to-end pipeline.

• We explore an effective image augmentation algo-
rithm CDA. This algorithm has two benefits: it not
only can enlarge the training dataset and improve
the accuracy and robustness of classifier but also can
eliminate the directional features of chromosomes,
which allow us to classify chromosomes without
special preprocess (e.g., rotating, straightening) in
the test or clinical application stage.

• We design the IAI module to receive an arbitrary
input size image without preprocessing, which is
greatly improving the application capability of the
system while others’ solutions can not do that.

The rest of this paper is organized as follows: Sec-
tion 2 will review previous works on chromosome auto-
karyotyping and classification problems. Section 3 is about
to describe the chromosome classification problem in mathe-
matics, chromosome images augmentation and deep neural
network structure. In Section 4, we will give experimental
performance results of the CIR-Net compared to other meth-
ods. We will make a discussion and conclusion in Section 5.

2 RELATED WORK

Chromosome karyotyping is a crucial task for genetic
disease detection, which is also a hot spot in recent

years.Traditional methods for chromosome classification
are generally performed manually [13], which is time-
consuming and inefficient. With the development of com-
putational methods, the technologies for automatic chromo-
some karyotyping system have come into being, mainly in-
cluding two parts: chromosome segmentation and classifica-
tion. This paper focused on the classification problem under
the assumption that chromosomes are well segmented.

Earlier chromosome classification methods include arti-
ficial neural network methods [14], [15] and probabilistic
artificial neural network methods [16], [17], [18]. The former
methods are principally based on MLP (Multi-Layer Per-
ceptron), which have complex feature selection processes.
The latter methods have lower accuracy while they offer
shorter training time compared to the training stage of
former methods due to backpropagation.

Recently, several deep learning-based approaches have
been employed in chromosome classification, such as
Siamese Networks [1], Attention Based Sequence Learning
[8], vanilla Convolutional Neural Network (Vanilla-CNN)
[9] and Varifocal-Net [10].

Jindal et al. [1] proposed a chromosome classification
method using deep learning technique based on Siamese
Networks [19]. In Jindal’s method, they firstly straighten
all chromosomes using SMAC (Straightening via Medial
Axis and Crowdsourcing) and SPV (Straightening via Pro-
jection Vectors) methods, and then they design and pre-train
Siamese network using Base-CNN on paired chromosomes
for getting parameters W in Base-CNN. Lastly, they design
the final classifier using Base-CNN with pre-training param-
eters W from Siamese Network and adding the MLP to it.
The experimental results yield 84.6% classification accuracy
in their private G-band dataset.

Monika et al. [8] proposed an automatic chromosome
classification method using a deep attention mechanism
for learning chromosome band features. They firstly pro-
pose Residual Convolutional Recurrent Attention Neural
Network (Res-CRANN) which exploits the property of
chromosome band sequences. After that, they feed these
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chromosome sequences into the Recurrent Neural Network
(RNN). Subsequently, an attention mechanism is applied to
the top of RNN. At last, the attention module outputs the
sequences which are further classified into 24 labels. Monika
et al. evaluate their method on the public available Q-
band chromosome dataset which yields 91.94% classification
accuracy.

Wenbo et al. [9] proposed a Vanilla-CNN method for
chromosome classification using deep learning. The authors
collect karyotypes from a local company and extract chro-
mosomes from each karyotype. And then, they resize each
chromosome image into 142 by 282 pixels with the vertical
direction. At last, they feed all chromosome images into
Vanilla-CNN (two convolution blocks, one flatten layer, and
one dense Layer). In this literature, the authors claimed that
this method has yielded 92.5% classification accuracy on the
private G-band chromosome dataset which contains 10304
chromosome images.

Yulei et al. [10] proposed Varifocal-Net for chromosome
classification using deep learning. This approach consists
of one global-scale network (G-Net) and one local-scale
network (L-Net). Firstly, the authors extract global features
and detect finer local regions via G-Net. Subsequently, they
zoom into local parts and extracts local features using a var-
ifocal mechanism. At last, residual and multi-task learning
strategies are utilized to promote high-level feature extrac-
tion. Evaluation results from 1909 karyotyping cases(87814
G-band chromosome images) showed that Varifocal-Net
achieved the highest accuracy of 99.2%.

Although the above recent methods seem to have solved
the chromosome classification problem, there are still some
limitations in these methods. Firstly, previous methods usu-
ally use straightening as preprocessing operation, which
means that in the clinical application we need to straighten
the target chromosomes in strict accordance with authors
do. Secondly, these methods [8], [9], [10] need a large
amount of labeled chromosome dataset to guarantee their
good performance. Lastly but not least, these methods
sound good enough for solving the classification tasks.
However, some of them [8], [10] are too complex for clinical
researchers to reproduce caused by too much detail infor-
mation is missing in their papers.

Motivating by these problems in clinical application, we
propose an end-to-end classifier fine-tuned from Inception-
ResNet. Additionally, to improve the robustness of the clas-
sifier, we provide an effective algorithm termed CDA for
image augmentation. Moreover, we design an IAI module
for accepting an arbitrary shape of chromosome images
without extra preprocessing in clinical application.

3 PROPOSED METHOD

The proposed method includes four parts, the first one is
chromosome classification problem definition and formal
description while the second part details data augmentation.
The third part is about the Image Adaptive Interface (IAI).
The last part is the description of CIR-Net architecture.

3.1 Problem Description
As chromosome image is the grayscale image which com-
poses H rows and W columns where H and W mean

the spatial height and spatial width. So we can use two-
dimensional tensor x to denote a chromosome image, use
x[r][c] to denote the value of pixel in r-th row, c-th column
of x. After that we can use X = {x1, x2, . . . , xn} to denote
a chromosome image set which contains n chromosome
images.

Correspondently, we can use a 24-dimensional tensor y
to denote the type of chromosome image. More precisely,
we use yi to denote the type of chromosome xi, use Y =
{y1, y2, . . . , yn} to denote the chromosome label set.

The chromosome classification problem can be formal-
ized as finding a good enough classifier Φ to represent the
relationship between X and Y . For convenience, we call
the output of the classifier Ŷ as the predict value set, the
actual chromosome label set Y as the ground truth set. The
expression of Φ is shown in Equation 1.

∀xi ∈ X, ∃ŷi = Φ(xi) ∈ Ŷ (1)

We define a special function L named loss function to
evaluate the degree of the classifier Φ deviated from the
ground truth set Y ,where L can be formalized as Equation
2.

L = −
∑

yi log(ŷi) = −
∑

yi log(Φ(xi)) (2)

At last, the problem of finding a good enough classifier Φ
transforms to the problem of minimization the loss function
L of classifier Φ.

3.2 Data Augmentation
Data augmentation aims at generating additional and more
diversified data samples through certain transformations
conducted upon original data [20]. There are many data
augmentation techniques in the clinical medical image clas-
sification task, such as Flips, Gaussian Noise and Jittering et
al. [21]

As chromosomes have rich deformations (e.g. random
direction and position) in the images, so the ideal aug-
mentation techniques should be able to add certain sam-
ples that can tell classifier Φ to eliminate the features of
random direction and position. Therefore, we introduce the
Affine Transformation technique to augment the chromosome
dataset for dropping out these features.

As we use two-dimensional tensor xi to denote the i-
th chromosome image in above content, so we use x(i,θ)

to denote the image augmented from xi. The augmentation
process can be described as Equation 3, where A(θ) is a
rotation matrix which can be formalized as Equation 4 while
b is an offset vector which can be formalized as Equation 5.

x(i,θ) = A(θ)xi + b (3)

A(θ) =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(4)

b =

[
roffset
coffset

]
(5)

In Equation 5, roffset and coffset denote the pixel offset of
row and column which are random value in each augmen-
tation operation.
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Fig. 2. On the left is the overall schema for CIR-Net which is modified from Inception-Resnet-v2 framework [11] by adding an IAI module and
modifying the ways of Softmax from 1000 to 24. In the middle part, it is the detail of Stem module in the overall schema. The right part is the schema
for interior grid modules. The Inception-resnet2-A, Inception-resnet2-B and Inception-resnet2-C are depicted from top to bottom.

The chromosome image x(i,θ) augmented from xi has
the same label yi as xi. We use the symbol operation f(x)
to denote the mapping relation between x and y, which is
formalized as Equation 6.

yi = f(xi) = f(x(i,θ)) (6)

The intact algorithm for chromosome data augmentation
operation is described as Algorithm 1.

3.3 IAI: Image Adaptive Interface

In many image classification tasks, the classifier expects a
fixed shape of images such as (224, 224, 3) in ImageNet
[22] classification task, which means that each image of the
dataset should have 3 color channels, each channel has 224-
pixel spatial height and 224-pixel spatial width. For those
images that do not satisfy the requirement of the given
shape, they are needed to crop or pad into given shape
by preprocessing operation before fed into the classifier.
However, in clinical application, chromosomes are grayscale
images that only have one channel. Additionally, chromo-
somes from various institutions may have small differences

in their shapes, which limits the application capability of the
classifier.

Motivating by this difficulty in clinical application, we
design an Image Adaptive Interface (IAI) module for the
classifier to accept the various shape of images adaptively.

Ŝ = (ht, wt, ct) (7)
S = (ho, wo, co) (8)

Supposing that the target shape of classifier is described
as Equation 7, where ht, wt and ct respectively denote the
height, width and color channel of input. Accordingly we
use Equation 8 denote the actual shape of given image,
where ho, wo and co respectively denote the height, width
and color channel of given image.

Consequently, we design IAI module using a 2D convo-
lutional neural layer con2D() whose parameters includes
filter, kernel_size, padding, strides and input_shape.
In these parameters, filters is the depth of output,
kernel_size is the kernel of the convolutional neuron,
padding refers to pixels of padding, and strides denotes
how many pixels skipping at the next convolutional op-
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Algorithm 1 CDA:Chromosome Data Augmentation
Require:

1: X , chromosome image dataset
2: Y , label set corresponding to X
3: rtest, the ratio of test data
4: rvalid, the ration of varify
5: function CHROMOSOME_AUGMENTATION(X ,Y ,rtest,rvalid)
6: test_set← {}
7: train_set← {}, val_set← {}
8: tmp_set← {}
9: Θ← {θ0, θ1, . . . }

10: //splitting dataset into training set and test set by rtest
11: for (x, y) in (X , Y ) do
12: if rand(0, 1) < rtest then
13: test_set← test_set ∪ {(x, y)}
14: else
15: tmp_set← tmp_set ∪ {(x, y)}
16: end if
17: end for
18: //Augmenting tmp_set and spliting it into
19: //training set and val set
20: for (x, y) in tmp_set do
21: for θ in Θ do
22: b← V ector.random()
23: x(θ) ← A(θ)x + b
24: if rand(0, 1) < rvalid then
25: val_set← val_set ∪ {(x(θ), y)}
26: else
27: train_set← train_set ∪ {(x(θ), y)}
28: end if
29: end for
30: end for
31: return train_set, val_set, test_set
32: end function

eration. The relation of these parameters is limited as
Equation 9.

wt = ⌊
wo + 2 ∗ p− k

s
+ 1⌋

ht = ⌊
ho + 2 ∗ p− k

s
+ 1⌋

(9)

More precisely, when wt = wo, we set p = 0, k = 1
and s = 1, so the IAI module is a standard NiN [23]. While
wt < wo, we set p = 0 so the IAI module is a cropping layer,
otherwise we set s = 1, so the IAI module is a padding
layer.

3.4 CIR-Net Architecture
The inception module was firstly proposed by Szegedy et al.
[24] for improving the utilization of the computing resources
inside the network on the competition of 2014 ILSVRC1.
After that, Szegedy et al. proposed two upgrade versions of the
Inception module named Inception-V2(V3) [25] to scale up the
efficiency of networks in ways that aim at utilizing the added
computation as efficiently as possible by suitably factorized
convolutions and aggressive regulation. In 2017, the Inception-
V4 and Inception-ResNet were proposed by Szegedy et al in the
research report [11] for accelerating the training of Inception

1. ImageNet Large-Scale Visual Recognition Challenge

networks motivated by the success of Residual Learning [26]
which yielded the state-of-the-art performance in 2015 ILSVRC
by introducing the residual connections in conjunction.

The main idea of CIR-Net is to propose an efficient and
outstanding framework for encoding sparse features of chro-
mosomes which are sparse naturally. After our evaluation,
we found the Inception-ResNet is a qualified architecture for
chromosome classification tasks by appropriate modification.

The architecture of CIR-Net is shown in Figure 2. In Figure 2,
the architecture, showing at the left part, is modified from the
Inception-Resnet-v2 framework [11] by adding an IAI module
and modifying the ways of Softmax from 1000 to 24. The Stem
module of the overall schema is elaborated in the middle part
while the right part is the schema for interior grid modules. The
Inception-resnet2-A, Inception-resnet2-B, and Inception-resnet2-C
are depicted from top to bottom.

4 EXPERIMENTS

4.1 Dataset Description

Medical Genetic Centre and Maternal and Children Metabolic-
Genetic Key Laboratory of Guangdong Women and Children
Hospital where we obtained 65 normal chromosome kary-
otypes as our research dataset supports this research. The
privacy information of patients has been removed from these
karyotypes. After that, we separated chromosomes from these
karyotypes as the dataset used for development, training, and
verifying of CIR-Net. This dataset can be detailed as follows:

• As each normal karyotype has 46 chromosomes, so we
can get 2990 chromosomes from 65 karyotypes. This is
a very big challenge for those models that are fed with
large amounts of data.

• There are 32 male karyotypes and 33 female karyotypes
in these karyotypes, which means that each autosome
has 130 chromosomes labeled from 1 to 22 while sex
chromosomes have 98 ((65− 32)× 2 + 32 = 98) X chro-
mosome labeled to 23 and 32 Y chromosome labeled to
24.

• Each chromosome separated from karyotypes has a
different number of pixels, 8 bits/pixel.

As this dataset is very insufficient, it is a huge challenge for
those models that are fed by large amounts of data.

4.2 Evaluation Metrics

Since the performance of the chromosome classifier is usu-
ally evaluated by accuracy (acc), recall value (recall) and F1-
score(F1) in previous works [1], [9], [10], the performance of
the CIR-Net is quantitative evaluated by there metrics.

To compute these metrics, we need to define the following
four criteria to fit the context of the multi-class classifier as other
researches do.

• True Positives(TPj): Chromosomes are classified as type
j which actually belong to type j.

• False Positives(FPj): Chromosomes are classified as
type j which actually do not belong to type j.

• False Negatives(FNj): Chromosomes are classified as
type k(∀k ̸= j) which actually belong to type j.

• True Negatives(TNj): Chromosomes are classified as
type k(∀k ̸= j) which actually do not belong to type
j.
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TABLE 1
Quantitative evaluation results

Methods Parameters Methods of Augmentation Precision Recall F1 Acc
None 0.26 0.22 0.21 22.41%

Vanilla-CNN [9] 2, 246, 680 Straightening 0.82 0.85 0.82 83.78%
CDA 0.88 0.86 0.87 86.44%(2.66% ↑)
None 0.22 0.22 0.21 21.91%

SiameseNet [1] 1,416,281 Straightening 0.86 0.87 0.86 86.79%
CDA 0.88 0.87 0.87 87.63%(0.84% ↑)
None 0.43 0.31 0.28 28.42%

CIR-Net 55,258,360 Straightening 0.89 0.88 0.88 87.46%
CDA 0.96 0.96 0.96 95.98% (8.52% ↑ )

With the help of TPj ,FPj ,FNj and TNj , the metric
of precision can be defined as Equation 11, the recall as
Equation 13, F1 as Equation 15 and acc as Equation 16.

precisionj =
TPj

TPj + FPj
(10)

precision =
1

Ntypes

Ntypes∑
j=1

precisionj (11)

recallj =
TPj

TPj + FNj
(12)

recall =
1

Ntypes

Ntypes∑
j=1

recallj (13)

F1j =
2 · precisionj · recallj
precisionj + recallj

(14)

F1 =
1

Ntypes

Ntypes∑
j=1

F1j (15)

acc =
1

N

Ntypes∑
j=1

TPj (16)

In the above equations, Ntypes equals 24 denoting the types
of chromosome while N denotes the total number of chromo-
some images in the test dataset.

4.3 Experiment Settings
We implement our CIR-Net using keras toolkit [27] based on
TensorFlow [28]. We train the network utilizing RMSProp with
the learning rate of 0.005. The experiments are accelerated by 2
× NVIDIA GeForce GTX 1080 with 8119 MiB GPU Memory.

In CDA Algorithm, we split 80 percent of the chromosome
images into training set and the rest into test_set by setting
rtest to 0.2. In training set, we split 50 percent of augmented
chromosome images into train_set and the rest of augmented
image into val_set by setting rvalid to 0.5. The Θ is set at 15
degrees from 15 to 345.

4.4 Results
This section presents the experimental results of the quanti-
tative and qualitative evaluation utilizing T-SNE [12] of the
proposed methods.

4.4.1 Quantitative Evaluation Results
The general experimental results of various classifiers are
shown in Table 1. Although we implemented the SiameseNet
classifier [1] and Vanilla-CNN classifier [9] in strict accordance
with their origin paper carefully, there may be some small
differences caused by lacking their engineering tricks in their
papers.

We use None to denote preprocessing without augmentation
operation where chromosomes are at random directions and

Fig. 3. Comparisons on ROC curves and AUC value of various classifi-
cation methods.

centroids. To compare the effect of the CDA algorithm, we
implement augmentation methods of CDA and Straightening
as the guide of the original paper [19]. The biggest difference
between CDA and Straightening is that CDA only augments
the training chromosome images while Straightening requires
to augment testing chromosome images as training images. It
means that, in clinical application, all chromosomes ready to
classify are required to straighten as the training images of the
classifier.

Each method has been carefully tuned to achieve its best
performance on each given dataset. The experimental results
are summarized in Table 1.

According to the experimental results in Table 1, our pro-
posed CDA algorithm further improves the performance of
classifiers by 8.52 percent of acc metric compared to Straight-
ening augmentation in CIR-Net, 0.84 in SiameseNet [1], and
2.66 in the Vanilla-CNN [9]. The reason is that we feed the
same chromosome with several augmented images that contain
various deformations to train the classifier, which is to tell the
classifier that direction and position are not the features to
discriminate the type of chromosome.

Our proposed CIR method combined with the CDA algo-
rithm achieves a classification accuracy of 95.98%, which is
better than other methods. This is because the Inception-ResNet
architecture consists of three different meta-modules Inception-
resber2-A, Inception-resber2-B, and Inception-resber2-C. These
meta-modules assemble different convolutional neurons, which
have capabilities to extract richer features of different scales for
high-level feature learning and discrimination.

To evaluate the stability of our proposed method under dif-
ferent data, we performed cross-validation experiments using
KFold. We load the raw data and use KFold to divide the
data into five folds in random order. We use one fold data
as the verification data in turn, and the other four folds data
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Fig. 4. The above sub-figures visualize the chromosome features extracted from CIR-Net trained by various data augmentation methods. Figure
4(a), 4(b) and 4(c) are visualization cases of chromosome features in the test set, these features are respectively extracted from various instances
of CIR-Net trained by original, straightening and CDA augmentation dataset.

as training data. We train the model five times and the cross-
validation experimental results show that our mean accuracy
and standard deviation value is (96.99± 1.70).

At last, ROC curves and AUCs are universal evaluation
metrics in binary classification problems but it does not sup-
port multi-classification problems directly. We convert multi-
classification into binary classification in each category for
computing the average ROC curves and AUC value. The com-
parison results of various classification methods are showing in
Figure 3. The higher of AUC value is better.

4.4.2 Qualitative Evaluation Results
For evaluating the classification performance of CIR-Net intu-
itively, we get all features of chromosomes in the test set from
the flatten layer before the Softmax layer of CIR-Net and reduce
them to two-dimensional vector using T-SNE [12]. After that,
we visualize them in Figure 4.3.

In Figure 3, the Arabic numerals 1 to 22 denote 22 autosomes
separately, the Arabic numerals 23 and 24 denote X and Y
sex chromosome. The more close the same numbers crowds
together, the far the different numbers separate, which means
the better discriminative ability of the model.

In Figure 4(a), the different Arabic numerals are crossed
and distributed in stripes. This means that the model trained
by without the original training dataset cannot discriminate
against chromosomes.

Compared to Figure 4(a), the same Arabic numerals tend
to cluster, but the different Arabic numerals are still heavily
crossed in Figure 4(b), which means that the instance of CIR-
Net trained from the straightened training dataset has a certain
degree of discriminating capability.

Obviously, in Figure 4(c), although there are some cases
where different Arabic numerals intersect, the same Arabic
numerals are gathered, and the different Arabic numerals are
separated. This means that the pattern has a strong ability to
discriminate chromosome categories.

5 CONCLUSION
In this research, we proposed the CIR-Net based on the
Inception-ResNet architecture method for chromosome classi-
fication on the insufficient dataset.

The most distinctive characteristics of CIR-Net include:

• We build CIR-Net inherited the outstanding specialties
from Inception-ResNet.

• The CDA algorithm based on affine transformation was
proposed to augment insufficient training chromosome
images.

• We proposed an Image Adaptive Interface (IAI) for
improving the capacity of clinical application.

According to the experimental results, we can draw two
conclusions:

• The classification performance of our proposed method
is better than other previous in the training set with
insufficient data.

• The proposed data augmentation algorithm CDA can
effectively deal with the problem of insufficient chro-
mosome training data by enriching the chromosome
variants in the training dataset.

There are two main reasons contributing to the better
performance of the proposed method compared to the pre-
vious methods [1], [9] in the training set with insufficient
data. The first reason is that these methods use straightening
for pre-processing, but straightening can lead to distortion
of the information on the chromosome. Different from the
straightening method, the proposed CDA algorithm adopts to
enrich chromosome variants to prompt the classifier that these
chromosomes belong to the same category. Another reason is
that we build the chromosome classifier on the well-proven
mature architecture textitInception-ResNet, rather than directly
proposing a completely new architecture.
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