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Abstract— In this paper a novel adaptive generalized super-
twisting algorithm is proposed for a class of systems whose per-
turbations and uncertain control coefficients are time- and state-
dependent. The proposed approach uses dynamically adapted
control gains, and it is proven that this ensures global finite-
time convergence. A non-smooth strict Lyapunov function is
used to obtain the conditions for the global finite-time stability.
As a case study, it is also shown that the tracking errors of an
articulated intervention AUV converge asymptotically to zero
when the proposed adaptive generalized super-twisting algo-
rithm is applied. A simulation study is performed that shows
the effectiveness of the proposed algorithm.

I. INTRODUCTION

Sliding mode control (SMC) is a robust and versatile non-
linear control approach that is particularly well suited for
controlling perturbed control systems. In particular control
systems perturbed by matched uncertainties and disturbances
[1]. We achieve these properties by using a discontinuous
control law. The discontinuous element gives us robustness,
but it also introduces chattering, i.e. high frequency switch-
ing in the control input. Chattering can be avoided by using
a saturation or sigmoid function instead of the discontinu-
ous signum function, [2], [3]. We then achieve a continuous
control input, but we restrict our sliding system’s trajectories
to a boundary around the the sliding surface, loosing the
robustness to the disturbances. However, chattering can also
be avoided using higher-order sliding mode (HOSM) tech-
niques [4]–[6]. We then achieve a continuous control input,
without loosing any robustness. The HOSM methods drive
the sliding variable and its derivatives to zero in the presence
of disturbances and uncertainties [7].

The super-twisting algorithm (STA) [8] is one of the most
powerful second-order continuous SMC algorithm. It atten-
uates chattering by introducing a dynamic extension to the
system such that the discontinuous term is hidden behind
an integrator. This is why it generates a smooth continuous
control input that drives the sliding variable and its deriva-
tives to zero in finite time in the presence of smooth matched
disturbances with bounded gradient. The main drawback of
this approach is that the boundaries of the disturbance gra-
dient have to be known. This boundary is not always eas-
ily estimated and often that leads to overestimation, which
leads to unnecessarily large control gains. Therefore, in [7]
a STA with adaptive gains was proposed. The approach con-
tinuously drives the sliding variable and its derivatives to
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zero in the presence of a bounded disturbance with unknown
boundary, such that no conservative upper bound on the dis-
turbance gradient has to be considered to maintain sliding,
because of the adaptive gains.

In recent years different Lyapunov functions have been
designed in order to obtain convergence conditions and esti-
mates of the reaching time. However, these Lyapunov proofs
are made under conservative assumptions. The perturbations
are dependent only on time [8], [9], the control coefficient is
known [8]–[11], or perturbations are dependent on state and
time, but it is supposed that their total time derivative, i.e.
the control signal, is a priori bounded by some constant [10],
[12]. Therefore, [13] proposed a generalized super-twisting
algorithm (GSTA) where they consider a more general sce-
nario, i.e. the case when both the perturbations and control
coefficients are state- and time-dependent and the control
coefficients are uncertain. This approach gives us some ad-
ditional theoretical properties over the regular STA proposed
in [8]. However, we also here have to know the boundaries
of the perturbations and control coefficients to obtain bounds
on the control gains which are not too conservative.

In this paper we therefore propose an adaptive GSTA for
a class of system whose perturbations and uncertain control
coefficients are time- and state-dependent, i.e. we combine
the best properties of the STA with adaptive gains [7] and
the GSTA [13]. The proposed approach consists in using
dynamically adapted control gains that ensure global finite-
time (GFT) convergence. The advantage with adaptive gains
is that no conservative upper bound has to be considered on
the perturbations and control coefficients to maintain sliding.
We prove that the resulting closed-loop system is globally
finite-time stable (GFTS).

In [14] and [15] two alternative adaptive GSTA have
been proposed for the GSTA proposed in [16], for SISO
and MIMO system, respectively. The approach proposed in
this paper differs from these two algorithms, specifically
the approach proposed also handles unknown control coef-
ficients. In [17] a third alternative adaptive GSTA has been
proposed. The approach proposed in this paper differs from
the algorithm in [17], as this also handles state-dependent
disturbances, not just time-dependent disturbances. These
distinctions are important because it allows us to use the
adaptive GSTA to control a larger class of systems, and, in
particular, it allows us to control an articulated intervention-
AUV (AIAUV) which was our motivation to look into an
adaptive GSTA that handles unknown control coefficients
and state-dependent disturbances.

The AIAUV is an underwater vehicle with multiple joints
and multiple thrusters [18]. The AIAUV is subject to hy-



drodynamic and hydrostatic parameter uncertainties, uncer-
tain thruster characteristics, unknown disturbances, unmod-
eled dynamics and large coupling forces caused by joint mo-
tion, and it is therefore essential for the control approach to
be robust. We have therefore previously looked into using
SMC for trajectory tracking for the AIAUV, since trajectory
tracking is essential for the AIAUV to be able to move in
confined spaces and to perform intervention tasks. In [19]
and [20] we investigated using the STA with adaptive gains
to control the AIAUV, and in [21] and [22] we investigated
using the GSTA to control the AIAUV. In [23], we have
compared the two SMC algorithms both through simulations
and experimental results, and we saw that the STA with
adaptive gains gave better tracking results than the GSTA,
even though the GSTA has better theoretical properties. The
adaptive gains are thus seen to be very practical and gives us
tuning advantages. We therefore wanted to have the practical
advantages from the adaptive gains together with the theo-
retical advantages of the GSTA, to control the AIAUV. We
therefore use the AIAUV as a case study in this paper, to
show the effectiveness of the proposed adaptive GSTA. We
also show that the adaptive GSTA makes the tracking errors
of the AIAUV converge asymptotically to zero.

The contributions of the paper can be summarized as fol-
lows. A novel adaptive GSTA is proposed for a class of sys-
tems whose perturbations and uncertain control coefficients
are time- and state-dependent. The proposed approach con-
sists in using dynamically adapted control gains in a GSTA,
which ensures GFT convergence. A non-smooth strict Lya-
punov function is used to obtain the conditions for the GFT
stability. It is also shown that the adaptive GSTA makes the
tracking errors of the AIAUV converge asymptotically to
zero. A simulation study is performed to show the effective-
ness of the proposed algorithm.

The remainder of the paper is organized as follows. In
Sec. II, the problem statement and main results are given.
The case study for the AIAUV is given in Sec. III. In Sec. IV,
the conclusions and suggestions for future work are given.

II. PROBLEM STATEMENT AND MAIN RESULTS

In this section we will prove that the GSTA with adaptive
gains makes the system trajectories globally converge to zero
in finite-time while taking into account the unknown bounds
of the uncertain control coefficient and perturbation.

A. System dynamics

Consider the dynamic system represented by the differen-
tial equation

σ̇ = γ(σ, t)u+ ϕ(σ, t) (1)

where σ ∈ R is the state vector, u ∈ R is the control input
vector. The functions γ(σ, t) and ϕ(σ, t) are uncertain func-
tions dependent on the state and time. By following [13] we
make the following assumptions

Assumption 1: The functions γ(σ, t) and ϕ(σ, t) are Lip-
schitz continuous functions with respect to t and γ(σ, t),
ϕ(σ, t) ∈ C1 with respect to σ.

Assumption 2: The uncertain control coefficient function
is bounded by

0 < km ≤ γ(σ, t) ≤ kM (2)

where km and kM are positive constants.
Assumption 3: The perturbation term ϕ(σ, t) can be split

into two parts
ϕ(σ, t) = ϕ1(σ, t) + ϕ2(σ, t) (3)

where the first term is vanishing at the origin, i.e. ϕ1(0, t) =
0 ∀ t ≥ 0, and bounded by

|ϕ1(σ, t)| ≤ α|φ1(σ)|, α > 0 (4)
Assumption 4: The total time derivative of the second-

term divided by the control coefficient γ(σ, t) can be repre-
sented as

d

dt

(
γ−1(σ, t)ϕ2(σ, t)

)
= γ−1 ∂ϕ2

∂t
− γ−2ϕ2

∂γ

∂t︸ ︷︷ ︸
δ1(σ,t)

+

(
γ−1 ∂ϕ2

∂σ
− γ−2ϕ2

∂γ

∂σ

)
︸ ︷︷ ︸

δ2(σ,t)

σ̇ = δ1(σ, t) + δ2(σ, t)σ̇
(5)

where δ1(σ, t) and δ2(σ, t) are bounded by positive constants

|δ1(σ, t)| ≤ δ̄1, |δ2(σ, t)| ≤ δ̄2 (6)

B. Generalized super-twisting algorithm with adaptive gains

In this section, the equations describing the adaptive GSTA
are presented. The GSTA proposed in [13] can be written as

uGSTA = −k1φ1(σ) + z ∈ R
ż = −k2φ2(σ)

(7)

where
φ1(σ) = dσc

1
2 + βσ

φ2(σ) =
1

2
dσc0 +

3

2
βdσc

1
2 + β2σ

(8)

where dacb = |a|b sgn(a), and k1 ∈ R, k2 ∈ R and β ∈ R
are controller gains. Motivated by [7] we propose to let k1

and k2 be adaptive gains defined by the update law

k̇1 =

{
ω1

√
γ1
2 , if σ 6= 0

0, if σ = 0
(9a)

k2 = 2εk1 + λ+ 4ε2 (9b)

where ε ∈ R, λ ∈ R, γ1 ∈ R and ω1 ∈ R are positive
constants.

C. Closed-loop dynamics

The closed-loop dynamics is obtained by inserting (3) and
(7) in (1), such that we obtain

σ̇=−k1γ(σ, t)φ1(σ)+ϕ1(σ, t)+γ(σ, t)
(
z+γ−1(σ, t)ϕ2(σ, t)

)
(10)

By defining σ1 = σ and σ2 = z + γ−1(σ1, t)ϕ2(σ1, t), we
can represent the closed-loop dynamics as

σ̇1 =γ(σ1, t)
(
−k1φ1(σ1)+γ−1(σ1, t)ϕ1(σ1, t)+σ2

)
(11a)

σ̇2 =−k2φ2(σ1)+
d

dt

(
γ−1(σ1, t)ϕ2(σ1, t)

)
(11b)



Theorem 1: Suppose that γ(σ1, t) and ϕ(σ1, t) in system
(1) satisfy Assumptions 1-4. Then, the closed-loop dynamics
in (11) is GFTS, such that the states σ1 and σ2 converge to
zero and z converges to −γ−1(0, t)ϕ2(0, t), globally and in
finite time, if the gains k1 and k2 are designed as in (9),
β > 0, λ > 0, ω1 > 0, γ1 > 0 and ε = ω2

2ω1

√
γ2
γ1

where
ω2 > 0 and γ2 > 0.

Remark 1: Note that the proof is for a one-dimensional
case, but since SMC approaches do not use model in-
formation we can separate the n dimensions into n one-
dimensional cases. The proof thus holds for n dimensions as
long as Assumptions 1-4 hold for each dimension. This will
be demonstrated in the case study in Sec. III.

Proof: From [13] we have that the closed-loop system
in (11) is GFTS when constant values of k1, k2 and β > 0
are used in (7) and the gains are chosen according to [13,
Theorem 2.1]. This is proven using the Lyapunov function
candidate

V0 = ξTPξ, P =

[
p1 −1
−1 p2

]
(12)

where p1p2 > 1 and ξT =
[
φ1(σ1) σ2

]
. It is shown that

the derivative along the trajectories of the system is

V̇0 ≤ −2γ(σ1, t)φ
′
1(σ1)ξTQ(t)ξ

≤ −µ1V
1
2

0 (σ1, σ2)− µ2V0(σ1, σ2)
(13)

where

µ1 =
kmελ

1
2

min{P}
λmax{P}

, µ2 = β
2kmε

λmax{P}
(14)

and Q(t) is positive definite if the gains are chosen accord-
ing to [13, Theorem 2.1]. For the proposed adaptive GSTA,
however, k1 and k2 are not constants. Instead, k1 and k2

are time-varying functions, given by (9). Motivated by [7],
we use the Lyapunov function candidate (12), to find a k1

satisfying (9a) that makes Q(t) positive definite when k2 is
chosen as (9b). From [13] the elements of Q(t) are

Q(t) =

[
q1(t) q2(t)
q2(t) q3(t)

]
=

[
k̃1p̃1 − k̃2

1
2 (p2k̃2 − (k̃1h̃+ p̃1))

1
2 (p2k̃2 − (k̃1h̃+ p̃1)) h̃

] (15)

where

p̃1 =
(
p1 −

δ2(σ1, t)

φ′1(σ1)

)
⇒ p̃1 ∈ [p

1
, p̄1] =

[
p1 −

δ̄2
β
, p1 +

δ̄2
β

]
k̃2 = γ−1(σ1, t)

(
k2 −

δ1(σ1, t)

φ2(σ1)

)
⇒ k̃2 ∈ [k2, k̄2]

=
[ 1

kM
(k2 − 2δ̄1),

1

km
(k2 + 2δ̄1)

]
k̃1 =

(
k1 − γ−1(σ1, t)

ϕ1(σ1, t)

φ1(σ1)

)
⇒ k̃1 ∈ [k1, k̄1]

=
[
k1 −

α

km
, k1 +

α

km

]
h̃ =

(
1− p2δ2(σ1, t)

φ′1(σ1)

)
⇒ h̃ ∈ [h, h̄] =

[
1− p2δ̄2

β
, 1 +

p2δ̄2
β

]

(16)

If we choose k̃1 = k1 − α
km

and k̃2 = 1
km

(k2 + 2δ̄1), i.e.
such that Q(t) is the most negative, we can rewrite Q(t) as

Q(t)=

[
(k1− α

km
)p̃1− 1

km
(k2+2δ̄1) q2(t)

1
2

(
p2
km

(k2+2δ̄1)−
(
(k1− α

km
)h̃+p̃1

))
h̃

]
(17)

For the matrix Q(t) in (17) to be positive definite we need
q1(t) > 0 and det(Q(t)) > 0. By using k2 as in (9b) and
calculating the determinant of Q(t) in (17) we obtain

det(Q(t)) = q1(t)q3(t)− q2
2(t)

=

((
k1−

α

km

)
p̃1−

1

km

(
2εk1+λ+4ε2+2δ̄1

))
h̃

− 1

4

(
p2

km

(
2εk1+λ+4ε2+2δ̄1

)
−
(

(k1−
α

km
)h̃+p̃1

))2

= h̃p̃1k1−
αh̃p̃1

km
− 2εh̃

km
k1−

λh̃

km
− 4ε2h̃

km
− 2δ̄1h̃

km

− 1

4

(
2εp2

km
k1+

λp2

km
+

4ε2p2

km
+

2δ̄1p2

km
−h̃k1+

αh̃

km
−p̃1

)2

(18)

By introducing ka = αh̃p̃1
km

+ λh̃
km

+ 4ε2h̃
km

+ 2δ̄1h̃
km

> 0 and

kb = λp2
km

+ 4ε2p2
km

+ 2δ̄1p2
km

+ αh̃
km

> 0 we can rewrite (18) as

det(Q(t))=

((
h̃p̃1−

2εh̃

km

)
k1−ka

)
− 1

4

((2εp2

km
−h̃
)
k1

+kb−p̃1

)2

=

((
h̃p̃1−

2εh̃

km

)
k1−ka

)
−
((ε2p2

2

k2
m

− εh̃p2

km

+
1

4
h̃2
)
k2

1 +
(εkbp2

km
− εp̃1p2

km
− 1

2
h̃kb+

1

2
h̃p̃1

)
k1

+
1

4
k2
b−

1

2
kbp̃1+

1

4
p̃2

1

)
=

(
− ε

2p2
2

k2
m

+
εh̃p2

km
− 1

4
h̃2

)
k2

1

+

(̃
hp̃1−

2εh̃

km
− εkbp2

km
+
εp̃1p2

km
+

1

2
h̃kb−

1

2
h̃p̃1

)
k1−

1

4
k2
b

+
1

2
kbp̃1−

1

4
p̃2

1−ka=(kd−kc)k2
1 +(ke−kf )k1+kh−kg

(19)

where

kc =
ε2p2

2

k2
m

+
1

4
h̃2 > 0 (20a)

kd =
εh̃p2

km
> 0 (20b)

ke = h̃p̃1 +
εp̃1p2

km
+

1

2
h̃kb > 0 (20c)

kf =
2εh̃

km
+
εkbp2

km
+

1

2
h̃p̃1 > 0 (20d)

kg =
1

4
k2
b +

1

4
p̃2

1 + ka > 0 (20e)

kh =
1

2
kbp̃1 > 0 (20f)

A solution to

det(Q(t)) = (kd−kc)k2
1 +(ke−kf )k1 +kh−kg > 0 (21)

is then
k1 >

kg − kh
ke − kf

(22)



where we must choose p1 and p2 such that kf < ke and
kd = kc. To ensure that kd = kc, we choose

p2 =
h̃km
2ε

(23)

By inserting (23), in (20a) and (20b) we obtain

kc =
ε2( h̃km2ε )2

k2
m

+
1

4
h̃2 =

1

2
h̃2

kd =
εh̃ h̃km2ε

km
=

1

2
h̃2

(24)

which means that kd = kc is ensured. To ensure that kf <
ke, we calculate

kf < ke

2εh̃

km
+
εkbp2

km
+

1

2
h̃p̃1 < h̃p̃1 +

εp̃1p2

km
+

1

2
h̃kb

(25)

By inserting (23) in (25) we obtain

2εh̃

km
+
εkb
km

h̃km
2ε

+
1

2
h̃p̃1 < h̃p̃1 +

εp̃1

km

h̃km
2ε

+
1

2
h̃kb

2εh̃

km
+
h̃kb
2

+
1

2
h̃p̃1 < h̃p̃1 +

h̃p̃1

2
+

1

2
h̃kb

2ε

km
< p̃1

(26)

This means that by choosing p̃1 >
2ε
km

or

p1 >
2ε

km
+
δ̄2
β

(27)

we ensure kf < ke. So by choosing k1 as in (22), p1 as in
(27) and p2 as in (23) we obtain det(Q(t)) > 0. Now, to
ensure q1(t) > 0 we calculate

q1(t) > 0(
k1 −

α

km

)
p̃1 −

1

km
(2εk1 + λ+ 4ε2 + 2δ̄1) > 0(

p̃1 −
2ε

km

)
k1 −

α

km
p̃1 −

1

km
(λ+ 4ε2 + 2δ̄1) > 0

(28)

By choosing

k1 > kq =
(
p̃1−

2ε

km

)−1( α

km
p̃1+

1

km
(λ+4ε2+2δ̄1)

)
(29)

we can ensure that q1(t) > 0. By combining (22) and (29),
we obtain

k1 >
kg

ke − kf
+ kq (30)

which will ensure that both det(Q(t)) > 0 and that q1(t) >
0. Note that −kh is removed compared to (22) since if kh >
kg that could have made q1(t) < 0. Also note that this does
not effect det(Q(t)) > 0 since kg

ke−kf >
kg−kh
ke−kf since kh >

0. By this we can conclude that if k1 is chosen as in (30),
p1 as in (27) and p2 as in (23) then the matrix Q(t) will be
positive definite, which ensures that the closed-loop system
in (11) is GFTS when constant gains are used, i.e. we have
proven that there exist a gain k1 that makes Q(t) positive
definite. We now have to prove that by using the adaptive
gains as in (9) k1 will converge such that (30) is satisfied.

Now, we will prove by using the Lypaunov function can-
didate

V = V0 +
1

2γ1
(k1 − k?1)2 +

1

2γ2
(k2 − k?2)2 (31)

where k?1 > 0 and k?2 > 0 are constants, that the closed-loop
dynamics in (11) is also GFTS with the adaptive gains as in
(9). By taking the derivative of (31) we obtain

V̇ = V̇0 +
1

γ1
(k1 − k?1)k̇1 +

1

γ2
(k2 − k?2)k̇2 (32)

By using that V̇0 ≤ −µ1V
1
2

0 (σ1, σ2) and subtracting and
adding ω1√

2γ1
|k1 − k?1 |+ ω2√

2γ2
|k2 − k?2 | we can rewrite (32)

to be

V̇ ≤ −µ1V
1
2

0 −
ω1√
2γ1
|k1 − k?1 | −

ω2√
2γ2
|k2 − k?2 |

+
1

γ1
(k1 − k?1)k̇1 +

1

γ2
(k2 − k?2)k̇2

+
ω1√
2γ1
|k1 − k?1 |+

ω2√
2γ2
|k2 − k?2 |

(33)

By using the well known inequality

(x2 + y2 + z2)1/2 ≤ |x|+ |y|+ |z| (34)

on (31) we obtain
√
V =

(
V0 +

1

2γ1
(k1 − k?1)2 +

1

2γ2
(k2 − k?2)2

) 1
2

≤ V
1
2

0 +
1√
2γ1
|k1 − k?1 |+

1√
2γ2
|k2 − k?2 |

(35)

We can then derive

−µ1V
1
2

0 −
ω1√
2γ1
|k1−k?1 |−

ω2√
2γ2
|k2−k?2 | ≤ −η

√
V (36)

where η = min(µ1, ω1, ω2). Taking into account (36) we can
rewrite (33) as

V̇ ≤ −ηV 1
2 +

1

γ1
(k1 − k?1)k̇1 +

1

γ2
(k2 − k?2)k̇2

+
ω1√
2γ1
|k1 − k?1 |+

ω2√
2γ2
|k2 − k?2 |

(37)

By [7, Proposition 1] we have that the adaptation law (9)
makes the adaptive gains k1 and k2 bounded. Then there
exist positive constants k?1 and k?2 that make

k1(t)− k?1 < 0, k2(t)− k?2 < 0 ∀t ≥ 0. (38)

We can therefore reduce (37) to

V̇ ≤ −ηV 1
2 − |k1 − k?1 |

(
1

γ1
k̇1 −

ω1√
2γ1

)
− |k2 − k?2 |

(
1

γ2
k̇2 −

ω2√
2γ2

) (39)

where we have to ensure that

−|k1−k?1 |
(

1

γ1
k̇1−

ω1√
2γ1

)
−|k2−k?2 |

(
1

γ2
k̇2−

ω2√
2γ2

)
= 0 (40)

to achieve finite-time convergence. That (40) hold is sup-
posed to be achieved through the adaptation of the gains k1



and k2, i.e.

k̇1 = ω1

√
γ1
2 (41a)

k̇2 = ω2

√
γ2
2 (41b)

If we select ε = ω2

2ω1

√
γ2
γ1

, (9b) and (41b) are equal, since

k2 = 2εk1 + λ+ 4ε2 ⇒

k̇2 = 2εk̇1 ⇒ k̇2 = εω1

√
2γ1 = ω2

√
γ2
2

(42)

For the finite-time convergence, k1(t) must satisfy (30). It
means that k1(t) has to increase in accordance with (41a)
until (30) is satisfied, since k1(t) increases linearly (30) will
be met in finite time. That guarantees the positive definiteness
of the matrix Q(t). After (30) is satisfied, the finite-time
convergence is guaranteed according to (39), and as nicely
described in the Introduction of [24] this implies that the
closed-loop system in (11) is GFTS.

III. CASE STUDY: ARTICULATED INTERVENTION AUV

In this section we will apply the theoretical results of
Sec. II for tracking control of an AIAUV as a case study
to show the effectiveness of the proposed control algorithm.
The tracking control problem is similar to [21] where the
GSTA without adaptive gains was used. For completeness,
the model of the AIAUV and tracking problem are briefly
described also here, but for more details please see [21].

A. Modelling and the tracking control problem

In this section, we present the model and the mathematical
definition of the tracking control problem for the AIAUV.
The AIAUV has n links and n− 1 motorized joints, where
each joint is regarded as a one-dimensional Euclidean joint.
The AIAUV also has m thrusters. The AIAUV is modelled
as an underwater vehicle-manipulator system, with dynamic
equations given in matrix form as [25], [26]

ξ̇=J(p)ζ=

 RIB(p) 03×3 03×(n−1)

04×3 Jk,oq(p) 04×(n−1)

0(n−1)×3 0(n−1)×3 I(n−1)×(n−1)

ζ
M(q)ζ̇ + C(q, ζ)ζ +D(q, ζ)ζ + g(q,RIB) = τ(q)

(43)

where ξ = [ηT1 pT qT ]T ∈ R7+(n−1), η1 =
[x y z]T ∈ R3 is the position of the base and p =
[εT η]T = [ε1 ε2 ε3 η]T ∈ R4 is the unit quaternion
describing the orientation of the base in the inertial frame
and q ∈ R(n−1) is the vector representing the joint angles.
The rotation matrix RBI expresses the transformation from
the inertial frame to the body-fixed frame, Jk,oq = 1

2 [ηI3 +
S(ε) − εT ]T , In is the (n×n) identity matrix, S(·) is the
cross-product operator defined as in [27, Definition 2.2], ζ =
[vT ωT q̇T ]T ∈ R6+(n−1), v and ω are the body-fixed
linear and angular velocities of the base of the AIAUV, and
q̇ is the vector of joint angle velocities, M(q) is the inertia
matrix including added mass terms, C(q, ζ) is the Coriolis-
centripetal matrix, D(q, ζ) is the damping matrix and
g(q,RIB) is the matrix of gravitational and buoyancy forces.

The control input is given by the generalized forces τ(q):

τ(q) =

[
T (q) 06×(n−1)

0(n−1)×m I(n−1)×(n−1)

] [
τthr
τq

]
(44)

where T (q) ∈ R6×m is the thruster configuration matrix,
τthr ∈ Rm is the vector of thruster forces and τq ∈
R(n−1) represents the joint torques. The desired velocities
are denoted as ζd = [vTd ωTd q̇Td ]T in the body-fixed
frame, and the desired trajectories are denoted as ξd =
[ηT1,d pTd qTd ]T . The tracking errors then consist of the
position error η̃1, the orientation error ε̃ and the joint angle
error q̃, and the tracking error vector can then be written as

ξ̃ =

η̃1

ε̃
q̃

 =

 η1 − η1,d

ηεd − ηdε+ S(εd)ε
q − qd

 (45)

The goal of the tracking problem is to make the error vector,
ξ̃, converge to zero. The tracking control objective is there-
fore to make (ξ̃, ζ̃) = (0, 0), where ζ̃ = ζ − ζd, an asymp-
totically stable equilibrium point of (43), which will ensure
that the tracking error will converge to zero. Note that for p̃
the tracking control objective is to make p̃ =

[
01×3 ±1

]T
an asymptotically stable equilibrium point. Note that η̃ is
not included as an independent state in (45), since η̃ and ε̃

satisfy η2 + εT ε = 1. When ε̃→ 0, then p̃ =
[
01×3 ±1

]T
.

B. Adaptive GSTA for the AIAUV

In this section, we develop a tracking control law for the
AIAUV based on the adaptive GSTA and show that the track-
ing errors asymptotically converge to zero. The following
theorem establishes the convergence properties of the pro-
posed control law.

Theorem 2: Define the virtual reference vector ζr = ζd−
Λξ̃, with Λ = diag([KpRB

I (p) sgn(η̃)I3 Kq]), where η̃ =
ηηd + εT εd and Kp and Kq are constant, positive definite
gain matrices. Let the sliding surface be defined as

σ = ζ − ζr ∈ R6+(n−1) (46)

and let the control input be given by

τ(q) = uGSTA ∈ R6+(n−1) (47)

where uGSTA is given in (7)-(9). Then, the sliding surface,
σ = 0, is a GFTS equilibrium point, which then ensures
asymptotic convergence of the tracking errors ξ̃.

Proof: By differentiating (46), we obtain

σ̇= ζ̇−ζ̇r=M−1(·)(−C(·)ζ−D(·)ζ−g(·)+τ(·))−ζ̇r (48)

and by using that ζ = σ + ζr, we obtain

σ̇=M−1(·)(−C(·)(σ+ζr)−D(·)(σ+ζr)−g(·)+τ(·))−ζ̇r (49)

Now, by introducing Φ(σ, t) = Φ1(σ, t) + Φ2(σ, t), where
Φ1(σ, t) = M−1(·)(−C(·)σ − D(·)σ) and Φ2(σ, t) =
M−1(·)(−C(·)ζr−D(·)ζr−g(·)−M(·)ζ̇r) and substituting
τ(·) by (47) and (7)-(9), we obtain

σ̇=−k1M
−1(·)φ1(σ)+Φ1(σ, t)+M−1(·)(z+M(·)Φ2(σ, t)) (50)



Fig. 1: The Eelume vehicle (Courtesy: Eelume)

Note that Φ1(0, t) = 0. Now by defining σ1 = σ and σ2 =
z +M(·)Φ2(σ, t), we can write the dynamics as

σ̇1 = −k1M
−1(·)φ1(σ1) + Φ1(σ1, t) +M−1(·)σ2

σ̇2 = −k2φ2(σ1) +
d

dt

(
M(·)Φ2(σ1, t)

) (51)

Note that (51) is a special case of the form considered in
[21, Theorem 2], and therefore M−1(·), Φ1(·) and Φ2(·) will
satisfy Assumptions 1-4 by [21, Theorem 2]. The conditions
of Theorem 1 are thus satisfied in each dimension, and thus
by Theorem 1 the dynamics in (51) is GFTS. The sliding
surface σ = 0 is therefore a GFTS surface, which means that
σ converges to zero in finite time.

Once the system trajectories are confined to σ = 0, the
tracking error dynamics are given by

ṽ = −KpR
B
I (p)η̃1 (52a)

ζ − ζd = −Λξ̃ ⇔ ω̃ = − sgn(η̃)ε̃ (52b)
˙̃q = −Kq q̃ (52c)

For the position error (52a) it is proven in [28] that the equi-
librium point η̃1 is UGAS, and for the orientation error (52b)
it is proven in [28] that there are two uniformly asymptoti-
cally stable equilibrium points, [ε̃, η̃] = [0,±1], both repre-
senting perfect alignment between the desired and the actual
orientation of the AIAUV. Finally, (52c), shows that the joint
angle errors, q̃, converge uniformly globally exponentially to
zero, since Kq is chosen positive definite.

C. Simulation results

In this section the implementation, simulation set-up and
simulation results will be presented.

1) Implementation: The complete model and controllers
are implemented in MATLAB Simulink. The model is im-
plemented by the method described in [29], and is based
on the Eelume robot, Fig. 1. The AIAUV has n = 9 links,
n − 1 = 8 revolute joint and m = 7 thrusters. The AIAUV
has the same link and joint properties as in [21]. To create
a continuous trajectory for the AIAUV to follow, we use a
filter to generate a continuous trajectory between setpoints.
The thruster allocation matrix is implemented as proposed in
[18]. For implementation purposes, a small boundary is put
on σ so the adaptive gains can be expressed as

k̇1 =

{
ω1

√
γ1
2 , if |σ| > αm

0, if |σ| ≤ αm
(53a)

k2 = 2εk1 + λ+ 4ε2 (53b)

where the design parameter αm ∈ R6+(n−1) is a small pos-
itive constant chosen empirically. This is done since numer-
ically σ will never be exactly zero.

2) Simulations: The simulation case chosen highlights the
two different modes, transport mode and operation mode,
which are explained in detail in [18]. Transport mode is for
long-distance travel, and operation mode is for performing
inspections and intervention tasks. In this case we start in
transport mode, i.e. start with the robot in an I-shape (all the
joint angles are equal to zero: q = 0 deg), moving forward
in the x-direction and downward in the z-direction, before
moving into operation mode at 80s. In operation mode we
perform an inspection, by setting the AIAUV in C-shape (ev-
ery second joint angle is equal to 45 deg), and then moving
joint 7 and 8 in a circular motion such that link 9 is mov-
ing around, performing an inspection. For the simulations, a
fixed-step solver with a step size of 10−4 was used. The gains
were chosen as: βGSTA = [80e14]T , λ = [0.1e6 10e8]T ,
ε1 = ω2

2ω1

√
γ2
γ1

[e14]T , γ1 = [e14]T , ω1 = [2e14]T , γ2 = [4 ·
10−10e3 8·10−9e3 4·10−10e8]T , ω2 = [2e14]T and αm =
[5·10−3e6 5·10−6e8]T , where ei is a 1×i vector of ones. In
Fig. 2 the reference trajectory for the position, the orientation
and the movement of the joints together with the states are
shown. In Fig. 3a the sliding surface σ is shown, in Fig. 4a
the thruster forces and joint torques used are shown, and in
Fig. 5 the evolution of the gain k1(t) over time is shown.

From Fig. 2 we can see that the desired trajectories for
position, orientation and the joints are tracked very well.
This is also supported by Fig. 3, as σ is below 0.07 for the
position and orientation and below 5 · 10−4 for the joints in
absolute value. From Fig. 4 we can see that the forces used
is smooth, i.e. no chattering and below 100N , which is the
limit for the thrusters. In Fig. 5 we can see that the gain k1(t)
increases linearly and converges to a suitable value, this fits
what we found in Sec. II.

For comparison, in Fig. 3b the sliding surface σ and in
Fig. 4b the thruster forces and joint torques are shown, when
the GSTA with constant gains is used, with gains k1 =
[5e14]T , k2 = [0.02e14]T and βGSTA = [80e14]T . By com-
paring the sliding surfaces in Fig. 3 we can see that the
adaptive GSTA gives considerably smaller sliding surface
values than the GSTA with constant gains. By comparing
the thruster forces and joint torques in Fig. 4 we can see
that when the joints move at 80s (because the AIAUV is
moving into operation mode) the adaptive GSTA provides
higher thruster forces and joint torques. The rest of the time
the thruster forces and joint torques used are similar. This is
probably some of the reason why the adaptive GSTA gives a
much smaller sliding surface. However, we do also see that
the sliding surface is smaller for the adaptive GSTA when
the thruster forces and joint torques used are similar. We can
therefore conclude that the adaptive GSTA here gives better
tracking performance than the GSTA with constant gains.

IV. CONCLUSIONS AND FUTURE RESEARCH

A novel adaptive GSTA is proposed. The proposed ap-
proach consists in using dynamically adapted control gains
that ensures GFT convergence in the presence of time- and
state-dependent perturbations and uncertain control coeffi-
cients, such that no conservative upper-bound as to be taken



(a) Tracking of position and orientation (b) Tracking of joint angles

Fig. 2: Tracking results using adaptive GSTA

(a) Sliding surface σ using adaptive GSTA (b) Sliding surface σ using GSTA

Fig. 3: Sliding surface σ

on the uncertainties. It is also shown that the adaptive GSTA
makes the tracking errors of the AIAUV converge asymp-
totically to zero, and a simulation study is performed which
shows the effectiveness of the proposed adaptive GSTA.
Future work includes experiments to investigate the perfor-
mance of the control algorithm in practice.
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