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A B S T R A C T   

Uncertainty analysis is a key element of sound techno-economic analysis (TEA) of CO2 Capture and Storage 
(CCS) technologies and systems, and in the communication of TEA results. Many CCS technologies are relatively 
novel, with only few large-scale projects constructed and in operation to date. Therefore, uncertainties in 
technology performance and costs are often substantial, making it imperative that they be characterized and 
reported. Although uncertainty analysis itself is not novel, with some methods already frequently used by the 
CCS TEA community, a document that provides a comprehensive overview of methods and approaches, as well 
as guidance on their selection and use, is still lacking. Given its importance, we seek to fill this gap by providing a 
critical review of uncertainty analysis methods along with guidance on the selection and use of these methods for 
CCS TEAs, highlighting good practice and examples from the CCS literature. The paper starts by identifying the 
different audiences for CCS TEAs, the different modelling approaches available for CCS technology performance 
and cost analysis, and the different roles that uncertainty analysis may play. It then continues to discuss es-
tablished, as well as emerging, uncertainty analysis methods and addresses how and when each method is best 
used, as well as common pitfalls. We argue that the most commonly used method of one-parameter-at-a-time 
‘local’ sensitivity analysis may often be a suboptimal choice, and that other approaches may be more suitable or 
lead to more insight, especially since uncertainty analysis software is becoming more widespread and easier to 
use. Finally, the paper discusses the benefits of advanced uses of uncertainty analysis in, for instance, the design 
of CCS experiments or in the design and planning of CCS infrastructure. Sound uncertainty analysis has an 
important role to play in TEAs of CCS technologies and systems, and there are many opportunities to bring the 
use of uncertainty analysis to a higher level than currently practiced. This review of and guidance on available 
methods is intended to help accelerate continued methods development and their application to more robust and 
meaningful CCS performance and costing studies.   

1. Introduction 

Sound uncertainty analysis is critical to the informed interpretation 
of carbon capture and storage (CCS) techno-economic analyses (TEA) 

(van der Spek et al., 2016; Rubin, 2012). It can provide valuable insight 
into the impacts of assumptions and underlying model structure, and 
give an indication of model quality and robustness, as well as of how 
reliable the outputs of modelling studies are or can be. Without 
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uncertainty analysis, the actual meaning and importance of CCS cost 
results from any techno-economic study are difficult to judge, especially 
for the target audience of such studies, who are often not involved in 
their production. 

Over the years, many publications on uncertainty evaluation 
methods and approaches have found their way to the scientific domain 
(e.g., (Harenberg et al., 2017; Borgonovo and Plischke, 2016; Pohjola 
et al., 2013)), as have publications on the application of uncertainty 
analysis to TEA and CCS costing specifically (e.g., (Raksajati et al., 
2018; van der Spek et al., 2017a; Hanak and Manovic, 2017)). How-
ever, it is notable that often when uncertainty analysis methods are 
applied in TEAs, mostly simplified methods tend to be used (e.g., single 
parameter sensitivity analysis) whereas other (more complex) methods 
could provide additional valuable insight. Furthermore, new and pro-
mising uncertainty methods appear to remain unknown to (or un-
applied by) the CCS TEA community. We believe this is partly due to 
unawareness of the full space of uncertainty analysis options, as well as 
a lack on guidance on when and how to use such options. Therefore, a 
critical review of the different options, complemented with guidelines 
on uncertainty evaluation can i) raise awareness to this issue, and ii) 
increase the effective and fit-for-purpose use of uncertainty analysis in 
CCS techno-economic studies, hopefully leading to improved under-
standing and communication of their results. 

Building on a previous CCS costing guideline paper (Rubin et al., 
2013), this work sets out to provide a review of, and guidelines on, 
uncertainty analysis methods for use in CCS TEA. It combines knowl-
edge and experience acquired in academia, research institutes and non- 
governmental organizations (NGOs). It is drafted in conjunction with 
two other guideline documents, one on techno-economic studies of CCS 
for industrial sources, and a second document looking into methods for 
carrying out costing of novel (low technology readiness level) processes 
(both forthcoming). The overarching goal of this manuscript is to ad-
vance the sound and fit-for-purpose use of uncertainty analysis in CCS 
TEA by providing practitioners and users with a reference document of 
relevant methods, tools and approaches, and a guideline of when and 
how to use them. These guidelines do not intend to provide an ex-
haustive account of every available method, rather to showcase dif-
ferent methods over a broad spectrum that can act as an illustration of 
the type of methods available. Naturally, these guidelines are equally 
applicable to TEAs of CO2 utilisation and negative emission technolo-
gies. 

2. Scope and background 

2.1. Audience for this paper 

These guidelines target two types of audiences: techno-economic 
analysis practitioners and the users of techno-economic studies (Table 1). 
The first group is composed of people involved in the development, 
modelling, costing and analysis of (new) CCS technologies. They will be 
found mainly in research and development (R&D) agencies, academia, 

and in industrial organisations. 
The second group are the users of TEA studies, as earlier described 

in Rubin (2012). They are mostly technology (R&D) and policy decision 
makers. The purpose for this group is twofold: first to help them gain an 
understanding of the role of uncertainty and how it may affect assess-
ments of technology performance, and second to provide an overview 
of available uncertainty analysis methods and their use, so that decision 
makers can request TEA practitioners to undertake the specific analysis 
that may fit their information needs best. A key example of the second 
group is funding agencies, who on a regular basis need to make in-
formed decisions on funding technology proposals. 

2.2. Types of techno-economic analyses and candidate parameter categories 
for uncertainty analysis 

Before venturing into available uncertainty analysis methods, it is 
worthwhile to provide a rough description of the type of techno-eco-
nomic models found in today’s CCS literature, since different types of 
studies may require different types of uncertainty analysis. Table 2 
presents a simplified overview of the types of techno-economic models 
and parameter categories that can be candidates for uncertainty eva-
luation (based on an earlier publication (van der Spek and Ramirez, 
2014)). On the one end, there are simplified techno-economic models 
that, for instance, are used to get a first rough idea of technical and 
economic feasibility. These models may be based on simple first prin-
ciples or more black box technology descriptions, and their economics 
are often derived from future projections of known equipment cost. On 
the other end of the spectrum are detailed techno-economic studies 
based on full physical (rigorous) technology models and detailed 
“bottom-up” cost models, such as the engineering-economic models 
often used in studies by e.g., the US Department of Energy’s National 
Energy Technology Laboratory (DOE/NETL), the International Energy 
Agency Greenhouse Gas Programme (IEAGHG), and the Electric Power 
Research Institute (EPRI). In between, there are more or less detailed 
technical and economic modelling studies, here called intermediate 
complexity models, often using, e.g., shortcut models for technology 
description, and/or partial process design and equipment lists for 
costing. The choice for a certain model type may depend on the goal of 
the study, the availability of data and physico-chemical models, and the 
technology readiness level (TRL). 

Table 2 is not meant as an exhaustive list of all parameters that need 
to be scrutinised, but rather provides an illustration of complexity le-
vels. As the table clearly shows, the more detailed and complex the 
TEA, the more input parameters and models used, and therefore the 
more parameters that can, or should, be included in the uncertainty 
analysis. Also, especially for rigorous process models, it is good practice 
to investigate the effect of model structure. This, for example, could be 
reflected in the choice of models for mass transfer, as it may have a 
large effect on the technical process, and therefore its performance and 
cost (see e.g. (Razi et al., 2014; Fosbøl et al., 2014) for a discussion on 
how the choice of mass transfer models is relevant in solvent-based CO2 

Table 1 
Target audiences for this guideline document.      

Audience Government Industry NGO’s & universities  

Practitioners: process developers/modellers, cost engineers and technology analysts in:  • R&D agencies  • Operators  

• Vendors  

• A&E firms  

• Venture capital  

• R&D organisations  

• Academia 

Users of CCS techno-economic studies in:  • Policymakers  

• Analysts  

• Regulators  

• R&D agencies  

• Funding agencies  

• Operators  

• Vendors  

• A&E firms  

• Venture capital  

• R&D organisations  

• Environmental  

• Media  

• Academia  

• Foundations 
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capture systems, but it equally applies to other types of capture tech-
nology). 

2.3. What do the existing TEA guidelines say about uncertainty assessment? 

As discussed in the introduction, a comprehensive set of guidelines 
for uncertainty analysis of techno-economic studies of CCS technologies 
is currently lacking. Two widely used guideline documents for CCS TEA 
in general, The DOE/NETL Quality Guidelines for Energy System 
Studies (QGESS (DOE/NETL, 2015)) and the European Best Practice 
Guidelines for Assessment of CO2 Capture Technologies (Cesar, 2011), 
provide a note on uncertainty analysis. Both recommend the use of 
sensitivity analysis to help generate an understanding of uncertainty in 
input data, financial assumptions, and state of technology development. 
They, however, limit themselves to the most simple of sensitivity ana-
lyses (one-at-a-time sensitivity analysis, see 3.3.1), without discussing 
alternative methods and without providing guidance on how to un-
dertake uncertainty analysis in a methodologically sound way. 

The techno-economic studies by organisations such as the IEAGHG 
or the Zero Emissions Platform (ZEP), are also often used as guidelines 
for good TEA practice. The IEAGHG studies use the standardised 
IEAGHG techno-economic and financial parameters for their studies 
(e.g., (IEAGHG, 2018a)). The IEAGHG studies generally include sensi-
tivity analyses, aiming to offer a picture of how changes to the standard 
IEAGHG assumptions could impact CCS costs. The key parameters 
generally investigated are fuel prices, discount rate, discount rate after 
plant closure, plant life time and CO2 transport and storage costs, 
subject to the objective of the study (IEAGHG, 2017a, b; IEAGHG, 
2009). Recent studies (IEAGHG, 2018b) also included assessments of 
potential techno-economic scenarios, where the authors a) explored 
technical parameters that can have a significant impact on the CO2 

capture costs; b) provided overviews of the TRLs of the CO2 capture 
technologies and their impact on costs, and c) highlighted technical 
differences in the literature which make cost-reviews more challenging. 
The TEA studies by ZEP only investigate sensitivity to plant efficiency 
and capital costs (ZEP, 2011a) for CO2 capture plants and extends that 
with operational costs, distance, and utilisation level for CO2 transport 
(ZEP, 2011b). Only in their CO2 storage costing study, ZEP also in-
cluded sensitivities on high level technical parameters like field and 
well capacity (ZEP, 2011c). 

The abovementioned guideline documents and techno-economic 
studies use, what are often called, local sensitivity analysis methods for 
uncertainty analysis, especially the one-at-a-time, and one-way type of 
sensitivity analysis (see section 3.3.1). Another observation is that these 
studies mostly focus their sensitivity analyses on economic input 
parameters (although there are exceptions). When addressing technical 
parameters, they do so mostly at high level, aggregated, parameters 
such as power plant efficiency, rather than the underlying technical 
input parameters that might exist in a first-principle process model. 

3. Uncertainty analysis 

3.1. Definitions of uncertainty analysis 

In the CCS TEA literature, Rubin (2012), make a distinction between 
uncertainty, variability and bias. Therein, the author defined un-
certainty to reflect “a lack of knowledge about the precise value of one 
or more parameters affecting CCS costs” (Rubin, 2012:187). In this 
definition, uncertainty exists solely in the value of parameters. Varia-
bility was defined to refer “to the different value a given parameter may 
take on (for example, across a collection of facilities, or at different 
points in time at a given facility). In this case the values of the para-
meter are assumed to be known (or knowable), and thus subject to 
quantitative data analysis” (Rubin, 2012:187). This means that the 
variability of a given parameter can be measured and can thus be 
quantified by, e.g., a probability density function (PDF). This would be Ta
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much more difficult (or arbitrary) in the case of uncertainty, where the 
lack of knowledge (true uncertainty) would hamper defining a precise 
PDF1 . Furthermore, the author defined bias to refer “to assumptions 
that skew an analysis in a particular direction while ignoring other 
valid alternatives, factors or data” (Rubin, 2012:188), meaning that the 
outcomes of a study may change when favouring one input parameter 
value over another. 

Other scholars use a wider definition of uncertainty by focusing on 
all kinds of knowledge or information, rather than only on parameters. 
For instance, “incomplete information about a particular subject” 
(Ascough et al., 2008:387), “lack of confidence in knowledge related to 
a specific question” (Sigel et al., 2009: 504) and “any deviation from the 
unachievable ideal of completely deterministic knowledge of the re-
levant system” (Walker et al., 2003):5). These three definitions all focus 
on the lack of knowable knowledge, values, or information, and in that 
way, they are closest to Rubin’s definition of uncertainty. 

We here adopt a wide definition of uncertainty, that includes both 
parameter (van der Spek et al., 2016; Rubin, 2012; Knol et al., 2009) 
and non-parameter uncertainty (i.e., knowledge uncertainty (Van Der 
Sluijs et al., 2005) and uncertainty in the model structure and bound-
aries: methodological, model structure, and contextual uncertainty (van 
der Spek et al., 2016), (Knol et al., 2009)). At the same time, we em-
brace the difference between uncertainty and variability (or epistemic 
and aleatoric uncertainty), because they play an important role in the 
selection of uncertainty analysis methods, as we will discuss later. 

3.2. Purposes of uncertainty analysis 

Before outlining different uncertainty analysis methods that are 
commonly used in CCS techno-economic analysis, we first discuss the 
different purposes uncertainty analysis may have. The first, straight-
forward, purpose is to provide insight into potentially different outputs 
as a result of different input assumptions. This is a way to answer “what 
if”, or, diagnostic, type of questions (Saltelli et al., 2008; Rubin, 2019). 
A more sophisticated purpose can be to provide an estimate of a certain 
output happening. This relates more to “what will”, or prognostic 
questions (Saltelli et al., 2008; Rubin, 2019), because the model spe-
cifies a certain outcome of happening with a certain probability. Re-
lated to this, uncertainty analysis can help understand which input 
parameters influence the model outputs most and should therefore be 
scrutinised and/or parametrised most thoroughly (for instance, through 
Factor Priorisation, FP, (Saltelli et al., 2008)). This can help answer the 
question of “where to put most effort” when quantifying model input 
values. Conversely, uncertainty analysis may provide insight into the 
parts of the model(s) that have less influence on the outputs, thereby 
answering “which parts of the model can we simplify” and providing a 
basis for model reduction (Factor Fixing, FF (Saltelli et al., 2008)). An 
advanced use of uncertainty analysis is model testing, i.e., testing how a 
model behaves when fed with extreme parameter values or scenarios. If 
the model behaves as expected (i.e., provides the expected outputs), it 
increases confidence that the model structure is correct. If unexpected 
outputs occur, this may indicate that model equations are incorrect, or 
incorrectly implemented. Finally, uncertainty analysis can also generate 
insight into the strength of models and/or the input data fed to them 
(further discussed in 3.4.1), which is of great importance when models 
are used for policy and decision making. 

3.3. Established uncertainty analysis methods 

This section describes established uncertainty analysis methods, i.e., 
methods that have well established principles and that have been 
commonly used in techno-economic analysis for decades. We start out 
with a general description of sensitivity analysis and local sensitivity 
analysis methods and then continue with a description of global (e.g., 
Monte Carlo based) uncertainty analysis. This section ends with de-
scribing pitfalls and good practices for the established methods. 

To allow explanation of the different methods, a very simple and 
generic mathematical representation of uncertainty analysis is in-
troduced in the main text: 

=y g x( ) (1) 

Where, g is a techno-economic model (i.e., a mathematical function). 
Despite the simple representation here, g can be a very complex system 
of equations solved analytically or numerically. x is an array of n model 
inputs …{x , x , , x }1 2 n and y is an array of m model outputs …{y , y , , y }1 2 n . 
We call k the number of parameters out of the set n k n( ) that is 
actually varied in a sensitivity analysis. This will suffice the explanation 
of the methods below. Slightly more comprehensive mathematical re-
presentations can be found in Appendix A. 

3.3.1. Sensitivity analysis 
Sensitivity analysis (SA) studies how uncertainty in the output of a 

model is apportioned to different sources of uncertainty in the input of a 
model (Saltelli et al., 2004; Sudret, 2008). Its main purpose is thereby 
to identify which inputs most significantly impact the model, helping to 
prioritise the effort of a modeller on further quantifying the model in-
puts, while making the model more robust. The model inputs to which 
the output is most sensitive deserve the most rigorous quantification; 
the inputs to which the model is least, or not sensitive, can be allowed 
less stringent quantification, or can be set to fixed (sometimes even 
random) value. Below we describe commonly used sensitivity analysis 
methods used in CCS costing, distinguishing between local sensitivity 
analysis and global sensitivity analysis. The descriptions are made 
around three main aspects: definition (what), method (how) and their 
applicability (when). 

3.3.1.1. Local sensitivity analysis. By far the most commonly used 
sensitivity analysis methods are local, meaning that one or more 
variables are varied around selected base, or nominal, values. This 
also implies that local methods do not include the uncertainties in the 
whole solutions space (set of potential outputs) of the model) (Saltelli 
et al., 2008). The reason for the wide use of local methods is their ease 
of use and of interpretation of their results 

What: Local sensitivity analysis can roughly be divided in three 
types: one-at-a-time sensitivity analysis, one-way sensitivity analysis 
and n-ways sensitivity analysis (scenario analysis, sometimes called N- 
at-the-time -NAT- sensitivity analysis was excluded from below de-
scription, because a very special class of uncertainty analysis). The 
simplest local method is one-at-a-time (OAT) sensitivity analysis 
(Harenberg et al., 2017; Borgonovo and Plischke, 2016), where the 
model output is only evaluated against a minimum and a maximum 
value of a given input parameter. This is most commonly known as the 
plus/minus 10 % way of varying an input parameter (example in  
Fig. 1). An extension to OAT sensitivity is one-way sensitivity analysis 
(Borgonovo and Plischke, 2016). Here, one parameter at a time is 
varied but over its entire predetermined range, sampling multiple 
points. The added value is that a response to an input becomes visible 
between its extremes, allowing to also identify potential non-linearities 
between input and output (see, e.g., the IEA figure (IEA, 2014) in  
Fig. 2). One-way sensitivity analysis can be further extended to multiple 
ways sensitivity analysis (or n-ways sensitivity analysis) (Borgonovo 
and Plischke, 2016). This method varies multiple parameters at a time, 
and uses for each parameter, a set of different values from its entire 

1 This differentiation between uncertainty and variability relates closely to 
what is called epistemic and aleatoric uncertainty in the uncertainty quantifi-
cation (UQ) literature (Roy and Oberkampf, 2011). The UQ community thus 
refers to both as uncertainty, but of a different nature. Epistemic uncertainty is 
also called reducible uncertainty, ignorance uncertainty or subjective uncertainty 
(Swiler et al., 2009). Aleatoric uncertainty, on the other hand, refers to inherent 
variability of a quantity of interest or unpredictability due to stochasticity (Swiler 
et al., 2009), indeed equivalent to Rubin’s definition of variability (Rubin, 
2012). 
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range. It has the ability to investigate the model output space as func-
tion of many parameters with less runs than would be required when 
only using one-way-sensitivity. In addition, it is able to show inter-
dependencies between input parameters (Example provided in Fig. 3). 

How: The main methodological step in sensitivity analyses is to 
choose the perturbations to the nominal value of the parameters under 
investigation. This is only trivial when input-output relations are linear 
and there is no interaction between input parameters. For OAT analysis 
for instance, it is common practice to vary each input parameter with a 
fixed percentage, e.g. +/− 10 %, or +/− 50 %. Note however, that in 
case of non-linear relations a variation of 10 %, 50 %, or other, may 
lead to a different ranking of sensitivity to inputs. Alternatively, each 
parameter can be given a different minimum and maximum, for in-
stance based on expert knowledge of the minimum and maximum va-
lues a parameter can have. From a purist perspective, the former ap-
proach (using the same plus and minus) is more appropriate, since the 
local nature of OAT analysis strictly does not allow a statement of the 
total variance of output y as a function of input x . Rather, OAT analysis 
merely produces a ranking of sensitivity to input parameters when 
varied close to their nominal value. However, from a pragmatic per-
spective, it seems illogical to vary all parameters with the same per-
centage around their nominal value if it is known that their real ranges 
differ substantially, and the practitioner would like to get a first im-
pression of the maximum range of the output parameters. The metho-
dologically correct use of strict OAT analysis is limited, and there may 

be good reason to choose another method. 
One-way sensitivity analysis in this perspective is more versatile 

than OAT sensitivity analysis, because it allows to sample multiple 
perturbations from the input parameter’s nominal value. Here, it is 
advised to choose the minimum and maximum values more widely, and 
preferably according to known, or realistic, limits. The main choice 
here is rather how many points to include, and where to sample them. 
For (or when suspecting) non-linear relations, it is advisable to add 
more points in those sections of the curve that are likely to show the 
highest non-linearities. For inputs with a linear relation to output, it 
would suffice to only use one minimum and maximum values without 
sampling points in between. These considerations also apply to n-way 
sensitivity analysis. 

An important consideration for the choice of method is its compu-
tational cost (i.e., the amount of time that it takes to run an analysis). It 
also depends on the computing hardware available: the computational 
cost of running an analysis is much higher for any model on a two-core 
laptop than on a supercomputing cluster where multiple dozens of cores 
work in parallel. For OAT, the computational cost can be estimated as 

= +C k2 1 (Borgonovo and Plischke, 2016), where k is the number of 
inputs that is varied. The computational cost of one-way sensitivity 
analysis is obviously higher than OAT sensitivity analysis: 

= + +C a k(2 ) 1, where a is the amount of sampled points in addition 
to its extremes and the base case. Because n-ways sensitivity analysis 
varies input parameters simultaneously, its computational cost is 

Fig. 1. Illustrative example of OAT local sensitivity analysis: 
Tornado diagram representing the OAT sensitivity of the le-
velised cost of electricity to economic input parameters. The 
case study represents an NGCC plant equipped with post-
combustion capture with solid sorbents using an electric swing 
adsorption cycle (van der Spek et al., 2017b). Capture plant 
TPC ranges (grey colour) include simultaneous variation of the 
engineering, procurement and contracting (EPC) costs, pro-
cess and project contingencies, FOAK value, and learning rate, 
proving a lumped contribution of these capital cost elements. 

Fig. 2. Illustrative example of one-way local sensitivity analysis showing the effect of CAPEX, Efficiency, capacity factor, fuel costs and CO2 price on the LCOE of 
power plant with and without CCS: Fig. 5.8 from the IEA Energy Technology Perspectives 2014 (IEA, 2014). The parameters were varied independently, leading to 
the typical spider webs of lines. Note the non-linearity of some parameters, e.g., capacity factor, making one-way analysis more suitable for this parameter than OAT 
analysis. 
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typically lower than that of one-way sensitivity analysis. As for one-way 
sensitivity analysis, C depends on the number of sampled values of each 
input xi. In addition, it is more difficult (and thus requires more com-
putational effort) to determine the influence of individual parameters 
when using n-ways analysis. For example, =C k2 to calculate all order 
sensitivities for generalised min/max full factorial designs, i.e., when 
only two values (a minimum and a maximum) for each input xi are 
sampled; = +C k2 2 to calculate first order (individual), interaction 
and total order sensitivity indices for min/max full factorial designs 
(Borgonovo and Plischke, 2016; Saltelli et al., 2008). Similarly, when a 
range of values for each xi is sampled, the computational costs increases 
to = +C a k(2 ) , with a being the amount of sample points in addition 
to its extremes. 

When: Local sensitivity analysis is best used to answer diagnostic, or 
“what if” type of questions, where it has less use to prognostic studies 
due to its local nature. It can be used very well for a first and quick 
screening of influential variables, both in process modelling and eco-
nomic analysis. In this case it is less relevant if the nature of the input 
parameter variance is pure uncertainty or rather variability (see above), 
because we are more interested in a ranking of parameters, than in the 
actual predicted output of the model. Though being simple, local sen-
sitivity analysis shows some relevant disadvantages. Its main drawback 
is arguably the inability to estimate the influence of variable interac-
tions (OAT and one-way sensitivity analysis) and non-linearities (OAT 
sensitivity analysis) (Saltelli et al., 2008). Especially in complex and 
highly non-linear mathematical models this can lead to a false ranking 
of importance (Harenberg et al., 2017), or to the discarding of inputs as 
relevant based on their single variable sensitivity, while they may ac-
tually be relevant in combination with other parameters. This means 
that local sensitivity analysis is more suited to simple models (like 
simple factorial cost estimates) than to complex models (like full phy-
sical process models). Also, local sensitivity analysis can be inefficient if 
k is large and only some input parameters are influential. This is, again, 
especially the case for computationally intensive models. 

In addition to diagnostic questions, local sensitivity analysis can 
also be very useful to test the model structure, by running extreme 
cases. If for instance, in an economic model, the discount rate is set to a 
very high value, the levelised cost of product should also become very 
high. If this is not the case, the modeller knows there may be a mistake 
in the model formulation. 

3.3.1.2. Common pitfalls in (local) sensitivity analysis. The following list 
provides some common pitfalls, to prevent mistakes in the use of 
sensitivity analysis for CCS techno-economic analysis and elsewhere: 

• Local sensitivity methods are perceived as sufficient, where in rea-
lity they may not fulfil the purpose of the study. This, in turn, leads 
to spending time applying methods that may not generate the an-
swers that are needed, or that are less suitable given a certain scope 
of the problem/question.  

• Showing the sensitivity of (too) many model outputs to the model 
inputs, thereby confusing the audience of the study (Saltelli et al., 
2008). Often only a few output parameters are really interesting and 
is better practice to show only those, while being transparent on the 
full number of parameters studied.  

• Performing piecewise sensitivity analysis where it is not justified. 
Piecewise sensitivity analysis examines the model in parts or com-
partments. Often, uncertainty is propagated through the model 
compartments in non-linear and interactive ways, and piecewise 
analysis could therefore provide false insights. Examples could in-
clude the piecewise examination of uncertainty in a process model 
and a cost model, where it might be more justified to investigate the 
uncertainty of the integrated techno-economic model.  

• Using the wrong representation of results for a chosen method. For 
instance, representing the results of a OAT sensitivity analysis in a 
spider plot. This may happen if modellers are not familiar with the 
full range of possible approaches and good practices of graphic re-
presentation. 

3.3.2. Probabilistic uncertainty analysis 
What: Probabilistic (global) uncertainty analysis is a step up from 

simple one-way or n-ways sensitivity analysis because it assigns a 
probability to the range of values that a parameter can have (Harenberg 
et al., 2017; Saltelli et al., 2008; Zhai and Rubin, 2013). It not only tells 
something about which values the model outputs y may take on as a 
function of changes in model inputs x , but also how likely a certain 
output may be (for e.g. see Fig. 4). Global uncertainty analysis can also 
be used to find the global sensitivity of the outputs y to the input vector 
x . This is different from local sensitivity in the way that the sensitivity 
indicators are estimated for the whole range of possible inputs and 
outputs (thus global), while the local sensitivity indicators only apply 
around the selected base value. Apart from the advantage of under-
standing the model input-output relationship over the whole range of 
parameter space, global uncertainty analysis also allows to identify the 
synergistic effects between model inputs. 

How: Probabilistic uncertainty analysis requires assigning to each or 
some of the input parameters a probability density function. These 
functions are typically fitted on measured (but often assumed) data. 
Mathematically, X are the probability distribution functions of the 
random vector of input parameters = …X XX ( , , )n1 and Y the PDFs of 
the random vector of output parameters = … =Y Y gY X( , , ) ( )m1 . This 
results in a cumulative distribution function =F y f y( ) ( )Y Y over the 
range of output realisations. Preferably, F y( )Y and f y( )Y are evaluated 
analytically, because of low computational cost. Practically, this is often 
impossible, because the mapping between X and Y , denominated g ( ), 
is unavailable (i.e., there is no analytical solution for g X( )). In such 
case, the probability of Y can be evaluated by repeated sampling using 
Monte Carlo methods. 

From the PDFs of inputs and outputs, global sensitivity measures 
can be calculated (i.e., the measures that rank the sensitivity of model 

Fig. 3. Illustrative example of N-ways (here: 2-ways) local sensitivity analysis, 
based on (Roussanaly et al., 2014), showing the impact of transport capacity 
and distance on the cost of CO2 conditioning and transport for an offshore pi-
peline infrastructure. This figure is based on the following considerations: 1) 
CO2 comes from an MEA-based CO2 capture unit; 2) Pipeline costs are calcu-
lated according the CO2 Europipe cost model (Mikunda et al., 2011) and an 
electricity cost of 55.5 €/MWh is assumed; 3) Pipeline diameter is optimised for 
each combination of transport capacity and distance; 4) A constant utilisation 
rate of 85 %, a project duration of 25 years with an 8% discount rate are 
considered in the cost calculation. 
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outputs to each model input), which is now also often done in CCS 
research. There are different methods to do this and the calculation of 
these measures is a separate research field (the underlying mathematics 
can be quite complex and sometimes not transparent). It is beyond the 
scope of this work to address this in detail, but there are good standard 
works on calculation of global sensitivity indicators in literature, e.g. 
(Saltelli et al., 2008, 2004). 

The characterization or quantification of input parameters with 
PDFs is arguably the most challenging part of global uncertainty ana-
lysis and therefore we elaborate a little further on this, without the 
intention to provide an exhaustive overview of PDF selection. We 
identify three possible approaches:  

1 Hawer et al. (2018) developed a guideline based on a flowchart that 
contains questions to be answered by the user with “yes” or “no”, as 
shown in Appendix B. The flowchart leads the user to a re-
commendation for a representative uncertainty characterization 
method for each individual case. The guideline aimed at an audience 
with little to no knowledge on the terminology and or modelling in 
the field of uncertainty quantification. 

2 In another publication (Mishra and Datta-Gupta, 2018), the prin-
ciple of maximum (information) entropy was suggested. The prin-
ciple of maximum entropy seeks to choose a PDF that maximizes the 
amount of information that a distribution can provide, subject to 
known constraints, as summarized in Table 3. This means, for in-
stance, that when only an upper and a lower bound of a range are 
known, the uniform distribution is the PDF that provides the most 
information.  

3 A third technique for obtaining a PDF is to use a ‘subjective’ 

probability distribution, that is a PDF that is based on knowledge of 
the process/parameter rather than data. Generally, this is accom-
plished by the application of formal expert elicitation following a 
systematic procedure. Examples of formal protocols for expert eli-
citation can be found in Morgan et al. (1990), developed for the field 
of quantitative risk and policy analysis and the IPCC tool linking 
probability with linguistic descriptions of uncertainty (Mishra and 
Datta-Gupta, 2018). 

When: Because of its stochastic nature, probabilistic uncertainty 
analysis is very capable to answer prognostic, or “what will” type of 
questions, as well as provide the audience with an answer on how likely 
such an outcome could be (see also Fig. 4). It is therefore helpful to 
policy and decision makers for strategic decisions and can come to good 
use in techno-economic analysis of CCS. There are however two large 
drawbacks that limit the use of probabilistic methods as uncertainty 
analysis tools. The first relates to the need to describe the variability of 
the input parameters in probabilistic terms. It requires as a minimum a 
description of minimum and maximum, but preferably a full PDF. The 
problem, however, is that the exact values of parameters are often not 
known (recall the difference between uncertainty and variability, 
where in the latter case we often do have a good grasp of the variation 
of values). Randomly assigning probability distributions to inputs can 
result in misleading outputs. As a result, this would therefore not only 
not reduce uncertainty, but possibly generate a false sense of certainty 
and thereby lose its value for answering prognostic questions (van der 
Spek et al., 2016; Borgonovo and Plischke, 2016). It could however still 
be useful for answering diagnostic questions or for calculating global 
sensitivity indicators. Given this consideration, we argue here that 
probabilistic uncertainty analysis is better suited to deal with variability, 
than with true uncertainty. 

A second large drawback of, especially, Monte Carlo simulation is 
that it needs a large amount of runs to become a) statistically sig-
nificant, and b) to estimate sensitivity indices2, see e.g. (Harenberg 
et al., 2017; Kleijnen, 2010). Such large amounts of runs could be 
feasible for simple and/or analytical models - like most economic 
models used in techno-economic analysis - but are a large obstacle for 
highly non-linear numerically solved models - like rigorous process 
models. 

3.3.2.1. Common pitfalls in probabilistic uncertainty analysis. For 
probabilistic uncertainty analysis, the following additional pitfalls 
apply:  

• Basic Monte Carlo simulation methods assume that input variables 
are independent of each other, which is often not the case in reality. 
Ignoring the correlation between dependent variables may lead to a 
false ranking of influential parameters. To address this issue, a de-
pendence structure (known as a copula) can be created prior to 
sampling individual uncertain variables (Soepyan et al., 2018). Al-
ternatively, this problem can sometimes be avoided by explicitly 
modelling the relationship between two variables (e.g., depth and 
pressure or temperature in a subsurface reservoir model).  

• The PDFs of input variables are poorly defined, or are insufficiently 
definable (van der Spek et al., 2016; Borgonovo and Plischke, 2016). 

Table 3 
Choosing a distributions function using the principle of maximum entropy. 
Adapted from (Mishra and Datta-Gupta, 2018).    

Available information Assigned PDF  

Upper bound, lower bound Uniform 
Minimum, maximum, mode Triangular 
Mean, standard deviation Normal or lognormal if the value physically 

cannot be below zero 
Range, mean, standard deviation Beta 
Mean occurrence rate Poisson 

Fig. 4. Illustrative example of Monte Carlo simulation. Output of a Monte Carlo 
uncertainty analysis from (Zhai and Rubin, 2013). The figure shows both the 
deterministic (vertical dashed line, no uncertainty) and the probabilistic (solid 
line) values of the added cost of CO2 capture for a supercritical coal power plant 
under the constraint of a 1000 lb of CO2/MWh gross emission (US) performance 
standard. For the assumptions of this study there is less than a 10 % likelihood 
of realizing the nominal (deterministic) value of added cost. The most likely 
cost (50 % probability) is $24.5/MWh (about 4 $/MWh more than the de-
terministic value). 

2 For instance, when using a brute force method, the number of model runs N
required to calculate variance based sensitivity indicators (like the conditional 
mean) =E YX( ) 1000i , then =N 10002 2 runs would be required to calculate the 
sensitivity indices. Even with smart computational methods like Saltelli et al. 
(2008), the amount of runs required is still +N k( 2) where k is the number of 
variables to be varied. Linear regression on the Monte Carlo mapping generates 
sensitivity indicators at lower cost =C N , but only calculates univariate (first 
order) sensitivity indicators (there are other post-processing methods that have 
this low cost but they have the same drawback, see e.g. (Borgonovo and 
Plischke, 2016)). 
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Monte Carlo simulation will compile seemingly reliable PDFs of 
model output regardless the quality of the input distributions. It may 
therefore create a false sense of certainty for the user of the sensi-
tivity study, that could lead to wrong decisions being taken. 

3.3.3. Recommended practices for sensitivity analysis and probabilistic 
uncertainty analysis 

As the above sections have shown, sensitivity and probabilistic 
uncertainty analysis require the rational selection of parameters to 
vary, how to treat them, and which values, ranges, or PDFs to apply, to 
perform the uncertainty analysis in a meaningful and efficient manner. 

A first good practice then, is to rationally choose the parameters to 
vary. Initial screening of parameter sensitivity can help reducing the 
number of varied parameters k and makes the sensitivity analysis more 
efficient. Alternatively, one can find influential parameters for similar 
problems in academic or grey literature. When planning to run a Monte 
Carlo simulation for instance, local SA can be used to discard para-
meters that are not influential, reducing the required number of Monte 
Carlo runs. Care should be taken though to also test the sensitivity of 
parameters when interacting with others, before discarding them alto-
gether. It is good practice to find a balance between the number of 
parameters to vary and their range. If the range is too wide and/or too 
many parameters are varied, the results may be less useful and relevant 
observations may get lost in the mass of output variance, apart from 
putting too much effort to answering the research question. Especially 
for probabilistic uncertainty analysis, when the chosen range is too 
small and/or too few parameters are varied, the results may not be 
global, thus inconclusive (Saltelli et al., 2008). 

A second good practice is to explicitly distinguish between different 
types of input data (e.g. physical properties versus operational/design 
conditions/choices, measured data versus expert opinions, economic 
data versus technical data) or how to cluster them (e.g. a measured 
value times its weight) (Saltelli et al., 2008). 

Finally, defining a good “sampling scheme” up front can save a lot 
of hassle and unnecessary repetition. Sampling means the amount and 
values (or positions in a range) of the input data points that are chosen. 
Sampling can for instance be done by picking random values from a 
range of possible values, but this may lead to clusters of points and 
gaps. The modeller can also use random values within subintervals 
(called stratified sampling) or using particular values within sub-
intervals (also stratified sampling) (Saltelli et al., 2008). Especially for 
multiparameter sensitivity analysis, several sampling schemes have 
been developed, focussing on reducing the amount of points that need 
to be evaluated, while remaining a required level of predictive power of 
the sensitivity analysis. Such sampling schemes are addressed else-
where, e.g., (Saltelli et al., 2008) and include full factorial (only two 
levels of values: -1/1 or min/max); fractional factorial (FF, only two 
levels of values: −1/1); Latin Hypercube (LH: multiple levels of values, 
stratified, needs number of simulations to be larger than the number of 
varied parameters), or multivariate stratified sampling. 

3.4. Emerging uncertainty methods 

3.4.1. Complementary analysis of qualitative uncertainties with pedigree 
analysis 

What: Pedigree analysis is a systematic and harmonised approach to 
identify and assess knowledge strength in order to minimise subjectivity 
and increase transparency. It is part of the NUSAP system (Numeral, 
Unit, Spread, Assessment, Pedigree) for uncertainty assessment and 
communication proposed by Ravetz and Funtowicz (1990). Generally 
speaking, pedigree analysis provides an evaluation of the production 
process of information (how was it measured, derived, theorised?), and 
investigates the different aspects of the underpinning of the numbers 
and scientific status of the knowledge used (Van Der Sluijs et al., 2005), 
further explained below. Pedigree analysis has key advantages. For 
instance, it identifies the different sorts of uncertainty in quantitative 

information and enables them to be displayed in a standardized and 
self-explanatory way. It also allows to assess the quality of models by 
increasing transparency on the assumptions and choices and assessing 
uncertainties in the underlying knowledge base used for building up a 
process or cost model. Pedigree analysis is flexible in its use and can be 
used on different levels of comprehensiveness: from a rough sketch to a 
sophisticated procedure involving structured informed in-depth group 
discussions on a parameter by parameter format. Quite often results are 
used to develop so called diagnostic diagrams, which are a convenient 
way to view each of the key parameters in terms of two crucial attri-
butes: relative contribution to the sensitivity of the output and their 
strength. Finally, and possibly one of the key advantages, it fosters an 
enhanced appreciation of the issue of uncertainty in information. 

How: Pedigree is expressed using a set of problem-specific criteria 
that serve to assess different aspects of knowledge strength. It is basi-
cally a systematic multi-criteria evaluation of the production process of 
knowledge, therefore looking not only at parameter data but also to 
knowledge available when building up a model. For example, com-
monly used criteria are proxy (is something measured directly, or is it 
estimated using an indirect indicator?) and theoretical understanding 
(is the data or model based on a well-established scientific theory, or 
crude speculation?). The type and number of criteria should be tailored 
to the specific situation. 

Assessment of pedigree requires qualitative expert judgment. Expert 
elicitation systematically makes explicit use of unwritten insights ‘in the 
heads of experts’ (e.g., the modeler, or a group of experts), focusing on 
limitations, strengths and weaknesses of the available knowledge base. 
To minimise subjectivity and arbitrariness in the evaluation, a pedigree 
matrix is used to systematically and transparently transform expert 
judgment into a numerical scale. A pedigree matrix (Table 4) is basi-
cally a table with the criteria as columns, and strength scores (typically 
0 (weak) to 4 (strong)) as the rows (note that also other scales can be 
used). In each cell of the table a linguistic description is provided with 
the requirements that should be met to receive a particular score. These 
descriptions therefore serve as yardsticks. Note that these linguistic 
descriptions are mainly meant to provide guidance in attributing scores 
to each of the criteria for a given parameter, and as such the descrip-
tions should be tailored to the focus of the study. How clear, explicit 
and tailormade to the problem the linguistic definitions are, is a key 
component of the proper and successful application of pedigree ma-
trices. A total score can be then produced for a given parameter or (sub) 
model (see Fig. 6). This, however, requires that the modeller (or the 
experts) weighs the different criteria of the pedigree matrix, for in-
stance by deciding that all criteria are equally important or that some 
criteria are more important than others. Furthermore, when a group of 
experts is scoring, total scores of each expert can be aggregated using 
the median of the expert respondents’ scores. Interquartile ranges can 
then be used as an indicator of inter-expert heterogeneity (degree of 
consensus/disagreement in the strength of the knowledge base for a 
given parameter/model). Table 4 provides an example of a typical 
pedigree matrix used to assess the strength of data in a cost assessment 
of CO2 capture technologies. 

Results of the pedigree analysis can be combined with those of a 
sensitivity analysis in a diagnostic diagram. The diagnostic diagram 
(Fig. 5) is based on the notion that neither spread alone (as obtained 
from a sensitivity analysis) nor strength alone (as obtained from the 
pedigree score) is a sufficient measure for assessing the quality of a 
model output. Robustness of model output to parameter strength could 
be good even if parameter strength is low because the importance of 
that parameter for the final results may be minor. Alternatively, robust 
conclusions can be derived for parameters that have large impact on 
output spread and high parameter strength. Mapping components of the 
knowledge base in a diagnostic diagram thus reveals the weakest spots 
and helps in the setting of priorities for improvement. 

When: Pedigree analysis can be used for any process or cost eva-
luation as it increases transparency in the reporting of quality of the 
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data and models used in a given assessment. Such information is im-
portant for understanding the robustness of model outcomes as well as 
to facilitate discussion in expert groups. Furthermore, the use of, e.g., 
diagnostic diagrams allows for easier representation of the quality and 
importance of uncertainties. The added value of the approach is espe-
cially significant for assessments where there is a weak knowledge base. 
For instance, technology and costs assessments of technologies that are 
currently at low TRL level, for which only partial information is 
available, and significant number of assumptions need to be made re-
garding performance and scaling. 

3.4.2. Pseudo statistical approach 
What: This approach has been developed in the realm of Life Cycle 

Assessment (including life cycle costing, see e.g., (Mendoza Beltran 
et al., 2016)) but it can be applied to other fields including TEA. The 
methodology aims to enable the use of Monte Carlo analysis to assess 
the propagation of uncertainty and/or variability introduced by both 
uncertainties in data and methodological choices into the final results. 
An example of a methodological choice relevant to this guideline is the 
allocation of the costs of capture when more than one valuable product 
is produced in a given system (e.g., polygeneration systems). The key 
feature of this method (compared to others) is that it explicitly ac-
knowledges large choice related uncertainties on top of parameter un-
certainties. 

Compared to the natural variability of data, which could be re-
presented through a probability distribution, there is not natural 
variability in a discrete choice (such as allocation). Although the 
methodology treats both data and methodological choices in a similar 
way, the use of the term “pseudo statistical” has the goal of tacitly 
acknowledging that the use of terminology (e.g. probability, statistical) 
is not entirely suitable for all cases. 

How: To be able to introduce pseudo-statistical propagation of a 
methodological choice, a variable called methodological preference (p) 
(as percentage) is introduced. If there is only one methodological 
choice, p equals 100 %, but if there are different choices (for instance 
allocating the capture costs based on energy (method 1), mass (method 
2), price of the products (method 3)) then each choice is assigned dif-
ferent p values (each between 0 and 100 %), with the condition that the 
sum of all p values equals 100 %. In this respect, the pseudo statistical Ta
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Fig. 5. Example of a diagnostic diagram for the evaluation of the robustness of 
the model and model parameters. The so-called danger zone is the quadrant 
containing parameters to which the model output is highly sensitive, but which 
have a weak pedigree, i.e., the results are dependent on a parameter that is 
characterized with a weak knowledge base. The safe zones are the two quad-
rants containing parameters that have a high pedigree. Parameters in the zone 
characterized with weak pedigree-low sensitivity should be further examined as 
the low sensitivity to spread could be caused by the assumptions in the 
knowledge driven by a weak knowledge base. 
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approach is very similar to assigning weights in multi criteria analysis. 
As the p values reflect preferences, they are inherently subjective. The 
methodology therefore allows to explicitly include values (preferences) 
of stakeholders or to include values that represent trends found in e.g., 

literature. Compared to other methods, the main advantage is on se-
lecting p values that reflect stakeholder preference or preferences. If 
literature is used instead, other methods could be used (e.g., analysing 
discrete cases). The methodological values provided by the experts 

Fig. 6. Illustrative example of the use of pedigree analysis. In 
(Fernández-Dacosta et al., 2017), pedigree matrices were used 
in the evaluation of the techno-economic and environmental 
performance of carbon capture at a hydrogen unit in a refinery 
combined with CO2 conversion into polyol synthesis. As illu-
strated, the figures above show pedigree matrices for input data 
(for the technical model and the cost assessment). The in-
formation is provided at the aggregated level of a System Area 
(each representing group of processes that are part of the value 
chain under study). Note that the criteria selected for each 
matrix has been tailored to each type of assessment, for instance 
capex and opex when assessing data used for costing, and feed 
streams, design parameters, boundary conditions and other 
physical properties for technical input data. Together with the 
matrix, the article describes the reasoning behind the choice of 
scores (which was done by the authors). 
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define the ranges of methodological preferences, such that for each 
range one methodological choice takes place. The value of a random 
number from a uniform distribution between 0 and 100 is then gener-
ated and evaluated for the ranges of preferences. In mathematical 
terms, this can be represented as follows: 

=
+

+ + +
…

+ + +…+

Methodological choice

method if x p
method if x p p p
method if x p p p p p

method n if x p p p p

1 [0, ]
2 [ , ]
3 [ , ] #

[ , 100]n

1

1 1 2

1 2 1 2 3

1 2 3 1

(2)  

x U (0,100)

After the parameters are defined, Monte Carlo analysis can then be 
used for the random sampling to propagate the uncertainty. In the re-
sults, the uncertainty introduced by different combinations of metho-
dological choices can then be included. This approach accounts in a 
pseudo-statistical manner for a representative sample of combinations 
of methodological choices. 

When: The method is particularly recommended when a large 
number of methodological choices are required (for instance in process 
modelling and/or costs assessment) thereby avoiding the need for de-
veloping one-at the time scenario modelling for choice-related un-
certainties, which depending on the number of methodological choices 
in a given analysis, can become easily very time and resource intensive. 

3.4.3. Reduced order models for global uncertainty analysis 
What: As mentioned above in section 3.3.2, probabilistic un-

certainty and sensitivity analysis comes at the expense of many thou-
sands (or more) of model realisations. This may severely hamper their 
use for computationally heavy models, such as most first principles 
process models, especially when high performance computing is un-
available. Therefore, the discipline of global uncertainty analysis has 
moved towards the use of reduced order models ĝ (ROMs, also meta- 
models or surrogate models) as a representation of heavy numerical 
models: 

= =ˆ ˆy g x g x g v( ) ( ) ( , ) (3) 

Where, v is a vector of deterministic input parameters and is a set of 
stochastic input parameters. 

Different methods of model reduction have been studied and some 
have found their way to the CCS field of research: Hanak and others 
have used Artificial Neural Network (ANN) models as surrogates for full 
physical calcium looping models, and have used these to perform in-
tegrated global uncertainty analysis of the economics of calcium 
looping systems (Hanak and Manovic, 2017; Bailera et al., 2018). (Sun 
et al., 2018) used Polynomial Chaos Expansion (PCE) to produce sur-
rogate models of physical models for CO2 storage well leakage and 
combined those with risk and cost analysis tools to retrieve stochastic 
integrated leakage risk and cost information. 

How: The reduced order model types for global uncertainty analysis 
vary, but they all rely on the same approach:  

1 Run a limited number (typically several hundreds) of realisations of 
the full physical model, with uncertainty and/or variability assigned 
to its inputs (i.e. running different realisations for different combi-
nations of model inputs from predefined parameter ranges).  

2 Fit an analytical (e.g. polynomial, ANN, linear regression) reduced 
order model based on this limited set of model runs.  

3 Perform a full Monte Carlo simulation on the ROM. Given that the 
ROM is analytical, this should take a fraction of the time of a full 
physical model.  

4 Calculate the sensitivity indicators, either directly/analytically 
when possible or based on the Monte Carlo runs. 

The methods to produce some reduced order models and to calcu-
late sensitivity indicators from their probabilistic uncertainty analysis 
can be quite mathematical and therefore can easily seem daunting to 
the general techno-economic analysis practitioner. But since the basis of 
these methods is now well established, also more accessible, ready to 
use kind of tools are coming available (see section 5), which should 
open up these methods to a wider audience. 

When: Previous studies have shown that the used reduced order 
models are very accurate in describing the input-output combinations 
of the original physical model within the specified ranges of application 
(Harenberg et al., 2017). They are therefore very useful when reliable 
representations of uncertainty and variability are necessary to answer 
what will kind of questions using Monte Carlo simulation, while the 
original model would be too heavy (computationally intensive) to allow 
this. They are especially helpful to perform global sensitivity analysis of 
heavy models, and to aid in factor priorisation and factor fixing. Like 
with any probabilistic method however, they are best suited for the 
variability of input parameters, and less for real uncertainty, given that 
there may not be a reasonable basis for probability density functions of 
truly uncertain parameters. 

Table 5 and 6 and Fig. 7 exemplify the use of reduced order models 
for global sensitivity analysis and the calculation of Variance based 
(Sobol) sensitivity indicators. The example is based on a series of papers 
(Morgan et al., 2015, 2017; Chinen et al., 2018) in which surrogate 
models of an MEA capture plant were built based on a full process 
model and compared with process data from the National Carbon 
Capture Center (NCCC) in Alabama, USA (Morgan et al., 2018). Table 5 
shows the names of the varied parameters along with sources that 
contain more details of the submodel development and uncertainty 
quantification. 

A total of 23 steady-state data sets were generated during the test 
campaign at NCCC; the propagation of uncertainty was demonstrated 
for three cases in the previous work (Morgan et al., 2018) and for two 
additional cases in this paper. Table 6 shows the key absorber operating 
variables for the two cases; the case labels are consistent with the 
previous work. 

The main advantage of developing surrogate models, is the lower 
computational effort, and therefore the ability to calculate variance 
based sensitivity indicators. In this example, this was done in the 

Table 5 
List of parameters for MEA model considered in uncertainty analysis.    

Parameter Number Parameter Name  

Thermodynamic Model (Aspen Plus names in brackets) (Morgan et al., 2017) 
1 Gibbs energy of formation at infinite dilution (DGAQFM) 

for MEA+ 
2 Gibbs energy of form. at infinite dilution (DGAQFM) for 

MEACOO- 
3 Enthalpy of formation at infinite dilution (DHAQFM) for  

MEA+ 
4 Enthalpy of formation at infinite dilution (DHAQFM) for 

MEACOO- 
5 Henry parameter A (HENRY/1) for MEA-H2O 
6 Henry parameter B (HENRY/2) for MEA-H2O 
7 NRTL binary interaction parameter A (NRTL/1) for MEA- 

H2O 
8 NRTL binary interaction parameter A (NRTL/1) for H2O- 

MEA 
9 NRTL binary interaction parameter B (NRTL/2) for H2O- 

MEA  

Holdup Model (Chinen et al., 2018) 
10 HL1 (liquid holdup) 
11 HL2 (liquid holdup)  

Mass Transfer/Interfacial Area Model (Chinen et al., 2018) 
12 A1 (interfacial area) 
13 CL (liquid mass transfer coefficient) 
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software platform PSUADE ((Tong, 2020), more information in section  
5), which allows to calculate Sobol indices (Sobol, 2001), which re-
present a decomposition of variance technique for determining the re-
lative influence of each parameter on the model output. The develop-
ment of the surrogated model required 1000 runs in Aspen Plus, taking 
2−3 hours on a normal desktop machine. Based on these full model 
realisations, the reduced order model was fitted with Multivariate 
Adaptive Regression Splines (MARS) (Friedman, 2013). This reduced 
order model was then run to calculate the normalised Sobol indices in  
Fig. 7 for the contributions of the parameters listed in Table 5. 

Although the results demonstrate some spread in the values of Sobol 
indices that results from replicating the calculation, the relative im-
portance is shown to be predicted consistently; for both cases para-
meters 5–6 and 8–9 are shown to have the highest effect on the CO2 

capture prediction. For Case K2, the packing-related parameters (No. 
10-13) are shown to have very minimal effect on the prediction of CO2 

capture. For Case K7, this is not so due to the much higher loading of 
CO2 in the inlet solvent, which results in inefficient absorber operation. 
Although some of the thermodynamic model parameters still have the 
highest Sobol indices, some of the packing dependent parameters have 
higher values in comparison to Case K2. As a result, the calculated value 
of CO2 capture percentage is not insensitive to the parameterisation of 
the packing models (mass transfer, interfacial area, hydraulics). 

3.5. Strengths, weaknesses and applicability of uncertainty methods to TEA 

The previous sections discussed a selection of uncertainty analysis 
methods available to the CCS techno-economic practitioner aiming to 
provide basic information on their use. Here, we synthesise this dis-
cussion into guidelines on choosing from these methods. 

The choice for an uncertainty method depends first and foremost on 
the purpose of the uncertainty analysis. Recall that we divided these 
into diagnostic, prognostic, or factor prioritisation/factor fixing and 
model testing. Additionally, the choice will depend on such criteria 
including: 

• The computational cost of running the model and uncertainty ana-
lysis.  

• The number and type of input factors that need varying.  
• The context of the analysis including the audience. 

Note that selection criteria will differ for each user, and also depend 
on the purpose of the uncertainty analysis, as well as on their experi-
ence. Table 7 summarises the uncertainty analysis methods in terms of 
possible selection criteria and suggests TEA areas to which a method 
may be more or less applicable, while Fig. 8 provides a general work-
flow for selecting uncertainty analysis methods. 

For diagnostic, or “what if” type of questions, local sensitivity 
analyses often suffice. They present a simple and clear picture of how 
an output might change as a result of varying one, or multiple para-
meters, e.g. how the performance and cost may vary as a result of 
changes in ambient conditions. We recommend the use of one-way or 
N-way sensitivity analysis, because they provide more information (on 
non-linear responses) than a standard OAT analysis. 

For prognostic, or “what will” type of questions, we strongly re-
commend global uncertainty methods, provided that the input para-
meter probability can be quantified satisfactorily. If this is not the case, 
it is recommended to avoid prognostic analysis altogether, because 
there is a danger of creating a false sense of certainty (i.e., the receiver 
of the model output will see a carefully compiled probability density 
function, adding to the perception of certainty). However, if the prob-
abilistic output is based on a poor description of input uncertainties, the 
result is still very weak and may be misleading. The requirement of 
quantifiable input PDF’s implies that what will type of questions should 
preferably only be answered for CCS technologies and systems that 
have reached a certain level of advancement, arguably beyond the large 
pilot plant stage. 

For both diagnostic and prognostic questions, we recommend 
complementing the quantitative uncertainty analysis with a qualitative 
one, like pedigree analysis. This is especially the case when the model 
and its results are used for policy and/or decision making, because it 
provides decision makers with information on how robust the model 
results are, which is indispensable for making informed decisions. 

In case of factor priorisation or factor fixing, sensitivity analysis is re-
quired. In the case of very simple (mostly linear) models without many 
parameter interactions, a local sensitivity method could suffice, where it is 
arguably advisable to go beyond OAT. However, factor prioritisation and 
fixing are often most needed in complex models, in which case a global 
(probabilistic) sensitivity analysis is essential, to also account for second or 
higher order effects of an input parameter on model output. 

If the purpose of the uncertainty analysis is model testing, we re-
commend using single (OAT) or multiple (NAT) parameter local un-
certainty analysis. Preferably, the model is subjected to (combinations 
of) an extreme value of input parameter(s), that should trigger an ex-
treme output (think e.g., of an extremely high cost of energy, which 
should lead to a very high cost of CO2 avoided). 

Finally, for a non-specialist audience and sometimes even for a 
specialized audience, it is arguably a poor idea to show results of un-
certainty analysis in very advanced (complex) graphs. To best convey 
the results, simple plots like tornado or spider plots may be more useful 
than more complex and less commonly used visualizations, e.g., scatter 
clouds. 

Table 6 
Key operating variables for absorber simulation for two cases.     

Variable Case K2 Case K7  

Lean Solvent Mass Flowrate (kg/hr) 11,794 11,791 
Flue Gas Flowrate (kg/hr) 2243 2233 
Lean Solvent Loading (mol CO2/mol MEA) 0.247 0.399 
Lean Solvent MEA Weight Fraction (g MEA/g [MEA+H2O]) 0.312 0.288 
CO2 Mole Percent in Flue Gas 11.40 9.18 
Percent Capture of CO2 99.49 54.76 

Fig. 7. Normalised Sobol indices for contributions of individual parameters for two model simulation cases. Points represent mean values and error bars ± 1 standard 
deviation (n = 100 replications performed). Parameter numbers are consistent with those given in Table 1. 
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4. Advanced uses of uncertainty analysis in CCS TEA 

The previous sections discussed guidelines to select and apply 
methods for sound uncertainty analysis. These methods not only aid the 
critical analysis of the techno-economic potential of a CCS technology 
but also points towards specific areas that are candidates for further 
investigation. There are also, what can be called, advanced uses of 
uncertainty analysis, for instance in multi-scale modelling for material 
and system design, design of experimental campaigns in pilot plants 
that are very expensive, design of CCS supply chains, CCS risk and 
safety analysis and use of existing infrastructure in CCS value chain. 
Two such examples will be discussed here. 

4.1. Using uncertainty analysis for design of experiments 

Bayesian inference is the theoretical foundation upon which in-
telligent experimental design can be leveraged to inform the models 
used to characterize a process (Chaloner and Verdinelli, 1995). When 
model precision is considered unacceptably low for a process that needs 
to be further understood, measures should be undertaken to improve 
understanding of the process (Kimaev and Ricardez-Sandoval, 2018). 
The technique of Bayesian inference, coupled with collection of ex-
perimental data, provides a means for reduction of model uncertainty, 
and thus refinement in understanding for a process systems application 
of interest. Sequential Design of Experiments (SDoE) is a framework 
that incorporates uncertainty-based criteria for selection of operating 
conditions for data collection and the use of the data for refining a 
stochastic process model in a cyclical manner. The SDoE procedure was 
previously summarized in Soepyan et al. (2018), and demonstrated at 
pilot scale for a solvent based CO2 capture system in Morgan et al. 
(2020).The SDoE process is represented schematically in Fig. 9. 

The SDoE methodology requires an initial process model, or a re-
duced-order surrogate model of the process, in which some of the 
parameters are characterized by probability density functions (PDFs), 
representing the parametric uncertainty. For the example of a solvent- 
based carbon capture system, uncertain parameters may include those 
related to the physical properties the system, reaction kinetics, and 
mass transfer and hydraulic models for the packing used in absorption 

and stripping columns (Morgan et al., 2015, 2017; Chinen et al., 2018). 
Accurate characterization of mass transfer, interfacial area, and hy-
draulics, with quantified uncertainty, is necessary for representing the 
rate-based column models with a specific packing type. For chemical 
solvent systems, including the traditional amine-based systems, char-
acterization of reaction kinetics is also essential. Physical properties 
such as viscosity, density, and surface tension are independent of 
packing type, although their uncertainties propagate through the mass 
transfer and interfacial area models, which are dependent upon the 
property models. However, previous work on physical properties un-
certainty quantification for the MEA system for the aqueous mono-
ethanolamine (MEA) system (Morgan et al., 2015, 2017) has demon-
strated that the most influential source of property model uncertainty is 
the thermodynamic framework. Accuracy in the thermodynamic fra-
mework is necessary for characterizing the vapor-liquid equilibrium in 
column packing, heat of absorption, heat capacity, and reaction equi-
librium constants for chemical systems. 

The prior distributions on these uncertain parameters represent in-
itial beliefs about the parameters before collection of data. At various 
process conditions covering the full operating space of interest, the 
process model is evaluated stochastically by sampling from the prior 
distribution of the parameters and calculating the model output for 
each point in the sample. At each process condition, the model output 
calculated from all samples may be used to estimate statistics (e.g. 
mean, variance, prediction intervals) for the model output. For the 
solvent-based CO2 capture system example, the operating space of in-
terest represents feasible combinations of input variables including but 
not limited to solvent flowrate, flue gas flowrate, CO2 loading in sol-
vent, and CO2 concentration in the flue gas. Some output variables of 
interest may include CO2 capture efficiency in the absorber and reboiler 
duty requirement in the stripper (Morgan et al., 2018). 

Along with the model prediction of uncertainty as a function of the 
process operating conditions, some optimality criteria (Myers et al., 
2016), which are chosen based on specific experimental goals, are used 
to select a subset of the candidate set to be included in a test plan for 
data collection. For example, If a goal of a test campaign is to refine a 
model by reducing the parametric uncertainty, it may be desirable to 
collect data in operation conditions where the initial predicted 

Fig. 8. Scheme for initial uncertainty analysis selection guidance.  
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uncertainty is relatively high. Experimental data are collected ac-
cording to the test plan, and Bayesian inference is used to estimate 
posterior distributions of the parameters, which represent refined dis-
tributions of the parameters conditioned on the data observations. The 
model prediction of uncertainty is updated (generally reduced) as a 
result of refinement in the parameter estimates, and this information is 
used to determine a new test plan for further data collection. This re-
sults in the sequential nature of the SDoE process, in which the model is 
refined over multiple iterations. The decisions regarding the amount of 
data to collect in each iteration and the criteria for terminating the 
SDoE loop are left to the experimenter. In practice, however, these 
decisions may be dictated by limitations in time and money available 
for pilot-scale test campaigns. 

A recent example (Morgan et al., 2019) of SDoE execution for a 
large pilot-scale test campaign at Norway’s Technology Centre Mon-
gstad (TCM) is summarized in the following. In the example here, a 
Bayesian DoE was applied to an MEA baseline test campaign at Tech-
nology Centre Mongstad (TCM). Solvent flowrate, gas flowrate, and 
lean loading were variables in the test plan, serving as inputs to pre- 
existing fundamental models which are targeted for refinement using 
the experimental results. The objective of this experimental campaign 
was to minimize the maximum uncertainty in the operational space 
under consideration. 

Fig. 10 below illustrates the results of one DoE iteration for para-
metric refinement, which results in the following computationally 
projected improvement in the 95 % confidence interval width of the 
capture percentage projection. Parameters targeted for refinement in 
this design of experiments related to, among other things, mass transfer 
characterization which directly affects equipment size and thus cost. 

Therefore, improving our understanding of these parameters also im-
proves cost projections. 

4.2. Design of CCS supply chains under uncertainty 

Even though uncertainties can be reduced through technology 
testing, uncertainties remain an inherent and important element of 
novel systems with limited large-scale industrial experience and must 
be taken into account to enable the design of cost-efficient energy 
systems (Rubin, 2012). Advanced uncertainty quantification ap-
proaches, often referred to as ‘design under uncertainty’ in the en-
gineering field (Maußner and Freund, 2019; Wang et al., 2019), have 
been developed to account for uncertainty already during the design 
step to achieve better and more robust designs. In practise, an optimi-
sation layer is added to an uncertainty propagation approach, like 
Monte Carlo simulation, to optimise system variables according to one 
or several targeted objective(s) related to the output distribution of key 
performance indicators (KPIs) as shown in Fig. 11. The targeted ob-
jective(s) can be of different nature. One may want to minimize or 
maximize the mean value of the probability distribution of a given key 
performance indicator (KPI). Alternatively, one may aim to minimize 
the uncertainty range of a KPI distribution or to limit extreme values to 
reduce associated risks. 

While design under uncertainty is being more and more considered 
in engineering approaches (Gebreslassie et al., 2009; Khajuria and 
Pistikopoulos, 2015; Rubin, 2012; Wang et al., 2019), only few studies 
have considered such approaches for design of CCS chains or its com-
ponents. Cerrillo-Briones and Ricardez-Sandoval (2019) investigated 
the robust design of an absorber column under process uncertainties 
such as flue gas flow and temperature, as well as solvent characteristics.  
Bjerketvedt et al. (2020), investigated optimal ship-based CO2 transport 
considering uncertainties in sailing time due to weather conditions, 
seasonal variations, future fuel cost and risk of ship breakdown. Simi-
larly, Knoope et al. (2015), investigated the impact of price un-
certainties on the decision to differentiate or expand investment in a 
CO2 infrastructure network using real option analysis. Meanwhile,  
Roussanaly et al. (2020) performed an extensive study on the impact of 
technical, economic and system uncertainties on the cost and design of 
CCS from a waste-to-energy plant. 

In the work by Roussanaly et al. (2020), one of the considered cases 
investigated the impact of uncertainties on the design and cost of a CCS 
chain based on solvent CO2 capture and a transport and storage infra-
structure shared with nearby industries. An optimal design of this chain 
was developed considering two uncertainty scenarios: 1) "internal" 
uncertainties such as uncertainties in investment costs, steam and 
electricity consumptions; and 2) internal uncertainties combined with 
uncertainties in the amount of CO2 captured from the other nearby 
industries (referred as "external" uncertainties). The evaluation showed 
that a more robust design could be achieved in the second uncertainties 

Fig. 9. Schematic of Bayesian SDoE implemented for pilot plant campaign.  

Fig. 10. Example of results from Bayesian SDoE implemented for an MEA pilot 
plant campaign at Technology Centre Mongstad (TCM). The reduction in un-
certainty (i.e. width of the 95 % confidence interval) before and after the 
campaign is clearly visible. 
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scenario through design under uncertainties. A larger pipeline diameter 
is optimal in the second scenario although it results in a CO2 avoidance 
cost 5 €/tCO2 avoided higher than in the first uncertainty scenario. 
Indeed, the optimal design of the first uncertainty scenario has a 
probability of 35 % that it cannot accommodate all the CO2 captured 
from nearby industries. 

One of the main drawbacks of design under uncertainty is that it 
requires significantly more computational time than deterministic ap-
proaches, due to the combination of extensive Monte Carlo simulations 
and the optimisation of multiple variables. Furthermore, a robust 
modelling of the considered system, as well as a good understanding of 
the potential underlying uncertainties are required if meaningful results 
are to be achieved. Despite these challenges, design under uncertainty 
has shown to provide significant advantages compared to deterministic 
approaches: enabling cheaper designs or designs that can foster a higher 
value creation, enabling more robust designs, or limiting risks asso-
ciated with expected uncertainties. It is therefore important to note that 
while design under uncertainty modelling approaches can be self-de-
veloped, several academic and commercial tools such as UQ lab and 
Oracle Crystal ball also offer this functionality (see also section 5). 

5. Available software for uncertainty and sensitivity analysis 

With recent interest in uncertainty analysis from many researchers, 
engineers and academic institutions, various software packages have 
been developed to perform uncertainty analysis in a structured manner. 
The aim of these tools is to provide more accessible, easy and ready to 
use software and to facilitate the use of uncertainty analysis to a wider 
audience. However, selecting a suitable analysis tool for a specific ap-
plication is not always straightforward: it requires to understand the 
options’ relative merits, features and performance level. We here try to 
provide a brief review of the current uncertainty analysis tools can be 
employed in (CCS) TEAs. 

Commercially available tools for uncertainty propagation and sen-
sitivity analysis include Crystal Ball, Pallisade’s @RISK (Sugiyama, 
2008) and RISK AMP (Structured Data LLC, 2012). These three tools are 
Excel add-in’s, which makes them easy to use also to practitioners less 
versed in programming languages. According to a review by (Sugiyama, 
2008), Crystal Ball is the easiest to use due to an excellent user guide 
and reference manuals, and the provision of a number of illustrative 

models Charnes (2007). All three packages include local and global 
sensitivity analysis methodologies using post processing of the Monte 
Carlo simulations. A limitation of using excel based software for CCS 
TEA’s, however, could be the integration with external software such as 
MATLAB, Python, or Aspen, which are often used for the process 
modelling of CCS technologies (this may especially be a limitation for 
starting TEA practitioners). It should be noted however, that Aspen 
includes the capability to perform local SA for process modelling and 
techno economics, in addition it can be controlled from Excel using the 
Aspen Simulation Workbook add-in, which then allows the possibility 
to use these excel based UQ software packages. 

In addition to the Excel-based packages, there are number of re-
cently established tools that have advanced capabilities in performing 
probabilistic uncertainty analysis. They include, e.g., surrogate-mod-
elling methods such as Polynomial Chaos Expansion (PCE) or Bayesian 
inference with the Markov Chain Monte Carlo (MCMC) method3 . They 
also include the calculation of local and global sensitivity indicators 
such as Perturbation, Morris and Sobol indices and facilitate design 
optimization under uncertainty. As a starting point, we name some here 
that are widely used: the Dakota toolkit is a C/C++ based tool de-
veloped by Sandia National Laboratories (Swiler, 2016); UQLab is a 
MATLAB based framework developed by the Chair of Risk, Safety and 
Uncertainty Quantification of ETH Zürich (Marelli and Sudret, 2014); 
and FOQUS (the Framework for Optimization and Quantification of 
Uncertainty and Sensitivity), developed by the United States Depart-
ment of Energy’s Carbon Capture Simulation (Miller et al., 2014), is a 
Python based framework that connects to several flowsheeting software 
using a graphic user interface the United States Department of Energy’s 
Carbon Capture Simulation (Tong, 2020). 

Among the discussed software above, the Dakota toolkit provides 
the most extensive range of UQ methodologies. It has more function-
alities than the other two, including for instance methods for quanti-
fying epistemic kinds of uncertainties. It is, however, easy to get lost in 
all the options it provides and may not be the best software for starting 
TEA practitioners. The fact that it is written in C++ may also make it 
difficult to integrate with TEAs. Although all these tools provide 

Fig. 11. Schematic representation of design under uncertainties. The "classical" Monte Carlo simulation process is shown in blue while the additional design element 
is illustrated in green. 

3 A sampling technique to identify the posterior probability distribution of a 
parameter once the prior probability distribution has been determined. 
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extensive manuals and documentation, their use can seem quite 
daunting, especially if one does not have an advanced programming 
knowledge. In general, the choice of tool can be based on the pro-
gramming language preference and most of the tools provide the ad-
vantage of being open source type which allows new methods to be 
added and integrated. For this reason, it is recommended to start with a 
tool that provides the best technical guidance, e.g., through the inclu-
sion of interactive procedures or step-by-step checklists. In addition, it 
is recommended to choose a tool that offers active discussion forums 
among the user community to help the user with methodological or 
model implementation issues. Examples include UQLab and FOQUS. 
Further guidance on the selection of uncertainty analysis tools can be 
sought for instance through online databases like swMATH. Table 8 
summarizes the above considerations. 

6. Conclusions and recommendations 

Proper use of uncertainty analysis in the performance of CCS TEAs 
can provide more robust understanding of technical and cost perfor-
mance to modelling practitioners as well as policy and decision makers. 
While there is a growing appreciation over the importance of un-
certainty evaluation to both development of models and reporting of 
results, it remains the case that they are not always evaluated and, 
when they are, they are often not evaluated using the most appropriate 
methods. This paper provided a critical review of a selection of existing 
and emerging uncertainty analysis methods and provided guidelines on 
their use. It discussed good practices as well as pitfalls, provided gui-
dance on how to select and use methods and pointed to sources of 
further information when outside the scope of this work. It aspires to be 
a starting point for an audience getting acquainted with CCS TEA, or 
that wishes to improve their (knowledge of) TEAs. 

The review showed that many different methods and approaches to 
uncertainty analysis exist. We emphasised that key to starting any un-
certainty analysis is to first thoroughly define its purpose, and then to 
ensure that the most suitable type of uncertainty analysis for that 
purpose is selected (also in relation to the choice of techno-economic 
model itself). In addition, a good understanding of the methods’ 
strengths and limitations is imperative. Finally, the choice also depends 
on the existing knowledge of the investigated technology and the as-
sociated TEA model and its inputs (including potential parameter 
ranges – and possibly probability distribution). 

The simplest method for model diagnostics (“what If” questions), 
and one that should as a minimum be applied (in the first instance), is 
one-at-a-time sensitivity analysis, but we recommend one-way or N- 
ways sensitivity analysis since most TEAs include non-linearities and 

parameter interactions. OAT has a really very limited use (although it is 
actually the most used), except in the case of model testing to extreme 
inputs, and also then it is arguably better to test the model to extreme 
scenarios (i.e., combinations of extreme inputs, NAT sensitivity ana-
lysis). To address prognostic (“what will”) questions, probabilistic 
methods are most appropriate, but caution must be applied in their use 
as the distribution of results is only as good as the distribution of inputs. 
If distributions cannot be quantified with good confidence, then prob-
abilistic methods are simply not suitable to answer prognostic questions 
(but may still be suitable to answer diagnostic questions). Finally, we 
highly recommend always complementing quantitative uncertainty 
analysis with qualitative methods, because they provide insights into 
the kinds of uncertainty that are unquantifiable, especially relevant to 
policy and decision making. 

In addition to the classic uses of uncertainty analysis, advanced uses 
can come to the advantage of TEA practitioners and CCS developers. We 
exemplified that iterative uncertainty analysis can aid the design of 
experimental campaigns by pinpointing regions that need further in-
vestigation, allowing the experiments to be more efficient and less 
costly. Another advanced use is in the development of CCS infra-
structure, where integrating design under uncertainty at the planning 
stage can enable more robust systems. 

The (un)availability of suitable software is something that has 
hampered (and continues to hamper) the use of more advanced un-
certainty analysis in CCS TEA. Although possible, it may be difficult for 
starting practitioners to combine Excel-based (and very user friendly) 
uncertainty analysis add-ins with process simulation software like 
Aspen (although Aspen does allow local sensitivity analysis on techno- 
economics within its suite). Further expanding the capabilities of pro-
cess simulation software to include advanced global uncertainty ap-
proaches would be very helpful (the gProms software has already in-
cluded this option). For some flowsheeting software, TEA practitioners 
can link their simulations to existing (and quite elaborate) uncertainty 
quantification tools in MATLAB or other programming languages, but 
this requires substantially more knowledge of, and skill in, program-
ming and the software layers underlying process simulation software to 
make the connection. Easier ways to connect different software would 
be highly desirable. Also, further improvement of the user friendliness 
of existing UQ toolboxes (e.g., by including graphic user interfaces) 
would aid in the further adoption of advanced uncertainty analysis 
methods. Finally, a key challenge is to fully combine detailed technical 
and cost models, to allow for integrated (instead of piecewise) TEA 
uncertainty analysis. 

CCS remains a technology that has had so far limited large-scale 
implementation and therefore inherently large uncertainties. 

Table 8 
Comparison of available software packages for uncertainty evaluation of (but not specific to) CCS techno-economic models.         

Software name Crystal Ball Palisade Risk AMP Dakota UQLab FOQUS 
Type Commercial Commercial Commercial Open access Open access Open access  

OAT, One-way and N-ways sensitivity analysis √ √ √ √ √ √ 
Global uncertainty and sensitivity analysis (Monte Carlo) √ √ √ √ √ √ 
Reduced order global uncertainty and sensitivity analysis X X X √ √ √ 
Direct linking with external software (e.g. MATLAB, Python) X X X √ √ √ 
Linking with Aspen via Excel interface √ √ √ √ √ √ 
Availability of supporting documentation/manual/training materials √ √ √ √ √ √ 
Level of programming skills required None None None Intermediate Intermediate Intermediate 
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Uncertainty analysis has, thus, an important role to play in TEA of CCS 
technologies and systems and there are many opportunities to bring our 
use of uncertainty analysis to a level higher than currently often done. 
Hopefully, this work inspires the use of the available possibilities and 
the continued development towards robust and meaningful CCS TEAs. 
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Appendix A. mathematical representations of uncertainty analysis 

In OAT sensitivity analysis, the model output vector y is only evaluated against a minimum and maximum value of a input parameter xi. It 
assumes a base case vector of input parameters x0 and a sensitivity perturbation (min/max, the plus/minus 10 %) of the input parameters +x . The 
difference between the base case and the sensitivity case is then =+ +x x x0 Δ+. The output of the sensitivity analysis is the delta between +yi and 

+yi
0: 

= ++ +y g x x x g x( , ) ( )i i i i
0 0 (A1) 

Where x i
0 is the vector of all inputs other than i (i.e., the inputs that are kept constant). A one-way sensitivity function h x( )i i can be defined as 

=h x g x x( ) ( ; )i i i i
0 (A2)  

A typical representation of one-way sensitivity analysis is by so-called spider-plots, where the sensitivity of the output values is plotted against 
changes in the vector of input values. To plot the changes to all input parameters in one graph, they need to be normalised (calculated as a 
percentage deviation) according to the function 

= =h x h x g x g x x g x( ) ( ) ( ) ( ; ) ( )i i i i
o

i i
o* 0 (A3)  
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Appendix B. Guideline for the characterization of probability density functions by Hawer et al 

Fig. B1  
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