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a b s t r a c t 

The approach of choice to analyze markets with oligopolistic competition has traditionally been com- 

plementarity modeling. In this paper we show that the majority of partial equilibrium models under 

imperfect competition in the (energy-)economic literature can in fact be cast as optimization models, 

not requiring the derivation and implementation of Karush–Kuhn–Tucker conditions. This is achieved by 

adding appropriate terms accounting for market power exertion to the well-known social welfare maxi- 

mization objective. The method is applicable to both spatial Cournot oligopoly models and hybrid compe- 

tition forms often implemented using conjectural variation approaches. We show how optimization and 

complementarity problems are equivalent, and provide a rationale for the terms accounting for market 

power exertion. Resulting models are solved orders of magnitude faster using off-the-shelf optimization 

software, compared to solving complementarity problems. Large problem instances take minutes rather 

than hours, and one instance solves 640 times faster. The drastically reduced solution times greatly en- 

hance modeling capabilities as they allow increased geographical scope and represent economic, technical 

and other characteristics in much more detail in equilibrium problems with imperfect competition. We 

present practical implications for the partial and multi-level equilibrium modeling community. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction. 

Equilibria in perfectly-competitive markets and monopoly mar-

kets – under mild convexity conditions – can be found using

maximization of a single objective: social welfare or supplier

profit, respectively. However, many resource and energy markets

are characterized by an imperfectly competitive or oligopolistic

market structure, wherein each agent maximizes its own objec-

tive function while market clearing conditions govern the inter-

action between agents. For such problems, researchers do not

rely on optimization but commonly formulate partial equilibrium

models cast as complementarity problems, e.g., Devine, Gabriel,

and Moryadee (2016) , Egging and Gabriel (2006) , Egging, Gabriel,

Holz, and Zhuang (2008) , Egging, Holz, Von Hirschhausen, and
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abriel (2009) , Egging and Huppmann (2012) , Gabriel, Zhuang,

nd Kiet (2005b) , Gabriel, Kiet, and Zhuang (2005a) , Gabriel

nd Smeers (2006) , Gabriel, Zhuang, and Egging (2009) , Hobbs

2001) , Hobbs, Rijkers, and Boots (2005) , Holz, Richter, and

gging (2016) , Huppmann and Holz (2009) , Huppmann and Holz

2012) , Huppmann and Egging (2014) , Lise, Hobbs, and Van Oost-

oorn (2008) , Lise and Kruseman (2008) , Metzler, Hobbs, and

ang (2003) , Moryadee, Gabriel, and Avetisyan (2014a) , Moryadee,

abriel, and Rehulka (2014b) , Zhuang and Gabriel (2008) , Zwart

nd Mulder (2006) , Zwart (2008) . 

To solve the implemented complementarity problems, special-

zed solvers are used, such as PATH ( Dirkse and Ferris (1993) ;

erris and Munson (20 0 0) ). In this paper, we show that the par-

ial equilibrium models in all the aforementioned references can,

n fact, be cast and solved as optimization problems. 

As early as 1952, Samuelson (1952) formulated a linear pro-

ram to find equilibria in spatial markets. Spence (1976b) pre-

ented a maximization formulation for a rather general non-spatial

onopolistic competition problem with affine demand. Spence

1976a) discussed cases wherein monopolistic competition implic-

tly maximizes some function and indicates that it is not the so-

ial welfare that is implicitly maximized. Murphy, Sherali, and

oyster (1982) formulated a family of convex programs to deter-
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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ine Nash equilibria for oligopolies. They used a line-search ap-

roach to find solutions for these. Hashimoto (1985) showed how

 static spatial oligopoly with fixed transportation cost, and with-

ut capacity restrictions, can be formulated as a maximization

roblem. Bergstrom and Varian (1985) stated conditions so that

 Cournot equilibrium implicitly maximizes an objective function.

lade (1994) showed the existence of a fictitious objective function

or quasi Cournot equilibria. Monderer and Shapley (1996) proved

hat there is at most one fictitious objective function (refer to Slade

1994) ) and coin a new term: the potential function, for quasi-

ournot settings with linear demand and arbitrary differentiable

ost functions. Based on Hashimoto (1985) , Hobbs (2001) intro-

uced a term that, when added to a social welfare maximiza-

ion objective, accurately accounts for the competitive behavior of

ash–Cournot suppliers in a power market. He applied a quadratic

roblem to solve a spatial Nash equilibrium model for a power

arket wherein the network is governed by Kirchhoffs laws and

ine flow limits. 

The Symmetry Principle (e.g., Facchinei & Pang, 2003; Gabriel,

osendahl, Egging, Avetisyan, & Siddiqui, 2012 ) provides conditions

uch that a complementarity system 0 ≤ F ( q ) ⊥ q ≥ 0 has a corre-

ponding optimization problem min q ∈ M 

z ( q ), M ∈ R 

n , M convex. For

 continuously differentiable: 

 y : F (q ) = ∇y (q ) ⇔ Jacobian JF (q ) is symmetric 

⇔ F is integrable . 

Cournot oligopoly problems with affine inverse demand and

piece-wise) convex costs fulfil the conditions. The list of refer-

nces on the previous page meet these conditions. 1 

At present, the research community has not realized the (full)

otential of this. With this paper we aim to remind researchers

f these results. We show that the term introduced by Hashimoto

1985) has much wider applicability, e.g., in multi-period set-

ings, conjectural variation approaches, stochastic models, multi-

le energy carriers and certain types of regulation, including emis-

ion ceilings and tradeable certificates (cf., Ansari, Holz, and Basri

osun (2019) for an example of the latter two). Therefore, under

ild convexity conditions which are fulfilled in the references in

he long list on the previous page and many others, equilibria of

mperfect market models can be found using convex optimization. 2 

The generalization of the applicability of the results by Spence

1976b) , Hashimoto (1985) , and Hobbs (2001) is the first of four

ain contributions of this paper. Second, we provide an economic-

heoretical rationale for the term and explain how it can be de-

ived from basic economic principles. Third, as a consequence of

eing able to use convex optimization, the solution times for a

ide range of partial equilibrium problems will be drastically re-

uced. The convex formulation allows use of a broad range of

ff-the-shelf optimization software rather than specialized algo-

ithms to solve complementarity problems. By drastically reduc-

ng solution times, larger and more detailed data instances of
1 Notably, Boots, Rijkers, and Hobbs (2004) solve a successive oligopoly version 

f model COMPETES using optimization. Other references have implemented MCP 

odels for social welfare maximizing problems that could have been solved as op- 

imization problems, e.g., Abrell and Weigt (2012) , Haftendorn and Holz (2010) , 

aftendorn, Holz, and Von Hirschhausen (2012) , Neumann, Viehrig, and Weigt 

2009) . In contrast, Holz, Von Hirschhausen, and Kemfert (2008) employ iso-elastic 

emand curves. In that case, the approach in this paper can only works for sym- 

etric suppliers, which is hardly ever the case for realistic data instances. Metzler 

t al. (2003) includes a Stackelberg, hence bi-level, model, which reduces to a sin- 

le level model when substituting the optimal followers’ responses into the leaders’ 

bjectives. This allows for applying a variant of the MPA-term discussed in this pa- 

er. 
2 The Symmetry Principle is crucial. For instance, symmetry will not be fulfilled 

hen inverse demand functions are not affine. In some such cases a trick can be 

sed, e.g., Murphy et al. (1982) present an iterative linearization and optimization 

cheme to solve a constant elasticity of demand Cournot problem. 
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market) equilibrium models can be solved using this method.

ourth, an additional benefit is that imperfect markets can be ana-

yzed without the – often tedious – derivation and implementation

f Karush–Kuhn–Tucker (KKT) conditions. 

To illustrate the benefits, we present solution times for sev-

ral instances of a stochastic stylized resource market model

 Baltensperger & Egging, 2017 ) and a large-scale deterministic gas

arket model with convex – but not quadratic – supply cost (cf.,

gging, 2013; Egging & Holz, 2016; Egging, Holz, & Gabriel, 2010;

olz, Richter, & Egging, 2015; Holz et al., 2016 ). The results demon-

trate superior scalability of the convex optimization formulation

ompared to the equivalent MCP formulations. 

The remainder of this paper is organized as follows. In

ection 2 we introduce a general resource markets model and

resent the equivalent convex formulation. Section 3 provides

n economic rationale for the market power adjustment term .

ection 4 discusses the application for conjectural variation ap-

roaches. Section 5 shows the applicability for modeling under un-

ertainty. Section 6 presents solution times for different formu-

ations for a stylized multi-stage stochastic and a large-scale de-

erministic gas market model. Section 7 concludes and discusses

ome broader implications of the drastic improvements in numer-

cal tractability. 

. Mathematical representation of stylized commodity markets 

This section provides stepping stones that facilitate showing

hat the convex optimization problem we construct, based on

dding extra terms to the social welfare maximization objective,

oes provide the same solution as the partial equilibrium problem

e claim it solves. The intuition behind this is that if two differ-

nt problems for which KKT conditions are necessary and sufficient

cf., Bazaraa, Sherali, & Shetty, 2004 ) have the same KKT condi-

ions, they must have the same solution set. It does not matter if

ne of the problems is a pure optimization problem and the other

n equilibrium problem. Hence, we design an optimization prob-

em that has the same KKT conditions as the imperfect equilibrium

roblem we aim to solve. 

After introducing notation, the first step is to derive the KKT

onditions for a social welfare (SW) maximizing problem. (Social

elfare is the net market surplus, the sum of surpluses of all ac-

ors in the market including the end-users.) Second, we derive the

KT conditions for a perfectly competitive (PC) market with price-

aking agents, and show that these are exactly the same as for the

W maximizing problem. Third, we derive the KKT conditions for

n oligopoly market with traders competing à la Cournot (CO). We

bserve that the only KKT condition that is different from the ones

n the PC and SW problems, is the KKT condition for sold quan-

ities to final consumers. All other KKT conditions are the same.

ourth, we introduce a term that when added to the SW -objective

eads to KKT conditions accurately reflecting Cournot behavior. In

he sections after this, we provide a theoretical rationale for the

arket power adjustment -term, and present variants for conjectural

ariation approaches and stochastic equilibrium modeling. 

.1. Notation 

Table 1 presents sets and indices, Table 2 parameters, and

able 3 variables and (dual) prices. Example units of measurement:

uantities or volumes in kilogram or cubic meter in a period. Costs

nd prices in $ per kilogram or € per cubic meter. 

.2. Social welfare maximization 

We set up an SW maximization problem for a general resource

r commodity market, wherein traders make use of different types
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Table 1 

Sets and indices. 

Index set Description 

f ∈ F Traders; trading firms 

n ∈ N Spatial nodes 

n ∈ N 

+ 
z Node receiving commodity from infrastructure, 

e.g., node at end of a pipeline 

n ∈ N 

−
z Node delivering commodity to infrastructure, 

e.g., storage addition 

t ∈ T Time periods (e.g., years) 

d ∈ D Sub periods (e.g., seasons) 

z ∈ Z Infrastructure service (e.g. production, transport, storage 

withdrawal) 

z ∈ Z + n Infrastructure services delivering commodity to node, 

e.g. production, or inward pipeline 

z ∈ Z −n Infrastructure services receiving commodity from node, 

e.g. outward pipeline, or storage injection 

We write n + z , z 
−
n , etc. as shorthand when the index scope is clear in the context. 

Table 2 

Parameters. 

Parameter Description 

a ntd Intercept of the inverse demand curve – strictly positive 

b ntd Slope of the inverse demand curve – strictly positive 

c ztd () Cost of infrastructure usage – convex, increasing 

q ztd Capacity of infrastructure service 

θ fntd Conjectural variation parameter – value in [0,1] 

Table 3 

Variables. 

Variable Description 

q fntd ≥ 0 Sales to consumers by specific trader 

q ztd ≥ 0 Infrastructure service usage 

q fztd ≥ 0 Infrastructure service usage by specific trader 

p ntd f . i . s . (Dual) market price for commodity 

p ztd f . i . s . (Dual) market price for infrastructure service 

λztd f . i . s . Dual to infrastructure capacity limit 

φ fntd f . i . s . Dual to nodal mass balance of specific trader 

φ fztd f . i . s . Dual to infrastructure mass balance of specific trader 

Abbreviation f.i.s. stands for free in sign. The model formulations in this 

paper ensure that all f.i.s. variables will have non-negative values in the 

solutions. For two-directional flows, the formulation defines flows and 

capacities in both directions. 
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of infrastructure to sell commodity to end-users. We assume an

underlying network of nodes connected by arcs. Infrastructure ser-

vices can be used to deliver or extract commodities at specific

nodes. Generally, feasible regions are not affected by market power

assumptions. To not overly complicate the derivations, we ignore

losses, discounting, and capacity restrictions spanning multiple pe-

riods (such as aggregate storage capacity) in the problem set up.

We also assume twice differentiable, increasing convex infrastruc-

ture service cost functions and affine decreasing inverse demand

functions. 

2.2.1. Social welfare maximization problem 

The social welfare maximizing objective function (1a) includes

three sets of terms: consumer surplus plus trader revenues minus

infrastructure services costs. The nodal mass balance (1b) repre-

sents that for each trader, in each sub period, total delivered com-

modity at a node must equal total received commodity plus con-

sumption. The storage cycle constraint (1c) models that for each

trader, aggregate withdrawals in a time period cannot exceed ag-

gregate additions. The capacity constraint (1d) reflects that aggre-

gate production and transport volumes, storage additions and stor-

age withdrawals in any sub period cannot exceed their respective
apacity limits. 

max 
q f ntd , 
q f ztd 

∑ 

t,d 

⎡ 

⎣ 

∑ 

n 

⎛ 

⎝ 

1 

2 

b ntd 

( ∑ 

f 

q f ntd 

) 2 

+ 

( 

a ntd − b ntd 

∑ 

f 

q f ntd 

) ∑ 

f 

q f ntd 

) 

−
∑ 

z 

c ztd ( q ztd ) 

⎤ 

⎦ (1a)

.t. ∀ f, n, t, d : 
∑ 

z + n 

q f ztd = 

∑ 

z −n 

q f ztd + q f ntd (1b)

∀ f, z, t : 
∑ 

d 

q f z + td = 

∑ 

d 

q f z −td (1c)

∀ z, t, d : 
∑ 

f 

q f ztd ≤ q ztd (1d)

.2.2. Social welfare problem in standard form 

To simplify derivation of the KKT conditions we present the

roblem above in so-called standard form : a minimization problem

ith only ≤ inequality constraints and the equations ordered such

hat: sinks – sources = 0 . We also assign the dual variables used in

he KKT conditions below. Abbreviation f.i.s. stands for free in sign

or unrestricted in sign). 

in 

q f ntd , 
q f ztd 

∑ 

t,d 

⎡ 

⎣ 

∑ 

n 

⎛ 

⎝ 

1 

2 

b ntd 

( ∑ 

f 

q f ntd 

) 2 

− a ntd 

∑ 

f 

q f ntd 

⎞ 

⎠ 

+ 

∑ 

z 

c ztd ( q ztd ) 

⎤ 

⎦ (2a)

.t. ∀ f, n, t, d : 
∑ 

z −n 

q f ztd + q f ntd −
∑ 

z + n 

q f ztd = 0 

(
φ f ntd f .i.s. 

)
(2b)

 f, z, t : 
∑ 

d 

q z + td −
∑ 

d 

q z −td = 0 

(
φ f zt f .i.s. 

)
(2c)

 z, t, d : 
∑ 

f 

q f ztd − q ztd ≤ 0 ( λztd ≥ 0 ) (2d)

.2.3. Social welfare maximization – KKT conditions 

The following are the KKT conditions that solve the SW opti-

ization problem in the previous subsection. The first two condi-

ions are stationarity conditions for sold quantities and used in-

rastructure services respectively. The last three reflect the feasible

egion. 

 f, n, t, d : 0 ≤ q f ntd ⊥ −
( 

a ntd − b ntd 

∑ 

f 

q f ntd 

) 

+ φ f ntd ≥ 0 

(3a)

∀ f, z, t, d : 0 ≤ q f ztd ⊥ 

∂ c ztd 

(
q f ztd 

)
∂ q f ztd 

− φ f n + z td + φ f n −z td 

+ φ f z + t − φ f z −t + λztd ≥ 0 (3b)

 f, n, t, d : φ f ntd f .i.s., 
∑ 

z −n 

q f ztd + q f ntd −
∑ 

z + n 

q f ztd = 0 

(3c)
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 f, z, t : φ f zt f .i.s., 
∑ 

d 

q f z + td −
∑ 

d 

q f z −td = 0 (3d) 

 z, t, d : 0 ≤ λztd ⊥ q ztd −
∑ 

f 

q f ztd ≥ 0 (3e) 

A different way to determine an SW maximizing market out-

ome is to assume a perfectly competitive (PC) market wherein

ll agents are price-takers. We introduce price-taking infrastructure

ervice operators who provide services to traders at marginal costs,

ncluding a scarcity, or congestion, rent, if applicable. The follow-

ng shows a model with price-taking agents for the same market as

n the previous subsection. At the end of this subsection we show

hat the two models have the exact same KKT conditions. 

.3. Perfect competition 

We develop two types of profit maximization problems, one for

raders, and one for service providers. Market clearing conditions

ink the agent problems together. 

.3.1. Trader profit maximization 

For traders, the market prices for commodities p ntd as well as

ervices p ztd are exogenous. Traders maximize revenues from com-

odity sales minus purchase costs for infrastructure services (4a) .

odal mass balance (4b) is identical to Eq. (1b) in the SW problem.

he storage cycle constraint (4c) is also equal to the Eq. (1c) above.

Trader f : 

ax 
q f ntd , 
q f ztd 

∑ 

t,d 

[∑ 

n 

p ntd q f ntd −
∑ 

z 

p ztd q f ztd 

]
(4a) 

.t. ∀ n, t, d : 
∑ 

z + n 

q f ztd = 

∑ 

z −n 

q f ztd + q f ntd 

(
φ f ntd 

)
(4b) 

∀ z, t : 
∑ 

d 

q f z + td = 

∑ 

d 

q f z −td 

(
φ f ztd 

)
(4c) 

.3.2. Infrastructure service provider profit maximization 

For the price-taking infrastructure service providers the market

rices for services p ztd are exogenous. The service providers maxi-

ize profit (5a) which consists of revenues from providing services

o traders minus the infrastructure operational costs. Here, we ig-

ore capacity investment, depreciation and losses. Eq. (5b) imposes

nfrastructure capacity limits. 

Infrastructure service provider z : 

ax 
q ztd 

∑ 

z,t,d 

[ 
p ztd q ztd − c ztd ( q ztd ) 

] 
(5a) 

.t. ∀ z, t, d : q ztd ≤ q ztd ( λztd ) (5b) 

.3.3. Perfect competition – market clearing conditions 

Market clearing conditions (m.c.c.) link the problems of differ-

nt agents together. Market prices for commodities p ntd and ser-

ices p ztd are determined outside of the agent problems as the dual

ariables to the m.c.c. Total supply of infrastructure services must

qual demand by traders: Eq. (6a) . The inverse demand curve re-

ects the market price as a function of total sales in a consumption

ode: Eq. (6b) . 

∀ z, t, d : q ztd = 

∑ 

f 

q f ztd ( p ztd ) (6a) 

∀ n, t, d : p ntd = a ntd − b ntd 

∑ 

q f ntd ( p ntd ) (6b) 
f o
.3.4. Perfect competition – KKT conditions 

Eqs. (7a) –(7d) are the trader KKT conditions. Eqs. (7e) –(7f) are

he service provider KKT conditions. Eqs. (7g) –(7h) are the mar-

et clearing conditions. Together, these constitute a mixed comple-

entarity problem (MCP). 

 f, n, t, d : 0 ≤ q f ntd ⊥ −p ntd + φ f ntd ≥ 0 (7a) 

 f, z, t, d : 0 ≤ q f ztd ⊥ p ztd − φ f n + z td + φ f n −z td + φ f z + t − φ f z −t ≥ 0 

(7b) 

 f, n, t, d : φ f ntd f .i.s., 
∑ 

z −n 

q f ztd + q f ntd −
∑ 

z + n 

q f ztd = 0 (7c) 

 f, n, t : φ f zt f .i.s., 
∑ 

d 

q f z + td −
∑ 

d 

q f z −td = 0 (7d) 

 z, t, d : 0 ≤ q ztd ⊥ −p ztd + 

∂ c ztd 

(
q f ztd 

)
∂ q f ztd 

+ λztd ≥ 0 (7e) 

 z, t, d : 0 ≤ λztd ⊥ q ztd − q ztd ≥ 0 (7f) 

 z, t, d : p ztd f .i.s., q ztd −
∑ 

f 

q f ztd = 0 (7g) 

 n, t, d : p ntd f .i.s., p ntd − a ntd + b ntd 

∑ 

f 

q f ntd = 0 (7h) 

This system has eight conditions, three more than the system

resented above for SW. We show next that the two systems are

dentical. 

.3.5. Perfect competition – KKT conditions – reduced model 

Following Baltensperger, Füchslin, Krütli, and Lygeros (2016) ,

e modify the system of equations by making several substitu-

ions which reduce the number of equations but do not change

he solution set. We substitute Eq. (7h) into Eq. (7a) , Eq. (7g) into

q. (7f) and Eq. (7e) into Eq. (7b) . After these steps p ntd , p ztd , and

 ztd are no longer part of the model, although they are completely

etermined by the remaining model and can be calculated ex post .

he following five conditions remain: 

 f, n, t, d : 0 ≤ q f ntd ⊥ −
( 

a ntd − b ntd 

∑ 

f 

q f ntd 

) 

+ φ f ntd ≥ 0 

(8a) 

∀ f, z, t, d : 0 ≤ q f ztd ⊥ 

∂ c ztd 

(
q f ztd 

)
∂ q f ztd 

+ λztd − φ f n + z td 

+ φ f n −z td + φ f z + t − φ f z −t ≥ 0 (8b) 

 f, n, t, d : φ f ntd f .i.s., 
∑ 

z −n 

q f ztd + q f ntd −
∑ 

z + n 

q f ztd = 0 (8c) 

 f, n, t : φ f zt f .i.s., 
∑ 

d 

q f z + td −
∑ 

d 

q f z −td = 0 (8d) 

 z, t, d : 0 ≤ λztd ⊥ q ztd −
∑ 

f 

q f ztd ≥ 0 (8e) 

Indeed – after minor reordering of terms – the systems

qs. (3a) –(3e) and (8a) –(8e) are identical. This provides the basis

or comparison when deriving the KKT conditions for the Cournot

ligopoly in the next subsection. 
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2.4. Cournot oligopoly 

Here we assume trading firms competing à la Cournot. This

means that traders take competitors’ sales as given, and exert

monopoly power facing the residual demand curve p f ntd () = a ntd −
b ntd 

∑ 

f ′ 
q f ′ ntd = 

[
a ntd − b ntd 

∑ 

f ′ � = f 
q f ′ ntd 

]
− b ntd q f ntd . 

2.4.1. Trader profit maximization 

The objective reflects that traders maximize revenues minus

purchase costs for infrastructure services (9) . Nodal mass balance

and the storage cycle constraint are the same as for perfectly-

competitive traders. 

Trader f : 

max 
q f ntd , 
q f ztd 

∑ 

t,d 

[ ∑ 

n 

( 

a ntd − b ntd 

∑ 

f ′ 
q f ′ ntd 

) 

q f ntd −
∑ 

z 

p ztd q f ztd 

] 

(9)

s.t. 

Eqs . (4b) − (4c) 

The optimization problems for service providers as well as the

market clearing conditions for services are the same as for the PC

market. The inverse demand curve is part of the objective function

and does not need to be stated separately. Hence, market power

behavior by the traders only affects the objective function of the

traders. The rest of the model is the same as the PC problem above.

2.5. Cournot oligopoly – KKT conditions 

Compared to the PC system (7) the Cournot (CO) KKT conditions

differ only in the stationarity condition for sales Eq. (10) , reflecting

the exertion of market power. ( Eq. (7h) would be redundant in this

system.) 

∀ f, n, t, d : 0 ≤ q f ntd ⊥ −
( 

a ntd − b ntd 

( ∑ 

f ′ 
q f ′ ntd + q f ntd 

) ) 

(10)
+ φ f ntd ≥ 0 

Eqs . (7b) − (7g) 

2.6. Cournot oligopoly – KKT conditions – reduced model 

The system does not reflect the inverse demand curve sepa-

rately (cf., Eq. (7h) ) so it does not have to be substituted out. We

apply the other two substitutions implemented above for the PC

model, to arrive at the reduced CO system: 

Eqs . (10) , (8b) − (8e) 

This concludes the groundwork to introduce and verify the mar-

ket power adjustment term. This is the topic of the following sub-

section. 

2.7. A term for market power representation in convex optimization 

models 

Two different problems for which KKT conditions are neces-

sary and sufficient with the same KKT conditions have the same

solution set, independent of whether the problems from which

the KKT conditions are derived are (pure) optimization problems

or (imperfect) equilibrium problems. Hence, we design a convex

optimization problem that has the same KKT conditions as the

imperfect equilibrium problem reflecting the Cournot oligopoly in

Section 2.6 . 

Above, the only difference between the KKT conditions of the

CO system and of the PC system is in the stationarity conditions for
ales: Eq. (10) vs. Eq. (8a) . Therefore, we add a term to the SW ob-

ective such that the KKT conditions for the adjusted model are the

ame as for the CO model. Note that this adjusted objective func-

ion does not calculate an economic surplus measure; it is merely

 construct to find solutions using an optimization approach rather

han an equilibrium approach (cf., Spence (1976b) calls it the wrong

unction , Slade (1994) the fictitious objective function , and Monderer

nd Shapley (1996) the potential function ). However, the adjusted

odel will determine all quantities correctly and any economic

ents and prices (for commodity as well as services) can be cal-

ulated ex post . 

The difference between Eqs. (10) and (8a) is term b ntd q fntd . Inte-

rating this term gives: 1 
2 b ntd 

(
q f ntd 

)2 
. This should be present in the

bjective function ∀ f , n , t , d . Hence, to reflect market power exer-

ion à la Cournot the following term should added to the SW max-

mization objective function ( maximization , hence the minus sign):

1 

2 

∑ 

f,n,t,d 

b ntd 

(
q f ntd 

)2 
(11)

This term is equivalent to what is proposed by Hobbs (2001) .

elow, we show that the stationarity conditions for sales for the

djusted problem are indeed the same as Eq. (10) . To do so, we

rst create objective function (12) by adding Term (11) to SW ob-

ective function (2a) . 

max 
q f ntd , 
q f ztd 

∑ 

t,d,n 

⎛ 

⎝ 

1 

2 

b ntd 

( ∑ 

f 

q f ntd 

) 2 
⎞ 

⎠ (12)

+ 

∑ 

t,d,n 

( ( 

a ntd − b ntd 

∑ 

f 

q f ntd 

) ∑ 

f 

q f ntd 

) 

−
∑ 

t,d,z 

c ztd 

( ∑ 

f 

q f ztd 

) 

−
∑ 

f,n,t,d 

1 

2 

b ntd 

(
q f ntd 

)2 

s.t. Eqs . (2b) − (2d) 

We derive the KKT stationarity condition for q fntd to find: 

∀ f, n, t, d : 0 ≤ q f ntd ⊥ −
( 

b ntd 

∑ 

f ′ 
q f ′ ntd 

) 

−
( 

a ntd − 2 b ntd 

∑ 

f ′ 
q f ′ ntd 

) 

+ b ntd q f ntd + φ f ntd ≥ 0 

(13)

This can be rewritten to Eq. (14) , which is identical to

q. (10) . 

∀ f, n, t, d : 0 ≤ q f ntd ⊥ −
( 

a ntd − b ntd 

( ∑ 

f ′ 
q f ′ ntd + q f ntd 

) ) 

+ φ f ntd ≥ 0 (14)

All other KKT conditions are not affected by the addition of the

arket power adjustment term. This verifies that a convex opti-

ization problem with an objective consisting of the traditional

W maximization objective and added Term (11) will find the equi-

ibrium for the Cournot oligopoly market. 

Next, we provide a rationale why this somewhat pragmatic ap-

roach is in line with micro economic theory. 

. Theoretical rationale 

Here, we provide a theoretic rationale for Term (11) , which was

sed by several references (see Section 1 ) but without providing a

ationale. 
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Inverse demand curve

Residual demand curve
firm f: Residual demand curve

Marginal revenue curve
firm f: 2

Marginal supply
cost firm f

Residual consumer

surplus:

Marginal revenue

Fig. 1. Illustration of residual demand and residual consumer surplus. To the left, the original and residual demand curves, c.f., Eq. (15) . In the middle, the marginal revenue 

curve for a monopoly supplier: a ′ − 2 bq f , c.f., Eq. (14) . To the right, the resulting equilibrium and residual consumer surplus from the perspective of supplier f . We have 

omitted indices n , t , d for readability. 
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Consider the most extreme situation: when there is just one

arket power exerting trader. One can easily see that if there is

nly one trading firm, Term (11) is the negative of the modelwide

onsumer surplus. Subtracting this from the SW objective will give

 model that ignores consumer surplus and only accounts for agent

rofits, indeed a trader monopoly. 

Next, consider a Cournot oligopoly market with multiple

arket-power exerting agents. According to Cournot theory, each

upplier assumes the supplies by the competitors as fixed, and acts

s a monopolist on the residual demand curve, Eq. (15) . 

Original demand curve: 

p ntd () = a ntd − b ntd 

∑ 

f 

q f ntd 

Residual demand curve for supplier f : 

p f ntd () = a ntd − b ntd 

∑ 

f ′ 
q f ′ ntd 

= 

( 

a ntd − b ntd 

∑ 

f ′ � = f 
q f ′ ntd 

) 

− b ntd q f ntd 

= a ′ ntd − b ntd q f ntd 

(15) 

Considering the residual demand curve, we loosely introduce a

oncept residual consumer surplus, which only considers the sup-

ly by trader f : 1 
2 b ntd 

(
q f ntd 

)2 
(see Fig. 1 ). The market power adjust-

ent term (11) exactly cancels residual consumer surplus from the

erspective of the specific trader. Effectively, the supplier ignores

he consumer surplus, and acts as a monopolist on the residual

emand curve, in line with the theory. 

. Conjectural variation 

Conjectural variation approaches allow different levels of mar-

et power exertion by different suppliers in the same model or lev-

ls of market power somewhere in between perfectly competitive

nd purely Cournot (or even collusion, see, e.g., Day, Hobbs, & Pang

2002) ). The approach has been subject to critique and is perceived

y some to lack a proper theoretical foundation or rationale for

arameter value choices (e.g., Fischer & Kamerschen, 2003; Fuden-

erg & Jean, 1991; Liu, Ni, Wu, & Cai, 2007; Mulligan & Fik, 1989;

fouts & Ferguson, 1960 ). 3 
3 Note: conjectured supply function (CSF) approach equilibria – wherein firms ad- 

ust their supplies in response to price changes – is a very different method. In CSF 

he agents do not act as Cournot agents considering a residual demand curve tak- 

s  

i

s

R

This section does not take a stance regarding reasonableness or

efendability of a conjectural variation approach or specific value

hoices. It merely illustrates that, with a slight adjustment to Term

11) , imperfect equilibrium models with conjectural variation can

lso be formulated and solved by convex optimization. 

Let θ fntd with values in the range [0,1] reflect the conjectural

ariation parameter. Higher values reflect more market power. A

alue θ f ntd = 0 reflects no market power, θ f ntd = 1 pure Cournot

ehavior, and other values in between. Term (16) is the alternative

or Term (11) to adjust an SW objective to reflect market power

sing conjectural variations. 

1 

2 

∑ 

f,n,t,d 

θ f ntd b ntd 

(
q f ntd 

)2 
(16) 

One can easily verify that the stationarity condition for sales

fter this adjustment, KKT condition (17) , accurately represents

V market power exertion. E.g., substituting values θ f ntd = 0 and

f ntd = 1 clearly give the KKT conditions for PC and CO, respec-

ively. 

∀ f, n, t, d : 0 ≤ q f ntd ⊥ −
( 

a ntd − b ntd 

( ∑ 

f ′ 
q f ′ ntd + θ f ntd q f ntd 

) ) 

+ φ f ntd ≥ 0 (17) 

. Stochastic partial equilibrium problems 

Here, we consider explicitly uncertainty in the objective func-

ions of model agents, but not in feasible regions. Uncertainty in

easible regions is not dependent on the market power behavior of

gents, has the same impact on price-taking and market power ex-

rting agents, and affects the KKT conditions for both agent types

n the same way. 

Examples of uncertainty in objective functions are uncertainty

n costs, prices, or inverse demand curves. We impose a multi-

tage scenario tree as the information structure (ref, e.g., Kall &

allace (1994) ). 

We introduce notation index r for scenario tree nodes. Proba-

ility ρr ∈ [0, 1] is the likelihood that the events represented by

cenario tree node r occur. In the notation of parameters and deci-

ion variables, replace index t by r . E.g., q fnrd reflects the quantity
ng supply of competitors as given, but rather have conjectures how competitors’ 

upplies respond to price changes. E.g., Day et al. (2002) ; García-Alcalde, Ventosa, 

ivier, Ramos, and Relaño (2002) . 
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Table 4 

Knitro solver setting non-default values. 

Parameter Value Default value 

algorithm 1 0 

bar_murule 5 4 

bar_switchrule 1 2 

pivot 10 −7 a 10 −8 

a only for GGM SW with 11 stages. 
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all simulations. 

5 With default settings Knitro only solved small problem instances. 
6 The reported variable numbers are indicative for the relative model sizes. As ex- 

pected, the MCP instances are larger than the convex NLP and SW instances. How- 

ever, in contrast to what the Figures show, based on the model formulations the 

number of variables of convex NLP and SW should always be the same. We observe 

this for GGM , but not for SRM . This is a consequence of the less lean implemen- 
sold in scenario tree node r . The trader decision problem under

uncertainty is the following: 

Cournot trader f : 

max 
q f nrd , 
q f zrd 

∑ 

r 
ρr 

∑ 

d 

[∑ 

n 

(
a nrd − b nrd 

∑ 

f ′ 
q f ′ nrd 

)
q f nrd −

∑ 

z 
p zrd q f zrd 

]

s.t. (18)

Eqs . (4b) − (4c) , with indices appropriately adjusted (r for t) . 

For brevity we do not show the formulation for infrastructure

service operators under uncertainty. Market clearing conditions are

the same as for the deterministic problem, with indices appropri-

ately adjusted ( r for t ). KKT condition (19) reflects the stationarity

condition for sales under uncertainty. 

∀ f, n, r, d : 0 ≤ q f ntd ⊥ −ρr 

( 

a nrd − b nrd 

( ∑ 

f ′ 
q f ′ nrd + q f nrd 

) ) 

+ φ f ntd ≥ 0 (19)

One can easily verify that Term (20) is the alternative for Term

(11) to adjust a stochastic SW objective with market power. 

−1 

2 

∑ 

f,n,r,d 

ρr b nrd 

(
q f nrd 

)2 
(20)

The stochastic SW maximizing objective function is as fol-

lows: 

max 
q f nrd , 
q f zrd 

1 

2 

∑ 

r,d,n 

ρr 

⎛ 

⎝ b nrd 

( ∑ 

f 

q f nrd 

) 2 
⎞ 

⎠ (21)

+ 

∑ 

r,d,n 

ρr 

( ( 

a nrd − b nrd 

∑ 

f 

q f nrd 

) ∑ 

f 

q f nrd 

) 

−
∑ 

r,d,z 

ρr c zrd 

( ∑ 

f 

q f zrd 

) 

−
∑ 

f,n,r,d 

ρr 
1 

2 

b nrd 

(
q f nrd 

)2 

It is easily verified that the KKT condition of this objective for

the sales variable q fnrd is equal to Eq. (19) . 

The following section demonstrates how the ability to find

equilibria for imperfect market models using convex optimization

has dramatic impact on solution times. 

6. Computational results 

This section demonstrates the solution time reduction that can

be obtained by solving equilibrium problems with convex opti-

mization using the approach in this paper. We solve three differ-

ent implementations of two resource market models. Both mar-

ket models employ affine decreasing demand curves and convex

increasing costs, and, thus, meet the necessary conditions. Model

SRM is a stylized multi-stage stochastic resource market model

consisting of a network with nine interlinked nodes ( Baltensperger

& Egging, 2017 ). SRM has three seasons per stage, inter-seasonal

storage, infrastructure expansions, quadratic production costs, and

stochastic demand. 4 For this stochastic model, the number of sce-

narios increases exponentially with the number of stages. The GGM
4 In the current paper we do not show the validity of the approach when a model 

includes infrastructure capacity limits spanning multiple periods, which is needed 

to adequately reflect inter-seasonal storage with more than two seasons, nor in- 

rastructure expansions. ( Eq. (1c) does, however, cover the storage volume balance.) 

These features, that only affect feasible regions, will not hamper the validity of the 

convex approach. 

t

s

o

b

b

s the deterministic Global Gas Model ( Egging, 2013; 2010; Holz

t al., 2015; 2016 ), which consists of more than 90 geographical

odes and several hundred transport arcs. GGM features the non-

uadratic Golombek production cost function ( Golombek, Gjelsvik,

 Rosendahl, 1994 ) and is calibrated on real-world data. 

For both models we have three implementations: an equilib-

ium problem cast as both (1) an MCP and (2) a convex optimiza-

ion problem convex NLP ; and (3) a SW maximizing problem vari-

nt SW . These will serve to show the computation time impacts of

sing an optimization solver rather than a complementarity solver,

nd evaluate the impact of the market power adjustment term on

omputation time vs. an SW optimization. 

All model versions are implemented in GAMS v24.7.1 ( Brooke,

endrick, Meeraus, & Raman, 1998 ), and solved using a personal

omputer (3.40 gigahertz CPU, 16 gigabyte RAM). The MCP formu-

ations were solved with PATH v4.7.04 ( Dirkse & Ferris, 1993; Ferris

 Munson, 20 0 0 ) and default solver settings. For SRM , the convex

LP is a quadratic program, and to solve the instances, we use IBM

LOG CPLEX v12.6.3.0 IBM (2016) with default solver settings. For

GM , the convex NLP is not quadratic. We solve the instances using

rtelys Knitro v10.0.1 Artelys (2016) with slightly adapted solver

ettings ( Table 4 ). 5 

To illustrate scalability, we vary the number of time periods

stages) for which the models are solved. As a result, we have 30

est instances. Of these, the two largest MCP instances for SRM did

ot finish within a preset time limit of 24 hours (86,400 seconds). 

Fig. 2 shows the problem sizes and solution times for 30 in-

tances tried. 6 On the left, results for instances of SRM , and on the

ight, results for GGM . 

The figures show that the optimization models convex NLP and

W solve all stochastic and the deterministic model instances or-

ers of magnitude faster than the MCP . All optimization problems

olve within minutes even for the largest problem sizes. Fig. 2 (a)

hows the largest reduction in computation time. This is for the

tochastic instances with six stages, where the MCP takes 640

imes as long to solve as the convex NLP (five hours and 43 min-

tes vs. 32 seconds). For seven stages, the convex NLP solves in 89

econds, whereas the MCP does not solve within 24 hours, which is

lmost 1,0 0 0 times as long. The smallest reduction in solution time

s a factor of 27 for GGM with nine stages (one hour and 13 min-

tes vs. two minutes 43 seconds). Overall, the results show clearly

hat the convex NLP solves orders of magnitude faster than MCP in
ation of SRM compared to GGM . For GGM , most variables that will be zero in a 

olution are fixed to zero before the model is pre-solved, thus the reported number 

f variables depends less on the pre-solver. In contrast, none of the variables were 

fixed to zero in the SRM variants, and the pre-solver seems to miss some model 

reduction options in some cases. Computation time differences between SW and 

CP are likely to be due to parallel activities on the same machine and should not 

e given too much meaning. The message is in the order of magnitude difference 

etween CP and MCP. 
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(a) Stochastic commodity market (STO).
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Fig. 2. Number of variables and solution times for different model versions and problem sizes. Note that solution times are presented on a logarithmic scale. 

 

C  

m  

f  

d  

T  

i

7

 

l  

w  

t  

t  

e  

o  

d  

a  

i  

c  

s  

M

 

a  

w  

c  

s  

c  

t  

s  

E  

d  

t  

d

 

l  

w  

t  

m  

n

 

s  

s  

l  

a  

p  

E

 

t  

R  

M  

o  

h  

E  

m  

s

S

 

f

R

A  

A  

 

A  

B  

 

B  

 

B  
For reference, in an online Appendix we have provided the

ournot oligopoly example from Egging and Ansari (2019) imple-

ented in GAMS as an MCP and as an optimization problem. The

ull convex optimization version of the Global Gas Model and its

ocumentation is available at: https://www.ntnu.edu/web/iot/ggm .

his version employs quadratic production costs and is solved us-

ng quadratic optimization. 

. Conclusion and implications 

This paper demonstrates the equivalence of a convex prob-

em formulation and an MCP for a general resource market model

ith imperfectly competing agents under mild convexity condi-

ions. We demonstrate this by showing that the KKT conditions are

he same for both problems. Thus, many of the equilibrium mod-

ls for energy and resource markets in the literature can be cast as

ptimization problems. The convex problem is based off the stan-

ard social welfare maximization problem, modified by appropri-

te terms reflecting market power exertion. We show for several

nstances of a deterministic and of a stochastic model, that the

onvex problems solves orders of magnitudes faster using off-the-

helve optimization software compared to solving the equivalent

CP . 

Our findings imply that oligopolistic and CV -based resource

nd energy market models can be scaled up in size significantly

hile maintaining computational tractability. This allows for in-

reased geographical scope and detail, and more granularly repre-

ent economic, technical, and other problem characteristics, or in-

lude many more scenarios in stochastic problems than is currently

he case in state-of-the-art equilibrium model formulations. For in-

tance, we foresee that a new version of Multimod ( Huppmann &

gging (2014) ) can represent all main energy consuming and pro-

ucing countries, as well as more detail in the number of energy

echnologies and carriers. Stochastic versions of Multimod can be

eveloped on representative rather than toy data instances. 

Furthermore, existing large-scale continuous optimization prob-

ems can easily be extended to address market power exertion

ith minimal impact on computational tractability. This is of par-
icular relevance for electricity and energy market analysis where

arket power still plays a role in some markets, but is often ig-

ored in modeling and analysis. 

Moreover, decomposition techniques can be applied without

pecial modifications towards MCP formulations. For instance, the

tandard Benders Decomposition approach can be used to solve

arge-scale stochastic market equilibrium problems, instead of the

dvanced variational inequality-based variants developed and ap-

lied by Fuller and Chung (2008) , Gabriel and Fuller (2010) , and

gging (2013) . 

Another implication is that several multi-level problems in

he classes MPEC and EPEC (cf., Gabriel, Conejo, Fuller, Hobbs, &

uiz (2013) )) are, in fact, multi-level optimization problems (c.f.,

etzler et al. (2003) ). This will not resolve issues of non-existence

r non-uniqueness of solutions (e.g., Gabriel et al. (2013) ), but may

elp to more rapidly explore the set of solutions (cf., Huppmann &

gerer (2015) ). The extent of possible solution time reductions in

ulti-level equilibrium problems can be considered in future re-

earch. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejor.2020.01.025 . 
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