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Abstract 
Amongst the multitude of approaches available in literature to reduce spurious velocities in 

Volume of Fluid approach, the Sharp Surface Force (SSF) model is increasingly being used due to 
its relative ease to implement. The SSF approach relies on a user-defined parameter, the 
sharpening coefficient, which determines the extent of the smeared nature of interface used to 

determine the surface tension force. In this paper, we use the SSF model implemented in 
OpenFOAM® to investigate the effect of this sharpening coefficient on spurious velocities and 
accuracy of dynamic, i.e., capillary rise, and static bubble simulations. Results show that 

increasing the sharpening coefficient generally reduces the spurious velocities in both static and 
dynamic cases. Although static millimeter sized bubbles were simulated with the whole range of 
sharpening coefficients, sub-millimeter sized bubbles show nonphysical behavior for values 

larger than 0.3. The accuracy of the capillary rise simulations has been observed to change 
non-linearly with the sharpening coefficient. This work illustrates the importance of using an 
optimized value of the sharpening coefficient with respect to spurious velocities and accuracy of 

the simulation.  
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1 Introduction 

Modelling surface tension dominant multiphase flows is 
relevant in a multitude of industrial processes like 
lab-on-chip, atomization, and boiling. One of the main 
approach to capture the interface dynamics is the Volume 
of Fluid method which uses the advection of scalar volume 
fraction based on algebraic (interface compression) or 
geometric (piecewise linear interface calculation or PLIC) 
reconstruction algorithms in order to preserve the 
sharpness of interfacial region (Cifani et al., 2016). The 
VOF based solver available in OpenFOAM, interFoam, 
which generates an interface which is smeared over a few 
computational cells uses the interface compression method 
due to its relative simplicity (Deshpande et al., 2012).  

In the VOF approach used in interFoam, the volume 
fraction field is used to determine curvature and corres-
ponding surface tension force based on models like the 
widely used Continuum Surface Force (CSF) approach 
(Brackbill et al., 1992). Due to the smeared nature of the 
interface, the curvature and the pressure jump across the 
interface obtained from the simulations do not match the 
theoretical value which generates spurious velocities 

(Deshpande et al.,     2012). These spurious velocities introduce 
nonphysical flows near the interface which may cause the 
bubble to numerically drift as well as alter the heat/mass 
transfer coefficients in supersaturation and temperature 
driven phase change processes (Samkhaniani and Ansari, 
2016; Saufi et al., 2019; Vachaparambil and Einarsrud, 
2020). The works by Popinet (2018) and Deshpande et al. 
(2012) have reviewed the various approaches reported to 
mitigate these effects, namely: improved curvature 
estimation, force balance between surface tension and 
pressure gradient (for static cases), time step constraint 
when surface tension is calculated explicitly and temporally 
implicit approach to estimate surface tension.  

Amongst the approaches proposed, the Sharp Surface 
Force model, developed by Raeini et al. (2012), estimates 
surface tension based on a smoothed interface curvature 
and a sharpened interface region defined using a user 
defined sharpening coefficient (Csh). This model, which is 
relatively simple to implement compared to height 
function based approach (Pavuluri et al., 2018), has been 
shown to reduce spurious velocities in comparison to 
commonly used CSF model (Pavuluri et al., 2018; 
Vachaparambil and Einarsrud, 2019a). The SSF model, 
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using Csh [0, 0.5]Î , has been used to simulate dynamic 
cases like rising bubbles (Vachaparambil and Einarsrud, 
2019a), microfluidic T-junction (Soh et al., 2016), 
microchannels (Pavuluri et al., 2018), capillary rise (Raeini 
et al., 2012; Vachaparambil and Einarsrud, 2019a), 
interfacial mass transfer (Maes and Soulaine, 2018), and 
bubble growth (Vachaparambil and Einarsrud, 2020) 
whereas when modelling static cases, like stationary 
millimeter sized bubble, Csh is set equal to 0.98 (Vacha-
parambil and Einarsrud, 2019a). The choice of the value Csh 
used in the simulations is often heuristic and to the best 
knowledge of the authors there has not been a systematic 
attempt to quantify the effect of this user-defined 
parameter.  

In this paper, we investigate the effect of the sharpening 
coefficient used in the SSF model, as developed on 
OpenFOAM 6 by Vachaparambil and Einarsrud (2019a), 
to model two dimensional dynamic cases like capillary rise 
and static cases like millimeter and sub-millimeter bubbles. 
All the simulations discussed in this work use the 
sharpening coefficient typically used in simulating practical 
flow scenarios, i.e., sh0 0 5C .≤ ≤  (based on the values 
used in Raeini et al. (2012), Soh et al. (2016), Maes and 
Soulaine (2018), Pavuluri et al. (2018), Vachaparambil and 
Einarsrud (2019a), Vachaparambil and Einarsrud (2020)).  

2 Governing equations 

The volume fraction ( 1α ) used in VOF method is a scalar 
field that is zero in gas phase, unity in the liquid phase, and 

10 1α< <  at the interface. The interface dynamics is 
captured based on the advection of 1α  as  

 r
1

1 1 1( ) ( (1 ) ) 0α α α α
t

¶
+⋅ +⋅ - =

¶
U U  (1) 

where U is the velocity in both phases and the third term is 
the interface compression term that acts in the interfacial 
region to prevent excessive smearing using Ur which is 
defined as  

 r
f

αC=
| |
U n
S

 (2) 

where αC ,  , fS , and n represent adjustable compression 
factor (set equal to unity as recommended by Greenshields 
(2019)), volumetric flux across the cell face, cell face surface 
area, and unit normal to interface respectively (Deshpande 
et al., 2012). The fluid properties like density ( ρ ) and 
viscosity ( μ ) are calculated as  

 1 1 2 2 ,χ χ α χ α= +   where [  ]χ ρ μÎ ,  (3) 

where 2 11α α= - . The mass conservation of the incom-

pressible phases is described using continuity equation as  

 0⋅ =U  (4) 

The momentum equation is written based on a modified 
pressure ( rghp ), defined as rghp p ρ= - ⋅g x , as  

 rgh

T
ST ( )

ρ ρ p ρ
t

μ

¶
+⋅ =- - ⋅ 
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+⋅  + +
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(5) 

where FST is the surface tension modelled based on SSF 
described in Vachaparambil and Einarsrud (2019a) and 
Raeini et al. (2012). Initially, a smoothed volume fraction is 
obtained using a three consecutive smoothing steps ( i = 1, 
2, 3) as  

 ( )1 c f f c
1s s s

i i iα C α C α+  
= < > + -  (6) 

where 1
sα = 1α , C is equal to 0.5, and 1 c fα < >  repre-

sents the interpolation of 1α  from cell center to face. The 
unit normal to the smoothed interface is calculated and 
corrected for the effects of contact angle, see 
Vachaparambil and Einarsrud (2019a). Subsequently an 
initial estimate of curvature is calculated as  

 4
1

4

s

s

ακ
α δ


=-⋅
| |+

 (7) 

where ,δ  defined as ( )
1 3

810 ,iN
V

N

/
- å/  is used to prevent  

denominator from becoming zero. The curvature is 
smoothed using a two step procedure (i=1, 2) as  

 c f f c
1 1
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where 1 1
sκ κ= , 0 001w A= + . , and min(1 maxA = ,  

1 1(  0))(1 min(1  max( 0))).α α, - , , The final curvature is 
calculated as  
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c f

swκκ
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The surface tension is estimated based on ST finalσκ= ⋅F  
sh ,α  where shα  is  

 sh sh sh
sh 1

sh

1 min(max(  )  1 )
1 2 2 2

C C Cα α
C

é ù
= , , - -ê ú

- ê úë û
 (10) 

where Csh is the sharpening coefficient which when equal to 
zero produces shα  that is equivalent to 1α . Due to the 
coupled nature of Eq. (4) and Eq. (5), these equations are 
solved by Pressure-Implicit with Splitting of Operators 
(PISO) algorithm (Deshpande et al., 2012). PISO algorithm 
involves estimation of a predicted velocity that is used to 
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calculate pressure, using pressure correction equation, 
which is used to update the velocity in an iterative manner 
(Deshpande et al., 2012). In order to reduce spurious 
velocities, the force balance between pressure gradient, 
surface tension, and gravitational force due to discretization 
is ensured by calculating the gradients at cell faces as 
described in Deshpande et al. (2012). However the iterative 
procedure used to solve rgh ,p  i.e., the PISO algorithm, 
converges based on a user defined tolerance (Deshpande et 
al., 2012). This tolerance, required to calculate rghp , 
introduces a force imbalance between surface tension, 
gravitational force, and pressure gradient which can be 
reduced by setting a very low convergence criterion, like 
10 20-  used in Table 1, as recommended by Deshpande et 
al. (2012). 

3 Computational domain and solver settings 

The governing equations are discretized using first and 
second order methods in time and space respectively, see 
Vachaparambil and Einarsrud (2019a), and solved based 
on methods described in Table 1. Other numerical settings 
like the sub-cycling of volume fraction equation and 
momentum predictor, which are relevant in solving the 
governing equations, are set based on OpenFOAM default 
settings/recommendations for simulating multiphase flows 
which has also been used in Vachaparambil and Einarsrud 
(2019a). The simulations are run with no under-relaxation 
factor and maximum time step is calculated as  

( )μ μ ρ

μ ρ

t C τ C τ C τ

t C τ C τ

2 2
2 2 1

2 1

1 ( ) 4  
2

and max( 10 )

D + +

D ,

≤

≤
 

(11) 

where 1 0 01C = . , 2 10C = , avgμτ μ x σ= D / , and ρτ =  
3

avg ( )ρ x σD / .  avgμ  and avgρ  are defined as the  
average dynamic viscosity and density between the phases 
and xD  is the mesh resolution used in the simulations 
(Deshpande et al., 2012; Vachaparambil and Einarsrud, 
2019a).  

The fluid properties used in the both capillary rise and 
stationary bubble simulations are 1ρ = 1000 kg/m3, 2ρ = 
1 kg/m3, v1=10 6 m2/s, v2=1.48 10 5 m2/s, and σ = 0.07 
N/m. The capillary rise simulations use  g  equal to 10 
m/s2 whereas stationary bubble simulations neglect gravity 
(Yamamoto et al., 2017; Vachaparambil and Einarsrud, 
2019a). 

The computational domain used for the capillary 
rise simulations is 20 mm 1 mm and meshed with a 
hexahedral grid of 400 20. This mesh is chosen based on 
the work by Yamamoto et al. (2017) that investigated the 

Table 1  Solvers used for the discretized equation (Greenshields, 
2019) 

Equation  Linear solver Smoother/preconditioner Tolerance 
Pressure correction 

equation  PCG  GAMG  1020 

Momentum equation smoothSolver symGaussSeidel  1010 
Volume fraction 

equation  smoothSolver symGaussSeidel  1010 
 

effect of grid resolution on the accuracy of the capillary rise 
simulations. The boundary conditions used for 1  is zero 
gradient at the outlet, Dirichlet condition equal to one at 
inlet, and zero gradient with a constant contact angle of 45° 
at the side boundaries. The modified pressure ( rghp ) uses 
Dirichlet condition, equal to zero, at inlet and outlet but 
the side walls are assigned the zero gradient condition. The 
boundary conditions for U at side boundaries are set as no 
slip whereas the inlet and outlet are assigned a pressure- 
inlet outlet velocity condition (Greenshields, 2019). The 
simulations are initialized with liquid column at a height of 
8 mm (from the inlet) in the computational domain. These 
simulations are run until 1.5 s which is enough to reach 
steady capillary rise height with maximum time step, 
calculated based on Eq. (11), equal to 3.5 μs. 

In order to model a stationary bubble of radius R, 
which is initialized at the center of a square computational 
domain of dimensions 4 4R R´ , gravity is neglected. The 
four boundaries are assigned zero gradient condition for U 
and 1α  but the rghp  employs a Dirichlet condition equal 
to the operating pressure (equal to 101,325 Pa). The 
bubbles modelled in this work are a millimeter sized bubble 
of radius equal to 2.5 mm and a sub-millimeter bubble of 
radius equal to 0.25 mm. These simulations are run until 
0.05 s and the corresponding time step constraints based 
on the mesh resolution are discussed in Section 4.2 and 
Section 4.3.  

4 Results and discussions 

In order compare the results from the dynamic and static 
simulations, spurious velocities, denoted by Usc , are 
calculated as max(| |U ). The time averaging of an arbitrary 
parameter   and spurious velocities are represented as 
with an over bar as   and scU  respectively.  

4.1 Capillary rise 

For 2D capillary rise, the equilibrium height (hT) at which 
when gravitational force balance the vertical component of 
surface tension force for a liquid column rising between 
two parallel plates can be theoretical calculated as 

 T
2 cosσ θh
ρ t

=
D | |g

 (12) 
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where ,θ t, and ρD  are the contact angle, distance between 
parallel plates (equal to 1 mm), and difference between 
densities of the phases respectively (Bullard and Garboczi, 
2009). hT, based on Eq. (12), is equal to 9.91 mm and the 
capillary rise height from the simulations is calculated as  

 
1

S

d
S
α S

h
t

=
ò

 (13) 

where the numerator represents the area of the liquid in the 
computational domain.  

The capillary rise from the simulations is compared to 
Eq. (12) in Table 2. The temporal evolution of the capillary 
rise heights and spurious velocities (Usc) are plotted in Fig. 
1 and Fig. 2 respectively. Although Sh  obtained from the 
simulations stabilize after the initial transients, the capillary 
rise height obtained with sh 0 3C = .  oscillates slightly, by 
approximately 9.30  0.009 mm, as shown in Fig. 1. This 
oscillation in the interface position, using sh 0 3C = . , also 
cause the periodic variation of scU  which is shown in Fig. 
2. As the oscillations in capillary rise height are lower 
than  0.1% of the capillary rise height, we assume that the 
simulations have converged reasonably. hS obtained when 
using Csh = 0.5 matches the capillary rise height reported by 
Vachaparambil and Einarsrud (2019a) using SSF model. It 
is also worth pointing out that scU  obtained using 

sh 0 0C    is an order larger than spurious velocities 
obtained with other values of sharpening coefficients, see 
Table 2 and Fig. 2.  

4.2 Millimeter sized stationary bubble 

The Laplace pressure in a 2D bubble can be theoretically 
calculated using the Young–Laplace equation as  

 T
σp
R

D =  (14) 

 

  

Fig. 1  Temporal evolution of capillary rise height, calculated 
based on Eq. (13), for various values of sharpening coefficients (Csh). 

Table 2  Variation of capillary rise height with sharpening 
coefficients 

Csh sc 1.5stU =| (m/s) hS (mm) T S T( ) ( )E h h h h= - /

0.0 0.1810 9.36 0.056 

0.1 0.0098 9.30 0.062 

0.2 0.0097 9.34 0.057 

0.3 0.0050 9.30 0.061 

0.4 0.0041 9.31 0.061 

0.5 0.0031 9.26 0.065 

 

 
Fig. 2  Temporal evolution of spurious velocities (Usc) during 
capillary rise simulations for various values of sharpening 
coefficients (Csh). 

 
which for the bubble radius of 2.5 mm in the simulation is 
equal to 28 Pa. For simulations, the Laplace pressure in the 
bubble is calculated as  

 
2

S 0

2

d

d
V

V

α p V
p p

α V
D = -

ò
ò

 (15) 

where p0 is the operating pressure (equal to 101,325 Pa). 
The mesh resolution and the time step constraints 
(calculated based on Eq. (11)) used in the simulations are 
summarized in Table 3.  

The stationary millimeter bubble has been modelled 
with the three meshes as well as for a range of sharpening 
coefficients between 0 and 0.5, see Table 4 and Fig. 3. 
Spurious velocities are observed on both sides of the 
interface for all the cases modelled, as illustrated in Fig. 3. 
The use of larger sharpening coefficients seems to reduce 
the error in calculating Laplace pressure as well as spurious 
velocities in the simulations, see Table 4. Decreasing the mesh 
size does not always exacerbate spurious velocities which 
is contrast to the increasing scU  observed with CSF model 
in the work by Deshpande et al. (2012) and Vachaparambil 
and Einarsrud (2019a). The variation between scU  
reported in Table 4 and the work by Vachaparambil and  
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(a) sh 0 0C = .                   (b) sh 0 1C = .                  (c) sh 0 2C = .  

           
(d) sh 0 3C = .                   (e) sh 0 4C = .                   (f) sh 0 5C = .  

Fig. 3  Magnitude of velocity (m/s) at t = 0.05 s observed in the simulations of millimeter sized bubble for mesh M3 for various values 
of Csh. The white contour represents the interface at 1 0 5α = . . 

 
Table 3  Details of mesh and the associated maximum time 
step, calculated based on Eq. (11), used for stationary bubble 
simulations  

Mesh Mesh resolution 
(mm2)  

Total number 
of cells  

*2R x
Maximum time 

step (s)  

M1 0.250.25  1600  20  310 5   

M2 0.1250.125  6400  40  110 5   

M3 0.0830.083  14400  60  610 6  

* 2R δx/  is the ratio of the bubble diameter (equal to 5 mm) and the cell size.  
 

Einarsrud (2019a) is due to the difference in the shC  and 
solver setting, in Table 1, used for the simulations. 

4.3 Sub-millimeter sized stationary bubble 

A value of 2R x  around 50–60 is typically used in 
thermal and supersaturation driven phase change 
processes (Samkhaniani and Ansari, 2016). Consequently, 
a sub-millimeter bubble, of radius equal to 0.25 mm, is 
initialized in a 1 mm2 domain that is meshed by 120120 
cells and the corresponding maximum time step, calculated  

Table 4  Variation of the time averaged spurious velocities (m/s), Laplace pressure (Pa), and associated error, calculated as 
S T S T( ) ( )E p p p pD = D -D /D , with sharpening coefficients and meshes 

Mesh M1 Mesh M2 Mesh M3 
shC  

scU  SpD  S( )E pD  scU  SpD  S( )E pD  scU  SpD  S( )E pD  

0.0 0.110 24.008 0.143 0.075 25.096 0.104 0.061 25.596 0.086 

0.1 0.077 24.173 0.137 0.051 25.111 0.103 0.054 25.651 0.084 

0.2 0.070 24.644 0.120 0.044 25.118 0.103 0.048 25.679 0.083 

0.3 0.065 24.784 0.115 0.039 25.123 0.103 0.042 25.676 0.083 

0.4 0.060 24.822 0.113 0.036 25.123 0.103 0.037 25.668 0.083 

0.5 0.056 24.845 0.113 0.034 25.132 0.102 0.034 25.700 0.082 
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based on Eq. (11), is set at 0.6 μs. 
The Laplace pressure in the sub-millimeter bubble, 

equal to 280 Pa, is compared to the corresponding value 
obtained from simulations in Table 5. The sub-millimeter 
bubble could be modelled with sh 0 3C .≤ , see Fig. 4 and 
Fig. 5, but for sharpening coefficient of 0.4 and 0.5 the 
bubble numerically drifts. For sh 0 2C .≤ , the interface 
undergoes slight periodic deformation which is reflected in 
the oscillations in Usc observed in Fig. 6. This deformation 
is not substantial enough to observe a noticeable deviation 
from the circular bubble shape, see Fig. 4. At t = 0.05 s, the 
simulations using Csh = 0.3 seems to have very low spurious 
velocities on both sides of the interface when compared to 
other sharpening coefficients, see Fig. 5. 

5  Conclusions 

The effect of sharpening coefficient used in Sharp Surface 
Force model, developed in the work by Vachaparambil and 
Einarsrud (2019a), is investigated for capillary rise and 
stationary bubbles of radii equal to 0.25 and 2.5 mm. The 
solver ensures force balance between pressure gradient, 
surface tension, and gravitational force due to discretization  

 

 
 

Fig. 4  Bubble morphology, represented by   1 0 5 , at t = 
0.05 s for values of sharpening coefficients compared with a 
theoretically perfect 2D bubble of radius equal to 0.25 mm. 

Table 5  Time averaged spurious velocities, Laplace pressure, 
and associated error (calculated as S T S T( ) ( )E p p p pD = D -D /D ) 
while modelling a sub-millimeter bubble 

Csh scU  (m/s) SpD  (Pa)  S( )E pD  

0.0 0.061 254.285 0.092   

0.1 0.039 254.294 0.092   

0.2 0.028 255.350 0.088   

0.3 0.011 255.279 0.088   

0.4  Bubble numerically drifts from the original position   

0.5  Bubble numerically drifts from the original position   

  
 (a) sh 0 0C = .                 (b) sh 0 1C = .  

  
 (c) sh 0 2C = .                 (d) sh 0 3C = .  

Fig. 5  Magnitude of velocity (m/s) at t = 0.05 s observed in the 
simulations of sub-millimeter sized bubble for various values of 
Csh. The white contour represents the interface at 1 0 5α = . . 

 

 
 

Fig. 6  Temporal evolution of spurious velocities during simulations 
of bubble with radius equal to 0.25 mm for various values of Csh. 
 
and iterative procedure used to solve for prgh as 
recommended by Deshpande et al. (2012). In order to 
prevent the growth of spurious velocities, time step 
constraint based on fluid viscosity and density as well as 
mesh size, in Eq. (11), proposed by Deshpande et al. (2012) 
is used. The simulations for a range of value of sharpening 
coefficients, sh0 0 5C .≤ ≤ , shows that  
The use of a larger value of Csh generally reduces the 

spurious velocities in capillary rise and stationary 
bubble simulations.  

The mesh refinement does not always exacerbate 
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spurious velocities, see Table 4, unlike while using CSF 
model (Deshpande et al., 2012; Vachaparambil and 
Einarsrud, 2019a).  

The millimeter sized bubble can be modelled with 
sh0 0 5C .≤ ≤  and the three meshes. Using the finest 

M3 mesh and Csh equal to 0.5 provides the lowest 
spurious velocities as well as the most accurate 
prediction of Laplace pressure.  

The sub-millimeter bubble can be modelled with 
sh 0 3C .≤  but the lowest spurious velocities and error 

in Laplace pressure are observed when Csh = 0.3.  
The capillary rise simulations show a non-linear 

variation of hS with Csh albeit the decrease in spurious 
velocities. The reduced spurious velocities and error in 
the capillary rise height is obtained when using Csh = 
0.2.  

Although this paper investigated the effect of Csh for a 
few flow scenarios, the results show the importance of 
choosing an optimized value of the sharpening coefficient 
for future applications of SSF model to simulate two-phase 
flow phenomena.  
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