
Doctoral theses at NTNU, 2020:238

Doctoral theses at N
TN

U, 2020:238

John Haddal Mork

John H
addal M

ork Parametric Timber Detailing
A parametric toolkit customized for
detailing fabrication-ready timber
structures

ISBN 978-82-326-4824-5 (printed version)
ISBN 978-82-326-4825-2 (electronic version)

ISSN 1503-8181

NT
NU

N
or

w
eg

ia
n 

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

Fa
cu

lty
 o

f A
rc

hi
te

ct
ur

e 
an

d 
De

si
gn

De
pa

rt
m

en
t o

f A
rc

hi
te

ct
ur

e 
an

d 
Te

ch
no

lo
gy



Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

John Haddal Mork

Parametric Timber Detailing

A parametric toolkit customized for
detailing fabrication-ready timber
structures

Trondheim, August 2020

Faculty of Architecture and Design
Department of Architecture and Technology



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

ISBN 978-82-326-4824-5 (printed version)
ISBN 978-82-326-4825-2 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2020:238

© John Haddal Mork

Faculty of Architecture and Design
Department of Architecture and Technology

Printed by Skipnes Kommunikasjon as



1 

Parametric Timber Detailing
A parametric toolkit customized for detailing fabrication-ready timber structures 

Author: John Haddal Mork 

Supervisor: Bendik Manum 

Co-Supervisor: Anders Rønnquist 

Norwegian University of Science and Technology 

Faculty of Architecture and Design 

Department of Architecture and Technology 

Trondheim, August 2020 



2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my Morfar, Johan Paul Haddal (1929-2016), and my Tante, 

Palma Irene Sandvik (1935-2016). They were both immensely supportive and loved to 

hear about my life and education. I am very sad that I did not have the chance to see 

their happy faces after telling them that I obtained my PhD. 

 



3 

 

Publications 

Included publications 
The thesis includes the following papers: 

 

I. Mork JH, Luczkowski M, Manum B, Rønnquist A. Toward Mass Customized 

Architecture. Applying Principles of Mass Customization While Designing Site-

Specific, Customer-Inclusive and Bespoke Timber Structures. In: Digital Wood 

Design. Springer; 2019. p. 221–249. doi: 10.1007/978-3-030-03676-8 

II. Mork JH, Luczkowski M, JointSearch: Efficient parametric detailing preparation 

through user-defined and property based joint type filtering 

III. Mork JH, Luczkowski M, Manum B, Rønnquist A. Parametric timber toolkit: A 

timber tailored approach. In: Again, Golden Era of timber. Seoul: World Conference 

On Timber Engineering; 2018. 

 

The thesis includes the following source code: 

IV. Mork JH, Toda Y, Izumi B, Luczkowski M, Hillersøy Dyvik S. CSDG-DDL/PTK: 

Reindeer 0.5 (Version v0.5). Zenodo. http://doi.org/10.5281/zenodo.3567051 

 

 

Other scientific contributions 
 

V. Mork JH, Hillersøy Dyvik S, Manum B, Rønnquist A. Introducing the segment lath-  

a simplified modular timber gridshell built in Trondheim Norway. In World 

Conference on Timber Engineering; 2016. 

VI. Mork JH, Luczkowski M, Dyvik SH, Manum B, Rønnquist A. Generating timber 

truss bridges–examining the potential of an interdisciplinary parametric framework 

for architectural engineering. In IABSE Stockholm; 2016 

VII. Mork JH, Luczkowski M, Manum B, Rønnquist A. Conceptual structural design of 

shell structures in virtual reality. In: IABSE Symposium Report. International 

Association for Bridge and Structural Engineering; 2017. p. 157–158. 

VIII. Mork JH, Luczkowski M, Manum B, Rønnquist A. One algorithm, two timber 

bridges built in Orkdal, Norway. In: Forum Wood Building/Nordic Trondheim 17. 

Faculty of Architecture and Design Trondheim; 2017. 

 

 

 



4 

 

Abstract 
This thesis develops a parametric toolkit for visual programming that is customised for detailing 

fabrication-ready timber structures. 

Digital fabrication increases the domain of what is rational to manufacture, and algorithm aided 

design expands the domain of what is rational to design. Visual programming has made both 

technologies more accessible.  

However, digital fabrication and algorithmic aided design remain technically demanding. By 

reviewing existing methods and tools related to parametric timber detailing, two main 

challenges are identified and chosen for further investigation. The first challenge concerns 

parametric detailing preparation in general and joint type identification in particular. The 

second challenge concerns parametric timber and the transfer from a parametric model to digital 

fabrication.  

Within the framework of this thesis a parametric toolkit is developed for visual programming 

and customised for detailing fabrication-ready timber structures. The toolkit aims to reduce the 

time and algorithmic knowledge that are required to prepare a model for timber detailing and 

to transfer a detailed timber structure to digital fabrication. The toolkit is named Reindeer and 

is an open source plugin for Grasshopper3D 

The thesis has special focus on two tools within the toolkit: JointSearch is an approach that 

enables the user to define the solution space of a joint type via one or multiple search criteria. 

TimberProcessingTools is an approach that enables the user to apply tools that mimic the 

physical processing of timber structures. The tool outputs a BTLx file, which is readable by 

most manufacturers.  

The toolkit is developed by designing, manufacturing and building a series of case structures. 

The investigation chapter includes a presentation of Reindeer and the case structures. Three 

papers that discuss the framework, JointSearch and TimberProcessingTools are summarised.   

The contribution of this thesis is two-fold. The main contribution this thesis makes to the field 

of practitioners is that the toolkit is open source and makes partly existing methods more 

accessible. The main academic contribution this thesis makes to the field of parametric detailing 

is the JointSearch methodology. First, JointSearch is independent of the global topology and 

reduces the complexity of a parametric model. Second, the method has proven to be both 

efficient, flexible and precise while filtering. Last, the method is independent of materials and 

applications.  

By conducting this study, I am convinced that AAD and digital fabrication is a key to making 

our building industry sustainable while maintaining the flexibility of design. Reindeer is a small 

step towards further democratising the use of AAD and digital fabrication while designing and 

detailing timber structures.  
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Samandrag 
Digital fabrikasjon utvidar domenet for kva som er rasjonelt å byggje, og Algoritme Assistert 

Design (AAD) utvidar domenet for kva som er rasjonelt å designe. Parallelt sørgjer visuell 

programmering for at teknologien vert stadig meir tilgjengelig.  

Når det er sagt, er teknologien fortsatt teknisk krevjande. Gjennom ei analyse av ledande 

metodar og verkty tilknytt parametrisk detaljering av trekonstruksjonar, har det vorte 

identifisert to hovudutfordringar for vidare utforskning. Den fyrste utfordringa handlar om 

førebuing til parametrisk detaljering generelt, men spesielt omhandlar det å enkelt kunne 

identifisere ulike type knutepunkt i ein konstruksjon. Den andre utfordringa handlar om 

overgongen frå ein parametrisk modell til digital fabrikasjon.  

Denne avhandlinga utviklar ei parametrisk verktykasse for visuell programmering som er 

skreddarsydd for å detaljere fabrikasjonsklare trekonstruksjonar. Målet med verktykassa er 

å forenkle førebuing av ein parametrisk modell, samt overgangen frå ein parametrisk modell 

til digital fabrikasjon. 

Den utvikla JointSearch-metodikken gjer at brukaren kan definere eit knutepunkt sitt 

moglegheitsrom gjennom eit eller fleire søkjekriterier. TimberProcessingTools-metodikken 

gjer at brukaren kan bruke digitale designverkty som imiterer korleis ein fabrikkerer 

trekonstruksjonar. Desse verktya produserer også ei BTLx-fil – eit filformat som dei 

fleste produsentar klarer å lese. Verktyet er døypt Reindeer og er ein Open-Source 

plugin for Grasshopper3d.  

Verktykassa er utvikla gjennom å designe, fabrikkere og byggje ei rekkje konstruksjonar. Ein 

presentasjon av desse, saman med tre artiklar og ein eigen presentasjon av Reindeer, utgjer 

Utforskningskapittelet.  

Bidraget frå dette studiet er todelt. Bidraget til profesjonen er eit fritt tilgjengelig, gratis 

verkty for å detaljere trekonstruksjonar parametrisk. Det akademiske bidraget handlar 

primært om JointSearch-metodikken. For det fyrste: JointSearch er uavhengig av global 

topologi og gjer den parametriske modellen meir robust. For det andre: filtreringa av 

knutepunkt er både fleksibel og presis. Til slutt: Denne metoda er 

materialuavhengig og kan ha andre bruksområder.   

Etter å ha gjort denne studia, er eg viss på at AAD og digital fabrikasjon er ein viktig nykjel for 

å gjere byggeindustrien vår meir berekraftig. Dette samtidig som me beheld 

formgjevingsfleksibiliten. Reindeer er eit lite steg i retning å gjere digital fabrikasjon og AAD 

meir tilgjengelig.  
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1. Introduction 
This thesis develops a parametric toolkit for visual programming that is customised for detailing 

fabrication-ready timber structures. The toolkit aims to reduce the time and algorithmic 

knowledge that are required to prepare a model for timber detailing and transfer a detailed 

timber structure to digital fabrication.  

The global building industry has lower productivity than other industries [1]; a UN report 

reaffirms that buildings and construction account for more than 35% of the global final energy 

use and nearly 40% of energy-related CO2 emissions [2].  The European Union (EU) states that 

construction and demolition waste (CDW) account for approximately 25-30% of all waste 

generated in the EU[3]. To prevent a global catastrophe, we need to develop better processes 

and tools for designing, planning and building our built environment.  

Arguably, what we build in the future must be efficiently designed, planned and built. Further, 

structures must contribute to reducing carbon emissions and CDW. To ensure durable 

structures, we must also focus on users, functions, climate and context. Thus, our future 

building industry will be dependent on both flexible and efficient methods and tools.  

Digital fabrication and algorithmic aided design (AAD) has the potential to revolutionise how 

we design, plan and build structures. The age of hand-making offered variations and flexibility, 

and the age of mass-production offered efficiency. Conversely, the digital age is the first era 

that offers both flexibility and efficiency while sustaining the precision introduced by 

mechanical manufacturing. Mario Carpo states “Hand-making begets variations, and so does 

digital making; but the capacity to design and mass-produce serial variations (or differentially) 

is specific to the present digital environment.”[4] 

Digital fabrication and AAD introduce opportunities that the building industry cannot resist. 

However, current limitations hinder the parametric revolution. The next sections highlight both 

the opportunities and the limitations related to digital fabrication, AAD and parametric thinking.   

Digital fabrication 

Digital fabrication and computer numerical control (CNC) machines expand the domains of 

rational manufacturing. Not dependent on jigs and manual labour, CNC machines are 

universal[5] and can produce variations at no extra cost[6]. This mode of production is referred 

to as nonstandard seriality[4] and substantiates a mass-customised building industry[7].  

All variations of a building element need to be accurately modelled when aided by digital 

fabrication. A digitally fabricated structure requires a digital twin. Planning for digital 

fabrication contrasts notational drawings that are aimed at manual labour, where principal 

sections, plans and 2D details are sufficient.  

Algorithmic Aided Design 

The power of digital fabrication is limited if it is not combined with AAD. Mario Carpo 

problematises the first digital turn: “As digital fabrication processes invite endless design 

variation (within technical limits), and promise to deliver them at no extra cost, the question 

inevitably arises as to who is going to design them all.” 
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The second digital turn integrates AAD. Robert Aish refers to the same tendencies as “the 

design computation era”[8]. Traditional CAD and building information modelling are digital 

emulations of traditional drawing boards[9]. By applying traditional CAD, each building 

element must be manually modelled, and the flexibility of digital fabrication is not easily 

exploited. Conversely, AAD better exploits the natural methods of computers and is crucial to 

digitally expand the domain of what is rational to model digitally. The digital aspect of 

nonstandard seriality is achieved by building algorithms that automatically generate geometry 

based on its custom inputs. 

Visual programming  

AAD emerged when architects and other designers started to hack the programming interfaces 

(APIs) of the CAD application[10]. These APIs were script-based. Thus, the flexibility of 

utilising parametric modelling was limited to technically talented designers. The threshold of 

writing codes to make architecture was too vast, and therefore,  in the early 2000s, several visual 

programming software were developed. Generative Components (2003)[11] and Grasshopper 

3D (2007)[12] have been significant. Autodesk subsequently developed Dynamo Studio[13]. 

Visual programming enables the user to build complex algorithms by using schema-based 

interfaces and pre-built functions and removes the need to know a programming language.  

Parametric design thinking 

Robert Aish, who is the inventor of Generative Components, claims that computational design 

differs from conventional design as the designer is not drawing the geometry but rather models 

a system that generates geometry. He exemplifies this claim by explaining how geometry is 

constructed[14]: “With this understanding, we will have the opportunity to build “long chain” 

dependencies which will create interesting geometric configurations. [….] What becomes 

apparent is that we are not designing the geometry of the artefact, but rather we are 

constructing a “control rig”, some geometry that will never be built or seen, but which 

indirectly controls what will be constructed and experienced. “ 

AAD requires not only a new skill set but also a new mindset. This mindset is referred to as 

Parametric Design Thinking (PDT)[15] and is how we design. Regardless of visual 

programming, if applying parametric modelling, the user is required to abstract his or her design 

into a logic that is implemented in an algorithm.  

Complexity of parametric detailing 

AAD and digital fabrication represents an opportunity to improve how we design and detail 

structures. These technologies are likely to be an important answer to make our building 

industry sustainable while maintaining the flexibility of what we design. However, AAD and 

digital fabrication has not been fully democratised and is too algorithmically demanding for 

most designers. 

Setting up a parametric model, the “control jig” is a complex task and is one of the reasons that 

a parametric modeller is required “to be part designer, part computer scientist, and part 

mathematician”[9]. DesignToProduction claims that “The modelling and detailing process is 

about creating and maintaining relations as much as geometry”[16]. Further, novice parametric 

modellers often make the “mistake of creating the thing itself, skipping the importance of 

creating the conceptual framework for their design”[17]. These quotes relate to the complexity 



15 

 

of implementing topological relations in a parametric model. Topology, when in relation to 

parametric modelling, can be defined as “a conceptual regulating skeleton that allows the 

development of more complex and detailed design solutions”[17] 

Well-crafted details are essential for designing a successful structure. When designing details, 

topologic relations are extremely important. Detailing involves shaping the relations between 

two building elements. To detail a joint, precise information about the node and its elements is 

required. When detailing parametrically, the algorithm needs to know what joint is to be 

detailed.   

As long as parametric detailing is heavily about creating and maintaining relations and requires 

a designer to have multiple professions, the power of parametrically detailed structures will be 

restricted to high-end projects. Innovators that push the limit will always exist, but the real 

change occurs when the majority starts to apply the technology. Thus, a software capability gap 

exists between conventional CAD/BIM and pioneering AAD.  

From these discussions, we can conclude that there is an acute need for a tool of intermediate 

complexity that utilises the power of AAD and digital fabrication while detailing structures. To 

limit the scope of this thesis, timber structures have been chosen for further investigation. 

However, the developed methods are adaptable for other materials.  

The use of timber in buildings and structures has radically increased. Timber is a sustainable 

building material[18], strong compared with its weight[19], and has proven to be a suitable 

material for industrial and flexible prefabrication[20]. Designing, planning and building timber 

structures is a complex task that requires a team of multiple disciplines, including architects, 

structural engineers and manufacturers.  

Before presenting the objectives of the tool, the following sections elaborate on the specific 

challenges related to parametric detailing of fabrication-ready timber structures.  

1.1. Parametric timber detailing  
The challenges are divided into two topics: Digital Timber Fabrication and Parametric Detailing 

Preparation. 

Digital Timber Fabrication 

One aspect of digital timber design is the distinctive characteristics of timber and 

manufacturing. First, timber is an anisotropic material that substantially varies in strength. 

Timber is dependent on fibre-direction, available cross-sections, and timber-specific properties. 

Second, timber is primarily crafted by subtracting material. A craftsman starts with a timber 

blank and then transforms the blank into a building component using mills, saws, and drills to 

subtract material. Understanding these constraints and logics are essential to design well-crafted 

timber structures.  

A challenge is that the rationality constraints of digital design are significantly different from 

the above rationality constraints of fabricating a timber component. Unfortunately, while 

designing digitally, following the digital design’s rationality constraints is easier. As an 

example, if modelling a beam with a hole, drawing a rectangle and a circle and then extruding 

the 2D shape into a 3D object is more convenient. This approach contradicts modelling a box 
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(which represents the blank) and then using a cylinder to subtract the hole. The latter method is 

more similar to the reality of timber manufacturing. Refer to Figure 1. 

 

Figure 1 Parametric timber is concerned with implementing timber specific properties and ensuring 

that a design can be fabricated without remodelling the geometry in the CAM software.  

This methodology gap may produce designs that are not buildable, and the gap affects the 

quality of the geometry transferred from design to manufacturing. Even if a 3D model is 

accurate and transferred via a precise 3D format, manufacturers are at risk of remodelling the 

geometry: The CAM software may not be able to identify the original blank and its timber 

processings. If a component is relatively simple, the CAM software is likely to succeed in 

translating the geometry into fabrication processings. This method is referred to as feature 

recognition. However, if the component is more complex, the CAM software may not be able 

to distinguish the original blank and subtractive processings. 

BTL/BTLx is a file format that aims to solve the transfer of timber designs. Instead of storing 

the 3D geometry of the final component, the file stores both the original blank and the timber 

processings. Thus, transfer from design to fabrication is simplified. However, a plugin named 

Woodpecker is the only parametric tool that enables BTL export. This plugin enables drilling, 

cut, slot, pocket, and free contour[21] but is not integrated with the complete design process.   

Although solutions exist, transfer from design to manufacturing is a significant challenge in the 

timber manufacturing industry. Marika Makkonen states that “compatible information system 

is lacking between different organisations, particularly in wood construction value chains.” 

[22] Further, she writes that design is often transferred from architects to manufacturers using 

2D drawings. Manufacturers must redraw a design to make it compatible with CAM[23], which 

leads to redundant work and an increased probability of committing errors.  

Tobias Schwinn supports the same perspective. In the book Advancing Wood Architecture[20], 

which presents state-of-the-art timber structures that are algorithmically designed, Schwinn 

claims that a limiting factor for collaboration is data translation among architectural design, 

structural engineering and timber fabrication. Further, Schwinn states that re-modelling and 

additional work dominates the transfer from CAD to CAM[20].  

Based on these discussions, the transfer from a parametric model to digital fabrication is the 

main parametric timber-related challenge chosen for further investigation in this thesis. 
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Parametric Detailing Preparation 

Regardless of the design technology, the following steps constitute a possible workflow when 

designing a timber-structure:  

0) model a global structure using the centre lines 

1) assign structural/geometric properties to the centre lines  

3) analyse the structure  

5) detail the structure’s joints  

7) manufacture and build the structure 

As the numbers reveal, this workflow requires additional steps if it is parametrically conducted. 

From abstract steps, the process is converted to actual steps in the “control-rig” from a global 

model to manufacturing. To make a continuous chain, an algorithm must automate all the 

transfers and interpretations that are originally made by a human. These steps are 2) Generate 

joints, 4) Assign joints to joint types and 6) Process the model: 

Step 2, Generate joints: In this thesis, a joint is defined as a node and its elements. Such 

relation can easily be identified by trained humans. However, to ensure a continuous workflow, 

a parametric model needs a system to identify and generate joints. Figure 2 illustrates the 

geometric relation.  

 

Figure 2: A joint and its relations. A joint is a node and its elements. By creating this relation, the 

node knows its elements and the element knows its nodes.  

Step 4, Assign joints to joint types: A structure seldom contains only one joint type—one type 

of detailing logic. This step pertains to assigning joints to their types. If manually modelled, 

this step seems very easy. A trained eye intuitively spots what joints belong to the same joint 

type. The separation logic varies among projects, but the common defining parameters are the 

function  of the structure, topology of the joint, number of elements, internal angles of elements 

and structural loads.  

 

Although a structure consists of thousands of unique joints, the number of principally different 

joint types is likely to be manageable. La Seine Musicale, which is a timber gridshell, had 2798 

unique joints but only eight main joint types[16,24]. By developing an algorithm-aided 

parametric system for each joint type, the types’ instances can be automatically generated based 

on general inputs that are valid for all instances and unique inputs that are based on the shape 

of the instance. The size of a joint type’s possible solution space is dependent on the developer. 

The parametric system of most joint types will enable some degree of geometric flexibility. 
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However, the size of the solution space and which parameters are flexible or locked are project 

dependent.  

 

Figure 3: Before detailing, joints must be assigned to their joint type. Interior elements are red, edge 

elements are blue. The shell in this figure distinguishes its joint types by interior nodes (green), edge 

nodes (blue) and foundation nodes (red). 

 

Based on these descriptions, a parametric detailing workflow may be described as follows:  

0) Global Model: A global model, which is expressed using centre-curves, is manually or 

parametrically modelled. 

1) Element Generation: Geometric information attributes the curves and converts them 

into timber elements. Cross-section, material properties and element names are common 

required attributes. 

2) Assembly: The assembly generates all joints (all nodes and their elements). 

3) Structural analysis: The analysis determines whether the global model is feasible. 

4) Joints type identification: Project-specific logic assigns the joints to their joint types. 

5) Detailing the joints: The elements are converted into detailed building components.  

6) Processing the model: The model is processed and transferred to the Computer-Aided 

Manufacturing (CAM) software. 

7) Manufacturing: CAM and CNC machines or manual labour manufacture the structure. 

 

This workflow is not standardised but is employed throughout this thesis and is referred to as 

the 7-step workflow. The workflow has significant similarities to DesignToProduction’s digital 

planning of La Seine Musicale[16]. The order and appearance of the steps are likely to vary 

among projects or institutions.  

Other researchers and institutions have developed tools and methods related to the workflow. 

The following section introduces relevant state-of-the-art research.  

Generating Elements: Karamba 3D, which is a parametric toolkit for structural analysis, 

modularly defines elements. An element is built up by multiple components: The element, 

cross-section, cross-section shape and material[25,26]. Similarly, this element can be 

deconstructed into its types. Graphisoft’s connection to Grasshopper3D has a similar approach 

to constructing and deconstructing parametric BIM elements[27]. Front Inc.’s Elefront is more 

customisable and enables the user to attribute a geometry using key-values. Instead of a 

database, the information is stored in the baked Rhino-geometry.  
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Generating joints from 1D-elements: Abstract networks and graph theory can be employed 

when generating joints to establish a relationship between elements and nodes. These two-

dimensional networks can be easily analysed[28]. CITA applies abstract networks that are 

involved in creating multi-scalar models, which enables multiple levels of details in one model, 

including centre-curves, blanks and timber operations. [28,29] Further, CITA investigates 

various ways of extracting/visualising data by using Speckle and SchemaBuilder[30]. 

DesignToProduction uses the intersection between two elements to generate a preliminary 

joint[16]. 

Non-Manifold-Topology: Robert Aish and collaborators are investigating Non-Manifold-

Topology (NMT) in relation to Spatial Information Modelling of buildings[31]. Their topology 

class structure defines a relationship among a building’s different geometry types. The class 

structure includes vertices, edges, faces and other types. Their related software is named 

topologic[32]. In contrast to abstract networks, NMT enables more comprehensive topology 

relations. If an edge is selected, neighbouring vertices, edges, and cells can be extracted[33]. 

Joints type identification: In the case of La Seine Musicale, a spreadsheet interface was used 

to assign the correct type to each joint[16]. A different strategy is to write a custom algorithm 

that filters joints based on defined properties, which was the case when Buro Happold identified 

similar joints in the Morpheous Hotel Exoskeleton[34]. Similarly but more flexibly, 

Rhino.Inside for Revit enables the user to filter geometry using predefined geometric rules[35]. 

Using Elefront, the user can search for geometry using described key-values[36,37].   

These examples illustrates that there are many ways to create relations in a parametric model. 

However, most of the examples require advanced parametric thinking to grasp the concepts. A 

substantial challenge of parametric models with poorly defined relations is that joint type 

identification becomes unintentionally dependent on a fixed topology. Thus, the topology 

unintentionally narrows the flexibility, and changing the topology of the structure leads to a risk 

of crashing the logics that filter joints and output the data of the structure. This finding is backed 

by Wassim Jabi and Robert Aish: “When a design system omits ratiocination and the definition 

of topological relationships, it risks brittleness and failure in later design stages”[17] 

 

Figure 4 illustrates this challenge. The left side of the figure shows a shell with foundation 

joints, edge joints and interior joints. If the list of nodes is sorted based on UV coordinates, a 

formula based on the surface resolution can output the list index of the joint types. If the 

topology changes, as shown on the right side of the picture, interior, edge and foundation joints 

will remain. However, as the shape and division is no longer rectangular, the logic has changed 

and the code will output wrong results.  

the presented logic will crash the code. 

Logics that are more flexible than the previous example can be created, but the greater the 

flexibility, the greater the abstract thinking required. Thus, the flexibility and precision of joint 

type identification is the main workflow-related challenge chosen for further investigation.  
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Figure 4: Left side: A gridshell that has Interior nodes, Foundation nodes and Edge Nodes. The 

previous text explains how sorting rules can identify the different nodes. Right side: If the grid -

principle changes, the described sorting rules will not work.  

 

1.2. Objective 
There is an acute need for a parametric tool that is customised for detailing structures—a tool 

that has reduced technical complexity while utilising the power of AAD and digital 

fabrication—is needed. The last section argued that two main technical challenges of 

democratising parametric timber detailing are to create a flexible and precise joint type 

identification and ensure a streamlined transfer from a parametric model to digital fabrication.  

Thus, this thesis develops a parametric toolkit for visual programming that is customised for 

detailing fabrication-ready timber structures. The toolkit aims to reduce the time and 

algorithmic knowledge required to prepare a model for timber detailing and transfer a detailed 

timber structure to digital fabrication. The toolkit is built around the described 7-step workflow 

and is designed to ensure a user-friendly and flexible joint type identification and integrate 

fabrication-constraints and data throughout the design process.  

The developed JointSearch approach enables the user to define a joint type’s solution space 

via one or multiple search criteria. Based on these criteria, JointSearch analyses the joint’s 

properties and outputs only joints that fulfil the solution space.  

The developed TimberProcessingTools approach enables the user to use tools that mimic the 

physical processing of timber structures, e.g., milling, drilling and sawing. In addition to 

outputting the geometry as a parametric model, the tool also generates a BTLx-file readable by 

the manufacturer. 

The developed toolkit is named Reindeer and is an open source plugin for Grasshopper3D. The 

0.5 version of the toolkit was released in November 2019: www.food4rhino.com/app/reindeer.  

The toolkit has been developed using a practice-related approach. Two bridges, a gridshell, a 

log house and a water ramp (ski jump) have been designed, manufactured and built while 

developing Reindeer. The case structures have evaluated existing versions of the toolkit but 

have also revealed missing functionality. The key has been to generalise aspects of the concrete 

projects into concepts that are valid for timber structures in general. These case structures are 

presented in the Investigation section and explained in the established 7-step workflow.  
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2. Content and structure of the thesis 
This thesis can be understood as practice-related research but has been carried out via the 

ordinary PhD program at NTNU by the Faculty of Architecture and Design. To share the work 

in progress and receive responses and critiques throughout the study, a series of papers have 

been written. Three of these papers have been compiled as a paper-based thesis and are attached 

as appendices. 

 

Figure 5: Some figures include QR-codes, which are directed to a YouTube-movie.  

This thesis follows NTNU’s option that consists of a written component in combination with a 

product[38]. Reindeer represents this product and is thoroughly explained using text, 

illustrations and videos in the Investigation chapter. Additionally, the source code is publically 

available at GitHub. The four parts of the thesis are presented as follows:  

I: INTRODUCTION AND BACKGROUND 

This chapter provides an introduction to the topic, challenges and objective of this study. 

Further, the scope, collaborators, chosen software platform State-of-the-Art and methodology 

are presented.  

II: INVESTIGATIONS 

The investigation chapter describes the main part of this study. First, the toolkit Reindeer, which 

is front-end focused , including the intended steps of the workflow, is presented. Second, 

designed and built case-structures are discussed. In addition to demonstrating the functionality 

of the toolkit, this chapter demonstrates how the case structure influences toolkit development. 

Last, a summary of the publications is provided.   

III: DISCUSSIONS, CONCLUSION AND FURTHER WORK 

First, this chapter discusses the thesis from a broader perspective. Second, a brief conclusion is 

provided. Last, a suggestion for further work is provided.  

IV: APPENDICES 

The full version of the papers is printed in the back of the Appendices.  
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3. Scope 
Related to topics within architecture, structural engineering, manufacturing, and computer 

science, this thesis primarily discusses challenges from an architect’s perspective (an architect 

who is especially interested in digital technology). First-hand knowledge about an architectural 

process has been beneficial while investigating the objectives. However, the developed tools 

are probably not optimal from a computer engineer’s perspective. 

The toolkit is primarily designed for load-bearing structures, such as bridges, gridshells and 

beam/column systems. However, as the case structures will illustrate, the toolkit is also 

applicable to other types of structures.  

Fabrication techniques and material properties connect this thesis to timber. The thesis does not 

provided an in-depth analysis of the variations of species, properties, building physics, or other 

related timber topics.  

The process and results of the projects included in the thesis are important aspects of this study. 

However, an in-depth discussion of how they score as pieces of architecture is not provided. 

With the exception of a short description in the background chapter, Building Information 

Modelling is merely discussed in this thesis. BIM remains extremely important for the 

construction industry. The interaction between computational models and BIM is an 

increasingly powerful method. Rhino Inside[35] enables the direct use of Grasshopper inside 

Revit. Similarly, Graphisoft has developed a Grasshopper plugin for interacting with 

Archicad[27]. However, to limit the scope of this thesis, the BIM interaction will not be 

discussed.  

Timber specific CAD/BIM software is only briefly described. A series of popular timber design 

software bridge the gap from CAD to CAM, e.g., CadWork, Sema, and HSB CAD. These 

software contain predefined advanced parametric models, e.g., timber roof generators, which 

are efficient and powerful within their solution space. However, these software are not suitable 

for flexible, user-friendly, parametric modelling. Thus, these programs are beyond the scope of 

the thesis.  
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4. Collaborations 
This thesis is conducted via a series of collaborations and highly influence the result. Following 

presents the different collaborator’s roles:  

Moelven Limtre 

Moelven Limtre is the largest glulam manufacturer in Norway and has been a pioneer in 

developing ambitious timber structures. In the 1990s, they developed the dowels and slotted-in 

steel plate solution. This solution was integrated into both sports arenas for the 1994 

Lillehammer Winter-Olympic[39] and large timber bridges, such as the Evenstad Bridge[40] 

(refer to Figure 6). They are responsible for Mjøstårnet, the world’s tallest (June 2019) timber 

building [41].  

Moelven Limtre was an essential collaborator in the Orkla Bridges Project. They were the 

manufacturers of the final design and also played an essential role in sharing knowledge about 

their manufacturing strategies and challenges. In addition to multiple day visits to the factory, 

we had two extended visits of 3 days. During these visits, we developed prototypes for how to 

transfer parametric models to fabrication.  

 

Figure 6: Evenstad Bridge. 

Marcin Luczkowski 

Ph.D.-candidate Marcin Luczkowski is a structural engineer who is employed at NTNU’s 

Faculty of Engineering - Department of Structural Engineering, and has been working with the 

same topic but from an engineer’s perspective.  

Luczkowski represents the engineer’s voice in the development of the toolkit and has been 

programming parts of the algorithm. The final workflow and concept of the toolkit is a result 

of an ongoing debate about how to unify architect’s, engineer’s and manufacturer’s ways of 

working. Luczkowski also was a member of the design-team of the Orkla Bridges and Printshell 

projects. 
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Steinar Hillersøy Dyvik  

Steinar Hillersøy Dyvik is an architect who is employed at NTNU as a PhD candidate and has 

been a member of the design team of the Orkla Bridges and Printshell projects. He has been an 

essential contributor to regular discussions and criticism about the development of the toolkit 

and has also been beta-testing the toolkit and scripted a few of the toolkit components.  

Rallar AS 

Rallar, which was established in March 2017, is a firm that I run with Anders Gunleiksrud and 

Thea Hougsrud Andreassen. The water ramp and log house were designed and partly built via 

Rallar AS. www.rallararkitekter.com 

Nikken Sekkei 

In early 2018, CSDG[42] initialised a collaboration with a Japanese architecture office named 

Nikken Sekkei, which has a group named Digital Design Lab. With them, we developed the 

current C# version of Reindeer. Bunji Izumi was their project leader. The shared development 

primarily occurred online via GitHub. Additionally, I had two working sessions in Tokyo: one 

week in February/March 2018 and two weeks in August/September 2018.  

The initial concepts of the toolkit were developed before the initialisation of the collaboration. 

However, these concepts have been a great resource for further assessing the relevance of the 

toolkit and have contributed to project management and programming skills.  

www.nikken.co.jp/en       -   www.openddl.com 

SINTEF 

SINTEF is a Norwegian, independent research organisation. SINTEF was a research partner in 

the Orkla Bridge Project and was responsible for organising the research project funded by 

Innovasjon Norge. Additionally, they functioned in a mentoring role during the design and 

research project. Nathalie Labonnote and Berit Time were SINTEF’s representatives.   

Declaration of contributions in developing the Reindeer toolkit 

With the exception of modules related to the structural analysis, the first two versions of the 

toolkit were primarily written by me. Marcin Luczkowski wrote the code related to the 

structural analysis and parts of the BTL prototype and intellectually contributed to the toolkit. 

0.3 PTK and 0.5 Reindeer have been a collaboration project between Nikken Sekkei and Marcin 

Luczkowski, Steinar Hillersøy Dyvik, and me at CSDG.  

In addition to contributing to the concept of the toolkit, I have been responsible for developing 

and writing the modules that relate to composites, global alignment, node-plane generators, 

detail generation, DetailSearch, TimberProcessingTools, export to BTLX and NURBS-

generation of elements.  

The toolkit development has been highly dependent on the programming skills from Nikken 

Sekkei DDL.  
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5. Software Platform  
This section outlines the chosen software platform, programming language and collaboration 

tools. Choosing a parametric platform is a major strategic choice. The other aspects are partly 

subjective or a consequence of the chosen parametric platform. Reindeer is developed as an 

open source Grasshopper plugin. The employed language is C#, which was developed by 

applying Microsoft Visual Studio and is shared and documented via GitHub. The following 

section discusses the choice of software platform.  

5.1. Parametric platform 
Digital parametric tools are used to create an algorithm that solves a task. Depending on the 

task’s complexity, different tools will be applicable. A large variety of both programming 

languages and software is available for creating algorithms. In general, the more capable is a 

programming language, the more difficult is learning the language[9]. Choosing a parametric 

platform is an informed compromise between capability and usability. BIM, Script-based and 

Visual Programming are discussed.  

BIM 

Building information modelling (BIM) is often considered to be a contrast to parametric 

modelling. The generation of geometry is primarily based on pick and place. However, the 

objects that are placed are advanced, editable parametric models that are hidden behind a 

graphical user interface (GUI). 

When placing a window, door, or stair, the software enables the user to adjust the model by 

deciding various parameters. Step height, window width, floor height, door material, and hinge 

type are a few examples. Figure 7 shows a window-generator interface. 

The interface is understandable, and no programming skills are required. These models are 

relatively flexible. Generating bespoke windows is difficult when applying a standard window 

generator in BIM software. 

 

Figure 7: Window-generator in Archicad is a parametric model. The interface is intuitive, but the 

geometric options are limited. 
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Scripting 

All digital algorithms, including BIM-models and visual programming, are transformed step by 

step to/from binary code, which is readable/writable by the hardware. Multiple levels wrap 

binary code into more readable code. C# and Python are examples of highly readable scripting 

languages that are applicable to creating parametric models.  

Scripts are constructed by writing line by line. The correct syntax is required to make the code 

run, but modern compilers help a developer correctly write code. Writing code increases the 

flexibility and capability. A few lines of code may rewrite a complicated algorithm that was 

created using visual programming.  

One platform strategy is to develop a Software Developer Kit (SDK), which is familiar to 

Rhinoceros’ Rhinocommon. This kit can reduce the complexity and knowledge that is required 

for detailing timber structures but would require the user to know a programming language. 

Figure 8 shows a scripting interface in Microsoft Visual Studio.  

 

Figure 8 Visual studio interface and C# Scripting.  

Visual programming software 

When applying visual programming, the user does not need to know any programming syntax 

but must use prewritten functions wrapped as components. These components have inputs and 

outputs and are connected by “wires.” By combining a series of components, complex 

algorithms can be created. 

Visual programming is designed to be user-friendly and satisfactorily flexible. If a user inputs 

a surface component into a curve component, the surface automatically transforms the surface 

into a boundary curve. One operation is sufficient as most components have a series of 

overloads (allowing various inputs). The upside of the overload is that the software becomes 

forgiving and user-friendly. The downside is that the designed algorithms perform slower than 

a more specific algorithm. Figure 9 shows a Grasshopper code, and Figure 10 shows a dynamo 

code. 
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Figure 9: Example of a parametric model that generates linearly distributed circles with increasing 

radiuses. Adjusting a slider will regenerate a new result. (0) Starting point of the line, (1) 

constructing a line with step 0’s starting point, x-direction and 2000 length, (2) rotating the line 14 

degrees around the red plane, (3) making a number list starting at step 11 with 10 steps, (4) the 

rotated line. 

 

 

Figure 10: Autodesk Dynamo Studio is a visual programming language. (Photo from Autodesk’s 

webpage. [13]) 

 

5.2. An Open Source Plugin for Grasshopper 3D 
Based on these aspects, an open source plugin for a visual programming software was chosen 

as a platform. The plugin for visual programming software provides a desirable balance 

between capability and usability. As the plugin is open source, more advanced users may want 

to hack or further develop Reindeer.  

Grasshopper 3D and Dynamo are major parametric software for architecture creation. Dynamo 

is well integrated into Autodesk’s ecosystem, including Revit Architecture. Differently, 

Grasshopper 3D is more general and is not connected to any BIM software; however, 

benchmark tests indicate that the Grasshopper 3D engine is substantially faster than the 

Dynamo engine[43]. Further, Rhino.Inside and the Archicad Grasshopper plugin bridge the gap 

from AAD to Revit and Archicad. Choosing a Visual Programming Software is subjective and 

based on previous experience. For this software development, developing the code for 

Grasshopper 3D was chosen, but the principles are transferable to other software. Figure 11 

illustrates the chosen software platform.  
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Figure 11: Chosen Software Platform. Visual Programming enables Grasshopper 3D, which enables 

a C# plugin. 

Programming Language 

Custom C# or IronPython components can be directly written at the Grasshopper Canvas. 

However, this method is suitable for prototyping but is not optimal for collaboratively 

developing a shareable software. The best-practice method of creating plugins for Grasshopper 

is to apply the C# Visual Studio Grasshopper Template[44]. Thus, C# and Visual Studio were 

chosen as the programming language and Software development tool, respectively.  

C# is a modern, object-oriented programming language[45,46]. Object-oriented modelling 

enables the programmer to define highly flexible classes that generate objects. Therefore, 

geometric data relations are significantly improved. For the case of Reindeer, classes exist for 

the assembly, elements, nodes, elements, details and a series of other contents.  

GitHub 

Collaborative development and version tracking were simplified by applying GitHub. Git is an 

open source version control system, and GitHub[47] is an online platform that applies Git[48]. 

GitHub stores the latest version of the project online and simplifies the process of merging 

iterations of code. Further, discarded versions of code can be reviewed and analysed. 

 The complete source code is available at GitHub: github.com/CSDG-DDL/PTK 

 The compiled plugin is shared at www.food4rhino.com/app/reindeer 

 The Reindeer chapter presents 0.5 Reindeer and is store at Zenodo[49] 

 

Name Period Platform 

0.1 Truss Bridge Algorithm August 2015-June 2016 Grasshopper Components 

0.2 Timber Toolkit June 2016-March 2018 Grasshopper/Iron Python 

0.3 PTK March 2018-January 2019 C#/Visual Studio 

0.5 Reindeer January2019-November 2019 C#/Visual Studio 

Table 1: Versions of the toolkit  
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6. State-of-The-Art: Relevant tools and methods 
A series of existing tools and methods relate to the objectives and challenges of this study, and 

are presented in this section. Solutions have been developed by both companies and research 

institutions and have been shared as tools or methods. Several of the following topics are 

relatively new. Both Rhino.Inside and Buro Happold’s work was published in 2018 and 

strengthens the relevance of Reindeer’s approach.  

The first part presents tools and methods that have been developed by leading firms and research 

institutions. The last part discusses various strategies for transferring timber geometry from 

design to digital fabrication. 

6.1. DesignToProduction: Modelling strategy  
The consultancy firm DesignToProduction is a pioneer within both parametric modelling of 

timber structures and digital fabrication of timber structures. Although many papers are 

available[5,10,24,50], only the content of one recent paper is discussed: “La Seine Musicale – 

A Case Study on Design for Manufacture and Assembly”[16].  

In La Seine Musicale, which was designed by Shigeru Bahn, DesignToProduction was 

responsible for converting the design to production. The structure is a hexagram pattern that 

consists of 15 horizontal beams and 84 diagonals.  

Registering joints 

Their preliminary modelling is concerned with defining preliminary joints at the beam/diagonal 

intersections (among other tasks). These joints are then sorted into types based on their 

connected elements. A spreadsheet interface is used to assign the correct type to each joint. 

DesignToProduction names these joints as abstract containers that initially contain local beam 

tangents, surface angles, and other attributes, which are subsequently filled with fastener 

objects, and fabrication operations. Note that the element’s fabrication operations are stored in 

the joints. When the design is ready for fabrication, the segments collects the relevant operations 

from the joints.  

Detailing and fabrication 

In La Seine Musicale, 2798 joints are generated from 8 main types and 120 subtypes. The most 

complex instance of a parametric joint type is always modelled first. By this method, other 

easier details are located within the solution space. When the design is ready, they transform 

the model into a detailed model that contains all operations. Afterwards, they apply the BTL 

format to transfer to the CAM.  

6.2. Front Inc.: Parametric Building Information Generation 
Building Information Modelling (BIM) has been discussed. Building Information Generation 

(BIG) is familiar but simultaneously very different from BIM. Front Inc. is a “cross-disciplinary 

collective of creative individuals who bring specialist facade system design expertise to 

customers”[51]. They have been involved in a series of ambitious projects, such as the CCTV-

building, Barclays Center, and Morpheous Hotel[51]. The latter’s aluminium façade system that 

covers the exoskeleton consists of 21 000 individual panels. To solve the complexity of these 
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projects, they have developed the BIG methodology. The following brief explanation is 

extracted from their paper and webinar[36,52]. 

The purpose of BIG is “to collect, combine and give meaning to information generated in the 

design process and thereby give rise to a BIM model.” While BIM has a standard set of 

properties and classifications, BIG is customised to generate only the information required in 

an appropriate format. “The type of information does not have to be pre-specified, but can be 

assigned where needed.” An important feature is the ability to store information related to the 

geometry by using attributes: a key and an associated value. These data are commonly stored 

by generating a text file, spreadsheet or database.  

However, Front Inc. stores information inside the geometry, which is performed by using 

Rhinoceros and a self-developed plugin named Elefront[37]. By using this plugin, a designer 

can “filter, reference, sort and order geometry in order to be able to perform the next sequence 

of functions on the geometry.”  

Their way of referencing geometry also enables another crucial aspect: scalability. Front Inc. 

describes a collaborative workflow, where they use multiple files that are linked. This workflow 

decrease file size and complexity and simultaneously enables multiple designers to work in 

parallel.  

6.3. Buro Happold: Identify similar connections 
Buro Happold was also involved in the Morpheus Hotel. They were responsible for the 

structural design, detail design and construction documentation for all steelwork connections. 

Their paper describes their methods for identifying nodes [34]. 

To reduce fabrication and erection time, they had to identify similar connection types, which 

was achieved by searching a geometry file that contains member centreline geometry, section 

shapes, and sizes. The connections were classified based on “whether members were straight 

or curved, the member shapes, and sizes and the angles between adjacent members”. This 

strategy reduced the number of connection joint types from 2500 to 400. The paper did not 

indicate whether this number related to individual scripts or unique joints.  

Smart Clustering 

Buro Happold has also released a plugin that has similarities to the previously described 

connection identification strategy. The plugin is named Smart Clustering and is a “clustering 

algorithm that reduces the number of unique panels/nodes within a given surface”[53]. The 

node clustering algorithm groups similar nodes. The user defines similarity by inputting angle 

tolerances in all three axes. The number of groups that are produced is dependent on the shape 

and tolerances, but does not include other attributes.  

6.4. CITA and Innochain 
Researchers at the Centre for Information Technology and Architecture (CITA) are performing 

research on parametric timber, from previous investigations[54,55] to their current research on 

multi-scalar modelling, and ways to parametrically design timber structures. Their research 

relates to both parametric timber and geometric relations.  
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Abstract networks and graph theory 

CITA applies abstract networks when abstracting complex geometries. These networks are two-

dimensional and consist of edges and nodes. Graph theory is used to analyse and manipulate 

the network. With this solution, the user is “able to access an ordered list of nodes (and 

corresponding indices), an ordered list of edges (and corresponding nodes indices at both ends) 

and the number of connected edges at each node. This strategy enables the construction of a 

Multi-Scalar Model that generates and links data by the only means of nodes and edges, and 

thus presents itself as a very lightweight format in the context of 3D modelling for architectural 

conception.”[56] This way of thinking is clever and highly relates to the solution described in 

the investigation chapters.  

Multi-Scalar Modelling 

Multi-scalar modelling is an approach in which an object (in this case, a timber component) is 

represented using multiple models on different scales[57]. CITA aims to “enable a new 

modelling paradigm where a continuous hierarchy is defined across scales within a graph, 

from an abstract network of lines to the complete fabrication data set of each architectural 

component.”[56] 

The different scales include the fibre direction, blank model, component model, and timber 

processings[58]. 

Schema-Based Workflows 

CITA is also developing a workflow to better visualise the complex relationships and 

components in a multi-scalar model. They are developing a Schema-Based workflow[30]. By 

applying Speckle (An open source data platform for AEC)[59], they convert their model into a 

database. Thus, custom queries can be written to retrieve the desired geometry. Additionally, 

they have developed a tool named SchemaBuilder. This tool aids the user to customise the 

properties that will be attached to a model, which is manually performed via an intuitive user 

interface with checkboxes. The purpose of this solution is to customise the export output for a 

specific purpose, e.g., structural analysis or digital fabrication.   

6.5. Topologic: Non-Manifold Topology (NMT) 
Topologic is a project led by Wassim Jabi and Robert Aish; it is “a software development kit 

and plug-in that enables logical, hierarchical and topological representation of spaces and 

entities”. The research focuses on Non-Maniform Topology (NMT), which is defined as cell 

complexes that are subsets of Euclidean Space[60,61]. This approach enables a comprehensive 

but lightweight and idealised model of a building/structure[32]. NMT differs from a solid 

geometry boundary representation and enables various types of geometries and intersections 

within the boundary representation[17]. The core is a class-structure with a superclass named 

Topology. This class connects to other classes named Vertex, Edge, Wire, Face, Shell, Cell, 

CellComplex and Cluster. When a geometry is selected, neighbouring objects, regardless off 

type, can be extracted.  

This research offers a novel approach to a comprehensive topology model of a building 

structure. Since Reindeer and Topologic have been developed in parallel, the kit is not 
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integrated into the software. However, and as further work will explain, combining Topologic’s 

geometry hierarchy and Reindeer’s searching capability would be an interesting next step.  

6.6. Rhino.Inside for Revit 
Rhino.Inside is a recent development by McNeel and enables Rhinoceros to run inside another 

software. Rhino.Inside for Revit has a clever way of using multi-objective rules to filter wanted 

objectives. The various filter components can be combined and include components to check 

whether a geometry intersects, whether a value of a key is smaller/larger than a test value, and 

whether the element belongs to a category. This solution is powerful and has significant 

similarities to Reindeer’s search components, which will be subsequently presented. The 

solution enables multiple filters, filters to be flipped, and filtering based on both geometric tests 

and data properties.  

 

Figure 12: Possible filtering options using Rhino.Inside for Revit. 

 

6.7. Timber Plate Shell Structures 
Christopher Robeller is developing timber plate shell structures. His inspiration is from 

traditional joinery principles, and he applies advanced algorithmic geometry processing. The 

project is fascinating for many reasons. For example, how the design is constrained by the 

assembly and the joinery becomes an important part of the architectural expressions. However, 

the developed toolkit for the design of timber plate structures makes the work relevant to this 

study. Analysis, geometry generation and fabrication require custom codes. These custom 

codes have been made publically available as a Grasshopper plugin and have democratised the 

project’s developments[62–64].   
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6.8. Transferring a digital design to fabrication 
Most timber fabrication processes require information about the initial blank, its operations and 

the final results. Conventional 3D formats contain only the final result, and in the worst case, 

the fabricator is required to remodel the 3D geometry using CAM-specific software.  

How a model is transferred is decisive to ensure an efficient digital chain (flow from design to 

fabrication) [65]. The following three strategies are also discussed by DesignToProduction[50].  

 

Figure 13 Example component. Red geometry represents the blank, c yan geometry represents the 

processings and white geometry represents the final results.  

Feature recognition 

Feature recognition enables the user to apply domain-specific CAD software. CAD-models are 

exported to a CAM system, and then, the feature recognition algorithm analyses the geometry 

and generates machining data. According to DesignToProduction [50], this method works well 

for simple geometries but quickly becomes unfeasible for complex geometries. Choosing this 

method for complex geometry causes laborious remodelling. Thus, errors may apply.  

Figure 13 exemplifies this finding. If a rectangular hole is placed on a flat surface, the feature 

recognition would probably recognise the geometry as a rectangular hole, and thus, a pocketing 

procedure would be applied. Since the surface is curved, the rectangular geometry is less 

identifiable for a computer. 

Custom digital chain 

Large, prestige projects may have the budget to create a project-specific digital chain: If 

parametrically modelled, many components may have some degree of similarity[4]. Thus, a 

custom, machine-specific PostProcessor that bypasses the CAM system can be scripted.  

The solution is clever but is often too technically demanding. Programming a custom digital 

chain is time-demanding and requires a team of technically skilled designers. La Seine Musicale 

is an example of a project that has been realised using a custom digital chain[24].  

Robotic arms and associated software have made custom digital chains more accessible. Classic 

robotic arms do not have the same efficiency and strength as those of traverse-based CNC 

systems but have the advantage of being flexible. Software, such as HAL Robotics[66] and 
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KUKA PRC[67] (Parametric Robotic Control), enable a robot to be directly programmed from 

Grasshopper 3D. Figure 14 shows an installation constructed from glulam cuttings. The Rapid 

code for the ABB robot is programmed using HAL robotics.    

The solution for applying a custom digital chain primarily relies on the same three ingredients: 

blank, processing, and resulting component.  

 

Figure 14 Custom digital chain using HAL robotics.  

 

 

Building Transfer Language (BTL) and Woodpecker 

Clipped from the developer's web-page, “BTL and BTLx are formats that provide a parametric 

description of the geometry of wooden building components and their processing as well as 

structural information for prefabrication and assembly”[68]. BTLx is a newly developed 

version of the format and is open and free for use and implementation. The benefit of this format 

is that it is machine-independent, which means that it describes processes as parametric 

geometry. A post-processor is required to translate BTL information into machine-specific NC 

code.  

The format is tailored for timber structures, which means that information about the grain-

direction, species and other parameters are included. Further, all processes are digital 

emulations of timber-specific machining processes. If programming the previous example, the 

rectangular hole would probably be defined as a mortise, pocket, or slot.  
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Simplified, the outputted XML structure appears as follows: 

<BTLx> 

      <Project> 

               <Parts> 

                        <Processings> 

                        </Processings> 

               </Parts> 

       </Project> 

</BTLx> 

This structure implies that a BTLx format has a project, a project can have multiple parts, and 

a part can have multiple processings.  

 

Figure 15: BTLx is XML-based. The figure shows how a blank and tenon are defined.  

 

 

Figure 16 BTL Viewer. A beam with a tenon. The top half of the screen renders the properties of the 

tenon. 
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Woodpecker is a plugin for Grasshopper that enables BTL export. The plugin enables Drilling, 

Cut, Slot, Pocket, and Free Contour[21]. This plugin was released in 2014[50];  a new version 

was stated to be released in 2017 (has not happened)[24]. The new version is to be based on 

BTLx and include a more extensive set of BTL operations. 

The plugin works well. However, the purpose of the plugin is to export a design to fabrication. 

The plugin does not visualise the result and does not output a processed geometry. The plugin 

is not integrated into the entire workflow; it is only integrated in the last step. 

6.9. Summary 
This section provided an overview of related tools and methods relevant to parametric timber 

detailing.  

CITA, Topologic and DesignToProduction are examples of existing and well-working methods 

for establishing a parametric model with topology relations. Further, DesignToProduction and 

Front Inc. have methods for identifying specific geometry.  

The BTL format is promising and provides a powerful translation between design and 

fabrication. Woodpecker is the only available toolkit that enables BTL translation; however, it 

is not well integrated in the entire design process.  

This review reaffirms that both detailing preparation and fabrication transfer are complex tasks 

that require developed parametric thinking. However, numerous opportunities exist for 

implementing the described methods in tools that reduce the required technical knowledge. 

Implementing the transfer from design to fabrication in the entire design process has potential. 

Information about the BTL element can be gathered when defining an element, and generation 

of BTL operations can be a part of the architectural design process.  

A tool that automates process-related aspects of parametric timber detailing is needed. Such 

tool would provide a new learning step between CAD/BIM and custom, advanced AAD. 
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7. Methodology 
To solve the objectives of the study, practical knowledge and insights about the complete digital 

chain are required. The challenges are wicked and are not within the domain of one profession. 

Further, the industry faces complex challenges on a daily basis that are not sufficient for 

complete simulation in a lab. Thus, this study has been carried out via practice-related research.  

Reindeer have been iteratively developed by gaining knowledge from state-of-the-art methods, 

reflection through writing papers and obtaining feedback at conferences. However, the main 

source of insight about how to develop Reindeer has been the application of the code to the 

design, manufacture and building of structures. A central feature of the research design has been 

to ensure an iterative flow from design-process insights via generalisation and implementation 

of functionality in the toolkit.  

This chapter explains the different research activities applied in this study and how they were 

combined in activity configurations. 

7.1. Research Activities 
Practical research primarily consisted of five research activities[69]:  

1) design, manufacturing and building structures  

2) toolkit prototyping 

3) toolkit development 

4) parametric modelling 

5) generalisation.    

1 Designing, manufacturing and building timber structures 

A central method for gaining insight and knowledge includes designing, manufacturing, and 

partly building timber structures. Most case structures have been developed by a 

multidisciplinary team (architect, structural engineer, and manufacturer), ensuring multiple 

perspectives.  

During this study, two bridges, a gridshell, a water ramp (ski jump) and a log house have been 

built. With the exception of the gridshell, all the structures are permanent buildings that are 

required to follow building codes and be durable and cost-efficient.  

The permanent status and realistic application of the structures have established requirements 

for the quality of the details and the efficiency of the chosen manufacturing process. Further, 

Moelven Limtre has been involved in two of the projects, which has challenged the digital 

interface between architects/engineers and manufacturers and has placed the research in a 

realistic context.  

The Orkla Bridge project, which was thoroughly presented in the investigation chapter, played 

a unique role as the main case structure. Early in the design process, the application of a known 

structural and detailing system was determined: Two timber trusses with dowels and slotted-in-

plates as connections. A doubly curved railing was also chosen. These two preconditions were 

defined to function as a benchmark for the developed toolkit: The toolkit had to handle a known 

but complex detailing principle and simultaneously handle complicated geometry.  
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2 Toolkit Prototyping 

The initial development of the toolkit was a typical prototyping process. The prototyping was 

carried out using Grasshopper 3D and IronPython[70], which has both benefits and 

disadvantages. A key benefit is that Grasshopper 3D is a visual programming language, which 

renders prototyping an algorithm efficient and provides immediate feedback about how the 

algorithm functions and performs. Further, the required programming skills are limited.  

The approach of the toolkit prototyping is intuitive and rapid. The goal of this method was to 

establish and understand a problem instead of solving a problem. 

Although some plugins are developed and published using the described platform (such as 

Ladybug[71]), it was determined to be unfit for developing the publically available timber 

toolkit. Grasshopper native components are general and flexible (as they should be) but limit 

the calculation performance. The use of native components produced a prototyped toolkit that 

calculated too slowly.  

3 Toolkit Development 

The toolkit development was described in the software platform chapter.  

4 Grasshopper-based parametric modelling 

Some of the built case structures were designed, or partly designed, without applying any 

version of the developed toolkit. Native Grasshopper components and other relevant plugins 

were used to develop a design.  

This approach was applied when the case project was primarily connected to practice: Often, a 

relation between a code’s flexibility and the amount of work demanded to develop the code 

exists. When related to practice, time limits are essential. Thus, most of these codes were 

targeted at a specific problem and initially purposed as on-off solutions. Woodbury’s terms 

“Throw code away” and “Copy and modify” are descriptive for this activity[9].  

However, both the intellectual process of developing the code and the code functioned as an 

essential input for generalisation. The variety of the practice-related case structures challenged 

the flexibility of the toolkit.  

5 Generalisation 

A generalisation of knowledge from the design and build processes has been vital. Reflections 

and analyses of the designed structures, manufacturing processes, parametric models and 

prototyped solutions have produced extracted, generalised concepts. Tacit knowledge is gained 

via the other activities. Transforming tacit knowledge into words, diagrams, rules or 

relationships is often difficult. The challenge is to achieve an abstraction level that is detached 

from a specific project. However, when multiple projects are parametrically designed, 

similarities are identified.  

The generalisation act has been practical, analytical, and “accidental.” Practical generalisation 

has been achieved by identifying a lacking functionality of the toolkit while designing a 

structure. Analytical generalisations have been performed after a case structure has been 

designed and built to identify the core of a solved design problem. Accidental generalisations 

have often occurred using mundane activities, such as jogging or showering. These 
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generalisations have been related to the sudden identification of significant similarities among 

initially different structures. The findings from the generalisations are presented at the end of 

the Case Structure chapters.  

7.2. Activity configurations 
The research activities have been combined in four different configurations: Integrated, 

Applied, Detached and Implement. The names of the configurations reflect the extent to which 

a given version of the toolkit influenced them.  

Integrated 

The integrated configuration loops designing, parametric modelling, generalisation, and toolkit 

prototyping while designing a structure. The designed and built case structure makes the study 

more concrete; however, the structure is not the main goal of the configuration. By applying 

the configuration, the case structure directly informs the toolkit, and the toolkit directly informs 

the case structure. This configuration was applied while designing the Orkla Bridges. As 

described, the structural and detailing principle was locked early in the design process and set 

requirements to be solved via the simultaneously prototyped toolkit.  

 

Figure 17 Integrated configuration. 

Applied 

The applied configuration designs a structure by applying a given version of the toolkit. The 

main goal of this approach is to design a well-functioning, built structure. Thus, if the toolkit is 

not applicable, additional custom algorithms are developed. This approach is practice-related 

and plays an essential role in evaluating the relevance of the toolkit and identifying lacking 

functionality. Lacking functionality was hacked while designing. The generalisation identified 

whether the lacking functionality was worth generalisation and implementation in the toolkit’s 

functionality.  
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Figure 18 Applied configuration. 

Detached 

Although the detached configuration is also practice-related, the design process does not apply 

any version of the toolkit. Thus, the design process is not constrained by the toolkit, and a larger 

design space is potentially explored. By generalisation, both during the design process and after 

the design process, concrete parametric modelling challenges are extracted. The following 

questions were asked: What if the given design project was conducted using the toolkit? What 

functionality does the toolkit miss? How does the toolkit have to evolve to become applicable?  

This thesis presents two case structures that applied the detached configuration: the log house 

and the shelves.  

 

Figure 19 Detached configuration.  

 

Implement 

The implement configuration entails classic programming development. The input for the 

activity is a given version of the toolkit and extracted knowledge from a generalisation. The 

output is a new version of the toolkit.  

Although the main activity is programming via toolkit development mode, the toolkit is 

continuously tested using small parametric modelling experiments. This activity configuration 

dominated the last 24 months of the study. 

 

Figure 20 Implement configuration. 
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7.3. Summary 
This research is related to and dependent on practice and has primarily generated mode 2 

knowledge[72]. This research has similarities to both research by design[72], and practice-

based and practice-led research[73]. Johan Verbeke defines research by design as “The kind of 

research where the process of designing and experience from practise plays a crucial role in 

the research, not only as the input to be observed but more importantly as the method and 

outcome of the research” [72]. 

Verbeke’s definition has strong similarities to the conducted research. However, practice-

related methods have not been investigated and will not be discussed in this thesis. The core 

strength of the presented method of developing Reindeer has been an iterative process that 

involves ideas, prototyping solutions and realistic tests by building real structures.  
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8. Reindeer – Grasshopper-plugin 
A reindeer is an animal that lives around the polar circle. In harsh and ever-changing climates 

and landscape topologies, the reindeer searches for food by sniffing out lichen beneath the 

snow[74]. Similarly, the Reindeer toolkit searches for joints using geometric properties. Even 

if the topology and typology changes, Reindeer will still find its joints. JointSearch is an 

important part of the Reindeer plugin.  

The goal of this chapter is to provide an overview of Reindeer’s intended workflow. This 

description is primarily front-end and explains how the components work and are connected. 

This explanation is expected to simplify the technical understanding of the papers. Example 

files, which further explain the concept, can be downloaded at 

www.food4rhino.com/app/reindeer 

8.1. Workflow 
The workflow of the Reindeer plugin is divided into the same 7 stages that were presented in 

the introduction, from inputting centre-curve geometry to digital fabrication. All seven steps 

are usually required when fabricating a structure. While exploring structural concepts, however, 

the first two stages are sufficient.  

0) Generate global model (beyond Reindeer’s domain) 

1) Define elements 

2) Assemble the structure, and define geometric relations 

3) Structural analysis of the structure 

4) JointSearch, search and output joints based on search criteria 

5) Detail the elements using TimberProcessingTools (and nodes)  

6) Process model (generate NURBS or CAM output) 

7) Manufacture and build 

The next page illustrates the workflow. 
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8.2. Step 1: Defining elements 
An element requires a curve to be initiated. Additionally, the user can define the name, cross-

section, material, cross-section shape, eventual sub-element, local alignment and structural 

priority. By using a component (Grasshopper-function) for each property, the element’s 

definition becomes modular and flexible. Below are the components that in sum defines an 

element.  

 

 

 

Component: Element 

With the exception of the Base Curve, the element has 

default values for all inputs, which enables a design-process 

that can incrementally add information to the element.  

PS1: The boxes on the left are “components” 

PS2: Published version does not contain Forces/Joint -

input 

Component: Local Alignment 

The local-alignment component enables local offset Y, local 

offset Z and rotation relative to the composite. If multiple 

parts exist in the composite, the local alignment component 

is used to compose the composite.  

 

Component: Material 

The material component inputs different timber-specific 

properties. Only structural properties are included but the 

toolkit is developed to be scalable, which means that it shall 

be trivial to expand the functionality and add the material-

related properties of an architect, manufacturer or other 

discipline. 
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By combining cross-sections and local alignments in creative ways, many different composite 

cross-sections can be obtained. Figure 25, Figure 26 and Figure 27 illustrate a conventional 

glulam composite, an I-beam and a circular composite, respectively. The figures exemplify the 

power of modularising the inputs of the element.  

 

Figure 25: Conventional composite.  

Component: Rectangular Cross-section 

The current version of the toolkit enables rectangular cross-

sections. In Reindeer, a unique cross-section is a 

combination of shape, material and shape.  

 

Component: Composite 

The composite component inputs cross-sections and merges 

them into one composite. A cross-section may be directly 

inputted into the element component but will still be treated 

as a composite with one cross-section. 

Each part in the composite corresponds to the 

manufacturing sub-elements, which means that each part is 

assigned a unique ID and geometry and can be individually 

processed and outputted. This feature is crucial when 

manufacturing large glulam parts.    
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Figure 26: I-beam composite. 

 

Figure 27: Circular composite. A functionality that was not intended while designing the toolkit.  

 

Global Alignment 

By default, the composite cross-section is positioned centric relative to the base curve, and the 

composite’s height direction is aligned towards the global Z-direction. However, the default 

position and alignment is not feasible in many cases. Thus, the toolkit contains a series of global 

alignment components that manipulate Offset Y, Offset X, and the alignment. 

The previously explained local alignment is transformed relative to the global alignment. The 

left side of Figure 28 shows a composite that is offset and oriented from the base curve. The 

right side of Figure 28 shows an additional local alignment. 

The current version enables alignment relative to surfaces, vectors, points, and planes. Figure 

29 shows different applications.  
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Figure 28: The left side of the figure shows that an alignment vector and the Offset Height globally 

align the element. The right side of the figure locally offsets the element in the Local Width -

direction. 

 

 

Table 2: GlobalAlignmentComponents. Refer to Figure 29 for a visual explanation. 

Name Inputs Operation 

A: AlignToVector Vector 

Offset Width (Y) 

Offset Height (Z) 

The element’s cross-section height direction 

aligns according to the vector input 

B: AlignToSurface Surfaces 

Max Distance 

Offset Width(Y) 

Offset Height (Z) 

If it does not exceed the max distance, the 

element’s cross-section height direction aligns 

according to the closest surface that is normal to 

the element’s midpoint 

 

C: AlignFromPoint Points 

Curve Domain 

Offset Width (Y) 

Offset Height (Z) 

The element’s cross-section height direction 

aligns according to the vector between the point 

on the element defined by the curve domain and 

this point’s closest inputted point. 

Component:  

Normal vector from surfaces 

Obtaining normal vectors from a guide surface has 

become common practice when designing advanced 

structures, such as shells. However, the principle can 

be equally powerful when designing conventional 

shapes. The essential functionality of this component 

is that it enables multiple surfaces to be input for one 

single element. The power is best explained using an 

illustration. Figure 29 B shows how the “height” 

direction of the column is always aligned towards the 

façade of the walls.  
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Figure 29: Three types of global alignments. A: From vector. B: From Surfaces. C: From points.  

 

8.3. Step 2: Assemble the structure, define the geometric relations 
The assembly component automatically generates nodes and joints based on the input elements. 

To be applicable for detailing, the end points and intersection points qualify as nodes. Figure 

30 illustrates how a node is generated. A joint is a node and its elements and can be 

deconstructed into elements and nodes, and the elements can be deconstructed into the 

properties defined in step 1. Figure 31 shows how elements are transformed into joints, and 

Figure 32 shows how a joint contains essential information required for detailing.  

 

 

 

Figure 30 A node can be generated at element endpoints or based on element intersections.  
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Figure 31: Node-focused joints and element focused joints. Current build sup ports only node-

focused joints. 

 

 

 

Figure 32: With the described relation among elements, nodes and joints, a person can select a 

joint, obtain its elements and node and then extract geometric data to apply to detailing.  

 

8.4. Step 3: Structural analysis  
The code at GitHub and previous versions have included structural analysis integration with 

Karamba3D. Due to bugs, this functionality is not publically available. However, the purpose 

of this step, in addition to analysis, is to enrich the element with structural results and use force 

results as search criteria and input for architectural expression.  
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8.5. Step 4: JointSearch and JointOutput 
This step enables the user to define the joint types' solution space by using one or multiple 

search component criteria. These search criteria filter all joints and pass only the joints that 

fulfil all search criteria. 

A solution space can be defined by properties, such as the number of elements, names of 

elements in a node, min/max internal angle and  position of the node. Further, a solution space 

can be defined based on loads, for example, the maximum allowed normal force in the joint’s 

connected element. However, defining a solution space by defining properties that shall not be 

true is equally effective. Thus, the user can input the search criterion components to be either 

true or false to be valid.  

Figure 33 illustrates two shells that have three joint types: Foundation Node, Edge Node and 

Interior Node. Based on the name of the elements, the joints in both shells are assigned to its 

joint types.  

 

Figure 33 The three JointSearch criteria work regardless of shape or surface pattern.  

An important property in one joint type may be irrelevant in another joint type. Some joints 

may allow a small variation in a property, while other joints allow all property variations—with 

the exception of a small domain. The relevant properties are dependent on the joint and 

parametric modelling strategy. Figure 34 and Figure 35 illustrate joint types based on various 

search criteria.   
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Figure 34 One shape. Three searches.  

 

Figure 35: A complicated shape. Relevant properties that  define a joint type’s solution space vary 

from detailing to detailing. In one case, a bracket is only feasible if all angles are larger than 30 

degrees. In other cases, a bracket allows maximum six elements. The video shows how the algorithm 

finds edge joints (red) and joints that have a max of 6 elements (green) while the pattern is 

constantly changing.  

 

Step 4 involves searching for joints and outputting joints in the most coherent manner possible. 

By using various criterion components, the user can create a custom search with multiple 

objectives. A criterion can be specified either to be true or to false to become valid. Currently, 

thirteen search criteria are implemented. Future versions may include more criteria, but the 

previously included components achieve surprisingly high flexibility. The following table 

presents the implemented criteria. PS: The element force components are not available in the 

public version.  

 

Component: ElementAmount 

This search criterion enables the user to specify the 

number of elements allowed in the joint. All components 

outputs a SearchCriteria. The table on the next page 

describes the inputs and the logics of the other criteria 

components.  
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Name Inputs Checks 

Element 

length 

Min length 

Max 

length 

Checks lengths of elements and returns true if all elements are 

within the allowed domain 

Element 

angle 

Min Angle 

Max 

Angle 

Checks angle between each pair of elements and returns true if 

pairs are within the allowed domain 

Element 

Amount 

Min 

Amount 

Max 

Amount 

Checks amount of elements and returns true if the amount is 

within the allowed domain 

Element 

Name 

Element 

Names 

Mode 

Checks if the joint’s element’s names correspond to the names 

of the element. The mode input determines the strictness of the 

checker. Mode0: The joint’s element’s names must contain one 

of the inputted names. Mode1: The joint’s element’s names must 

contain at least all inputted names. Mode2: The joint’s element’s 

names must contain all inputted names and no other names. 

Mode3: The joint’s element’s names must correspond exactly to 

the inputted names 

Detail 

topology 

Mode By choosing a mode, the checker finds joints that correspond to 

typical shape types. The following modes are included: 

Mode0: L-node: Two elements connected in an endpoint 

Mode1: T-node: One element is connected at the end, and one 

element is connected in the middle of the element (not at the 

ends) 

Mode2: X-node: Two elements are connected on the elements 

(not at the ends) 

Mode3: End node: Nodes with one single element connected 

Mode4: Star node: 3 or more elements connected at the end 

Mode5: Planar: All elements can be placed on a single plane 

Mode6: Orthogonal: All angles between elements in joint are 0, 

90 or 180 degrees.  a%(Pi/2) =0 

Figure 36 illustrates the modes. 

 

Node in 

region 

Region 

Max offset 

distance 

Checks if the point of the node is inside an inputted region. The 

inputted max offset distance determines if the point must be in 

the region or can be offset in the normal direction of the region. 

Element 

Force 

components  

Max force 

Min force 

Checks if all elements are within the force domain specified by 

the user. Individual components for Torsion MX, Bending MY, 

Bending MZ, Compression FX, Tension FX, Shear FY, and 

Shear FZ.  
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Figure 36: The joint topology component searches for joint topologies. These topologies are the 

currently supported topologies.  

 

JointOutput 

When detailing a joint, information about the related nodes and elements is needed. The more 

consistent the data that are streamed, the easier the detailing process. An inconsistency often 

demands codes to handle exceptions from a clear logic. Three functionalities are implemented 

to increase the consistency of the data stream. 

1. The unified element vector outputs vectors that are parallel to the element and directed 

from the node.  

2. The input named Sorting rule enables the user to choose sorting the elements by 

structural priority, alphabetically, element length or clockwise (relative to the node 

plane).  

3. Node plane generators enable the user to apply different logics for defining a node plane. 

Figure 39 shows two examples. Table 1 describes the implemented components.  

The JointSearch component outputs nodes, elements, unified element vectors and the node 

plane. Further, the node, element and sub-element can be deconstructed into their properties. In 

this manner, the properties inputted in step 1 are neatly organised and ready for detailing.  

 

 

 

Figure 37: Unified Element vectors An element has a fixed direction based on the curve that is used 

when initialising the element. The Unified element vectors are node-based and directed from the 

node centre. 
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Figure 38: Element sorting: Three different sorting rules for outputting the elements.  

 

 

Figure 39: Node-planes: The left side of the figure shows a gridshell connection. In this case, a 

plane is generated based on the direction of the elements. Alternatively, a plane can be generated 

based on a guide surface. The right side of the figure shows a bottom chord node of a truss. In this 

case, the plane’s normal direction is parallel to the secondary beam. The plane is aligned according 

to the direction of the chord.  

 

Table 3 Node plane generators 

Name Inputs Logic 

NormalFromMesh MeshGuide 

Name of X element 

The normal of the mesh closest to the 

node determines the Z-axis of the 

plane. The X-axis is aligned 

according to the inputted X-element 

NormalFromSurface SurfaceGuide 

Name of X element 

The normal of the surface closest to 

the node determines the Z-axis of the 
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plane. The X-axis aligns according to 

the inputted X-element  

NormalFromElementAverage Name of X element For each element, a point is moved 

one unit-length from the node in the 

direction of the element. These points 

are used to create an average plane 

that has its origin in the node, and the 

X-axis is aligned according to the 

inputted X element 

FromVector NormalVector 

Name of X element 

The inputted normal vector defines 

the Z-axis of the plane; the X-axis 

aligns according to the X element. 

AlongElement Name of Z element 

Name of X element 

Z element is employed as Z vector of 

the plane; the X-axis aligns according 

to the X element. 

 

 

 

Component: Detail Search 

The previously described searching, extraction, and 

sorting of details are compiled as one component. The 

essential inputs are the assembly, false/true search 

criteria, selected mode of element sorting, and node 

plane generator. Additionally, the name of the joint 

and colour to preview the valid details can be defined.  

The output is the node, node plane, elements, and the 

unified element vectors. Since only one node/node 

plane and multiple elements and element vectors exist 

in each joint instance, the data are outputted in a tree 

structure. The tree outputs all valid details, and each 

branch corresponds to one joint instance. 
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Detailing configuration 

By applying the presented functionality, the user can select wanted joints, consistently sort the 

output and deconstruct the elements. The following figures show a gridshell that is built by 

interior and edge elements. The scheme shown in Figure 40 shows how the JointSearch 

identifies 3- or 4-legged interior joints by combining a search criterion that defines the element 

names that are not allowed and a search criterion that specifies the number of elements.  

The left side of Figure 41 shows how the JointSearch outputs geometry by default. However, 

the joint plane is not applicable, and the order of the outputted elements is not consistent. The 

right side of the figure provides a better basis for detailing. First, the joint plane component has 

generated a plane based on the shell surface. The X-axis of the plane is aligned in parallel to 

one of the interior elements. Second, the elements are sorted clockwise according to their joint 

plane. Note that element0 is parallel to the X-axis. 

Component: Deconstruct Element 

The element object is not usable for detailing purposes 

until it is deconstructed into its properties. The 

deconstruct element component outputs a series of 

important geometrical data to simplify the detailing 

process. 

Component:  

Deconstruct manufacturing sub-element 

The deconstruct element outputs sub-elements. This 

component further deconstructs each sub-element into 

width, height local cross-section-plane, and BREP-

geometry. 

Component: Deconstruct node 

Currently, the functionality of the node deconstruction 

is limited. Only the location of the node is 

deconstructable. However, future development will 

implement important data.  
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Figure 40: This figure shows how to output interior joints that contain 3 or 4 elements. The video in 

the QR code demonstrates the process of building the algorithm.  

 

Figure 41: Default output and output prepared for gridshell detailing. The  right figure shows 

unified element vectors and alphabetical sorting of the elements.  

 

8.6. Step 5: Detailing the elements (and nodes)  
Detailing a timber element using the Reindeer toolkit is only possible by applying subtractive 

operations named TimberProcessingTools. Drilling, cutting, pocketing, and tenon shapes are 

implemented components and operations that subtract material from a predefined blank. The 

output is primarily a NURBS element or BTLx instruction; Refer to Figure 42. 
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Figure 42: The user applies subtractive operations. While designing, Brep geometry is being 

outputted. When the design is ready, a BTLx file can be exported for fabrication.   

 

Individual elements can be detailed without interacting with its joints. In most cases, however, 

detailing is performed by outputting elements from the JointSearch. In this process, the user 

can individually detail each joint type. Algorithmically, the following challenge arises: A 

unique element will certainly belong to multiple joints. For this reason, TimberProcessingTools 

output instructions regarding how an element is being processed. Step 6 assigns processing 

instructions to correct elements and process the model. For this reason, all timber-processing 

components are CPU light; the heavy calculations are performed in step 6, process assembly.  

 

 

Figure 43: The TimberProcessingTools outputs a timber processing instruction.  
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Components: TimberProcessingTools 

Currently, a limited number of processings are included. However, the algorithm is developed 

to be scalable, and adding operations is relatively straightforward. All components input an 

element and output a subtractive operation. The additional input that instructs the various 

operations varies. The following table presents the implemented timber processings.  

Name of 

operation 

Inputs (in addition to 

element to be processed) 

Description 

Cut The cutting plane,  

Toggle to flip the direction 

of the cut 

Cuts an element based on the inputted plane. 

Initially, the positive side of the plane is the part 

that will be removed. The toggle enables the 

direction to be flipped 

Drill Drill axis(line), radius Creates a circular hole with the inputted radius 

and positioned according to the drill axis 

Pocket Parallelogram, angle1, 

angle2, angle3, angle4  

Creates a pocket based on the parallelogram. The 

inputted angles define the angles between the 

sides and the parallelogram. 

Pocket 

from 

element 

Element In many cases, a pocket is performed to make a 

slot for another element. This component uses 

another element as input for the pocket 

Mortise Mortise plane, width, length, 

depth, flip toggle, shape 

radius, shape mode 

The mortise is generated based on the plane, 

width, height, and depth. Additionally, a 

radius/chamfer can be defined. 

Tenon Tenon plane, width, length, 

depth, flip toggle, shape 

radius, shape mode 

The tenon is generated based on the plane, width, 

height, and depth. Additionally, a radius/chamfer 

can be defined. 

Custom 

shape 

BREP To extend the usability of the Reindeer 

algorithm, inputting a custom BREP is possible. 

Note: This component only generates NURBS 

and is not included in the BTLx file.  

 

8.7. Step 6: Processing assembly (Generate NURBS or CAM output) 
This step inputs the assembly and timber processing. The primary outputs are a processed Brep 

assembly and a BTLx file. Additionally, the blank, voids, and processing surfaces are outputted 

as an organised tree structure. Latter outputs are purposed for custom fabrication, such as 

robotic milling directly from the Grasshopper environment. Figure 44 illustrates the essential 

outputs. Disabling the BTLX/Brep output accelerates the algorithm.  
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Figure 44: An element is detailed by a cut and mortise. The output is the blank, voids (not 

illustrated), processed surfaces, processed component and BTLx file.  

 

8.8. Step 7: Manufacture and build 
This stage is beyond the domain of the Reindeer plugin. The BTLx format is readable by a 

series of CAM software, including CAD WORK and SEMA [75]. 

The separated output of the blanks, voids, and processed surfaces intends to be applicable to 

custom fabrication either by using the Rhino/Grasshopper interface and plugins such as HAL 

Robotics or custom digital chains to other CAM-software. 

 
Figure 45: A timber structure generated using Reindeer, outputted as BTLx and imported by SEMA.  
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9. Case-Structures 
Designing, manufacturing, and building structures are essential components of this study. This 

chapter presents each case structure, which is organised in the seven steps workflow. Many of 

the generalised concepts were initially one-off solutions to practical problems, which are 

described in the way in which they were solved. The end of each case-project chapter reveals 

how these problems were generalised and implemented as a functionality in the Reindeer 

toolkit.  

The cases are chronologically presented when they were initiated but do not necessarily 

correspond to when they were completed. In addition to these four projects, three smaller 

experiments are shown: projects that do not deserve a full chapter but that exemplify aspects of 

the study that are not addressed by the four main case structures.  
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9.1. Orkla Bridges 
The Orkla Bridges are permanent and part of a pedestrian path along the Orkla River. The 

bridges pass two side rivers, which span 10 and 15.5 metres. Although pedestrians are the main 

users of the bridges, the bridges had to be dimensioned for an 18-ton wheel loader (15-ton axle 

load) due to snow removal purposes. 

The structural system consists of two glulam trusses with a suspended secondary steel structure 

that carries a timber deck. Dowels and slotted-in-steel plates constitute the detailing system. 

The shortest bridge has a classical arch shape, and the longest bridge has connected doubly 

curved railings.  

With the exception of the foundation, both bridges are entirely designed by applying parametric 

modelling. The steel structure was modelled by Grasshopper-native components, while the 

timber elements were designed using the toolkit version named “0.2 Timber Toolkit”. 
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Figure 46: The Orkla Bridges project applied an integrated activity configuration . The activity 

configurations are explained in the methodology chapter.  

 

Step 0: Constructing wireframe geometry.  

The input for the Reindeer plugin is the centre curve of the glulam elements. Following list is 

a brief description of the logic that generates the curves.  

1) Two curves are manually modelled. These curves represent the bottom centre curve and 

top centre curve. 

2) The curves are divided into the desired number of point.  

3) According to the desired width, the planes are translated transversal to both sides. 

4) Chords, bars, and a secondary structure are generated based on the planes. Additionally, 

a tertiary structure, deck, and other geometry are generated based on the same logic but 

are not illustrated in the figure.  

5) The centreline geometry is stored in the lists of Top Chords, Bottom Chords, Bars, 

Secondary beams and Zero-force bars. 

Location Orkanger 

Type Permanent structure 

Completion 2017 

Design period October2015->February2017 

Design Team John Haddal Mork, Marcin Luczkowski, Steinar Hillersøy Dyvik  

Other collaborators Moelven Glulam, SINTEF 

Project owner  Orkdal Municipality  
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Figure 47: Construction of the wireframe geometry.  
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Step 1: Defining elements 

The chosen detailing system highly influences the manufacturing strategies. The chords and 

bars are slotted to make space for the steel plates. The slot can be processed from the top, and 

a CNC chain-saw can be applied. However, a more conventional method is to split the element 

into sub-elements that are individually processed and then glued together. The latter method 

was chosen, which enabled milling the slot from the side.  

The chords were defined as a composite constructed with three sub-elements. The steel-plates 

are placed between the sub-elements. Figure 48 shows the bottom chord composite. 

 

Figure 48: The bottom chord and bar elements were constructed by three sub -elements. 

Step 3: Structural Analysis 

Karamba 3D was used to explore plausible truss shapes. The shape of the top curve of the Evjen 

Bridge was developed by exploring plausible shapes. However, a more thorough analysis was 

performed by a specialised analysis software.  

 

 

Figure 49: Rather late in the design process, the top chord shape was changed due to structural 

requirements.  
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Step 4: Searching for joints 

The bridges consist of a series of joint types. However, to explain the chosen solution, the 

identification of the four main joints are described: Bottom Chord, Top Chord, Foundation, and 

Zero-Force joint types. The next sub-chapter will explain the bottom chord joint type in more 

detail.  

 

Figure 50: Parametric joint types.  

Name True Rules Node Plane Generation  

Top Chord Connection Contains a Bar 

Contains a Bar 

Contains a Top Chord 

Plane normal from a custom 

vector parallel to the 

secondary beam and directed 

towards the centre of the 

bridge. X-alignment that 

corresponds to the direction 

of the chord. 

Zero Force Connection Contains a top Chord 

Contains a Zero-Force Element 

Similar to Top Chord 

Connection 

Bottom Chord 

Connection 

Contains a Bar 

Contains a Bar 

Contains a Bottom Chord 

Contains a Secondary Beam 

Similar to Top Chord 

Connection 

Foundation Contains a Bar 

Contains a Zero-Force Element 

Contains a Bottom Chord 

Similar to Top Chord 

Connection 
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Step 5: Detailing elements and nodes.  

This step is illustrated using the most complex joint type—the bottom chord connection. 

Dowels and a custom steel plate connect the two bars and the chord. Additionally, the detail 

also contains the secondary, circular, steel beam suspended by a bolt in the steel plate. The 

principle of suspending the secondary beam is a well-known concept that is mostly applied in 

larger structures. In these structures, the pinned connection is placed below the bottom chord. 

To reduce the height of the structure, the pinned connection is elevated and hidden in the bottom 

chord.  

 

Figure 51: Explosion model that shows the manufacturing sub-elements. 
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Figure 52: Assembly order of the bottom chord detail  
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Since the detailing system is well known, knowledge-based engineering (KBE) could be 

applied. Distances from the bar-edges to the dowels (X/Y-direction), minimum distances 

between two dowels (X/Y-direction) and dowel dimensions are examples of standardised 

parameters that are dependent on the joint’s forces. These parameters were implemented in the 

model to instruct the geometry generation. All joints are geometrically unique but topologically 

similar. Closer to the foundation, the number of dowels had to be increased; refer to Figure 53.  

Both the bars and the chords are detailed solely by applying drill holes, pockets, and cut 

processings. As explained in Figure 53, all holes for the dowels are drilled. The bars are cut in 

two directions, and the space for the metal plates are pocketed. Note that while the rise of the 

arch varies, the direction of the suspension remains vertical.  

 

Figure 53: Timber processings. The double-cut processings of the bars are not included in the 

illustration. 
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Step 6: Processing assembly 

The manufacturer’s CAM software was CAD WORK, which enabled transfer of the model via 

BTL. When the model was transferred, the manufacturers applied a post-processor to convert 

the generic processings into machine-specific instructions.  

 

Figure 54: The BTLx-file of Follo Bridge. 

 

Step 7: Manufacture and build 

With the exception of the curved elements, a Hundegger Speedcutter manufactured all 

elements. The curved elements were milled by a larger CNC machine. The steel elements were 

cut using CNC and the trusses were preassembled to reduce the amount of work at the building 

site. 
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Figure 55: Fabrication and assembly of Evjen Bridge.  

 

Figure 56: The video shows how the joints are being identified while sketching. Further, the video 

shows the Bottom Cord Joint Type.  
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Result 
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Generalisation of the case structure  

The Orkla Bridges have been the key informant to most concepts developed in the Reindeer 

plugin. The next case structures were mostly refined and expanded using previously developed 

concepts. Following is a list of generalizations: 

- Conception of an element: The focus given to different stakeholders’ conceptions of 

an element was triggered by designing the Orkla Bridges. The manufacturer demanded 

a 3D model that contains each individual sub-element and promoted the development 

of the composite functionality. 

 

- BTL: Similar to the composite, implementation of BTL was advanced by the demand 

of the manufacturers. However, the design team simultaneously needed to preview a 

developed design. Thus, TimberProccessingTools was developed.   

 

- DetailSearch: When creating a relationship between elements and nodes, identifying 

nodes and their elements became a laborious process. The solution was to create a node-

oriented list structure of the curves that represent the elements, names of the elements, 

and nodes. By checking the names in each instance, identifying the branch that belongs 

to each joint was possible. As described in the Reindeer chapter, this process has 

evolved into a universal search based on various properties in a joint.  

 

- Slow performance: Use of the toolkit became extremely difficult at the end of the 

project due to constant lags caused by poor programming. The toolkit required a total 

remake, and at this stage, rebuilding the toolkit using C# was decided.  
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-  
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9.2. Printshell 
The Printshell project was designed, manufactured, assembled, and disassembled in a month. 

Printshell was a small pavilion that was designed as a gridshell structure and exhibited at the 

Trondheim Maker Faire. Initially, the goal of the project was to explore the potential of 3D-

printed gridshell nodes; however, it became an important case project for the Reindeer toolkit. 

This project was carried out in the middle of the Orkla Bridge project. While designing the 

gridshell, we realised large similarities to the process of building a bridge. In the bridge, a 

parametric relation had to be established between the connections and the bars, chords, and 

secondary beams. A similar relation had to be established between the nodes and the laths, 

which enabled us to realise that both projects could be generalised to be described by elements 

and nodes. Thus, this project is an important milestone in this study: the conception of 

similarities flips. Parametrically, a gridshell is more similar to a truss bridge than a gridshell is 

to a solid shell; Refer to Figure 57. 
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Figure 57: As we are discussing a structure’s parametric system and logic, a gridshell is mor e 

similar to a truss bridge than to a solid shell.  

 

 

 
Figure 58: Printshell was designed via a detached activity configuration. The activity 

configurations are explained in the methodology chapter.  

 

Step 0: Constructing Wireframe geometry 

The input to the toolkit was the centre curve of the laths in the shell structure. The following 

text provides a brief explanation. 

1. Guide curves were manually drawn. 

2. A network surface was generated from the curves. 

3. The surface was converted to a gridshell by applying a pattern.  

4. The shape was optimised by dynamic relaxation and reducing the element’s lengths to 

be shorter than the manufacturing limitations of 1200 mm.  

5. All laths were stored in one list. 

Location Solsiden, Trondheim 

Type Temporary pavilion 

Completion 2016 

Design period August 2016 

Design Team John Haddal Mork, Marcin Luczkowski, Steinar Hillersøy Dyvik  

Other collaborators Addlab Gjøvik 

Project owner CSDG experiment 
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Figure 59: Construction of the wireframe geometry. 

 

Step 1: Defining elements  

The Orkla bridge project had a complex composite but a straightforward alignment: the Z-axis 

(height) of all elements were aligned according to the global Z-axis. The alignment in the 

Printshell case was opposite: a simple cross-section of 48×48 mm but all elements had to be 

individually aligned following the curvature of the shell. More precisely, the Z-axis of the bar 

is parallel to the normal vector of the surface evaluated at the point closest to the centre point 

of the lath. 
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Step 4: Searching for joints 

The Printshell project had only two joint types: the foundations and the shell node joints. The 

primary reuse of the Orkla bridge algorithm was the component that established the relation 

between the nodes and the elements. Since all joints contained a “bar,” no existing solution 

distinguished the foundations and the shell node joint types.  

 

Figure 60: Parametric joint types. NB: Refer to the following description: the foundations  were 

manually dispatched from the shell node list.  

Name True Rules Node Plane Generation  

Shell node Joint Contains a Bar 

 

Plane normal from the normal of a 

plane generated from the average of 

points on the elements x mm from the 

node.  

 

All joints were outputted from the same data stream but a prototyped algorithm that checked 

the number of elements in the joint dispatched the foundation joints.  

Further, when extracted, the order of the elements was random. To detail the connection, the 

elements had to be consistently sorted in clockwise order relative to the node plane.  

Step 5: Detailing elements and nodes.  

In this project, the geomtric complexity was absorbed by the 3D-printed connection. The length 

was the only variable in the element: the theoretical length of the curve with a fixed size (that 

corresponded to the size of the connection) subtracted on both sides.  
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The connection’s shape was determined by the direction and alignment of the elements. An 

element-aligned “puzzle-shaped” arm is the interface between the node and the element. Each 

neighbouring arm was organically morphed. To reduce the print volume, material is removed 

from the centre of the connection. The centric star aligns to the node plane. These simple rules 

create a large variety of connection instances.  

 

Figure 61: Explosion model of the shell node joint type. Each lath has identical geometry  at the 

ends. Thus, the complexity is solved by the node's geometry.  

Step 7: Manufacture and build 

The elements were manually processed in a workshop. The nodes were printed using an 

advanced nylon 3D printer.  
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Figure 62: Low-tech manufacturing of the timber elements. High-tech manufacturing of the nodes.  
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Results 
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Generalisation of the case structure  

- Element alignment: This project proved that it was crucial to creating a flexible 

element alignment either by components such as the AlignElementToSurface-

component or inputting a custom element normal vector. 

 

- From name-filter to search-rule: At this stage of the development, DetailSearch was 

only an algorithm that filtered names. This project showed that the toolkit would be 

more flexible by adding other search criteria, such as the number of elements. If the 

project were designed with the current version of Reindeer, several ways to identify the 

joints would exist. The following two tables illustrate possible identification strategies.  

Name True Rules False Rules 

Shell node Detail Has at least 3 elements 

 

- 

Foundation  Has two elements 

 

- 

 

Name True Rules False Rules  

Shell node Detail - The node is close to the 

ground region (a closed 

curve on the ground plane) 

 

Foundation  The node is close to the 

ground region (a closed 

curve on the ground plane) 

 

- 

PS: The false rules are valid if the answer is no (false). In this case, when the algorithm checks 

if the node is close to the ground region, and the answer is no (false), then it is a valid shell 

node joint type. 

 

- Consistent element output from the joint: The element’s location and the relation 

between two elements instructed the detailing of the connection. This case showed that 

offering logics to output a consistent order of elements was crucial.  

 

- Detail plane generators: The Orkla Bridge offered one type of joint-plane generation. 

The Printshell exemplified the relevance of generating a node plane based on the 

orientation of the elements. 
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-  
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9.3. Water Ramp 
The water ramp is a training facility for freestyle athletes. The facility offers a ski jump but the 

athletes land in a lake after jumping to reduce the risk of injury. In addition to functioning as a 

ski jump, the structure also serves as a public viewpoint. In this project, a conventional column 

and beam system were chosen. Two double primary beams support an array of cantilevering 

secondary beams. The front half of the primary beams is directly connected to the foundations. 

In the back half, two pairs of columns support the beams.  

Similar to most ski jumps, a stair connects the top and bottom. The width of the stair 

corresponds to the length of the cantilever, which enables the timber stair to merge into a 

concrete stair and continue into the water. 

The time spent designing the water ramp was not academically financed. This fact changes both 

the design timespan, number of hours available and resources available from the manufacturer. 

Thus, different findings were harvested from this design process.  
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Location Trondheim, Norway 

Type Permanent structure 

Completion 2018 

Design period June-September 2017 

Design Team John Haddal Mork, Anders Gunleiksrud (Rallar)  

Other collaborators Moelven Glulam, Rambøll, Bystøl AS 

Developer Trondheim Municipality  

 

 

Figure 63: The water ramp was designed by applying the first version of the toolkit. Thus the ramp 

was an applied activity configuration. The activity configurations are explained in the methodology 

chapter. 

 

Step 0: Constructing wireframe geometry  

1. A manually drawn line represents the direction of the ski jump and the position of the 

bottom curvature.  

2. Three lines represent the kicker, uphill, and top platform. The kicker and top platform 

are horizontal and defined by two individual lengths. An angle and a total elevation 

define the uphill line. The requirements of this ski jump were 30 degrees and a 12-metre 

elevation. 

3. The three lines are joined and filleted at the top and bottom.  

4. In the transversal direction, the curve is duplicated on both sides to represent the primary 

beams. 

5. The beam curve is vertically offset equal to half of the primary beam height and half of 

the secondary beam height. Lines that represent the secondary beams are evenly 

distributed on the offset curve. A dummy line is generated to maintain the relationship 

between the primary beam and the secondary beam.  

6. A grid system defines the distance between the columns/foundations. The positions of 

the columns are calculated at the primary beam. This position is then vertically projected 

to the 3D terrain and generates columns.  

7. A double and a single cross are generated.  
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Figure 64: Construction of the wireframe geometry.  
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Step 1: Defining elements 

The manufacturing process of the water ramp did not require sub-elements. However, this 

structure was also algorithmically generated by applying composites. Inspection of the primary 

beams and connecting columns reveals that a primary beam is connected to both sides of the 

column. Instead of creating two, independent primary beam elements, defining a composite of 

two sub-elements and a centric void equal to the width of the column was more reasonable. 

However, the previous version of the code did not allow voids in the composite. The lacking 

functionality was hacked by creating a dummy sub-element, which was equal to the void and 

was not manufactured.  

 

Figure 65: To create a double primary beam, the previous version of the toolkit required 

application of a DummySubElement. 
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Step 4: Searching for joints 

At first glance, the water ramp structure seems less complex than the bridges. However, the 

water ramp had a considerably larger number of joint types, which were filtered by searching 

the element’s names.  

 
Figure 66: Parametric joint types.  

 

Step 5: Detailing elements and nodes.  

A water ramp and a timber truss bridge are not visually similar. However, the detailing principle 

has similarities. The foundation joint type, cross-bracing, and primary beam extension are 

connected by slotted metal plates. In this case, the use of bolts instead of dowels was required 

as the double primary beams need to be connected with bolts that can withstand the transversal 

load.  

The similarities enabled copying the TopChord joint type from the Orkla Bridges and 

modifying it to a columns-foundation joint type. As previously mentioned, this project was a 

commercial project, and the flexible reuse saved several hours of defining and modelling of the 

detail.   
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Figure 67: Explosion model of the foundation joint type. The diagonal bar is part of the cross.  
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The secondary beams were designed to be slotted into the primary beams to simplify the 

assembly process. In each instance of this joint type, the primary beam was pocketed by a 

rectangle whose shape was equal to the shape of the secondary beams plus a small tolerance.  

 

Figure 68: The secondary beams were designed to be slotted into the primary beams.  

Step 6: Processing assembly 

The entire project was parametrised for digital fabrication and modular pre-assembly, from the 

primary structure to the deck and railing. However, the manufacturing and building process was 

externally controlled and caused two changes:  

1) Although the same manufacturing firm was chosen in this project, a new constructor 

was chosen for the project. This constructor was not familiar with BTL and required a 

conventional STEP/IGES 3D model. Thus, the parametric model was baked as NURBS 

geometry and conventionally exported. 

2) The glulam structure was digitally fabricated; however, the secondary structure, deck, 

and railing were manually built on-site. 

These two changes will be discussed at the end of this study.  

 

Figure 69: A BTL file of the water ramp. The video shows a conceptual study of where to place the 

water ramp. Further, the video shows an adjustment of the TopChord joint type.  
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Step 7: Manufacture and build 

 

Figure 70: The top pictures show the assembly of the load-bearing structure. The platform and 

railing were fabricated on-site. 
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Results 

   

 

Figure 71: All photos on this page: Sophie Labonnote.  
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Generalisation of the case structure  

- Void in composites: The primary beam was described as two sub-elements and a 

centric void. In the 0.2 Timber Toolkit, a void could only be hacked by using a dummy 

sub-element in the middle. This lack of functionality enabled a focus on creating a more 

flexible composite algorithm that allows voids and local alignments. 

 

- Offsetting cross-section from centre-line geometry: Timber structures are often built 

by bypassing elements, which is the case for the secondary beams at the water ramp. 

Instead of being centrically connected to the primary beams, they are positioned on the 

top beam. Structurally reasonable: the main force is directly transferred from the 

secondary beam to the primary beam. The challenge is that the algorithm cannot identify 

nodes/joints when the centreline geometry does not intersect. A common solution, 

which was implemented in this project, is to define a dummy element that is connected 

to both elements. According to the rules of Reindeer, this solution does not join the two 

beams in one joint. The solution implemented in the current Reindeer is that the 

composite enables an offset value from the centreline geometry. Currently, this solution 

works well for detailing but the structural analysis does not consider this offset. Future 

work may develop an algorithm for creating dummy structural sub-elements with high 

stiffness to account for eccentric loads.   

 

- Slotting using the other element: As illustrated by the primary and secondary beam 

detail, a lap joint is a conventional detail in timber structures. In this project, the problem 

was solved by creating a custom pocket that was informed by a rectangle for each 

instance. However, this process is laborious. The current Reindeer toolkit enables the 

user to apply a second element to inform how the first element should be pocketed. 

Additionally, a custom tolerance value can be input.  

 

- Custom contours: The ends of the primary beams are filleted to create a more slender 

expression, which was solved by sending a conventional 3D model to the manufacturer. 

However, this approach revealed the relevance of inputting a custom cutting contour of 

an element. This functionality is not supported in the Reindeer algorithm.  
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9.4. Log House 
The log house is a small sauna in a secret, rural location in the woods of Sweden. Still, the 

extensive use of parametric modelling was considered reasonable. Similar to Printshell, this 

case project was not directly related to the Reindeer development. However, the project had a 

substantial impact on the development of the DetailSearch.  

The sauna is built by elements of 73×98 mm solid wood. These elements have a double tongue 

and groove. In this project, first, a log house algorithm was developed, and second, a design 

was developed. This case is relevant with regard to how joints are identified.  

For this project, intricate joinery principles were avoided. Instead, every other log is shortened 

or extended to create an overlapping corner. The corners have a hole for a threaded rod that 

stretches from the bottom of the structure to the top of the structure. 

Location Deep woods of Sweden 

Type Permanent structure 

Completion 2018 

Design period September 2017-June 2018 

Design Team John Haddal Mork, Anders Gunleiksrud (Rallar) 

Other collaborators - 

Developer Private 
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Figure 72: The Log House was designed using a detached activity configuration. The activity 

configurations are explained in the methodology chapter. 

 

 

Step 0: Constructing wireframe geometry  

1. Draw walls, floors, ceilings, and benches using surfaces  

2. Array an XY-plane that corresponds to the layer elevations of the logs 

3. Generate centrelines by intersecting the planes and the surfaces 

4. Output all lines on the same list. In parallel, a related list with wall names is generated 

 

Figure 73: Construction of the wireframe geometry.  
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Step 4: Searching for joints 

This project did not apply any version of the Reindeer toolkit. The same relation between 

elements and nodes had to be established. When visually analysing a log house structure, four 

common joint types were identified: 

- L-joint: a corner 

- T-joint: an end of a wall meets a continuous wall.  

- I-joint: a single end of a wall 

- X-joint: two continuous walls intersect.  

 

Figure 74: Parametric joint types.  

A human easily detects different joints. At first glance, instructing an algorithm to perform the 

same task is more cumbersome: with the exception of the I-joint, all joints consist of two 

elements. However, the location of the node relative to the elements distinguishes them. If 

reparametrising the length of the element from 0 to 1, the logics are defined as follows:  

I-joint: Consists of only one element 

L-joint: Both elements have the joint’s node at parameter 0 or 1 

X-joints: None of the elements has the joint’s node at parameter 0 or 1 

T-joint: One of the element has the joint’s node at parameter 0 or 1 

The logics that were developed were poorly organised Grasshopper code with a series of steps 

for filtering each joint’s ID. The ID was then used to filter curves, nodes, wall-names, and other 

information related to the same joint.  
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Step 5: Detailing elements and nodes.  

 
Figure 75: A simple detail. Every other element is trimmed. Additionally, a suspended threaded rod 

keeps the structure stable.  

 

Step 6: Processing assembly/Step7: Manufacture and build 

This project was manually prefabricated off-site. Thus, the goal of the assembly processing was 

to output manual fabrication instructions and ensure element logistics. The developed solution 

was a sticker that contains fabrication instructions: length and optional positions of drilling 

holes. 

 

 

Figure 76: The output from the Grasshopper model was A4-sheets of stickers, which contained ID, 

position, length, and eventual holes.  
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Figure 77: The QR code shows how the user can sketch using surfaces. The background algorithm 

analyses the surfaces and generates logs according to the embedded detailing principle.  
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Results 
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Generalisation of the case structure  

- Detail Topology Search: The identification of different joint types in the log house 

proved the value of being able to distinguish the basic shape of a joint. Thus, Reindeer 

has implemented the joint topology component. In addition to the previously mentioned 

topologies, the inclusion of star-shaped (3 or more elements), planar and orthogonal 

joints was reasonable. 

 

- Flexible output: The toolkit is tailored for digital fabrication by applying BTLx. 

However, projects are not always completed as expected. The water ramp, Printshell, 

and log house exemplify this notion. The examples show the importance of ensuring 

that the toolkit provides an output flexibility from the TimberProcessingTools.  
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9.5. Smaller tests 
None of the presented, built structures were designed by applying the latest version of the 

toolkit. In this section, I briefly present a few imaginary case structures that illustrate the 

functionality that is embedded in the toolkit.  

From Log house to wall and shelves 

The log house algorithm contained four joint types determined by the topology of joints. 

Fascinatingly, a shelf and a frame wall are parametrically similar to a log house layer.  

 

Figure 78: Shelf generator. The sketch process is observed by opening the video in the QR code.  

 

Figure 79: A wall. Details identified by Reindeer.  
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Figure 80: The red joint in the figure. Similar to conventional pre -cut systems, the column is slotted 

into the beam. 

 

Grindbygg/Bent 

A bent (Grindbygg in Norwegian) is a traditional rigid frame structure that is connected by 

carpentry joints. A pilot of a parametric grindbygg was designed to test the functionality of 

TimberProcessingTools.    

The digital fabrication of a bent is not unique. The collaborating manufacturer has an existing 

workflow that applies SEMA and a Hundegger Speedcutter. However, the workflow was 

reported to be slow and dominated by redundant tasks. The Grindbygg example illustrates the 

flexibility of the Reindeer Toolkit.  

As illustrated by the video in the QR-code (refer to Figure 81), the parametric model was fully 

flexible for parameters such as length, width, depth and roof angle. The number of structural 

elements were updated accordingly. DetailSearch applies various search criteria to identify the 

parametric joints.  
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Figure 81: The video shows how the Grindbygg is being modified. The last part of the video shows 

the detailed carpentry joints.  

 

Some of the joints were detailed using tenon/mortise, pocketing, drilling and cutting. The 

following pictures show the parametric structure transferred to SEMA.  

 

Figure 82: Exported to SEMA. 
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10. Papers 
Figure 83 explains the relation among the papers included in the thesis. Paper I is broad and 

explains the main concepts of the toolkit. Paper II focuses on JointSearch and related 

preparatory steps. Article III explains the TimberProcessingTools. The latter article summary 

is extended with a section that explains the related algorithm strategy.  

Paper I 

Toward mass-customized architecture. Applying principles of mass customization while 

designing site-specific, customer-inclusive and bespoke timber structures 

Paper II 

JointSearch: Efficient parametric detailing preparation through user-defined and property based 

joint type filtering 

 

Paper III 

Parametric timber toolkit: A timber tailored approach  

 

The order of the papers is based on readability and are not based on the date of publishing.  

 

 

Figure 83: Relation among papers.  
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10.1. Paper I: Framework and basic explanation of concepts 
 

Paper title: 

Toward mass-customised architecture. Applying principles of mass customisation while 

designing site-specific, customer-inclusive and bespoke timber structures 

Publisher:  

Digital Wood Design  

Innovative Techniques of Representation in Architectural Design  

2019 

Book chapter, Springer 

ISBN 978-3-030-03676-8 

Co-Authors: 

Marcin Luczkowski, Bendik Manum, Anders Rønnquist 

Co-Authors level of contribution: 

Most of the paper was written/illustrated by Mork. Luczkowski wrote the 3.2 “Structural 

engineer’s conception of an element” and 4.2 “Structural engineer”. Luczkowski contributed to 

the content in the paper. Manum and Rønnquist assisted in structuring the paper and finding 

errors. 

Summary 

Paper I is broad and presents the background of the toolkit, including the intended workflow, 

conceptions of an element, definition of a detail (now joint), how detailing groups (now joint 

types) are identified, and how elements are detailed using subtractive tools.  

In this paper, special attention is given to the conception and requirements of geometry by 

architects, structural engineers and manufacturers. The paper explains the different conceptions 

of both an element and a detailed geometry and proposes a unified solution.  

An element is proposed to contain both manufacturing sub-elements and structural sub-

elements. In this way, all data of an element can be stored in the main element. 

Further, the paper defines a detail and discusses how the toolkit divides details into different 

detailing groups by filtering each detail based on custom search criteria inputted by the user.  

Detailing geometry varies among the involved stakeholders. The input of detailing a timber 

element is equal for the profession, e.g., a drill hole. However, the architects require a preview 

geometry, the manufacturer requires a blank and a processing, and the structural engineer 

requires a structural model. The paper proposes one tool for each operation that outputs three 

different geometries.   

Four case structures are presented. In addition to the Orkla Bridge project, the water ramp, shelf, 

and log house are presented. All structures are similarly presented by illustrating the different 

detailing groups and explaining their respective search criteria.  

Three reflections were made. First, many architects are on a quest to create uniqueness in their 

project, which contradict mass customisation, where some aspects require standardisation and 
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(variable) repetitions. The paper claims that parametric modelling is a great tool that enables a 

standardisation with a high degree of flexibility. Instead of standardising the physical result, a 

flexible workflow can be standardised, which is possible as time is spent creating the system—

instead of the generated instance—when parametrically modelling. If knowing how to create 

flexible parametric models, significant amounts of code and workflow can be reused for future 

projects.  

The second reflection concerns similarity. Parametric modelling changes what is considered to 

be a similar structure. What appears as visually and radically different structures from an 

architectural point of view is very similar from an algorithmic point of view. The log house and 

shelf exemplify this issue. Conversely, two functionally similar structures are fundamentally 

different from an algorithmic perspective. A truss bridge is more similar to a free-form gridshell 

than a beam bridge. This reflection relates to the parametric system. A parametric system built 

by elements and nodes is easily adapted to becoming a gridshell and a timber-truss bridge. 

However, the parametric system of a beam bridge is less similar.   

The third reflection relates to the architectural quality. Does the toolkit ensure great, bespoke 

timber structures? The toolkit does not ensure great architecture. At best, the toolkit reduces the 

amount of work spent on redundant tasks. However, the hours earned can be spent achieving 

better architecture. Architecture is made by architects; tools are tools that simplify the creative 

process. 

Afterword 

Vocabulary change: 

 Detail->Joint 

 Detailing Group->Joint type 

 

The paper presents an 11-step workflow. The content has large similarities to the presented 7-

step workflow but the paper’s workflow is more exploded. However, the logic of detailing 

groups has changed. This paper proposed inputting the search criteria to the assembly 

component. To detail a detailing group, a person inputted the name of the detail in the detailing 

group component. This logic was laborious, lacked intuition and required more computing 

power. Thus, the detailing group evolved into a JointSearch that inputs the assembly. 
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10.2. Paper II: JointSearch 

Paper title: 

JointSearch: Efficient parametric detailing preparation through user-defined and property based 

joint type filtering 

Publisher:  

Submitted for journal publication  

Co-Authors: 

Marcin Luczkowski 

Co-Authors level of contribution: 

The paper was written/illustrated by Mork. Luczkowski contributed to the content in the paper.  

Summary: 

This article focuses on Reindeer’s JointSearch and has a technical focus. A generalised joint 

filtering methodology is presented. The article claims that the number of different joint types is 

infinite. Thus, a joint filtering methodology that enables the user to modularly define a joint 

type’s solution space that is used for filtering joint instances is needed. The presented principle 

pertains to 1D timber elements; however, the methodology is applicable for other industries, 

element types and materials.  

Both preparatory steps—JointSearch and JointOutput—are thoroughly explained using 

concepts, flow-charts and code.  

Defining elements: The article explains how elements are defined using modular components.  

Identifying Joints: The article explains how a node/joint is identified at the endpoints and 

intersections of elements. While the end-point algorithm is straightforward, the latter event 

requires a more thoughtful code to achieve satisfactory performance. The presented solution 

employs R-tree to limit plausible intersections to check. Further, a simplified class diagram of 

the assembly, joint, element and sub-elements is presented.  

JointSearch: The core of the article explains how JointSearch works. To ensure scalability, the 

search criteria's format is strictly defined: Only questions about the joint can be asked; the 

answer to the question must be true or false; and the question allows user-defined variables. 

This question is implemented as a delegate method that inputs a joint and returns a Boolean 

value. These search criteria can either be inputted to be true to be valid or inputted to be false 

to be valid. When a joint is tested, all criteria must be valid.  

JointOutput: If a joint is valid, it is being outputted for detailing. To ensure a most possible 

coherent data stream, the user can specify the logic that orders the elements and the logic that 

generates the node-plane. Further, the article explains how a joint is deconstructed into elements 

and nodes and further deconstructed into parameters and sub-elements.  

The concepts are exemplified via small tests, which show the flexibility of the search criteria 

and the coherency of the joint output.  
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10.3. Paper III: TimberProcessingTools 

Paper title: 

Parametric timber toolkit: A timber tailored approach  

Publisher:  

World Conference on Timber Engineering (WCTE) 

WCTE2018, Conference, Oral presentation  

Seoul 

20 - 23 Jun. 2018 

Conference, Oral presentation 

Co-Authors: 

Marcin Luczkowski, Bendik Manum, Anders Rønnquist 

Co-Authors level of contribution: 

The paper was written/illustrated by me. Luczkowski contributed to the content in the paper. 

Manum and Rønnquist assisted in the structuring of the paper and identifying errors. 

Summary 

Paper III links directly to TimberProcessingTools and problematizes the gap between digital 

design and physical processing of timber structures.  

Tacit knowledge becomes embedded in a carpenter, and based on available tools, he refines a 

blank into the desired shape. As described in the background chapter, the paper discusses how 

wood processings are primarily subtractive.  

Conversely, when modelling 3D structures in a digital environment, a person starts with a blank 

canvas. Points, lines, curves, surfaces, and solids are digital geometry that are used to additively 

build a geometry.  

The paper raises two challenges about this method. The first challenge pertains to forgetting or 

not knowing the machining limitations when digitally modelling a design. If this issue is not 

addressed or resolved before manufacturing, errors may occur. The second challenge relates to 

transferring a digital timber structure to fabrication.  

The paper presents how the toolkit’s subtractive tools are functioning: The user applies tools 

that mimic wood processings, such as drilling, cutting, and pocketing. The outputs are NURBS 

geometry and a 3D file that is readable for manufacturers (BTLx). The expected result is that 

the user is exposed to similar limitations and possibilities that will be encountered when 

fabricating the structure.   

Further, the paper explains how the bottom chord at the Orkla Bridges was designed using 

subtractive tools and illustrates both a digital model and the physical result.  

The paper emphasises that the parametric toolkit shall not replace the value of manually crafting 

objects. These activities will always offer a more in-depth understanding that is valuable during 

digital design. 
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Figure 84 Subtractive detailing tools.  
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11. Discussion 

11.1. Algorithm strategy used in Paper III - Timber processing tools 
Explaining the algorithm strategy was beyond the domain of the paper. Thus, the following 

section provides a better understanding of the TimberProcessingTools algorithm. 

Algorithm strategy 

The algorithm strategy for timber processing has similarities to the search criteria strategy. 

TimberProcessingTools outputs an instruction that contains the element and a delegate method. 

This method stores inputs from the processing and how the processing is performed on the 

element. The processing assembly inputs the timber processes, links them with its elements and 

performs the processes. Figure 85 shows how TimberProcessingTools and ProcessModel 

components are connected. The following section provides a more detailed, systematic 

explanation:  

 

Figure 85: Drill instruction and processing.  

 

1. Generate timber processing instruction 

Each timber processing has various inputs. These inputs are stored in an initiated object. Each 

of these objects has a delegate method. With the element, the delegate method is wrapped as an 

OrderedTimberProcess and outputted from the component.  

 
Figure 86: Wrapping an element and a ProcessTimberDelegate.  

2. Link timber processings and elements 

When the timber processings are inputted in the process model component, all timber 

processings are linked with the correct elements. This step is performed by using the address of 

the element object. Figure 87 illustrates the linking. Figure 88 renders the actual linking 

algorithm.  
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Figure 87: Linking the elements and timber processes. One element may have multiple timber 

processes. 

 

Figure 88: Linking elements and processes. Step 1 identifies all _orderedTimberProcesses, where the 

wrapped element is equal to the element for which the search is performed. Step 2 extracts the Process. 

Step 3 initiates a building element that contains both the initial element and its processes.  

 

3. Run through each element and each element’s manufacturing sub-element. 

All timber processings are performed on the manufacturing sub-elements instead of the 

architectural elements. Thus, the algorithm needs to loop through each element and then loop 

through each manufacturing sub-element in the element. 

This stage generates a BTLx-part that is equal to the manufacturing sub-element. 

 

Figure 89: A BTLx part; defined by location, orientation,  length, width, and height.  
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 4. Run all sub-element’s delegate method 

At this stage, all delegate methods in a sub-element are run. The delegate method inputs 

geometric data related to the sub-element and returns a BTLx processing and BREP that 

represents the void. How the BTLx processing is defined and how BREP is generated varies 

from processing to processing. The following section applies a drill processing as an example.  

To create a BTLx process, various parameters need to be harvested. Figure 90 shows the 

information that is needed for drilling processing. The delegate method calculates these 

numbers and stores them in a BTLx-Drill processing object (refer to Figure 91). The calculated 

numbers are based on a reference side relative to the BTLx part. Therefore, the most reasonable 

reference side is calculated.  

 

Figure 90: Geometric and numeric description obtained from www.design2machi ne.com. The grey 

box is a parametric description of a drilling operation.  

 

Figure 91: DrillingType object is being initiated. The code illustrates how a drilling instruction is 

converted to BTLx parameters.  
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Figure 92 The pink cylinder applied in the subtractive Boolean operation.  

 

The generation of BREP geometry is more straightforward than a BTLx description. A cylinder 

is constructed based on the information obtained from the delegate method’s object; refer to 

Figure 93. When the BREP and BTLx processing is returned, it is added to respective lists 

associated with the manufacturing sub-element.  

 

Figure 93: Generation of the subtraction Cylinder.  

When all delegate methods have returned BREPs that represent the timber processings, a 

Boolean difference operation is performed. The last step is to output the desired geometry/file 

format. The file content is generated by serialising the BTLx class structure.  
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11.2. A specialist’s tool or a mainstream tool? 
Is it too demanding to be both an excellent architect and a skilled parametric modeller? The 

required knowledge is ever-expanding and includes knowledge of digital design tools and topics 

from other disciplines.  

Visual programming has drastically simplified parametric modelling, and future innovations 

will probably further simplify parametric modelling. Reindeer is a small step towards further 

democratising parametric modelling: The tool hides a few of the technical challenges in black 

boxes, and the BTLx translation and DetailSearch simplify the parametric modelling 

experience.  

I continue to defer advanced parametric modelling to specialists. Parametric modelling will 

become more common, and if most architects know its basic principles, communication and 

teamwork will be improved.  

I have contemplated whether I will use Reindeer in future projects. Reindeer is applicable to 

geometric tasks that are more complex than the presented case structures. However, if the 

complexity and data amount are significantly increased, the Grasshopper plugin will become 

too slow. In these cases, hacking the core algorithm of Reindeer and creating bespoke, project-

specific components would be more reasonable. 

Reindeer has implemented advanced techniques in a tool that will be applicable for most 

technically interested architects. The toolkit reduces the gap between intermediate skilled 

parametric modellers and the stunning works performed by DesignToProduction, CITA, and 

other designers. If users grow out the capabilities of Reindeer, that would be a good thing.  

11.3. Redefining similarity 
What is similarity? Two humans can appear very different, for example, different sex, different 

skin colour, different nose size, and different height. However, if you focus on their basic 

characteristics, they are almost identical, for example, two legs, one heart, one head, and two 

eyes. By grasping knowledge in this study, I am convinced that parametric modelling is 

changing our conception of similarity in building projects. Similarity in architectural design is 

not limited to function, materials and shape. Increasingly important, similarity pertains to the 

topology and parametric system that generates the geometry.  

As reaffirmed by Aish in the introduction[14], we are not directly drawing the geometry. 

Instead, we are modelling a system that generates geometry. Thus, similarity pertains to the 

system more than the shape. A bridge can be more similar to a gridshell than to another bridge 

with an equal span, material, and shape. Similarly, a parametric log house system can be more 

similar to a shelf than a Cross Laminated Timber house system.  

To fully utilise the power of parametric modelling, we must be aware of this shift. If using the 

old rules of similarity, we do not harvest the potential of reusing parametric systems from 

project to project.  
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Architects are often afraid of constructing similar buildings. A building is unique and adapted 

to its function, local building culture, and surroundings. If abstracting similarity to the level of 

a parametric system, we can reuse parametric systems while developing bespoke buildings. The 

log house to shelf and truss bridge to water ramp transition exemplifies this notion.   

If we are to reuse parametric systems, the models need some level of flexibility in their design 

space. As discussed, the flexibility of a code is often dependent on the time invested to develop 

the code. From project to project, a budget for developing a flexible and highly reusable system 

is not likely. However, as it is likely that an algorithm can be used in multiple projects, the 

investment can be spread long-term. In addition to rethinking similarity, we need to shift our 

mindset from thinking that we are creating a structure to thinking that we are creating a 

structural system—a parametric, flexible structural system that is a basis for multiple projects.  

Since DetailSearch is purely based on a joint’s property, a parametric joint type can easily be 

reused and adapted from project to project regardless of whether the topology and function 

significantly differ. A design office can then build an ever-growing library of parametric joint 

types that can be reused, combined and modified in future projects. This step is a small step to 

ensure mass customisation of the architectural industry. 

11.4. Consistent detailing  
When manually detailing, purposed for digital fabrication, it does not matter if two different 

joints are logically similar: you have to draw both anyways. 

Conversely, creating one joint type that handles a large design space is potentially timesaving. 

The fewer joint types that need to be developed, the less work required. Further, when 

developing a second joint type, the first joint type can be copied and adapted to suit another 

purpose. The result, at best, is a more consistent detailing and more coherent architectural 

structures.  

11.5. Control  
According to Carpo, digital fabrication is similar to a prosthetic extension[4]. I find controlling 

a machine easier than controlling a carpenter. I do not blame the carpenter. Phone calls, 

notational drawings, and mail are sufficient for some purposes but are highly imprecise. Rather, 

if I know how to instruct a machine and design for assembly (self-positioning building 

components), I am more confident of transforming a design into reality. 

A relatable example is the water ramp. The entire project was parametrically designed, prepared 

for digital fabrication, and planned for off-site pre-assembly. The contractor digitally fabricated 

the main structure but wanted to build the deck and railing on-site. Building the deck and railing 

on-site was time-consuming and caused delays and changes. While the primary structure turned 

out exactly as planned, the railing and platform were significantly modified. The built detailing 

principles were improvised and less durable than the planned principles.  

With the prosthetic extension that digital fabrication provides and the belief that architects will 

be reinstated as virtual craftsmen, I envision a beautiful future. Although some examples have 

been developed, I look forward to creating new solutions based on old and clever, pre-industrial 
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detailing principles and expressions; intricate carpentry joints; crafted timber surfaces; and the 

application of custom roots for special shapes. The possibilities are endless. 

Large volumes are better produced by machines but do not make the carpenter excess. Ideally, 

this reduced workload enables the carpenter to spend his or her skills on one detail, one handrail, 

one door hinge or a special window frame with a custom bookshelf. In this way, we can reinstate 

the carpenter as a craftsman and better utilise both humans and machines. 

An architect’s level of control in a building project is highly dependent on the available time 

and budget. Often a budget is fixed. Thus, finding ways to make the design process more 

efficient while maintaining or increasing the architectural quality is important. I have been 

discussing how Reindeer automates technical challenges, how we must redefine similarity, and 

how we must start thinking reusable structural systems. If adequately performed, these 

adjustments can contribute to making a design process more efficient.  

11.6. Productivity, Emissions, and Waste 
How does Reindeer address the introduced global challenges? Believing that a PhD study 

comprises a large contribution would be foolish. Thus, this discussion primarily occurs from a 

general perspective and reflects on how parametric modelling and digital fabrication influences 

productivity, emissions, and waste.  

Redundant work decreases productivity. Errors and bad interfaces among professions also 

account for decreased productivity. If correctly performed, parametric modelling automates 

redundant work and simultaneously reduces the chances of hidden errors. Parametric modelling 

and scripting enables designers to customise interfaces among professions.  

Given that a design requires custom building elements, digital fabrication is likely to increase 

productivity. Timber components are sequentially manufactured, and geometric variations do 

not significantly influence the manufacturing speed. However, one must be aware that 

rationalising and decreasing complexity by decreasing the number unique components has 

merit. Manually modelling one component—which can be scattered within a structure—is 

likely to be more efficient than creating a sophisticated algorithm that generates unique 

components.  

Design for assembly[76] and design for deconstruction[77] are two relatable terms. Design for 

assembly pertains to creating structures for which assembly is easy and efficient. Self-

positioning joints that are fixed by screws/bolts in freeform shells are modern examples, and 

log houses and Japanese joinery techniques are traditional examples.  

Design for deconstruction encompasses being able to reuse building materials by 

deconstructing them into their original components. Avoiding glued composites is key.  

Designing for assembly is most likely to be designing for deconstruction, as long as components 

are not glued or assembled using other non-reversible methods. Thus, designing for assembly 

as a strategy may increase productivity while decreasing construction and demolition waste. I 

see a bright future in which architects can be inspired by traditional joinery techniques while 

designing new, sustainable and efficiently assembled buildings.  
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If we want to reach above vision, developing digital tools that enable architects to more easily 

design sophisticated timber-based connection systems that are transferable to digital fabrication 

is important. With this line of reasoning, Reindeer is a small contribution to an increase in 

productivity and a decrease in construction and demolition waste.  
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12. Conclusion 
This study set out to develop a parametric toolkit for visual programming that was customised 

for detailing fabrication-ready timber structures. The aim of the toolkit was to reduce the time 

and algorithmic knowledge required for preparing a model for timber detailing and transferring 

a detailed timber structure to digital fabrication. 

Three arguments support the notion that Reindeer reached its aim:  

- Generation of topology is automated via the assembly component 

- BTLx-generation is integrated into the design tools, which reduces the need for 

additional work when transferring a design to fabrication 

- The JointSearch method does not require advanced algorithmic knowledge 

The case structures have exemplified and proved that the toolkit works and is applicable for 

various structures and functions. However, a limitation of this study is the absence of feedback 

from external users. Reindeer was published while finalising this study, and future feedback 

will determine the degree that Reindeer has reduced the required algorithmic knowledge.  

Many of the described and developed solutions relate to parallel developed work by CITA, 

Front, and DesignToProduction. The main contribution to the field of practitioners has been the 

development of a freely available toolkit. Thus, the contribution also pertains to democratising 

known but complicated parametric patterns[9].  

The fact that JointSearch is independent of global topology renders the parametric model 

significantly less fragile. The illustrated examples have proven JointSearch to be both flexible 

and precise in its filtering. Further, the method is material-independent. Thus, JointSearch is 

considered the main methodological contribution to the field of parametric modelling research. 

By conducting this study, I am convinced that AAD and digital fabrication is the key to making 

our building industry sustainable while maintaining the flexibility of our design. To realise this 

vision, we are dependent not only on the pioneers but most importantly the masses. Reindeer is 

a small step towards further democratising the use of AAD and digital fabrication. 

The toolkit reduces the amount of work spent on redundant tasks. The hours earned can be spent 

producing better architecture. However, architecture continues to be created by architects; tools 

are  tools that simplify, inform and strengthen an intellectual process.  
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13. Further work 
This study started with a practical approach and evolved into a more theoretical approach. The 

result is a toolkit that is based on a user’s perspective. TimberProcessingTools, especially 

JointSearch, has shown potential. A natural progression of this work is to investigate how 

Reindeer’s approach can be combined with other existing methods. Two main directions are 

identified. 

1. Custom Key-values 

Combining Reindeer with Elefront’s[36] custom key-value attributing would increase the 

capability of the tool. If the element had a custom key-value input, the parameter could be 

employed for search criteria and output via the joint.  

2. Topologic’s topology class structure and Reindeer 

Combing Topologic’s[32] class structure and Reindeer’s JointSearch would drastically increase 

Reindeer’s applications. Joints do not need to be a point-node and its 1D-Elements but can also 

be 

- EdgeJoint: Two or more faces meet.  

- PointNode: A 1D element intersects a face.  

- A cell (e.g. a room) intersects another cell 

In practical terms, these joints can describe the connections between connected Cross-laminated 

Timber (CLT) plates or a connection between a CLT wall and a beam. If the topology is 

provided by Topologic but enhanced with structural properties, Reindeer would, for example, 

be able to filter and distinguish all connections in a CLT structure.  

Reindeer is currently designed for timber structures. A future tool that combines the best from 

Elefront, Topologic and Reindeer’s JointSearch, deserves to be material- and profession-

independent, e.g., is applicable to detailing a ship’s steel structure. However, this development 

requires a higher abstraction level and is at risk of abandoning its original intention of 

democratising AAD.   
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Abstract: Mass customization is established in many industries, but are not yet integrated in architecture 
and the building industry. This article presents a parametric timber toolkit under development. A flexible 
toolkit for parametrically designed timber structures, a toolkit that simplifies and substantiates a continuous 
digital workflow from global shape to digital fabrication and assembly - A toolkit that requires parametric 
thinking, not only parametric modelling skills. The toolkit proposes solutions to four recurrent workflow-
related challenges that limit efficiency and quality while designing timber structures. A series of built case 
projects are used to exemplify and explain the toolkit. An important finding discussed in the end of the article 
is that parametric modelling, and partly the toolkit, changes our conception of what is considered a similar 
structure.  

 

Keywords: “Parametric design and fabrication strategies, CNC and Woodworking Technology, Parametric 
timber engineering” 

 

1. Introduction 

Is it possible to integrate the benefits of mass customization (MC) into architecture? How can architects 
apply the principles of MC while designing site-specific, customer-inclusive and bespoke timber structures? 
Mass customization, a term introduced by Stanley Davis in 1987(Davis, 1997), was later redefined by Andreas 
M. Kaplan and Michael Haenlein as follows: “Visionary traditional MC in a strategy that creates value by some 
form of company-customer interaction at the design stage of the operations level to create customized 
products, following a hybrid strategy combining cost leadership and differentiation.”(Kaplan & Haenlein, 2006)  

A challenge that distinguishes architecture from other professions is the large design space that has to 
be offered. Naval architects always make variations of a ship with a hull, an engine, and a variety of equipment. 
Designers in the footwear industry always deal with feet of different sizes and customers with different uses 
and styles. In contrast, architectural design projects range from working on a bridge to a high-rise to small 
furniture. Johanna Daaboul stated that MC can be offered either via product variability or process 
variability(Daaboul, Cunha, Bernard, & Laroche, 2011). Offering both, a wide range of process variability and 
product variability, is a core service of being an architect and makes mass customization especially complex. 
First, every project site is unique and includes the functional requirements, locally available materials, climate 
and building culture of a given location to be unique. Second, the user and the user’s needs and functional 
demands are unique. Adapting projects to their contexts is what makes architecture, architecture. Furthermore, 
architecture is a highly subjective task, partly a poetic process from a vision to a built structure, and mass 
customization must not remove such an important quality.  

The use of Computer Numerical Controlled (Rapp & Johnson, 1980) (CNC) Machines has become 
widespread in the building industry (BI). CNC-machines are used for a large range of manufacturing 
operations, such as cutting, drilling and milling, and are digitally controlled. One of the biggest benefits of using 
such tools is that the production process is automated and uses the same amount of time manufacturing a set 
of unique components, such as a set of identical components. However, automated manufacturing of unique 
building components does not implicate automated, manufacturing ready computer drawings. In contrast, 
unique building components require unique drawings and demands instead of an automated strategy to be 
economically sustainable.  

Computer-Aided Design(Burns, 1986) (CAD) has existed since the 80s, but in reality, it is more or less a 
digital, augmented variant of manual drawing. Later, Building Information Modeling(Kymmell, 2007) (BIM) was 
introduced. From dumb geometry, 3D geometry suddenly represented a building component—a building 
component aware of where it was, what function it had, optional data about cost, manufacturer, etc. According 
to Jared Banks, BIM enabled designers to spend more time designing and less time documenting and 
coordinating(Banks, 2016). 

Digital parametric workflows, which widely appeared a decade ago, represent a dramatic new way of 
applying digital power while designing our built environment. Instead of drawing geometry, parametric 



workflows let the user define the design as a series of decisions, systems and relationships(Krymsky, 2015). 
Hence, the digital design process has the potential of becoming more flexible than existing, partly standardized, 
BIM processes. Robert Aish described it as the computation era and argued that the objective of design 
computation is to overcome many of the limitations of BIM (Aish, 2013). We see a computational approach 
and parametric thinking as the next, decisive step to reach mass-customized architecture and BI. 

Parametricism (P. Schumacher, 2008) is a buzzword that has been around for some years and is often 
associated with organic, prestigious buildings made by architects such as Zaha Hadid or Frank Gehry. 
However, parametric workflows have greater potential than creating signature architecture and are thoroughly 
described in Architectural Design’s special edition, “Parametricism 2.0”. Patrik Schumacher claims following: 
“In order to reverse the current marginalisation of Parametricism, it is necessary to relaunch it in a self-critical 
redirection as Parametricism 2.0. Parametricism is architecture’s answer to contemporary, computationally 
empowered civilisation, and is the only architectural style that can take full advantage of the computational 
revolution that now drives all domains of society.”(Patrik Schumacher, 2016) 
 
Great examples of such methodology can be seen in the works of Shigeru Ban and Achim Menges. Shigeru 
Ban’s famous Nine Bridges Country Club gridshell is realized with the help of DesignToProduction (consultant 
company) parameterization and automated manufacturing(Scheurer, 2013). Another outstanding example is 
Achim Menges, who applies parametric tools throughout the entire process while making his pavilions and 
structures. Nevertheless, the mentioned projects are more customized than those that are mass customized. 
Large budgets and partly research-funded projects make such projects happen.  

What is mass customization in architecture? Parametric workflows are extremely efficient when 
established, but establishing such workflows in each project may not be economically justifiable. Hence, the 
goal must be to create a continuous parametric workflow from sketch to fabrication that is applicable to a wide 
range of projects. Through designing and building a series of timber structures according to an established 
parametric approach, we identified four recurrent workflow-related challenges that limit efficiency and quality 
while designing timber structures. These are also the challenges that often cancel a continuous workflow from 
sketch to fabrication and are the motivation to create the parametric timber toolkit:  

1) Parametric Detailing: Finding a robust way to sort and identify geometric data that are time-consuming 
in each individual project. Among other reasons, data is sorted to be able to design the different details in a 
structure.   

2) Tectonic Architecture: Processing timber components that are subtractive, meaning that the material 
is subtracted from a stock. In contrast, digital design is largely additive, e.g., extrusions, revolves, sweeps, etc. 
Thus, a recurrent design challenge focuses on how a component is physically manufactured. 

3) Manufacturing Descriptions: Concerning timber building design, architects and structural engineers 
tend to output geometry that the manufacturer has to redraw. Geometry that does not include information about 
the manufacturing process. The result is redundant work and increases the chances of modeling errors.  

4) Structural Analysis: Since the timber is orthotropic material and the most demanding phase in 
structural analysis is the connection design, the faster the structural analysis is implemented, the greater the 
chance of achieving a feasible project. Similarly, in manufacturing conversion, a challenge is to automatically 
convert geometry modeled by an architect to structural analysis.  

“First build your tool” is the title of the abovementioned Aish’s article(Aish, 2013). The objective of the 
ongoing research project has been to develop a flexible toolkit for parametrically designed timber structures, 
a toolkit that simplifies and substantiates a continuous digital workflow from global shape to digital fabrication 
and assembly. A toolkit that requires parametric thinking, not only parametric modeling skills.  

The toolkit is based upon the process of designing timber structures, but many of the principles are 
general and apply to other materials. This article thoroughly describes the system and principles of using 
elements and nodes as a basis for most types of parametrically designed architectural structures. It describes 
how architects, engineers and manufacturers considers an element, and a shared solution is proposed. 
Furthermore, the article describes the algorithm that sorts details into detailing groups. A series of built case 
projects are used to exemplify and explain the toolkit. An important finding discussed in the end of the article 
is that parametric modeling, and partly the toolkit, changes our conception of what is considered a similar 
structure. A structure can be similar in parametric description but can vary much in function, form, scale and 
all other attributes. What appears as visually and radically different structures from an architectural point of 
view is very similar from an algorithmic point of view. 

 

2. The computational workflow  



2.1 Software platform 

The toolkit is implemented in Grasshopper 3D(McNeel, 2015), an add on to Rhinoceros 3D (McNeel, 
2009). The visual programming software was introduced in late 2007 and accelerated the architectural 
software revolution.(Krymsky, 2015). Currently, the toolkit is an in-house beta-version, but is planned to be 
released as an open-source plugin early 2019. Using C# and Visual Studio, the toolkit is now developed as a 
proper plugin. Earlier development, as described in the case-studies, have been a combination of Grasshopper 
and IronPython scripting. The current toolkit is based on C# classes, which corresponds to the detailing groups 
described in chapter 4.1. The export from Rhinoceros is based on Building Transfer Language (BTL), and will 
be described in chapter 4.4 

Figure 1 and Figure 2 shows a simple example of the concept described in this paper. A few bars are 
connected in a node. If the bars are shorter than 925 mm, they are trimmed with an angle. The left side of 
Figure 1 shows the result in Rhinoceros. The right side of the figure shows the manufacturing readyBTL-export. 
Figure 2 shows the script in Grasshopper. 

 

 
Figure 1: Rhinoceros to the left, BTL-viewer to the right 

 

Figure 2: The grasshopper script required to create the geometry illustrated in figure 1 

2.2 Workflow 

To use parametric modelling as an efficient method, it is crucial to ensure a continuous flow from overall 
geometry, via detailing and structural analysis to manufacturing output. Furthermore, it is crucial to sustain a 
workflow that suits both architects, engineers and manufacturers. This chapter explains briefly the chosen 
computational workflow. The following chapters explains in-depth how the introduced challenges are solved 
and implemented. 



The components and workflow are described in Figure 3, and the procedure is as follows: 

Overall geometry 

1) Centerline-geometry is generated with the help of Rhinoceros or conventional Grasshopper-
components 

2) The centerline-geometry is fed into one or multiple element components. Here, the centerline is 
materialized. 

3) In the element components, the cross-section, cross-section orientation and material are defined. 
4) The property description tools describe each detailing group. Here, the node-properties are also 

assigned.  
5) The loads are defined. 
6) The loads, the elements and the descriptions of the detailing groups are attached to the assembler. 

The assembler generates relations between the nodes and elements, generates the details and 
assigns the details to its detailing groups. This step relates to challenge 1 and are thoroughly described 
in chapter 4. 

 

Structural analysis 

7) Finite element analysis is performed using Karamba (Preisinger & Heimrath, 2014). However, the pre-
processing and post-processing of the analysis is included in the toolkit. To integrate the structural 
analysis and the architectural design, the structural FE objects are being made simultaneously with 
definition of the geometrical elements and its components (material, cross section). More over the 
results from FE analysis are automatically send for post-processing. The components are checking 
the elements and joints according to the EC5 criteria and are informing user (designer) about utilization 
ratio and which combination of failure state (compression, tension, bending, combinations) is crucial.      

Detailing 

8) The respective detailing groups are extracted by a component. Here, the user can extract each 
member of the detail.  

9) Properties from the members of the details are further extracted. 
10) Subtractive tools detail the timber structure. This step relates to challenge 2 and 3. The Subtractive 

tools are described in chapter 5. 

Output 

11) The outputs from the subtractive operations can be used for visual inspection, FEA or BTL-export. 
 

 

 

 



Figure 3: the computational workflow 

3. Establishment of a shared parametric approach for architects, structural engineers and manufacturers

An established method of modeling digital structures is to start with the center-line geometry, modeling 
the theoretical center-line of any building component. Columns, beams, chords and bars are described by two 
points —the start and end points that construct a line. If two lines share the same points, the lines are 
connected neighbors. The shared point will then be a connection node. With only points, lines and geometric 
properties such as cross section and materials, a majority of the different kinds of structure can be described 
in architecture or engineering.  

As in many other applications, the parametric timber toolkit is based on a system of curves and points. 
Curves can represent any building component with one dominant geometrical direction. In this article, these 
components will be described as elements. In buildings, elements are mostly attached by a physical connector, 
but digitally, they can be described as single points where elements start, end or intersect (hereby called 
nodes). See Figure 4. 

Figure 4: The article and toolkit’s definition of elements and nodes 

As a general description of a topology, the overall shape of the structure, the description of using curves 
and points, works very well. However, when architects, engineers and manufacturers are going into detailed 
design, analysis and manufacture of the structure, the described system is not optimal. The following is a 
generalized description of how geometry generation methods are preferred according to each of the building-
process participant:  

Figure 5: How architects, structural engineers and manufactures define an element 

3.1 Architect’s conception of an element 

What you see, is what you get. For an average architect, it is enough to consider an element as a building 
component. The physical component ordered from the manufacturer is what is being considered as one 
element. The example in Figure 5 shows two columns and an arched beam. Depending on the detail-level, 
further detailing of the node and even the refinement of the elements might be required. Regardless, the 
architect can consider the illustrated structure as three elements.  



3.2 Structural engineer’s conception of an element  

The structural engineers view the objects from two perspectives, physical and numerical. A numerical 
model always aims to simulate the physical behavior of the structure or at least it part (here called element). 
Currently, the numerical models are mostly built using the finite element method (FEM). 

In general, (the physical model) one element is understood by the structural engineer as an object with 
material continuity that allows continuous stress distribution. The engineering simplification of the objects to 
the beam element is very intuitive and allows operating on force and deformation for estimating the element 
capacity. Two rules are essential:  

1) Commonly, the beams are represented by the linear finite element; for representing curves, we 
divide it into a sufficient number of smaller finite elements. 

2) The connection/continuity between elements is described by the nodes, and the finite elements 
have to begin or end in the nodes. 

With the rules in mind, we see that the architectural model on the left side (Figure 5) does not fulfil the 
requirements for a structural analysis. First, the arch must be segmented into a polyline and fragmented into 
linear elements. Second, the beam must be divided where the columns are attached. That is, for a structural 
engineer, the structure consists of seven elements.  

3.3 Manufacturer’s conceptions of an element 
The architectural conception of an element is also often sufficient for a manufacturer. One element is one 

building component. However, sometimes, an element consists of multiple sub-elements joined together as 
one element. There are many reasons contributing to this phenomenon. For glulam-manufacturers, the 
reasons to split the element can be due to size limitations or being able to mill a complex detail.  

For such purposes, the element must be divided into multiple elements, but not likely in the same manner 
as for the structural engineer.  

If the structure in the example were detailed and slotted in plates and dowels as nodes, the manufacturer 
would likely prefer to construct each element from at least three sub-elements. In this way, space for the plates 
could be easily milled, thereby being glued together as one element. The result is seen in Figure 5 

3.4 A solution that integrates the three conceptions 
How is this problem solved? How does one make a model that satisfy these three approaches? Owing to 

object-oriented programming(Goldberg & Robson, 1983), a class-structure is developed to contain the three 
ways of describing an element. The master element is similar to the physical component delivered to the 
building site. However, a subclass is also storing one or more structural elements within the main element. 
Similarly, one or more manufacturing sub element is stored in the main element. The system is illustrated in 
Figure 6. Note that the structural sub element is subdivided transversal while the manufacturing sub element 
is subdivided longitudinal.  

 



 

Figure 6: Object-oriented programming gathers architects, structural engineers and manufacturers’ conceptions of an 
element in one master element.   

 

In addition, geometric representations of the element and a series of other data are generated and stored 
in the element object. First, geometric data such as length, height, width and local planes and vectors are 
stored. Second, cross-sectional data, material properties, manufacturing data and other metadata are stored 
in the element object, making it trivial to extract relevant data when detailing or analyzing a structure.  

 

4. Rethinking parametric detailing: Introducing property-based detailing groups 
The beauty of parametric modeling is the ability to create a limited amount of parametric details that 

become valid for numerous instances in a given structure. The challenge is to create a robust sorting algorithm 
that updates any geometry correctly. The first level of complexity is to make the sorting work for a given 
topology; a more complex sorting is to make it work for any kind of topology, allowing the topology of a structure 
to change fundamentally, but the details are updated and distributed correctly. Through the research project, 
a general and flexible sorting algorithm for parametric modeling has been developed. The method is 
surprisingly simple. 

However, to describe the concept properly, let us start from the beginning. What is a detail? When 
detailing a node, one is also detailing the ends of the connected elements. Hence, a detail of the node 
influences the node, and due to, for example, holes in the element, the detail changes the element size. 
Mutually, when detailing an element, the connected nodes may be affected. Thus, the system defines a detail 
as a coupled system of elements and nodes, that is, either a node and its elements or an element and its 
nodes. The principle is shown in Figure 7. 



 

Figure 7: Node-focused details and element-focused details. A node has elements and an element has nodes. 

 

Every type of structure, both parametrically and conventionally designed, contains a set of details. How 
the column meets the ground, how the members in a gridshell are connected, and how the top-chord is 
connected to the two bars are examples of details. However, there is a big difference between parametric and 
conventional detailing:  

Parametric detailing principle 

One parametric recipe for a detail generates specific geometry for all instances of the details in the 
structure. A good parametric recipe of a detail is able to handle a wide range of variations. The more general 
the recipe is, the bigger algorithm has to be.  

One model – several possible detail instances 

Conventional detailing principle 
If there are no variations, then one detail applies to all. However, if there are variations within the same 

detailing principle, one either has to draw several variations or describe only one in detail. The rest depends 
on the builders to replicate. Since each detail needs a new model in this approach, the time of design and the 
probability of making a mistake by the designer increase.  

One model – one detail instance.. 

4.1 Detailing Groups 

How a detail is crafted is decided by a series of considerations. Architectural, structural and manufacturing 
considerations are taken into account, but all of the other disciplines included in a building project influences 
a design. Are the details of the structure load-bearing? Is the detail geometrically planar? Is the connection 
hinged or fixed? Will the connectors be visible? Do the details need fire-protection? What class of materials 
will be applied? How will the components be assembled on the construction site? The possible considerations 
are almost endless. 

Figure 9 shows two structures. An experienced human can intuitively point out what is similarly detailed. 
The challenging part is to precisely describe the logics in a language that a computer understands. The method 
used in proposed algorithm is surprisingly similar to the children’s game called “Guess who?”. The purpose of 
the game is to use as few possible descriptive questions to ask of whom the competitor is thinking. It is not 
allowed to ask topology-based questions, such as “is it a person in the bottom-left corner?” See Figure 8.  



 

Figure 8: “Guess who?” Property descriptions filter the different groups 

 

Figure 9: Similar to “Guess who”, the detailing groups can be described by property descriptions.  

 

 



A similar approach is suitable to identify details in a structure. Figure 9 shows two structures. By using 
property descriptions, the same descriptions can be used on two different structures. In figure 9, all details that 
contains two elements becomes a foundation node. 

The key advantage of the described sorting principle is not to use descriptions relative to the topology 
and space. Rather, descriptions of local parameters, only influencing each individual detail, are used to identify 
the details. Hence, a change in the topology does not disturb the sorting system.  

The sorting principle is implemented in the toolkit by a series of components regarding property 
description. Detailing groups are defined by telling whether a property description is true or whether a property 
description is false. When the detailing groups are defined, each detail is analyzed to determine of which 
detailing groups they belong. A diagram of the system is described in Figure 10. Table 1 presents a list of 
property descriptions that have been or will be implemented in the toolkit: 

 

Name Description Option 

Element length Defining Min/Max Length Valid for one or all 

Element angle Max/Min angle between elements Valid for one or all 

Element 
parameter 

Defining Min/Max parameter where the node 
is connected to the element 

Valid for one or all 

Element 
amount 

Min/Max amount of elements  

Node position Checks if node is inside defined bounding box  

Element 
Names 

Checks if Detailing group contains defined 
names 

Including at least or exactly defined 
elements 

Element 
direction 

Defines min/max angle deviation from defined 
vector   

Valid for one or all 

Normal Force Defines min/max Normal Force value Valid for one or all 

Moment Force Defines min/max Moment Force value  

Table 1: Property descriptions that have been or will be implemented in the toolkit 



 

Figure 10: Diagram of the sorting algorithm. The algorithm checks each detail and determines if it fits one or several 
detailing groups.  

 

The result from the described sorting system is that one may end up with details present in either zero or 
multiple detailing groups. If that is not the intention of the specific project, then the detailing groups must be 
further described. However, there are cases in which details connected to zero or multiple detailing groups are 
relevant. First, being connected to zero detailing groups implies that no detailing is required, the stock does 
not need any refinement. Second, there might be sub-details that overlap in some details. An example is the 
chord connections of the Follo Bridge shown in Figure 11. The upper chord and lower chord are primarily 
similar, but the bottom chord node detail includes a suspended connection to the secondary structure. Hence, 
the connections in the top chord only belong to the ChordNodeDetail, while the connection in bottom chord 
also belongs to the SuspensionDetail 

 

Figure 11: The bottom chord detail belongs to the two detailing groups 



4.2 Node Properties 

The properties of the elements can be created simultaneously by defining the elements. Assigning 
properties to the nodes is a slightly more complicated process because the node geometry is a consequence 
of the intersection of the elements. The features of the node can be changed, added or limited according to 
changes in the global geometry. The system assumes that all nodes within one node-based detailing group 
have shared properties. Hence, the desired properties are connected to the property description component.  

Generating a sufficent node plane is crucial for efficent parametric detailing. As previously explained, the 
node is generated from the end points or the element intersections and is by default just a point with no normal 
direction. However, when detailing a spatial object around this point, the orientation of a local coordinate-
system, or a local node plane, must be clearly identified relative to the global coordinate-system of the overall 
structure. How a node plane is oriented is highly dependent on the type of structure and how the node is 
detailed, but this orientation is valid for all parametric detailing procedures; a consistent and logical node plane 
generation is crucial for efficient detailing. 

What is a consistent and logic generation of a node plane? The concept can be well-explained in a truss 
bridge example. By default, a node plane is an XY-plane (Figure 12 A) but is most likely not suitable for the 
nodes in a bridge. If the bridge is straight and parallel to a global axis, an XZ-plane or a YZ-plane is usable, 
but it is not flexible. A more consistent rule would be to say that the plane is planar to the truss plane (Figure 
12 B). Then, the structure can be oriented in any direction. However, the logics of the planes are still not 
consistent. The normal direction may be flipped, and the X-alignment may not be defined. By stating that the 
normal direction of the plane always faces from or to the secondary structure and the X-axis is parallel to the 
bottom chord, a fully consistent and logical plane-generation is established (Figure 12 C).  

 

Figure 12: Different strategies of node-plane generation. Figure 9 C shows a consistent and logical plane-generation 

These rules apply well for a truss bridge, but the logic does not necessarily apply for all other structures. 
For example, a gridshell structure is easier to detail if the normal axis of the node plane is parallel to the normal 
surface. Thus, the toolkit should supply various node plane alignment components.  

 



5. Digital Subtractive tools 

There are many purposes of creating a 3D CAD-model. The way a model is made influences the model 
output possibilities. A sketched volume model is relevant to understand the space to be created but most likely 
is not adequate for fabrication purposes.  

Most of the big manufacturers in the timber industry use CNC tools, such as Hundegger Speedcutter 
(Hundegger, 2001). These tools have two shared characteristics: they are controlled by numerical data, and 
they subtract material. These features must be taken into account when designing timber structures digitally. 
Since manufacturing timber is highly specialized and tool-dependent, a design must often be redrawn by the 
manufacturer. Redundant work is done, but it also increases the chances of human modeling errors. To solve 
this challenge, the modeling purposes and geometrical outputs of the architects, structural engineers and 
manufacturers were investigated. The timber toolkit aims to create an effective solution that fits all three 
professions. The following is a brief description of these three professions’ objective for 3D-detailing timber 
structures. The description focuses on the part that influences all three professions, namely, the load-bearing 
system.  

5.1 Architect:  

While some architects leave the load-bearing system to structural engineers, other architects base the 
architectural expression on how a structure is made. They use architecture to communicate how the forces in 
a building work and how a building has been crafted. To design such architectural expressions, it is suitable 
to make a detailed 3D-model, including the bolts and brackets. Indeed, the architect does not dictate the 
dimensioning but can hold a great influence on how the structural load-bearing system and detailing are 
composed. Thus, the architectural geometrical output is primarily visual. Secondary output such as cost, 
manufacturer, and volume may be generated.  

 

4.2 Structural engineer: 

The timber structures due to natural imperfections in the material (orthotropic, not linear grain angle, 
rods..) are very sensitive to imprecise detailing. Even the best calculations and perfectly chosen static schemes 
can be ruined because of bad explanations of the joint fabrication/production (the detail).  

The issue that is characteristic of timber engineering is finding the connection stiffness. Most of the 
connections are designed to be rotation-free hinges. Finding the real characteristic of the joint behavior is left 
either to experimental studies or sophisticated experiments.   

Two computational approaches are described—one which is simple and fast, and one which is advanced 
and more CPU-demanding. The simple detail analysis is made by applying analytical equations (e.g., from 
Eurocode 5). These equations can check a whole structure in real time. The advanced analysis is made based 
on sub-modeling. Critical details from global analysis are sent to local analysis. Finite element analysis is 
performed with volume-objects and more precise material descriptions, and it includes eventual steel 
connectors such as dowels, bolts and screws.  

At first glance, the geometry needed for advanced analysis is very similar to an architectural model. 
However, the major difference is that how the mesh of the analysis model is built up is critical to make the 
analysis work.  

4.3 Manufacturer:  
In regard to digital fabrication, the manufacturer’s output is preferably an assembly-ready building 

component, but the input is a primitive stock. Thus, one of the roles of a high-tech manufacturer is to create 
instructions for a CNC machine. Two-dimensional cuts performed by lasers or mills are possible to import from 
a standard CAD-model, but more complex operations have to be defined as virtual timber processing 
operations.  

4.4 Finding a shared detailing solution 

The three described methods and geometric outputs look surprisingly similar, but the difference is how 
the geometry is being made. There are some existing tools that are bridging the gap between the disciplines, 
but assuming a user-controlled parametric workflow, the options are limited. CadWork and HSBCAD are tools 
that are tailored for timber structures and connect architecture and manufacturing. Further, Woodpecker, an 
innovative tool developed by Lignocam and Designtoproduction, enables the export from Grasshoper 3D to 
any CAM-software. This export occurs through an open-source format called Building Transfer Language. 



However, Woodpecker is not a design tool; rather, it is more of a geometry conversion tool (STEHLING, 
SCHEURER, & ROULIER, 2017).  

The solution developed in this toolkit aims to bridge the gap between all mentioned disciplines while 
modelling parametrically. The concept is to allow the user to refine timber components exclusively based on 
subtracting material from a digital stock. Thus, the designer is forced into thinking about physical processes 
while designing virtually. When the architect applies a subtractive operation to a stock, three outputs are 
automatically generated. A 3D preview geometry, an FEA-ready mesh and a BTL-description. (In the current 
version of the toolkit, the FEA mesh is not yet implemented). The concept is illustrated in Figure 13. 

 

 

Figure 13: Different outputs from one subtractive operation 

 

5. Case Studies 
A series of case projects have been built to test the capability and flexibility of the toolkit. The following 

sub-chapters shows how the toolkit was used to parametrically design two timber bridges, a freestyle water 
ramp, a log house and a shelf. The structures are visually and fundamentally different but surprisingly similar 
when applying the ideas of elements and nodes. The toolkit have been developed while designing the case-
studies. Mock-ups of the toolkit have been developed in both Grasshopper-scripts, Iron-python and C#. Table 
2 shows what elements of the toolkit have been used designing the structures. 

 

Project Script Language Detailing 
groups 

Subtractive tools FEA BTL-Export 

Orkla Bridges Iron Python X X X X 

Water Ramp Iron Python X X X  

Log House GH-components X    

Book-shelf GH-components X    

Table 2: The table shows which elements of the toolkit have been used to design and build the structures. 

 

5.1 Orkla Bridges 

The bridges are designed for a pathway in a park and cross two small rivers. The distance between the 
bridges are approximately 1 km; hence, it was natural to create two bridges that had a similar architectural 
expression. However, the boundary conditions at the sites were different. The first bridge, Follo Bridge (shown 
in Figure 17) had a span of 10 meters and on height-differences but had to be arched to allow the potential ice 



drift through. The second bridge, Evjen Bridge (shown in Figure 16) had a span of 15 meters and had a 
relatively large height difference. Furthermore, the bridge needed curved platforms on both sides to connect 
to the path and fulfill the requirements of a maximum 1:20 rise.  

The different boundary conditions gave a nice opportunity to build a parametric model with a large enough 
design-space to be adaptable for both bridges. The architectural expression is based on a well-established 
system of dowels and slotted-in-plates as a connection system (Mork & Luczkowski, 2017). Due to relatively 
heavy loads, a secondary steel structure had to be used, but the rest of the structure is glulam-based. While 
the smallest bridge has a classic arched shape, the larger bridge has a more organic appearance with a 
doubled curved railing.  

Using the principle of detailing groups as outlined, only four different detailing groups had to be developed 
in the small bridge: the bottom chord, the top chord, the foundation points and the zero-force node. Figure 14 
shows the rules applied 

 

 
Figure 14: Detailing groups in Follo Bridge. The same rules were applicable while designing Evjen Bridge 

The bottom chord node is the most complex detailing group. The structural bars are connected to the 
bottom chord, and the secondary structure is suspended from the metal-plates. Due to the scale of the bridge, 
the suspension connections were integrated inside the chord, making a more compact detail. As previously 
shown, the basis for the detailing is stocks that are not processed. Subtractive tools are used to design the 
timber elements. In addition, steel components were designed using conventional parametric tools in the 
grasshopper environment. In the bottom chord detailing group, these processes were performed (Figure 15): 

• Cutting the bars parallel and with an offset half the height + 30 mm from the tangent direction of 
the bottom chord center curve.  

• A grid of holes for the dowels. The amount of dowels was calculated based on the force in the 
bar/chord, and the size of the grid was calculated based on the required edge distances.  

• A pocket milling to make space for the metal-plates. Both the plate that connected the bars to the 
chord and the plate for the suspended secondary structure.  



 

Figure 15: Subtractive operations to achieve wanted detail 

 

 

Figure 16: Evjen Bridge. Photo: Arnfinn Sæthre 



 

Figure 17: Follo Bridge. Photo: Arnfinn Sæthre 

 

 

Figure 18: The sauna (mostly L-nodes) on the left side and the water ramp with secondary connection and primary 
extension nodes. 

 

5.2 Freestyle water ramp 

A freestyle water ramp is a ski jump that ends in a lake and is used for summer training. This structure 
was a simpler design than those of the two bridges. Due to low loads, a beam-column structure was feasible. 
However, the principle of using dowels and slotted-in metal plates applied in this structure was used as well. 
Surprisingly, the water ramp had more details to develop than those of a bridge. The detailing groups can be 
seen in Figure 19, and Figure 18 shows the ramp under construction  



 
Figure 19: Relatively high amount of detailing groups. Note how the yellow detailing group can be used to trim building 
components.  

 

5.3 Log house sauna 

Until now, the examples have shown rules based on element names. However, there are many cases in 
which element names cannot be used. Often, the elements are nameless or a set of similar elements. In 
addition, previous examples have described spacious structures. Is it possible for the principle to apply a more 
homogeneous structure, containing only one type of element? 

An algorithm was developed to be able to model the wall’s surfaces. The algorithm then splits the structure 
into layers with a center-line geometry. What is challenging is to generate the actual length of each individual 
element. Some elements are extended, and some elements are trimmed to become an overlapping system.  

Looking at the system, there are four kinds of connection types, i.e., four types of detailing groups—the 
X-node, the T-node, the L-node and the I-node. These are easy for a human to determine, but what rules can 
be applied in the toolkit to distinguish the nodes? An X-detail contains only two laths, but that is the case for 
the L and T-detail, as well. In this case, information regarding where the node is relative to the lath was used 
to distinguish the details. Descriptions of the detailing groups are shown in Figure 20 and the final result is 
shown in Figure 18. 



 

Figure 20 Detailing groups applying the positioning of the node relative to the element to distinguish the details.  

 

With such rules, all the different types are separated, but there is one more condition needed to generate 
a log house, namely, the shift in which element is extended. Thus, one more condition to all the detailing 
groups is if the group is on an even or odd layer. If the T-node is on an odd layer, the element connected to 
the end will be extended, and the opposite will happen if the node is on an even layer. This principle is shown 
in the bottom-right of Figure 20.  

5.4 Plywood shelf 

Finally, the principle has been tested on furniture: a plywood shelf prefabricated using a 3-axis CNC-mill. 
Both visually and in function, a shelf is something extremely different from a truss, a ski jump and a log-house; 
there are different scales, different appearances, and different functions. However, algorithmically, a shelf is 
identical to one layer of the log-house principle. The same type of detailing group applies to the X, T, L and I-
node.  Figure 21 shows the nodes and Figure 22 shows the detailing of the X-node. 



 

Figure 21: Same property descriptions as the log-house, but different design of the details.  

 
Figure 22: Detailing the X-node. The parts are slotted to simplify assembly 

6. Discussion and conclusion  
This article presented a flexible approach designing structures parametrically. The aim was to investigate 

how to apply the benefits of MC while designing site-specific, customer-inclusive and bespoke timber 
structures. The main finding is that when abstracting any structure to elements and nodes, most of the 
structures can be designed through a similar set of rules.  

Architects are trained to design unique projects. Reusing elements from a completed project almost feels 
like cheating. Such mindset stands in contrast to the idea of mass customization. However, learning from the 
described study and case-projects, one conclusion is particularly prominent: To be able to achieve Mass 
Customization in architecture, we must standardize projects. Thanks to parametric modelling, we do not have 
to standardize the physical result. Rather, we can standardize the workflow, the process and the interfaces 
between the project stakeholders. This paper has exemplified a standardized, still flexible, building system in 
the age of parametric architecture.  

A structure can be similar in a parametric description, but can vary much in function, form, scale and all 
other attributes. What appears as visually and radically different structures from an architectural point of view 
is very similar from an algorithmic point of view. The log-house and the shelf exemplify this issue very well. In 
contrast, two structures that are functionally similar are fundamentally different from an algorithmic perspective. 
With such a view, a truss bridge is more similar to a free-form gridshell than a beam bridge. A tendency in 
described case-projects, is that one parametric workflow outputs a much larger design space than in ordinary, 
manually drawn CAD-projects. By parametric thinking, we are able to shift from standardized products to 
standardized, still scalable, parametric building systems. 



The toolkit made in fully parametric design environment allows the designer (architect or engineer) to 
observe and control the design in a holistic way. From digital conceptual draft to the production codes, every 
important decision can be programmed, followed in real time and changed according to the need of hour. The 
toolkit does not introduce such methodology, but simplifies and substantiates a continuous digital workflow 
from global shape to digital fabrication and assembly. This by offering a series of tools that reduces technical 
complexity of parametrically designing timber structures. Especially the detailing groups based on property 
descriptions and the digital subtractive tools have drastically reduced the time needed to set up a parametric 
model of a project. 

According to R.Aish [9] in computation design: “The designer is no longer directly modelling the building: 
instead he develops a graph or script whose execution generates the model”. The timber toolkit presented 
here allows the designer to go out from strict BIM design, where everything have to be described “a priori”, to 
described by R. Aish definition called computation design. The variety of presented cases done with one 
approach and one toolkit is a conclusive evidence of applicability of it in building design and industry.   

One can definitely state that the Orkla Bridge project fulfils the idea of mass customization. The first 
bridge, Follo Bridge were extremely time-demanding, but designing the Evjen Bridge was much more efficient. 
Updating the shape of the bridge required only 60-90 seconds, including a simple FEA, regenerating all details 
and not the least outputting BTL-instruction. However, these bridges were relatively similar. How about the 
other structures? The already-designed bridges contributed to a more efficient detailing of the water ramp. The 
slotted-in metal plates for the detailing algorithm were reused when modeling the foundations for the columns. 
They are different shapes but based on the same knowledge-based engineering (KBE)-rules.  

The flexibility of a building system is often dependent of the hours spent developing the system. A flexible 
and highly reusable parametric building system is lightly not to pay off if thinking one project a head. However, 
if developing the building system is considered as an investment in a series of future projects, we strongly 
believe that such mindset is economically sustainable. Further, to achieve Mass customization in architecture, 
we must continue shifting our mindset to better understand the possibilities of applying parametric tools and 
computation. 

At last, does the timber toolkit ensure site-specific, customer-inclusive and bespoke timber structures? 
The author’s answer is, luckily, that the toolkit does not make great architecture. At best, the toolkit reduces 
the amount of work spent on redundant work. However, the hours earned can be spent making better 
architecture. Architecture is still made by architects; tools are just tools simplifying the creative process.  
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Introduction

An important aspect of designing structures is to detail the joints – the intersection of building elements. The 
detailing of a joint is dependent on a series of constraints, including architectural, structural and manufactur-
ing constraints.1

Digital fabrication and algorithmic aided design (AAD) have evolved and will continue to evolve the 
building industry (BI): Digital fabrication and computer numerical control (CNC) machines expand the 
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domains of rational manufacturing. Not dependent on jigs and manual labour, CNC machines are universal2 
and can produce variations at no extra cost.3 This mode of production is referred to as nonstandard seriality4 
and substantiates a mass-customised BI.5 Similarly, AAD is crucial for expanding what is rational to digitally 
design. The digital aspect of nonstandard seriality is achieved by building algorithms that generate geometry 
based on custom inputs.

In parallel, visual programming software, such as Grasshopper3D6 and Dynamo Studio,7 has democra-
tised algorithmic modelling and enables designers with limited programming knowledge to utilise the power 
of both parametric modelling and digital fabrication. Arguably, digital tools have changed the conceptions 
and requirements of a detail.8

•• All variations of a fabricated building element need to be accurately modelled when applying digital 
fabrication: A digitally fabricated structure requires a digital twin. This requirement contradicts nota-
tional drawings that are aimed at manual labour, where principal details are sufficient. Although a 
structure consists of thousands of unique joints, the amount of principally different joint types is likely 
to be manageable. La Seine Musicale, which is a timber gridshell, had 2798 unique joints but only 8 
main joint types.9,10 By making an algorithm-aided parametric system for each joint type, the types’ 
instances can be automatically generated. The size of a joint type’s possible solution space is depend-
ent on the developer. Most joint type’s parametric system will allow some degree of geometric 
flexibility.

Regardless of the AAD, the logic that separates a set of joints into joint types varies from project to project. 
The previously mentioned joint types in La Seine Musicale were constrained by the beam types connected 
in the joint (two diagonals, a diagonal and a horizontal beam (referred to as ring)).9 Similarly, a beam that is 
connected to a column is likely to be detailed differently than a secondary beam that is connected to a pri-
mary beam. Thus, these two cases belong to two joint types. In other cases, other geometric parameters are 
determinant.

An important task of preparing a parametric detailing is to define a logic that defines elements, generates 
all preliminary joint relations, assigns all joints to their joint type parametric system and outputs a joint’s 
geometric data stream in the most possible coherent manner (refer to Figure 1). The purpose of this task is 
to prepare sufficient input data for each joint type’s parametric detailing system.

CITA has developed solutions for creating and storing information to generate joints.11,12 Similarly, but 
more universal, Wassim Jabi and Robert Aish are developing Topologic, which is a kit for non-manifold 

Figure 1.  Four steps for preparing a parametric detailing.
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topologies (NTMs).13This toolkit is open-source and allows the user to build topologic relations that com-
bines vertices, lines, wires, faces, shells and cells.

If a structure is logically clear, a small sorting algorithm may be used to filter the joint types. However, 
the algorithm is likely to be dependent on a fixed topology. Complex structures require other methods, and 
in the case of La Seine Musicale, a spreadsheet interface was employed to assign the correct type to each 
joint.9 A different strategy is to write a custom algorithm that filters joints based on defined properties – Buro 
Happold identified similar connections in the Morpheus Hotel exoskeleton by applying this strategy.14 
Rhino.Inside for Revit enables the user to filter geometry using predefined geometric rules.15 Front Inc. has 
developed a toolkit named Elefront, which enables the user to filter geometry based on custom key-values 
that are assigned to a geometry.16

As introduced above, methods for assigning joints to joint types exist. However, these methods of identi-
fying joints are dependent on a fixed and distinct global topology or require advanced parametric thinking. 
The result is a fragile parametric model or a time-demanding process of preparing a model for detailing.

In all types of detailing, properties and detailing-specific constraints define a joint type’s solution space. 
Thus, a tool that enables the user to intuitively transfer these properties and constraints to an algorithm is 
needed.

This article presents a methodology that efficiently generates topological relations and enables the user to 
assign joint instances to joint types. A series of property-based search criteria components is used to define 
the solution space of a joint type. Valid joints are coherently filtered, deconstructed and outputted and cus-
tomised for detailing. The result is a universal method that turns joint type identification independent from 
its global topology.

The tools are prototyped in a Grasshopper toolkit named Reindeer. The toolkit is under development and 
customised for detailing fabrication-ready timber structures. Other articles explain the overall framework5 
and timber-specific tools.17

This article explains the methodology and programming-related aspects of the developed tools. Brief 
examples and a built case structure demonstrate and evaluate the tool. A brief conclusion is provided.

Proposed methodology

As most projects invent a new joint type variation, the number of possible joint types is almost infinite. 
Therefore, predefining all joint type solution spaces is not possible. Rather, the designer should be free to 
define and update a joint type’s solution space while designing. This chapter proposes such a methodology. 
To explain the principle, a BottomChord joint type in a timber truss bridge is employed. See Figure 2.

Figure 2.  The timber truss bridge and the BottomChord joint type’s solution space.
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Any joint type has an intended purpose, such as structurally connecting two bars, a chord and a secondary 
beam. Thus, only valid joints must be detailed according to their joint type.

A well parametrically detailed joint enables some flexibility in its solution space9 and is likely to have 
some threshold values that cause the joint to belong to another joint type. In this context, a solution space is 
an arbitrary space that capsules all possible variations of a joint type. If a joint instance is inside the joint 
type’s solution space, it belongs to this joint type. The BottomChord joint type has the following property 
criteria that define the solution space. Note that the following property criteria correspond to both the joint 
and its elements.

Contains (a) BottomChord, (b) bar and (c) bar

The BottomChord is continuous through the node (can be subdivided for structural analysis)

The angle between the BottomChord and the bars are between 30 and 70 or between 110 and 140 degrees

The normal force of the BottomChord is between −35 and 30 kN

The normal force of the bars is between −20 and 20 kN

The joint is planar

The joint is not near a foundation

If a joint fails one of the property criteria, it does not belong to the BottomChord joint type. For example, if 
the BottomChord is not continuous, the joint is located at the end of the bridge. In this case, these joints must 
be defined as another joint type.18 Some properties allow a domain of allowed values, while other properties 
are Boolean. In the example, the combination of elements is fixed, while the angle between the bars and the 
chord allows a variation. In theory, all thinkable parameters are definable in a joint type. But if no joint 
instances are close to exceeding the threshold value, there is no practical function for defining it. In the 
example, the length of each bar is a redundant solution space parameter to define. A joint type’s solution 
space can be visualised using parallel coordinates. Figure 3 shows one property for each column and the size 
of the allowed domain. The figure compares Joint0 and Joint1 against the BottomChord joint solution space. 
Joint1 is valid, and Joint0 is invalid.

The outcome of defining a joint type solution space in this way is dual. Primarily, correct joints are 
assigned to correct joint types. However, a second application can be equally relevant. If assigned joints are 
visualised in real time, the designer can adjust the geometry until all joints belong to a detailed joint type. In 
this way, the method can also be applied for optimisation purposes.

This example showed how a BottomChord joint type’s solution space was defined. However, this method 
should work for all types of joints, regardless of material or function. To generalise the method, the solution 
space is modularised. Each module equals a property, and each property should have an adjustable domain. 
In this way, the user can easily add the properties that are relevant for defining a specific solution space. In 
some cases, one property is sufficient; for other joints, multiple properties are needed. Figure 4 shows how 
two sets of property criteria can filter two bridges and three shells.

This methodology is likely to be applicable for NTMs13 and can be used to filter any kind of joint. A joint 
can be point based, edge based or even face based. The only requirements are that the defining solution space 
must cover both the object and its neighbours and the structure’s elements must have sufficient property 
information for evaluation. By example, a joint type search can be performed in a cross-laminated timber 
structure. If the plates are idealised as faces, and the faces are attributed with properties such as name and 
width, the same solution space method can be employed. The methodology is expected to work universally, 
regardless of industry, material or topology.
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Implementation

To test the proposed methodology, a prototype is developed and implemented as a plugin for Grasshopper3D. 
To limit the scope, one-dimensional (1D) timber elements and seven property criteria were determined to be 
sufficient for implementation.

The following workflow is adapted to timber structures and are the steps used when applying Reindeer. 
Timber-specific content, such as material, cross-sections, detailing principles and manufacturing technology, 
can be placeholders for other materials.

0.	 Generate global model – A global model is defined using (centre) curves. Step 0 is the main input to 
Reindeer

1.	 Define elements – The user creates timber elements based on curves from step 0. These elements are 
customised by defining the element name, cross-section(s), local alignment, global alignment and 
material properties.

Figure 3.  BottomChord joint type’s solution space visualised in parallel coordinates. Joint0 and Joint1 tested if 
belong to BottomChord joint type. Joint0 fails the test.

Figure 4.  Modularisation of property criteria. Two bridges and three shells are analysed to find two types of joints.
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2.	 Assemble: Generate joints – Generates nodes and joints based on the structure’s elements.
3.	 Structural analysis of the structure – Optionally, a structural analysis may be run in this step.
4.	 (a) Joint search and (b) output joint data – The user defines property-based search criteria, filters the 

joints and outputs data required for detailing. A user perceives searching and outputting as one step; 
from a programming perspective, it is two steps.

5.	 Detailing the elements using TimberProcessingTools – Using Reindeer, timber elements are solely 
detailed using tools that mimic physical timber processing. Reindeer 0.5 includes cutting, drilling, 
pocketing and tenon/mortise.17

6.	 Processing elements – In this step, processing instructions from step 5 are used to output a detailed pre-
view and a BTLx-file. The detailed preview is non-uniform rational basis spline (NURBS) geometry.17

Step 4a is a prototype of the described methodology. To ensure that this step works and has a practical pur-
pose, steps 1–3 and 4b are equally important. These four steps are chronologically presented in the next 
section.

Defining elements

Elements are modularly defined by multiple components. Material, cross-section, local alignment, compos-
ite and global alignment components enable the user to customise an element. Highly detailed figures, 
related to this article, can be found online at Zonedo.19 For definition of elements, see Mork and Luczkowski19 
(p. 1).

Defining joints

In Reindeer, a joint consists of a node and its 1D element(s).17 Nodes are not specified by the user, but a 
result of elements that intersect.9 From the structural analysis perspective, elements can only intersect at the 
ends of a 1D element. From a detailing perspective, however, one element can meet another element in the 
middle.5 The bridge example illustrates this concept. Thus, two events generate a node:

The starting point or endpoint of an element

Elements intersect within the domains of both elements.

The steps of defining elements and assembling the structure have organised a data model that is built for both 
search and detailing. The joint contains elements and nodes, and the elements and nodes contain geometric 
data. The following section explains joint generation and Reindeer’s class structure.

Joint generation algorithm.  Allowing elements to intersect anywhere, including the endpoints, increases the 
complexity of the programming strategy: The algorithm is required to check if elements intersect somewhere 
on the curve’s domain. To make the algorithm work, a two-step process was developed. The first step is 
conventional. When an element is added to the assembly, the code checks if the endpoints exist as nodes. If 
the node exists, the element is added to its joint. Otherwise, the endpoint is applied to create a node, and the 
node and element form the basis for creating a joint. The second step takes into account the probability of 
intersection. All elements must be checked to determine if they intersect with any other elements in the 
structure. This procedure is simple if the structure is small, but the calculation time exponentially increases 
when additional elements are added to the assembly.
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Figure 5 explains the developed strategy. When an element is added to the assembly and tested for an 
intersection, the code starts by using an R-tree search, which is a spatial search structure, to filter elements 
that plausibly intersect. The R-tree stores the element’s bounding sphere in a tree structure and turns searches 
more targeted towards plausible hits. Visually speaking, an intersection is plausible if the bounding spheres 
of two elements intersect.

Figure 5.  Finding intersection nodes.
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Plausible other elements (OtherElems) are checked if they intersect the new element (ThisElem). The 
algorithm checks whether the intersected point already exists as a node. If the node exists, the ThisElem is 
added to the joint (detail). Else, a new node is created, and the node, ThisElem and OtherElem are applied to 
generate a joint. The joint is then added to the list of AllDetails, and the loop may be repeated.

Class structure.  The class structure consists of a main assembly class. The assembly class contains a node 
class, element class and detail class (see Mork and Luczkowski,19 p. 2). A detail and a joint are synonyms in 
this article: to synchronise the vocabulary with other related researchers, the word joint is used as the relation 
between elements and nodes. Initially, the word detail was employed and is still applied in the code and the 
schemes that explain the code.

Identifying joints

The developed solutions let the user define the joint types’ solution space by using one or multiple search 
criteria components. Conceptually, one component equals the columns in the parallel coordinate diagram. 
These search criteria filter all joints and pass only the joints that fulfill all search criteria. Mork and 
Luczkowski19 (p. 3) shows two trusses and illustrates how joints are identified using Reindeer.

As the approach does not apply sorting rules but solely depends on the filtering based on the joint’s geo-
metric properties, a parametric detail becomes algorithmically independent from the global topology. If the 
global topology changes during a design process (What is a sign of a healthy design process?), valid joint 
instances will be identified if they fulfill the solution space of the joint type.

The power of the search method is revealed when detailing structures without repetitive logic. Figure 6 
illustrates a shelf and shell. The shelf shows three different detail types, where the first detail type only 
requires the detail to be T-shaped. The two other detail types additionally require the angle between the ele-
ments to be perpendicular or not perpendicular. A practical example related to this separation is that the 

Figure 6.  JointSearch criteria work, regardless of shape or surface pattern.
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perpendicular details can be sawed using a three-axis machine but the angled detail is likely to require a more 
advanced manufacturing technique.

The figure shows the same shell that is shown in Figure 4. On the left side, the name of the element is 
used to find the details that contain an edge. The two other joint searches distinguish the complexity of the 
joint. Reducing a joint’s maximum number of elements or defining the minimum angle between the ele-
ments is likely to reduce the complexity of the node. Table 1 presents the implemented search criteria 
components.

As shown in Figure 7, each search criterion has one component. The JointSearch is the component that 
performs the filtering. The criterion is defined and initiated in the SearchCriterion component, sent to the 
JointSearch component, added to the search criteria list and is performed. The programming strategy is pre-
sented by, first, explaining the definition and initialisation of a search criterion, and second, how the criteria 
are filtering the joints.

Table 1.  Search criteria components.

Name Inputs Checks

Element length Min length
Max length

Checks lengths of elements and returns true if all elements are within 
the allowed domain

Element angle Min angle
Max angle

Checks angle between each pair of elements and returns true if pairs 
are within the allowed domain

Element amount Min amount
Max amount

Checks the number of elements and returns true if the amount is 
within the allowed domain

Element name Element names
Mode

Checks if the detail’s element’s names correspond to the names of the 
element. The mode input determines the strictness of the checker.
Mode0: The detail’s element’s names must contain one of the inputted 
names
Mode1: The detail’s element’s names must contain at least all inputted 
names
Mode2: The detail’s element’s names must contain all inputted names 
and no other names
Mode3: The detail’s element’s names must correspond exactly to the 
inputted names

Detail topology Mode By choosing a mode, the checker finds details that correspond to 
typical shape types. The following modes are included:
Mode0: L-node: Two elements connected in an endpoint
Mode1: T-node: One element is connected at the end, and one element 
is connected in the middle of the element (not at the ends)
Mode2: X-node: Two elements connected on the elements (not at the 
ends)
Mode3: End-node: Nodes with a single element connected
Mode4: Star-node: Three or more elements connected at the end
Mode5: Planar: All elements can be placed on a single plane
Mode6: Orthogonal: All angles between elements in detail are 0, 90 or 
180 degrees

Node in region Region
Max offset distance

Checks if the point of the node is inside an inputted region. The 
inputted max offset distance determines if the point must be on the 
region or can be offset in the normal direction of the region

Element force 
components

Max force
Min force

Checks if all elements are within the force domain specified by the 
user. Individual components for Torsion MX, Bending MY, Bending MZ, 
Compression FX, Tension FX, Shear FY, and Shear FZ.
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Initiating search criteria.  To be scalable, all search criteria follow a strict format that provides sufficient flex-
ibility. The following points define the format (refer to the bottom of Figure 7):

Questions can only be asked about the joint

The question that is asked is free – the answer must be true or false

The question allows user-defined variables

The method returns a true or false value, and the only input parameter is the joint. As the method is inside 
the class, all fields are accessible. Figure 8 shows the ElementAmount class and illustrates how the question 
from Figure 7 is turned into an algorithm. The method checks the number of elements in the joint. IF ele-
ments.Count is smaller or equal to minAmount AND elements.Count is smaller or equal to maxAmount, then 
the method returns a true. Otherwise, the method returns a false. The strictness of the search criteria is attrib-
uted to the notion that the method is not initiated immediately but passed to the JointSearch component. The 
SearchCriterion component does not have information regarding which joint to analyse. Thus, a delegate 
method is defined with a bool return and a detail as the parameter input. This makes it possible to store 
methods in a list and run them when appropriate.

When a search criterion object has been initialised, the delegate method is wrapped in a general Rule 
object and outputted from the component. The Rule object standardises the search criterion and ensures that 
the input data to the JointSearch is coherent. As a result, new developers can easily code a new search crite-
rion if they construct a method that adheres to the specified delegate format and wraps the constructed 
method inside a rule object.

In addition to inputting the assembly, the JointSearch component inputs True Criterion and False Criterion. 
Both inputs are classified as the Rule object type but are stored in lists named ValidProperties and 
InvalidProperties. If a rule in the ValidProperties list is to be valid, it must return a true. Oppositely, if a rule 
in the InvalidProperties list is to be valid, it must return a false.

Figure 9 shows the function that filters the search’s valid joints. Each joint is tested against the rules in 
the ValidProperties list and InvalidProperties list. However, if a rule reveals the joint to be invalid (red field), 
the loop is broken. Only if the joint passes all rule tests, it is added to ApprovedDetails list (green field).

Figure 7.  Elements of a search criterion. The top half of the figure shows an ElementAmount criterion.
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Outputting joints

When detailing a joint, information about the related nodes and elements is required. The more consistently 
streamed data, the easier the detailing process becomes. An inconsistency often demands codes that handle 
exceptions from a distinct logic. Three functionalities are implemented to increase the consistency of the 
data stream: (1) Node plane generators, (2) Unified element vectors and (3) Element sorting rules.

Node plane generators.  Defining a node plane is essential in most detailing cases. If a node plane is consist-
ently generated according to its detail’s purpose, the detailing process becomes easier to manage. However, 
the logic of a node plane varies from case to case. Currently, the Reindeer plugin provides five different 
methods for generating the node plane. The methods offer various ways for defining the Z- and X-axis of the 
plane, and the node point determines the location of the plane. Similar to the search criteria component, 
delegate methods enable the node plane component to grant access to data from the detail.

Unified element vectors.  An element has a fixed starting point and endpoint. Thus, a detail will consist of a 
mix of elements that have their starting point or endpoint at the node’s location. For detailing purposes, uti-
lising vectors that are parallel to their elements but consistently directed from or towards the node is con-
venient. Thus, the JointSearch component automatically generates and outputs unified element vectors.

Element sorting rules.  The order of the elements in detail is initially unstructured. To increase the consistency, 
the first, second, third and n’th element in each detail instance must correspond. However, a sufficient order-
ing logic is highly case specific. The current version enables the user to sort (1) clockwise relatively to the 
node plane, (2) based on structural priority or (3) alphabetically based on element names. Figure 10 exempli-
fies the importance of these sorting functionalities. The first detail is part of a gridshell structure. Thus, sort-
ing the output of the elements clockwise is probably convenient. The second detail consists of a column, 

Figure 8.  Back-end: class and method. Each rule has a unique class containing field, constructor and method. The 
fields contain the variables in the question; the constructor initialises the variables to the object, and the method is 
the logic that answers the question.
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Figure 9.  The method that filters the joints.

Figure 10.  Three different sorting rules for outputting the elements.
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primary beam and secondary beam. In this case, alphabetically sorting the elements will be consistent. The 
third detail is part of a system with a primary structure, secondary structure and tertiary structure. In this 
case, sorting based on structural priority is convenient.

Example: outputting data for detailing.  The hierarchical construction of the joint makes it easy and logic to 
deconstruct the joint. The JointSearch component outputs nodes, node planes, elements and unified element 
vectors as a grafted list (one branch for each joint). The order of the elements and unified element vectors is 
selected according to the applied sorting rule. Further, the element and node are deconstructed into its prop-
erties. Finally, the element can be deconstructed into its subelements. What is required data is individual 
from detailing to detailing. However, the node plane, width and height, base curve, cross-section plane and 
side planes of the element are frequently required in the design processes. Mork and Luczkowski19 (p. 4) 
illustrate the data outputted from a truss’ foundation joint.

Example: node in complex shell.  A shell, which is shown by Mork and Luczkowski19 (p. 5), consists of interior 
elements and edge elements. The scheme shows how the JointSearch identifies three- or four-legged interior 
details. Only two criterion components are required: a criterion that defines the element names that are not 
allowed (edge) and a criterion that specifies the number of elements. The left detail in the figure in Mork and 
Luczkowski19 (p. 5) shows how the JointSearch outputs geometry by default. However, the default joint 
plane is not applicable, and the order of the outputted elements is not consistent. The right side of the figure 
is a better basis for detailing. First, the detail plane component has generated a plane based on the shell sur-
face. The X-axis of the plane is aligned parallel to one of the interior elements. Second, the elements are 
sorted clockwise according to the detailing plane. Note that the element0 is parallel to the X-axis.

Demonstrators

The BottomChord joint type used as example in this article is implemented in two bridges that were designed 
and built using an early version of Reindeer. These bridges, a ski jump and a log-house, are documented in 
other articles.5,20 In the case of the bridges, the joint types were defined using only element name combina-
tions. The joints were filtered based on their properties, and the algorithm was designed to be easily adapt-
able to both bridges.

Figure 11 shows a parametric timber frame wall (Mork and Luczkowski,19 p. 6, shows the related Grasshopper 
definition). Such structure is not complex from a geometrical point of view. However, from an algorithmic and 
topological point of view, the structure is more advanced. The example is part of an online shed configurator. 
When a user orders a shed based on individual inputs, the algorithm automatically outputs pre-cut instructions 
readable by a CNC machine. With such large design space, it is not feasible to develop a universal sorting algo-
rithm to identify the joints. The example illustrates how joint types are identified in a series of walls with various 
openings. In this example, a combination of ‘Element Name’, ‘Detail topology’ and ‘Element Amount’ criterion 
components is used to identify eight joint types. In some sheds, all joint types are needed – in simpler sheds, only 
a few joint types are needed. These joint types are detailed according to the house manufacturer specifications 
and outputted as BVX/BTLx-files. The purple joints are identified by specifying what element names to be 
included or not included in the joint, and that the joint shall be T-shaped and orthogonal.

The contrast of the discussed and referred demonstrators indicates that the introduced methodology, 
implemented in the Reindeer prototype, is applicable for designing a wide range of structures.

Conclusion

This study developed a methodology that efficiently generates topological relations and enables the user to 
assign joint instances to joint types. The developed prototype, which is based on four steps – defining 
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elements, generating joints, searching for joints and outputting joints – has proven to be flexible despite the 
simple scheme required to prepare a model for detailing. Other referred tools, such as Elefront, allow effi-
cient geometry filtering. However, these tools lack designated methods for multi-objective filtering of geo-
metric relations. Hence, the presented property-based joint-search methodology is seen as the study’s main 
contribution.

The notion that the parametric detail becomes algorithmically independent of the global topology is an 
important advantage. This approach simplifies the process of filtering joint types and substantiates reusing/
adapting definitions of parametric joints from projects to projects.

The bridge structures illustrate that the method is applicable for advanced, but logically sound, structures. 
Further, the timber frame wall demonstrates that the methodology is also applicable for structures that have 
a less clear topological concept.

The results of this study indicate that the joint-search method is a universal method that is applicable for 
distinguishing joint types in an arbitrary structure but is dependent on a properly established model that 
contains topological relations. If a structure is built up by 1D elements and nodes, prototyped software is 
applicable.

To turn Reindeer more relevant, a future software development must also include cross-laminated timber 
and other plate-based timber materials. Hence, new joint types and search criteria are also required. 
Introduced Topologic offers a more comprehensive set of elements in its topology, including wires, faces, 
shells and cells. Implementing such elements will allow a much larger range of structures. Hence, further 
research will investigate the potential of combining Topologic’s topology library and Reindeer’s joint-search 
capabilities.
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PARAMETRIC TIMBER TOOLKIT: A TIMBER TAILORED APPROACH 
 
 
John Haddal Mork1, Marcin Luczkowski2, Bendik Manum1, Anders Rønnquist2 
 
ABSTRACT: Timber is not a straightforward building material. Manufacturing is mainly based on subtractive 
operations, while most 3D-softwares invites to an additive design approach. Furthermore translating a design into CNC-
instructions may be time-consuming and labour intensive. This paper mainly presents an essential component of a 
parametric timber toolkit under development. The toolkit aims to simplify the process of designing advanced timber 
structures. The tools presented in this paper, is the subtractive digital tool package. Tools that let the designer develop a 
timber based design solely on subtracting material from a parametrically defined stock. The papers also presents a case-
project, two timber truss bridges recently designed and built using the timber toolkit. The paper sums up by discussing 
the implications of the tool. 
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1 INTRODUCTION 0F
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Timber is not a straightforward building material. It is 
not isotropic, and the structural properties varies a lot. 
Among species, but also internally in one stock. 
Furthermore, it is mainly processed using subtractive 
tools[1]. Mills, sanding machines, saw-blades and drills 
are conventional tools that subtract material from the 
stock and turns it into a component. Even though 
Computer Numerical Control (CNC)-machines and 
robots have revolutionized the timber industry, the same 
tools are being used. Thus, we have to change our 
mindset from instructing a carpenter to instructing a 
machine. CNC-machines does not read conventional 
blueprints.  
 
It is often said that CNC-machines are able to produce 
thousand unique components in the same speed as 
thousand copies. However, if drawing thousand 
components manually, the potential of fast 
manufacturing is lost. This is where parametric 
algorithms comes into play.  
Digital parametric workflows, which widely appeared a 
decade ago, represent a dramatically new way of 
applying digital power while designing our built 
environment. Instead of drawing geometry, parametric 
workflows let the user define the design as a series of 
decisions, systems and relationships[2].  Hence, the 
digital design process has the potential of becoming 
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more flexible, than existing streamlined BIM processes. 
Robert Aish is describing it as the computation era and 
argues that the objectives of design computation is to 
overcome many of the limitations of BIM[3]. As the 
authors see it, the computational approach and 
parametric thinking is only way to fully utilize CNC-
machines. 
 
Design tools will always influence the result of a design. 
If designing with clay, you are likely to end up with 
something organic. If designing with boxes, you are 
likely to end up with a stacked structure. If so, digital 
tools will also influence the result. 
 
There are some design software tailored for timber 
structures, e.g. Cadwork[4] and HSB CAD[5]. Few, such 
as Woodpecker[6] are also developed for parametric 
software. However, the majority of software are built up 
on an idea similar to additive design. Typically either by 
defining geometric primitives or perform operations on 
curves. E.g. loft, revolves, sweeps or extrusion. Great 
tools if materialization is performed by casting, 3D-
printing or even 2D-cutting. However, if digitally 
designing timber structures, one must know a bit of 
manufacturing processes, and the result is often that the 
manufacturer have to remodel the design for 
fabrication[1]. 
This paper mainly discuss and presents an essential 
component of a parametric timber toolkit under 
development. The toolkit aims to simplify the process of 
designing advanced timber structures. The components 
presented in this paper, is the subtractive digital tool 
package that unifies design and manufacturing. Tools 
that let the designer develop a timber based design solely 
on subtracting material from a parametrically defined 
stock. In the background, and real-time, a file for 
Computer Aided Manufacturing[7] (CAM) software are 
being generated. The paper also describes two timber 
bridges recently built, and were designed using the 



parametric toolkit. The paper summarize the 
implications of using such tool and further development.  
 
2 DIGITAL TIMBER 

 
2.1 BUILDING WITH TIMBER  

Tacit knowledge is embedded in a carpenter. Knowledge 
that are in the hands, knowledge that are intuitive and 
almost hard to explain to others. The authors are not 
skilled carpenters, but have built a couple of projects 
either in a workshop or on site. While being in a 
workshop and building with wood, design constraints 
and opportunities seems obvious. Your mind focuses on 
how an object is made. If you need a hole in a beam, you 
start with a beam and then assess what is the most 
rational way of achieving a good result. If the hole is 
small and the shape is circular, a drilling tool will be 
sufficient. If a large and rectangular hole were to be 
processed, a milling procedure would be better to 
consider, but then remembering that a fillet would be left 
in the corners. Figure 1 is an example were the milling 
radius is used as input for architectural expression.  
  

 
 
Figure 1: Example of using the milling radius as input 
for architectural expression 
 
Nevertheless, these are all subtractive methods of 
refining a stock to a crafted building component.  
Now, why is such facts being described? The authors 
strongly believe in a timber architecture driven by 
carpentry craftsmanship. However, the authors also 
believe that parametric tools and CNC-machines will be 
an architect’s everyday tools. Thus, bridging the gap 
between carpentry craftsmanship and digital design is 
essential. 
 

2.2 DESIGNING DIGITALLY 

When opening most 3D software tools, one starts with an 
empty canvas. Points, lines, curves, surfaces and solids 
are digital geometry used to build up a virtual model. As 
in the workshop, a skilled designer learn how to design 
using the premises of the tools. If a rectangular hole in a 
glulam beam were to be drawn, there would be a series 
of methods of achieving wanted result. Following is two 
conventional methods (illustrated in figure 2):  
 

a) Drawing 2D-lines of the hole and the contour of 
the beam, and then extrude the lines to a solid.  

b) Making a box representing the beam and a 
smaller box representing the hole.  Then the 
volume from the smaller box is subtracted from 
the larger box. 

 
Figure 2: Two methods of modelling a beam with a hole 
 
The second method is more similar to physical making, 
but still two problems occurs:  

1) The edges in the hole is not filleted. A problem 
easy to solve by filleting the edge, but also a 
problem easy to forget that exists while 
designing digitally.  

2) The output from both operations looks like a 
hole in a beam, but the computer only reads it 
as boundary representation (B-rep)[8] of 
surfaces. For a designer, this is perfectly fine, 
but for a manufacturer and a CAM software, 
this geometrical information is not directly 
readable as a hole in a beam. 



 
Figure 3: The computer stores the model as a B-rep 
 
A simple case like a hole in a beam can though be solved 
through feature recognition, meaning that the CAM 
software analyses the B-rep and understand that a 
drilling or milling operation is sufficient to achieve 
wanted shape. However, this is not possible when it 
comes to shapes that are more complex[9].  
Further, method A is logic in a digital environment, but 
extends the distance to physical making of timber 
structures, and may lead to designs that are not 
buildable.  
 
2.3 BUILDING TRANSFER LANGUAGE 

Building transfer language (BTL) is an open standard 
developed by SEMA and CadWork and provide a 
parametric description of the geometry of wooden 
building components[10]. The format enables data 
exchange of timber structures and describes building 
components as parts (beams, columns, bars laths etc) 
with processings (drilling, pocketing, dowetails, contours 
etc). Additionally, the format contains logistic data and 
timber specific data.  
Logistic data is information like package number, 
module number, designation and annotations, while 
timber specific data includes grain direction, timber 
specie and quality grade. 
 
Stehling argues that since BTL is deliberately not 
machine-specific, BTL makes a good match for the 
building industry. A firm specific CAM-processor is still 
needed to generate CNC-files[9]. 
Stehling and Desigtoproduction have also developed 
mentioned Woodpecker, a plugin for Grasshopper3D 
that outputs BTL-files. However, and as they present it, 
it is more an export tool rather than a design tool.  
 
3 THE TOOLKIT 

Fabian Scheuer describes an architect’s creative process 
as following: “architects very rarely work out a design 
on site, on a one-to-one scale with their hands dirty from 
manipulating an actual building material” [11] This is 
the reality for most architects, and thus digital tools must 
enhance architects to understand (to a certain level) 
physical manufacturing constraints while designing 
digitally. 

The toolkit under development aims to bridge the gap 
from design to manufacturing of advanced timber 
structures. Not only solve export interfaces between 
CAD and CAM, but shift the designer to think physically 
while designing digitally. To solve this, the toolkit 
includes a series of subtractive design tools. More about 
these tools in the next chapter.  
 
The toolkit has a series of components that substantiates 
a continuous automatically updating dataflow from 
overall geometry, structural analysis, detailing to BTL-
export. This means that if the designer changes the 
shape, a new detailed model shall be ready for BTL-
export. The toolkit will not be explained thoroughly in 
this article, but following is a few definitions and a brief 
description important to understand the concept. 
 
3.1 ELEMENTS AND NODES  

The toolkit generates a virtual timber structure based on 
center-curve geometry. The user then specifies one or 
multiple element types by assigning names, cross-
section, rules for cross-section alignment and not least 
material properties. The toolkit focuses on parametric 
detailing, and a detail is hereby defined as either a node 
and its elements or an element and its nodes. By defining 
a series of property description rules, the user can split 
all details into different custom detailing groups. As for 
the case study described in the end of this paper, such 
detailing groups were the upper chord node, the lower 
chord node, the foundation points and the zero-force 
nodes. Figure 4 illustrates how the details are sorted. 
 

 
Figure 4: The details are sorted to detailing groups 
using property descriptions.   
 
3.2 THE TOOLKITS DEFINITION OF AN 

ELEMENT  

What is considered as an element is different from 
architects, structural engineers and manufactuers. While 
most archtiect’s conception of an element is a building 
component, the structural engineer understands an 
element as a straight line with two end nodes. Further, 
the manufacturer may split a building component into 
multiple sub-elements. 



Since the toolkit is built with the help of object oriented 
modelling, an element is defined as an object. The 
master element is the building component, but 
additionally, the element object contains a structural sub-
elements and manufacturer sub-elements.  Figure 5 
illustrates the concept. 
 

 
Figure 5: Conceptions of an element 
 
 
4 SUBTRACTIVE TOOLS 

The subtractive tools are based on the elements 
described in previous chapter, and is essential to refine 
the details. Figure 6 shows the lower chord of the case 
study bridges before any detailing was performed. The 
model works as a conceptual model, to understand the 
shape and interaction with the site.  
 

 
Figure 6: Elements that are not yet detailed. Centerline-
geometry is projected on the surface 
 
 
To refine the details, virtual carpentry tools are used. 
Drilling, pocket milling, and cutting are the tools that are 
currently implemented, but the BTL-format offers a 
series of other processings.  
As an example, the input needed for the drilling 
component is an axis (a line) and a radius. The line are 
generated in wanted location with help of either global 
coordinates or local node or element planes.  
When a drilling component is added, the algorithm 
stores two items in the element object: 

1) The parameters needed to write a BTL 
processing, local coordinates, local drilling 
angles and radius 

2) A Cylinder used to subtract the hole. 
 
The reason why the hole is not subtracted (drilled) 
indside the drilling component is bifolded: 

1) Subtractive operations (also called Boolean 
operatons) are CPU-demanding, and many 
processings will make the software perform 
badly. 

2) Most likely, there are more than one processing 
applied to one element. 

For these reasons, the void geometries are stored in the 
element object. However, this does not mean that 
geometry can not be previewed. By adding a preview 
component, the subtractive operations to all elements are 
executed and a detailed geometry is generated. A 
detailed version of lower chord can be seen in figure 7.  
 

 
Figure 7: Detailed lower chord 
 
 
When the user is ready, a BTL-file is also ready to be 
exported. Further, the authors sees an opportunity to 
include a third output: A mesh ready for finite element 
analysis (FEA), but this is not currently implemented.  
Figure 8 shows the idea of one operation outputting three 
types of geometry. 

 

Figure 8: Digital subtractive operations generates a B-rep 
and manufacturing output (BTL). Future work will investigate 
the potential of outputting mesh for FiniteElementAnalysis 

4.1 Future implementation 

As described, the BTL-export is not machine-specific. 
This makes the export more accessible, but it also have 
some limitations. Future versions of the toolkit will 
support input for machine specific and not least firm-
specific data. In current toolkit, it possible to digitally 
design building components that are not buildable. At 
least not buildable by the chosen manufacturer. If 
including machine and manufacturer-specific data, the 
designer can be warned if exceeding the constraints. 
Following are examples of relevant data important for 
design decisions: 



 
- Available stock-sizes 
- Maximum dimensions to be CNC-mill 
- Available milling tools 
- Maximum/minimum drilling/cutting angles 

 
5 CASE PROJECT 

To validate the relevance of toolkit and the subtractive 
tools, two timber truss bridges were designed and built. 
Both bridges was completely parametrized and based on 
the same parametric model. All slots, drillings, cuts and 
not least splitting of the glulam were modelled with the 
help of the toolkit. Additionally, Metal components were 
parametrically modelled, but prepared for fabrication 
with a conventional method 
 
Both bridges are mainly for pedestrian purposes. 
However, the local municipality demanded dimensioning 
for a 130 kN wheel-loader with an additional 50 kN of 
load. These are additional similarities: 

- Timber truss bridges 
- Slotted-in-plates and dowels as connections 
- Steel-based secondary structure, pin connected 

internally in the bottom chord 
- Width of 3400 mm (Center-center, trusses) 

 
What distinguish the bridges are the length, amount of 
bars, the shape of the bottom/top chord, the rise and the 
detailing of the endings. Due to height-differences, and 
demanded path of the road, the biggest bridge has curved 
platforms on both sides. The platform railing both 
challenges the geometrical flexibility of the algorithm 
and gives the bridge a bespoke architectural character 
 
5.1 DETAILING USING SUBTRACTIVE TOOLS 

The bottom chord node was  the most complex detailing 
group. The structural bars are connected to the bottom 
chord and the secondary structure is suspended from the 
metal-plates. Due to the scale of the bridge, the 
suspension connection were integrated inside the chord, 
making a more compact detail. As previously explained, 
the basis for the detailing is stocks that are not 
processed. Subtractive tools are used to design the 
timber elements. In addition, steel components were 
designed using conventional parametric tools in the 
grasshopper environment. In the bottom chord detailing 
group, these processes were performed: 

- Cutting the bars, parallel and offset half the 
height + 30 mm from the tangent direction of 
the bottom chord center curve.  

- A drilling a grid of holes for the dowels. The 
amount of dowels were calculated based on the 
force in the bar/chord and size of the grid were 
calculated based on required edge distances.  

- A pocket milling to make space for the metal-
plates. Both the plate that connected the bars to 
the chord and the plate for the suspended 
secondary structure. 

The processings can be seen in figure 9 and the physical 
result can be seen in figure 10: 

 
Figure 9: Processings to detail the lower chord 
(Showing the centric sub-element) 
 

 
Figure 10: Physical result. The lower chord 
 
 
5.2 FOLLO BRIDGE 

Due to the simple shape and boundary conditions, Follo 
Bridge was the first bridge to be built. The shape is 
classically arched and have a span of 10 meters. Follo 
bridge is shown in figure 11 and 12. 
  

 

 

Figure 11: Follo Bridge at night 
 



 
Figure 12: Follo Bridge 
 
 
5.3 EVJEN BRIDGE 

Universal design with a maximum rice of 1:20, 
determined the required length of the bridge (including 
the platform). While the deck is almost 30 meters, the 
span is only 16.5 meters. The structural part of the bridge 
is linear in plan-view, but due to relatively large loads, 
the top chord is arched. The curve of the platform-
railings correspond with the top chord and visually 
merges the structures. Evjen bridge is shown in figure 13 
and 14. 
 

 
Figure 13: Evjen bridge-. Structural bridge in the center, 
Curved platform on both sides. 
 

 
Figure 14: Evjen bridge at night.  
 
 
 
 
6 DISCUSSION 

As mentioned, designers are influenced by its design 
tools. The authors strongly believe that the building 
industry will increasingly be using parametric tools, and 
therefore better timber tailored tools must be developed.  
 

Such parametric toolkit does not replace the value of 
getting hands dirty. Making objects using physical tools 
and physical objects will always give a deeper 
understanding. However, by mimicking the physical 
process, such tools may at least make the designer 
remember that the digital design are to be materialized.  
 
Standard or non-standard? As Scheuer beautifully 
explains: “…But standards does not only make life 
easier, they also make life simpler”[9]. One of the beauty 
of parametric modelling is the flexibility. You are not 
constrained to standards, and you make your own tool 
while designing. Are the timber toolkit developed 
constraining the designer? Somehow, the answer is yes. 
The concept of the toolkit is to push manufacturing 
constraints to the conceptual phase. In that way, the 
chances of designing unbuildable structures are reduced.  
 
Described toolkit is still under development, and are not 
written by computer scientists, but experiences from the 
case study suggests that such tools are intuitive and 
makes the design particularly trivial to send to 
production. While designing, the subtractive tools 
available limited the design space and led to a rational 
manufacturing process. Further, the described case 
projects (except the platform railing) are rather 
conventional structures, thus more geometrically 
advanced structures will be developed to further test the 
toolkit. 
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