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Abstract. Intelligent tutoring systems become more and more common
in assisting human learners. Distinct advantages of intelligent tutoring
systems are personalized teaching tailored to each student, on-demand
availability not depending on working hour regulations and standard-
ized evaluation not subjective to the experience and biases of human
individuals. A virtual driving instructor that supports driver training
in a virtual world could conduct on-demand personalized teaching and
standardized evaluation. We propose an architectural design of a virtual
driving instructor system that can comprehend and explain complex traf-
fic situations. The architecture is based on a multi-agent system capable
of reasoning about traffic situations and explaining them at an arbitrary
level of detail in real-time. The agents process real-time data to pro-
duce instances of concepts and relations in an ever-evolving knowledge
graph. The concepts and relations are defined in a traffic situation on-
tology. Finally, we demonstrate the process of reasoning and generating
explanations on an overtake scenario.

Keywords: Virtual driving instructor · Intelligent tutoring system · Sit-
uation awareness · Multi-agent system · Ontology · First order logic ·
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1 Introduction and Related Work

The field of Intelligent Tutoring System (ITS) has matured since the conception
of the idea in 1970s [20], and ITS implementations have been used in various
domains of life, such as crisis management [15] and vehicle driving training [2].
The main goal of ITS is to support effective learning and reduce workload of
human teachers. In order to do that, an ITS must contain all the concepts, rules
and decision-making approaches necessary for the domain awareness – in other
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words, it has to have an adequate domain model. It is also crucial to have a
model of the cognitive state of the student and the learning tendencies – that
is a student model. Finally, an ITS has to employ a tutoring model in order to
choose the right form and timing of teaching feedback [20]. A very important
additional requirement for an ITS is its explainability – it should be clear why
the system made a decision. The sophistication of the domain comprehension
necessary for effective teaching in most cases requires the use of an artificial
intelligence (AI) system. According to Gunning and Aha, explainable AI is “AI
systems that can explain their rationale to a human user, characterise their
strengths and weaknesses, and convey an understanding of how they will behave
in the future” [9]. Particularly, following correct traffic rules and the ability to
produce explanations requires an adequate awareness about the situation [13].
Situation awareness (SAW) is obtained by perceiving all relevant elements in the
environment, understanding their meaning and predicting their future state [5].
An ITS should be able to explain to the student how he or she handled a certain
traffic situation, therefore it needs situation awareness and explainability.

One of the most widely used methods in AI, deep neural networks [8], have
achieved tremendous results during the last decade. However, neural networks
are inherently black box systems, and do not maintain an explicit awareness of a
situation. Although there are attempts to make certain aspects of these systems
explainable, such as deep explanations [7] and model induction [11], complete
and interpretable explanations are still problematic. This is mainly due to the
vast amount of operations performed in a deep neural network. The explain-
ability requirement for ITS thus calls for the use of interpretable-by-design AI
approaches. Ontologies that describe explicit relations between relevant concepts
have been widely used to represent situations conceptually [15]. The multi-agent
paradigm together with rule-based reasoning on an ontology has proven to be
highly suitable for representing and reasoning with traffic situations [4].

Our work presents an architectural design of a virtual driving instructor
(VDI) system, which uses the data from a virtual reality (VR) driving simula-
tor in order to provide comprehensive integrated teaching assistance both online
(during the driving lesson) and offline (as an after-lesson debrief). The virtual
driving instructor should be able to reason about complex situations, i.e. situa-
tions that comprise of several sub-situations. Driving on public roads requires to
perform multiple tasks in parallel, such as staying in the lane and maintaining a
safe distance to the cars in front. Thus, the VDI system must be able to continu-
ously assess several sub-situations at the same time. The explanation data which
this system produces has to be as complete as possible for the traffic domain,
and thus allow for a feedback of any level of detail.

Buechel et al. [3] propose an ontological framework for reasoning about var-
ious traffic scenarios which can be easily generalised to different traffic rule con-
texts. Their work focuses on regulation-aware decision-making for autonomous
cars but lacks details and temporal aspects necessary for explanation purposes
in our proposed ITS. A traffic domain ontology was presented by Zhao et al.
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[22], and was tested to solve the yielding problem in narrow and uncontrolled
intersections.

Zamora et al. [21] introduce a rule-based multi-agent architecture for an
intelligent ADAS system assisting a driver in an urban environment. The main
goal of the work by Zamora et al. is to recognise and display a warning about
a potentially dangerous situation which the driver is not aware of, so it has no
need for complex back in time reasoning or detailed explanations. This proposal
has later been implemented and experimentally validated in [17]. Both works
are based on the multi-agent approach described in [10]. The blackboard-based
CarCOACH system developed by Arroyo et al. [1] uses a multi-agent architec-
ture to assess scenarios such as hard braking. The CarCOACH system focuses
on detecting and gently coaching the driver through immediately dangerous be-
haviour such as speeding while turning, and does not address more complicated
scenarios or rule compliance. Sukthankar et al. [18] proposed and validated a
multi-agent system with arbitrated voting for automated vehicle decision-making
on a highway. As a vote-based system, it is not designed to provide a detailed
explanation of its decisions. Weevers et al. [19] present a high-level multi-agent
architecture of a virtual driving instructor for a commercial driving simulator.
It can recognise and evaluate speed control and intersection handling, and is
capable of reasoning if the student has performed certain driving tasks correctly
with respect to the situation. However, the details of the architecture are not
disclosed.

It is worth noting that an ontology-based multi-agent architecture is not
the only way to approach the SAW problem. Raptis et al. [16] develop an
attentiveness assessment system which tracks the hand gestures of a driver on the
steering wheel using an SVM-based method to estimate an attention score. Many
more approaches [14] exist for recognising and evaluating driving manoeuvres
and behaviour.

The rest of the paper is structured as follows: In section 2, we present our
proposal of the traffic situation modelling, and in subsection 2.3 we talk about
generation of explanations. The framework is illustrated by a detailed use case
in section 3. Finally, we conclude in section 4.

2 Modelling Traffic Situations

2.1 Ontology

We use an ontology, illustrated in Figure 1, to design the situation model. The
ontology is based on Matheus, Kokar and Baclawski [12]. This work provides a
more thorough explanation. The central part of this ontology is the SituationOb-
ject which can be either a PhysicalObject, e.g. Car, or a NonPhysicalObject, e.g.
Lane. Situation extends SituationObject which allows to model a situation as
an aggregation of sub-situations. SituationObject can have multiple instances of
Attribute like speed or brake pressure of a car. In contrast to Attribute, which is
specific to a SituationObject, Relation defines a relation between two situation



4 M. Sandberg et al.

1..*

*

SituationSituationObject

Relation
Event

+ id: int
+ source: string

Attribute
affects affects

**

1..**

SituationObject

NonPhysicalObjectRoad

Driver

Ego

PhysicalObject

Relation

IsOn

PropertyValue

+ value: ValueType
+ startTime: float
+ endTime: float

IsBehindOvertake

endEvent
startEvent

affects

Event

TurnSignaling LaneChangeOvertaking Looking

Attribute

TurnIndicator

1

Gaze

1

Lane

a) b)

c) d)

Car
1

1...*

Fig. 1. (a) The core ontology introduced by Matheus et al. [12] is the basis of the
domain-specific ontology proposed in this work. The expansion of (b) SituationObject
and Attribute, (c) Relation and (d) Event. The concepts are expanded to sufficiently
cover a simplified overtake scenario, see section 3.

objects. For example CarA is located on (isOn) LaneX. However, the values of
attributes and relations can change over time. This is captured by the Proper-
tyValue concept.

Individual attributes and relations do not have a single value assigned to
them, but multiple instances of PropertyValue with non-overlapping time inter-
vals. The Event concept indicates a change of an attribute, relation, or more
abstractly change in the situation, e.g. a change of isOn relation from LaneX
to LaneY would generate a LaneChange event. A new PropertyValue is created
whenever a new Event occurs.

In cases where we want to reason back in time, the actual event happens at
or after the end time of another property value. We extend the core ontology
of [12] in three aspects to be able to reason back in time. 1) The start and
end time of a PropertyValue is not automatically set by the time of the current
and next event. They can be inferred and set individually, contrasting to the
core ontology of [12] where two temporally adjacent instances of Event always
set the StartTime and the EndTime of a PropertyValue. 2) Start and end time
need to be non-overlapping, but there can be a gap in between the end time of
one property value and the start time of the next property value. 3) Situation
objects, attributes and relations can be added dynamically once they get relevant
for the situation.



Explaining Traffic Situations – Architecture of a Virtual Driving Instructor 5

As traffic situations can get very complex, the provided version of ontology
is simplified and consists only of the objects relevant for the presented overtake
scenario, shown in section 3.

2.2 Multi-Agent System

We employ a multi-agent system to assess all situations which arise during a
lesson. Each agent performs specified tasks and communicates with the others
through a blackboard, which stores all the data generated by agents. We differ-
entiate between two types of agents: property value and explanation. A property
value agent produces property values in the form of attributes or relations, and
generates events accordingly when these attributes and relations change. Addi-
tionally, a property value agent can dispatch execution triggers to other agents.
An explanation agent assesses if the student behaves correctly in a situation, and
generates situation-specific explanations. In Figure 2 we show a schematic of our
suggested multi-agent system. It is constrained to assess a simplified overtake
scenario for clarity. The agents are arranged in a hierarchical structure. Low-
level agents perform basic assessment, such as checking the gaze of the driver
or which lane the car is on. High-level agents can perform comprehensive tasks,
for example assessing a complete overtake manoeuvre using data generated by
many lower-level agents. Most explanation agents are thus higher-level agents.

Looking

TurnSignalling

OvertakingRelative
Location

Agent

IsBehind

LaneChange
Explainer

LaneChange
Explanations

Overtake

Overtake
Explainer

Overtake
Explanations
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Explanation agent

PropertyValues
Explanations

Gaze

TurnIndicator

IsOn

Execution Trigger

Fig. 2. The schematic of the proposed multi-agent system, simplified for a reduced
overtake scenario. The RelativeLocationAgent dispatches execution triggers whenever
a lane change has occurred.

2.3 Generating Explanations

Explanations play an important part in teaching. High quality explanations cre-
ates trust and motivate students. Our goal is to design a framework which gen-
erates explanations about both right and wrong behaviour at traffic situations
encountered by students. This requires a system that has the domain knowledge
to be able to assess the situation and the decisions the student made.
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In our architecture, the domain knowledge is encoded within the ontology
and the agents. Explanation agents are triggered by property value agents in
order to infer if traffic rules were followed and if the driver behaved properly
in the given situation. The output of an explanation agent is a recursive vector
structure containing all information necessary, also from more low-level explana-
tion agents, for feedback generation. Each entry of the output vector contains an
appropriate value or another vector which is the output of a subordinate agent.
This structure allows to give explanations at any level of detail and is by itself
already explainable. But the task of generating feedback for the student requires
appropriate conversion of this data structure to a human-understandable form.
The type of feedback which is suitable in each particular situation depends on
whether it should be given online (while the lesson is running) or offline (as a
debriefing session after the lesson). The online feedback is typically given as a
short audio statement or an icon overlay, or via objects in the simulation itself.
The offline feedback which is not time-sensitive can be more detailed. A de-
tailed explanation text or an annotated video recording are examples of offline
feedback. In this work, we focus on natural language feedback provided in an
offline setting. The explanation vectors we propose have clearly defined structure
and relatively small range of possible values. This allows us to use a simple and
more robust template approach [6]. An example on how to generate text from
explanation vectors is given in subsection 3.3.

Overtake
Explanation

LaneChange
Explanation

Speeding
Explanation

CompleteDriving
Explanation

Comfortable
DrivingExplanation

Acceleration
Explanation

Braking
Explanation

Fig. 3. Explanation tree structure il-
lustrating that all explanations culmi-
nate into a high level CompleteDriving-
Explanation. The figure shows the pos-
sibility of expanding the tree when new
explanations are needed. It is not re-
stricted to a binary tree. In this paper,
we use only the LaneChangeExplana-
tion and the OvertakeExplanation.

Fig. 4. Visualisation of the progress of
the scenario, from left to right: indicate
the intention to overtake −→ change
lanes and pass the car −→ indicate the
intention to return to the original lane
−→ change back to the original lane.
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3 Scenario: Overtake

3.1 Scenario Development

In the following, we outline a scenario in which the Ego car, driven by the driving
student, overtakes another car, as depicted in Figure 4. For this simplified case,
we concentrate on the correct usage of turn signals and side mirror observation.

While the scenario develops over time, the situation is observed by adding
property values to the ontology describing the complete situation. As stated
before, new property values record relations between situation objects and at-
tributes of situation objects within a time period. Property values for relations
with a boolean value and attributes are denoted as

< relation > (SituationObjectx,SituationObjecty, < start time >)

< attribute > (SituationObjectx, < start time >) :=< value >

Scenario:

– Event t0: Start situation
• IsOn(Ego,RightLane, t0)
• IsOn(Car,RightLane, t0)
• IsBehind(Ego,Car, t0)

– Event t1: Signalling left turn
• TurnIndicator(Ego, t1) := Left

– Event t2: Looking at left mirror
• Gaze(Driver, t2) := LeftMirror

– Event t3: Changing lanes
• IsOn(Ego,LeftLane, t3)

– Event t4: In front of other Car

• IsBehind(Car,Ego, t4)
– Event t5: Signalling right turn
• TurnIndicator(Ego, t5) :=

Right
– Event t6: Looking at right mirror
• Gaze(Driver, t6) := RightMirror

– Event t7: Changing lanes
• IsOn(Ego,RightLane, t7)
• Overtake(Ego,Car, t7)

– Event t8: End situation
• TurnIndicator(Ego, t8) := Off

3.2 Reasoning Using First Order Logic

To identify state changes in attributes and relations, agents uses first-order logic
as the predicates shown below.

¬IsOn(Ego,Lane, t− 1)∧
IsOn(Ego,Lane, t)

=⇒ LaneChange(Ego,Lane, t)

¬ (TurnIndicator(Ego, t− 1) = Left)∧
(TurnIndicator(Ego, t) = Left)

=⇒ TurnSignalling(Ego,Left, t)

The OvertakeAgent has one task – to recognise an overtake event. An overtake
should be checked every time Ego does a lane change. The LaneChange event
triggers the execution of the OvertakeAgent. Additionally, we query about the
temporal data.

LOT (car, lane, tcur ) ≡ argmin
∀t:∃IsOn(car,lane,t)∧t<tcur

(tcur − t) (1)
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To know if an overtake occurred, one would like to know when the last
occurrence in time (lot) where Ego was in the same lane as the one it is currently
on. We can find lot using Equation 1, lot = LOT (Ego,Lane, t), and input it
into the overtake rule as follows.

IsOn(Ego,Lane, t) ∧ IsOn(Car,Lane, t) ∧ IsBehind(Car,Ego, t)∧
IsOn(Ego,Lane, lot) ∧ IsOn(Car,Lane, lot) ∧ IsBehind(Ego,Car, lot)

=⇒ Overtake(Ego,Car, t)

3.3 Explanations

By explicitly utilising explanation agents, one is able to separate the situation
comprehension and the situation explanation. For instance, the RelativeLoca-
tionAgent recognises that a lane change has occurred, but does not care about
how well the lane change was done. That task is delegated to the LaneChange-
ExplainerAgent.

The RelativeLocationAgent notifies the LaneChangeExplainerAgent, and the
explanation agent assesses if the driver remembered to conduct all of the impor-
tant actions needed for a proper lane change. To accomplish this, it need access
to attributes from the past such as the property values TurnIndicator and Gaze.
To confirm that the driver looked at the correct mirrors and switched on the
turn signals prior to the time of the lane change, tLaneChange, we define a time
interval of interest as I ≡ [tLaneChange− i, tLaneChange]. Here i is a natural num-
ber defining the duration of the time interval in abstract units. Additionally, one
could check if the sequence of these behaviours were correct, but in this example
the explanation will be kept on a basic level. The LaneChangeExplainerAgent
checks the following rules whenever a lane change occurs.

SignalLeft := ∃TurnIndicator(Ego, t) = Left : t ∈ I

LeftMirrorLook := ∃Gaze(Driver, t) = LeftMirror : t ∈ I

LaneChangeExplanation := {SignalLeft,LeftMirrorLook}

The results of these predicates are stored in the LaneChangeExplanation
vector. Hence, given a lane change explanation, LCE := {True,False}, a template
approach can be applied in the natural language generation.

You performed a lane change.

You did turn signal < $TurnIndicator ? correctly : incorrectly >,

and you did < $SideMirrorLook ? check : not check >

for cars behind you in the side mirror.

The explanation tree, illustrated in Figure 3, shows that our multi-agent
system can provide a complete explanation of a high level situation using the
recursive vector structure. Multiple text snippets, from each explanation, can be
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merged to form a detailed human readable explanation. In this case, the Overta-
keExplainerAgent has access to the LaneChangeExplanations. By retrieving the
two lane change explanations (LCE1 and LCE2) which defined the overtake, one
can explain the complete overtake process.

OvertakeExplanation ≡ {LCE1,LCE2}

4 Conclusion

We have developed an architecture for a virtual driving instructor system, which
can assess complex situations, such as the presented overtake scenario, and can
derive conclusions or explanations of interest.

The multi-agent system allows the VDI to recognise traffic regulation viola-
tions as well as correct traffic behaviour. The explanation data structure gen-
erated by the multi-agent system has all the information necessary to generate
complete, interpretable and traceable explanations. An example of such expla-
nation using templates is also shown for the example of an overtake scenario.

As this work focuses on architectural design of an ITS, its implementation is
a necessary next step in this project. An integrated ITS also requires a detailed
design of the student model and its relation with the personalized feedback
concept. Development of the student model is also left as a future work.
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