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CHANGE OF RINGS AND SINGULARITY CATEGORIES

STEFFEN OPPERMANN, CHRYSOSTOMOS PSAROUDAKIS AND TORKIL STAI

Dedicated to the memory of Ragnar-Olaf Buchweitz

Abstract. We investigate the behavior of singularity categories and stable
categories of Gorenstein projective modules along a morphism of rings. The
natural context to approach the problem is via change of rings, that is, the clas-
sical adjoint triple between the module categories. In particular, we identify
conditions on the change of rings to induce functors between the two singu-
larity categories or the two stable categories of Gorenstein projective modules.
Moreover, we study this problem at the level of ‘big singularity categories’ in
the sense of Krause [30]. Along the way we establish an explicit construction of
a right adjoint functor between certain homotopy categories. This is achieved
by introducing the notion of 0-cocompact objects in triangulated categories
and proving a dual version of Bousfield’s localization lemma. We provide ap-
plications and examples illustrating our main results.
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1. Introduction

Singularity categories via morphisms of rings. The singularity category of a
noetherian ring R, introduced by Buchweitz in his unpublished manuscript [11] as
the Verdier quotient Dsg(R) = Db(modR)/ perf R, is by now a celebrated invariant.
This category vanishes precisely when R has finite global dimension and, in a sense,
describes how far R is from being regular. Indeed, if R is commutative then Dsg(R)
is a categorical measure for the complexity of the singularities of the spectrum of
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2 OPPERMANN, PSAROUDAKIS AND STAI

R. It should be remarked that Orlov [37] later considered Db(cohX)/ perf X for an
algebraic variety X not only in order to understand the singularities of X, but also to
provide new insight into Kontsevich’s homological mirror symmetry conjecture [29].
Denoting by GprojR the stable category of finitely generated Gorenstein projective
R-modules, there is a natural triangle functor GprojR →֒ Dsg(R) which is always

fully faithful. By a famous theorem due to Buchweitz [11], obtained independently
by Happel in [21, Theorem 4.6], this is even a triangle equivalence provided R is
Gorenstein. Notice that this is a more general version of the well known equivalence
between the singularity category and the stable module category of a selfinjective
algebra, due to Rickard [40, Theorem 2.1].

The notion of singular equivalence of finite dimensional algebras has recently
attracted much attention. In particular, Chen [12,13,14,16] has investigated when
certain extensions of rings have equivalent singularity categories. In [39] this topic
was studied from the point of view of recollements. Explicitly, each idempotent
element e in R gives rise to a recollement of module categories

modR/〈e〉 →֒ modR
π
−→ mod eRe,

and the authors of that paper gave necessary and sufficient conditions for the quo-
tient functor π to induce a singular equivalence. Moreover, Chen [15] investigated
what is happening in the left hand part of the diagram.

It is thus natural to explore singularity categories and stable categories of Goren-
stein projective modules along a more general morphism of rings. Such an f : Λ→ Γ
gives rise to change of rings via the classical adjoint triple

ModΛ ModΓ.
res

− ⊗Λ Γ

HomΛ(Γ,−)

If moreover the two rings are module finite over a commutative noetherian ring —
i.e. they are ‘noetherian algebras’ — then these functors restrict to an adjoint triple
on the level of finitely generated modules. It is our aim to understand when these
functors induce functors on the levels of singularity categories and stable categories
of Gorenstein projective modules, and to investigate what kind of properties these
induced functors have. Our main results in this direction are summarized below.

Theorem I. Let f : Λ → Γ be a morphism of noetherian algebras such that the
projective dimension of Γ is finite both as left and as right Λ-module. Then the
following hold.

(i) We have the solid part of the commutative diagram

GprojΛ GprojΓ

Dsg(Λ) Dsg(Γ)

− ⊗Λ Γ

res

− ⊗L

Λ Γ

res

RHomΛ(Γ,−)

where the two functors on the bottom level form an adjoint pair.
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(ii) If moreover RHomΛ(Γ,Λ) belongs to perf Γ then res restricts to a functor
between stable categories of finitely generated Gorenstein projective modules,
and it has a right adjoint RHomΛ(Γ,−) on the level of singularity categories,
as indicated by the dashed arrows.

(iii) If moreover Λ is module finite over some regular ring and Cone(f) belongs
to perf Λe, then the functor −⊗L

Λ Γ, hence also −⊗Λ Γ, is fully faithful. In
particular, in this case the pair

(
Dsg(Λ),Ker(resDsg

)
)
is a stable t-structure in

Dsg(Γ) which restricts to a stable t-structure
(
GprojΛ,Ker(res)

)
in GprojΓ

when the condition in (ii) is met.

The above theorem is a summary of results of Section 3. We remark that (iii)
immediately gives a generalization of the main result in [15], by choosing Γ to be
the quotient of Λ by a homological ideal of finite projective dimension as bimodule.

Homotopy categories of big modules. Often it is necessary to consider all
modules, not just finitely generated ones. Also in the realm of singularity categories,
‘big’ categories — i.e. triangulated categories which admit small coproducts — give
a different perspective.

In this case, the category one considers is the homotopy category of acyclic
complexes of injective modules, Kac(InjΛ), which should be considered the natural
‘big singularity category’ since it is compactly generated by Dsg(Λ) — see Krause
[30] and Theorem 2.20 below. This big singularity category plays a key role in
recent developments in the theory of support varieties. In particular, if R is locally
a hypersurface ring, then by [41] the lattice of (compactly generated) localizing
subcategories of Kac(InjR) is isomorphic to the lattice of (specialization closed)
subsets of the singular locus of R.

As a big version of the stable category of Gorenstein projective modules, it seems
natural to consider the homotopy category of totally acyclic complexes of projective
(or injective) modules. However, unfortunately, the connection here is not as good
as one might have hoped: While the Gorenstein projective modules are always
compact in Ktac(ProjΛ), they only generate this category if the algebra is virtually
Gorenstein — a class of algebras introduced by Beligiannis–Reiten [6].

For these big versions of the categories in Theorem I we obtain the following
result, which is an excerpt of Section 4 — see in particular the Summary at the end
of the section where we also provide a version in terms of the homotopy categories
of coacyclic and totally acyclic complexes of projective modules.

Theorem II. Let f : Λ → Γ be a morphism of noetherian algebras such that the
projective dimension of Γ is finite both as left and as right Λ-module.

(i) There are adjunctions as indicated by the solid arrows in the following dia-
gram.

Kac(InjΛ) Kac(InjΓ)

λ res

HomΛ(Γ,−)

If moreover RHomΛ(Γ,Λ) belongs to perf Γ, then there is an additional ad-
joint functor, as indicated by the dashed arrow.
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(ii) If Λ and Γ admit dualizing complexes DΛ and DΓ, respectively, such that
there is an isomorphism HomΛ(Γ, DΛ) ∼= DΓ of complexes of Λ–Γ-bimodules,
then there are adjunctions as indicated by the solid arrows in the following
diagram.

Ktac(InjΛ) Ktac(InjΓ)
HomΛ(Γ,−)

If moreover RHomΛ(Γ,Λ) belongs to perf Γ, then there is an additional ad-
joint functor, as indicated by the dashed arrow.

(iii) If moreover the conditions of Theorem I (iii) are met, then both occurences
of HomΛ(Γ,−) are fully faithful. In this case the pair (Kac(InjΛ),Ker(λ res))
is a stable t-structure in Kac(InjΓ) which also restricts to the level of totally
acyclic complexes.

Here λ denotes injective resolutions, which become necessary since the restriction
of a complex of injectives need not consist of injectives any more. While we do not
unveil the precise constructions of all the functors above in this introduction, it is
worth mentioning that they are all given completely constructively, at least under
the hypotheses of (ii).

Adjoint functors. In some cases the mere existence of an adjoint functor has
important consequences. For instance, the right adjoint of the inclusion functor
Ktac(ProjR) →֒ K(ProjR), which exists under rather weak restrictions on R, was
used by Jørgensen [26] in order to establish the contravariant finiteness of the
Gorenstein projective modules in ModR. In Corollary 5.4 we continue in this
direction and add to the class of rings over which such right approximations exist.

On the other hand, for the purpose of doing actual computations, learning from
formal arguments that a functor exists is often not satisfactory. In the age of
Brown representability, due to Neeman [33], such scenarios seem to arise quite often.
In certain cases, however, Bousfield’s ‘localization lemma’ [9, 10] — as presented
by Neeman [31, Lemma 1.7] — tells us precisely what a wealth of left adjoint
functors actually look like. To apply his result it suffices to assume that T is a
triangulated category admitting coproducts. The lemma asserts that if X is a set of
compact objects in T, then the inclusion X⊥ →֒ T admits a left adjoint and, most
remarkably, that the latter is explicitly given by assigning to each object T of T the
homotopy colimit of the cones of iterated right AddX-approximations of T . Such a
good grasp on this functor has been proven most useful, e.g. in [31] where massive
generalizations of results from algebraic geometry were obtained.

We provide the following dual of Bousfield’s lemma. Since non-zero cocompact
objects rarely exist in the categories we typically consider, we relax the assumption
on the set of objects X to a notion which we call 0-cocompactness in order to get
an interesting result.

Theorem III (Theorem 6.6). Let T be a triangulated category which admits prod-
ucts. Let X be a set of 0-cocompact objects in T Then

(
⊥X, (⊥X)⊥

)

is a stable t-structure in T.
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For the sake of brevity the reader is referred to Section 6 for the precise definition
of 0-cocompactness and a detailed account of the construction itself. Here “⊥” refers
to all extensions vanishing.

It should be noted that the above stable t-structure provides us with a functorial
triangle T⊥X → T → TX → T⊥X[1], where the objects T⊥X in ⊥X and TX in (⊥X)⊥,
as well as the maps, are explicitly given by a construction dual to the one of Bous-
field. We emphasize that a set of 0-cocompact objects in a triangulated category
cogenerates a stable t-structure, in contrast to Bousfield’s case.

We moreover show that the hypotheses of Theorem III are satisfied in several
cases of interest. In particular, we provide explicit descriptions of the right adjoint
functors to the following inclusions — see Corollary 6.12.

Kac(InjΛ) →֒ K(InjΛ); Ktac(InjΛ) →֒ K(InjΛ);

Kcoac(ProjΛ) →֒ K(ProjΛ); Ktac(ProjΛ) →֒ K(ProjΛ).

Outline. Section 2 recalls and to some extent introduces notions and results that
will be employed at later stages. This section consists of seven short subsections.
In the first subsection we recall well known concepts and results from the theory of
triangle functors and adjoints, as well as homotopy limits and colimits. Our first
contributions appear in Subsection 2.2, where we provide a description of the right
adjoint of the inclusion functor K(ProjR) →֒ K(ModR) and a description of the
left adjoint of the embedding K(InjR) →֒ K(ModR). In Subsection 2.3 we discuss
dualizing complexes and recall a result of Iyengar–Krause stating that a dualizing
complex for a noetherian ring R induces an equivalence between K(ProjR) and
K(InjR). In Proposition 2.12 we show that this equivalence interacts nicely with
change of rings. Subsection 2.4 is devoted to acyclic, coacyclic and totally acyclic
complexes: For an Artin algebra Λ we show in Proposition 2.17 how the subcat-
egories Kac(ProjΛ) and Kcoac(ProjΛ) of K(ProjΛ) can be described as certain left
perpendicular classes, and obtain similar descriptions of the subcategories Kac(InjΛ)
and Kcoac(InjΛ) in K(InjΛ). In Subsection 2.5 we recall several aspects of Goren-
stein homological algebra that are used throughout the paper. In Subsection 2.6
we recall in Theorem 2.20 that if R is a noetherian ring, then the bounded de-
rived category Db(modR) and the singularity category Dsg(R) can be realized as
the subcategories of compact objects in certain compactly generated triangulated
categories — a result due to Krause [30]. Under additional assumptions on R, we
show a similar statement for the stable category of Gorenstein projective modules
GprojR. Finally, in Subsection 2.7 we discuss contravariantly finite subcategories
and torsion pairs. Moreover, we recall in Theorem 2.23 a result of Jørgensen [24,26]
providing sufficient conditions on a ring R so that the subcategory of Gorenstein
projective modules GProjR is contravariantly finite in ModR.

In Section 3 we show Theorem I above by breaking the proof down into several
smaller and managable steps, and provide examples that illustrate the result. The
claims (i) and (ii) are Theorem 3.1, while (iii) is Proposition 3.7 and Corollary 3.8
where we view f as a morphism of bimodules over Λ. As a byproduct of Theorem I,
we obtain the main result of Chen [15] as the case f : Λ → Λ/I for Λ a finite
dimensional algebra with a homological ideal I of finite projective dimension as
bimodule — see Corollary 3.9. As a further application, we show for certain trivial
extensions Γ = Λ⋉X that there are fully faithful functors −⊗L

ΛΓ: Dsg(Λ)→ Dsg(Γ)
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and − ⊗Λ Γ: GprojΛ → GprojΓ — see Corollary 3.13. The results of this section
are illustrated with two examples — see Example 3.12 and Example 3.14.

In Section 4 we extend the functors of Theorem I to certain homotopy categories
of projective and of injective modules. Adjunctions turn out to be plentiful and
Theorem II above reflects only a part of the full picture. In particular, we show
that Theorem I is in fact the restriction of a picture — see Diagram 4.1 in the
Summary of Section 4 — that exists on the level of certain homotopy categories,
where the singularity category as well as the stable category of Gorenstein projective
modules serve as subcategories of compact objects. The claim (i) in Theorem II is
Proposition 4.2 and Proposition 4.4, (ii) is Proposition 4.6, while (iii) is Corollary 4.5
and 4.7. Moreover, we obtain ‘big’ versions of some of the applications of Section 3
— see Corollary 4.5 and Corollary 4.7.

Section 5 deals with right approximations and shows how, for any ring R, a
contravariantly finite subcategory of K(ProjR) induces one in ModR — see Propo-
sition 5.2. As a consequence, we slightly expand Jørgensen’s result [26] by showing
that the category of Gorenstein projective modules is contravariantly finite inModR
as long as R is a noetherian ring with a dualizing complex — see Corollary 5.4.

The final Section 6 contains a proof of Theorem III and demonstrates how this
result provides explicit descriptions of several functors that appear at earlier stages
of the paper. In particular, Theorem III completes the explicit descriptions of
the remaining functors of Diagram 4.1 — see Corollary 6.12. We also discuss our
notion of a 0-cocompact object in a triangulated category and, in particular, show
in Corollary 6.10 that if Λ is an Artin algebra, then each finite complex of finitely
generated Λ-modules is 0-cocompact in the homotopy category K(ModΛ).

Notation. By a noetherian algebra we mean a ring which is module finite over
some commutative noetherian ring. By a module we mean a right module. When
A is an additive category and X is a class of objects in A, the left and right orthogonal
classes of X are the subcategories

⊥ X = {A ∈ A |A(A,X) = 0} and X⊥ = {A ∈ A |A(X, A) = 0},

respectively. When T is a triangulated category and X is a class of objects in T, we
write

⊥ X = {T ∈ T |T(T,X[i]) = 0 ∀ i} and X⊥ = {T ∈ T |T(X[i], T ) = 0 ∀ i}.

If A has coproducts, then AddX is the subcategory consisting of summands of
coproducts of objects in X. Dually, if A has products, then ProdX denotes the
subcategory of summands of products of objects in X.

2. Preliminaries

2.1. Triangle functors and adjoints. Let us collect a few facts about functors
between triangulated categories that will be employed in the sequel.

Lemma 2.1 (Orlov [37, Lemma 1.2]). Let F : T→ T′ be an exact functor between
triangulated categories with right adjoint G. Let X and X′ be triangulated subcat-
egories of T and T′, respectively, satisfying F (X) ⊆ X′ and G(X′) ⊆ X. Then the
induced functors F : T /X → T′ /X′ and G : T′ /X′ → T /X form an adjoint pair
(F ,G). Moreover, if F is fully faithful, then so is F .
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We now need to recall a few key notions. Suppose T is a triangulated category
admitting coproducts. A triangulated subcategory of T is called thick if it is closed
under direct summands, and localizing if it is closed under coproducts. It is not
hard to show that a localizing subcategory is automatically thick. An object C in T

is called compact if the functor T(C,−) preserves coproducts, i.e. if any morphism
C →

∐
Ti factors through a finite subcoproduct. T is compactly generated if it

admits a set C of compact objects that generate T in the sense that T(C, X) = 0
implies X = 0. In this case T coincides with the smallest localizing subcategory
containing C. Moreover, the subcategory Tc of all compact objects in T coincides
with the smallest thick subcategory containing C.

The following theorem is a consequence of Brown representability for compactly
generated triangulated categories [33, Theorem 8.6.1].

Theorem 2.2 (Neeman [32, Theorems 4.1 and 5.1] and [33, Theorem 8.6.1]). Sup-
pose F : T → T′ is an exact functor between triangulated categories with T com-
pactly generated.

(i) F admits a right adjoint if and only if it preserves coproducts.
(ii) F admits a left adjoint if and only if it preserves products.
(iii) If F admits a right adjoint G, then F preserves compact objects if and only

if G preserves coproducts.

The proof of the following observation is a standard dévissage argument and can
be found in the Appendix.

Lemma 2.3. Let T and T′ be triangulated categories with coproducts and suppose
T is compactly generated. Let F : T → T′ be exact and coproduct preserving. If F
restricts to a fully faithful functor Tc → T′ c, then F is fully faithful.

As the only monomorphisms and epimorphisms in a triangulated category are
the ones that are split, limits and colimits rarely exist. In certain cases the following
machinery is still useful. Suppose we are given a sequence

T0
t0−→ T1

t1−→ T2 → · · ·

in a triangulated category admitting coproducts, and denote by t :
∐

Ti →
∐

Ti

the morphism induced by the ti. The homotopy colimit of such a sequence, a notion
which originates from algebraic topology and was introduced in algebra through [8],
is defined by the triangle

∐
Ti

1−t
−−→

∐
Ti → hocolimTi →

(∐
Ti

)
[1].

In particular, taking hocolim is not in general a functorial procedure, but it does
commute with left adjoint functors. For each Tj there is a morphism µj : Tj →
hocolimTi which is compatible with the ti. It is easy to check that if ti is invertible
for each i, then each µj is an isomorphism. Moreover, if each ti = 0, then hocolimTi

vanishes. Using homotopy colimits, it is not difficult to show that a triangulated
category with coproducts is automatically idempotent complete. Homotopy colim-
its also (often) enable us to construct the totalization of a complex in a triangulated
category. This should be thought of as an analog of the fundamental notion of the
total complex with respect to coproducts of a double complex.

Dually, let T be a triangulated category with products and consider a sequence

· · · −→ S2
s2−→ S1

s1−→ S0.
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The homotopy limit of this sequence is given by the triangle
(∏

Si

)
[−1]→ holimSi →

∏
Si

1−s
−−→

∏
Si,

where the i-th component of s is the map Si
si−→ Si−1 →

∏
Si. Note again that the

holim is determined up to a non-unique isomorphism.

2.2. Projective and injective resolutions. Let R be a ring. The homotopy
category K(ProjR) is not in general compactly generated, but by [34] it is always
‘well generated’ which means that it still satisfies Brown representability. Hence the
coproduct preserving inclusion K(ProjR) →֒ K(ModR) has a right adjoint, which
we will denote by ρ. Similarly, by [36] the inclusion K(InjR) →֒ K(ModR) has a
left adjoint which we will denote by λ.

The aim of this subsection is twofold: First we give explicit descriptions of
ρ and λ for complexes whose terms have bounded homological dimension — see
Proposition 2.5. Then, in Proposition 2.6, we provide a somewhat surprising syzygy-
cosyzygy adjunction which will prove to be useful later.

Both these results hinge on the following slightly technical lemma.

Lemma 2.4. Let 0 → X → C → Y → 0 be a short exact sequence in C(ModR),
and assume C is contractible. (Note that such a sequence typically does not give
rise to a triangle in K(ModR).)

(i) If M ∈ C(ModR) is such that Ext1R(M
i, Xj) = 0 for all i and j, then

HomK(ModR)(M,X) ∼= HomK(ModR)(M,Y [−1]).

(ii) If N ∈ C(ModR) is such that Ext1R(Y
i, N j) = 0 for all i and j, then

HomK(ModR)(X,N) ∼= HomK(ModR)(Y [−1], N).

Proof. We only prove the first statement, the second one is dual.
The vanishing of Ext1 means that 0 → X → C → Y → 0 induces a short exact

sequence

0→ Hom(M,X)→ Hom(M,C)→ Hom(M,Y )→ 0.

Since the middle term is still contractible, this short exact sequence reveals a quasi-
isomorphismHom(M,Y )[−1]→ Hom(M,X). The claim follows, as the morphisms
in the homotopy category appear as the homologies of these Hom-complexes. �

Recall that the (abelian) category of complexes C(ModR) has enough projectives.
Indeed, the i-th term X i of X admits an epimorphism from a projective R-module
PXi , and hence X itself admits an epimorphism from the projective object given
by

PX = · · · → PXi ⊕ PXi−1

(
0 0
1 0

)
−−−−→ PXi+1 ⊕ PXi → · · · .

In particular PX is a contractible complex. As usual, we denote by Ω(X) the syzygy
of X , i.e. the kernel of the natural projection PX → X .

Dually, X embeds in a contractible complex IX consisting of injective modules,
and we let ℧X denote the cokernel of X →֒ IX .

Proposition 2.5. Let X be a complex of R-modules. If each term of X has pro-
jective dimension no larger than some fixed number d, then

ρ(X) = Ωd(X)[d].
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Dually, if each term of X has injective dimension no larger than d, then

λ(X) = ℧
d(X)[−d].

Proof. Consider the short exact sequence of complexes

0→ Ω(X)→ PX → X → 0

with contractible middle term. For any complex Q of projective modules we have

Ext1R(Q
i,Ω(X)j) = 0,

and hence Lemma 2.4 asserts that

HomK(ModR)(Q,X) ∼= HomK(ModR)(Q,Ω(X)[1]).

Iterating we obtain

HomK(ModR)(Q,X) ∼= HomK(ModR)(Q,Ωd(X)[d]).

But Ωd(X)[d] is a complex of projective modules by the assumption on the projec-
tive dimensions of the terms ofX . Thus Ωd(X)[d] satisfies the defining isomorphism
for the right adjoint, so ρ(X) = Ωd(X)[d].

The proof of the second claim is dual. �

Proposition 2.6. Let X and Y be complexes of R-modules such that

(∗) Extd+1
R (Xm, Y n) = 0

for all terms Xm of X and Y n of Y . Then

HomK(Ω
dX,Y ) ∼= HomK(X,℧dY ),

and this isomorphism is functorial in X and Y satisfying the term-wise vanishing
condition (∗).

Proof. Note that, by dimension shift, for any 0 ≤ i ≤ d we have

Ext1R((Ω
iX)m, (℧d−iY )n) = 0.

Thus, by Lemma 2.4 the short exact sequences

0→ ℧
d−i(Y )→ I℧d−i(Y ) → ℧

d−i+1(Y )→ 0

and

0→ Ωi+1X → PΩiX → ΩiX → 0

give rise to isomorphisms

HomK(ModR)(Ω
iX,℧d−iY ) ∼= HomK(ModR)(Ω

iX,℧d−i+1Y [−1])

and

HomK(ModR)(Ω
iX,℧d−iY ) ∼= HomK(ModR)(Ω

i+1X [1],℧d−iY ),

respectively. Combining the latter we find

HomK(ModR)(Ω
iX,℧d−iY ) ∼= HomK(ModR)(Ω

i−1X,℧d−i+1Y ),

and the claim follows by composing isomorphisms of this form. �
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2.3. Dualizing complexes. We now introduce Theorem 2.11, due to Iyengar–
Krause, which will serve as the foundation for much of the sequel.

Definition 2.7 (Iyengar–Krause [23]). A dualizing complex for a noetherian ring
R is a bounded complex DR of R–R-bimodules such that

(i) the terms of DR are injective both as left and as right R-modules;
(ii) the homology of DR is finitely generated both as left and as right R-module;
(iii) the canonical maps R→ HomR(DR, DR) and Rop → HomRop(DR, DR) are

quasi-isomorphisms.

This terminology is justified by the following result, due to [22] for commutative
rings. A translation of the proof to the non-commutative setting can be found
in [23].

Theorem 2.8 (Hartshorne [22]). A dualizing complex DR induces a duality

HomR(−, DR) : Db(modR)↔ Db(modRop)op : HomRop(−, DR).

Example 2.9. If Λ is an Artin algebra, i.e. module finite over a commutative
artinian ring k, then DΛ = Homk(Λ, E) is a dualizing complex for Λ, where
Homk(−, E) is the standard duality.

Recall that a ring is Gorenstein if it has finite injective dimension as left and as
right module over itself — see e.g. [21].

Example 2.10. If k is a commutative noetherian Gorenstein ring and Λ is a
module finite (not necessarily commutative) k-algebra, then DΛ = Homk(Λ, ik) is
a dualizing complex for Λ, where ik is a finite injective resolution of k over itself.

Theorem 2.11 (Iyengar–Krause [23]). A dualizing complex DΛ induces an equiv-
alence

−⊗Λ DΛ : K(ProjΛ)→ K(InjΛ)

with quasi-inverse ρHomΛ(DΛ,−).

In the setting of Example 2.10, this equivalence interacts nicely with change of
rings:

Proposition 2.12. Let f : Λ→ Γ be a morphism of noetherian algebras admitting
dualizing complexes DΛ and DΓ, respectively, such that HomΛ(Γ, DΛ) ∼= DΓ as
complexes of Λ–Γ-bimodules. Then the equivalences of Theorem 2.11 make the
following square commutative.

K(InjΛ) K(InjΓ)

K(ProjΛ) K(ProjΓ)

≈ −⊗ΛDΛ ≈ −⊗ΓDΓ

HomΛ(Γ,−)

−⊗ΛΓ

In particular, the required isomorphism HomΛ(Γ, DΛ) ∼= DΓ is satisfied by the
dualizing complexes DΛ and DΓ of Example 2.10 above.

Proof. By assumption, for the first claim it suffices to show that the natural transfor-
mation −⊗Λ HomΛ(Γ, DΛ)→ HomΛ(Γ,−⊗Λ DΛ) is an isomorphism on complexes
over ProjΛ. This follows readily since the functors coincide on Λ and moreover
commute with coproducts.



CHANGE OF RINGS AND SINGULARITY CATEGORIES 11

For the last claim, it suffices to observe that

HomΛ(Γ, DΛ) = HomΛ(Γ,Homk(Λ, ik)) = Homk(Γ, ik) = DΓ. �

2.4. Acyclic, coacyclic and totally acyclic complexes. Let R be a ring. We
denote by Kac(ProjR) the subcategory of K(ProjR) consisting of acyclic complexes.
Clearly, Kac(ProjR) = (ProjR)⊥ = (R)⊥ as subcategories of K(ProjR). Dually, we
consider Kcoac(ProjR) = ⊥(ProjR) ⊂ K(ProjR) and call an object in this subcate-
gory a coacyclic complex of projectives. Note that X ∈ K(ProjR) is coacyclic if and
only if the complex HomR(X,P ) is exact for each P ∈ ProjR. Finally, a complex
over ProjR is totally acyclic if it belongs to

Ktac(ProjR) = Kac(ProjR) ∩ Kcoac(ProjR).

On the other hand, Kac(InjR) is the subcategory of K(InjR) whose objects are
the acyclic complexes. One easily sees that Kac(InjR) = ⊥(InjR) = (λR)⊥ as
subcategories of Kac(InjR) (recall that λ denotes an injective resolution). We let
Kcoac(InjR) = (InjR)⊥ ⊂ K(InjR) and call an object of this subcategory a coacyclic
complex of injectives. Dual to the projective case, Y ∈ K(InjR) is coacyclic if and
only if the complex HomR(I, Y ) is exact for each I ∈ InjR. Finally, a complex over
InjR is totally acyclic if it belongs to the category

Ktac(InjR) = Kac(InjR) ∩ Kcoac(InjR).

Right orthogonal classes. It would be convenient if (co)acyclicity was detected by
a single object, rather than by all of ProjR or InjR. We have already seen how
Kac(ProjR) and Kac(InjR) are obtained as the right orthogonal classes of R and λR,
respectively. We now show how the presence of a dualizing complex enables us to
also write Kcoac(ProjR) and Kcoac(InjR) as (X)⊥ for some object X . Lemma 2.14
below is the key ingredient, but to prove this we need the following fact from
homological algebra.

Lemma 2.13. Let Λ be a noetherian ring. Suppose J ∈ InjΛ and that I is a
Λ–Λ-bimodule such that ΛI ∈ InjΛop. Then HomΛ(I, J) is a flat Λ-module.

Proof. The natural transformation HomΛ(I, J)⊗Λ − → HomΛ(HomΛop(−, I), J) of
right exact functors is an isomorphism on Λ and thus on all of modΛop. Hence
HomΛ(I, J)⊗Λ− is left exact on modΛop. This suffices, as flatness of HomΛ(I, J) is

even implied by the vanishing of TorΛ1 (HomΛ(I, J),Λ/L) for each left ideal L. �

In the current subsection we denote by T the equivalence −⊗ΛDΛ : K(ProjΛ)→
K(InjΛ) of Theorem 2.11 and by S its quasi-inverse ρHomΛ(DΛ,−). Claim (i) below
is essentially [23, Proposition 4.7] in the non-commutative setting.

Lemma 2.14. Let Λ be a noetherian ring with a dualizing complex DΛ. Then

(i) T restricts to an equivalence Kb(ProjΛ) ∼= Kb(InjΛ);
(ii) T restricts to an equivalence Kac(ProjΛ) ∼= Kcoac(InjΛ);
(iii) T restricts to an equivalence Kcoac(ProjΛ) ∼= Kac(InjΛ);
(iv) T restricts to an equivalence Ktac(ProjΛ) ∼= Ktac(InjΛ).

Proof. Let us start with (i). The functor T does restrict as desired, and we only

need to show that so does S. For Y ∈ Kb(InjΛ), the bounded complex HomΛ(DΛ, Y )
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consists of flat modules by Lemma 2.13. As flat Λ-modules have finite projective di-
mension by [17], the description of ρ in Proposition 2.5 settles the claim. Statement
(ii) now follows from

Kac(ProjΛ) = (ProjΛ)⊥ = Kb(ProjΛ)⊥
T

∼= Kb(InjΛ)⊥ = (InjΛ)⊥ = Kcoac(InjΛ)

and a similar argument shows (iii), whence (iv) is immediate. �

Proposition 2.15. Let Λ be a noetherian ring with a dualizing complex DΛ. Then

(i) Kcoac(ProjΛ) = (ρRHomΛ(DΛ,Λ))
⊥ in K(ProjΛ);

(ii) Kac(InjΛ) = (λΛ)⊥ in K(InjΛ);
(iii) Kac(ProjΛ) = (Λ)⊥ in K(ProjΛ);
(iv) Kcoac(InjΛ) = (DΛ)

⊥ in K(InjΛ).

Moreover, in (i)–(iv) the objects defining the right orthogonal classes are all
compact in K(ProjΛ) and K(InjΛ), respectively.

Proof. Claims (ii) and (iii) were observed above. We obtain (i) from the following
identifications

Kcoac(ProjΛ)
T

∼= Kac(InjΛ) = (λΛ)⊥
S

∼= (ρHomΛ(DΛ, λΛ))
⊥ = (ρRHomΛ(DΛ,Λ))

⊥.

For (iv), Lemma 2.14 implies Kb(InjΛ) = thick(AddDΛ) from which we infer

Kcoac(InjΛ) = (InjΛ)⊥ = Kb(InjΛ)⊥ = thick(AddDΛ)
⊥ = (DΛ)

⊥.

Finally, since λΛ is compact in K(InjΛ) it follows that S(λΛ) = ρRHomΛ(DΛ,Λ)
is compact in K(ProjΛ). Similarly, the compactness of Λ in K(ProjΛ) implies the
compactness of T (Λ) = DΛ in K(InjΛ). �

Left orthogonal classes. Contrary to what one might expect, Kcoac(ProjΛ) need not
coincide with ⊥(Λ) even for a noetherian ring Λ. In fact, exactness of HomΛ(X,Λ)
fails to imply coacyclicity of a complex X over ProjΛ already if Λ is a complete
local domain [23, Remark 5.11]. Knowing this, the below Proposition 2.17 is more
or less what one could hope for in the pursuit of describing (co)acyclicity as ⊥(X)
for a single object X . We will need the following observation, the proof of which
uses the machinery of pure-injective modules and can be found in the Appendix.

Lemma 2.16. If Λ is an Artin algebra, then the natural monomorphism Λ(I) → ΛI

is split for any index set I.

Below, DΛ refers to the dualizing complex from Example 2.9.

Proposition 2.17. Let Λ be an Artin algebra. Then

(i) Kcoac(ProjΛ) =
⊥(Λ) in K(ProjΛ);

(ii) Kac(InjΛ) =
⊥(DΛ) in K(InjΛ);

(iii) Kac(ProjΛ) =
⊥(ρDΛ) in K(ProjΛ);

(iv) Kcoac(InjΛ) =
⊥(DΛ ⊗

L

Λ DΛ) in K(InjΛ).

Proof. To prove (i) observe that Lemma 2.16 implies ProjΛ = ProdΛ, which yields
Kcoac(ProjΛ) =

⊥(ProjΛ) = ⊥(ProdΛ) = ⊥(Λ). Now (ii) follows once we identify

Kac(InjΛ)
S

∼= Kcoac(ProjΛ) =
⊥(Λ)

T

∼= ⊥(DΛ).
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For (iii), notice that we also have InjΛ = ProdDΛ for our dualizing complex. More-
over, a complex X is acyclic if and only if HomΛ(X, I) is exact for each I ∈ InjΛ.
Hence in K(ModΛ) we have

Kac(ProjΛ) =
⊥(InjΛ) ∩ K(ProjΛ) = ⊥(ProdDΛ) ∩ K(ProjΛ) = ⊥(DΛ) ∩ K(ProjΛ).

Observe next that by adjunction we have HomK(P, ρDΛ) = HomK(P,DΛ) for each
complex P over ProjΛ, which reveals that Kac(ProjΛ) =

⊥(ρDΛ) in K(ProjΛ). Now
(iv) is implied by identifying

Kcoac(InjΛ)
S

∼= Kac(ProjΛ) =
⊥(ρDΛ)

T

∼= ⊥(ρDΛ ⊗Λ DΛ) =
⊥(DΛ ⊗

L

Λ DΛ). �

Remark 2.18. For an additive category A one lets Ktac(A) =
⊥(A) ∩ (A)⊥ upon

viewing A as the stalk complexes of K(A). In this tradition, if R is a ring, then
Kcoac(projR) should be defined as K(projR)∩⊥(projR). On the other hand, it would
also be natural to define Kcoac(projR) as K(projR)∩Kcoac(ProjR). Thankfully, this
seeming conflict solves itself. Indeed, the fact that each finitely generated module is
compact in ModR implies that ⊥(projR) = ⊥(ProjR) as subcategories of K(projR),
so the competing definitions agree. In particular, and useful in Section 3 below, this
means that a complex P over projR does belong to Kcoac(projR) if HomK(P,R) = 0.

2.5. Gorenstein homological algebra. Let R be a ring. An R-module is Goren-
stein projective if it appears as the 0-boundaries of a totally acyclic complex over
ProjR. The Gorenstein projective R-modules form a Frobenius exact subcategory
GProjR of ModR, and assigning X 7→ B0(X) gives a triangle equivalence

Ktac(ProjR) ∼= GProjR.

Provided R is right noetherian, GprojR = GProjR∩modR is again Frobenius exact
in modR, and

Ktac(projR) ∼= GprojR

by restriction of the above equivalence. Dually, an R-module is called Gorenstein
injective if it is isomorphic to the 0-cycles of some totally acyclic complex over InjR,
and assigning Y 7→ B0(Y ) gives triangle equivalences

Ktac(InjR) ∼= GInjR and Ktac(injR) ∼= GinjR.

Notice that if R happens to be noetherian with a dualizing complex, then

GProjR ∼= GInjR and GprojR ∼= GinjR

by Lemma 2.14.
If Γ is an Artin algebra, then the duality between GprojΓ and GinjΓ is pleas-

ant enough to ensure (GprojΓ)
⊥

= ⊥(GinjΓ) in modΓ (see [3]). However, this
does not necessarily hold true for big modules. To amend this oddity, in [6] the
class of virtually Gorenstein algebras was introduced as the algebras Γ for which

(GProjΓ)⊥ = ⊥(GInjΓ). We remark that the class of virtually Gorenstein algebras
is rather large. Indeed, it contains the algebras of finite representation type and is
closed under derived equivalence. In fact it seems that the first example of an Artin
algebra which is not virtually Gorenstein appeared as recently as [5, Example 4.3].

Denote now by Λ a noetherian ring. The singularity category of Λ is the Verdier
quotient

Dsg(Λ) = Db(modΛ)/perf Λ
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introduced in [11]. Notice that there is a natural triangle functor

ι : GprojΛ→ Dsg(Λ).

Indeed, upon identifying GprojΛ = Ktac(projΛ) and Db(modΛ) = K−,b(projΛ), ι is
given by assigning to a totally acyclic complex X over projΛ the object in Dsg(Λ)
represented by its brutal truncation τ0X .

Below, (i) is the fundamental theorem of Buchweitz [11, Theorem 4.4.1]. The
partial converses in (ii) are due to [2, 7] (see also [13] for a relative version).

Theorem 2.19. The functor ι is fully faithful. Moreover,

(i) if Λ is Gorenstein, then ι gives an equivalence GprojΛ ∼= Dsg(Λ);

(ii) if Λ is commutative local or an Artin algebra such that ι is an equivalence,
then Λ is Gorenstein.

2.6. Compactly generated completions. When Λ is a noetherian ring, the tri-
angulated categories Db(modΛ) and Dsg(Λ) may be realized as the subcategories
of compact objects in familiar compactly generated triangulated categories. If Λ
is moreover virtually Gorenstein, then the same goes for GprojΛ. We now explain
how these embeddings come about.

Theorem 2.20. If Λ is a noetherian ring, then we have the following.

(i) K(InjΛ) is compactly generated with K(InjΛ)c ∼= Db(modΛ);
(ii) Kac(InjΛ) is compactly generated with Kac(InjΛ)

c ∼= Dsg(Λ);
(iii) Ktac(InjΛ) is compactly generated if Λ admits a dualizing complex. If more-

over Λ is an Artin algebra, then Ktac(InjΛ)
c ∼= GprojΛ if and only if Λ is

virtually Gorenstein.

Idea of proof. Claims (i) and (ii) are due to Krause [30] — let us give a brief ac-
count of his argument. It is straightforward to verify that the injective resolution
of a finitely generated module is compact in K(InjΛ), from which it follows that
K(InjΛ) is compactly generated. In other words, taking injective resolutions embeds
Db(modΛ) as the compact objects of K(InjΛ).

Recall that Kac(InjΛ) is the subcategory (λΛ)⊥ of K(InjΛ) by Proposition 2.15,
so in particular it is closed under coproducts. As the compact generation of K(InjΛ)
has already been established, we may invoke [31] which constructs a compact pre-
serving left adjoint Iλ to the inclusion I : Kac(InjΛ) → K(InjΛ). As such an Iλ
automatically takes a set of generating objects to a set of generating objects, the
compact generation of Kac(InjΛ) follows. Now Theorem 2.2 yields the existence of
a recollement

Kac(InjΛ) →֒ K(InjΛ)→ D(ModΛ)

which induces an equivalence up to direct summands

Kac(InjΛ)
c ∼= K(InjΛ)c/D(ModΛ)c,

and the fact that D(ModΛ)c = perf Λ is well known.
We now turn to (iii). As in the previous paragraph, the compact generation

of Ktac(InjΛ) follows from the compact generation of Kac(InjΛ) since Ktac(InjΛ)
is the subcategory (DΛ)

⊥ of Kac(InjΛ) by Proposition 2.15. For the last claim,

GprojΛ ⊂
(
GProjΛ

)c
is always true. By [4], the reversed inclusion holds precisely

when Λ is virtually Gorenstein, which is not entirely surprising once one learns
that Λ is virtually Gorenstein if and only if each Gorenstein projective module is a
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filtered colimit of finitely generated Gorenstein projective modules [5, Theorem 5].
Hence the proof is complete since GProjΛ ∼= Ktac(InjΛ). �

In the above, the homotopy categories appearing are over InjΛ, even though
Lemma 2.14 suggests that we could equally well work over ProjΛ. Indeed, each
relevant property will formally carry over by transport of structure, but homotopy
categories over InjΛ seem to be intrinsically better behaved than their counterparts
over ProjΛ. For instance, and crucial above, if M is a finitely generated Λ-module,
then λM is compact in K(InjΛ) while ρM need not be compact in K(ProjΛ). Indeed,
ρM is compact in K(ProjΛ) if and only if M is compact in D(ModΛ), i.e. precisely
when M has finite projective dimension.

A further reason for preferring injectives is that generalizations are then more
often within reach. Indeed, in the above (i) and (ii) one may replace ModΛ by any
locally noetherian Grothendieck category A such that D(A) is compactly generated,
which happens for instance when A has finite global dimension. On the other hand,
there is no reason why such an A should even have enough projectives. Nevertheless,
Jørgensen [25] showed directly, i.e. with no allusion to the above, that K(ProjΛ) is
compactly generated if Λ is noetherian. Funnily enough, the compact objects of
K(ProjΛ) arise as HomΛop(ρM,Λ) forM ∈ modΛop, and it turns out that K(ProjΛ)c

is naturally equivalent to Db(modΛop)op. Note that the latter should be expected
in light of the Grothendieck-type duality of Theorem 2.8.

For later reference we end with a porism of Theorem 2.20. Below, the statements
involving ProjΛ follow from those involving InjΛ by restricting the equivalence
K(InjΛ) ∼= K(ProjΛ).

Observation 2.21. Let Λ be a noetherian ring admitting a dualizing complex.
Then

(i) the inclusions Kac(InjΛ) →֒ K(InjΛ) and Kcoac(ProjΛ) →֒ K(ProjΛ) both
admit a left and a right adjoint;

(ii) the inclusions Ktac(InjΛ) →֒ Kac(InjΛ) and Ktac(ProjΛ) →֒ Kcoac(ProjΛ)
both admit a left and a right adjoint.

2.7. Contravariant finiteness and torsion pairs. Let A be a category with a
subcategory B. A right B-approximation of A ∈ A is a morphism B → A with
B ∈ B through which each morphism B′ → A with B′ ∈ B factors. B is called
contravariantly finite in A if each A ∈ A admits a right B-approximation. The
dual notions are those of a left approximation and a covariantly finite subcategory,
respectively. In the following sense, it is easy to generate such categories.

Lemma 2.22. Let A be a category and B a skeletally small subcategory. If A has
coproducts, then AddB is contravariantly finite in A. Dually, if A has products,
then ProdB is covariantly finite in A.

Proof. Assume that A has coproducts. For A ∈ A, let I denote the collection of all
morphisms Bi → A with Bi ∈ B. Then I is a set and the canonical morphism

∐

i∈I

Bi → A

is a right AddB-approximation. The remaining claim is dual. �

A basic problem in Gorenstein homological algebra is determining when GProjR
is contravariantly finite in ModR. For some time, an affirmative answer could
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only be given under rather strong restrictions — see [18, Theorem 2.9] and [19,
Theorem 3.4]. Jørgensen vastly improved on these when he showed in [24] that
any module over an Artin algebra admits a right approximation by Gorenstein
projective modules, and later used similar techniques in order to extend his theorem
to the one below. We remark that one could hope to go even further, as there seems
to be no known example of a ring R such that GProjR fails to be contravariantly
finite in ModR.

Theorem 2.23 (Jørgensen [26]). Consider either of the following two situations.

(i) Λ is a commutative noetherian ring admitting a dualizing complex.
(ii) Λ is a left coherent, right noetherian algebra over a field k for which there

exists a left noetherian k-algebra Γ and a dualizing complex ΓDΛ in the
sense of [42].

Then GProjΛ is contravariantly finite in ModΛ.

A pair of subcategories (X,Y) of a triangulated catgory T is a torsion pair if
T(X,Y) = 0, and each object T ∈ T appears in a triangle

XT → T → YT → XT [1]

with XT ∈ X and YT ∈ Y. If in addition we have X[1] ⊆ X, the torsion pair
(X,Y) is called a t-structure. In this case X is an aisle and Y a coaisle in T. We
remark that torsion pairs according to [6, Definition I.2.1] are in fact precisely t-
structures. An aisle is always contravariantly finite since the above XT → T is
a right X-approximation of T . Moreover, approximations coming from aisles are
functorial, since assigning T 7→ XT gives a right adjoint R to the inclusion X →֒ T

— originally due to Keller–Vossieck [28]. As the dual claims hold for coaisles, the
following picture always accompanies a t-structure.

X T Y

R

L

This ‘decomposition’ of the ambient category T means that an aisle is a much
stronger tool than a contravariantly finite subcategory. It is correspondingly more
difficult to get a hold of and, indeed, the matter of generating aisles has become a
central issue in modern algebra. Let us mention one remarkable result.

Theorem 2.24 (Neeman [35]). Let T be an idempotent complete triangulated cat-
egory, and S a thick contravariantly finite subcategory. Then S is an aisle in T.

A stronger notion still is that of a stable t-structure on T, i.e. a t-structure
(X,Y) in which X and Y are both closed under all shifts. In this case X and Y

become thick subcategories of T, and the above adjoints R and L induce triangle
equivalences T /Y ∼= X and T /X ∼= Y, respectively.

3. Singularity categories and Gorenstein projectives

In this section we are concerned with how change of rings affects ‘small’ cate-
gories, that is categories derived in some way from categories of finitely generated
modules. Therefore, throughout this section, we assume f : Λ → Γ to be a mor-
phism of noetherian algebras such that pdim ΛΓ and pdimΓΛ are finite.

The following theorem sums up the primary result of this section.
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Theorem 3.1. Under the standing assumptions above we have the solid part of the
following commutative diagram

GprojΛ GprojΓ

Dsg(Λ) Dsg(Γ)

− ⊗Λ Γ

res

− ⊗L

Λ Γ

res

RHomΛ(Γ,−)

where the two functors on the bottom level form an adjoint pair.
If moreover RHomΛ(Γ,Λ) ∈ perf Γ, then res restricts to a functor between stable

categories of finitely generated Gorenstein projective modules, and it has a right ad-
joint RHomΛ(Γ,−) on the level of singularity categories, as indicated by the dashed
arrows above.

Singularity categories. Our strategy here is to observe first that the desired func-
tors exist between bounded derived categories, and then transfer them to singularity
categories.

Lemma 3.2. Under the assumptions at the beginning of this section, there is an
adjoint triple

Db(modΛ) Db(modΓ).
res

− ⊗L

Λ Γ

RHomΛ(Γ,−)

Proof. Deriving the initial adjoint triple of functors between the big module cate-
gories gives an adjoint triple between D(ModΛ) and D(ModΓ). It is straightforward
to verify that the latter restricts to bounded derived categories in our setup. �

This diagram immediately gives us the lower part of Theorem 3.1:

Proposition 3.3. There is an adjoint pair of functors between singularity cate-
gories as in the following diagram.

Dsg(Λ) Dsg(Γ)

− ⊗L

Λ Γ

res

RHomΛ(Γ,−)

If moreover RHomΛ(Γ,Λ) ∈ perf Γ, then there is an adjoint triple as indicated by
the dashed arrow.

Proof. By Lemma 2.1 it suffices to check that the respective functors between
bounded derived categories preserve perfect complexes. For − ⊗L

Λ Γ this is au-
tomatic, and for res it follows since Γ is quasi-isomorphic to a perfect complex of
Λ-modules by assumption. Finally, RHomΛ(Γ,−) preserves perfect complexes if
and only if RHomΛ(Γ,Λ) ∈ perf Γ. �
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Stable categories of Gorenstein projective modules. Recall that in the cur-
rent section, the coacyclicity of a complex of projective modules is detected by the
ring itself — see Remark 2.18.

Proposition 3.4. If M ∈ GprojΛ, then M⊗ΛΓ is a Gorenstein projective Γ-module
and TorΛn(M,Γ) = 0 for n > 0.

Proof. By definition, there is a totally acyclic complex P over projΛ such that
M = B0(P ). As P is exact we see that Hi(P ⊗Λ Γ) = Torj−i(B

j+1(P ),Γ) for any
j > i. Since the projective dimension of Γ as left Λ-module is assumed to be finite,
we can always choose j sufficiently big so that this Tor vanishes. Thus P ⊗Λ Γ is
exact.

It follows that TorΛn(M,Γ) = 0, and that M ⊗Λ Γ = B0(P ⊗Λ Γ). Thus the proof
is complete provided we manage to show that P ⊗Λ Γ is totally acyclic. Acyclicity
is already established. For coacyclicity note that

HomΛ(P ⊗Λ Γ,Γ) = HomΛ(P,Γ),

and that the latter is exact because Γ ∈ perf Λ as right Λ-modules, and HomΛ(P,Λ)
is exact by assumption. �

Proposition 3.5. Assume that RHomΛ(Γ,Λ) ∈ perf Γ. Then the restriction func-
tor between the singularity categories restricts to a functor between the stable cate-
gories of finitely generated Gorenstein projective modules.

For the proof, we prepare the following technical observation.

Lemma 3.6. Let X be an acyclic complex of finitely generated Λ-modules, and
suppose the projective dimensions of the terms of X are bounded by d. Then, for
each i, there is a morphism φ : Bi(ρX) → Bi(X) such that the cone of φ is quasi-
isomorphic to a complex of finitely generated projectives concentrated in degrees −d
to 0.

Proof. By Proposition 2.5 we have ρX = ΩdX [d]. It follows directly from the con-
struction of syzygies for complexes that syzygies commute with taking boundaries
of exact complexes, thus

Bi(ρX) = Bi(ΩdX [d]) = Ωd Bi+d(X).

We hence obtain a commutative diagram

Bi(ρX) Pd−1 · · · P0 Bi+d(X)

Bi(X) X i · · · X i+d−1 Bi+d(X),

φ

from which it follows that there is a quasi-isomorphism

Cone(φ)→
[
Pd−1 → Pd−2 ⊕X i → · · · → Bi+d(X)⊕X i+d−1 → Bi+d(X)

]
.

Note that the rightmost map here is a split epimorphism. After splitting off the
term Bi+d(X), the complex

Pd−1 → Pd−2 ⊕X i → · · · → P0 ⊕X i+d−2 → X i+d−1
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extends from degrees−1 to d−1. Moreover, this complex admits non-zero homology
only in degrees −1 and 0. In particular it is quasi-isomorphic to the complex

Pd−1 → K,

where K is the kernel of the map Pd−2 ⊕X i → Pd−3 ⊕X i+1. Since K appears as
the kernel of the exact sequence

0→ K → Pd−2 ⊕X i → · · · → P0 ⊕X i+d−2 → X i+d−1 → 0

in which all other terms have projective dimension at most d, it follows that also
the projective dimension of K is bounded above by d. Thus, replacing K by a
minimal projective resolution we obtain the claim. �

Proof of Proposition 3.5. Let M ∈ GprojΓ. What we need to show is that resM is,
up to isomorphism in Dsg(Λ), a Gorenstein projective Λ-module.

Let P be a complete resolution of M , that is a totally acyclic complex over projΓ
such that M = B0(P ). Since finitely generated projective Γ-modules have bounded
projective dimension as Λ-modules we are in the situation of Lemma 3.6 above. In
particular

resM = B0(resP ) ∼= B0(ρ resP ),

since B0(resP ) and B0(ρ resP ) only differ by a finite complex of projectives.

It only remains to show that B0(ρ resP ) is Gorenstein projective over Λ. For
this it clearly suffices to check that ρ resP is totally acyclic. The fact that ρ resP is
acyclic follows directly from the construction. Thus it only remains for us to show
that HomΛ(ρ resP,Λ) is also acyclic. One may observe that the homologies of this
complex are, for sufficently large j, given by

Hi(HomΛ(ρ resP,Λ)) = Ext
i+j
Λ

(
Bj+1(ρ resP ),Λ

)

= Ext
i+j
Λ

(
Bj+1(resP ),Λ

)
Lemma 3.6 for i+ j > d

= Ext
i+j
Λ

(
res Bj+1(P ),Λ

)

= Ext
i+j
Γ

(
Bj+1(P ),RHomΛ(Γ,Λ)

)

which vanishes provided RHomΛ(Γ,Λ) is perfect, since P is totally acyclic. �

This furnishes the proof of Theorem 3.1.

Applications. For the remainder of the current section, we assume that Λ and Γ
are module finite over some regular commutative noetherian ring k, and that f is
k-linear. Our next result can be interpreted as saying that Λ is ‘less singular’ than
Γ under the following condition on the cone of f .

Proposition 3.7. Suppose Cone(f) ∈ perf Λe. Then, in the notation of Theo-
rem 3.1,

(i) the functor −⊗L

Λ Γ: Dsg(Λ)→ Dsg(Γ) is fully faithful;
(ii) the functor −⊗Λ Γ: GprojΛ→ GprojΓ is fully faithful.

Proof. For (i) it suffices to show that the unit η of the adjunction
(
−⊗L

Λ Γ, res
)
is

an isomorphism on the level of singularity categories. For this purpose, notice that
the triangle

Λ
f
−→ Γ→ Cone(f)→ Λ[1]
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in Db(modΛe) will induce, for each X ∈ Db(modΛ), the triangle

X ⊗L

Λ Cone(f)[−1]→ X
ηX
−−→ X ⊗L

Λ Γ→ X ⊗L

Λ Cone(f)

in Db(modΛ). By assumption the outer terms belong to perf Λ, which means that
η becomes an isomorphism in the quotient category Dsg(Λ) as desired. Claim (ii)
is now immediate, since the stable categories of Gorenstein projective modules are
full subcategories of the respective singularity categories. �

We collect an immediate consequence, using Proposition 3.7 in order to view
GprojΛ and Dsg(Λ) as subcategories of GprojΓ and Dsg(Γ), respectively.

Corollary 3.8. Suppose Cone(f) ∈ perf Λe. Then we have the following.

(i) The pair of subcategories
(
Dsg(Λ),Ker(resDsg

)
)

is a stable t-structure in Dsg(Γ). In particular, the fully faithful functor
−⊗L

Λ Γ induces a triangle equivalence

Dsg(Λ) ∼= Dsg(Γ)/Ker(resDsg
).

(ii) If moreover RHomΛ(Γ,Λ) lies in perf Γ, then the pair of subcategories
(
GprojΛ,Ker(res)

)

is a stable t-structure in GprojΓ. In this case the fully faithful functor −⊗ΛΓ
induces a triangle equivalence

GprojΛ ∼= GprojΓ/Ker(res).

Let us include an easy application. Recall from [20] that f is a homological
epimorphism if res : Db(modΓ)→ Db(modΛ) is fully faithful. In this case also the
functor res : Dsg(modΓ)→ Dsg(modΛ) is fully faithful by Lemma 2.1. In particular,
the kernel of the latter then vanishes, so Corollary 3.8 reveals the following.

Corollary 3.9. Suppose f is a homological epimorphism and that Cone(f) ∈
perf Λe. Then Λ and Γ are singularly equivalent.

Observe that the main result of [15] is recovered as the case f : Λ→ Λ/I for Λ a
finite dimensional algebra with a homological ideal I of finite projective dimension
as bimodule.

Examples. We illustrate Proposition 3.7 and Corollary 3.8 with two examples —
both of which will first be presented in a generic form and then illustrated com-
pletely explicitly for certain Nakayama algebras.

Corollary 3.10. Let Λ be a module finite algebra over some regular commutative
noetherian ring k. Suppose I is an ideal of Λ which, as a bimodule, is isomorphic
to a tensor product

I ∼= M ⊗k N,

where M and N are left and right Λ-modules, respectively, both of finite projective
dimension. Then the functors

−⊗L

Λ Λ/I : Dsg(Λ)→ Dsg(Λ/I) and −⊗ΛΛ/I : GprojΛ→ GprojΛ/I

are both fully faithful.
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Proof. The cone of Λ → Λ/I is I[1]. Thus, by Proposition 3.7 it suffices for I to
be a perfect bimodule. This is guaranteed if I is a tensor product of two perfect
modules. �

Corollary 3.11. Let Λ be a finite dimensional algebra over field k, and let I be a
1-dimensional ideal. Assume that the projective dimension of I is finite both as left
and as right module. Then the functors

−⊗L

Λ Λ/I : Dsg(Λ)→ Dsg(Λ/I) and −⊗ΛΛ/I : GprojΛ→ GprojΛ/I

are both fully faithful.

Proof. Since I is 1-dimensional, we have I ∼= I ⊗k I as bimodules. Thus the claim
follows from Corollary 3.10 above. �

Example 3.12. Let k be a field and Λ = k[ 1 2
a

b

]/(ab)n for some n > 0.

Consider the ideal I = (ba)n. Then I is isomorphic to the simple at vertex 1 both
as left and as right module, and moreover these simples have projective dimension
1. Thus Corollary 3.11 applies, and we obtain fully faithful functors

−⊗L

Λ Λ/I : Dsg(Λ)→ Dsg(Λ/I) and −⊗ΛΛ/I : GprojΛ→ GprojΛ/I.

In fact, in this example both Λ and Λ/I are Gorenstein, so the singularity categories
coincide with the respective stable categories of Gorenstein projective modules.
Moreover, Λ/I is even self-injective, so Dsg(Λ/I) = modΛ/I. One may observe
that

Ker(resDsg
) = {M ∈ mod(Λ/I) | pdimMΛ <∞} = add{S1, P2/S1}.

It now follows from Corollary 3.8 that

Dsg(Λ) =
⊥
Ker(resDsg

) = add{P2/ rad
2 P2, P2/ rad

4 P2, . . . , P2/ rad
2n−2 P2}.

We illustrate the subcategories inside the Auslander–Reiten quiver for n = 3:

modΛ

1 2 1

1
2

2
1

1
2
1

2
1
2

2
1
2

1
2
1
2

2
1
2
1

1
2
1
2
1

2
1
2
1
2

1
2
1
2
1

1
2
1
2
1
2

2
1
2
1
2
1

1
2
1
2
1
2
1

modΛ/I

1 2 1

1
2

2
1

1
2
1

2
1
2

2
1
2

1
2
1
2

2
1
2
1

1
2
1
2
1

2
1
2
1
2

1
2
1
2
1

1
2
1
2
1
2

2
1
2
1
2
1
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In both cases, the dashed lines are identified. The rectangles mark modules of
finite projective dimension (including the projective modules at the top), and the
ellipses mark non-projective Gorenstein projective modules. In the picture clearly
the ellipses on the left are a subset of those on the right.

Corollary 3.13. Let Λ be module finite over a regular commutative noetherian ring
k. Assume M and N are left and right Λ-modules of finite projective dimension,
respectively. Set

Γ = Λ⋉ (M ⊗k N).

Then there are fully faithful functors

−⊗L

Λ Γ: Dsg(Λ)→ Dsg(Γ) and −⊗ΛΓ: GprojΛ→ GprojΓ.

Proof. This is an immediate application of Proposition 3.7 above. �

Example 3.14. Let k be a field and Λ = k

[
1 2

3

a

bc

]
/
(cb, bac).

We see that the simple at vertex 2 has projective dimension 1 as right Λ-module,
and so does the simple at vertex 1 as left Λ-module. Therefore, for

Γ = Λ⋉ (S left
1 ⊗k S2) = k

[
1 2

3

a

bc

x ]
/
(cb, bac, ax, xa),

Corollary 3.13 applies and we obtain fully faithful functors

−⊗L

Λ Γ: Dsg(Λ)→ Dsg(Γ) and −⊗ΛΓ: GprojΛ→ GprojΓ.

As before, we illustrate the relevant categories inside the Auslander–Reiten quivers
in order to get an immediate visual confirmation of the result.

modΛ

1 2 3 1

1
3

3
2

2
1

1
3

3
2
1

2
1
3

2
1
3

modΓ

1 2 3 1
2 3 1

1
3

3
2

2
1

1
3

3
2
1

2
1
3

2
1
3

1 3
2

1
2 3

1 3
2

3 1
2 3
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The dashed boxes indicate which parts of the quivers are identified. The rectangles
indicate modules of finite projective dimension — for Γ these are only the projective
modules. In particular, one sees that not all injective modules are inside rectangles,
that is the algebras are not Gorenstein. The modules inside ellipses are representa-
tives of the indecomposable objects in the singularity category. (For both algebras,
all projective resolutions are eventually periodic, so the singularity categories are
Krull–Schmidt with indecomposable objects being represented by the infinite syzy-
gies. However, the singularity category of Γ is not a subcategory of the stable
module category: Contrary to what the picture indicates, there is no non-zero mor-
phism from 2

1 to 2 in the singularity category of Γ, and this singularity category is
in fact semisimple.) The doubly circled modules are the non-projective Gorenstein
projective modules. One immediately verifies that the circles in the upper picture
are a subcollection of the circles in the lower one, and similarly — albeit vacuously
— for double circles.

4. Big singularity categories

We now investigate to what extent change of rings gives rise to functors be-
tween the corresponding homotopy categories of projective or injective modules,
and prominent subcategories thereof. In particular, the results of this section show
that the diagram in Theorem 3.1 is in fact the restriction of a picture that even
exists on the level of the compactly generated completions from Subsection 2.6.

The functors ρ and λ will occur frequently, and we write Ω̃ = Ω ◦ [1] and ℧̃ =
℧ ◦ [−1] for the sake of brevity — confer Proposition 2.5.

Full homotopy categories. We start by demonstrating how from a morphism
of rings subject only to rather lenient assumptions, an abundance of adjoints are
induced on the level of full homotopy categories.

Proposition 4.1. Let f : Λ → Γ be a morphism of rings. If d = pdim ΛΓ < ∞,
then there is an adjoint triple of functors

K(InjΛ) K(InjΓ).

λ(Ω̃d−⊗ΛΓ)

λ res

HomΛ(Γ,−)

Moreover, if d′ = pdimΓΛ <∞, then there is an adjoint triple of functors

K(ProjΛ) K(ProjΓ).
−⊗ΛΓ

ρ res

ρHomΛ(Γ,℧̃d′−)

Proof. We only discuss the first claim. The second one is dual, and in fact easier
since it avoids the slight extra problem of translating left projective to right injective
dimension.
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First observe that HomΛ(Γ,−) maps injective Λ-modules to injective Γ-modules.
Indeed HomΓ(−,HomΛ(Γ, I)) ∼= HomΛ(res−, I) is exact for any injective Λ-module
I. Therefore the bottom functor is well-defined.

Since res is left adjoint to HomΛ(Γ,−) on the level of homotopy categories of
all modules, and λ is left adjoint to the inclusion of the homotopy category of
injectives into that category, λ res is left adjoint to HomΛ(Γ,−) on the level of
homotopy categories of injectives.

Next we observe that the right injective dimension of res I for injective Γ-modules
I is bounded by d. Indeed, since −⊗ΛΓ is left adjoint to res we have an isomorphism
HomΛ(−, res I) ∼= HomΓ(−⊗Λ Γ, I), and the latter has at most d derived functors.

We can thus apply Propositions 2.5 and 2.6 in the first two lines below, and
obtain the following isomorphisms:

HomK(InjΛ)(X,λ resY ) = HomK(InjΛ)(X, ℧̃d resY )

= HomK(Λ)(Ω̃
dX, resY )

= HomK(Γ)(Ω̃
dX ⊗Λ Γ, Y )

= HomK(InjΓ)(λ(Ω̃
dX ⊗Λ Γ), Y ).

We infer that λ(Ω̃d −⊗ΛΓ) is left adjoint to λ res. �

Proposition 4.2. Let f : Λ → Γ be a morphism of noetherian algebras with d =
pdimΛΓ <∞. Then there is an adjoint quadruple as indicated by the solid arrows
in the following diagram. If also pdimΓΛ < ∞, then we even have a five-tuple of
adjoint functors.

K(InjΛ) K(InjΓ)

λ(Ω̃d−⊗ΛΓ)

λ res

HomΛ(Γ,−)

Proof. Consider first the functor HomΛ(Γ,−). We observe that its left adjoint λ res
restricts to the respective subcategories of compacts. Therefore HomΛ(Γ,−) has a
right adjoint by Theorem 2.2.

Similarly, for the bottom solid functor, its left adjoint HomΛ(Γ,−) preserves
compact objects if and only if ΓΛ has finite projective dimension. Thus, in this
case we obtain the additional dashed adjoint. �

Unfortunately, the two new functors in the above proposition are not explicit.
However, in the case that our rings are module finite over some commutative Goren-
stein ring, we get a much more explicit picture.

Proposition 4.3. Let f : Λ → Γ be a morphism of module finite algebras over
a commutative noetherian Gorenstein ring. Assume that d = pdim ΛΓ < ∞ and
that d′ = pdimΓΛ < ∞. Then we have the following diagram of adjoints, with a
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commutative square in the middle.

K(InjΛ) K(InjΓ)

K(ProjΛ) K(ProjΓ)

≈ −⊗ΛDΛ ≈ −⊗ΓDΓ

λ(Ω̃d−⊗ΛΓ)

λ res

HomΛ(Γ,−)

−⊗ΛΓ

ρ res

ρHomΛ(Γ,℧̃d′−)

Proof. This is a combination of Proposition 4.1 (for the adjunctions) and Proposi-
tion 2.12 (for the commutative square). �

Acyclic and coacyclic complexes. We now consider the subcategories of acyclic
and coacyclic complexes. Our strategy is to investigate which of the above estab-
lished functors restrict to this level under which conditions.

Proposition 4.4. Let f : Λ → Γ be a morphism of rings. Assume that d =
pdimΓΛ <∞. Then we have the following.

(i) The functors HomΛ(Γ,−) and λ res restrict to functors between homotopy
categories of acyclic complexes of injectives.

(ii) The functor − ⊗Λ Γ restricts to a functor between homotopy categories of
coacyclic complexes of projectives.

(iii) If additionally for any projective Λ-module Q the complex RHomΛ(Γ, Q) is
quasi-isomorphic to a bounded complex of projective Γ-modules, then the
functor ρ res restricts to a functor between categories of coacyclic complexes
of projectives.

If Γ is perfect as Λ-module, the condition is satisfied when RHomΛ(Γ,Λ)
lies in perf Γ.

Proof. For the first part of (i) observe that if I ∈ Kac(InjΛ), then

Hi(HomΛ(Γ, I)) = Ext
i+j
Λ (Γ,B−j(I)) = 0 for j ≫ 0

since pdΓΛ <∞. For the second part of (i) note that res preserves acyclicity, and
so does λ by the construction in Proposition 2.5.

For (ii), let P ∈ Kcoac(ProjΛ). For Q ∈ ProjΓ we have

HomK(Γ)(P ⊗Λ Γ, Q) = HomK(Λ)(P,Q),

which vanishes since HomK(Λ)(P,ProjΛ[i]) = 0, and Q has a finite projective reso-
lution over Λ.

For (iii), we let P ∈ Kcoac(ProjΓ) and look at HomK(Λ)(ρ resP,Q). By adjunction
on the level of full homotopy categories of projectives we have

HomK(Λ)(ρ resP,Q) = HomK(Γ)(P, ρHomΛ(Γ, ℧̃
dQ)).
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Note that the second argument in the HomK(Γ) is just a projective resolution
of RHomΛ(Γ, Q). As this is finite by assumption, the Hom-space vanishes since
HomK(Γ)(P,−) vanishes on all projectives.

Finally, if Γ is perfect as a Λ-module then RHomΛ

(
Γ,Λ(I)

)
∼= RHomΛ (Γ,Λ)

(I)
,

whence it suffices to consider the projective Λ-module Λ. �

Observe that there is a certain asymmetry in the above, in the sense that λ res
automatically restricts, while for ρ res we resort to the peculiar extra condition. We
collect this as yet another argument for prefering injective to projective objects in
this context.

‘Big’ versions of Proposition 3.7 and its consequences now come for free.

Corollary 4.5. Let Λ and Γ be module finite over some regular commutative noe-
therian ring k, and the ring homomorphism f be k-linear. Assume that Cone(f) ∈
perf Λe. Then the functor

−⊗Λ Γ: Kcoac(ProjΛ)→ Kcoac(ProjΓ)

is fully faithful. In particular, if additionally RHomΛ(Γ,Λ) ∈ perf Γ then the pair

(Kcoac(ProjΛ),Ker(ρ res))

is a stable t-structure in Kcoac(ProjΓ).

Proof. Under these assumptions, −⊗ΛΓ does give a functor between the categories
in question by Proposition 4.4. Moreover, − ⊗L

Λ Γ is fully faithful on the level
of singularity categories by Proposition 3.7. By Lemma 2.3 this suffices since the
singularity category embeds as the compact objects in the homotopy category of
coacyclic complexes of projective modules. �

Totally acyclic complexes. We now descend further to the homotopy categories
of totally acyclic complexes. As before, we investigate which of the above functors
exist on this level under which conditions.

Proposition 4.6. Let f : Λ → Γ be a morphism of rings. Assume that d =
pdimΛΓ <∞ and that d′ = pdimΓΛ <∞ Then we have the following.

(i) The functor HomΛ(Γ,−) restricts to a functor between homotopy categories
of totally acyclic complexes of injectives.

(ii) The functor − ⊗Λ Γ restricts to a functor between homotopy categories of
totally acyclic complexes of projectives.

(iii) If additionally RHomΛ(Γ, Q) ∈ Kb(ProjΓ) for any Q ∈ ProjΛ, then the
functor ρ res restricts to a functor between categories of totally acyclic com-
plexes of projectives.

If Γ is perfect as Λ-module, the condition is satisfied when RHomΛ(Γ,Λ)
lies in perf Γ.

(iv) If additionally J ⊗L

Λ Γ ∈ Kb(InjΓ) for any J ∈ InjΛ, then the functor
λ res restricts to a functor between categories of totally acyclic complexes of
injectives.

Proof. The first three points can be proved very similarly to Proposition 4.4 above.
We focus on (iv). Also as above, one sees that for a totally acyclic complex of
injectives I, λ res I is acyclic again. For it to be totally acyclic, it remains to check
that HomK(Γ)(J, λ res I) = 0 for all injective Λ-modules J . By adjunction we have

HomK(Λ)(J, λ res I) = HomK(Γ)(λ(Ω̃
dJ ⊗Λ Γ), I).
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We observe that the left argument of the final Hom-above is an injective resolution
of J ⊗L

Λ Γ, so it is a bounded complex of injectives by assumption. Thus the total
acyclicity of I implies that these Hom-groups are zero. �

By restriction of Corollary 4.5 we immediately get the following. Notice that it is
in fact not necessary to invoke Proposition 3.7 and Lemma 2.3 directly by assuming
virtual Gorensteinness.

Corollary 4.7. Let Λ and Γ be module finite over some regular commutative noe-
therian ring k, and the ring homomorphism f be k-linear. Assume that Cone(f) ∈
perf Λe. Then there is a fully faithful functor

−⊗Λ Γ: Ktac(ProjΛ)→ Ktac(ProjΓ).

In particular, if additionally RHomΛ(Γ,Λ) ∈ perf Γ then the pair

(Ktac(ProjΛ),Ker(ρ res))

is a stable t-structure in Ktac(ProjΓ).

Summary. Restricted to the case where f : Λ → Γ is a morphism of module
finite algebras over some commutative noetherian Gorenstein ring such that d =
max{pdimΛΓ, pdimΓΛ} < ∞, the results of the current section can be brought
together in Diagram 4.1 below. A few comments are in order.

The top level is just a restatement of Proposition 4.3.
Evidently, the two lower levels are comprised of subcategories of the top level, so

we have the vertical inclusions. Moreover, by Observation 2.21 these inclusions have
both left and right adjoints, as indicated by the downward pointing arrows labeled
L and R, respectively. It should be noted that these functors are given explicitly
in restricted setups: The left adjoints are constructed in Bousfield’s localization
lemma — see Corollary 6.2. For the right adjoints, we give an explicit description
in the case that the two rings are Artin algebras in Corollary 6.12.

Most of the arrows, i.e. those not involving any R or L, in the two lower levels of
Diagram 4.1 arise by observing that the corresponding arrows on the top level re-
strict to these subcategories. In Propositions 4.4 (middle level) and 4.6 (lower level)
we collected which functors automatically restrict. The same propositions also con-
tain information on more functors restricting under certain additional hypothesis,
which gives a stronger version of Diagram 4.1 in a restricted setup.

Finally, on each of the two lower levels, we obtain one ‘extra adjoint’ by com-
posing adjoints around the square above the functor in question. For instance, the
functor λ res : Kac(InjΓ)→ Kac(InjΛ) may be written as the composition

Kac(InjΓ) →֒ K(InjΓ)
λ res
−−−→ K(InjΛ)

R
−→ Kac(InjΛ),

whence it has a left adjoint given by the composition

Kac(InjΛ) →֒ K(InjΛ)
λ(Ω̃d−⊗ΛΓ)
−−−−−−−−→ K(InjΓ)

L
−→ Kac(InjΓ).

Similarly we obtain all the extra adjoints involving L or R.
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(4.1)

K(InjΛ) K(InjΓ)

K(ProjΛ) K(ProjΓ)

Kac(InjΛ) Kac(InjΓ)

Kcoac(ProjΛ) Kcoac(ProjΓ)

Ktac(InjΛ) Ktac(InjΓ)

Ktac(ProjΛ) Ktac(ProjΓ)

≈ ≈

≈ ≈

≈ ≈

λ(Ω̃d−⊗ΛΓ)

λ res

HomΛ(Γ,−)

−⊗ΛΓ

ρ res

ρHomΛ(Γ,℧̃d−)

Lλ(Ω̃d−⊗ΛΓ)

λ res

HomΛ(Γ,−)

−⊗ΛΓ

R ρ res

Lλ res

HomΛ(Γ,−)

−⊗ΛΓ

RR ρ res

L R L R

L R L R

5. Approximations of modules

In [24] and the subsequent [26], Jørgensen plays the following game in order
to obtain right approximations by Gorenstein projective modules. Under rather
forgiving hypotheses on Λ, he establishes the contravariant finiteness of Ktac(ProjΛ)
in K(ProjΛ) before passing to ModΛ by taking boundaries, a procedure which
turns out to take a right Ktac(ProjΛ)-approximation of a projective resolution ρM
of M to a right GProjΛ-approximation of M . We will now follow these ideas in two
directions: We first observe that over an arbitrary ring R, any contravariantly finite
subcategory of K(ProjR) gives rise to a contravariantly finite subcategory of ModR
by taking cokernels. Next, an ever so slight expansion of the above Theorem 2.23
is obtained.
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Lemma 5.1. Let A be a Frobenius exact category. If B is a contravariantly finite
subcategory in A, then its preimage B is contravariantly finite in A.

Proof. Each X ∈ A admits a right B-approximation

B ⊕ PX

(
π p

)
−−−−→ X

where p is a projective cover and π is any lift of a right B-approximation. �

Proposition 5.2. Let R be a ring, and suppose S is a contravariantly finite sub-
category of K(ProjR). Denote by T the preimage of S in C(ProjR) and by Cok(T)
the subcategory of ModR consisting of all the cokernels of the form Cok(T−1 → T 0)
for T a complex belonging to T. Then Cok(T) is contravariantly finite in ModR.

Proof. For each X ∈ C(ProjR) we denote by Cok(X) = Cok(X−1 → X0) ∈ ModR
and let πX : X → Cok(X) be the natural projection. Pick M ∈ ModR and choose a
projective resolution ρM . In particular M = Cok(ρM). Since T is contravariantly
finite in C(ProjR) by Lemma 5.1, ρM admits a right T-approximation α : t(ρM)→
ρM . We claim that the induced morphism a : Cok(t(ρM))→M satisfying

a ◦ πt(ρM) = πρM ◦ α

is a right Cok(T)-approximation in ModR. What we need to show is that each mor-
phism b : Cok(T ) → M in ModR with T ∈ T factors through a. By ‘comparison’,
such a b lifts to a chain map β : T → ρM such that

b ◦ πT = πρM ◦ β,

and since α is a right T-approximation, there is a chain map γ : T → t(ρM) making

β = α ◦ γ.

Letting c : Cok(T )→ Cok(t(ρM)) be the induced morphism in ModR ensuring

c ◦ πT = πt(ρM) ◦ γ,

we have by now established the diagram

t(ρM) Cok(t(ρM)) Cok(T ) T

ρM M ρM

πt(ρM)

c

πT

πM πM

α a β
b

γ

id

with each square commutative. It follows that b ◦ πT = a ◦ c ◦ πT and hence the
desired factorization b = a ◦ c since πT is an epimorphism. �

The alluded to existence of right approximations by Gorenstein projective mod-
ules is now immediate once one makes the following standard observation.

Lemma 5.3. Let A be a category and suppose B is a subcategory such that the
inclusion µ : B →֒ A has a right adjoint µ∗. Then B is contravariantly finite in A.
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Proof. It suffices to show that, for each A ∈ A, the counit εA : µ ◦ µ∗(A) → A is
a right B-approximation. But the isomorphism of the adjunction is given, for each
B ∈ B, by

B(B, µ∗(A))
µ
−→ A(µ(B), µ ◦ µ∗(A))

A(µ(B),εA)
−−−−−−−→ A(µ(B), A).

In particular this means that A(µ(B), εA) is an epimorphism. �

Corollary 5.4. Let Λ be a noetherian ring with a dualizing complex. Then GProjΛ
is contravariantly finite in ModΛ.

Proof. A combination of Observation 2.21 and Lemma 5.3 reveals the contravariant
finiteness of Ktac(ProjΛ) in K(ProjΛ), so Proposition 5.2 settles the claim. �

6. An explicit right adjoint

The aim of this section is to provide a somewhat strengthened dual of Bousfield’s
localization lemma [9,10]. We start by recalling the construction as presented in [31],
see also [6, Chapter III, Theorem 2.3] and [1, Theorem 4.3].

Here, for the sake of generality, we consider perpendicular categories with respect
to only certain shifts, rather than all shifts. More precisely, we write

X⊥0 = {T ∈ T | T(X, T ) = 0}, X⊥≤0 = {T ∈ T | ∀i ≤ 0: T(X, T [i]) = 0},

⊥0X = {T ∈ T | T(T,X) = 0}, ⊥≤0X = {T ∈ T | ∀i ≤ 0: T(T,X[i]) = 0},

and similar for ⊥≥0. With this convention we obviously have

(6.1) X⊥ = {X [i] | X ∈ X, i ∈ Z}⊥0

and similar for left perpendicular subcategories.

Theorem 6.1. Let T be a triangulated category which has coproducts, and let X be
a set of compact objects.

(i) The pair (
⊥0(X⊥0),X⊥0

)

is a torsion pair on T.
(ii) The pair (

⊥≤0(X⊥≤0),X⊥≤0

)

is a t-structure, and moreover
⊥≤0(X⊥≤0) is the smallest subcategory of T

containing X and closed under [1], coproducts, and extensions.

From the proof of this theorem, we only recall the following explicit construction
of the triangle

TX → T → TX⊥0 → TX[1]

with TX ∈
⊥0(X⊥0) and TX⊥0 ∈ X⊥0 :

Let T0 = T . Pick a right AddX-approximation X0 → T0 of T0 — this approxi-
mation exists since X is a set and T has coproducts — and complete it to a triangle
X0 → T0 → T1 → X0[1]. Pick a right AddX-approximation X1 → T1 of T1 and
complete it to a triangle X1 → T1 → T2 → X1[1]. Then TX⊥0 = hocolimTi, and TX

is obtained by completing the natural map T → TX⊥0 to a triangle.
This construction covers each functor L appearing in Diagram 4.1 in the Sum-

mary of Section 4. In that setup we consider subcategories X⊥ orthogonal to a
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given object with respect to all extensions as specified in Proposition 2.15. By (6.1)
this is a special case of the setup of Theorem 6.1, and in this case we obtain a

stable t-structure (⊥(X⊥),X⊥). Thus we obtain the following descriptions of the
left adjoints.

Corollary 6.2. Let Λ be a noetherian ring with a dualizing complex DΛ. Then the
following hold.

(i) The left adjoint of the inclusion Kcoac(ProjΛ) →֒ K(ProjΛ) is given by

T 7→ T(ρRHomΛ(DΛ,Λ))⊥ ;

(ii) The left adjoint of the inclusion Kac(InjΛ) →֒ K(InjΛ) is given by

T 7→ T(λΛ)⊥ ;

(iii) The left adjoint of the inclusion Ktac(ProjΛ) →֒ K(ProjΛ) is given by

T 7→ T((ρRHomΛ(DΛ,Λ))⊕Λ)⊥ ;

(iv) The left adjoint of the inclusion Ktac(InjΛ) →֒ K(InjΛ) is given by

T 7→ T((λΛ)⊕DΛ)⊥ .

Unfortunately, the naive dual of Theorem 6.1 is not as useful as the original
in the situations we are typically interested in. Indeed, triangulated categories
which somehow derive from module categories rarely have any non-zero cocompact
objects. However, as we will point out in the sequel, we can get away with the
weaker notion of 0-cocompactness which is not as elusive in concrete situations.

This section consists of two essentially independent parts. First, in Theorem 6.6
we provide the desired dual. Then, in Theorem 6.8 and in particular Corollary 6.10
we show that the prerequisites of our dual are met in reasonable situations.

We start by introducing our notion of 0-cocompactness.

Definition 6.3. A sequence

A0
f0
−→ A1

f1
−→ A2 → · · ·

of objects and morphisms in an abelian category is dual Mittag-Leffler if for each i
the increasing sequence

0 ⊂ Ker fi ⊂ Ker fi+1fi ⊂ · · ·

stabilizes.
An object X in a triangulated category T is 0-cocompact if T(holimYi, X) = 0

for each sequence

· · · → Y2 → Y1 → Y0

in T with the property that the induced sequence

T(Y0, X [1])→ T(Y1, X [1])→ T(Y2, X [1])→ · · ·

is dual Mittag-Leffler and colimT(Yi, X) = 0.

Remark 6.4. Let us motivate the name “0-cocompact” and explain in what way
it is a weak version of cocompact.

Recall that in a triangulated category T with set-indexed coproducts, an object
X is compact if the functor T(X,−) : T→ Ab commutes with coproducts. If T has
set-indexed products, then the dual notion should be formulated as follows. An
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object X ∈ T is ‘cocompact’ if the functor T(−, X) : Top → Ab turns products to
coproducts, i.e. for any set of objects (Yi | i ∈ I) in T we have an isomorphism

HomT(
∏

i∈I

Yi, X) ∼=
∐

i∈I

HomT(Yi, X).(6.2)

Consider now a finite dimensional algebra Λ. Clearly, Λ is a compact object in the
derived category D(ModΛ). On the other hand, the dual DΛ awkwardly fails to
be cocompact in D(ModΛ). However, we show in Theorem 6.8 that DΛ is in fact
0-cocompact in the homotopy category K(ModΛ).

Replacing products by homotopy limits and coproducts by colimits, X being 0-
cocompact simply means that if the right hand side of (6.2) is zero and some extra
conditions hold, then the left hand side of (6.2) is also zero. As it turns out, this
property suffices for our purposes. Let us revisit the cocomplete case and consider
a sequence X0 → X1 → X2 → · · · in T. Then by Neeman [31], we know that there
is the following isomorphism as functors on Tc.

(6.3) colimT(−, Xi) ∼= T(−, hocolimXi)

From this point of view, the 0-cocompactness of X means that the vanishing of the
dual left side of (6.3) implies the vanishing of the dual right side of (6.3).

Remark 6.5. The above definition might seem quite unnatural: Why would one
want to require the dual Mittag-Leffler condition at all? And why for shifts?

Consider the case that T = D(A), where A is an abelian category with exact
products. For a sequence

· · · → Y2 → Y1 → Y0

of complexes, we see that the defining triangle

holimYi →
∏

Yi →
∏

Yi →

gives rise to the exact sequence

∏
H0(Yi[−1])

∏
H0(Yi[−1]) H0(holimYi)

∏
H0(Yi)

∏
H0(Yi)

lim
←−

1 H0(Yi[−1]) lim
←−

H0(Yi)

Thus we see that, even if a Hom-functor behaves as nicely as homology, we can only
get a result on holimYi provided we have a condition on the derived projective limit
of the shifted sequence.

To make this more explicit, take A to be the category of vector spaces over a
field k, and choose X = k. Then HomD(k)(−, k) = DH0. Thus we have the short
exact sequence

0→ HomD(k)(lim←−
Yi, k)→ HomD(k)(holimYi, k)→ HomD(k)(lim←−

1Yi, k[1])→ 0

showing that we need to make both end terms vanish in order to conclude that the
middle also vanishes.

We are now ready to state and prove the main result of this section.

Theorem 6.6. Let T be a triangulated category which has products. Let X be a set
of 0-cocompact objects.
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(i) The pair (
⊥≥0X, (⊥≥0X)⊥≥0

)

is a co-t-structure in T.
(ii) The pair (

⊥X, (⊥X)⊥
)

is a stable t-structure, and moreover (⊥X)⊥ is the smallest triangulated
subcategory of T which contains X and is closed under products.

Proof. In (i), the pair is clearly Hom-orthogonal. It is also immediate that ⊥≥0X is

closed under [−1] and that (⊥≥0X)⊥≥0 is closed under [1]. So it remains to show
that each T ∈ T appears in a triangle

(6.4) T⊥≥0X
→ T → TX → T⊥≥0X

[1]

with T⊥≥0X
∈ ⊥≥0X and TX ∈ (⊥≥0X)⊥≥0 .

Consider the following construction: Write T0 = T , and X[≥ 0] = {X [i] | X ∈
X and i ≥ 0}. Pick a left ProdX[≥ 0]-approximation T0 → X0 of T0 — which exists
by Lemma 2.22 — and complete it to a triangle

(6.5) T1 → T0 → X0 → T1[1].

Pick a left ProdX[≥ 0]-approximation T1 → X1 of T1, complete it to a triangle

(6.6) T2 → T1 → X1 → T2[1],

and iterate in this fashion. Then put

T⊥≥0X
= holimTi and TX = Cone[T⊥≥0X

→ T ].

It remains for us to show that these objects T⊥≥0X
and TX belong to the subcate-

gories ⊥≥0X and (⊥≥0X)⊥≥0 , respectively.
It follows by construction that each map in the sequence

T(T0,X[i])→ T(T1,X[i])→ T(T2,X[i])→ · · ·

vanishes for all positive i. Indeed, for any map Tj → X ′[i] with X ′ in X, the
composition Tj+1 → Tj → X ′[i] is zero since the map Tj → X ′[i] factors through
Xj and by the triangle (6.5) the composition Tj+1 → Tj → Xj is zero. This implies
that the above sequences are dual Mittag-Leffler and have vanishing colimit. Since
the objects in X are 0-cocompact, it follows that T⊥≥0X

= holimTi lies in
⊥≥0X.

The proof that TX ∈ (⊥≥0X)⊥≥0 is almost verbatim the same as steps (ii) to (v)
in the proof of [1, Proposition 4.5]. This completes the proof of (i).

The fact that the pair in (ii) is a stable t-structure follows immediately from (i):
Either apply (i) to the set of 0-cocompacts X[≤ 0] = {X [i] | X ∈ X and i ≤ 0},
or replace any occurrence of X [≥ 0] in the proof of (i) by X [Z] = {X [i] | X ∈
X and i ∈ Z}.

For the proof of the final claim let us denote by X̂ the smallest triangulated
subcategory of T containing X and closed under products. It is immediate that

X̂ ⊆ (⊥X)⊥, since the latter category it triangulated, contains X, and is closed
under products.
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To see the converse inclusion, if suffices to show that TX ∈ X̂ for any T ∈ T.
We write Yi for the cone of the composed map Ti → T . In particular Y0 = 0 and
Y1 = X0. By the octahedral axiom the Yi also appear (iteratively) in triangles

Xi → Yi+1 → Yi → Xi[1],

and in particular Yi is in the smallest triangulated subcategory containing X.
Now we take the product of all the triangles defining the Yi, that is the triangle

∞∏

i=0

Ti →

∞∏

i=0

T →

∞∏

i=0

Yi →

∞∏

i=0

Ti[1].

Observe that the solid square in the following diagram commutes, where the vertical
maps between products are the ones defining the homotopy limits. (That is the left
vertical map is 1 − s, where s is given by the morphisms connecting the Ti, and
the middle vertical map is 1 − s′, where s′ just sends each factor T identically to
the previous one.). Hence, by the triangulated 3 × 3-lemma the diagram may be
completed to a commutative one with triangles in all rows and columns.

T⊥0X T TX T⊥0X[1]

∏∞

i=0 Ti

∏∞

i=0 T
∏∞

i=0 Yi

∏∞

i=0 Ti[1]

∏∞

i=0 Ti

∏∞

i=0 T
∏∞

i=0 Yi

∏∞

i=0 Ti[1]

T⊥0X[1] T [1] TX[1]

1− s 1− s′

Note that the triangle T →
∏∞

i=0 T
1−s′

→
∏∞

i=0 T → T [1] splits. Therefore the first
dashed horizontal map is the natural map holimTi → T , and the top triangle is the
one defining TX. Now the vertical dashed triangle shows that TX is an extension of∏∞

i=0 Yi[−1] and
∏∞

i=0 Yi, hence in X̂. �

Remark 6.7. There is an arguably more conceptual proof of (ii) above in case T

has an enhancement: Assume T sits at the base of a stable derivator. Then one
may consider the triangles

Ti → T → Yi → Ti

and obtain a new triangle taking the degree-wise homotopy limit

holimTi → T → holimYi → holimTi[1].

This is true by dual of [27, Proposition A.5, Corollary A.6] — note that one may

have to adjust the maps connecting the Yi. Now holimYi is easily seen to lie in X̂.

We now provide examples of 0-cocompact objects.

Theorem 6.8. Let Λ be an algebra over a commutative artinian ring k and de-
note by D = Homk(−, E) the standard duality. For any finite complex of finitely
generated left Λ-modules X, the complex DX of right Λ-modules is 0-cocompact in
K(ModΛ).
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Proof. We denote by F the functor given by taking zeroth homology of the total
tensor product with X , i.e. F = H0(− ⊗tot

Λ X), and observe that

HomK(−, DX) = H0(HomΛ(−, DX)) = H0(D(− ⊗tot
Λ X))

= DH0(−⊗tot
Λ X) = DF.

Moreover, since X is finitely generated, the tensor product and hence also F com-
mute with products.

After these preparations we are ready to verify the 0-cocompactness of DX . Let

· · · → T2 → T1 → T0

be a sequence of morphisms and objects in K(ModΛ) such that

HomK(T0, DX [1])→ HomK(T1, DX [1])→ HomK(T2, DX [1])→ · · ·

is dual Mittag-Leffler and that colimHomK(Ti, DX) = 0.
Dualizing this second assumption, and using the fact that D turns colimits into

limits, we obtain that

· · · → DHomK(T2, DX)→ DHomK(T1, DX)→ DHomK(T0, DX)

has vanishing limit, i.e. limD2F (Ti) = 0. Since limits are left exact it follows that
also limF (Ti) = 0. In particular the morphism

∏
F (Ti)

1−(fi)
−−−−→

∏
F (Ti)

is monic.
On the other hand, note that the sequence in the first assumption is the dual of

· · · → F (T2[−1])→ F (T1[−1])→ F (T0[−1]).

It follows that the latter sequence satisfies the Mittag-Leffler condition, and in
particular that lim1 F (Ti[−1]) = 0. Thus the map

∏
F (Ti[−1])

1−(fi)
−−−−→

∏
F (Ti[−1])

is epic.
Since F commutes with products, the exact sequence

F (
∏

Ti[−1])→ F (
∏

Ti[−1])→ F (holimTi)→ F (
∏

Ti)→ F (
∏

Ti)

starts with an epimorphism and ends with a monomorphism, showing that the
middle term vanishes. Thus

HomK(holimTi, DX) = DF (holimTi) = 0. �

Remark 6.9. In the above theorem, it is not relevant that Λ is concentrated in
degree 0, i.e. the theorem still holds for Λ a dg k-algebra.

However, here we are actually most interested in an even more special case:

Corollary 6.10. Let Λ be an Artin algebra. Then any finite complex of finitely
generated Λ-modules is 0-cocompact in K(ModΛ).

Proof. This follows directly from Theorem 6.8, using only the oberservation that
the duals of finitely generated left Λ-modules are precisely the finitely generated
right Λ-modules. �



36 OPPERMANN, PSAROUDAKIS AND STAI

What is more, for Artin algebras, Corollary 6.12 below says that each functor R
appearing in Diagram 4.1 in the Summary of Section 4 is covered by the explicit
construction in (the proof of) Theorem 6.6. As usual, DΛ denotes the dualizing
complex for Λ — see Example 2.9.

By Propostion 2.17, the relevant categories are given as left orthogonal to certain
objects. Our first task is to make sure that these objects are 0-cocompact.

Lemma 6.11. Let Λ be an Artin algebra. Then

(i) the complex Λ is 0-cocompact in K(ProjΛ);
(ii) the complex DΛ is 0-cocompact in K(InjΛ);
(iii) the complex ρDΛ is 0-cocompact in K(ProjΛ);
(iv) the complex DΛ ⊗

L

Λ DΛ is 0-cocompact in K(InjΛ).

Proof. (i) and (ii) are immediate from Corollary 6.10. In order to show (iii), let

· · · → X2 → X1 → X0

be a sequence in K(ProjΛ) such that the induced sequence

HomK(ProjΛ)(X0, ρDΛ[1])→ HomK(ProjΛ)(X1, ρDΛ[1])→ · · ·

is dual Mittag-Leffler and colimHomK(ProjΛ)(Xi, ρDΛ) = 0. Since ρ is right adjoint
to the inclusion K(ProjΛ) →֒ K(ModΛ), the sequence

HomK(ModΛ)(X0, DΛ[1])→ HomK(ModΛ)(X1, DΛ[1])→ · · ·

is again dual Mittag-Leffler and the colimit of HomK(ModΛ)(Xi, DΛ) vanishes. The
0-cocompactness of DΛ in K(ModΛ) thus implies the 0-cocompactness of ρDΛ in
K(ProjΛ). Indeed,

HomK(ProjΛ)(holimXi, ρDΛ) ∼= HomK(ModΛ)(holimXi, DΛ) = 0

since ProjΛ is closed under products. Claim (iv) now follows from the fact that the
equivalence −⊗Λ DΛ : K(ProjΛ)→ K(InjΛ) preserves 0-cocompactness. �

As in Corollary 6.2, we consider the perpendiculars to these objects with respect
to all extensions, that is we consider the stable t-structures (⊥X, (⊥X)⊥). We obtain
the following descriptions of the right adjoints.

Corollary 6.12. Let Λ be an Artin algebra. Then

(i) the right adjoint of the inclusion Kcoac(ProjΛ) →֒ K(ProjΛ) is given by

T 7→ T⊥(Λ);

(ii) the right adjoint of the inclusion Kac(InjΛ) →֒ K(InjΛ) is given by

T 7→ T⊥(DΛ);

(iii) the right adjoint of the inclusion Ktac(ProjΛ) →֒ K(ProjΛ) is given by

T 7→ T⊥(Λ⊕(ρDΛ));

(iv) the right adjoint of the inclusion Ktac(InjΛ) →֒ K(InjΛ) is given by

T 7→ T⊥
(DΛ⊕(DΛ⊗L

ΛDΛ))
.

Observe that if Λ is an Artin algebra, then the right GProjΛ-approximations in
ModΛ of Corollary 5.4 are also explicitly described by Proposition 6.12. Indeed, a
right GProjΛ-approximation of M appears as Cok(X−1 → X0) → M for a right
Ktac(ProjΛ)-approximation X → ρM of ρM .
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Appendix

We provide the two proofs that are missing from Section 2.

Lemma 2.3. Let T and T′ be triangulated categories with coproducts and suppose
T is compactly generated. Let F : T → T′ be exact and coproduct preserving. If F
restricts to a fully faithful functor Tc → T′ c, then F is fully faithful.

Proof. Suppose F restricts to a fully faithful functor Tc → T′ c. Fix X ∈ Tc and let

X∗ = {B ∈ T |F : T(X,ΣiB)→ T′(FX,FΣiB) is bijective ∀ i ∈ Z}.

First, observe that X∗ is a triangulated subcategory of T. Indeed, given a triangle

Y → Y ′ → Y ′′ → ΣY

in T with Y, Y ′′ ∈ X∗, we get the triangle

FY → FY ′ → FY ′′ → ΣFY

in T′ and hence the following diagram with exact rows, revealing Y ′ ∈ X∗.

· · · T(X,Y ) T(X,Y ′) T(X,Y ′′) · · ·

· · · T′(FX,FY ) T′(FX,FY ′) T′(FX,FY ′′) · · ·

∼= ∼=

Second, X∗ is closed under coproducts. Namely, for each family (Bi| i ∈ I) of
objects in X∗ we have

T(X,
∐

i∈I

Bi) ∼=
∐

i∈I

T(X,Bi)

since X is compact, while

T′(FX,F
∐

i∈I

Bi) ∼= T′(FX,
∐

i∈I

FBi) ∼=
∐

i∈I

T′(FX,FBi)

as F preserves coproducts and FX is compact, and hence
∐

i∈I Bi ∈ X∗. Since
Tc ⊂ X∗ by assumption, this implies X∗ = T.

Fix now an arbitrary B ∈ T and consider the subcategory

B∗ = {A ∈ T |F : T(ΣiA,B)→ T′(FΣiA,FB) is bijective ∀ i ∈ Z}.

We claim that B∗ = T, which would clearly suffice. As above, it suffices to show
that B∗ contains Tc and is closed under extensions and coproducts. First of all, the
above obtained X∗ = T for each compact X means that Tc ⊂ B∗. Further, B∗ is
closed under extensions by an argument similar to the above. Finally, B∗ is closed
under coproducts, since for each family (Ai|i ∈ I) of objects in B∗, we have

T(
∐

i∈I

Ai, B) ∼=
∏

i∈I

T(Ai, B)

and on the other hand

T′(F
∐

i∈I

Ai, FB) ∼= T′(
∐

i∈I

FAi, FB) ∼=
∏

i∈I

T′(FAi, FB). �

Lemma 2.16. If Λ is an Artin algebra, then the natural monomorphism Λ(I) → ΛI

is split for any index set I.
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Proof. We first recall a few notions. Let R be a ring. A monomorphism X → Y
in ModR is called pure if X ⊗R N → Y ⊗R N remains a monomorphism for each
finitely presented left Λ-module N . An R-module M is called pure-injective if it
is injective with respect to pure monomorphisms, i.e. given a pure monomophism
f : X → Y in ModR, each morphism g : X →M factors through f :

X Y

M

f

g

Observe now that the natural monomorphism µΛ : Λ
(I) → ΛI is in fact pure for

any indexing set I. Indeed, let N be a finitely presented left R-module. Then
ΛI ⊗Λ N = N I , and we always have Λ(I) ⊗Λ N = N (I). Hence the induced µΛ ⊗
N : Λ(I) ⊗Λ N → ΛI ⊗Λ N is nothing but the monomorphism µN : N (I) → N I .
Since Λ is an Artin algebra it has finite length when viewed as a module over its
endomorphism ring, which means that Λ(I) is pure-injective — see e.g. [38]. In
particular this means that we have

Λ(I) ΛI

Λ(I)

µΛ

id

i.e. a splitting of µΛ. �

References

1. Takuma Aihara and Osamu Iyama, Silting mutation in triangulated categories, J. Lond. Math.
Soc. (2) 85 (2012), no. 3, 633–668. MR 2927802

2. Apostolos Beligiannis, The homological theory of contravariantly finite subcategories:
Auslander-Buchweitz contexts, Gorenstein categories and (co-)stabilization, Comm. Algebra
28 (2000), no. 10, 4547–4596. MR 1780017

3. , Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras, J.
Algebra 288 (2005), no. 1, 137–211. MR 2138374

4. , On algebras of finite Cohen-Macaulay type, Adv. Math. 226 (2011), no. 2, 1973–2019.
MR 2737805

5. Apostolos Beligiannis and Henning Krause, Thick subcategories and virtually Gorenstein al-
gebras, Illinois J. Math. 52 (2008), no. 2, 551–562. MR 2524651

6. Apostolos Beligiannis and Idun Reiten, Homological and homotopical aspects of torsion theo-
ries, Mem. Amer. Math. Soc. 188 (2007), no. 883, viii+207. MR 2327478

7. Petter Andreas Bergh, Steffen Oppermann, and David A. Jorgensen, The Gorenstein defect
category, Q. J. Math. 66 (2015), no. 2, 459–471. MR 3356832

8. Marcel Bökstedt and Amnon Neeman, Homotopy limits in triangulated categories, Compositio
Math. 86 (1993), no. 2, 209–234. MR 1214458

9. A. K. Bousfield, The Boolean algebra of spectra, Comment. Math. Helv. 54 (1979), no. 3,
368–377. MR 543337

10. , Correction to: “The Boolean algebra of spectra” [Comment. Math. Helv. 54 (1979),
no. 3, 368–377; MR0543337 (81a:55015)], Comment. Math. Helv. 58 (1983), no. 4, 599–600.
MR 728454

11. Ragnar-Olaf Buchweitz, Maximal Cohen–Macaulay modules and Tate-cohomology over
Gorenstein rings, unpublished (1986), available at http://hdl.handle.net/1807/16682.

12. Xiao-Wu Chen, Singularity categories, Schur functors and triangular matrix rings, Algebr.
Represent. Theory 12 (2009), no. 2-5, 181–191. MR 2501179



CHANGE OF RINGS AND SINGULARITY CATEGORIES 39

13. , Relative singularity categories and Gorenstein-projective modules, Math. Nachr. 284
(2011), no. 2-3, 199–212. MR 2790881

14. , The singularity category of an algebra with radical square zero, Doc. Math. 16 (2011),
921–936. MR 2880676

15. , Singular equivalences induced by homological epimorphisms, Proc. Amer. Math. Soc.
142 (2014), no. 8, 2633–2640. MR 3209319

16. , Singular equivalences of trivial extensions, Comm. Algebra 44 (2016), no. 5, 1961–
1970. MR 3490659

17. Lars Winther Christensen, Anders Frankild, and Henrik Holm, On Gorenstein projective, in-
jective and flat dimensions—a functorial description with applications, J. Algebra 302 (2006),
no. 1, 231–279. MR 2236602

18. Edgar E. Enochs, Overtoun M. G. Jenda, and Jin Zhong Xu, Foxby duality and Gorenstein
injective and projective modules, Trans. Amer. Math. Soc. 348 (1996), no. 8, 3223–3234.
MR 1355071

19. Edgar E. Enochs, Overtoun M. G. Jenda, and Jinzhong Xu, Lifting group representations to
maximal Cohen-Macaulay representations, J. Algebra 188 (1997), no. 1, 58–68. MR 1432346

20. Werner Geigle and Helmut Lenzing, Perpendicular categories with applications to representa-
tions and sheaves, J. Algebra 144 (1991), no. 2, 273–343. MR 1140607

21. Dieter Happel, On Gorenstein algebras, Representation theory of finite groups and finite-

dimensional algebras (Bielefeld, 1991), Progr. Math., vol. 95, Birkhäuser, Basel, 1991, pp. 389–
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