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Abstract

In this paper we aim to utilize machine learning methods on open near real-time
data to predict the arrival times of buses. The overarching task is to predict
anomalies from the planned bus schedule existing in Oslo using machine learn-
ing models. Predicting arrival times is an important segment within Intelligent
Transport Systems (ITS), and a daunting task in urban areas due to excessive
traffic anomalies. Our main focus of inquiry is to compare a set of alternative
implemented models with a simple historical model in order to identify an opti-
mal model for predicting arrival times of buses in urban areas. We conducted a
literature search on previous work on this issue, and identified the most typical
models that tended to outperform the current real-world applications. Artificial
neural networks(ANN) is the most frequently used model. However, Support
Vector Regression(SVR) and Long-Short-Term-Memory(LSTM) models have
also proven to perform well on finding correct arrival times. The literature re-
garding artificial models and other models considered to be relevant to the issue
are explained in detail. In the section thereafter we detail where we received the
data used in our models. Moreover, how we implemented our purposed models
and how we sanitized the received data with data-conversions and interpolations
are presented in the same section. We found LSTM to outperform the other
models in regards to accuracy while ANN proved to be the most economical of
the investigated models considering both time to train and accuracy.
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1 Introduction

The development of intelligent transportation systems (ITS) has grown in pop-
ularity as vehicles gain insight to their environment using sensors and assistant
systems. ITS is an important contributor to traffic efficiency, overall traffic
flow and road safety (Festag 2014). By using the information the vehicles can
produce, there is an opportunity to utilize artificial intelligence (AI) models to
calculate travel times. The numerous studies conducted trying to implement
intelligent models and comparing them with simple models such as historic
models, makes use of the opportunity made available by ITS. We will present a
couple of these studies in Section 2.

1.1 The importance of the study

With inefficient traffic comes high traffic congestion. This is an issue regarding
high costs with vehicle emissions, wasted fuel and wasted time for the cities
and people involved, resulting in high monetary costs as well. In 2019, a report
given by The Texas A&M Transportation Institute estimated that the average
commuter wasted 7 full workdays in 2017 due to traffic delays. (Schrank, Eisele,
and Lomax 2019). This report also emphasizes that traffic congestion is still a
growing issue. As indicated by the research of (Beaudoin, Farzin, and Lawell
2013), the detrimental effects of delays and congestion could be improved by
investments in the public transportation system. Having access to correct travel
and arrival times could be one such improvement.

In addition to road safety and efficiency, ITS is important for the bus agencies
regarding having a reliable solution for predicting arrival times. Reliability
has an important impact whether or not the customer changes their way of
transportation. In a survey performed by (Carrel, Halvorsen, and Walker 2013)
in San Francisco, they found the local buses to be most vulnerable, where 40%
of the participants said they would use them less due to their unreliability.
Moreover, the respondents conveyed that they indeed were likely to change their
transportation method all together due to such unreliability. A bus not holding
its schedule is one issue, arguably not knowing when it eventually will arrive
could add to customer frustration. Hence it comes as no surprise that generating
accurate travel time predictions for the buses increases the satisfaction to the
customers (Jeong and Rilett 2004).

However, to determine the most accurate arrival times regarding each city is a
daunting task. A rush hour at 07:00 in on city can mean a stable traffic flow in
another city where the rush does not start until 08:00. Using models that only
rely on stationary data such as speed limits and average speed do not accumu-
late the effect dwell times at each stops has on the forthcoming arrival time on
the next stop. However, machine learning models can utilize these stochastic
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factors such as dwell time to predict arrival times with better accuracy. Using
systems within ITS such as Automatic Vehicle Location(AVL) and or Auto-
mated Passenger Counter (APC) that tracks the location and the number of
passengers will provide the artificial intelligence models data needed to calcu-
late accurate arrival times (Fabrikant 2019). However, the data gathered from
these types of systems rely on having them installed in the vehicles gathering
data. Not all bus agencies or agencies that gather data for traffic flow/safety
improvement have these systems installed.

1.2 Our study

In this inquiry we will investigate three artificial intelligence models highly capa-
ble of finding arrival time prediction using Real time data, historical data and
data gathered from ITS assistance systems in order to predict arrival times.
Artificial Neural Network (ANN), Support Vector Regression (SVR) and Long-
Short-Term-Memory (LSTM) will be compared with a historical model to de-
termine which model will provide the best results from the data gathered from
Entur, Norway.(Entur, https: // www. entur. org/ om- entur/ n.d.). The
bus-connections and lines we are using, are from Ruter, who is handling the
transportation system in Oslo, Norway. A more detailed description of our
assignment is located under Assignment details on page 2.

1.2.1 Research questions

How do artificial neural network models, support vector regression models, long
short term memory models, and historic data models compare in predicting the
arrival time of public buss transport in an urban area?

Different machine learning models all have their pros and cons and areas where
they excel and others where they are lacking. As noted, our endeavor is to inves-
tigate different ML models and compare their ability to predict correct arrival
times of buses. This will be accomplished by feeding the models identical data
and giving them the same tasks, we will be positioned to perform a fair compar-
ison between the models and identify their respective strengths and weaknesses,
as well as their ability to solve the task.

Then, it is pertinent to ask ”what are the challenges of using machine learning
models when predicting arrival time in an urban environment using vehicle
monitoring data?”

Most machine learning models have their own quirks and needs to perform opti-
mally. Urban environments also have a certain aspect of unpredictability which
can be hard to accurately portray. These obstacles can make it hard for models

8
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to perform optimally and to have the ability to make accurate predictions. To
arrive at an informed decision on the model of choice, it is vital to identify
challenges the different models face in solving this problem.

1.3 Organization of the Thesis

In section 2 (Theory), we review previous studies implementing some or all of
these models. To widen the scope, we also provide details on some additional
models that can inform inquiry on optimizing arrival time predictions. This
information form the basis from which we will forward a hypothesis regarding
the optimal estimation model. In the methods section we provide in-depth
information regarding where we acquired the data needed for our models, and
how we processed our data in order for our models to be able to use it for their
calculations. In this section we also describe how we implemented our models.
In section 4 (Results), we will present our results accumulated from the models
emphasizing the comparison between the models. We will discuss our results in
section 5 (Discussion). We conclude and provide suggestions for future work in
section 6. Finally, in Appendix A, a list with acronyms used throughout this
thesis can be found.

9



2 Theory

For this study we implement different Machine learning models to predict the
arrival-time for any given public transport agency that has their real time vehicle
monitoring accessible through Entur.

Finding arrival times using machine learning or other types of models is an
interesting task due to the stochastic behaviour of vehicles in urban areas and
more stationary behaviour in rural areas. This is one of the reasons why there is
a lot of former studies done on this type of problem. In this study we will focus
on the models we see fit best for our problem based upon results accumulated
by other research groups as well as further research machine learning models
that is more uncommon for predicting arrival times of buses, indicated by fewer
research papers. Hence, our study is heavily influenced by previous studies.

2.1 Previous studies

Considerable work has been done on predicting travel time using different types
of models and algorithms, such as historic data models, regression models,
SVM/SVR, LSTM and ANN. Due to the complexity of the problem with traffic
congestion, incidents and dwell times in urban areas and the stationary scope in
rural areas, each model tends to imply different advantages and disadvantages.
How suited a model is for a certain problem depends on whether the solution
needs to be cost effective or accurate.

2.1.1 Historic data

Historic data models use acquired data from previous trips to predict current
and future bus travel times. William and Hoel describe this model and conclude
that this type of model require a stationary and stable bus environment in
order to predict with high accuracy. For this type of model to perform with
reasonable values, the wanted location for the data should be placed in a rural
environment(Williams and Hoel 2003). A historic data model is often used by
researchers and developers for comparison to their own models as it is easy
to implement and quick to run (Jeong and Rilett 2004)(Altinkaya and Zontul
2013)(Petersen, Rodrigues, and Pereira 2019)(Zou, J. Wang, and Chang 2008).
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2.1.2 Regression model

Regression models unlike historic data models, do not depend on the data to
be in a set stable condition (Altinkaya and Zontul 2013). A regression model
uses independent variables and measures their effect simultaneously. (Amita,
Singh, and Kumar 2015). The studies from Rilett and Patmaol both used
regression models, either for comparison to other models, or as their own im-
plementation to the problem. However, both studies found ANN to be the
superior model to predict with higher accuracy (Patnaik, Steven I-Jy. Chien,
and Bladikas 2004)(Jeong and Rilett 2004). Nonetheless, an advantage of using
regression model is the models’ ability to find factors with high impact to traffic
flow and delays or factors with less importance. For instance a study conducted
by Patnaik et al. found weather data to be less of an importance to optimize
the model(Patnaik, Steven I-Jy. Chien, and Bladikas 2004). However, the de-
termining factors are heavily influenced by the geo-location of the data. To
illustrate, in Norway, where the weather may change rapidly, a sudden snowfall
may decrease the traffic flow, and hence be of substantial importance to pre-
dicting arrival times, but the accuracy of these predictions is reduced due to the
comparative unpredictability of snowstorms. By contrast, in countries where
there is typically slower and less pronounced changes of weather (e.g. Greece),
weather data can explain less of the variance in travel time deviations, even
though with higher accuracy. Hence, the generalizability of regression mod-
els regarding the variables needed in the model as well as the strengths of the
regression coefficients may be limited due to high variability between locales.

2.1.3 Support Vector Machine / Support Vector Regression

Support Vector Machine and Support vector Regression Model (SVR) are not
that common to use to predict arrival times compared to ANN and historic mod-
els, as indicated by the comparative infrequency of research papers and former
studies using these types of models to predict travel times. Even so, some have
compared SVM and SVR with ANN or other types of models(Altinkaya and
Zontul 2013) (Bin, Zhongzhen, and Baozhen 2006) (Wu et al. 2003). Conceiv-
ably, vector based models can behave extraordinary well with time series due to
the models’ ability to generate a unique global solution for any given training
data. Such a contention concurs with the results from a study conducted by
Chun-Hsin Wu et al. where they found SVR and SVM too both outperform their
compared historical models in finding an estimated travel time (Wu et al. 2003).
A sizeable advantages of using SVM with datasets that require a considerable
amount of training, is the way SVM handles overfitting. If the regularization
parameters are controlled correctly, overfitting should not be a problem.(Olson
and Delen 2008) However, a study conducted by Bin, Zhongzhen and Baozhen
found that the performance of the models gradually decreased when the size
of the data increased. This is due to the large time of computation needed.

11



Even so, they found SVM to outperform ANN with their initial dataset (Bin,
Zhongzhen, and Baozhen 2006). The datasets need to contain all the historic
and real time data for predicting an optimal travel time, such as passenger count
using APC, location using AVL, speed of the unit, weather data from a third
party organization, traffic data (often from a third party organization) etc. In
consequence, datasets will eventually grow substantially, a fact that is hard to
minimize. This causes long computations, an inherent problem with SVM and
SVR acknowledged for a long time. Thus, in those areas where the datasets
become very large, ANN or other models will probably accumulate the results
much more efficiently. (Olson and Delen 2008).

2.1.4 Long short term memory

Long short term memory (LSTM) is a model fully capable of computing arrival
times from real time data. Hochreiter and Schmidhuber researched this model
in 1997 and wrote that LSTM is proven to be robust for capturing long-term
dependencies using an input, forget and output gate to maintain the informa-
tion of a cell as well as a state variable. The LSTM network will then be able
to maintain the state of a cell from previous observations, as well as throw-
ing away irrelevant information.(Hochreiter and Schmidhuber 1997) (Petersen,
Rodrigues, and Pereira 2019). The latter research group used LSTM to find
arrival times in an urban area. Peterson, Rodrigues and Pereira created 2 dif-
ferent LSTM models in their study. One containing convolutional filters in
order to find the relationship with buses on cross-linked lines, and one without
for comparison (Petersen, Rodrigues, and Pereira 2019). A convolutional neu-
ral network is mainly used for image recognition due to its ability to connect
patterns from neighboring pixels by using the filters to compute the correla-
tion between the pixels (Simard, Steinkraus, and Platt 2003). The study done
by Peterson et al. also made a historical model for comparison to their own
model as well as testing it against predictions from Google Traffic. They got
their data from Automatic vehicle Location installed on the vehicles. Their
results revealed that the LSTM model using convolutional filters outperformed
the comparison models. However, the pure LSTM model also outperformed the
historical model and google traffic prediction in the early peak hours. Even
so, the same model gets beaten by the google prediction when the traffic flow
deviates from the normal pattern. The pure LSTM model is created similarly
to the study by (Duan, Yisheng, and F. Wang 2016). In their model historic
data was used as input to the network to obtain the LSTM calculations to find
the desired output. Duan et al. trained their model from data retrieved from
Highways England. Even though their results yielded relatively small predic-
tion errors and mean absolute errors, they were not fully comparable to models
computing the complex travel time problem regarding urban areas. This is due
to the fact that highways contain less traffic congestion caused by intersections
and short dwell times.
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2.1.5 Artificial Neural Network

Artificial Neural Network (ANN) is the most commonly used machine learn-
ing model for predicting arrival times and there exists multiple former studies
within this area (Jeong and Rilett 2004)(Agafonov and Yumaganov 2019)(Al-
tinkaya and Zontul 2013)(Amita, Singh, and Kumar 2015)(Steven I-Jy Chien,
Ding, and Wei 2002). There are also a substantial amount of research papers
conducted prior to the 21th century. However, we will focus on the more recent
studies, even though they are all based upon previous work. One of the main
reasons for the popularity of ANN is due to its ability to perform with non-
linear relationships (Altinkaya and Zontul 2013). Using multiple layers, ANN
has a unique way of calculating predictions with high accuracy using weighted
variables set by the developer. These weights are set more or less empirically
by testing and tweaking the parameters. In a study from Russia by Agafonov
and Yumaganov in 2019 they made a basic ANN model with the factors of a
few different speed measurements gathered from installed systems on buses to
find the travel time. They also made an extended ANN using more speed mea-
surements, such as average and current traffic flow. They described the weather
data, occurrence of congestion and incidents to be important factors for calcu-
lating travel time, and concluded that they should be accounted for. In their
study they assumed anomalies in the traffic-speed measurements would reflect
these factors indirectly (Agafonov and Yumaganov 2019).

In a study done by (Jeong and Rilett 2004) they constructed an ANN model,
comparing it to a regression model and a historical model. They underscored
that dwell time and the consideration of traffic congestion is important fac-
tors for causing traffic delays. They used Automatic Vehicle Location (AVL)
together with the bus schedule in Houston, Texas in order to obtain the ap-
propriate data. And they used the backpropagation algorithm which is the
most common algorithm for transportation problems. The ANN-model made
by Rilett and Jeong outperformed the other models considerably, and they hy-
pothesized that the results came from the ANNs’ great ability to identify the
nonlinear relationships in finding travel times (Jeong and Rilett 2004). However,
Chien et al. pointed out in their study that the backpropagation algorithm has
a lengthy learning process and might be hard to apply to an online application
(Steven I-Jy Chien, Ding, and Wei 2002)

In sum the artificial neural network models perform decently, and typically bet-
ter regarding the problem of calculating travel times compared to other models.
This might specially so in urban areas where the solution needs to solve a
stochastic problem with dynamically changes to the variables.
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2.1.6 Summary

Most of the previous studies we encountered are using ANN as their main model,
and found it to outperform other models in urban areas (Altinkaya and Zontul
2013)(Jeong and Rilett 2004)(Agafonov and Yumaganov 2019)(Amita, Singh,
and Kumar 2015). Such an overall conclusion does not come without excep-
tions; Baohzen et al. found SVM and SVR to outperform ANN in their results.
However, they also noted that SVM and SVR required higher computation times
with bigger datasets. Similar to SVM, predicting arrival times using LSTM as
a model has not yet been well documented. As mentioned earlier, the newer
study done by Peterson et al. found LSTM to be usable to solving these types of
stochastic tasks where their model outperform both their historical model and
googles’ own prediction system. Nonetheless, Peterson et al. did not compare
their model to an Artificial Neural Network model.
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3 Method

Given the models’ popularity and likely efficiency, we decided to use a simple
ANN, advanced ANN, SVR and LSTM and compare these models against a
historic data model. Specifically, we included ANN due to the long array of fa-
vorable reports of efficiency (albeit with exceptions). SVR was included because
it might have considerable potential in solving the regression problem related
to the study, even though it has seldom been compared to ANN or LSTM. We
included Long-Short Term Memory model for the same reason as SVR. Finally,
because Ruter is likely currently using historic data based upon a qualified guess
from their own ”estimated-arrivaltime”, we will compare the above models to
such a historic data model.

3.1 Hypothesis

The findings in Section 2.1 led us to hypothesize that an advanced ANN model
will have higher accuracy in predicting arrival times than hard-coded algorithms,
here represented by average bus time calculations and a simple historical model.
The above findings and our theoretical reasoning led us to believe that SVR
and LSTM will outperform the historical model. As regards to the artificial
models, we believe ANN would be to prefer to SVR and LSTM in any real-
world application due to its ability to perform with non-linear relationships
and performances with big datasets. However, we believe the machine learning
models will predict with approximately similar results, with ANN having slightly
better predictions.

3.2 Datasource

For this study, we based our models on two types of datasets. Public transit
data acquired from Entur using vehicle monitoring, and weather data acquired
from the Norwegian Meteorological Institute.

3.2.1 Public bus data

Entur which is a Norwegian organization for travel-planning that acquires data
from 58 different travel agencies, including the transportation agency located
in Oslo, Ruter. (Entur, https: // www. entur. org/ om-entur/ n.d.). Entur
provided us with two types of data which we could use. One of the datasets
included historical data similar to a database table where the buses logged actual
arrival time to their appointed bus stop. However, we expected this data to be
constructed in a way that would give false positives to our models. This is due
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to the fact that every bus that was on time, arrived at the appointed bus stop
exactly the same time (on the second) as the expected time, which is highly
unlikely in practice. In order to train our models we had to remove this dataset
out of our source. The second data provided to us was a vehicle monitoring-
data. Here, the buses logged their current location as well as their progress from
one bus stop to the next stop with a value measured in percentage. This type
of data was acquired every day from 01.11.2019 to 24.02.2020. Which meant
we had 115 days of datasets to work with and 39,385,813 data points before
sanatization and 33,757,295 after. To be able to use this data, we had to do
quite a bit of data processing which will be described in section 3.3

3.2.2 Weather data

The weather changes quite rapidly in Norway, especially during the winter. This
fact relates to one of our hypotheses to whether or not this will cause traffic
delays. The data we chose to use in our models were gathered from the weather
station at Blindern in Oslo. Due to the fact that weather conditions tend to
cover a large area we chose to generalize the data gathered here to fit all the
edges in Oslo. The data we chose to use is the SYNOP Code, which is a code
from 0-99 which indicates the weather conditions at that time. (SYNOP Codes,
https: // orap. met. no/ Kodeforklaring/ Kodebok/ koder/ ww. html n.d.).
Data was gathered from the Norwegian Meteorological institute. We had data
covering almost all the bus data points we had, with a few exceptions during
nighttime. We then made a script which iterated through all buss data points
and matched them with a corresponding SYNOP code for that time. In the case
there was a hole in the weather data and such no corresponding SYNOP code,
we would use the code that was last reported. By doing this we successfully
managed to add weather condition feature to all our bus data.

3.3 Data processing

As mentioned earlier, we had one type of data which we could use, the one
provided with vehicle monitoring. In order to extract the features and labels
for our models to train on we had to fetch out and map the timestamp of the
buses according to their progress measured in percentage on the route. To
get the features for our models we divided all the routes into edges and vertices
where each vertice represented a bus stop and the edges represented the segment
between each bus stop. This type of segment-splitting was also conducted in the
study by Agafonov and Yumaganov in 2019 (Agafonov and Yumaganov 2019).
We collected every bus that had a record for being between a set of vertices
and tracked their location and timestamp. We then had to fetch out their first
instance of arrival to their appointed bus stop in order to get the labels. Too
remove any duplicate labels we removed any records that was logged after the
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first record for the specific bus. However, if the timestamp for continuously
staying at the same bus stop was more than 10 minutes, we assumed the bus
had moved on and was possibly on its next round, which then was recorded. The
code below shows a snippet of unprocessed data followed by the same processed
data.

raw data.xml :

<ResponseTimestamp>2020−04−01T20 :02:23.127695+02:00</ResponseTimestamp>
<Veh i c l eAct iv i ty>

<RecordedAtTime>2020−04−01T20 :02:10.774+02:00</RecordedAtTime>
<ProgressBetweenStops>

<LinkDistance>451</LinkDistance>
<Percentage >3.55</Percentage>

</ProgressBetweenStops>
<MonitoredVehicleJourney>

<Vehic leRef >103027</Vehic leRef>
<Prev iousCa l l s>

<Prev iousCal l>
<StopPointName>Tjuvholmen</StopPointName>

</Prev iousCal l>
</Prev iousCa l l s>
<MonitoredCall>

<StopPointRef>NSR:Quay:7791</ StopPointRef>
<VisitNumber>2</VisitNumber>
<StopPointName>Observator iegata</StopPointName>
<VehicleAtStop>f a l s e </VehicleAtStop>
<Dest inat ionDisp lay>He l s f y r T</Dest inat ionDisp lay>

</MonitoredCall>
<OnwardCalls>

<OnwardCall>
<StopPointRef>NSR:Quay:7747</ StopPointRef>
<VisitNumber>3</VisitNumber>
<StopPointName>Lapsetorvet</StopPointName>

</OnwardCall>
</OnwardCalls>

</MonitoredVehicleJourney>
</Veh i c l eAct iv i ty>

. . .

processed data.csv :

Date , RecordedAtTime ,WeekDay , Vehic leRef , LastStop , NextStop , Percentage
0401 ,200210 ,2 ,103027 , Tjuvholmen , Observator iegata , 3 . 5 5
. . .
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3.3.1 Data extraction method 1

We tested two methods of creating feature and label sets using the data filtered
applied from the method mentioned above. An example of the first method we
can see in figure 1. This method, as well as the second we will discuss later
all rely on using the buses progress report system. As the buses report how
far they are on a route in percentages from 0-100% we use this combined with
when they reported their progress to estimate how long they used to travel a
certain percentage of an edge. To account for some inaccuracies in the progress
report we decided to count all reported progresses above 97% as the buss having
completed the route and at the buss stop. So the first thing we do is to find a
datapoint where the bus reported a progress of above 97%, this bus we count as
having completed the edge presented as datapoint 1 in figure 1. We then search
through the edge for another datapoint that matches these criteria:

• Must be same edge
To make sure that we do not get data from a previous edge.

• Must be same vehicle reference
Makes sure that it is the same buss.

• No more than 10 minutes back in time
Makes sure that it is the same trip.

• Must have at least 5% less progress
To make sure that the buss is not standing still and thus a duplicated
listing.

Any data listing that matches these criteria will be a bus on the same edge on
the same trip but at previous point on the edge, this listing will now be know as
data point 2 in figure 1. We now have two data points for the same bus, on the
same edge, on the same trip but at different locations on the edge. The next
thing we do is to calculate the time difference between data point 1 and 2, more
specifically the time it takes for the bus to travel from datapint 2 to datapoint
1. This is simply calculated by taking the difference in when the two points
were reported, this difference will be the label of the dataset, this is 3 minutes
in figure 1. The features will be the time datapoint 1 was reported, the progress
of the bus at datapoint 1, in the case of figure 1 would be 20%, the weather
type (SYNOP code 3.2.2) and weekday. The date is also included but only for
sorting and reference purposes and is not passed as a feature to the models. If
we had comprehensive data spanning multiple years it could be included so the
model could learn trends for specific dates.
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Figure 1: Data extraction method 1

3.3.2 Data extraction method 2

There is one significant problem with our dataset and the extraction method
used above, the dataset we have is so small and the restrictions for extrac-
tion so strict that it yields very few usable feature label pairs. By using the
method above we were able to only extract 3,915 feature-label pairs from the
edge ”Nasjonalteateret - Vika atrium” containing 76,870 individual reported
datapoints. With this few usable feature-label pairs the accuracy of our models
will suffer greatly.

To remedy the problem mentioned above we chose to change the criteria for
datapoint 1, the end datapoint. In the first extraction method datapoint 1
has to be in the end zone, meaning it has to have a progress of above 97%, in
the second extraction method there is no such criteria. This means that any
datapoint can be an end point no matter where they are on the edge, they only
have to have a corresponding point that was reported earlier on the edge, the
criteria for datapoint 2 remains the same as described in the method above.
See figure 2 for an example of this. After we have found datapoint 1 and 2 we
now set the progress of datapoint 2 to be its original progress and how much
progress datapoint 1 has left before it reaches 100% added together. We are
effectively moving the two datapoints further on the edge so datapoint 1 is at
the end of the edge and the progress of datapoint 2 is scaled according to how
far they had to be moved for datapoint 1 to be at 100%. We can see the original
location of the datapoints on the edge in figure 2 and their locations after it
is moved in figure 3. In figure 2 datapoint 1 is at 60% and datapoint 2 is at
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20%. In figure 3 we have moved both of the points 40% further along the edge,
datapoint 1 now has a progress of 100% and datapoint 2 has a progress of 60%.
The progression the bus has to make from datapoint 2 to datapoint 1 remains
the same. The calculation of the time the bus takes to travel the given progress
is calculated the same way as before. By using this method of extraction we are
able to gather much more data, from the 76,870 individual reported datapoints
on the edge ”Nasjonalteateret - Vika atrium” we were able to extract 167,702
feature-label pairs, a significant increase from the first method.

Figure 2: Data extraction method 2 part 1

Figure 3: Data extraction method 2 part 2
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3.3.3 Comparison of extraction methods

To choose which of the methods we would use, they were both tested to see
which of them gave the best results. To accomplish this, they were both trained
and tested on the same Advanced Neural Network with the same attributes.
The results of this is illustrated in the graphs presented below in Figure 4,
which illustrates the Mean Absolute Error of each data set. The blue line (top)
representing the first method with only labels above 97% and the green (bottom)
the other method where labels can be any point with a given earlier datapoint.

Figure 4: MAE short vs long

As we can see, the augmented dataset performed substantially better with an
MAE of around 1,4 vs 4,3 for the original non-augmented dataset. The aug-
mented dataset did take longer to train, with 100 epochs taking 25 minutes
while the small dataset only took one minute for 100 epochs. Based on these
findings we decided to continue with using the augmented dataset created by
using the second data extraction method(3.3.2).

We are aware that by using the second extraction method 3.3.2 we could be
introducing inaccuracies if it takes longer to travel one part of the edge than
another. If for example the first 50% of the edge takes a longer time to travel
than the last 50% and we move a datapoint pair that was originally between
10% and 40% to 70% and 100%, then the time it takes to travel the last 30% of
the edge will not be the true time it takes as it is not actually the last 30%. But
knowing this we believe the difference in time it takes to travel will not vary
too much across one edge as they are usually very short, and that having data
points from multiple places on the edge will average this out and minimize the
total error. All models will be fed identical dataset, such as no model will have
more accurate data than the other.
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3.3.4 Encoding time feature

Another portion of the data we had to manipulate were the features that rep-
resented the time of day the buses reported where they were. Due to time
being cyclic with seconds and minutes being base 60 and hour being base 24 the
model might encounter a problem understanding the actual difference between
two timestamps. An example of this is minute 59 at 11 o’clock and minute 01
at 12 o’clock, due to the cyclic nature of time these two timestamps are only
two minutes apart. A machine learning model based on the base 10 numerical
system will more likely see them as being a whole 58 minutes apart. This could
create a problem with it learning the relations of two close datapoints which it
interprets as being far from each other.

To solve this problem, we chose to encode the hours, minutes and seconds using
the sine and cosine trigonometric functions. Due to these functions cyclic nature
they will allow us to correctly represent the cyclic nature of time and the true
distance between two times even after they have clocked over. As both the sine
and cosine functions can map to the same values given different inputs, we had
to use both functions, as they will overlap to one unique value.

These are the functions we used to calculate the sine and cosine encoded val-
ues. The variable data will be the original value we wished to encode and the
data base represents the original base for the number we are encoding, here 24
for hour and 60 for minute and seconds.

data sin = sin( 2∗π∗data
data base )

data cos = cos( 2∗π∗data
data base )

The resulting sine and cosine pairs could now be used in the dataset in place of
the old hour, minute and second data.
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3.3.5 Encoding weekday feature

Another cyclic categorical feature in our out-data are weekdays. As traffic will
be different on a Sunday than on a Wednesday, they are an important factor
to include. Although weekdays are cyclic, we do not wish to represent them
as such as we do not intend the model to think that Monday and Tuesday are
inherently more alike than Monday and Thursday due to their proximity. To
solve this issue, we encoded the weekdays in a one-hot vector as to represent all
the weekdays in a numerical, normalized way so they do not introduce any bias
to the model simply based on their proximity to each other. Encoding them as
a one hot also avoids weekday 6 being weighted more than weekday 0 due to it
being a bigger number.

Figure 5: MAE weekday encoding difference

The benefit of encoding the weekday as a one-hot vector vs. encoding it as
a sine cosine pair can be seen above. In the figures, we see that the dataset
with the one-hot encoded weekday features (blue) had a lower Mean Absolute
Error (figure 5) compared to the dataset with the cyclic sine and cosine encoded
weekday feature (pink).

3.3.6 Data after preprocessing

In Table 1 presented below, we see how an instance of a feature-label pair will
look in the final dataset. With this dataset we hope to be able to train a model
who can predict how long it will take to travel the rest of an edge given how far
a bus is currently on the edge.
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Table 1: Final features and label

Feature Label

Date
Percentage
WeatherType
Feature hour sin
Feature hour cos
Feature minute sin
Feature minute cos
Feature second sin
Feature second cos
weekday 0
weekday 1
weekday 2
weekday 3
weekday 4
weekday 5
weekday 6

TimeToTravel

3.4 Training

With the data processing described in section 3.3, we had two methods for
training our models. The first method which we called ”edge based training”,
had more data due to the fact that we could train on multiple lines as long as
they were driving on the same edge and stopped at the same connected bus
stops. This ”edge based training” also implied that we were able to utilize all of
the identified feature-lable pairs, where this type of training were not dependent
on the entire route. We chose the nodes ”Nasjonalteateret” and ”Vika atrium”
with its corresponding edge for training our models. The reason being the
amount of feature-lable pairs was a lot higher on this edge than the majority of
the other edges. At the same time, this edge included traffic obstacles, such as
roundabouts and junctions. In the figure below (Figure 6), we present the edge
”Nasjonalteateret-Vika Atirum” as node 1 and 2. The lines 81, 32 and 33 are
the bus-lines that all has ”Nasjonalteateret” and ”Vika Atrium” as connected
bus stops. All of these bus-lines will provide us with valuable datapoints, even
though their final destination are different from one another.
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Figure 6: Edgebased

Another method for training our models was focused on each complete route.
In order to do so, we had to fetch out each bus-line and train our models for
each iteration of the route.
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Figure 7: Linebased

This method came with a data issue. As the historical data given to us from
Entur had major faults, and we were using vehicle-monitoring data. The issue
here was quite simply lack of data. For this method to work, we needed the
current line we were training on to have logged data from each edge at every full
iteration. If not, we were missing an edge, and the route would be incomplete.
This would cause our models to behave abnormal and insufficient to our needs.
Due to this, we used the edge-based method to train our models.

3.5 Optimization

When developing a machine learning model you often do not know the optimal
parameters. The estimate can be derived from former studies, other sources,
and experience with machine learning. But as stated by (Fabrikant 2019), and
echoing our critique of the regression approach, the parameters can vary from
place to place and city to city. In lack of such comparable data, and wanting to
find the best parameters to use for our particular model, dataset and application,
we therefore did tests and gathered empirical analytics to base our research on.
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The main areas where we could optimize our models were: Using different op-
timizers such as Stochastic Gradient Descent (SGD) and the Adam algorithm,
utilizing different learning rates, using different losses like Mean Absolute Error
(MAE) and Mean Squared Error (MSE).

An important problem we had in mind when designing our models, was the
overfitting problem. As we did not have an enormous amount of data, overfit-
ting our models is a problem that could realistically happen. To prevent this,
we implemented two methods known for solving this issue, the use of dropout
and splitting our data into training, validation and test sets. For the dropout
we chose a rate of 20%, this should help the network be properly regularized,
lowering the variability of the network and preventing overfitting. As the next
measure to prevent overfitting we chose to implement, is to use train, validation
and test datasets. The train/validation/test split we chose was 70%/20%/10%,
this provides the networks sample data to train on, and we still have enough
data for accurate validations and tests. By implementing these two methods we
believe our results were relatively safe from being invalidated due to overfitting.

3.5.1 Optimizers

The two optimizers we encountered the most in reading research papers were the
Adam (Kingma and Ba 2015) and Stochastic Gradient Descent (SGD) (Genevay
et al. 2016). As these were the ones we encountered the most and seemed to
be the possible best fits for our problem, we decided to test the two optimizers
and see which preformed the best. We ran a simple neural network with the
same hyperparameters individually, first with the Adam optimizer and secondly
with the SGD optimizer. As seen in the figure below (Figure 8) the Adam
optimizer (brown) preformed notably better then the SGD optimizer (green),
albeit SGD was 8.2% faster than the Adam optimizer. As Adam provided a
marked improvement in MAE over the SGD optimizer, we chose to use Adam
for our models.

Figure 8: MAE of Adam and SGD optmiziers
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3.5.2 Learning rates

To find the optimal learning rate for the simple neural network, we tested vary-
ing learning rates empirically to see which was the best, the MAE of each is
illustrated in the graph below (Figure 9). The orange represents a learning rate
of 0.001m, the gray a learning rate of 0.01, the blue a learning rate of 0.1 and
the pink a learning rate of 1. As we see, the optimal learning rate was 0.01.
With a learning rate of 1 it became too unstable and jumped around while a
learning rate of 0.1 was more stable but had worse MAE. The learning rates of
0.001 and 0.01 had both good MAE, but out of the two the optimal one was
the 0.01, which is the one we chose to continue with.

Figure 9: Loss at different learning rates

We repeated this process to find the optimal learning rate for the Advanced
Neural Network as the two models do not necessarily have the same optimal
learning rate. Although that being the case, in this instance the optimal learning
rate proved to match the model above, with the most optimal being a learning
rate of 0.01, followed by 0.001 and the least optimal being a learning rate of 1.

3.5.3 Losses

To find the best loss function for our problem we decided to test between the
two most common loss functions used for regression problems, those being Mean
Absolute Error (MAE) and Mean Squared Error (MSE). The MAE loss function
is less sensitive to outliers while the MSE function is more sensitive, due to it
using the squared of the error and such outliers will have a bigger impact on
the error than just taking the Mean Absolute Error. From testing both of these
loss functions on the same model, we see that the MAE loss function performs
with a notably better accuracy than the MSE function. This is illustrated
in the graph below (Figure 10) comparing the MAE of the MAE (gray) and
MSE(blue) functions. The results were the same when MSE was used as a
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metric for measuring which was best. This is possibly due to the dataset having
a non-negligible number of outliers in it. As such, we decided to use Mean
Absolute Error in our regression models as it proved to be the best fit for our
dataset.

Figure 10: MAE with MAE and MSE as loss function

3.5.4 Size of layers

Next, we aimed to find what number of nodes would be optimal for the simple
neural network. For this, we ran the model with one hidden layer and the same
learning rate of 0.01 but with a varying number of nodes in that layer. The
number of nodes in the layer we tested were 12,24,48, and 96 nodes. From this,
the conclusion was that with 96 nodes the layer preformed the best. In all, the
layer with 12 nodes preformed the worst. Even so, it should be noted that from
worst to best there was a very small difference. Thus, the layer of 96 nodes was
the one we chose to continue with, although the layer with 48 nodes was slightly
quicker to train and provided quite similar results.

For the Advanced Neural Network, we aimed to test a network with 3 hidden
layers. We tested one input layer with a high number of nodes and two having
a smaller number of nodes to see if the increased hidden layers and nodes made
the model better at separating the features and generalizing the data. We chose
to test three different models, all with three hidden layers. The first we tested
contained 6,600 nodes in the first layer and 120 in each of the following. The
second had 12,000 nodes in the first layer and 240 in the two following. The
final model had 24,000 in the first, and 480 in each of the following. All models
had a learning rate of 0.01. As we can see from the graph below (Figure 11),
the model with 12,000-240-240 (dark brown) preformed the best, followed by
the simplest with 6,600-120-120 nodes (orange). The worst model proved to be
the one with the highest amount of nodes, 24,000-480-480, both in accuracy and
time to train, with it taking 53m to train compared to 13m for the 12,000-240-
240 model and 8m for the simplest one. As such the model with 12,000-240-240
nodes will be the one we choose to continue with.

29



Figure 11: Mean Absolute Error of ANN model with 3 hidden layers given
different number of nodes in each

3.5.5 Activations

Figure 12: Sigmoid vs ReLU function

There are a couple of activation func-
tions we could use, but the most used
ones are the Sigmoid function and the
Rectified Linear Unit. The Sigmoid
function, as you can see in Figure 12
(red), will always return a number
but it will never be quite 0 or 1, while
the ReLU (blue) takes the max(0, a)
and returns 0 until x > 0.

According to (Li and Sanderson
2017); Early networks used Sigmoid
to squish the relevant weighted sum
into that interval between 0 and 1,
motivated by the biological analogy
of neurons either being active or inactive, ReLU fits this analogy better. How-
ever relatively few modern networks use Sigmoid anymore as ReLU seems to be
much easier to train.

The benefits ReLU has over Sigmoid are a reduced likelihood of vanishing gra-
dient and sparsity. When a > 0, the gradient has a constant value in contrast to
the gradient given by the Sigmoid function. The gradient gets smaller the higher
the absolute value of x gets. The constant gradient from ReLU results in faster
learning; another benefit is ReLUs sparsity. This happens when a <= 0. When
more units are less than 0, the sparser the resulting representation gets. Since
Sigmoid always returns a value greater than 0 we get a dense representation.
Sparse seems more beneficial than dense (Maker 2014).

To verify that ReLU was indeed the best activation for models, we chose to do
a simple test where we tested an ANN with the ReLU and Sigmoid activation.
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As we can see illustrated in Figure 13 ReLU(pink) preformed the best with the
pure Sigmoid model (gray) preforming the worst.

Figure 13: Mean Absolute Error of ANN model with 3 hidden layers given
different activation functions

3.5.6 Support Vector Regression specific parameters

For the Support Vector Regression there were two parameters we had to find,
the C value and the epsilon value. The C value tells the model how much we
wish to avoid miss-classification, the margin of the hyper planes. The epsilon
controls how wide the ε-zone is, used for fitting the training data. For the C-
value we tested 3 values, 0.5, 0.2, and 0.1, from these 3 tests we found that a
C-value of 0.2 gave the most accurate classifications. The same method was
applied to the epsilon parameter, with the values 0.25, 0.18 and 0.1, with 0.18
giving us the best results. The Radial Basis Kernel was also chosen as our
kernel as it is generally the most accurate of the kernels with a tradeoff for time
it takes to fit the model.

3.5.7 Long-Short Term Memory specific parameters

The Long-Short Term Memory model shares many of the same features as the
Advanced Neural Network, as such due to time constraints we chose to use
the same loss function that we had found to work best. We also chose to test
three different LSTM model of different sizes, one small, one medium and one
large. The specifics of these can be seen in the end of this chapter where all the
models are summarized 3.6.4. The results of this sections were achieved using
the medium LSTM model containing 2 LSTM layers and one dense layer with
respectively 64-64-16 nodes.

The notable parameter that we had not seen before was the time step parameter,
how long the model will remember earlier values. As before to find this we tested
the same LSTM model with multiple different sequence lengths (time steps), this
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is illustrated in the graph below (14) From this we found that a sequence length
of 100 (orange) to be the optimal value for accuracy. Close behind, we found
that a sequence length of 50 (blue) achieves approximately the same accuracy
and a sequence length of 200 (green) is the least accurate of the three. Halving
the sequence length will also halve the training time, meaning the model with a
sequence length of 50 took half the time to train of the model with a sequence
length of 100. This is a fact that it is worth taking note of and considering,
especially if time to train is an important factor. As we wished to optimize our
accuracy we chose to use a sequence length of 100.

Figure 14: Mean Absolute Error of LSTM model with 3 different sequence
lengths

3.5.8 Historical model specific

For the historical model we had to consider the possibility that a historical
lookup failed due to lack of data. Given the same dataset as the other models
we tried to cut the data on different lookup data to test data ratios, filtered on
weekday, vehicle reference, both, and no filter.
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Figure 15: Analytic graph of historic model parameters

As shown in Figure 15 on the left, we see that the runs with cutoff time of 10
minutes was substantially better than 20, and 30 minutes. However, on failed
lookups (right), we see that with the circle and star which represent the runs
with both weekday and vehicle reference filter failed the most with around 90%
fail rate. The red diamonds, which represent only vehicle reference filter, and
crosses, representing only weekdays filter did much better. The graph in the
right has a trend, most notably in the red diamonds, of having a higher hit rate
the more historical data it gets to look through. This was not the case with too
high historical-to-test data ratio.

When we run this model with the same parameters given to the neural networks
with no filters, 80/20 data ratio and 10 min cutoff time, we got red crosses,
and the hit rate on 80/20 for red crosses is the same as green crosses and an
acceptable level of failed lookups.

3.6 Summary of Models

Below are tables of our parameters used for each of our final models. Their
values are based upon tweaking, testing and former studies as described earlier
in this section. These machine learning models form the results given in section
4.
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3.6.1 Simple Neural Network (SNN)

Our first model will be a simple neural network. It will consist of one hidden
layer with 96 nodes, this layer will have the ReLU activation function and a
dropout of 20%. It will have a learning rate of 0.01 and use the Adam optimizer.

3.6.2 Advanced Neural Network (ANN)

The next model will be the advanced neural network. This model will have 3
hidden layers, the first layer will have 12,000 nodes, and the two following layers
will have 240 nodes in each. All of the layers will have a dropout of 20%, the
ReLU activation function and the model will have the Adam optimizer.

Table 2: Neural Network

Parameters Simple Advanced

Optimizer Adam Adam
Activation ReLU ReLU
Hidden layers 1 3
Nodes 96 12,000-240-240
Learning rate 0.01 0.01
Dropout 20% 20%
Epochs 100 100

3.6.3 Support Vector Regression (SVR)

The Support Vector Regression model will be using the radial basis kernel. It
will have a C-value of 0.2 and the epsilon parameter will be 0.18.

Table 3: Support Vector Regression

Parameters Values

C-value 0.2
Epsilon 0.18
Kernel Radial Basis

3.6.4 Long-Short Term Memory (LSTM)

We settled on testing three final LSTM model, one small, one medium and one
large.
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Small
The first, simpler model contained two hidden layers, the first layers was a LSTM
layer with 32 nodes and the second a dense layer containing 8 nodes with the
ReLU activation function, both layers have a dropout of 20%, the model will
have the Adam optimizer.

Medium
The second model contained three hidden layers, two of these layers were LSTM
layers with 64 nodes in each and a final dense layer of 16 nodes, as before the last
layers has the ReLU activation, all layers have a dropouts of 20%, the optimizer
is also Adam.

Large
The last model is the large version of the LSTM model. It has three LSTM
layers containing 128 nodes in each and then a final dense layer with 32 nodes
in it. The layers have a dropout of 20% and ReLU is used as the activation
function on the last dense layer, this also had the Adam optimizer.

Table 4: Long-Short Term Memory

Parameters Small model Medium model Large model

Optimizer Adam Adam Adam
Activation dense layer ReLU ReLU RelU
LSTM layers (hidden) 1 2 3
Dense layers (hidden) 1 1 1
Nodes 32-8 64-64-16 128-128-128-32
Dropout 20% 20% 20%
Epochs 100 100 100

3.6.5 Historical

The historical model had no specific filter for day of vehicle reference. It used a
data ratio of 80/20 and the search time had a cutoff of 10 minutes.

Table 5: Historical Model

Parameters Values

Filters none
Dataratio 80/20
Cutoff time 10 min
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4 Results

Using the methods and data outlined in the previous segments we continued to
the actual refining and training of the models.

4.1 Performance Comparison

In Figure 16 we present two graphs comparing the performance of the models,
the graph on the left illustrates MAE accumulated from our models with ex-
ception of the historical model and the graph on the right illustrates the MSE.
In Table 6 below, we present the same results with numerical values, including
the time it took to train the models. The results from the historical model are
also presented in the table.

Figure 16: Mean Absolute Error (MAE) and Mean Square Error (MSE)

Table 6: Performance Comparison

Model MAE(s) MSE(s) Time to Train

SNN-96 84 205 10m 36s
ANN-12,000-240-240 76 186 1h

SVR 82 198 23h 52m
LSTM-32-8 72 174 4h 17min

LSTM-64-64-16 57 114 12h 6min
LSTM-128-128-128-32 60 138 1d 8h

Historical 148 35,297 1m 13s
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4.2 Simple Neural Network

The first model tested was a simple neural network containing one hidden layer
with 96 nodes. This simple model has the benefit of being fast to train due to
the few nodes and only a single layer. The specific model with 1 hidden layer
and 96 nodes took only 10 minutes and 36 seconds to train for 100 epochs, which
is fast compared to some of the other models we investigated. This model did
as expected compare to the other models, with an MAE of 84 seconds after the
100 epochs trained on and an MSE of 205s.

4.3 Advanced Neural Network

The next model tested was an advanced neural network. This more advanced
neutral network consists of 3 hidden layers, the first one with 12,000 nodes, then
a second and third both containing 240 nodes. Since this is a bigger and more
advanced model, the time it took to train it increased, with it taking 1 hour to
complete 100 epochs. This model managed an MAE of 76 and an MSE of 186s.

4.4 Support Vector Regression

The next method implemented was the Support Vector Regression, the regres-
sion implementation of the Support Vector Machine classification model. This
regressor did comparably well to the Advaned Neural Network, as we can see
in Figure 16, with an MAE of 82s and MSE of 198s. The downside to this was
the SVR model took a lot longer to train at 23 hours and 52 minutes.

4.5 Long-Short Term Memory

The final type of network tested was the Long-Short Term Memory Recurring
Neural Network. Due to its ability to remember previous input patterns and
use those in making further predictions proved to be a big benefit in predicting
bus arrival times, as we see in Figure 16 it has a lower MSE and MAE than any
of the other models.

Small
The small LSTM model was quicker to train than the two other, but in turn
had less of an accuracy than the medium and large versions. By running this
model for 100 epochs it attained an MAE of 72 and an MSE of 174, beating the
previously tested models.
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Medium
The medium LSTM model was the most accurate of all the model we tested, as
we can see in Figure 16. Although it was not as fast as the small version it still
beat both the large LSTM model and the SVR in time to train. This model
achieved an MAE of 57s and MSE of 114s after 100 epochs. The model took 12
hours and 6 minutes to complete the 100 epochs of training.

Large
The large model was only slightly more inaccurate compared to the medium
LSTM with a MAE of 60s but had even worse MSE of 138s. Notably it took
longer to train, finishing 100 epochs in 1 day and 8 hours, the slowest of all the
models.

4.6 Historical model

This model suffers greatly from the small datasize, but after analyzing the out-
put from several runs described in section 3.5.8 the result was acceptable. This
configuration had a 0.38% fail rate. Time to train in Table 6 presented above,
references how long it takes to go through the test data and get the MAE and
MSE. These findings are not represented in Figure 16.
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5 Discussion

The results accumulated from our models all derive from an identical dataset.
This makes for a relatively fair comparison between them, increasing the validity
of our conclusion. Even so, our conclusion does not come without limitations
and issues which need to be discussed. In this section we will discuss the results
accumulated by each of our investigated models, and challenges we faced along
our research. Finally, we will discuss the validity and reliability of our research.

5.1 Performance comparison

5.1.1 Artificial neural network

Of all the machine learning models we investigated, the simple neural network
performed the worst. It had a Mean Average Error of 84 seconds, meaning in
its predictions, the model was off by an average of 84 seconds. This result was
expected as it is a simple model with few neurons and hidden layers, which will
likely create problems with extracting and conforming to all the features in the
data. When experimenting with various numbers of neurons, we observed that
higher number of neurons provided better accuracy.

Next, we investigated the advanced neural network. This model consisted of 3
hidden layers, containing 12,000, 240 and 240 neurons in each layer respectively.
The model had a notable increase in accuracy compared to the simple model,
with an MAE missing 76 seconds on average. The comparatively lesser MAE
of the advanced ANN is likely due to its ability to extract more features, and
being able to fit the nuances from the data. Although an increase in layers and
neurons gave us more accuracy compared to the simple neural network, there
was a limit to where the network expansion no longer yielded any benefits and
instead decreased the models’ accuracy. When investigating the optimization
with further increasing the size of the network, we observed that a big network
will become overfitted to the data, and the model will then lose some of its
ability to generalize. Thus, we believe our final ANN consisting of 3 layers with
12,000, 240 and 240 neurons achieved better results than the simple model,
also considering its well balanced ability to generalize the data and to extract
features from the data without overfitting.

One positive aspect of the ANN-models compared to the other models we tested,
is the fact that they are relatively simple to train. The time it took to train
these models is counted in minutes, whereas the other models took hours and
even days to complete in some cases. As such, it is an easy model to apply and
experiment with as one can easily check how the model performs, thus, tweak
it accordingly.
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These performance outcomes of both the simple and advanced ANN, did not
concur with our hypothesis. Although they both performed better than the
historical model we created, their performance did not compare well in most
respects to the other models, with the simple network being the worst and
the advanced ANN only being marginally better than the SVR-model. The
reasons for this could be many, one of being that we did not have perfect data
to accurately represented all the factors that can cause delays and decide the
travel times. Challenges regarding our datasets are detailed in Section 5.2.1.

5.1.2 Support Vector Regression

The Support Vector Regression model performed mostly as we predicted based
on the information obtained from our review of the literature. As we presented
in the theory section, using larger datasets makes the SVR-model less effective
and likely outperformed by ANN. As we see in the results, the SVR performed
slightly worse than the ANN model with an MAE of 82 seconds, albeit it slightly
outperformed the simple neural network. One of the reasons for this could
be that SVM models that the SVR model is derived from are not good at
differentiating between false and positive features, giving equal weight to both
useful and noisy aspects. Given that our dataset likely contained some potential
uncertainties and deficiencies, there could have been some noise introduced to
the model that negatively affected its performance. In addition, as stated in
the theory section, the model proved very costly to fit. The model took almost
one day to complete its fitting, whereas the advanced ANN accumulated better
results and only spent 38 minutes training. From our results, we conclude that
using an SVR-model provided no added accuracy or effectiveness compared to
applying ANN.

5.1.3 Long Short Term Memory

Of the models we investigated, the Long-Short Term Memory model proved to
be by far the most accurate of the models, especially the more advanced ones.
The simplest of the LSTM models did comparably well in accuracy terms to
the advanced ANN model, outperforming it by a mere few seconds in the MAE
metric. However, the two other more advanced LSTM models did substantially
better than all the others, with the medium achieving an MAE of 57s and the
large an MAE of 60s, meaning the medium achieved an MAE of 15s better than
the simple LSTM model and a whole 19s better than best non-LSTM model,
the ANN. The probable reason for this superiority being that the memory of
the LSTM contributes to the models’ knowledge concerning the context of the
environment. For instance, there could be a substantial amount of instances
that are not clearly represented in our features, but can be induced from the
context of a time series, such as traffic or similar conditions. The models’
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ability to remember the internal state that contextualizes information is possibly
providing it the upper hand in comparison to the other models.

The fact that the simplest LSTM model did not perform as well as the other
LSTM models might be attributed to the same problem that the simple neural
network model we tested suffered from. The fact that it is constructed with less
layers and neurons makes it hard for the model to extract features from the data.
If the model suffers from poor feature-extraction and becomes underfitted, it
will lead to less received contextual information and unfavorable generalization
of the data.

One thing that should be noted regarding our LSTM models is the fact that they
take a long time to train compared to the simple and advanced neural networks,
especially the more advanced LSTM models. This is one of the reasons one has
to properly optimize and evaluate the need for accuracy vs time to train. The
medium LSTM-model had a 19 second decrease in MAE over the advanced ANN
model, but as a tradeoff it took 12 times longer to train. If one has to maximize
accuracy, then LSTM seems to be the clear way to go. However, if the time to
train the model also is an important factor, then one might be better off looking
at some of the less costly neural networks.

5.1.4 Historical model

Finally, we constructed the historical model for comparison to our machine
learning models. While it is hard to outperform the very short time it takes to
train such a model, this advantage must be balanced against its accuracy. The
historical model produced the worst results by a large margin, having almost
double the MAE compared to the worst machine learning model. On an edge
that usually only takes few minutes to drive, this model has an MAE of 148
seconds and an MSE of over 35,000 seconds. From our research of previous
studies, the historical model has been proven to be unfit for predicting arrival
times in an urban environment.(Williams and Hoel 2003). From our own study
with the results accumulated by the historical model, we can approve of their
conclusion.

Although the lack of data might have been the main cause of the bad predictions
accumulated by the historical model, one must keep in mind that the other
models had the same data to work with. When we compare the results from the
simplest machine learning models to those from this historical model it is hard
to argue in favor of this hard coded algorithm. While we do not know how the
performance of these models compare on a larger dataset we can already see
that a trained machine learning model will outperform a hard coded algorithm
that has to linearly traverse the whole dataset.
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5.1.5 Mean squared error

The value of the networks Mean Square Errors is also of concern. All of the
networks had high MSE, the reason for this is likely that the networks have a
problem with predicting values consisting of high deviation from the norm. In
simpler terms, the models are bad at predicting the edge cases. However, this
is not the case for all of our investigated models. Inspecting the results from
the two more advanced LSTMs reveals that their MSE, while still significantly
higher, are closer to their MAE compared to the other models. This is likely
due to the contextual memory of the LSTMs. By looking at the context of the
data points close to each other in time, they can better predict larger deviations
in arrival time; a definite advantage of LSTMs worth noting.

5.2 Challenges

5.2.1 Dataset

We acquired two datasets obtained from Ruter through Entur, public transit
and vehicle monitoring data. We anticipated public transit data was the best
source for approaching the problem. However, as the data proved to contain
complete correspondence with estimated arrival times, it was no use to us and
we had to use another source. The other option was the vehicle monitoring
data set. This data was harder to work with as it was not structured right
for this application. There was seemingly no rules to when a bus would rap-
port on its whereabouts, something that made defining labels and features a
task potentially implying huge loss of potential data. After pulling the data,
extracting the useful information, restructuring to fit the application, extract
potential label-feature pairs, calculating first arrival, converting timestamps to
sine-cosine pairs, adding weather data, and filtering out all but one bus stop
pair, we were left with a questionable small data set to train on. In addition,
we later decided that even though we had data from November 1. to April
30., we had to discard anything after February 24. to not confuse the models
with abnormal data due to the COVID-19 pandemic that severely reduced the
amount of data generated from buses. To be confident in the results from most
of the models used in machine learning, sufficient data is needed. If the public
transit data from Ruter had used real, recorded, arrival times, this would not
have been an issue.

While the main focus in this paper is on contrasting various machine learning
models, we used close to one fourth of our time gathering and processing the
data. This includes searching in the data for useful information, developing
methods for extracting and handling, and shaping the data without altering it.
The computation of the data alone took days with efficient algorithms.
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If this was to be attempted again in a different city with accurate public transit
data, albeit fewer overall buses, it could result in a bigger dataset. Utilizing
buses with Automated Passenger Counters (APC) would aid in depicting the
world around the buses like our weather data currently does.

5.2.2 Models

Looking past the problems with the data set, there were other model-specific
challenges we encountered that we had to solve. One of the first challenges we
faced, was the fact that the models work in base 10 and do not comprehend the
cyclic nature of things such as time. Even though this was an initial challenge,
we managed to solve this by encoding time to be represented in the cyclic
function of sine and cosine. This also brings us to the challenge we faced with
the categorical data of weekdays. This obstacle was overcome by encoding the
data as a one hot array of ones and zeroes.

Another challenge was encountered in the LSTM model. As the LSTM needs
time series of data points as input, we needed to properly cut the data in a length
that gives the model meaningful information without introducing noise from the
unrelated data points. The act of finding this optimal time series length relies on
both having accurate data for the context the time series is in, as well as being
able to test and inspect what actual length is optimal. Because LSTMs takes a
long time to train, and thus get meaningful data, it can be time-consuming to
optimize this parameter, as well as all the others; a fact that also materialized
in our work. The urban environment is stochastic with many factors that can
be hard to accurately represent in a way the models can beneficially utilize.
Events such as roadwork, accidents and deviations simply caused by an array of
hard-to-predict human decisions are difficult to model and accurately portray.
These combined factors prohibit a completely accurate model to be constructed.
Indeed, as there would inevitably be some amount of uncertainty when dealing
with such an active and unpredictable scene as a central urban environment.
This uncertainty is likely part of the reason for our high MSE. An uncertainty
element that we were not able to map in our features could lead our models to
have a large margin of error in certain instances. This complexity and inherent
unpredictability can be somewhat compensated for by using contextual data
and memory as the LSTMs do, but there is still a noticeable error that can be
attributed to this unpredictability.

Another unpredictable event that occurred during the period this research was
carried out, was the outbreak of the COVID-19 virus. This virus caused incom-
prehensive lockdown of Norway, which substantially reduced overall road traffic
and public transport. One of our goals was to compare the accuracy of our
models against real-life arrival times. However, the pandemic likely had a wide-
spread effect on factors impacting arrival times of public transport, perhaps
suddenly transforming a major city to become more alike rural areas, transport
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wise. Hence, the many uncertain factors and their potential validity-impacts
led us to refrain from testing our models in this way.

In general, using machine learning models for predicting arrival times in an
urban environment lead to better accuracy compared to a historical model.
However, the computation times are massively increased, which is not ideal
for a real-world application. Nonetheless, this increased cost must in turn be
balanced against the fact that investments in the public transportation systems
to make them efficient could also reduce emissions and thus greenhouse gasses
and local pollution as well as lowering personal cost for the consumers.

5.3 Validity and reliability

As it stands, we have no major reason to doubt the overall validity and reliability
of our findings, but several points should nonetheless be considered. First and
foremost the quality of our data may cause concern, as we did not get accurate
data containing exact arrival times of the buses, but rather a location with a
timestamp that we had to use to approximate arrival times. Due to this, there
could be some error in the data that could bring the validity of the accuracy of
the models into question. We believe that a small margin of error in the data
will not have a huge detrimental effect on the findings, as we did use location
data that is also accurate. The second possible source of error is our extraction
of data, outlined in the method section. This method relies on the fact that on
average, there is no huge difference in time the buses takes to travel any part
of the edge compared to another portion with the same length. It is unlikely
that the time it takes to travel an edge is consistent across the entire edge all
the time, but we believe that when looking at the average time across all our
datapoints this will not introduce too high a margin of error. It should also be
noted that all models were fed the same data, and such no model was trained
on more accurate data than any other model. Due to this fact, the performance
of the models relative to each other should be valid, even if their individual
performance is affected by the data. When it comes to the reliability of our
findings we have no notable concerns. If given the same data we used, using the
same augmentation methods and the same models, we believe our data to be
reliable and reproducible under the same circumstances. The cross validation
of the results show no major discrepancies that give any reason to question the
reliability of their results, and thus we believe them to be reproducible.
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6 Conclusion and future work

There are many different models which may fit the purpose of predicting arrival
times for buses in an urban area. We opted to research the use of SNN, ANN,
SVR and LSTM. ANN has consistently been found a stable and rapid, although
not always an accurate model for this problem, whereas prior research has in-
dicated that SVR and LSTM both have the potential of improving accuracy,
but with a training time cost. Using vehicle monitoring data from Entur, we
conclude that optimizing the models, even though it is time consuming, is vital
for predicting with better accuracy, especially with ANN and SVR. In particu-
lar for the LSTM model we detected a positive trend for the calculation times
when tweaking and arriving at the optimal number of nodes and layers. For any
real-world application it would be paramount to optimize the models for them
to perform accurately and rapidly.

There were several challenges we faced and had to overcome when using vehicle
monitoring data from an urban environment for our machine learning methods.
The data itself proved challenging to work with, as such we had to use an
alternative extraction method to produce enough feature label pairs. The data
was also not in a optimal form for training machine learning models, as it had to
be properly encoded. Urban environments are prone to factors that are difficult
to properly represent as a feature, as such there are factors affecting traffic flow
and travel time on an edge not properly learned by the models, resulting in
inaccurate predictions, especially if these factors greatly affect the travel time.

The results accumulated shows that all four machine learning methods (SNN,
ANN, SVR and LSTM) outperformed a historical data model. LSTM gave the
lowest MAE at 57 seconds and therefore fared the best, prediction wise, fol-
lowed by the advanced ANN, SVR, and the SNN giving the worst results with
an MAE of 90s. These results do not concur with our hypothesis described in
section 3.1 where we believed ANN would yield the best accuracy. Even so,
these figures imply that although LSTM proved more accurate than the others,
the improvement should not be overrated as it had a higher cost to train. These
results concurs partly with our hypothesis and also with the overall conclusion
that can be drawn from the previous studies (see Section 2); substantial dif-
ferences between the machine learning methods cannot be found and historical
models only outperforms machine learning models in rural areas. We can con-
clude from our work that all machine learning methods tested accumulated far
better results than the historical data model in an urban area. Finally, given the
large amounts of datapoints required for accurate predictions utilizing machine
learning methods, the training time is substantially greater than using historical
models. This fact should be taken into account when implementing the models
to a real-world application. Even so, the improved accuracy provided by the
machine learning methods may in many cases outweigh the costs of time use,
making them the method of choice in urban areas.
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6.1 Suggested future work

The list below are suggested future work:

1. Implementation of Kalman filter and compare its performance to the mod-
els in this study.

2. Investigate different kernels used in the SVR model in order to fit the
purpose of the model better. This being better calculation speed and
more accurate predictions.

3. The historical data provided from Entur was not optimal. Investigate if
better data can be provided and see if that will gain better results.

4. The LSTM model provided the best results. However, there are more
possibilities with using this model together with different kinds of layers.
Investigate if the use of convolutional neural networks will improve the
results as concluded in (Petersen, Rodrigues, and Pereira 2019).

5. Further increase the data by implementing traffic-flow and over all traffic
speed gathered by either google or the Norwegian Public Road Adminis-
tration (NRPDA). Investigate if these types of data will further improve
the predictions of the models.
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A Acronyms

ANN Advanced Neural Network

APC Automated Passenger Counter

AVL Automatic Vehicle Location

ITS Intelligent Transport Systems

LSTM Long-Short Term Memory

MAE Mean Absolute Error

MET The Norwegian Meteorological institute

MSE Mean Squared Error

SNN Simple Neural Network

NTNU Norwegian University of Science and Technology

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

SVM Support Vector Machine

SVR Support Vector Regression

SYNOP Surface Synoptic Observations
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