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Abstract

This thesis implements different approaches to predict the one-day ahead
Value at Risk (VaR) of crude oil return data. The Historical Simulation (HS)
approach, a non-parametric model, randomly resamples past observations
with replacement to estimate the next day quantile. The Filtered HS (FHS)
approach, a semi-parametric model, uses the same methodology but at-
tempts to capture the volatility dynamics. The Conditional Extreme Value
Theory (EVT) approach, a parametric model with asymptotic limits of the
tail data, uses a combination of the Peaks-Over-Threshold (POT) method
and the conditional variance model to extract extreme data and estimate the
conditional error variance in order to compute the VaR of the next day. The
Average Conditional Exceedance Rate (ACER) method, a parametric model
targeting subasymptotic tail data, takes statistical dependence between the
data points into account in an effort to accurately predict the extreme value
distribution, i.e., the next day’s VaR.

The datawas retrieved from theQuandl database of crude oil continuous
futures contracts traded on NYMEXWTI fromApril 1985 to December 2015.
By dividing the data set into in-sample and out-of-sample periods, we
evaluate the VaR estimates from the above approaches and assess the VaR
violations based on the actual returns of the next day. From these VaR
violations, we backtest the VaR estimates from these approaches via three
tests. First, the unconditional coverage test checks whether the proportion
of the violations is statistically different from a predetermined probability.
Second, the independence test checks the clustering of these violations. The
final test — a combination of the two previous tests — checks the accuracy
as well as the independence of the results.

The thesis concludes that the conditional EVT approach performs best
among the tested approaches. We also learn that the approaches capturing
the heteroscedastic features in the data generally perform better.

iii





Acknowledgment

First, I would like to thank my thesis supervisor, Arvid Næss. Arvid sug-
gested the field of extreme value prediction to me and is the author of the
ACER method, which not only is a compelling and integral part of this
thesis but also evoked a great interest in me. Also, the book he recom-
mended me to read, Analysis of Financial Time Series by Tsay, has been a
significant resource for this thesis. Besides giving answers to my questions,
Arvid has been caring to have written emails as checkups with me due
to the long distance between us, and he was very understanding when I
went through a difficult time. He also introduced Sjur to me, a dedicated
professor in the field of riskmodelling, the area that this thesis is focused on.

I would also like to thank Sjur Westgaard. After learning of my interest
in actuarial science, Sjur and Arvid suggested risk management to be the
topic of my master thesis. I am happy to say that it is a fascinating field that
combines both mathematics and finance and has a highly practical value.
Attending Sjur’s lectures helped me understand more about risk manage-
ment, and these lectures and his general input brought back my interest in
finance, one of my bachelor’s degrees, which I had mistakenly thought to be
wasted. I really hope to continue working in this field in the future because
I very much enjoyed the process of researching for this thesis, which was
appreciably inspired by his lectures and many insightful references that
Sjur kindly sent me over time. He is also the person that provided the data
from Quandl for me to work with in this thesis and helped me get access to
Montel database.

Next, I would like to express my profound appreciation for Erlend Magnus
Viggen. Erlend has givenmemany great tips for presenting a research paper
thanks to his expertise in academic writing. I would also like to acknowl-

v



vi

edge him for having done a splendid job setting the layout of this thesis
which I would otherwise have spent many hours fixing, and for consistently
giving me valuable comments throughout the last stage of this thesis. Er-
lend has been incredible company and my biggest motivator during the
last few weeks of my work, I truly appreciate his contribution to this thesis
and appreciate him as a dear and important person in my life. Thank you,
Erlend.

Last but most importantly, I must express my utmost sincere gratitude to my
family. Thank you, mẹ Dương Thị Hòa and bố Nguyễn Bá Ngọc —mymom
and dad, for having always unconditionally supported and encouraged my
educational pursuit both in the U.S. and in Norway, and my other pursuits
in life. Thank you, chị Nguyễn Thu Trang —my beloved sister, for always
being available for me and making my time away from home never seem so
challenging. My family is undoubtedly my solid emotional support that I
can always lean on. They are the ones that I would like to be most proud of
me. One time, my dad said that he was so proud that he couldn’t sleep the
night before the day we together attended a ceremony, in which I received
some awards for my undergraduate achievements. I remember I had never
felt happier. Without my family, I would not have been able to finish my
study or to accomplish what I have today. Bố, mẹ, chị Trang, con yêu và
cảm ơn nhà mình nhiếu lắm!

From the bottom of my heart,
Thank You!

Sincerely yours,
Trang Nguyen



Contents

List of Figures ix

List of Tables xi

1 Introduction and Literature 1
1.1 Crude Oil Prices . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 VaR in Risk Management . . . . . . . . . . . . . . . . . . . . . 4
1.3 Extreme Value Theory (EVT) . . . . . . . . . . . . . . . . . . 6

2 Theory and Methodology 9
2.1 GARCH for Volatility . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 ARCHModel . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 GARCHModel . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Estimation of GARCHModels . . . . . . . . . . . . . 15

2.2 Historical Simulation (HS) Approach and Filtered HS Ap-
proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Historical Simulation Approach . . . . . . . . . . . . 16
2.2.2 Filtered HS Approach . . . . . . . . . . . . . . . . . . 17

2.3 Conditional EVT Method (via POT Approach) . . . . . . . . 19
2.3.1 EVT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Conditional EVT (GARCH-EVT) . . . . . . . . . . . . 21
2.3.3 VaR from (Conditional) EVT Quantile . . . . . . . . . 23

2.4 ACER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Cascade of Conditioning Approximations . . . . . . . 24
2.4.2 Empirical Estimation of the Average Conditional Ex-

ceedance Rates . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Estimation of Extremes for the General Case . . . . . 31

2.5 Test and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



viii Contents

2.5.1 Unconditional Coverage Testing . . . . . . . . . . . . 34
2.5.2 Independence Testing . . . . . . . . . . . . . . . . . . 35
2.5.3 Conditional Coverage Testing . . . . . . . . . . . . . . 36

3 Data 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Analysis and Results 45
4.1 Methods Summary . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Historical Simulation . . . . . . . . . . . . . . . . . . . 45
4.1.2 Filtered HS . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.3 Conditional EVT . . . . . . . . . . . . . . . . . . . . . 54
4.1.4 ACER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Evaluating VaR estimations . . . . . . . . . . . . . . . . . . . 57

5 Conclusion and Future Work 61

Bibliography 63



List of Figures

1.1 Historical chart of crude oil inflation-adjusted prices . . . . . . . 2
1.2 Pdf’s of extreme value distributions for maximum . . . . . . . . 8

2.1 Clusters in a section of the crude oil daily returns with different
minimum numbers of previous observations . . . . . . . . . . . 11

3.1 Calendar-weighted rolling crude oil prices for continuous fu-
tures contracts — from 04/04/1985 to 31/12/2015 . . . . . . . . 40

3.2 Empirical distribution of the return series with two fitted normal
CDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Histogram of HS returns (%) for 10,000 possible 250-day trading
periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Histogram of 10,000 VaR0.05’s for historically simulated returns
(%) of 250-day trading periods . . . . . . . . . . . . . . . . . . . . 46

4.3 Histogram of 10,000 extreme quantiles (0.1th percentile) for his-
torically simulated returns (%) of 250-day trading periods . . . . 47

4.4 Predicted VaR0.01 using HS the approach, compared with the
true 0.01 quantile of a 250-day horizon . . . . . . . . . . . . . . . 48

4.5 Sample ACF and PACF of crude oil returns . . . . . . . . . . . . 49
4.6 SampleACF andPACFof the squared residuals of fittedARMA(3,3)

onto returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Sample ACF of the residuals and the squared residuals of differ-

ent fitted models . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.8 Predicted VaR0.01 using FHS approach compared with the true

0.01 quantile of a 250-day horizon . . . . . . . . . . . . . . . . . . 53
4.9 Predicted VaR0.01 using a conditional EVT approach compared

with the true 0.01 quantile of a 250-day horizon . . . . . . . . . . 55

ix



x List of Figures

4.10 Comparison among ACER estimates conditioning on (k − 1)
previous data points for different η values . . . . . . . . . . . . . 56

4.11 The k-plot for η in (−4%, 5%) to identify a reasonable choice of k 57



List of Tables

3.1 Summary statistics of daily returns on crude oil from 04/04/1985
to 31/12/2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 Parameter estimates of fitted models with Information Criterion
Statistic AIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Out-of-sample VaR violations of different models . . . . . . . . 58
4.3 Different likelihood ratio tests for the fitted models . . . . . . . . 60

xi





Chapter 1

Introduction and Literature

1.1 Crude Oil Prices

In economics, commodities are basic goods or services that are uniform —
i.e., little to no differentiation in quality — among producers of the same
kind, which typically include: corn, gold, copper, coffee beans, or crude oil.
Crude oil is, in fact, one of the most critical and actively traded commodities
in the world [Füss, 2009]. As of June 28, 2017, nearly 1.2 million contracts
were traded daily (where one contract is equivalent to 1,000 barrels) on
NYMEX WTI exchange alone [CME Group, 2017]. This large amount is
not very surprising because many important refined products come from
crude oil, such as diesel, gasoline and a great quantity of petrochemicals.
They contribute to a multitude of manufactures that affect almost every
corner of consumer goods, production, and transportation of the world
economy [Pines, n.d.].

Despite crude oil’s great importance in the commodity exchanges, its
markets are known to be highly volatile, and this makes price risk man-
agement extremely critical. Therefore, it is a vital task for risk managers to
understand the factors that drive oil prices in order to manage and measure
potential price risks.

There are many factors affecting the instability in crude oil prices, and
supply and demand — a key settlement for an economic equilibrium for price
and quantity in goods and services in a competitive market — needless to
say, contributes towards the determination of prices in crude oil markets.
In addition to these two typical factors, financial markets is also a major price
determinant [Murphy, 2009]. Financial speculators can make a surprisingly
strong impact on crude oil prices, especially because crude oil is traded at an
enormous scale. To illustrate this, let’s a assume a scenario where a number
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2 Chapter 1 Introduction and Literature

Figure 1.1: Historical chart of crude oil inflation-adjusted prices from 1970–2015
[Macrotrends, 2018]

of speculators buy oil futures at a strike price that is substantially lower
than the market price. This kind of event can easily provoke oil producers
into expanding their current oil supply, which helps them avoid selling it
later at the lower strike prices. Such a situation undesirably but essentially
results in dropping both present and future prices.

Furthermore, political situations and government policies is certainly a key
determinant in controlling oil prices and might actually wield most of the
power. This is reasonably easy to understand since these events play an
important and direct role in manipulating the oil supply and demand in
such a macroscopic scale that can lead to drastic price changes. These
extreme price fluctuations can be seen very clearly in Figure 1.1, showing
how closely the crude oil volatility and the world’s political setting at the
time synchronized. Let’s discuss some well-known events and compare
them with how the oil prices changed during those periods.

• The “first oil shock” in 1973 happened when OPEC proclaimed oil
embargo to punish countries supporting Israel during the YomKippur
War, which was reflected clearly in a nearly triple price jump as shown
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in Figure 1.1, the first price jump in this figure.

• In 1979, “the second oil shock” occurred as a consequence of decreas-
ing oil output due to the Iranian Revolution and worldwide panic,
and the oil prices were clearly driven up to more than double.

• Starting from 1980, some complications began within the oil supply
competition. Oil production increased in many non-OPEC countries
and gradually surpassed OPEC’s attempt to keep prices high by limit-
ing the supply output. The Saudis were discontent with many OPEC
members who were manipulating the oil supply, they then started
production at full capacity [Koepp, 1986]. All of this excessive oil
supply caused oil prices to fall to an all-time low point (plunging
more than half) in 1986 and to continue staying around this low level
until the next oil price shock in 1990 following the Gulf War as shown
in Figure 1.1.

• In the period from 1999 to mid-2008, oil prices had a fairly steady
growth and reached a record peak in July 2008 due to the Middle
East tension and the significant increase in oil demand in China and
India [Mouwad, 2007].

• This spike was then followed by a dramatic collapse in late 2008 to
early 2009 due to the global recession in 2007–2009. And once again,
the oil prices peaked due to political crisis in early 2011 and remained
high until the big price fall in 2014 following the diminishing de-
mand in emerging countries and a substantial increase in the US oil
production [Friedman, 2014].

• In 2015, oil prices fell considerably due to China suffering a slow
economic growth while oil supply consistently had a huge surplus,
and this price trend continued into 2016.

We can conclude rather surely that political setting and policies have a direct
and powerful impact on oil prices, and risk managers in this field should
keep in mind that the price fluctuations respond relatively quickly to these
events.

Since crude oil markets are shown to be extremely volatile, it is a crucial
advantage for financial participants to understand the oil market when trad-
ing in futures contracts. It does not matter whether it is from a standpoint
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of hedgers, who try to lessen the effect of possible adverse price moves on
oil-related assets, or speculators, who seek profits from their conjectures
about oil prices’ movements; benefits are in the hands of those who can
estimate potential market risks, especially in extreme cases.

In this thesis, we would like to attempt using statistical methods and
models to assess such extreme price risks in the crude oil market in the
period from 1983 to 2015. One of the typical risk measurements for invest-
ments’ loss is Value at Risk, which is given in the next section.

1.2 VaR in Risk Management

Value at Risk (VaR) is mostly concerned with, but not limited to, market risk,
one of the major risks in financial markets. In a given period, the amount
of risk of a specific position’s devaluation can be estimated by VaR. Because
VaR gauges the amount of necessary asset an institution should possess
in a potential catastrophe under normal market conditions, it is one of the
most widely used benchmarks to evaluate extreme risks in order to ensure
the survival of financial institutions after such disastrous events. From this
point of view, VaR can be interpreted as “the maximal loss of a financial
position during a given time period for a given probability” [Tsay, 2010a,
p. 326]. The literature of VaR is substantial due to its significant role in
assessing financial risks. Some suggested sources for more information are
Engle and Manganelli [1999], Pelletier and Christoffersen [2004], McNeil
and Frey [2005, Chap. 2], and Dowd [2005].

In statistics, VaR is simply the estimate of a quantile of a random variable
with a given probability distribution, or of a sample of observations. Fol-
lowing notations from Tsay [2010a], we let t be the time index of a financial
position of interest for the next l periods, and L(l) be the loss function of
the underlying assets from time t to t + l. Then over the given period l with
tail probability p, we define VaR as

p = P(L(l) ≥ VaR) = 1− P(L(l) < VaR). (1.1)

Hence, we can interpret that over the given time horizon l, the chance of
the interested position experiencing a loss greater than or equal to VaR is
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p · 100%. Now let, Fl(x) be the cumulative distribution function (CDF) of
L(l), and q be a probability (0 ≤ q ≤ 1), then:

xq = inf {x|Fl (x) ≥ q} , or q = Pr(L (l) ≤ xq). (1.2)

Here, xq is the qth quantile of Fl (x), where inf denotes the smallest real
number x satisfying Fl (x) ≥ q. From (1.1) and (1.2), we know that VaR is
the (1− p)th quantile or qth quantile of the CDF of the loss function L(l)
for VaR = x1−p = xq. Thus, VaR, computed by a predictive distribution
of a series of returns, estimates the potential loss of a portfolio given time
horizon.

There are a few drawbacks to VaR, despite its simple concept and useful
contribution. First, while VaR is a prediction and “should be computed
using the predictive distribution of future returns”, the majority of existing
methods determining VaR disregards the reliability of parameter estima-
tion, since the predictive distribution, which accounts for the parameter
uncertainty, is difficult to implement [Tsay, 2010a]. However, there exist
several widely used procedures to validate a set of VaR forecasts, which
will be given in more details in section 2.5. Another downside to VaR is that
VaR cannot provide a bigger picture of the upper tail behavior of the loss
function due to being only a quantile (a single number). One of the solutions
for this is the use of expected shortfall (ES), which will not be discussed in
any depth in this thesis due to time constraints. ES, also called conditional
VaR, is more sensitive to the general shape of the tail behavior of the loss
function, which then provides a better sense of the tail distribution [Tsay,
2010a, Chap. 7].

In practice, the CDF of the loss function is, however, unknown. There-
fore, calculating VaR for a financial position is essentially fitting and esti-
mating an appropriate econometric modeling for the distribution of the
observed data. An appropriate approach to assess the tail behavior of these
distributions, whichwe essentially would like to achieve, is to apply extreme
value theory. The next section will cover the literature of this methodology,
whose applications can be used in predicting the probability distribution of
day-to-day market risk. This methodology is also the base for two of the
approaches that we use in this thesis.



6 Chapter 1 Introduction and Literature

1.3 Extreme Value Theory (EVT)

The field of extreme value theory (EVT) was first introduced by Leonard
Tippett (1902–1985). EVT is a branch of statistics that has its chief concern
of handling the most extreme deviations of a random variable given its
distribution, in order to produce asymptotic models for the distribution
of these deviations. The inital work was done by Fisher and H.C. Tippett
[1928], and a lot of critical contributions have been made following it. Some
typical ones include the extreme value theorem and family limiting distri-
bution by Gnedenko [1943], the use of threshold in extreme value models
by Balkema and De Haan [1974] and Pickands [1975], and the introduction
of the generalized extreme value by Jenkinson [1955]. Because of its unique
features, EVT provides important and meaningful assessments that are
applied in many areas.

In the scope of finance, EVT can aim at the characteristics of min/max
return of an asset over an observed period, at which “properties of the
minimum return can be obtained from those of the maximum by a simple
sign change” [Tsay, 2010a, p. 342]. For a long financial position (one that
buys an asset with the anticipation of growing value in the future), a risk
emerges when the value of the asset drops, so the minimum return (left
tail of the distribution) is a big concern. Whereas the maximum return
(right tail) is important to a short financial position (one that sells an asset
they borrowed and purchases it later to deliver back to the lender, therefore,
they experience a loss when the price increases). Risk managers should
always be prepared for unforeseen events of extreme price changes, and it
is essential for them to pay attention on modeling the tails of the returns
distribution explicitly, where the EVT specializes in.

Note: Throughout this thesis, we define equations for VaR from the perspective
of a long position (hence, the interest lies in the left tail of the return distribution)
with p being the tail probability.

Tsay [2010a] reviewed EVT in the following manner: Let rt be serially
independent with a common CDF F(x) for (l ≤ t ≤ u) and r(n) be the max-
imum order statistic (r(n) = max1≤j≤n

{
rj
}
), then the CDF of r(n), Fn,n (x),
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is given by

Fn,n (x) = P
(

r(n) ≤ x
)

= P
(

r(1) ≤ x, r(2) ≤ x, . . . , r(n) ≤ x
)

=
n

∏
j=1

P
(

r(j) ≤ x
)

(by independence)

=
n

∏
j=1

F (x) = [F (x)]n .

(1.3)

This is a degenerated CDF, since as n → ∞, Fn,n(x) → 0 if x < u, and
Fn,n(x)→ 1 if x ≥ u. To avoid this, EVT is concernedwith {βn} (the location
series) and {αn} (scaling factors series) ({αn} > 0) such that the distribution
of normalized maximum r(n∗) ≡ (r(n) − βn)/αn is nondegenerate.

Assuming that r(n∗) is independent, the limiting cumulative distribution
becomes

F∗(x) =

exp
[
− (1 + ξx)−1/ξ

]
if ξ 6= 0,

exp [− exp (−x)] if ξ = 0,
(1.4)

for {
x < − 1

ξ if ξ < 0,
x > − 1

ξ if ξ > 0,

where the subscript ∗ signifies the maximum. The result of F∗(x) in the
case where ξ = 0 is derived from the limit when ξ → 0. The parameter ξ is
referred to as the shape parameter, which regulates the tail behavior of the
limiting distribution.

Jenkinson [1955] introduced the Generalized Extreme Value (GEV) (the
limiting distribution in (1.4)) for the maximum statistic, which includes the
three types of limiting distribution of Gnedenko [1943]: the Gumbel family
(ξ = 0), the Fréchet family (ξ > 0), and the Weibull family (ξ < 0). The
density functions of these families can be seen in Figure 1.2. Among these
families, the Fréchet family is often used in risk management as it depicts
the properties of return distribution better, which typically has a heavy (fat)
tail.
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Figure 1.2: Probability density functions of extreme value distributions for maximum

There are two remarks about EVT according to Tsay [2010a]. First, the
limiting distribution F∗(x) is driven only by the tail behavior of F(x), thus,
EVT is largely suitable for the return rt and is not restricted to a distribution.
(Note that F(x) might nevertheless decide {βn} and {αn}). Second, the tail
index (ξ) is time-invariant, which makes VaR calculation much simpler.

This thesis is organized as follows: Chapter 2 gives the statistical theories
and methodologies to apply in the field of finance in terms of extreme value
modelings, Chapter 3 describes the crude oil data obtained from NYMEX
WTI, and Chapter 4 analyzes and presents the results from the application
of mentioned methods. Chapter 5 concludes the thesis.



Chapter 2

Theory and Methodology

2.1 GARCH for Volatility

Regression models are undoubtedly the most common statistical tool for
time series analysis. However, most of these models in theories have a set
of classical assumptions that are usually inapplicable to real-life time series
data [Wei, 2006].

In standard regression analysis, we have a model where a dependent
variable is described by a set of independent variables and an error term,
where the error term is often assumed to be independent and identically
distributed (i.i.d.) following the normal distribution with mean 0 and a con-
stant variance. Unfortunately, when the error terms are autocorrelated over
time, the common ordinary least squares (OLS) method to estimate param-
eters does not hold. Normally, Autoregressive-Moving Average (ARMA)
models can be applied to adjust such an error structure where the error term
is stationary with a constant variance. However, this assumption is most
likely violated in practice, since volatility over time in financial markets
is certainly seldom constant. Such a model with varying error variance is
regarded to as a heteroscedasticity model and can be captured by a GARCH
model.

2.1.1 ARCHModel

Following Wei [2006], let’s consider the regression

Yt = X′tβ + εt,

9



10 Chapter 2 Theory and Methodology

where t is the time index (t = 1, 2, . . . , n), Yt is the dependent variable,
X′t is the transpose of the set of independent variables, β is the regression
coefficients, and εt is the uncorrelated error term.

Let εt = nt for nt that are uncorrelated but have time-dependent vari-
ances. In accordance with Engle [1982], assume

nt = σtet, (2.1)

where et are i.i.d. variables with mean 0 and variance 1, and

σ2
t = θ0+θ1n2

t−1 + θ2n2
t−2 + . . . + θsn2

t−s. (2.2)

Hence, the conditional variance of nt given all information up to time (t− 1)
is

Vart−1 (nt) = Et−1
(
n2

t
)
= E

(
n2

t
∣∣ nt−1, nt−2, . . .)

= σ2
t = θ0+θ1n2

t−1 + θ2n2
t−2 + . . . + θsn2

t−s.
(2.3)

This error conditional variance depends on the squares of past errors and
is time-dependent. Clearly, one large past error leads to another large
error, making the variance larger. In finance, this is referred to as volatility
clustering, which depicts a circumstance where “large changes tend to be
followed by large changes, of either sign, and small changes tend to be
followed by small changes” [Mandelbrot, 1963].

To have a better understanding of volatility clustering, let’s look at Fig-
ure 2.1. Here, we have chosen a specific period in our crude oil return data
(described in Chapter 3) that consists of 180 observations from 26/12/2002
to 12/09/2003. We choose a lower threshold and an upper threshold that
correspond to 15th and 85th percentiles of the sample, respectively. Now, let
us identify a cluster as a set of consecutive returns that are either altogether
less than the lower threshold or altogether greater than the upper threshold,
and we will name these returns deviations. Figure 2.1 consists of four plots,
where the clusters in each plot (in reading order from the top left plot)
require a different number of minimum consecutive observations (2, 3, 4,
and 5, respectively). The deviation set that exceeds the upper threshold is
located in between the dashed lines, while the deviation set smaller than the
lower threshold is in between the solid lines. From the figure, we can see
that only the plot requiring two minimum consecutive returns has “upper
clusters”, and other plots requiring more continuous deviations only have
“lower clusters”. The bottom-right plot indicates that there were at least
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Figure 2.1: A section of the crude oil daily returns with upper and lower thresholds (red
lines) corresponding to the 15th and 85th percentiles. Clusters are bordered by vertical
blue lines. The returns that fall in clusters localized between dashed lines exceed the
upper threshold, and the returns in solid-line clusters are smaller than the lower threshold.
The different plots use different minimum numbers of consecutive returns to define a
cluster. In reading order, the minimum numbers are 2, 3, 4, and 5.

five consecutive daily returns that are less than the lower threshold, so this
period should be of risk managers’ particular interest for a crude oil long
position (since the lower the return, the bigger the risk for a long position).

Now, assuming n2
t follows an autoregressive model of order s, AR(s),

then

n2
t = θ0+θ1n2

t−1 + θ2n2
t−2 + . . . + θsn2

t−s + at, (2.4)

where at is a white noise process ∼ N(0, σ2
a ). Engle [1982] called such a

model, with the error term nt carrying a variance model as in (2.2), and the
error term square following an AR process as in (2.4), the Autoregressive
Conditional Heteroscedasticity (ARCH) model of order s —ARCH(s).

According to Wei [2006], the procedure testing for ARCH includes:
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1. Fit the OLS regression for (t = 1, 2, . . . , n) and compute the residuals
ε̂t = n̂t.

2. Gather a set of series
{

n̂2
t

}
and check if it follows an AR process.

2.1.2 GARCHModel

The ARCH model can be generalized so that the conditional variance of
the error series depends on both the squares of past errors and the past
conditional variances. Again, following the notation of Wei [2006], we have
nt = σtet, where et are i.i.d. variables with mean 0 and variance 1 and are
independent of nt−i. Then,

σ2
t = θ0 + ϕ1σ2

t−1 + . . . + ϕrσ2
t−r + θ1n2

t−1 + θ2n2
t−2 + . . . + θsn2

t−s (2.5)

such that the roots of (1− ϕ1B− . . .− ϕrBr) = 0 lie outside of the unit
circle (where xt−k = Bkxt, the backshift operator). The assumption for
θ0 > 0 and θj, ϕj being nonnegative is needed to ensure a meaningful σ2

t

where σ2
t > 0.

Such a model with the given error term nt with the conditional variance
specified in (2.5) is called the Generalized Autoregressive Conditional Het-
eroscedasticity (GARCH) model of order (r, s)—- GARCH(r, s), which was
introduced by Bollerslev [1986]. Note, we can see that ARCH is simply a
specific model reduced from GARCH. From the structure of the GARCH
model, we can interpret the conditional variance of the error term as “a
weighted function of a long-term average value (θ0, in our notion), informa-
tion about volatility during previous periods (θin2

t−i) and the fitted variance
from the model during the previous periods (ϕjσ

2
t−j)” [Brooks, 2008].

We should pay particular attention to a remark that Wei [2006] makes in
his book about an easily misleading interpretation of the order (r, s) of the
GARCHmodel. The model in (2.5) is not an ARMA(r, s) process because
there is a white noise process error term in such a process, unlike σ2

t and n2
t ,

which do not have this property. Let at = (n2
t − σ2

t ) so that σ2
t = (n2

t − at).
Then (2.5) can be rewritten as

(1− α1B− . . .− αmBm) n2
t = θ0 + (1− φ1B− . . .− φrBr) at, (2.6)

where m = max(r, s), φi = 0 for i > r, θr = 0 for i > s,

αi = (φi + θi), (2.7)
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If we assume that at is the associated white noise process for the n2
t

process, then (2.6) is a proper ARMA model, since Et−1(n2
t ) = σ2

t , σ2
t is

the one-step ahead forecast of n2
t , and at is the corresponding one-step

ahead forecast error. Thus, the GARCH(r, s)model in (2.1) and (2.5) implies
that n2

t follows an ARMA(m, r) model in (2.6) with the AR order being
m = max(r, s).

In general, the regression model with autocorrelated error can be com-
bined with the conditional heteroscedasticity model

Yt = X′tβ + εt, (2.8)

where

εt = ϕ1εt−1 + . . . + ϕpεt−p + nt, (2.9)
nt = σtet, (2.10)
σ2

t = θ0+φ1σ2
t−1+. . . . + φrσ2

t−r + θ1n2
t−1 + θ2n2

t−2 + . . . + θsn2
t−s, (2.11)

and et is i.i.d. with mean 0 and variance 1 and is independent of past
realizations of nt−i. We can test for heteroscedasticity in the error variance
as the following [Wei, 2006]:

1. Calculate OLS residuals ε̂t from the OLS fitting of (2.8).

2. Fit an AR(p) model (2.9) to the ε̂t.

3. Obtain the residuals n̂t from the AR fitting in (2.9).

4. Form the series n̂2
t and compute its sample autocorrelation function

(ACF)

ρ̂i
(
n̂2

t
)
=

∑n−t
t=1

(
n̂2

t − σ̂2) (n̂2
t+i − σ̂2)

∑n
t=1
(
n̂2

t − σ̂2
)2 ,

where

σ̂2 =
1
n

n

∑
t=1

n̂2
t .

The partial autocorrelation function (PACF) is computed in a similar way.
A pattern of ACF and PACF will indicate ARCH/GARCH errors and form
a good basis for their order specification. As shown in (2.6), a general
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GARCH(r, s) model for σ2
t corresponds to an ARMA(m, r) model for n2

t
with m = max(r, s). Then, ACF and PACF of n̂2

t will show patterns of an
exponential decay.

Wei [2006] also pointed out that the GARCH(1, 1) model is very parsi-
monious, shown by the following:

1. Take the conditional variance equation in the GARCH (1, 1) model
with different time subscripts:

σ2
t = θ0 + ϕ1σ2

t−1+θ1n2
t−1,

or σ2
t−1 = θ0 + ϕ1σ2

t−2 + θ1n2
t−2,

or σ2
t−2 = θ0 + ϕ1σ2

t−3 + θ1n2
t−3.

2. Rewrite the conditional variance from the above equations:

σ2
t = θ0 + ϕ1(θ0 + ϕ1σ2

t−2 + θ1n2
t−2) + θ1n2

t−1

= θ0 + θ0ϕ1 + θ1ϕ1n2
t−2 + θ1n2

t−1 + ϕ2
1σ2

t−2

= θ0 + θ0ϕ1 + θ1ϕ1n2
t−2 + θ1n2

t−1 + ϕ2
1θ0 + ϕ1σ2

t−3 + θ1n2
t−3)

= θ0(1 + ϕ1 + ϕ2
1) + θ1n2

t−1(1 + ϕ1B + ϕ2
1B2) + ϕ3

1σ2
t−3.

3. Follow the recursive relationship, we eventually have:

σ2
t = θ0(1 + ϕ1 + ϕ2

1 + . . .) + θ1n2
t−1(1 + ϕ1B + ϕ2

1B2 + . . .) + B∞σ2
0 ,

where θ0(1 + ϕ1 + ϕ2
1 + . . .) is a constant, denoted as γ0, and as the

number of observations approaches infinity, B∞ yields−→ 0.

Hence, the GARCH (1, 1) model can be rewritten as:

σ2
t = γ0 + γ1n2

t−1 + γ2n2
t−2 + . . . . (2.12)

Equation (2.12) is a restricted infinite order ARCH model. Thus, the
GARCH(1, 1) model is parsimonious because the conditional variance is
determined by an infinite number of past squared errors despite the fact
that the original model only includes three parameters [Brooks, 2008]. Ac-
cording to Bollerslev et al. [1994], in the scientific publications of finance,
the volatility clustering in the data is often sufficiently represented by a
GARCH(1, 1)model [Brooks, 2008]. For more literature on GARCHmodels,
see Bollerslev et al. [1992] in addition to Bollerslev et al. [1994] and related
references [Tsay, 2010b].
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2.1.3 Estimation of GARCHModels

In order to estimate the parameters of a chosen model, the maximum likeli-
hood estimation (MLE) method can be used quite straightforward. Again,
keep in mind that we are considering the general regression model given in
(2.8)–(2.11), where the error term is autocorrelated and the error conditional
variance is heteroscedastic (GARCH structure). We continue following the
demonstration fromWei [2006]:

Rewrite the regression as:

nt = (1− ϕ1B− . . .− ϕpBp)(Yt − X′tβ). (2.13)

Let Y = (Y1, . . . , Yn), X = (X1, . . . , Xn), and Y0 and X0 be appropriate initial
values to compute nt. Hence, by maximizing the conditional likelihood
function or the log-likelihood function under a normality assumption for
nt ∼ N(0, σ2

t ) , the parameters’ MLE are calculated.
Since nt ∼ N(0, σ2

t ), then Yt ∼ N(X′tβ + ϕ1εt−1 + . . . + ϕpεt−p, σ2
t ), we

have

f (Yt|X′tβ, σ2
t ) =

1
σ2

t

√
2π

exp

{
−1

2
(Yt − X′tβ− ϕ1εt−1 − . . .− ϕpεt−p)

2

σ2
t

}
.

So, the joint distribution is

f
(
Y1, . . . , Yn

∣∣X′1β, . . . , X′2β, σ2
1 , . . . , σ2

n
)

=
n

∏
t=1

f (Yt|X′tβ, σ2
t )

=
n

∏
t=1

(
1

2πσ2
t

)1/2

exp

{
−1

2

n

∑
t=1

(1− ϕ1B− . . .− ϕpBp)(Yt − X′tβ)
2

σ2
t

}
,

and the conditional likelihood function becomes

L(β, ϕ, θ, φ|Y, X, Y0, X0) =
n

∏
t=1

(
1

2πσ2
t

)1/2

exp

{
−1

2

n

∑
t=1

n2
t

σ2
t

}
.

Accordingly, the log-likelihood function is

ln L(β, ϕ, θ, φ|Y, X, Yo, Xo) =
1
2

n

∑
t=1

(
− ln(2π)− ln(σ2

t )−
n2

t

σ2
t

)
.

where σ2
t is obtained from equation (2.11) and nt from equation (2.13).
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2.2 Historical Simulation (HS) Approach and Filtered HS
Approach

2.2.1 Historical Simulation Approach

Historical simulation (HS) is a simple nonparametric method to estimate
VaR. By assuming that the empirical distribution of past returns can well
represent the future returns, or in other words, that the historical distribu-
tion remains over the next periods, HS simulates future scenarios based on
what already happened in the past.

The methodology of this approach is bootstrapping, that is, the practice
of estimating by random sampling with replacement. From recursively
updating the return series and repeating the simulation for some N times,
we can take the average of simulated returns at each time point to get a
representing simulated return for that day.

Therefore, the VaR in the next period given probability p is simply the
100p-th percentile of the set of simulated returns from historical data, {Xt}.
So, assume the window rolls back to n observations, we can generate VaR
using HS as

VaRp,t+1 = Quantilep {Xt}n
t=1.

Because of its simplicity in implementation and itsmodel-free nature (which
can eliminate misleading assumptions about the true return distribution),
HS is a popular method used in practice to estimate VaR. However, this
approach is also considered to be a naïve benchmark due to its many down-
sides.

The choice of the sample size n can be a serious drawback [Christoffersen,
2012]. If the chosen sample size n is too large, the weight of the most recent
observations (which presumably are the most relevant to the likely future
returns) is too little, and the potential of high variance is quite considerable.
On the other hand, if the sample size is too small, there is not enough data
to be relied upon to generate an accurate estimation for VaR, especially for
extreme values like VaR0.001. So the choice of sample size n alone can create
a bias-variance dilemma. Additionally, the principal disadvantage of HS
method is that it “ignores the potentially useful information in the volatility
dynamics” [Marimoutou et al., 2009]. Since there’s no distinction in terms
of probability weight of the past returns (assigning equal weight to each
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day’s return, combined with the fact that the choice for n is ambiguous),
the HS method is unrealistic. Volatility in practice tends to change through
time and cluster together, which cannot be captured by this approach. A
better approach should be chosen that can utilize the volatility dynamics
in the observed data without making assumptions about the true return
distribution, which brings us to the next part — the filtered HS approach.

2.2.2 Filtered HS Approach

Another version that can solve some of the major flaws from the original
HS approach is the filtered historical simulation (FHS) approach. This
approach was introduced by Hull and White [1998] and Barone-Adesi et al.
[1999]. Even though this approach keeps the model-free nature of the HS
approach, it can also forecast VaR via a volatility model by including the
GARCHmodel. The biggest benefit of this approach compared to the HS
approach is that it can, thanks to the GARCH model, measure risks that
reflect the recent situation, regardless of how extreme the confidence level
might be [Marimoutou et al., 2009].

Based on the illustration by Christoffersen [2012, Chap. 6], the procedure
of this approach can be summarized as the following: First, fit a GARCH
model to the return series of interest, say, from day t back to day (t + 1−m)

(meaning that we observe data of the last m days). Note that after we get
the conditional variance value at day i, we can calculate the variance in
the GARCH model of day (i + 1) if the order of the GARCH model was
(1,1). From these observed returns and their calculated conditional standard
deviations, the standardized returns are computed. This step is done to
include information on volatility dynamics from past data into our model,
which is the “filtering” part of this approach. Now, we are ready to proceed
the same way as in the HS approach for these past standardized returns.
Instead of assuming a specific distribution to generate the standardized
returns for simulation, we resample these calculated standardized returns
randomly with replacement. This set of standardized returns and the calcu-
lated conditional variance at day (t + 1) given information available up to
time t will help us obtain a set of hypothetical returns from day (t + 1) to
day (t + K).

Let’s write this procedure mathematically to understand it better:
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1. Assume our model of returns follow a GARCH(1, 1) process (as we
mentioned before, GARCH(1,1) is a very parsimonious model):

Rt = σtzt,

and

σ2
t+1 = ϕ + αR2

t + βσ2
t .

2. Filtering: Given the returns from the past m days, {Rt+1−τ}m
τ=1, we

calculate the past standardized returns:

ẑt+1−τ =
Rt+1−τ

σt+1−τ
.

3. HS: From the conditional variance calculated via the variance GARCH
(1,1) model in 1., σ2

t+1, and from resampling with random draw with
replacement from {ẑt+1−τ}m

τ=1, we can calculate hypothetical K-day
returns as

R̂t+1 = σt+1ẑt+1,

σ̂2
t+2 = ϕ + αR̂2

t+1 + βσ2
t+1,

Then,
R̂t+2 = σ̂t+2ẑt+2,

and so forth, for k = 2, . . . , K:

R̂t+k = σ̂t+k ẑt+k.

Repeating this procedure for N simulations, we get {R̂n,(t+k)}N
n=1. The

hypothetical K-day returns become:

R̂n,(t+1):(t+K) =
K

∑
k=1

R̂n,(t+k) for n = 1, 2, . . . , N.

Now that we have a FHS set of hypothetical returns, the K-day VaR is easily
calculated:

VaRp,(t+1):(t+K) = Percentile{{R̂n,(t+1):(t+K)}N
n=1, 100p}.
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And for the next day, VaR is quite simple since we do not have to simu-
late hypothetical returns in the future; we only need to resample the past
standardized returns in the chosen time horizon, and VaR is therefore

VaRp,t+1 = σt+1 Percentile{{ẑt+1−τ}m
τ=1, 100p}.

Again, the FHS approach is a good choice compared to the simple HS
approach as it captures the conditional variance model while making no
assumptions about the tail distribution.

2.3 Conditional EVT Method (via POT Approach)

When we introduced the EVT method in Chapter 1, we did not specify
which approach we will be using. The approach used for our extreme value
analysis relies on taking out values that exceed a chosen threshold, which
are considered peaks. This approach has a straightforward name — peaks-
over-threshold (POT). According to Byström [2005], the POT method is one
of the most widely known methods of EVT. From now on, when we apply
the EVT method, it is automatically understood that we are using the POT
approach.

We can now study the EVT-POT method as described by Christoffersen
[2012] in his book. Note that the theory is stated in its natural form—returns
beyond a certain threshold are considered as peaks, while our interest is in
the standpoint of a long position (i.e., returns of our interest are those of
smaller value than a threshold in the left tail distribution), the equation for
VaR will, thus, be adjusted accordingly to fit our assumption.

2.3.1 EVT

Let u be a threshold, consider the probability of standardized returns z less
u being below a value x, given that the standardized return is beyond the
threshold (hence, z is the peak, z− u is the size of the exceedance), then the
conditional cumulative distribution function can be written as

Fu(x) ≡ P {z− u ≤ x|z > u} ,where x > u

=
P {u < z ≤ x + u}

P {z > u} =
F(x + u)− F(u)

1− F(u)
.

(2.14)
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EVT states that as the threshold u gets large, Fu(x) converges in distribution
to the generalized Pareto (GP) distribution:

G (x; ξ, β) =

{
1− (1 + ξx/β)−1/ξ if ξ 6= 0

1− exp(−x/β) if ξ = 0
,

where β > 0 and x satisfies{
x ≥ u if ξ ≥ 0

u ≤ x ≤ u− β
ξ if ξ < 0

.

Student’s t(d) distribution has a positive tail parameter ξ as it is a standard
heavy tailed distribution, which is covered by the EVT result. In finance,
returns tend to have fat tails so it is often assumed that the tail parameter is
positive when applying a model into the return distribution.

We can now estimate the parameters of the EVT model. Let y = x + u,
for x and u being points in the tail of the distribution of interest, then from
(2.14) we have

Fu(x) = Fu(y− u) =
F(x + u)− F(u)

1− F(u)
=

F(y)− F(u)
1− F(u)

.

Hence,

F (y) = Fu (y− u) [1− F (u)] + F (u)

= 1− [1− F (u)] [1− Fu (y− u)] .

Let T be the total sample size and Tu be the number of observations beyond
the threshold u. Then 1− F (u) can be estimated simply by the proportion
Tu/T. And Fu (y− u) can be estimated by MLE on the standardized obser-
vations in excess of the chosen threshold (x = y− u). With the assumption
of ξ 6= 0, the distribution becomes

F (y) = 1− Tu

T
(1 + ξ(y− u)/β)−1/ξ . (2.15)

Since financial return distributions are typically fat tailed as mentioned, we
can assume that the tail parameter ξ > 0. Then,

P(z > y) = 1− F(y) =
Tu

T
(1 + ξ(y− u)/β)−1/ξ

= L(y)y−1/ξ ≈ cy−1/ξ for y > u.
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L(y) is set to a constant c, as it is a slowly varying function of y. Thus, the
likelihood function for all observations yi that are larger than the threshold
u, is

L =
Tu

∏
i=1

f (yi)/(1− F(u))

=
Tu

∏
i=1

− 1
ξ cyi

−(1/ξ)−1

(cu−1/ξ)
, for yi > u.

By solving this function, we get

ξ =
1
Tu

Tu

∑
i=1

ln
(yi

u

)
. (2.16)

This simple estimator for ξ is called the Hill estimator.
Note: As suggested by Christoffersen [2012, Chap. 6], “a good rule of thumb is to
set the threshold so as to keep the largest 5% of the observations for estimating ξ”.

Set 1− F(u) = cu−1/ξ equal to 1 minus the proportion of the data points
beyond the threshold. Then, the parameter c is estimated by:

c =
Tu

T
u1/ξ .

The CDF for observations yi larger than u is then:

F (y) = 1− cy−1/ξ = 1− Tu

T
(y/u)−1/ξ . (2.17)

2.3.2 Conditional EVT (GARCH-EVT)

A drawback of the EVTmethod is that the returns’ i.i.d. property in practice
does not actually hold, and this property is a requirement to use the limiting
cumulative distribution. Therefore, in order to apply the EVT method to
real-life data, we must get rid of the time-dependent variance patterns
to generate independent inputs from our original data. One way to do
that is to obtain standardized data — or specifically, in the case when the
data is financial returns, we should obtain a set of standardized returns
{zt}. Standardized return is the result of the return at time t, Rt, minus
the average return (which is essentially 0), which is then divided by the
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conditional standard deviation at time t, σt. These zt values can reasonably
be considered as i.i.d. in most situations [Christoffersen, 2012, Chap. 6].
The extrapolated quantile of the next day, which is inherently VaR, would
then be calculated by multiplying the conditional standard deviation at
time t + 1 by the quantile of standardized returns that is estimated by the
EVT model.

We know from earlier section that the GARCH model can conveniently
model the next day’s conditional standard deviation. However, a downside
of this model when it comes to extreme value analysis is that it focuses on
the whole return distribution, instead of just the tail, which we are primarily
interested in. Therefore, a combination of the GARCH and EVT approaches,
which was suggested by McNeil and Frey [2000] and which we here call
conditional EVT, is a reasonable solution to deal with these downsides —
lack of i.i.d. property and explicit tail distribution [Marimoutou et al.,
2009].

To apply the conditional EVT method, we first need to fit a GARCH
model into the return data and obtain the conditional standard deviation
for each day. We can then extract the standardized returns, zt, and estimate
the conditional variance at time t + 1, σt+1, from the fitted model. This is
the conditional part of this method. After doing that, we can use the EVT
approach to model our data and proceed to estimate VaR. As noted from the
beginning of the section, we are interested in the left tail distribution. There-
fore, to calculate VaR of returns in this tail from the EVT-POT introduced
above, we must make some adjustments. The details of these adjustments
are discussed in the next part.

Here is a summary of the procedure for the general conditional EVT
(GARCH-EVT) approach based on the EVTmethod discussed above (hence,
without adjustments to the left tail distribution for consistency with the
previous part), where the fitted model is assumed to be a GARCH(1,1)
model:

1. Conditioning: Assuming that our returns follow aGARCH(1,1) process
(which, as we mentioned before, is a very parsimonious model), the
conditional variance for each day is

σ2
t = ϕ + αR2

t−1 + βσ2
t−1.

We can then calculate the conditional standard deviation and extract
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the standardized returns as

zt =
Rt

σt
,

and calculate the one-day ahead conditional variance,

σ2
t+1 = ϕ + αR2

t + βσ2
t .

2. Applying EVT: Following the EVT method above, we can calculate the
quantile Φ−1

p of the peak standardized returns (standardized returns
z’s that are larger than the threshold u) by setting the CDF in (2.17) of
these peaks to some probability p. Then we have

F
(

Φ−1
p

)
= 1− Tu

T
(z/u)−1/ξ = p,

where ξ is the Hill estimator as calculated in (2.16).

The one-day ahead VaR is then the pth quantile of our returns, which
is the product of the conditional standard deviation for the next day
and the pth quantile of the peaks of the standardized returns:

VaRp,t+1 = σt+1Φ−1
p .

2.3.3 VaR from (Conditional) EVT Quantile

As we have emphasized before, the EVT-POT method gives attention to the
peaks beyond some threshold while we are interested in the returns that are
lower than a certain threshold. Therefore, in principle, we are looking at the
left tail of the return distribution while the theory is stated in the interest of
the right tail distribution.

In order to fit the EVT approach to our intended goal, the first necessary
step is to adjust our standardized returns by flipping them over, i.e., chang-
ing their sign. Wewill thus use the negative standardized returns, which we
name yt, instead of the standardized returns zt. Assuming that the original
return series is a set {Rt} and its corresponding time-dependent standard
deviation is σt, then the negative standardized returns yt are

yt = −zt = −
Rt

σt
.
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Again, from a risk manager’s perspective, our biggest concern lies with
the returns that are less than a low quantile, say VaRp=0.01{Rt}, of our
original raw returns. Then from the CDF in (2.17), we would like (1− p) ·
100% = 99% of our negative standardized returns to be smaller than the
quantile F−1

1−p of those negative standardized returns larger than a threshold
u. Thus, letting (2.17) take the value of (1− p), we have

F
(

F−1
1−p

)
= 1− p

= 1− Tu

T
(F−1

1−p/u)−1/ξ .

So, p =
Tu

T
(F−1

1−p/u)−1/ξ ,

and F−1
1−p = u [p/(Tu/T)]−ξ .

(2.18)

Finally, the VaRp,t{Rt} of the original return of the next day, combined with
the variance model and calculated standardized return quantile F−1

1−p, is
estimated as

VaRp,t+1 = −σt+1F−1
1−p.

2.4 ACER

According to Næss [2010], the problem of EVTmethods is that it is uncertain
to what extent the asymptotic results from the EVT based on the observed
data are applicable in practice. The average conditional exceedance rate
(ACER) method was therefore proposed by Næss [2010] to overcome some
disadvantages of EVT methods, which require i.i.d. observations and use
asymptotic assumptions for the data [Dahlen et al., 2015]. The method is
sectioned into 3 parts as below.
Note: The reasonings, theories, and notations below are largely taken directly from
Næss et al. [2013]).

2.4.1 Cascade of Conditioning Approximations

Consider a stochastic process Z(t) for t in (0, T) and let X1, . . . , XN be de-
rived fromdiscrete times t1, . . . , tN in (0, T). Let MN = max

{
Xj; j = 1, . . . , N

}
.
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Then we want to have a precise estimation of P(η) = P(MN ≤ η) for large
η.

P(η) = P(X1 ≤ η, . . . , XN ≤ η)

= P(XN ≤ η|XN−1 ≤ η, . . . , X1 ≤ η)P(XN−1 ≤ η, . . . , X1 ≤ η)

=

[
N

∏
j=2

P(Xj ≤ η|X1 ≤ η, . . . , Xj−1 ≤ η)

]
P(X1 ≤ η).

(2.19)
Assuming a one-step memory approximation, we condition only on the
previous observation, then

P
(
Xj ≤ η

∣∣X1 ≤ η, . . . , Xj−1 ≤ η
)

≈ P
(
Xj ≤ η

∣∣Xj−1 ≤ η
)

2 ≤ j ≤ N.
(2.20)

By conditioning on one more observation, the approximation becomes

P
(
Xj ≤ η

∣∣X1 ≤ η, . . . , Xj−1 ≤ η
)

≈ P
(

Xj ≤ η
∣∣∣Xj−2 ≤ η, X j−1 ≤ η

)
3 ≤ j ≤ N(3).

(2.21)

Let pkj(η) = P(Xj−k+1 ≤ η, . . . , Xj ≤ η) for j > k (the probability of k
consecutive elements of X from Xj−k+1 to Xj smaller or equal to η). Then
from (2.19) and (2.20), P(η) becomes

P(η) =

[
N

∏
j=2

P(Xj ≤ η|X1 ≤ η, . . . , Xj−1 ≤ η)

]
P(X1 ≤ η) (2.22)

≈
[

N

∏
j=2

P(Xj ≤ η|Xj−1 ≤ η)

]
P(X1 ≤ η)

=
∏N

j=2 p2j(η)P(X1 ≤ η)

P(X1 ≤ η)P(X2 ≤ η) · · · P(XN−1 ≤ η)

=
∏N

j=2 p2j(η)

∏N−1
j=2 p1j(η)

. (2.23)

Note that if the values of Xj are independent, then (2.22) is the classical
approximation result

P(η) ≈ P1(η) =
N

∏
j=1

P(Xj ≤ η). (2.24)
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Now let α1j(η) = P(Xj > η) = 1− p1j, then (2.23) becomes

P(η) ≈
N

∏
j=1

(
1− α1j(η)

)
≈

N

∏
j=1

exp
{
−α1j(η)

}
= exp

{
−

N

∑
j=1

α1j(η)

}
. (since 1− y ≈ e−y)

(2.25)

Building from α1j(η), we can decluster consecutive exceeders Xj by defining
αkj(η):

αkj(η) = P
(
Xj > η

∣∣Xj−k+1 ≤ η, . . . , Xj−1 ≤ η
)

= 1− P
(
Xj ≤ η

∣∣X1 ≤ η, . . . , Xj−1 ≤ η
)

= 1−
pkj(η)

pk−1,j−1(η)
, j ≥ k ≥ 2.

Then,

1− α2j(η) =
p2j(η)

p1,j−1(η)
,

so that
N

∏
j=2

(
1− α2j(η)

)
=

N

∏
j=2

p2j(η)

p1,j−1(η)
=

p23(η)p23(η) · · · p2N(η)

p11(η)p12(η) · · · p1,N−1(η)
.

Thus, (2.23), which considers two consecutive observations at each condi-
tioning, now becomes

P (η) ≈ P2 (η) =
N

∏
j=2

(
1− α2j(η)

)
p11 (η)

≈ exp

{
−

N

∑
j=2

α2j(η)

}
(1− α11 (η))

≈ exp

{
−

N

∑
j=2

α2j(η)− α11 (η)

}
.

Similarly, we get

P (η) ≈ P3 (η) ≈ exp

{
−

N

∑
j=3

α3j(η)− α22 (η)− α11 (η)

}
.
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Therefore, in general, for j ≥ 2, j > k,

P (η) ≈ Pk (η) ≈ exp

{
−

N

∑
j=k

αkj(η)−
k−1

∑
j=1

αjj(η)

}
, (2.26)

and Pk (η)→ P (η) as k→ N with Pk (η) = P (η) as η → ∞.
For the cascade of approximations Pk (η) to have practical significance,

an implicit assumption is made about a cut-off value kc satisfying kc � N
such that effectively Pkc (η) = PN (η). Note that, for data where Xi and
Xj are independent whenever |j− i| > k (k-dependent stationary data
sequences), then P (η) = Pk+1 (η) and under mild conditions on the joint
distributions of the data, limN→∞ P1 (η) = limN→∞ P (η). For finite values
of N, this is much more complex, and purely asymptotic results should be
used with caution.

With the assumed cut-off value kc and all k-values of interest such that
k� N, andwith the extreme value prediction by the conditioning approach
described above, ∑k−1

j=1 αjj(η) becomes effectively negligible compared to
∑N

j=k αkj(η). Thus, a simpler approximation that is applicable to both sta-
tionary and nonstationary data is adopted as

P (η) ≈ Pk (η) = exp

{
−

N

∑
j=k

αkj(η)

}
, k ≥ 1. (2.27)

From the definition of α1j(η) = P(Xj > η), it follows that ∑N
j=1 α1j(η) is

equal to the expected number of exceedances of the threshold η during the
time interval (0, T).

Assuming that the data is independent, the approximation can be writ-
ten as

P (η) =
N

∏
j=2

P(Xj ≤ η) =
N

∏
j=2

(
1− α1j(η)

)
≈ exp

{
−

N

∑
j=1

α1j(η)

}
= P1 (η) .

As a quick reminder, if X is a Poisson random variable with mean λ, then
P(X ≤ k) = e−λ ∑k

i=0
λi

i! .
Thus, P1 (η) expresses the approximation that the stream of exceedance

events constitutes a nonstationary Poisson process. This also leads to an
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understanding of (2.27): ∑N
j=k αkj(η) can be interpreted as the expected ef-

fective number of independent exceedance events provided by conditioning
on (k− 1) previous observations.

2.4.2 Empirical Estimation of the Average Conditional Exceedance
Rates

Define the average conditional exceedance rate (ACER) of order k for k =

1, 2, . . . as

εk(η) =
1

N − k + 1

N

∑
j=k

αkj(η). (2.28)

Hence, the empirical estimation of the ACER function ε̄k(η) can be obtained
by counting the total number of favorable incidents (exceedances condi-
tioned on a determined number of previous non-exceedances) from the
total data series and divided by N − k + 1 ≈ N.

In practice, there are two typical cases for the underlying process Z(t).
One, the process is stationary or even ergodic. Two, the process depends on
certain parameters whose variation in time may be modelled as an ergodic
process. For each set of values of the parameters, the premise is that Z(t)
can then be modelled as an ergodic process, which can be used to model
long-term statistics [Næss, 1984; Schall et al., 1991]. For both scenarios, the
empirical estimation above proceeds the same way, and it can also apply
for the long-term situation.

Now, for j = k, . . . , N and k = 2, 3, . . . , j, we define two random func-
tions:

Akj(η) = I
{

Xj > η, Xj−1 ≤ η, . . . , Xj−k+1 ≤ η
}

,

Bkj(η) = I
{

Xj−1 ≤ η, . . . , Xj−k+1 ≤ η
}

,

where I {A} denotes the indicator function of some event A. Then,

αkj(η) =
E
[
Akj(η)

]
E
[
Bkj(η)

] , with j = k, . . . , N and k = 2, 3, . . . , j,

where E [. . .] denotes the expectation operator.
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Assuming an ergodic process, then εk(η) = αkk(η) = . . . = αkN(η), and
by replacing ensemble means with corresponding time averages, it may be
assumed that for the time series at hand

εk(η) = lim
N→∞

∑N
j=k akj(η)

∑N
j=k bkj(η)

, (2.29)

where akj(η) and bkj(η) are realizations of Akj(η) and Bkj(η), respectively,
for the observed time series.

As η → ∞, clearly E
[
Bkj(η)

]
= 1 , then limη→∞ ∑N

j=k bkj(η) = N− k+ 1.
Now, denote ε̃k(η) to be:

ε̃k(η) =
∑N

j=k E
[
Akj(η)

]
N − k + 1

, (2.30)

then it follows that limη→∞
ε̃k(η)
εk(η)

= 1.
For k ≥ 2, using the modified ACER function ε̃k(η) is obviously easier

for long-term statistics than εk(η). It is also more convenient to apply for
nonstationary time series because

P (η) ≈ exp

{
−

N

∑
j=k

αkj(η)

}

= exp

{
−

N

∑
j=k

E
[
Akj(η)

]
E
[
Bkj(η)

] } η→∞∼= exp

{
−

N

∑
j=k

E
[
Akj(η)

]}
.

(2.31)

Let us assume that the time series can be segmented into K blocks, such that
E
[
Akj (η)

]
remains approximately constant within each block. Let us also

assume that for a sufficient range of η-values we have ∑j∈Ci
E
[
Akj (η)

]
≈

∑j∈Ci
akj(η), where Ci denotes the set of indices for block no. i = 1, . . . , K.

Then,

N

∑
j=k

E
[
Akj(η)

]
≈

N

∑
j=k

akj(η).

Thus, we can now rewrite (2.31) as

P (η) ≈ exp {−(N − k + 1)ε̂k(η)} , (2.32)

where ε̂k(η) =
∑N

j=k akj(η)

N−k+1 .
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We would like to know which events are counted for the estimation of
the various εk (η), for k ≥ 2. From the definition of ACER, ε2 (η) (N − 1)
can be interpreted as the expected number of exceedances above threshold
η, conditioning on the previous observation (an exceedance is only counted
if it is immediately preceded by a non-exceedance).

Defining a clump of exceedances as a maximum number of consecutive
exceedances above η, then in general, εk (η) (N − k + 1) is equal to the
average number of clumps of exceedances above η, for the realizations
considered, separated by at least (k− 1) non-exceedances.

Keep in mind that the ACER functions automatically account for the
clumping or clustering tendency of the data and its effect on the extreme
value distribution.

Now, assuming a stationary time series, we can estimate a confidence
interval for εk (η) with R available realizations of the requisite length of the
time series, or one long realization segmented into R subseries. Define

ε̂
(r)
k =

∑N
j=k a(r)kj (η)

N − k + 1
,

where the index r refers to the rth realization. Then, for both stationary and
non-stationary time series, the sample estimate of ε̃k(η), ε̂k(η), is

ε̂k(η) =
1
R

R

∑
r=1

ε̂
(r)
k (η).

The sample variance ŝ2
k(η), thus, can be estimated as

ŝ2
k(η) =

1
R− 1

R

∑
r=1

(
ε̂
(r)
k (η)− ε̂k(η)

)2
.

If the realizations are independent for a suitable number R, say R ≥ 20, we
can approximate the 95% confidence interval CI for the value εk (η), where

CI±(η) = ε̂k(η)±
1.96ŝk(η)√

R
.

Now, assuming that the stream of conditional exceedances over a threshold
η constitute a Poisson process, which also applies to the non-stationary case,
then the variance of the estimator Êk(η) of ε̃k(η), where

Êk(η) =
∑N

j=k Akj(η)

N − k + 1
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is Var[Êk(η)] = ε̃k(η), Hence, for high levels η, the arpproximate limits of a
95% confidence interval of ε̃k(η) and εk(η) is

CI±(η) = ε̂k(η)

(
1± 1.96√

(N − k + 1)ε̂k(η)

)
.

2.4.3 Estimation of Extremes for the General Case

This approach to extreme value prediction derives from an underlying
premise concerning the relevant asymptotic extreme value distribution,
which is assumed here to be of Fréchet type (typical for financial data). This
premise leads to the assumption about the sampled time series to be used
as a basis for prediction. For independent data, this assumption can be
expressed in terms of the ACER function ε1(η) as

ε1(η) ≈ [1 + ξ (a(η − b))]−1/ξ , for η ≥ η0, (2.33)

for a suitable asymptotic tail marker η0, where a > 0, b, ξ > 0 are constants.
(2.33) corresponds to (1.4) in the case where x = a(η − b) > −1

ξ , and ξ > 0.
Using the asymptotic form as a guide, it is assumed that the behavior of

the mean exceedance rate in the subasymptotic part of the tail will follow
a function largely of the form [1 + ξ (a(η − b))]−1/ξ (η ≥ η1 ≥ b), where
a > 0, b, c > 0, and ξ > 0 are suitable constants, and η1 is an appropriately
chosen tail level. Then,

εk(η) ≈ qk(η)
[
1 + ξk

(
ak(η − bk)

ck
)]−1/ξk , η ≥ η1, (2.34)

where the function qk(η) is weakly varying compared with the function[
1 + ξk

(
ak(η − bk)

ck
)]−1/ξk , and ak > 0, bk, ck > 0, and ξk > 0 are suitable

constants. When ck = 1 and qk(η) = 1, it is the asymptotic limit.
It is also expedient to assume that the unknown function qk(η) varies

sufficiently slowly in the tail region to be replaced by a constant for η ≥ η1.
Then for simplicity of notation, we suppress the index k on the ACER
functions, which can be rewritten as

ε(η) ≈ q
[
1 + ã (η − b)c]−γ , η ≥ η1, where γ =

1
ξ

, ã = aξ. (2.35)

In practice, the tail marker η1 is provisionally identified from visual inspec-
tion of the log plot (η, ln ε̂k(η)), where the chosen value corresponds to the
beginning of regular tail behavior in a sense to be discussed below.
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The optimization process to estimate the parameters is done relative to
the log plot. The mean square error (MSE) function to be minimized is

F(ã, b, c, q, γ) =
N

∑
j=1

wj

∣∣∣log ε̂
(
ηj
)
− log q + γ ln

[
1 + ã

(
ηj − b

)c
]∣∣∣2 , (2.36)

where wj =
(
log CI+(ηj)− log CI−(ηj)

)−2 denotes a weight factor putting
more emphasis on more reliable data points.

With ã, b, and c fixed, the optimal values of γ and log q are found by
using closed form weighted linear regression formulas in terms of wj. Let
yj = log ε̂(ηj) and xj = 1 + ã(ηj − b)c, then the optimal values of γ and log
q are

γ∗(ã, b, c) = −
∑N

j=1 wj(xj − x̄)(yj − ȳ)

∑N
j=1 wj(xj − x̄)2

(2.37)

and

log q∗(ã, b, c) = ȳ + γ∗(ã, b, c)x̄. (2.38)

To solve for an optimal set of parameters {ã, b, c}, we can use the Levenberg-
Marquardtmethod on the function F̃(ã, b, c) = F(ã, b, c, q∗(ã, b, c), γ∗(ã, b, c)),
then following (2.37) and (2.38) will calculate the corresponding γ∗ and q∗.

For estimation of the confidence interval for the predicted return value
provided by the optimal curve, the empirical confidence band is reanchored
to the optimal curve. The range of fitted curves that stay within the rean-
chored confidence band will determine an optimized confidence interval of
the predicted return value. As a final point, it has been observed that the
predicted return value is not very sensitive to the choice of η1. However,
this sensitivity should always be checked to verify the robustness of the
obtained predictions.

Finally, we can calculate VaR for this ACERmethod. This is quite simple
to achieve since we only need to invert the ACER function in (2.35) to
solve for η. Assuming the loss will not exceed VaR with probability 1− p,
P(Xt < VaR1−p) = 1− p, then,

VaR1−p = b +

(
1
ã

( q
p

)1/γ
− 1

)1/c

.
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Note that the VaR calculated above is for potential losses, which are the
negative of the returns. The VaRp for our original returns in the left tail is

VaRp,return = −VaR1−p,loss = −

b +

(
1
ã

( q
p

)1/γ
− 1

)1/c
 .

2.5 Test and Evaluation

After forecasting extreme returns via estimating VaRs from different meth-
ods, we need to backtest the resulting VaR estimates by comparing them
with the realized returns (out-of-sample period). There are a set of statistical
techniques to evaluate aggregate risk models, where an unconditional test
can be implemented for the average probability of a VaR violation, or a
conditional coverage test consisted of the unconditional test and an inde-
pendence test. In this section, we will follow the reasoning and notations
from Christoffersen [2012, Chap. 13].

First, we shall introduce what a VaR violation is. The purpose of VaR
in risk management is to gauge the maximal potential loss during a given
time period, hence, if the realized return is worse than the predicted VaR,
there is a violation (showing less reliability in our models). The definition
of worse here is relative to each particular financial position, because a bad
event considered by a long position is opposite to one by a short position.
(Refer back to section 1.3 for the definition of these two financial positions.)

Let RPF be the portfolio return, VaRp,t+1 be the one-day predicted VaR.
This means that we expect “the actual return will only be worse than the
VaRp,t+1 forecast p · 100% of the time” [Christoffersen, 2012]. The “hit se-
quence” of VaR violations is defined in Christoffersen [2012, Chap. 13] and
can be adjusted to our perspective of a long position as

It+1 =

{
1 if RPF,t+1 < VaRp,t+1,

0 if RPF,t+1 ≥ VaRp,t+1 .

Hence, {It+1}T
t=1 is a sequence showing whether past violations occurred

in the period of T days.
Assumingwe have an optimal VaRmodel, then given all the information

available up to time t, we should only be able to forecast VaR but not the
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VaR violations. The capability of predicting these violations means that we
obtained information that could have been used for building a better model,
implying that our current VaR model would not be optimal. Therefore, the
hit sequence from a correctly specified risk model should look like a series
of random tosses of a coin with the probability of coming up heads p · 100%
of the time, assuming the coverage rate of VaR is p. Thus, the hit sequence
should follow the Bernoulli distribution over time. We have the following
null hypothesis:

H0 : It+1 ∼ i.i.d. Bernoulli (p).

We can now move on with the backtesting procedure for VaR models.

2.5.1 Unconditional Coverage Testing

The unconditional coverage hypothesis examines whether the fraction of
violations of a particular risk model, π, is significantly different from the
expected fraction, p.

Denote T0 and T1 to be the numbers of 0s and 1s in the sample, respec-
tively, for T days, then the likelihood function of an i.i.d. Bernoulli(π) hit
sequence is

L(π) =
T

∏
t=1

(1− π)1−It+1 π It+1 = (1− π)T0 πT1 .

Thus, π can be easily estimated by computing the proportion of observed
violations in the sequence, π̂ = T1/T. The likelihood function is then
optimized:

L(π̂) = (1− T1/T)T0(T1/T)T1 ,
under H0−→ L(p) = (1− p)T0 pT1 .

Kupiec [1995] suggested to conduct this proportion of failures test (uncon-
ditional coverage test) by using a likelihood ratio test:

LRuc = −2 ln [L(p)/L(π̂)] .

As T → ∞, LRuc ∼ χ2
(1). Therefore, we get the asymptotic result

LRuc = −2 ln
{
(1− p)T0 pT1 /

[
(1− T1/T)T0(T1/T)T1

] }
∼ χ2

(1).
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There are two types of errors that need assessing. Type I error occurs when
we reject a correct model, while Type II error occurs when we fail to reject
an incorrect model. When the significance level increases, the probability
of making Type I error is larger while making Type II errors is smaller, and
vice versa. According to Christoffersen [2012, Chap. 13], committing Type II
errors in riskmanagement can lead to very costly damage, so an appropriate
choice of significance level is recommended to be 10%.

2.5.2 Independence Testing

Assuming thatwe get a correct unconditional coverage rate for our estimated
VaR model, our job is still not done, however. If all of these VaR violations
occur around the same period, this is a cluster of violations. These violations
are not representative of the whole data because they happen around the
same time, so they provide a skewed picture of the total sample, creating a
wrong expectation of potential risks when the violations actually spread
over time. It is thus desirable to reject VaR models that imply hits clustered
in time.

In order to do this, let’s assume the hit sequence is dependent over time
and can be described as a first-order Markov sequence. This means given
the fact that there is a nonviolation today (It = 0), the probabily of tomorrow
being a violation (It+1 = 1) is π01; and if today is also a violation (It = 1),
then the probability becomes π11. These two probabilities (π01, π11) can
describe the whole process given our assumption that tomorrow’s outcome
depends only on the outcome today. Since π00 and π10 are just the other
possible outcome of the next day given the information today, then

π00 = 1− π01,

π10 = 1− π11.

This first-order Markov property can thus be described through the transi-
tion probability matrix

Π1 =

[
1− π01 π01

1− π11 π11

]
.

Let Tij be the number of observations with a j following an i, for i, j = 0, 1.
The likelihood function of this Markov process becomes

L(Π1) = (1− π01)
T00 πT01

01 (1− π11)
T10 πT11

11 .
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The MLE of π01, π11 can be calculated as

π̂01 =
T01

T00 + T01
,

π̂11 =
T11

T10 + T11
,

The estimated transition probability matrix is then

Π̂1 =

[ T00
T00+T01

T01
T00+T01

T10
T10+T11

T11
T10+T11

]
.

The probability of a violation following a violation being larger than the
probability of a violation following a nonviolation is typically worrisome.
This is because it indicates that our VaR estimations are frequently incorrect
and they seem not to capture the volatility clusters. However, in the case
where the hits are independent over time, π01 = π11 = π, the transition
matrix is simply:

Π̂ =

[
1− π̂ π̂

1− π̂ π̂

]
.

Let the null hypothesis be H0 : π01 = π11. We can then test it by using a
likelihood ratio test:

LRind = −2 ln
[
L(π̂)/L(Π̂1)

]
∼ χ2

(1).

(L(π̂) is obtained from the unconditional coverage test.)

2.5.3 Conditional Coverage Testing

The ultimate goal to backtest VaR models is testing the coverage rate of VaR
while at the same time checking if the violations are independent. Hence,
we can combine the two tests above for testing conditional coverage under
the null hypothesis H0 : π01 = π11 = p:

LRcc = −2 ln
[
L(p)/L(Π̂1)

]
∼ χ2

(2).

Note that the LRcc test takes the null hypothesis likelihood in the uncon-
ditional coverage test and the alternative hypothesis likelihood from the
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independence test. The joint test of conditional coverage can actually be
computed by taking the sum of the two previous tests, since

LRcc = −2 ln
[
L(p)/L(Π̂1)

]
= −2 ln

[
{L(p)/L(π̂)}/{/L(π̂)/L(Π̂1)}

]
= −2 ln [L(p)/L(π̂)]− 2 ln

[
L(π̂)/L(Π̂1)

]
= LRuc + LRind.

The three tests mentioned above are all simple to implement as they only
use information on past VaR violations. They can be used as a convenient
diagnostic check on risk models.

We are now ready tomove on to the next sections where we analyze data
by applying these methods, calculate VaR for each method and backtest
these estimates to compare different models.





Chapter 3

Data

3.1 Introduction

Before we look at the data, we should first understand what type of data
was collected and why we should use it. The data set we collected was
CME data retrieved from the Quandl Stevens Continuous database. CME
Group Inc. (Chicago Mercantile Exchange & Chicago Board of Trade) is a
financial market institution that operates derivatives exchanges, which is
“evolving into an ever more sophisticated institution that plays a key role in
many sorts of financing”, according to The Economist [2013]. The New York
Mercantile Exchange (NYMEX), owned by the CME group, has West Texas
Intermediate (WTI) as the underlying commodity for oil futures contracts —
“the world’s most liquid and actively traded crude oil contract”, claimed by
the CME Group [2017].

These crude oil prices are quoted from the settlement price traded in
continuous contracts. While short-term contracts have properties unsuited
for long-term trend analysis, such as short duration and varying liquidity,
continuous contracts can give a historical reflection of prices by chaining to-
gether these consecutive single contracts by end-to-end roll method (i.e., the
last trading day as roll date). Another thing to note here is that these prices
are adjusted by the calendar-weighted method, which gives a rather smooth
transition between contracts because the weights of combined prices are
averaged out. According to Quandl’s recommendation, “calendar-weighted
rolling” should be the choice when it comes to forecast and analyze regres-
sion on economic data. Hence, the data that is used in this thesis is collected
from continuous futures contracts with the aforementioned methods in the
period of over 30 years (April 1985–December 2015).
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Figure 3.1: Calendar-weighted rolling crude oil prices for continuous futures contracts —
from 04/04/1985 to 31/12/2015

3.2 Data

Now, we can take a look at our data through different plots in Figure 3.1.
Figure 3.1(a) shows the crude oil settlement price trend in our chosen period.
As we have discussed in Chapter 1, these raw prices show extreme price
fluctuations (ranging from $10 to $145 per barrel), especially in the periods
where there were international crises in oil supply distribution. However, to
analyze our data, we will not use these raw prices directly, but instead, we
will use returns — a much preferable input. By using raw prices, we build
a system that is inconvenient to do cross-evaluation among variables with
unequal values. Also, the numbers themselves do not have much meaning
because of the lack of a setting benchmark. Therefore, we will use returns,
which are measured in percentage, that way, we normalize our variable and
bring meaning to each number in our metric.
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Returns contain different types, and the regular simple returns might
be the most well-known. A simple return at time t is the proportion of the
change in value from time (t− 1) to time t, Rt =

Pt−Pt−1
Pt−1

. Nevertheless, we
will be using log returns because of their several advantages over normal
returns. Log return is continuously compounded return, calculated by
taking the natural logarithm of simple gross return. Hence, let rt be log
return at time t and Rt be the simple return, and then

rt = ln(1 + Rt) = ln
( Pt

Pt−1

)
= ln(Pt)− ln(Pt−1).

From the definition, we can see quite clearly the time-additivity property
of these returns as

rt[k] = ln(1 + Rt[k])

= ln((1 + Rt)(1 + Rt−1) · · · (1 + Rt−k+1))

= ln(1 + Rt) + ln(1 + Rt−1) + . . . + ln(1 + Rt−k+1)

= rt + rt−1 + . . . + rt−k+1,

meaning that the continuously compounded multi-period return is the sum
of the continuously compounded one-period returns. This property makes
log returns a lot more manageable compared to the simple returns [Tsay,
2010b], and it is the main reason why we use log returns for our data here
in this thesis.

There are other theoretical and algorithmic benefits of log returns over
simple returns, such as log-normality (convenient for many classical as-
sumptions in statistics), mathematical ease in stochastic processes (calculus
properties of exponential function ex), numerical stability (avoiding arith-
metic underflow by summation via log transformation), etc. [Quantivity,
2011]. Throughout the thesis from now on, log returns are referred to as
either log returns, returns, or our data.

Figure 3.1(b) shows the graph of the natural log price of crude oil. Again,
the fluctuations are shown clearly in this graph, but it is a bit smoother
compared to the raw price due to the natural log transformation, making the
range less dramatic. What we are really interested in is to look at the returns
of this crude oil corresponding to the analyzed period in Figure 3.1(c). By
the definition above, these returns are simply the difference of the log prices
calculated from Figure 3.1(b) (in percentage). We can see that these crude
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Table 3.1: Summary statistics of daily returns on
crude oil from 04/04/1985 to 31/12/2015

Statistic Value

Size 8222
Mean (%) 0.0029
Std. Dev (%) 2.2436
Min (%) −40.8062
Max (%) 14.0326
Skewness −0.8832
Excess Kurtosis 17.6007
Jarque-Bera 107256.25*
Ljung-Box 72.68*
q0.001 −11.6984
q0.01 −6.1584
q0.05 −3.4829
q0.95 3.3409
q0.99 5.9621
q0.999 10.9129

Note: Statistics marked with (*) are significantly
different from 0 at the 1% significance level.

oil returns were especially volatile in the three periods where oil production
increased in the 80’s, around the GulfWar period (1990–1991) and the global
recession (2008–2009), reflected by the extreme variations in a short time
interval. The returns are shown to be stationary (mostly fluctuate around 0)
and seem to have several volatility clusterings.

3.3 Description

Table 3.1 gives some descriptive statistics on the return sequence along with
test values of the Jarque-Bera test for normality and Ljung-Box test for serial
correlation.

We have a total of 8,222 observations in our analyzed period fromApril 4,
1985 to December 31, 2015 for our crude oil data. We observe that the mean
is very close to 0 (as expected in financial returns), while the minimum and
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Figure 3.2: Empirical distribution of the return series with relative frequency density on
the y-axis (i.e., the total area under the histogram is 1) with two fitted normal cumulative
distribution functions

maximum are quite at a distance to the mean (especially the minimum),
suggesting a long left tail. The negative skewness and high excess kurtosis
clearly suggest that the series does not follow the normal distribution, which
has the skewness of 0 and excess kurtosis of 2.96.

The Jarque-Bera statistic shows that the null hypothesis of normality
is rejected at any level of significance, which is consistent with the result
presented by the skewness and kurtosis discussed above. The Ljung-Box
statistic is the result of testing for conditional heteroscedasticity with the
null hypothesis of no autocorrelation up to the 20th lag. The p-value of
this statistic is significant, 6.614× 10−8, suggesting that we reject the null
hypothesis. Hence, we can conclude that our observations are serially auto-
correlated, which indicates that we should apply a GARCHmodel before
applying the EVT method. In other words, we shall use the conditional
EVT approach when analyzing because our data is clearly not i.i.d. — a
prerequisite for EVT methods. Pairs of the empirical upper and lower 0.1%,
1%, and 5% quantiles are not too far off from being symmetric to each other,
which is supported by the small negative skewness.
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Figure 3.2 shows the empirical distribution of our data, which has a
long left tail as expected due to our extreme minimum. The histogram is
slightly skewed to the left, indicating the calculated negative skewness. We
also fitted two normal CDF’s onto our return histogram. The red dashed
line illustrates a normal curve with the same range as our data (i.e., same
minimum and maximum), while the blue line represents a normal curve
with mean and standard deviation the same as our empirical mean and
standard deviation. The two curves are clearly ill-fitted, and we expected
this result because we know from the summary statistics in Table 3.1 that
our data does not fit the normal distribution.

We are now ready to analyze our return data with the different simu-
lation approaches, EVT models and the ACER method that we studied in
Chapter 2.



Chapter 4

Analysis and Results

From different modelling methods introduced in Chapter 2, we can now
examine the return data of the crude oil market from April 4, 1983 to De-
cember 31, 2015 to estimate the one-day ahead VaR’s and to backtest them
using the unconditional coverage, independence, and conditional coverage
tests. Let us first summarize some results we got from each method before
evaluating our VaR estimations.

4.1 Methods Summary

4.1.1 Historical Simulation

Figure 4.1 shows the histogram of our simulations for crude oil returns
by the HS approach. Here, we simulated 10,000 possible 250-day trading
periods and compare the mean of our simulated returns with the true
empirical mean return. As we can see from the figure, they almost hold the
same value that is very close to 0. This result is quite predictable because
we know that the mean return in financial data is 0 for the most part due to
the competitive market conditions.

We again simulate 10,000 possible 250-day trading periods and calculate
the VaR of the next day. This means that for each simulation for the returns
from day t to day (t + 249) (resampling with replacement), we predict
VaRp,t+250. Hence, we obtain 10,000 different results for the p quantile in
each simulation, and the histogram of these VaR’s is illustrated in Figure 4.2.
Here, we use p = 0.05, and we also include the vertical red dashed line
to mark the true empirical 0.05 quantile. The mean VaR of the simulated
returns and the empirical quantile are shown to be quite close together.

45



46 Chapter 4 Analysis and Results

−1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Returns

Mean of simulated returns

True empirical mean return
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Figure 4.3: Histogram of 10,000 extreme quantiles (0.1th percentile) for historically
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Similar to what we did above, we now have a histogram of simulated
10,000 VaR’s of 250-day trading period but with a very small quantile,
p = 0.001. This quantile is often used in stress testing. To learn more about
stress testing, read Quagliariello [2009]. Figure 4.3 shows that the average
of the calculated 0.001 quantiles is not very close to the true empirical 0.001
quantile. What generates this difference is that the empirical 0.001 quantile
is of the whole data where each return enters as one entry, while the original
return at each particular day t , for 1 ≤ t ≤ 250, would be an input in t
simulated 250-day periods, and for 251 ≤ t ≤ 7972, this return is a potential
input in 250 different simulations of random sampling with replacement
(remember that we use a 250-day trading day for each simulation). Hence,
the range of the simulated extreme quantiles is quite big (it actually covers
all the negative values in the data) and contains a few results at theminimum
value of our returns.

With the same simulation approach as above, Figure 4.4 plots our HS
VaR’s and the true 0.01 quantile in the out-of-sample period. We choose a
time horizon of 250 days to obtain each quantile of the out-of-sample period,
i.e., the true quantile for each day is calculated from its last 250 observations.
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Figure 4.4: Predicted VaR0.01 of the next day within a rolling window of 250 days using
HS approach compared with the true 0.01 quantile of a 250-day horizon

The figure shows that they harmonize with each other in terms of the
direction of movement, but the HS VaR’s are a lot more extreme. This
extremity results from the resampling method, which potentially makes
those extreme returns in our original data manipulate the quantile if they
appear too many times in the same simulation period.

4.1.2 Filtered HS

For the FHS method, we begin by capturing the heteroscadasticity in the
error variance. The first step we can do is to look at the ACF and PACF of
our return data, which is illustrated in Figure 4.5. While the ACF shows no
significant lags, the PACF indicates that our return series is not stationary
in variance, which is consistent with the volatility clustering and high
fluctuations shown in Figure 3.1. As in time series analysis, we should



4.1 Methods Summary 49

0 5 10 15 20 25 30

−
0.

2
0.

0
0.

1
0.

2

Lag

A
C

F
Sample ACF of log returns

0 5 10 15 20 25 30

−
0.

10
0.

00
0.

10

Lag

P
ar

tia
l A

C
F

Sample PACF of log returns

Figure 4.5: Sample ACF and PACF of crude oil returns. The dashed lines give the
values beyond which the autocorrelations and partial autocorrelations are significantly
different from 0.

apply an autoregressive integrated moving average (ARIMA) model to our
data when nonstationarity seems to exist. Therefore, we fit a combination
of ARIMAmodels into our data with the different possible orders of the AR
and MA parts running from 1–5 (a maximum of 5 lags, which represents
the last 5 days — the length of a one week trading period). The data can
then be integrated by a differencing process if necessary. For more details
of ARIMA model and time series analysis, we recommend Wei [2006].

The ARIMA model that gives us the best Akaike information criterion
(AIC) is ARIMA(3,0,3), which corresponds to ARMA(3,3). We can now plot
the ACF and PACF of the squared residuals of this fitted ARMAmodel onto
our return data, which is shown in Figure 4.6. Here, we included 200 lags,
and the figure shows that both the ACF and PACF of the squared residuals
decay very slowly, suggesting a very high order of the ARMA model when
fitting these squared residuals. As we know from Chapter 2, the order of
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Figure 4.6: Sample ACF and PACF of the squared residuals of fitted ARMA(3,3) onto
returns

the ARMA model for the squared residuals corresponds to the order of
GARCH model in our return data. This would suggest that our GARCH
model would have a very high order, which is quite impractical. Therefore,
we will use the GARCH(1,1) model as it is parsimonious as shown before,
and as Wei [2006, p. 380] suggested, “a very simple GARCH(r, s) model
with r ≤ 2 and s ≤ 2 is sufficient to provide a significant improvement over
the traditional homoscedasticity models”.

Therefore, we will fit 4 different models to our data as the filtering step of
this approach. The first two models are ARMA(3,3) - GARCH(1,1) with the
innovation et in (2.10) following the normal and Student’s t distribution. For
the last two models, we fit the GARCH(1,1) model directly to the returns,
with, again, normally distributed innovation in one model, and Student’s
t distributed innovation in the other. Figure 4.7 shows the ACF of the
residuals and squared residuals for each fitted models. We can see that
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Figure 4.7: Sample ACF of the residuals and squared residuals of the fitted models. The
ACF plots on the left hand side are for residuals, and the ACF plots on the right are for the
squared residuals. From the top row to the bottom row, the plots obtain from the following
fitted models: ARMA(3,3) - GARCH(1,1) with normal distributed innovation, ARMA(3,3) -
GARCH(1,1) with student’s t distributed innovation, GARCH(1,1) with normal distributed
innovation, and GARCH(1,1) with student’s t distributed innovation.

these plots suggest no serial correlations in the residual series (no significant
lags), hence the conditional heteroscedasticity is captured. The result for
the parameter estimates of the fitted models and their correspondent AIC is
given in Table 4.1. The parameter “Shape” indicates the degrees of freedom
for the Student’s t distributed innovation et (with mean 0 and variance 1).

We can see from the table that the coefficients of the AR(1) and MA(1)
parts of the first two models are not significant, and the AIC of the ARMA-
GARCH model with the Student’s t distributed et is slightly better. For the
GARCH models, all parameters are significant at the 0.01 significance level,
and GARCH (1,1) with Student’s t distributed innovation has a lower AIC.
Therefore, we will choose the GARCH (1,1) with Student’s t distributed et
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Figure 4.8: Predicted VaR0.01 of the next day within a rolling window of 250 days using
FHS approach compared with the true 0.01 quantile of a 250-day horizon.

model as our final model for the filtering step of the FHS approach because
it has the lowest AIC among the models with all significant coefficients.
GARCH(1,1) is also simpler than the ARMA-GARCH model and is con-
firmed in the aforementioned literature to be sufficient.

After fitting the chosenGARCH (1,1)model for each day t, wewill obtain
the conditional standard deviation for that day. We can then calculate the
standardized return, ẑt, and predict the one-day ahead conditional standard
deviation, σt+1, as described in 2 for the FHS approach. We complete this
approach by resampling the standardized returns from the last 250-trading
days with replacement to generate a new standardized return for the next
day and compute our one-day ahead VaR’s.

Like in the HS approach, we plot our FHS VaR’s result and the true 0.01
quantile in the out-of-sample period in Figure 4.8. Our interest is to see,
from our estimation of these calculated VaR’s, if there is a VaR violation for
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each day by comparing with the corresponding true return. This result is
presented in the next section, section 4.2.

4.1.3 Conditional EVT

As we discussed in Chapter 2, we fit the GARCH model onto the crude oil
return to obtain the conditional standard deviation. We then can compute
the standardized returns, which are safely assumed to be independent.
The GARCH model fitted here is GARCH(1,1) process with Student’s t
distributed innovations.

One challenging part of this method is to determine which threshold to
use. The choice we make will influence the outcome heavily due to the bias
and variance dilemma, because we directly decide the size of observations
considered. The choice for the threshold here is in accordance with Christof-
fersen [2012]’s suggestion that we mentioned earlier, that the threshold is
the 95% quantile of the negative standardized returns.

The Hill estimator is then computed in order for us to compute the
quantile F−1

1−p in (2.18). We then proceed to estimate the one-day ahead
VaR’s and plot them in Figure 4.9. In the figure, beside the difference in
magnitude of the estimated VaR’s and the true 0.01 quantile of the last 250
days, we can see that there seems to exist some lag between the general
shape of the two series. Again, we should keep in mind that this figure only
compares our VaR estimation with the quantile of a given time, it does not
assess our model. Our ultimate goal is to compare our computed VaR with
the return of each corresponding day to observe if there was any violation.

4.1.4 ACER

Like in the EVT approach, before applying the ACER method, we modify
our data by considering the negative values of our return data. We first
examine this method by looking at the k-plot in Figure 4.10.

The k-plot shows the comparison among ACER estimates conditioning
on (k− 1) previous data points for different η values (%). The statistical
dependence with different degrees of conditioning does not seem to be
so strong after η > 0, and the ACER functions converge around η = 12%.
Notice that the effect of conditioning on previous data can be captured to
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Figure 4.9: Predicted VaR0.01 of the next day within a rolling window of 250 days using
a conditional EVT approach compared with the true 0.01 quantile of a 250-day horizon.

some extent by ε̂3(η), meaning that we only need to condition on the two
previous observations. Conditioning on more data points does not seem
to give any significant difference in ACER estimates for tail values roughly
after η = 8%, which is the start of the tail’s regular behavior. Næss et al.
[2013] uses the first ACER function for the prediction in the paper and the
given reason was that all the ACER estimates appeared to merge in the far
tail, so “the obvious choice is to use the first ACER function, which allows
us to use all the data in its estimation and thereby increase accuracy”.

For our data, we have tried variousmodels by conditioning on different k
values as well as setting different sample sizes. For each model, we calculate
VaR0.001, VaR0.01, and VaR0.05 for the next day. Among the models we have
fitted, k = 3 did the best for our data in terms of the number of violations.
Other than the amount of the previous observations we condition on, the
sample size seems to have a certain impact on the outcome: As we condition
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Figure 4.10: The top plot is the k-plot of (η, ε̂k(η)) computed from the negative of our
return data for different values of k (values of η are in percentage). The bottom plot is
the result of zooming in the top plot for η = (5, 14) to identify convergence.

on more data points, we reduce the sample of exceedances significantly if
clusters occur (and we already know that volatility clusters exist in our data
set), so we generally want to have a larger sample size to improve precision.

The reason why we do not keep k = 1 as in Næss et al. [2013], although
our ACER functions converge in the far tail, is that these functions do not
have a steady flow until η > 0 and not really converge until η > 8% for
our modified data. In our original data, this is equivalent to a stable result
for the ACER functions when the threshold η is set to be less than 0%, and
these functions converge when η is less than −8%.

However, about 50% of the crude oil return data is larger than 0% and
only the minimum of our data is less than −8%. Therefore, if we only base
on the k-plot when the tail seems to have regular behavior, we would use
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Figure 4.11: The k-plot for η in (−4%, 5%) to identify a reasonable choice of k

very little to no data from our data set. In fact, 90% of our original data is in
the range of (−3.48%, 3.34%), so we would like to look at a more reasonable
range of η. Figure 4.11 shows the k−plot for η in the range of (−4%, 5%).
From this figure, it seems like choosing k = 3, i.e., conditioning on two
previous observations, is a sensible choice. As a matter of fact, we fit a
variety of models and k = 3 always gives the best result among the same
sample size.

The final model we choose to present for the ACER method to predict
the VaR of the next day is from the rolling samples of 500 observations with
k = 3. The results are shown in the next part.

4.2 Evaluating VaR estimations

Our data set of crude oil returns is divided into an in-sample period and
an out-of-sample period to assess VaR performance. For each model used
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Table 4.2: Out-of-sample VaR violations of different models

HS FHS Cond. EVT ACER

p = 0.001
Violations 70 64 10 124
Proportion 0.0088 0.0080 0.0013 0.0160
Rank 3 2 1 4

p = 0.01
Violations 156 131 101 246
Proportion 0.0196 0.0164 0.0127 0.0318
Rank 3 2 1 4

p = 0.05
Violations 496 346 410 698
Proportion 0.0622 0.0434 0.0514 0.0841
Rank 3 1 2 4

Note: A violation occurs when RPF,t+1 < VaRp,t+1 at time t + 1. The ACER
method has 250 observations fewer compared to the other approaches due to the
larger sample size for each fitting period.

(except for the ACERmethod), we use a rolling window of 250 days (approx-
imately a typical trading year, which is 252 days) from our data to simulate
daily returns. This makes the in-sample and out-of-sample period contain
7972 observations each. Hence, the first in-sample period starts at the 1st

observation and the last in-sample period starts at the 7972nd observation.
Accordingly, the out-of-sample period starts from the 251st and ends at the
8222nd observation.

Since we condition on k = 3 for the ACER method, we use a rolling
window of 500 days (approximately two trading years) to fit our model
in order to have enough data points in each sample. This means that the
out-of-sample period for the ACER method has 250 observations fewer
compared to other approaches (contains 7722 observations, from the 501st

to the 8222nd observation).
The one-day ahead VaR is estimated using each method described in

Chapter 2, and we count the number of the out-of-sample VaR violations for
each fitted model for three quantiles of p = 0.001, p = 0.01, and p = 0.05.
Table 4.2 summarizes the results with the proportion of violations for each
approach and the rank of how well these approaches perform.

We can see that for all the given quantiles, the conditional EVT approach
gives very good results and is ranked the first for quantiles 0.001 and 0.01.
The proportion of VaR violations made by this approach is also very close
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to our given probability to calculate VaR. In addition, the FHS approach
performs very well compared to the remaining approaches, and for quantile
0.05, it even outperforms the conditional EVT approach.

The HS approach also has a good performance and provides results
that are very close to the FHS approach, except for when the quantile is
0.05. The ACER method is expected to do well since it takes the statistical
dependence of the data into account, however, it does not seem to perform
very well in our data. This might be because the value of η chosen for each
fitting sample was automatically set to when the regular behavior of the tail
started. Wrong choices for η can lead to biased results, especially when the
returns experience some extreme changes, which, as we know, happen a
few times in our crude oil data.

The results for different backtesting methods are presented in Table 4.3.
As a reminder, we have the following tests: unconditional coverage testing
(H0 : π = p), independence testing (H0 : π01 = π11), and conditional
coverage testing (H0 : π = p and π01 = π11).

The likelihood ratio statistic for each test is computed according to the
methodology discussed in Chapter 2. Two significance levels are chosen
here, α = 0.05 and α = 0.1. Like we mentioned earlier, Christoffersen [2012,
Chap. 13] recommended to use α = 0.1 (which gives a smaller critical value
compared to α = 0.05, hence, the possibility of rejecting a model is higher)
to minimize the chance of failing to reject an incorrect model, which in risk
management can lead to a catastrophic event.

As shown in Table 4.3, the estimation of VaR from three of our ap-
proaches (HS, FHS, and ACER) do not pass either the coverage test or the
independence test, except for the FHS, which passes the independence test
when α = 0.05 for the 0.01 quantile. Nonetheless, the conditional EVT
approach performs really well as it passes 13 out of 18 tests. From the re-
sults of Table 4.2, we could already expect the conditional EVT approach to
pass most of the unconditional coverage tests because the proportion of the
VaR violations was very close to our given probability. The approach also
provides very good results for the independence test and the conditional
coverage test. When the quantile is 0.01, this approach does not seem to
perform quite as well — it only passes the independence test when α = 0.05.
Nevertheless, the conditional EVT approach generally gives outstanding
results.
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Table 4.3: Different likelihood ratio tests for the fitted models

HS FHS Cond. EVT ACER

p = 0.001

Luc
α = 0.05 x x X x
α = 0.1 x x X x
Lind
α = 0.05 x x X x
α = 0.1 x x X x
Lcc
α = 0.05 x x X x
α = 0.1 x x X x

p = 0.01

Luc
α = 0.05 x x x x
α = 0.1 x x x x
Lind
α = 0.05 x X X x
α = 0.1 x x x x
Lcc
α = 0.05 x x x x
α = 0.1 x x x x

p = 0.05

Luc
α = 0.05 x x X x
α = 0.1 x x X x
Lind
α = 0.05 x x X x
α = 0.1 x x X x
Lcc
α = 0.05 x x X x
α = 0.1 x x X x

Notes: These tests are under different null hypotheses: For Luc, H0 : π = p,
for Lind, H0 : π01 = π11, and for Lcc, H0 : π = p and π01 = π11.
The likelihood ratio statistics are calculated and compared with the critical
values. At the α · 100% significance level, “x” means that we reject the specified
VaR model, and “X” means that we do not reject it.
Critical values: χ2

(1) = 2.706 at α = 0.1, 3.841 at α = 0.05 (for Luc and Lind),

χ2
(2) = 4.605 at α = 0.1, 5.991 at α = 0.05 (for Lcc).



Chapter 5

Conclusion and Future Work

This thesis studies different methods for extreme value prediction from
sampled time series of crude oil prices. In particular, we estimated the value
at risk (VaR) of the next day via different approaches and evaluated our
results. We included some widely used approaches in risk management
such as historical simulation (HS) and filtered HS (FHS) with the GARCH
model (which captures the heteroscedasticity in our data). To target the
extreme values better, we also used the conditional extreme value theory
(EVT) method in order to model the far tail of the distribution, as well as to
get rid of the heteroscedastic effect. The last approach used in this thesis
is a conditional average exceedance rate (ACER) method that handles the
dependence between the data points and targets the subasymptotic data.

Results of the VaR estimation for the aforementioned approaches were
presented and backtested by three different tests. These tests examined
whether the models we used have a statistically correct result for the cover-
age rate and whether there exists a problem of violation clustering in these
estimations. By comparing and evaluating these estimates, we conclude that
the conditional EVT approach has an outstanding performance compared
to the others, in both accuracy and independence testing.

We note that the approaches used in this thesis can be grouped in three
ways. The first group contains the approaches that use the bootstrapping
methodology (HS and FHS), the second contains those that target the use
of (sub)asymptotic data (conditional EVT and ACER), and the third group
contains those that deal with the heteroscedasticity in the data (FHS and
conditional EVT). We found that it is the third group that performs the best
in estimating VaR values.

We should also note that even if an approach performs well in one data
set, it does not mean that it will have the same performance in other sets of
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data. Each data set has its unique properties depending on what category
this data falls into. For example, an approach that works well for modeling
the price risk of crude oil might not work as well for modeling the price
risk of a soft drink. The reason is that soft drinks are a type of goods that
is very elastic — i.e., the consumption has a highly sensitive response to
changes in price due to many existing substitutes. Thus, the prices of a soft
drink should not be nearly as volatile as the prices of crude oil. Therefore,
the results from this thesis only apply to the given crude oil data set, and
they do not indicate that the conditional EVT approach always performs
better than, say, the ACER method.

There are several potential improvements that we canmake in the future.
Since VaR is only a single point estimate of the next period’s quantile, it does
not reflect the extent of how big a potential loss could become beyond that
point, which is essential in risk management. To acquire better knowledge
of what might happen, we can compute VaR values for different quantiles
farther in the tail of interest. However, we would then retrieve only a set of
discrete VaR values whereas we want to extract more information from our
continuous loss function. What wemight then be interested in is the average
potential loss in the case where the actual loss goes beyond our estimation
of VaR. This is where a risk measure such as expected shortfall (ES) comes in
handy. Given that the loss exceeds VaRp, ES gives us the average loss in the
worst p · 100% of the time. Therefore, ES should be investigated in future
work in order to have a better evaluation of the tail of the loss distribution,
in addition to the VaR values that we estimated.

Another possible improvement is to increase the amount of information
for backtesting our VaR estimations. The tests implemented are merely
based on the past VaR violations and cannot easily uncover an incorrect
model. Therefore, we might want to include other information (i.e., related
variables) that may have a correlation or causal effect with the violations
via some regression-based approach [Christoffersen, 2012]. According to
Christoffersen [2012], we can better understand “the areas in which the risk
model is misspecified”, a substantial task in risk modeling, by increasing
the information set.

Another idea for future improvement is to find an algorithm to identify
a better η for the ACER method. The choice of η in this thesis, which is gen-
erated automatically from the tail’s behavior, may have strongly negatively
impacted the results of this approach.
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