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Summary 
The paper treats the economy of controlling an African pest rodent, the multimammate rat, 
causing major damage in maize production. An ecological population model is presented and 
used as a basis for the economic analyses carried out at the village level using data from 
Tanzania. The control problem is specified as timing and duration strategies where the dosage 
of the poison is kept fixed per month whenever poison is used (consistent with recent practice 
in Tanzania). The most economically profitable control period seems to be just before the 
planting season. The damage at planting accounts for such a large portion of the total losses 
due to rodents, that minimising the population during that short period is enough to reduce 
yield losses. Controlling for a longer period will reduce rodent populations at a time when 
they do not damage the crop anyhow, and due to the very high reproductive capacity of the 
rodents, the population will increase fast as soon as control operations are stopped, repressing 
any long term effects. Two months of control just before planting season, January and 
February, or eventually in November and February, seem to be the best overall strategy. 
These economically most rewarding strategies differ significantly from today’s practice of 
symptomatic treatment when heavy rodent damage is noticed. The paper demonstrates that 
shifting from such practices to more mechanistic control strategies; that is, emphasising the 
calendar instead of the pest abundance, can substantially improve the economic conditions for 
the maize producing farmers in the present case of multimammate rats. The best practices 
compared to today’s symptomatic treatment will typically double the net economic benefit.  
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Abstract 
The paper treats the economy of controlling an African pest rodent, the multimammate rat, 
causing major damage in maize production. An ecological population model is presented and 
used as a basis for the economic analyses carried out at the village level using data from 
Tanzania. This model incorporates both density-dependent and density-independent 
(stochastic) factors. Rodents are controlled by applying poison, and the economic benefits 
depend on the income from maize production minus the costs for maize production, fertiliser 
and poison. We analyse how the net present value of maize production is affected by various 
rodent control strategies, by varying the duration and timing of rodenticide application. Our 
numerical results suggest that, in association with fertiliser, it is economically beneficial to 
control the rodent population. In general the most rewarding duration of controlling the rodent 
population is 3-4 months every year, and especially at the end of the dry season/beginning of 
rainy season. The paper demonstrates that changing from today’s practice of symptomatic 
treatment when heavy rodent damage is noticed to a practice where the calendar is 
emphasised, may substantially improve the economic conditions for the maize producing  
farmers. This main conclusion is quite robust and not much affected by changing prices and 
costs of the maize production.  
 
Keywords: bio-economics, pest control, multimammate rat, crop production 
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1. Introduction 

Rodents represent major pest problems worldwide, both in the countryside and in the cities. 

They do, for instance, cause serious damage to crops (such as cereals, root crops, cotton and 

sugarcane) both before and after harvest. They also damage installations and are reservoirs or 

vectors for serious infectious diseases (Fiedler 1988).  

 

In Africa more than seventy rodent species have been reported to be pest species (Fiedler 

1988). Some of these exhibit irregular population dynamics with occasional explosions, 

typically occurring over extensive areas (Fiedler 1988a, Leirs et al. 1996). Within eastern 

Africa, multimammate rats (Mastomys natalensis) are among the most important pest rodents 

(Fiedler 1988). Damage during outbreaks is profound and significantly worsens the already 

unfavourable food situation on the African continent. The average rodent damage by the 

multimammate rat to maize in Tanzania has been estimated to be between 5 and 15% yield 

loss, and for Tanzania this amounts to an average of approximately 412.500 tonnes per year 

(FAO statistics 1998, Makundi et al. 1999). This corresponds to what would be sufficient to 

feed more than 2 million people for an entire year (at about 0.55 kg/day/person) or represents 

an estimated value of almost 60 million US$ (September 1999 village market price in 

Tanzania, being around 14.5 US$ per 100kg bag of maize). Eruptions of the multimammate 

rat population represent direct disasters for the subsistence farmers involved, but may also 

have national and even international political consequences. Panic-stricken authorities may 

initiate control operations – however, often too late and typically with quite poor results. 

There is thus a clear need to predict and, if possible, prevent such outbreaks of rodent 

populations (Mwanjabe 1990, Leirs 1999). 

 

The control of pest rodents does, however, have both an ecological and an economic 

component interacting dynamically with each other so as to render intuitive reasoning 

difficult. In this paper we consider both the ecological and the economic components of 

rodent damage and control. This we do through the analysis of a bio-economic model – a 

model falling within the concept of ecologically-based-rodent-management (EBRM) (see, 

e.g., Singleton et al. 1999). We specifically evaluate the relations between control timing, 

control duration, and damage reduction. Our model is quite general; hence, our analysis may 

illustrate pest control involving rodents living in highly seasonally varying environments. The 

model consists of a well-established stage-structured ecological model (see Leirs et al. 1997a; 
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Leirs 1999; Stenseth et al. 2001) and is integrated with an economic model incorporating the 

damages by the rodents and the cost of controlling them.  

 

The links between the ecological and the economic components are represented by the control 

measures affecting the mortality of the rodents as well as the rodents’ damages on the maize 

crop. There is also a link through rainfall, having both a seasonal and stochastic component, 

which affects both the rodent population ecology and the crop yield. The timing of the 

rodents’ breeding season is strongly related to the annual distribution of rainfall (Leirs et al. 

1993). In addition, rodent survival and maturation are affected by precipitation in the 

preceding few months, as well as density-dependent factors (Leirs et al. 1997a). Thus, rainfall 

influences the crop yield in two ways; positively as a factor of production since more rain 

(within limits) implies higher yield, and negatively through a higher net growth of the rodent 

population following rain.  

 

Control strategies are evaluated in terms of present-value net profit, integrating the benefit 

from crop harvesting, decreasing in the number of rodents, and the control costs, increasing in 

the amount of damage control. Two temporal scales are included in the model as the relevant 

time scale for rodent maturation and survival is one month while crop harvesting and the 

economic benefits from harvesting typically happen once a year. The double time scale results 

in a quite complicated ecology-economy interaction and makes the present bio-economic 

model rather unique as a very detailed and well-understood ecological background is 

combined with detailed economic considerations. Our model represents an original 

contribution to the more general literature on the economics of pest control as well as 

provides important policy implications for managing and controlling agricultural production 

in an environment with pest populations, cf. the overview in Carlson and Wetzenstein (1993). 

Only very few papers in the literature focuses on vertebrate pest control problems with 

particular emphasis on small mammals. Hone (1994) summarises a number of simple static 

pest control models, and presents some estimates of rodent damages as well as damages 

related to other mammals. See also Barnett (1988). Saunders and Robards (1983) provide 

detailed estimates of what the damage and economic losses were during a mouse outbreak in 

Australia and the costs of the control operations. However, in all these papers there is no 

dynamic link between the economic considerations and the rodent population ecology such as 

to say when a control strategy becomes economic efficient. This is also the case for Tisdell 

(1982) who provides a detailed study of the damages and control costs of feral pigs in an 
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Australian context. The cost and benefit of feral pig, causing damages on Californian 

rangeland, is also studied in a recent paper by Zivin et al. (2000). This problem is analysed 

within an optimal control framework as they use a lumped ecological model and quite simple 

cost and damage functions. Our analysis reported in this paper is to some extent inspired by 

this study, as our model is built around a control and a damage function interacting through 

the ecology. However, contrary to Zivin et al. (2000), we work with a stage-structured 

ecological model within a stochastic framework (rainfall) with more realistic, and complex, 

cost and benefit functions and a double time-scale. Because of this complexity, the model is 

not formulated within an optimal programming framework. Instead we single out some 

reasonable main strategies and compare these outcomes through simulations. As in all 

models, however, real life situations are simplified: the possibility of replanting is for 

example not considered. 

 

In order to fix ideas, we consider a small village consisting of a number of individual farmers, 

and that the management problem is at the level of an agricultural officer who implements the 

rodent control strategy for a wide area. The model may thus be seen as a planning model 

where the agricultural officer serves as the social planner. This social planner will, 

presumably, have a relatively long planning horizon and a fairly low discount rate (Dasgupta 

and Mäler 1995). In a follow up paper we will analyse what happens at the farm level when 

having a shorter time horizon, and where each farmer typically does not obtain the full benefit 

of removing pest from his farm; that is, externalities are present. Throughout the present 

paper, the ecological model is at the scale of one hectare. However, this does not mean that 

we literally assume that the village agricultural area is of the size of just one hectare. The area 

may be fairly large, justifying the assumption of no dispersal into the field when controlling 

the rats (as we indeed assume, see below). One hectare is also the scale used for the 

agricultural benefit, as well as the costs of rodent control.  

 

The paper is organised as follows. In the next section we briefly present the ecological model. 

In Section 3 the cost and damage functions of pest control are outlined. Section 4 presents the 

various control strategies while the results of the numerical analyses are shown in Section 5. 

 

2. The ecological model under pest control 

2.1. The studied model system and some simplifying assumptions 
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As a basis for the ecological model we have used population data from Morogoro, Tanzania 

(see Leirs et al. 1997a, Leirs 1999, Stenseth et al. 2001). The rainy season in Morogoro is 

bimodal, with a first, but unreliable, peak between October and December and a second peak 

starting in February-March and continuing until May (Mwanjabe & Leirs 1997). After the 

onset of heavy rains in February-March, fields are ploughed and prepared for planting. Hence, 

planting of maize seeds typically takes place in March, although the exact timing depends on 

rainfall. Planting is more or less synchronous in a large area within a period of a few weeks. 

 

Rodent damage typically occurs immediately after planting and until the maize seedlings have 

reached the three-leave stage (about 2-3 weeks after planting). When heavy rodent damage to 

the seedlings becomes obvious (about ten days after the original planting), farmers may 

decide to replant. Nevertheless, we have simplified the setting for our model by assuming that 

planting always (and only) occurs in March and that damage caused by rodents is not 

remedied by replanting.  

 

Harvesting occurs in July-August. If rainfall in October-December is very abundant, which 

rarely happens, then planting is possible in that season as well. However, farmers generally do 

not trust this first part of the rainy season since it is very unreliable. Hence, even though 

planting may be possible, they are afraid that rainfall will not be sufficient during the rest of 

the growing season. Thus, planting in that season does happen only in some years and even 

then, only a part of the farmers decide to participate. Here we ignore such a second crop. 

 

2.2. The population model 

As noted in the introduction, we consider two, partly overlapping, time scales; one for the 

ecological population dynamics processes, and another for the economic processes. The 

economic yearly time scale relates to the fact that crop-harvesting normally takes place once a 

year, whereas the ecological time scale is monthly. Since pest control actions may take place 

several times a year, the control costs will also be given with a time step of one month. 

However, these costs are accounted for once a year, and as a result collapse into the yearly 

time scale. We refer to the month by the index n (0, 1, …, 11, 12, 13, …, 23, 24, 25, …) and 

the year by the index t (0,1, 2, …). Each month equal to 8, 20, 32, … (i.e., August each year), 

corresponds to harvesting time and is defined so as to determine the beginning of a new 

production period, or ‘cropping year’. 
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The ecology is based on the model presented by Leirs et al. (1997a) and further explored by 

Leirs (1999) and Stenseth et al. (2001). Reproduction and survival parameters are governed 

both by density-dependent processes and rainfall, the latter being treated as a density 

independent and time-dependent stochastic factor. The scale of the model is at one hectare, 

while the agricultural area considered may be quite large; hence, we ignore, as is typical 

within population dynamics modelling, dispersal. Our model further describes only the female 

part of the population; the demographic parameter estimates are more reliable for females 

than for males. Moreover, it is, after all, the female part of the population that is instrumental 

in generating the population dynamics through reproduction, which is typically being limited 

by the number of breeding females. The ecological model is a stage-structured model (see, 

e.g., Getz & Haight 1989 for a general overview) with four stages, and where the vector Nn = 

(Nj0,n, Nj1,n, Nsa,n, Na,n) describes the rodent population per ha at the beginning of month n. 

Nj0,n is the number of juveniles in the nest, Nj1,n is the number of juveniles which are weaned 

but not yet in the trappable population, Nsa,n is the number of sub-adult (non-reproducing) 

individuals, and Na,n is the number of adult (reproducing) individuals. The total abundance at 

the beginning of month n is then given as Nn = Nj0,n + Nj1,n+Nsa,n+Na,n. 

 

The population dynamics is, in matrix form, represented by Nn+1 = MNn, and where M is 

defined as (cf. Stenseth et al., 2001) 

 

 
   0 0   0 B(Vn, N(e)

n)  
  | s0n   0 0 0  | 
 (1)  M =  0 s0w (1-mn)•s1(Vn, N(e)

n)•(1-ψ(Vn, N(e)
n)) 0    

   0 0 (1-mn)•s1(Vn, N(e)
n)•ψ(Vn, N(e)

n) (1-mn)•s2(Vn, N(e)
n) , 

 

when B is the reproductive rate per adult female over one time step (being one month); s0n is 

the monthly survival of juveniles still in the nest, and s0w is the survival of juveniles during 

the first month after weaning , both assumed to be fixed irrespective of the environmental 

conditions; s1 is the survival of sub-adults, s2 is the survival of adults, and ψ is the maturation 

rate of sub-adults to adults (i.e., the probability that a subadult will mature to become a 

reproducing adult over the intervening month, given that it stays alive). The density relevant 

for defining the density-dependent structure of the demographic rates is given by N(e)
n = 

Nsa,n+Na,n (juveniles are not yet recruited into the population and their number therefore does 

not affect the demographic rates). The parameter mn, represents the reduction in natural 
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survival (i.e., the death rate, due to pest control action during month n). Consequently, by 

definition, when mn >0 the population is being affected by the application of poison. The 

effect of the control is assumed to be the same for sub-adult and adult; hence, the same mn. 

The control is assumed to have no effect on the juveniles as they just are born and still in the 

nest (or maybe just out of the nest) and will not eat the poison. There are therefore no control 

effects operating through the survival rate of juveniles, s0. Rainfall affects the demographic 

rates through the cumulative rainfall during the preceding three months Vn = (Pn-1 + Pn-2 + Pn-

3) where Pn-1 represents the amount of rainfall during the month n-1, etc. (Leirs et al. 1997a). 

The three-months time lag is used since rainfall has an indirect effect through vegetation 

(hence, the symbol Vn). The effects of density and precipitation are non-linear; below a 

certain rainfall or density threshold, the demographic parameters have one value, above the 

threshold, they have another value. The parameters of the ecological model are given in the 

Appendix, Table A1. Notice that rodent demography is not directly affected by crop 

production, the link is indirectly through rainfall. Moreover, crop production as such has little 

effects on the rodents: they damage planted seeds (i.e., before crop production has started) and 

then the ripening seeds at harvest time, but at that moment, the amount of available seeds are 

is much larger than what can be consumed by the rodents, even in poor harvest years. During 

the crop growing period, the rodents do not damage the crop but live from alternative food in 

and around the fields (Makundi et al. 1999).  

 

Stenseth et al. (2001) have explored how this ecological model behaves when a simple and 

fixed control-induced mortality is introduced. They show that not only the magnitude of mn is 

important, but also over which period the control is applied; a permanently applied control 

(i.e., control every month), may reduce the population considerably (and even drive the 

population to extinction), while there is little effect when control is applied at high densities 

only, even when there is large increase in mortality. Whether a permanently applied control is 

economic rewarding, however, was not studied as no economics were included in these 

considerations of Stenseth et al. (2001). 

 

2.3. The control induced mortality: linking pest control measures to population 

dynamics 

Our analysis is restricted to control measures affecting survival, and where the effect on the 

control-induced reduction mn of natural survival is assumed to result from the application of 

poison. Generally there is a two-stage effect on survival. Let Xn be the amount of control 
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measures (i.e., some poison) applied per ha in month n. Its efficiency typically decreases with 

increasing precipitation during the month as the baits or the active ingredients degrade under 

humid conditions. In the present analysis, however, we assume that precipitation has a 

negligible effect during the current month. In addition, we make the reasonable assumption 

for the Tanzania multimammate rat system that after one month no effect of the poison 

persists in the environment in a form being available to the rats (Buckle 1994). Consequently, 

in what follows, the amount of effective control in month n coincides with the actual control 

measure the same month (and given by Xn). In the numerical analysis, consistent with current 

practices in the rural areas in Tanzania (Mwanjabe & Leirs 1997), we further assume that Xn 

is fixed either at zero or at some fixed non-zero level. The present control problem is therefore 

not analysing how much poison to use and of what type; keeping the dosage of the poison per 

application fixed, we investigate in which month to apply the control measure (the timing), 

and for how long time (the duration).  

 

The demographic effect of the pest control, the control or kill function (Carlson and Wetzstein 

1993), is generally represented by a function where the death rate increases with the 

management intensity; that is,  

 

(2)  mn = m(Xn,Nn).  

 

The reduction in natural survival, being in the domain [0,1], is therefore given as ∂m/∂Xn ≥ 0 

with m(0,Nn) = 0. ∂m/∂Νn<0 should also hold, but since the control measure operates through 

increased mortality rate, and not directly on the number of individuals killed, this effect can 

be quite complex. In the proceeding analysis, we have therefore chosen a pragmatic approach 

and neglected any influence through the size of the rodent population. For the given dosage 

Xn, we assume that the combined effect of natural mortality and the rodenticide-induced 

mortality is constant and always 0.90. This is actually consistent with the field experience of 

rodent control officers in Tanzania; the used poisons are effective in killing rodents and at the 

used quantities they should be more than sufficient to kill all rats in the field. Usually, 

however, about 10% of the rodents in a field survive the rodenticide application because they 

do not eat the bait, either accidentally or because they avoid it (Mwanjabe, personal 

communication). Hence, (1-mn)•si(Vn,N(e)
n)=0.10 is fixed every month when rodenticides are 

applied, and si(Vn,N(e)
n) in other months (see below and Table A1 in the Appendix for further 

details). 
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3. Benefit and cost functions 

The economics of rodent control consist of two basic components; the cost of controlling the 

rodents, and the benefits of doing so being realised through reduced crop damages. We first 

formulate the yield function in the absence of rodents. The crop is maize, and the yield 

depends on the quality of the agricultural land, labour input, fertiliser use, and rainfall 

(Ruthenberg 1980). Empirical evidence from small-holder maize farming in Tanzania 

indicates that fertiliser and rainfall are substitutes as well as complements, while all other 

production factors are more or less fixed, or remain at a fixed proportion to the yield (see, 

e.g., McDonagh et al. 1999 and Figure A1 in the Appendix). Assuming one crop per year and 

that fertiliser use and rainfall are the limiting production factors, the yield in kg per ha 

agricultural land in absence of rats is  

 

(3) Yt =Y(Ft,At)  

 

where Ft is the amount of nitrogen fertiliser applied and At is the amount of rainfall 

accumulated throughout the maize growing season (i.e., precipitation during the five months 

prior harvesting, typically in August). Y(Ft,At) is generally increasing in both At and Ft up to 

some threshold level, but at a decreasing rate; i.e., ∂Y/∂Ft >0 and ∂2Y/∂2Ft ≤ 0, and ∂Y/∂At > 

0 and ∂2Y/∂2At ≤ 0. In addition, no rain means a small and negligible harvest, hence, Y(Ft,0) = 

0. Figure A1 in the Appendix gives the yield function used in the numerical simulations. 

Notice that the empirical evidence on fertiliser use is limited and that we lack data of 

fertilising beyond 140 kg per ha.  

 

Damages caused by the rats are composed of two components, one relating to the damage 

taking place during planting, expressed as a fraction of the yield, and another one relating to 

the damage through direct consumption of grain during harvesting, measured as absolute yield 

loss. Between planting and harvesting there is essentially no damage caused by the 

multimammate rat (Makundi et al. 1999). The fraction of maize planted in month n that is 

damaged is directly related to the abundance of rats; that is, 

 

(4) Dp
n =Dp(Nn)  
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with ∂Dp/∂Nn > 0. The specific functional form Dp
n = a+b•Nn/(c+Nn) is used in the numerical 

simulations where a represents the background death rate of young maize plants (i.e., 

germination failure or damages not directly related to the rat population), b is the maximum 

damage level, and c is the rat density for which damage is b/2. The Appendix (Table A2) 

gives the parameter values. 

 

Assuming no further rodent damage, the annual maize yield will then be Y(Ft,At)•(1-Dp
n). 

However, there will be a further reduction during the harvesting period. The harvesting 

damage, measured in absolute loss (kg per ha), is also directly related to the rodent abundance  

 

(5) Dh
n =Dh(Nn), 

 

with ∂Dh/∂Nn > 0 and Dh(0) = 0. The function is specified linear Dh
n =d•Nn where the value of 

d is based on information about the daily food consumption of rats (again, see the Appendix 

for more details). Consequently, the actual maize production in year t is 

 

(6) NYt = max[0,Y(Ft,At)•(1-Dp(Nn-τ)) – Dh(Nn)]      

 

where the time lag τ, the length of the maize growing season (typically five months), is 

introduced to scale the two types of damages occurring in different months. 

 

Gross agricultural profit per ha and year (i.e., the profit without accounting for the cost of 

rodent-control) is given as 

 

(7) Rt = p•NYt – q•Ft – K,  

 

where p represents the ‘net’ market price of the crop; that is, the market price of the maize 

corrected for cost factors being in fixed proportions to the yield, q the fertiliser price and K 

the fixed costs. All costs and prices are assumed to be constant over time. In the following we 

assume labour use, the basic production factor in addition to water and fertiliser, to be fixed 

per ha, and, hence, not related to the yield per ha. The opportunity cost of labour, if any, is 

therefore embedded in K (see Appendix for details). With these assumptions, p therefore 

basically reflects the price of maize.  



 

   

13

 

 

The control cost at time n (i.e., month) is given as  

 

(8) Cn =C(Xn)  

 

with ∂C/Xn > 0 and C(0) = 0. The specific functional form used in the simulations is assumed 

to be linear, Cn =w•Xn where the unit cost w essentially reflects the purchasing cost of the 

poison. However, the unit cost may contain the opportunity costs of labour linked to the 

spreading of the poison as well. If so, however, we are not explicitly considering any trade-off 

between labour uses in crop production and pest control. As already mentioned, consistent 

with recent practise in Tanzania, we assume that Xn is fixed either at zero or at some non-zero 

level, and if applied, typically a treatment will be carried out with 2 kg of poisoned bait per 

ha. Hence, in the proceeding analysis Cn is fixed at some non-zero value per month whenever 

poison is applied, and zero otherwise. 

 

Having defined the control and damage cost functions, the current net profit in year t reads 

 

(9) πt = p•NYt – q•Ft – K – ∑Cn  

       

where the summation of the control cost is taken over the year (that is, n = 8 to 19 cover the 

year t = 1, etc). Equation (9) implies that the effect of discounting within the year is neglected. 

The current net profit function also neglects, if any, negative poison effects on crop 

production. Environmental costs caused by the poison are neither taken into account.  

 

 

4. The management problem and the control strategies 

While the crop profit without damages and control costs one year is invariant of the current 

crop profit without damages and control costs previous year, this is obviously not so for the 

current net crop profit. Through damages and control costs, the net crop profit one year is 

contingent upon the ecological state of the system previous years. Hence, the net benefit in 

various years is linked together through the size of the rodent population. The management 

problem is therefore dynamic, and the problem is to find a control strategy Xn, being either 

zero or at some fixed non-zero level in a specified sequence of months over the year, reducing 
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the survival rate mn that balances the control costs and crop damages in a way that makes the 

present-value net profit per ha 

  

(10) 
1

1 (1 )

T
t

tPV π
δ

+

=
+∑  

as large as possible over the planning horizon T years, while δ is the rate of discount. As 

mentioned, we consider the management problem as a planning problem at the village level 

where the agricultural officer acts as the social planner. The planning horizon will then be 

expected to be relatively long while the rate of discount δ should reflect the social one. In the 

basic scenarios, we use T =10 years and 7% rate of discount, δ =0.07.  

 

It should be remembered that the rodent control considered in this paper refers to an 

environmental situation were both the crop yield and the rodent population growth are subject 

to large fluctuations since rainfall is largely stochastic. The ecology-economy interaction is 

also fairly complicated, basically due to the double and partly overlapping time scale. 

Moreover, in addition to Xn, the use of fertiliser Ft may also be considered as a control 

variable, making the problem even more complicated. For these reasons, rather than trying to 

formulate an optimising model within an optimal programming (or control) framework and 

finding one control strategy among all possible that maximises present-value net profit, we 

single out some reasonable main strategies and compare these outcomes.  

 

As indicated above, today’s practice in Tanzania consists mainly of symptomatic treatment 

when heavy rodent damage is noticed. In some cases, depending on the visible presence of 

many rats or issued outbreak warnings, farmers may choose to organise a prophylactic 

treatment at planting time. Such practices will be included in our analysis, but we also analyse 

strategies where the control is applied for various consecutive months. All strategies include a 

fixed use of fertiliser for which we have data, and Ft =40 kg/ha will be used in the basic 

simulations (cf. the Appendix). However, the consequences of more fertiliser use and no 

fertilising at all, will also be studied. The effects of changing economic conditions will be 

studied as well. As baseline values we use p = 100 Tsh/kg maize, q =220 Tsh/kg fertiliser, w 

=6500 Tsh/kg poison, and K =10.000 Tsh/ha as the fixed cost (for more details, see Table A2 

in the Appendix). 
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Altogether we consider the following control strategies Xn,, being either zero or at a fixed 

non-zero level, related to the calendar:  

 

1. Control for a given number of consecutive months, including no control and    

       control every month;    

2. Control only for certain predetermined months (e.g., only every February or both 

February and March). 

 

In addition, we have combined the above strategies with various conditions related to the state 

of the system (such as conditioning the application of poison on rodent density or 

precipitation).  

 

Since rainfall patterns are a major component of the model’s variability, simulations have 

been run with a large number of different rainfall series1. We use monthly rainfall values 

(Meteorological Station, Morogoro, Tanzania) that were drawn from rainfall data obtained for 

that particular month in the period 1971-1997; that is, for each month of the run, and 

independently from the values for the other months, we choose a value at random from the 27 

years for which we had values for that month. For each control strategy, and set of model 

parameters, the model was run 100 times, each time with a different random seed, resulting in 

100 different rainfall series. The model simulations always started in December with an 

average number of animals comparable to what is observed in the field in that month (no 

juveniles, 133 sub-adult females and no adult females). In order to reduce the effect of initial 

conditions, each model run ran for 248 months before pest control and economic evaluation 

started; it then continued for a number of years, reflecting the given planning horizon, T. 

Accordingly, the evaluation of the profitability of each control strategy is done by calculating 

the median present-value net profit (PV) of equation (10) for the 100 runs, together with the 

variability, given by the 95%-range values. 

 

5. Results 

5.1 Preamble 

                                                           
1 The model was implemented numerically using Stella Research, version 5.1.1 (High Performance Systems, 
Inc., Hanover, NH, USA). 
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To see the basic logic of the numerical simulations, Figure 1 provides four examples based on 

two rainfall series and two different control strategies; control applied once a year in February 

(just before planting), and no control at all. The two panels A and B are for different (random) 

rainfall series, chosen from different runs of the model; the examples are representative for 

the general pattern. As can be seen, under the rainfall pattern in Panel A, the rat abundance is 

subject to large fluctuations both with and without control. However, the actual yearly harvest 

NYt is quite modest accompanied by small values for the current net profit πt when applying 

no control, whereas under the February control the yield as well as the current net profit are 

higher. The same broad picture is also provided in Panel B.  

 

Figure 1 about here 

 

For the given fertiliser use and the baseline values for prices and costs, these results clearly 

indicate that pest control is economic rewarding as the average yield and current profit, and 

hence, also the PV (not shown), are higher when control is carried out. Of course, care must 

be taken as Figure 1 exhibits only two runs for each strategy. We now turn to the full-scale 

simulations where the results present the median PV, together with the variance, for 100 

simulations within each strategy are shown. 

 

5.2 Duration and timing of the control 

Figure 2 summarises the results where we have simulated the application of pest control for 

different numbers of consecutive months. The duration of the control (i.e., number of 

consecutive months) is indicated along the horizontal axis where we altogether have included 

5 months as the rat population goes extinct beyond 4 months (see below). No control at all is 

included as well, indicated by the number 0 along the axis. For each number of months 

applying control, except no control at all (0), there are 12 possible months to start controlling. 

Hence, we have generally twelve medians and 95% range plots within each possible duration 

of control as indicated by JFM…ND (January, February, Mars…, November, December). 

Panel A represents the median present-value net profit (PV)  with bold points, and the 95% 

range with thin vertical lines. The PV without rats at all are also shown, displayed as 

Maximum PV and with its 95% range variation as the shaded area. Panel B gives the number 

of rodents at the end of the planning horizon, also as median and 95%-range values.  
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Figure 2 about here  

 

From panel A in Figure 2, three main features should be noticed:  
 
(1) The median present-value is low without control (0 months), but increases in general for 

strategies with up to 4 consecutive months of control, beyond which the present-value net 

profit (PV) start decreasing. Hence, the patterns only up to 5 consecutive months are 

displayed. A rewarding strategy is therefore clearly to control the rats for some months, 

but not for too long.  

(2) It is more profitable to control during certain months than during others. If poison is 

applied one or two months every year, it seems most rewarding to start controlling in 

January/February, whereas if poison is applied for 3-5 months, it is most rewarding to 

start controlling in August-December/January.  

3) There are small differences between the most economic rewarding strategies. 

 

For the given fertiliser use, prices and costs, the most rewarding strategy is to apply poison 

during 4 consecutive months starting in November, but many of the other strategies shown in 

Figure 2 do not result in a significantly lower PV. Strategies having significantly lower 

median PV include controlling for 1 month, and from 8 up to 12 months (the last ones not 

shown in the figure), while increasing the duration of control above 5 months all the time 

reduces the PV (not shown). Some of the strategies for 5 and more consecutive months may 

give higher PV than strategies applied for, say, 2 and 3 months (see also below). Strategies 

having significantly lower PV also include applying control for 2-3 months during the 

cropping season (i.e., starting in March). The timing of the control period seems therefore to 

be more important than its duration, especially for control periods of 3 months or less. Hence, 

poisoning will be most rewarding just before the growing season as to reduce the number of 

rodents before planting of maize. Generally, the variability of the PV increases up to 3 months 

duration of the control. After that it decreases again slightly and stays more or less constant 

for 5 months and longer duration of control (not reported in the figure). Thus, the economic 

outcome of control during 3 months or more is more uncertain than with shorter periods. 

 

Panel B in Figure 2, presenting the rodent population at the end of the planning horizon, 

shows that some of the strategies applying rodent control 1-2 months each year do not affect 

population development very much. However, if the duration of control is more than 3 
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months, the rodent population reduces slowly towards extinction, and faster for longer 

duration of the control. The population goes extinct at the end of the planning horizon after 4 

consecutive months. Hence, these graphs clearly indicate that control for more than 4 months 

is not economic meaningful as more control means more control costs, but no further 

reduction in number of rats, and hence, no further reduction in crop damages. It is important 

to notice that the patterns in panel A and B are not concurrent, showing that the relation 

between numbers of rodents and economic benefit is not a trivial one. Notice also the high 

population variability.  
 
 
5.3 Other control strategies 

For all results presented so far we have applied rodent control during consecutive months and 

always during these months. However, the economic benefit of using pest control might be 

higher if we split the control months into two (or more) periods each year separated by at least 

one month. We tested this for two control periods each year with a total of 2 (1 + 1), 4 (2 + 2), 

6 (3 + 3) and 8 (4 + 4) months. For these simulations, the present-value profit (PV) were 

generally highest when rodent control was used during 3 months separated by at least 1 

month. Hence, we also tried all possible combinations of 3 (1+2), but also 4 (1+3) months 

separated with at least 1 month. The 20 most rewarding strategies of duration and timing of 

rodent control are presented in Table 1. As can be seen, combinations of 3-4 months control 

in the period before the start of the cropping season are still the most rewarding, together with 

a 2 months control in February and November, There are, however, no significant present-

value net profit differences between the 20 strategies shown in the table; all strategies fall 

within the range of 57% and 68% of the PV of the hypothetical case of no rodents at all (line 

one in Table 1, see also Figure 2). Still, compared to no control at all (the bottom line) there 

are clear differences. 

 

Table 1 about here 

 

We also investigated whether an upper or lower threshold value on precipitation or rodent 

density before applying poison could affect the sequence of the most economically rewarding 

strategies. The only way a threshold value improved some of the PV estimates, was if we 

applied control for 4 months or more with a very low threshold value on rodent density 

(threshold value = 5 animals/ha for 4 months, 10 animals/ha for 5 months or more). Such a 
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low population density is, however, hardly possible to estimate reliably; hence, this is not a 

very applicable strategy.  

 

The economic consequences of symptomatic treatment was also studied. As already indicated, 

today’s practice in Tanzania represents an ad-hoc approach, and typically poison control is 

applied when observed damage is high during planting season, or just before harvest. This 

practice was simulated by introducing density dependent control in March and July. Various 

threshold values were tried, and the median PV values fell within the interval 280.000 - 

305.000 Tsh when observing 100-200 rats per ha. Hence, these values are less than half of the 

most promising control practices reported in Figure 2 and Table 1. Under the present baseline 

values of prices and costs, these strategies were even worse than the option of no control at 

all. 

 

5.4 Variations in the maize price, costs and fertiliser use 

The above results were calculated for a fertilising intensity of Ft =40 kg/ha. We have also 

analysed what happens under two other fertilising scenarios; no fertiliser use at all, and 140 

kg/ha (see Figure A1). Since rodent demography is not directly dependent on crop production 

(cf. section 2.2), the rodent population dynamics is not affected by fertiliser use. Hence, for 

each control strategy, the simulated rodent densities are identical for each of these three 

fertiliser applications. Because of this one-way link between fertiliser and the bio-economy, 

the economic effect of shifting the yield function through variations in fertiliser use is 

straightforward, and hence, more fertiliser use will be economic rewarding as long at the 

value of the increased yield more than out-weights the additional cost of the fertiliser. For the 

baseline value of the crop price and fertiliser cost, it turns out that the profitability increases 

when more fertiliser is used. Consequently, all the PV’s in Figure 2A shift up more or less 

uniformly when the fertiliser use is increased from 40 kg/ha to 140 kg/ha while they shift 

down in the same manner when there is no fertilising at all. As Figure 3 demonstrates, the 

ranking of the most economic rewarding control strategies is therefore only modestly affected. 

However, unprofitable strategies may become profitable when increasing the fertiliser use, 

and profitable strategies may turn out to be unprofitable when not fertilising at all. 
 

Figure 3 about here 
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We have also studied what happens under different price and cost assumptions. A permanent 

negative shift in the producer price of maize, p, will generally make shorter duration of the 

control relatively more profitable. The intuitive basis for this result is straightforward as lower 

marginal income must be compensated by lower marginal cost (i.e., reduced duration of the 

control). On the other hand, the effect on the timing is quite modest. Table 2 demonstrates the 

results where the most economically rewarding strategies under each of the 12 consecutive 

months treatment are shown under different price and cost assumptions. Hence, compared to 

the base-line simulations where 4 and 5 consecutive months together with 1 month gave 

highest PV (see also Figure 2, except that duration above 5 and more months are omitted), 1 

month, 2 months and no control at all are the best duration when the maize price is halved. 

 
 Table 2 about here  
 

The economic conditions for the farmers may also be less favourable due to more expensive 

poison. A positive permanent shift in the price of the poison, w, also lead towards in the 

direction of shorter duration of the control being relatively more profitable. Hence, instead of 

4 months, 5 months and 1 month duration per year being the most economic rewarding 

strategies under the base-line assumptions, we find that doubling the poison price makes 

duration of 1 month, 2 months and no control the most economic rewarding strategies. Thus, 

more expensive poison means that more rats and a higher level of crop damage will be 

accepted in the optimal strategy. Doubling the fertiliser price, q, shifts down the profitability, 

but does not change the profitability ranking.  

 

The economic consequences of symptomatic treatment was also studied under shifting price 

and cost assumptions. All the time, the best practices compared to today’s practises of 

introducing density dependent control in March and July were typically doubled. Finally,     

we also studied the effects of reducing the planning horizon and making the problem more 

myopic by setting T=5 years. Generally, there are small changes taking place (not reported 

here).  

 

 

6. Discussion 
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Throughout this paper we have considered a rodent pest problem where the management is in 

the hand of a social planner and where the agricultural area can be quite large. The control 

problem is specified as timing and duration strategies where the dosage of the poison is kept 

fixed per month whenever poison is used (consistent with recent practice in Tanzania). The 

most economically profitable control period seems to be just before the planting season. The 

damage at planting accounts for such a large portion of the total losses due to rodents, that 

minimising the population during that short period is enough to reduce yield losses. 

Controlling for a longer period will reduce rodent populations at a time when they do not 

damage the crop anyhow, and due to the very high reproductive capacity of the rodents, the 

population will increase fast as soon as control operations are stopped, repressing any long 

term effects. The simulations, however, only indicate small profitability differences among 

various combinations of control months towards the start of the planting season. Although we 

have not valued environmental costs of the use of poison (see, e.g., Carson 1962) and negative 

impacts, if any, upon crop production are neglected, the small differences between the best 

strategies strongly suggests to opt for a strategy amongst these that use the least poison. 

Hence, taking environmental economic considerations into account, two months of control 

just before planting season, January and February, or eventually in November and February, 

seem to be the best overall strategy.  

 

These economically most rewarding strategies differ significantly from today’s practice of 

symptomatic treatment when heavy rodent damage is noticed. The economic threshold 

concept and the idea of adjusting the timing of pesticide use to pest density is and old one 

(Carlson and Wetzstein 1993), but works poorly here because of the high reproductive rate of 

the rats and the short period after sowing during which most of the damage is done. Hence, 

the present paper demonstrates that shifting from such practices to more mechanistic control 

strategies; that is, emphasising the calendar instead of the pest abundance, can substantially 

improve the economic conditions for the maize producing farmers in the present case of 

multimammate rats. The best practices compared to today’s symptomatic treatment will 

typically double the net economic benefit. The question of how to choose between and 

economic threshold model and a mechanistic control model is of general interest and should 

be examined further, but following our analysis it seems to be population growth 

characteristics of the pest rather than its taxonomic status that should drive that choice (see 

also Regev et al. 1976).  
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The economic viability of different control strategies is strongly related to the fertiliser use in 

the crop production, but the ranking of the most rewarding control strategies is only modestly 

affected. It is also important to notice that if no fertiliser is used, the economic reward of 

controlling the rodent population is small. Hence, if rodent control should make economic 

sense, it must be combined with fertilisation, simply because the yield without fertiliser will 

be too small to pay for control. The opposite seems also to be true as fertilisation has only 

modest economic effect unless it is combined with rodent control. Moreover, we find that 

permanent changes in prices and costs give effects that are more or less in line with intuition. 

A less valuable crop and higher poison cost make shorter duration of the control and hence, 

living with more rats and nuisance, relatively more profitable. On the other hand, the optimal 

timing (i.e., in which months to apply poison) is only modestly affected by changing prices 

and costs. Consequently, it seems that the optimal timing is more closely related to the 

ecology and the abundance of rats than prices and costs, while the economy plays a more 

important role when it comes to the optimal duration of the control. One reason for this may 

be that the damage effect is far more important during some parts of the year, e.g., just before 

planting.  

 

Throughout our simulations, we interpreted the pest control problem as taking place at the 

village level where an agricultural officer serves as the social planner. While it mostly will 

remain the individual farmer's decision to apply control on his fields, the agricultural officer 

indeed plays an important role. His advise will be very influential not only to farmers, but also 

in ensuring timely access to rodenticides; in village shops, shelf-life of these poisons is 

limited so usually only limited quantities are available locally. The social planning horizon is 

also relevant because in case of an outbreak coming through, the government will be required 

to organise costly emergency measures (Makundi et al. 1999). When making the problem 

more myopic through reduced planning horizon, however, we find that the results are only 

modestly influenced. For the more myopic African farmer, when neglecting externalities due 

to various control practices within the management area, the above findings therefore also 

basically hold. However, when interpreting the results at the farm level, it should also be 

noticed that subsistence farmers frequently face credit restrictions, and typically, for such 

farmers, there is cash only for seed (see, e.g., Dasgupta and Mäler (1995) for a general 

discussion). The implication is that some poison control strategies may be beneficial for 

farmers using no fertiliser while other strategies may be beneficial for farmers having cash for 

fertiliser and poison, the ‘capital-intensive’ farmers.  
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Models are only an approximation of how we conceive reality, and they are only as good as 

the assumptions on which they are based. Regarding our population model, the basic building 

block of the present analysis, two major assumptions do not hold in reality. The first one is 

that the model uses discrete time steps of one month; however, a lot can happen in a rodent 

population in one month. . Secondly, our model does not yet include immigration processes 

but it is obvious that these can play an important role, particularly when the densities after 

rodent control have become much lower than in the surrounding fields. In such cases, a 

population may even be capable of recovering from a rodenticide application in the course of 

a few weeks (see, e.g., Leirs et al. 1997b), thus reducing the efficacy of control actions 

considerably. Regarding the agricultural activities, our model does not yet include the 

common practice of replanting after rodent damage, sometimes in combination with 

rodenticide application, and thus partially remedying damage. Prices and costs are also kept 

fixed throughout the planning horizon, and the maize price is assumed to be the same in years 

with poor and good harvest. For all these reasons, the results should be interpreted very 

cautiously and the model is not yet ready to be confronted with farmers and taken into 

practice. However, the main finding of the above analysis, emphasise the calendar instead of 

the pest abundance when controlling the rats, will probably hold under more realistic 

assumptions and is clearly an application rule that is quite easy to implement. 
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Appendix 
The Ecology 
Table A1 summarises the demographic parameters in the ecological model. 
 
 Table A1 about here  
 
The specification of the demographic effect of the pest control equation (2) is problematic 
since it should include the effect of the rat abundance. Moreover, not discussed in the main 
text, it should also include the combined effects of natural and poison-induced mortality and 
the immediate effect of the latter on the former (through density-dependent mechanisms). 
Such information for a more detailed and realistic description of the control function is not yet 
available. We are collecting more detailed information about the control function, but for 
now, we have used the very specific function assuming that that the total mortality under 
application of rodenticides is always 0.90. 
 
The Economics 
Figure A1 gives the maize yield function (depending on rainfall and fertiliser use). The 
empirical evidence on fertiliser use is restricted, and data of fertiliser use beyond 140 kg per 
ha are lacking. 
 
 Figure A1 about here 
 
The parameters of the crop damage function during the planting season Dp

n=a+bNn/(c+Nn) are 
given in Table A2. The establishment of this function, based on a very detailed set of field 
data from Morogoro, Tanzania, is presented elsewhere (Mulungu et al. 2002). The crop 
damage function during the period just before harvesting Dh

n=dNn is based on the theoretical 
consideration that a small rodent on average has a daily food intake of approximately 10% of 
its body weight (Petrusewicz 1970). Since Mastomys natalensis rats weigh on average are 45 
g during the pre-harvesting period (Leirs 1985), since rodent damage to ripening maize cobs 
starts approximately 1 month before harvest and assuming that rats climbing the stalks spill or 
damage about the same amount as what they actually eat, the parameter d was set to be d=30 
days•4.5 g/day•2 = 270 g. The length of the maize growing season τ is 5 months from planting 
to harvesting, as common in Morogoro, Tanzania, with the locally used maize varieties. When 
applying crop damage function at planting or harvesting time, we always doubled the 
calculated rodent population size Nn since the model only represented the female part of the 
population. 
 
The price of the maize crop production, p, the per unit fertiliser price, q, and the per unit 
poison price, w, refer all to 1999 market prices in Morogoro. The price for the poison is based 
on a bromadiolone bait poison. The fixed cost K includes the costs for field preparation, seed 
material and maintenance and is estimated to be 10.000 Tsh per ha for a subsistence farmer, 
carrying out virtually all work with own family labour power for which we have included no 
opportunity cost. The parameter values used in the baseline simulations are given in Table 
A2. 

Table A2 about here 
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Figure legends 
Figure 1. Four examples of model runs. Panel A and B for different (random) rainfall series. 
Two different control strategies; no control and control applied once a year in February. 
 
Figure 2. Results when control applied for different number of months and various timing. 
The duration of the control in number of consecutive months along the horizontal axis (up to 
5 months). For each number of months applying rodent control (except 0) there are 12 
possible months when to start controlling. The first set of values along the vertical axis are for 
starting control in January, the second for starting in February, and so on until the last starting 
in December. Panel A; the median PV (with a planning horizon of 10 years from the 
beginning of control) with bold points, and the 95% range with vertical lines. The shaded area 
with maximum PV shows the median (95% range) in a hypothetical situation without rodents.  
Panel B; the number of animals per ha at the end of the planning horizon. Note, however, that 
for 4 months of pest control the rodent population do not always go completely extinct, but is 
not visible at the scale of the figure (<1 animal/ha). 
 
Figure 3. The interaction effect of fertiliser and consecutive duration of control up to 5 
months. The control strategies represented are the ones with timing giving the highest PV 
within each duration of control (cf. Figure 2). 
 
Figure A1. Maize yield functions, dependent on the amount of nitrogen-fertiliser applied and 
rainfall during the growing season (adopted from McDonagh et al. 1999). 
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Table 1  
Ranking of the 20 most economic rewarding control strategies given by timing and length (total number of 
months of the control). The hypothetical case of no rodents (upper line) and the case of no control (lower line) 
included as well. PV (in Tsh) is presented by the median and the lower (0.025) and upper (0.975) percentile for 
the 100 simulations performed for each strategy. c = consecutive months 
Rank Timing Length  

Median 
PV 

Lower 
 

Upper 
No rodents  1 017 164  903 556 1 145 799 
1 Jan, Feb - Nov 3 681 744 543 466 810 470 
2 Feb - Nov 2 666 459 556 871 812 710 
3 Feb - Oct, Nov 3 666 234 555 562 816 033 
4 Jan - Oct, Nov 3 654 459 525 340 806 269 
5 Feb - Nov, Dec 3 648 464 529 765 803 311 
6 Jan, Feb - Oct, Nov 4 637 847 518 648 772 004 
7 Sep - Nov, Dec 3 625 949 449 078 795 851 
8 Nov, Dec, Jan, Feb 4 (c) 622 630 478 324 741 145 
9 Jan, Feb - Oct 3 621 457 496 610 788 839 
10 Aug, Spe - Nov, Dec 4 616 728 497 419 755 186 
11 Sep, Oct, Nov, Dec 4 (c) 614 712 476 300 752 397 
12 Aug, Sep, Oct, Nov 4 (c) 611 053 483 100 749 886 
13 Oct, Nov, Dec, Jan 4 (c) 606 667 485 560 746 475 
14 Jul, Aug - Oct, Nov 4 605 362 478 341 740 140 
15 Sep, Oct - Dec, Ja 4 603 483 489 075 746 489 
16 Feb, Mar - Nov, Dec 4 600 332 465 492 727 482 
17 Feb, Mar - Oct, Nov 4 594 932 483 280 732 855 
18 Jan, Feb - Sep, Oct 4 590 364 488 483 746 194 
19 Jul, Aug - Nov, Dec  4 588 382 455 086 724 599 
20 Dec, Jan, Feb, Mar 4 (c) 574 708 441 271 703 753 
  0 282 360 190 534 377 130 
 



 

   

29

 

 
Table 2 
Ranking of the most economic rewarding control strategies (median PV) 
by means of consecutive duration in total number of months of control.  
Various price and cost assumptions (Tsh per kg). Baseline values: w =6500,  
q =220, p =100. 
  

 Price poison (w)  
6500 

 
6500 

 
13000 

 
13000 

 Price fertiliser (q)   
220 

 
440 

 
220 

 
440 

Net price 
maize (p) 

100 4 
5 
1 
2 
3 
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7 
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0 
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Table A1 
 Monthly demographic parameter values for each of the combined rainfall-density regimes in the population 
dynamics model. The values for s0n and s0w are arbitrarily set, the other values were obtained from demographic 
analysis (from Leirs et al. 1997a).  
Regime definition        
  Rainfall in the past 3 months (mm) Vn <200 <200 200-300 200-300 >300 >300 
  Density per ha N(e)

n >150 <150 >150 <150 >150 <150 
Demographic rates        
  Net reproductive rate B(Vn, N(e)

n) 1.29 5.32 0.30 6.64 4.69 5.82 
  Juvenile survival in the nest s0n 1.0 1.0 1.0 1.0 1.0 1.0 
  Juvenile survival after weaning s0w 0.5 0.5 0.5 0.5 0.5 0.5 
  Subadult survival S1(Vn, N(e)

n) 0.629 0.513 0.682 0.617 0.678 0.595 
  Subadult maturation ψ(Vn, N(e)

n) 0.000 0.062 0.683 0.524 0.155 1.000 
  Adult survival S2(Vn, N(e)

n) 0.583 0.650 0.513 0.602 0.505 0.858 
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Table A2  
Baseline values prices and costs (1999-prices Morogoro, Tanzania),damage function and other parameters 
Description Parameter Default value 
Economic parameters   
     Net price maize p 100 Tsh/kg 
     Price fertiliser q 220 Tsh/kg 
     Price poison w 6500 Tsh/kg 
     Fixed costs per ha maize field K 10 000 Tsh/ha 
     Planning horizon  T 10 Yrs 
    Discount rate δ 0.07 
Damage at planting   
     Background death rate of seedlings a 0.0827 
     Maximum proportion of seedlings damaged b 0.8339 
     Rodent population size at half of maximum damage c 36.068 
Damage before harvesting   
     Amount damaged by 1 multimammate rat during 30 days d 0.270 kg 
Other   
     Fertiliser per ha F 40 kg 
     Amount of poison used per ha X 2 kg 
   
   
 
 

 
 

 

 

 

 

 

 

 

 

 

 



 
 
 

 

 

Figure 1. Skonhoft et al.
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Figure 2. Skonhoft et al.
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Figure 3. Skonhoft et al. 
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Figure A1. Skonhoft et al. 


