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Abstract. In static single equation cointegration regression models
the OLS estimator will have a non-standard distribution unless regressors are
strictly exogenous. In the literature a number of estimators have been sug-
gested to deal with this problem, especially by the use of semi-nonparametric
estimators. Theoretically ideal instruments can be defined to ensure a limiting
Gaussian distribution of IV estimators, but unfortunately such instruments are
unlikely to be found in real data. In the present paper we suggest an IV esti-
mator where the Hodrick-Prescott filtered trends are used as instruments for
the regressors in cointegrating regressions. These instruments are almost ideal
and simulations show that the IV estimator using such instruments alleviate
the endogeneity problem extremely well in both finite and large samples.
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1. Introduction
It is well known that non-stationary, integrated, time series generally give rise to
estimators and test statistics having non-standard distributions, that is, distributions
that will not be limiting Gaussian distributions. Estimating cointegrating regressions,
in particular, has generated considerable interest ever since the seminal contributions
of Engle and Granger (1987). Even though their static estimator is super-consistent
asymptotically, it was early noted (Banerjee et al., 1986) that it could be biased in
finite samples. Furthermore, the distribution of the parameters are non-Gaussian
unless the regressors are strictly exogenous, invalidating hypothesis testing in the
usual manner by comparing t-ratios with the Gaussian distribution.
Many alternative estimators have been proposed as solutions to these problems.

They generally fall into two categories: single equation methods with parametric or
non-parametric corrections, or system estimators modelling the endogeneity paramet-
rically. Examples of the former category include Phillips and Hansen (1990), Phillips
and Loretan (1991), Saikkonen (1991), Stock (1987), Stock and Watson (1993), Park
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nar.bardsen@svt.ntnu.no. Niels Haldrup: Department of Economics, University of Aarhus, Building
1322, DK-8000 Aarhus C, Denmark. e-mail: nhaldrup@econ.au.dk
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(1992), and Phillips (2006). Examples of the latter category include Stock and Wat-
son (1988) and the Johansen (1988) full information maximum likelihood method.
In this paper we propose yet another estimator based on instrumental variables.

The motivation for the estimator is twofold: first, existing Monte-Carlo studies
(Banerjee et al., 1993; Stock and Watson, 1993; Gonzalo, 1994; Haug, 1996) sug-
gest that none of the existing single-equation methods seem to be superior–not even
satisfactory. Second, even though the full information method of Johansen is appeal-
ing both from Monte-Carlo evidence as well as from a methodological perspective,
the empirical implementation may entail difficulties (Stock and Watson, 1993). De-
pending upon the problem at hand, obtaining a satisfactory representation for all
endogenous variables can be challenging.
An alternative would therefore be to turn to limited information methods like

instrumental variable estimators, recognizing that only some of the cointegrating
vectors are likely to be modelled with any success. This is the approach taken by
Phillips and Hansen (1990). However, this brings up the question of finding good
instruments. Any instrument has got to be cointegrated with the variable in question
in the present case, in addition to being uncorrelated with the system variables.
This seems to bring the argument full circle: one is back to the uncertain task of
modelling a system of cointegrating relationships of varying quality, unless one can
ensure the quality of the instruments. In their follow up simulation study Hansen
and Phillips (1990) recognize this problem by using spurious instruments in addition
to ideal instruments which unfortunately are unlikely to be found in real data. The
use of spurious or irrelevant instruments has recently attracted some attention, see
Phillips (2006), who shows how (irrelevant) deterministically trending instruments
can be used to produce asymptotically efficient estimates of a cointegrated system.
The approach we take in this paper is instead one of generating relevant instru-

ments, i.e. instruments that almost fulfill both the necessary conditions, and then
use a standard instrumental variable estimator to obtain the cointegrating relation-
ships of interest. Trends generated from trend-cycle decompositions based on e.g.
the Hodrick-Prescott filter serves the role of being valid instruments. Monte-Carlo
evidence suggests that the approach works surprisingly well in finite samples. In par-
ticular, the finite sample distributions of the t-ratios in most cases are very close to
the standard normal distribution, thereby allowing standard inference.

2. Some preliminaries
Following Phillips and Durlauf (1986) and Davidson (2000), consider the model

y1t = γ0y2t + u1t

∆y2t = u2t

where u1t is a scalar residual and vt is of dimension (m− 1) × 1. Conformably
with this, define ηt = (u1t,u02t)

0 of dimension m× 1 and consider the sequential sum
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St =
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+
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Under regularity conditions we have that
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¶
i.e. a vector Brownian motion process defined on the unit interval [0, 1].
The continuous mapping theorem states that
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Note that

Σ21 = lim
n→∞
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nX
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Estimation by OLS:
Consider the static least squares regression

y1t = bγ0y2t + bu1t
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Given the above results and the continuous mapping theorem it follows that

n(bγ − γ) =

Ã
1

n2

nX
t=1

y2ty
0
2t

!−1
1

n

nX
t=1

y2tu1t

d→
µZ 1

0

B2B
0
2dr

¶−1µZ 1

0

B2dB1 +Σ21 +Λ21

¶
This distribution is not a standard Gaussian distribution and hence we cannot

conduct standard inference based on this.

Mixed Gaussianity.
If it occurs that y2t is strictly exogenous, then Σ21 = Λ21 = 0 and B1 and B2

are uncorrelated. In this case the above result is modified and the relevant limiting
distribution is given by (see e.g. Davidson, 2000)

n(bγ − γ)
d→
Z 1

0

N(0,ω11G
−1)dP (G)

where

G =

Z 1

0

B2B
0
2dr

This distribution is known as a mixture of normals, or mixed Gaussian distribution,
that is, conditional on B2 the resulting distribution is normal. For a fixed vector
a 6= 0 (for instance the i ’th column of the identity matrix) it holds that

n
a0(bγ − γ)√
ω11a0G−1a

d→ N(0, 1)

Note however, that this assumes ω11 to be known. If u1t is serially uncorrelated there
are no problems and ω11 = σ11 can be estimated in a standard fashion. However, in
the presence of autocorrelation a Newey-West based estimator can be adopted in the
estimation of ω11.
The main requirement for the mixed gaussianity result to apply is that the pa-

rameters Σ21 and Λ21 vanish and that B1 and B2 are uncorrelated. The motivation
underlying the present paper is to design the statistical model in such a way that
these nuisance parameters are annihilated and hence subsequently an approximate
limiting mixed Gaussian distribution can be achieved. Our idea is to consider an
instrumental variables estimator of the cointegrating relation where the instruments
are chosen as appropriately filtered series.

3. An IV estimator of cointegrating relations
Phillips and Hansen (1990) and Hansen and Phillips (1990) examine the use of in-
strumental variables in the estimation of parameters of cointegrating relations. A
number of cases are considered, e.g. standard IV estimation using instruments that
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are cointegrated with the variables they are intended to instrument as well as spu-
rious stochastic and deterministic instruments being spurious in the sense that they
have no structural relationship to the variables being instrumented. Interestingly,
the IV estimator will be consistent irrespective of the properties of the instruments
being spurious or non-spurious, a beneficial artifact of spurious regression theory1.
Nonetheless, standard Gaussian limiting distributions when testing hypotheses on
model parameters do not generally apply unless some bias correction or fully modi-
fied correction is made of the estimators. However, one particular case is an exception
namely when instruments are chosen to be cointegrated with the explanatory vari-
ables and are uncorrelated with the system variables. In this case instruments are
ideal and a mixed Gaussian distribution results.
To see this, assume that instruments can be found for each element in the y2t-

vector and denote these z2t. The instruments should be chosen such that the single
rows in y2t cointegrate with the associated row in z2t and such that the instruments
chosen are uncorrelated with the error term u1t. Hence we have as many instruments
as we have variables to instrument.
The model to be estimated reads

y1t = eγy2t + eu1t
where "∼ ” signifies IV estimates.
The IV estimator can be written

eγ = Ã nX
t=1

z2ty
0
2t

!−1 nX
t=1

z2ty1t.

from which it follows that

n (eγ − γ) =

Ã
1

n2

nX
t=1

z2ty
0
2t

!−1
1

n

nX
t=1

z2tu1t

Now, define
z2t = y2t − v2t, (1)

where v2t is a stationary (cyclical) component of the y2t series and v2t is orthogonal
to the increments of z2t and u1t.

1In a recent paper Phillips (2006) exploits this feature to develop an asymptotically efficient
estimator of cointegrated systems based on irrelevant deterministically trending instruments.
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It follows that
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And from the continous mapping theorem we have that

n (eγ − γ) =

Ã
1
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0
2t
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n

nX
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which mimics the case of strictly exogenous regressors and mixed Gaussianity.
It also follows straightforwardly that

n
a0(bγ − γ)√
ω11a0G−1a

d→ N(0, 1)

When a is a column from the identify matrix, this is just a t−test, given, of course,
that the parameter ω11 is estimated. If u1t has no autocorrelation ω11 is estimated
using the estimator s2 = 1

n

Pn
t=1 eu21t. If there is autocorrelation a Newey-West type

estimator is needed.
Hansen and Phillips (1990) argue that in the above case z2t is indeed an ideal

instrument for y2t because these cointegrate and yet z2t is not contaminated with u1t
as is y2t. They also argue that this case unfortunately is idealized in actual applica-
tions because it can be hard to find instruments z2t satisfying the required properties.
However, we will argue that indeed this criticism is perhaps not too big a practical
problem since filtered y2t series, using the decomposition y2t = z2t+v2t can be easily
constructed. For instance, structural time series models, see e.g. Harvey (1989), are
founded on such decompositions of time series where in the present case the multivari-
ate random walk component z2t will serve as instruments. But the series can also be
filtered otherwise by the Hodrick-Prescott filter say where the trend components will
serve as instruments and can be straightforwardly extracted. Instruments created in
this fashion are almost ideal in the sense that the instruments z2t cointegrate with
y2t and are approximately uncorrelated with both v2t and u1t. Nothing guarantees
exact uncorrelatedness of these terms. However, the filtered trend series, i.e. the
instruments, will clearly play the role of reducing the correlation compared to the
non-filtered series and hence will annihilate the endogeneity which was the source of
the problem.
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3.1. Choice of Instruments. In the previous section we suggested to use in-
struments for the elements in y2t that cointegrate with y2t and which are serially
independent of u1t. We further required that instruments z2t satisfy y2t = z2t + v2t
with ∆z2t being almost orthogonal to v2t and u1t. Such decompositions can be under-
taken in a number of ways. Here we advocate for using the Hodrick-Prescott filtered
y2t series as instruments. In so doing, z2t becomes the non-stationary secular compo-
nent of the series which v2t is the stationary cyclical component. The HP detrending
method is based on the assumption that the row elements of z2t and v2t are statisti-
cally independent. An estimate of the filtered series can be found as the solution to
the convex optimization problem

min
{z2it}nt=1

(
nX
t=1

(y2it − z2it)
2 + λ

n−1X
t=2

[(z2it+1 − z2it)− (z2it − z2it−1)]
2

)
where λ is a smoothing parameter which regulates the trade-off between the goodness
of fit and the smoothness of the HP-trend series. Typically, λ = 1600 is used for quar-
terly data whereas λ = 129,600 and 6.25 for monthly and annual data, respectively.

4. Simulations
The simulations reported in this section will investigate the performance of our pro-
posed estimator in small and larger samples, consisting of 50 and 500 observations.
In all cases the first generated 100 observations were discarded, to avoid dependence
upon starting values. The data-generating process we use is taken from Phillips and
Loretan (1991), providing a convenient benchmark. The model is

y1t = α+ γy2t + u1t

∆y2t = u2t, t = 1, . . . , T∙
u1t
u2t

¸
= ut = εt + θεt−1, εt ≡ iid N (0,Σ) ,

where

α = 0, γ = 2, T = 50, 500

θ =

∙
0.3 0.4
θ21 0.6

¸
, Σ =

∙
1 σ21
σ21 1

¸
,

and where θ21 and σ21 are varied over the values

θ21 = {0.8, 0.4, 0.0,−0.8}
σ21 = {−0.85,−0.5, 0.5}

The estimators considered are OLS

y1t = α̂+ γ̂y2t + û1t
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and filtered IV
y1t = α̃+ γ̃y2t + ũ1t,

where z3t = HP (y2t), the Hodrick-Prescott filtered trend of y2t, is used as an in-
strument for y2t. The IV-estimators are labelled {IV 1, IV 2, IV 3} corresponding to
smoothing parameter λ = {6.25, 1600, 129600}. The computed estimates are, with
variables expressed in deviations from means, for OLS:

γ̂ =

PT
t=1 y1ty2tPT
t=1 y

2
2t

t̂ =
γ̂ − γ

\se (γ̂)
,

where\se (γ̂) =

sPT
t=1 (y1t − γ̂y2t)

2

(T − 2)
PT

t=1 y
2
2t

.

and for IV:

γ̃ =

PT
t=1 z2ty1tPT
t=1 z2ty2t

t̃ =
γ̃ − γ

\se (γ̃)
,

where\se (γ̃) =

vuuutPT
t=1 (y1t − γ̃y2t)

2PT
t=1 z

2
2t

T
³PT

t=1 z2ty2t
´2 .

In the simulations reported, the standard errors for both estimators are adjusted
using a Newey and West (1987) autocovariance correction. However, simulations
without corrections produced very similar results, providing support for the asymp-
totic theory.

5. Distribution of t-ratios
To save space, we will focus on the distributions of the t-ratios. The qualitative
results for the parameter biaseses are similar and are available upon request.
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Figure 1: Distributions of t-ratios with σ21 = −0.85, using 50 observations.
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Figure 2: Distributions of t-ratios with σ21 = −0.5, using 50 observations.

5.1. Small sample properties: 50 observations. The results using 50 obser-
vations are illustrated in Figures 1—3, containing the estimated densities, and sum-
marized in the percentile table 1. The results for OLS are comparable to the ones
reported by Phillips and Loretan (1991), with negative biases in most cases. The
problems of OLS are most substantial in the case of negative covariance with positive
moving average errors. Turning to our proposed IV estimator, the simulations are
very encouraging. The estimator provides very good corrections. As demonstrated
in the graphs, the small-sample distributions are quite similar to the predicted as-
ymptotic normality. As regards the relative performance of the different instruments,
examination of table 1 reveals a pervasive pattern of the results improving with the
degree of smoothing. The case of λ = 129600, yields close to normal critical values in
nearly all instances. In general, the simulations indicate that this simple estimator
performs quite well, especially in comparison to supposedly more optimal procedures,
as reported in Phillips and Hansen (1990); Phillips and Loretan (1991); Stock and
Watson (1993); Haug (1996).
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Figure 3: Distributions of t-ratios with σ21 = 0.5, using 50 observations.

However, the sample can also become so small that the simulations become mis-
leading. When doing simulations there is the possibility of an estimator performing
well simply because the consequences of the error processes are not allowed to show
themselves in too small samples. To investigate this argument further, we therefore
conduct another simulation, using 500 observations. Although our data-generating
process have been used in several other studies, cited above, the larger-sample prop-
erties of this particular data-generating process have not been investigated before, to
our knowledge.
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Table 1: Percentiles of t-ratios using 50 observations. IV1 is using λ = 6.25; IV2 is
using λ = 1600; IV3 is using λ = 129600;

2.5% 5% 50% 95% 97.5% 2.5% 5% 50% 95% 97.5%
σ21 = −0.85

θ21 = .8 θ = .4
OLS -3.60 -3.16 -1.21 0.54 0.93 -3.63 -3.17 -1.22 0.53 0.93
IV 1 -2.42 -2.02 -0.30 1.34 1.77 -2.45 -2.05 -0.3 1.34 1.76
IV 2 -2.19 -1.83 -0.08 1.61 1.96 -2.26 -1.84 -0.08 1.61 1.97
IV 3 -2.0 -1.69 -0.02 1.57 1.89 -2.02 -1.71 -0.02 1.58 1.89

θ21 = 0 θ21 = −.8
OLS -3.52 -3.1 -1.08 0.74 1.12 -3.24 -2.76 -0.70 1.18 1.58
IV 1 -2,52 -2.09 -0.26 1.48 1.9 -2.62 -2.14 -0.16 1.73 2.11
IV 2 -2.29 -1.87 -0.06 1.66 2.04 -2.39 -1.99 -0.02 1.81 2.21
IV 3 -2.05 -1.74 0.0 1.60 1.91 -2.10 -1.76 0.0 1.65 1.99

σ21 = −0.5
θ21 = .8 θ21 = .4

OLS -2.78 -2.33 -0.33 1.57 2.0 -2.88 -2.44 -0.42 1.48 1.88
IV1 -2.48 -2.03 -0.08 1.86 2.28 -2.5 -2.06 -0.1 1.83 2.28
IV2 -2.32 -1.91 -0.01 1.89 2.27 -2.32 -1.91 -0.01 1.84 2.27
IV3 -2.03 -1.71 -0.02 1.69 2.04 -2.32 -1.91 -0.01 1.84 2.27

θ21 = 0 θ21 = −.8
OLS -2.92 -2.46 -0.48 1.43 1.84 -2.81 -2.38 -0.42 1.47 1.93
IV1 -2.53 -2.06 -0.12 1.82 2.22 -2.52 -2.05 -0.1 1.84 2.28
IV2 -2.35 -1.92 -0.03 1.87 2.25 -2.36 -1.96 -0.03 1.85 2.24
IV3 -2.08 -1.74 -0.01 1.70 2.04 -2.06 -1.72 -0.01 1.68 2.02

σ21 = 0.5
θ21 = .8 θ21 = .4

OLS -1.02 -0.66 1.12 3.08 3.5 -1.01 -0.64 1.11 3.1 3.56
IV1 -1.8 -1.38 0.28 2.07 2.54 -1.77 -1.4 0.28 2.11 2.53
IV2 -2.0 -1.62 0.08 1.91 2.3 -1.99 -1.62 0.07 1.93 2.33
IV3 -1.88 -1.6 0.02 1.76 2.13 -1.90 -1.58 0.02 1.76 2.14

θ21 = 0 θ21 = −.8
OLS -1.11 -0.72 1.03 3.01 3.49 -1.79 -1.38 0.5 2.55 2.96
IV1 -1.84 -1.45 0.26 2.09 2.52 -2.17 -1.8 0.14 2.14 2.58
IV2 -2.03 -1.65 0.09 1.91 2.34 -2.17 -1.82 0.03 1.98 2.37
IV3 -1.87 -1.59 0.03 1.75 2.1 -1.99 -1.66 0.04 1.75 2.09

5.2. Large sample properties: 500 observations. To control for the effects of
the autocovariance structure, and the implied Newey-West corrections, we first focus
on the effect of endogeneity alone. We report the results of the estimators when the
data-generating process contains no autocorrelation in the errors induced by moving
average processes.
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Figure 4: Distribution of t-ratios with θ = 0, using 500 observations.

Without moving average errors: θ = 0. As shown in figure 4, the results
reflect the asymptotic theory very clearly. Without any endogeneity, σ21 = 0, nor-
mality is reproduced with all estimators. In particular the case of normality of OLS,
as well as IV, is clearly shown in the lower left panel of figure 4. In most cases the
IV-estimators provided a very good correction approximation to gaussian inference,
with the correction in the right direction in all cases. Except for the case of negative
covariance σ21 = −0.85, the simulated distributions are practically indistinguishable
from the standard normal. The percentiles are reported in table 3 and summarize
the impressions of figure 4. The case of strict exogeneity, σ21 = 0, gives normality for
all estimators–as they should. With endogeneity, the IV-estimators gives good cor-
rections with reasonable approximations to normality, the approximations generally
improving with the smoothness of the instrument.



A Gaussian IV estimator of cointegrating relations 14

Table 2: Percentiles of t-ratios using 500 observations and no moving average
processes, so θ = 0. IV1 is using λ = 6.25; IV2 is using λ = 1600; IV3 is using
λ = 129600;

2.5% 5% 50% 95% 97.5% 2.5% 5% 50% 95% 97.5%
σ21 = −.85 σ21 = −.5

OLS -3.02 -2.76 -1.31 0.19 0.51 -2.66 -2.34 -0.78 0.82 1.12
IV1 -1.76 -1.53 -0.32 0.95 1.24 -2.00 -1.70 -0.19 1.32 1.62
IV2 -1.55 -1.29 -0.08 1.16 1.42 -1.87 -1.56 -0.05 1.46 1.77
IV3 -1.53 -1.29 -0.03 1.23 1.51 -1.85 -1.54 -0.02 1.48 1.82

σ21 = 0 σ21 = .5
OLS -1.96 -1.66 0.01 1.62 1.93 -1.11 -0.80 0.77 2.36 2.64
IV1 -1.96 -1.66 0.01 1.62 1.95 -1.64 -1.34 0.17 1.68 1.96
IV2 -1.97 -1.67 0.00 1.62 1.94 -1.77 -1.46 0.04 1.55 1.85
IV3 -1.96 -1.66 -0.01 1.64 1.98 -1.79 -1.50 0.02 1.55 1.83
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Figure 5: Distribution of t-ratios with σ21 = −0.85, using 500 observations.
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Figure 6: Distribution of t-ratios with σ21 = −0.5, using 500 observations.

5.3. With moving average errors: θ 6= 0. In the presence of moving aver-
age errors, the IV-estimators are still always correcting in the right direction, ex-
cept in the case of negative covariance and negative moving average processes σ21 =
{−0.85,−0.5} and θ21 = −0.8. In these cases the OLS-estimator produces little bias
in the t-ratios,while the IV-estimators produce negatively biased inference–as shown
in the lower right panels of figures 5—6 and in table 3. The general impression, how-
ever is that with a bigger sample, the effects of moving average processes are more
pronounced–as conjectured earlier.2

2Preliminary experiments, however, shows that other estimators like fully modified Phillips
Hansen, Phillips & Loretan and Johansen produced similar biases.
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Figure 7: Distribution of t-ratios with σ21 = 0.5, using 500 observations.
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Table 3: Percentiles of t-ratios using 500 observations. IV1 is using λ = 6.25; IV2 is
using λ = 1600; IV3 is using λ = 129600;

2.5% 5% 50% 95% 97.5% 2.5% 5% 50% 95% 97.5%
σ21 = −0.85

θ21 = .8 θ = .4
OLS -2.99 -2.69 -1.24 0.24 0.56 -2.87 -2.53 -0.91 0.70 1.04
IV 1 -2.02 -1.73 -0.37 0.96 1.26 -1.80 -1.51 -0.11 1.30 1.62
IV 2 -1.82 -1.54 0.17 1.17 1.47 -1.59 -1.31 0.08 1.48 1.79
IV 3 -1.80 -1.55 -0.14 1.23 1.53 -1.57 -1.27 0.14 1.55 1.82

θ21 = 0 θ21 = −.8
OLS -2.66 -2.26 -0.56 1.08 1.39 -2.18 -1.82 -0.07 1.55 1.87
IV 1 -1.65 -1.34 0.11 1.61 1.89 -1.55 -1.22 0.39 1.92 2.20
IV 2 -1.43 -1.15 0.29 1.73 2.05 -1.37 -1.09 0.51 2.00 2.27
IV 3 -1.41 -1.10 0.35 1.80 2.09 -1.30 -1.02 0.57 2.04 2.32

σ21 = −0.5
θ21 = .8 θ21 = .4

OLS -2.08 2.44 —0.46 1.17 1.50 -2.36 -2.00 -0.30 1.39 1.72
IV1 -2.20 -1.84 -0.23 1.40 1.72 -2.03 -1.67 -0.02 1.66 1.96
IV2 -2.13 -1.80 -0.16 1.46 1.78 -1.95 -1.60 0.05 1.74 2.04
IV3 -2.10 -1.82 -0.16 1.45 1.80 -1.91 -1.60 0.07 1.76 2.05

θ21 = 0 θ21 = −.8
OLS -2.28 -1.90 -0.13 1.61 1.95 -1.98 -1.62 0.19 1.90 2.22
IV1 -1.91 -1.53 0.17 1.87 2.20 -1.66 -1.28 0.47 2.12 2.44
IV2 -1.80 -1.44 0.26 1.95 2.28 -1.57 -1.18 0.55 2.18 2.48
IV3 -1.75 -1.39 0.29 1.96 2.29 -1.44 -1.10 0.59 2.19 2.50

σ21 = 0.5
θ21 = .8 θ21 = .4

OLS -1.32 -0.97 0.78 2.46 2.80 -1.21 -0.86 0.90 2.60 2.91
IV1 -1.83 -1.50 0.04 1.55 1.86 -1.71 -1.41 0.17 1.71 2.00
IV2 -1.95 -1.64 -0.14 1.39 1.66 -1.85 -1.55 -0.02 1.56 1.83
IV3 -2.02 -1.69 -0.19 1.34 1.66 -1.90 -1.59 -0.05 1.52 1.82

θ21 = 0 θ21 = −.8
OLS -1.12 -0.77 0.98 2.68 2.99 -1.12 -0.81 0.96 2.67 3.02
IV1 -1.62 -1.31 0.32 1.92 2.21 -1.51 -1.16 0.60 2.37 2.69
IV2 -1.77 -1.44 0.16 1.78 2.08 -1.57 -1.22 0.52 2.29 2.62
IV3 -1.82 -1.49 0.13 1.77 2.05 -1.49 -1.17 0.55 2.28 2.61

6. Conclusions
In static single equation cointegration regression models the OLS estimator will have
a non-standard distribution unless regressors are strictly exogenous. In the literature
a number of estimators have been suggested to deal with this problem especially by
the use of semi-nonparametric estimators. In the present paper we suggest an IV
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estimator where the Hodrick-Prescott filtered trends are used as instruments for the
regressors. As a consequence a limiting gaussian distribution characterizes the es-
timators. Simulations are used to examine the properties of the estimator in finite
samples. The results so far are very encouraging, both in small and larger sam-
ples. Suggestions for future research are to investigate instruments based on other
trend cycle decompositions as well as to investigate dynamic representations of the
estimator.

References
Banerjee, A., J. J. Dolado, J. W. Galbraith and D. F. Hendry (1993). Co-integration,
Error Correction and the Econometric Analysis of Non-stationary Data. Oxford
University Press, Oxford.

Banerjee, A., J. J. Dolado, D. F. Hendry and G. W. Smith (1986). Exploring Equi-
librium Relationships in Econometrics through Static Models: some Monte Carlo
Evidence. Oxford Bulletin of Economics and Statistics, 48 , 253—277.

Davidson, J. (2000). Econometric Theory. Blackwell, Oxford.

Engle, R. F. and C. W. J. Granger (1987). Co-integration and Error Correction:
Representation, Estimation, and Testing. Econometrica, 55 , 251—276.

Gonzalo, J. (1994). Five Alternative Methods of Estimating Long Run Equilibrium
Relationships. Journal of Econometrics, 60 , 1—31.

Hansen, B. E. and P. C. B. Phillips (1990). Estimation and Inference in Models of
Cointegration: A Simulation Study. In Advances in Econometrics, vol. 8, 225—48.
JAI Press Inc.

Harvey, A. (1989). Forecasting. Structural Time Series and the Kalman Filter . Cam-
bridge University Press, Cambridge.

Haug, A. (1996). Tests for Cointegration: A Monte Carlo Comparison. Journal of
Econometrics, 71 , 81—115.

Johansen, S. (1988). Statistical Analysis of Cointegration Vectors. Journal of Eco-
nomic Dynamics and Control , 12 , 231—254.

Newey, W. K. and K. D. West (1987). A simple positive semi-definite, heteroskedas-
ticity and autocorrelation consistent covariance matrix. Econometrica, 55 , 703—8.

Park, J. Y. (1992). Canonical Cointegrating Regressions. Econometrica, 60 , 119—43.

Phillips, P. C. B. (2006). Optimal estimation of cointegrated systems with irrelevant
instruments. Discussion Paper 1547, Cowles Foundation for Research in Economics,
Yale University.



A Gaussian IV estimator of cointegrating relations 19

Phillips, P. C. B. and S. Durlauf (1986). Multiple Time Series Regression with Inte-
grated Processes. Review of Economic Studies, 53 , 473—95.

Phillips, P. C. B. and B. E. Hansen (1990). Statistical Inference in Instrumental
Variables Regression with I(1) Processes. The Review of Economic Studies, 57 ,
99—125.

Phillips, P. C. B. and M. Loretan (1991). Estimating Long Run Economic Equilibria.
Review of Economic Studies, 58 , 407—436.

Saikkonen, P. (1991). Asymptotically Efficient Estimation of Cointegrating Regres-
sions. Econometric Theory, 7 , 1—21.

Stock, J. and M. Watson (1988). Testing for Common Trends. Journal of the Amer-
ican Statistical Association, 83 , 1097—1107.

Stock, J. and M. W. Watson (1993). A Simple Estimator of Cointegrating Vectors in
Higher Order Integrated Systems. Econometrica, 61 , 783—820.

Stock, J. H. (1987). Asymptotic Properties of Least Squares Estimators of Cointe-
grating Vectors. Econometrica, 55 , 1035—1056.




