
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Anders Vatland

Wireless M-Bus communication
between equipment from different
vendors

Trådløs M-Bus kommunikasjon mellom utstyr fra
forskjellige leverandører

Master’s thesis in Cybernetics and Robotics

Supervisor: Geir Mathisen

March 2020

Anders Vatland

Wireless M-Bus communication
between equipment from different
vendors

Trådløs M-Bus kommunikasjon mellom utstyr fra
forskjellige leverandører

Master’s thesis in Cybernetics and Robotics
Supervisor: Geir Mathisen
March 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

 Side 1 av 1

NTNU Faculty of Information Technology
Norwegian University of and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

MASTER THESIS DESCRIPTION

Candidate: Anders Vatland

Course: TTK4900 Engineering Cybernetics

Thesis title (Norwegian) Trådløs M-Bus kommunikasjon mellom utstyr fra
forskjellige leverandører

Thesis title (English): Wireless M-Bus communication between equipment
from different vendors

Thesis desctiption: Fresh tap water is regarded as a limited resource, which is delivered to the

end users via a network of pipes, a critical infrastructure. This infrastructure has a very varying

condition, with from time to time leakages, penetration of contamination and line breaks. In

order to achieve information of the flow of water in the tubes, we will gather information from

the end users water meters along the water tubes. The modern water meters are using wireless

M-Bus (wM-Bus) for communication, and we intend to remotely read these meters in near real

time.

The objective of this thesis will be to use a general wM-Bus kit for reading measurements

from a commercial meter.

The tasks will be:

1. Conduct a litterary study concerning wM-Bus and remotely reading of meters.

2. Suggest and investigate test setups for remotely reading of commercial wM-

Bus meters.

3. As far as time permits, implement and test out a system for remotely reading of

commercial wM-Bus meters.

Start date: August 28th, 2019

Due date: Mars 16th, 2020

Thesis performed at: Department of Engineering Cybernetics

Supervisor: Professor Geir Mathisen, Dept. of Eng. Cybernetics

-

Abstract

Large amounts of water are lost due to pipe-breaks, contamination, and leakages in the
water supply network. Modern utility meters may be used to keep track of the state of
the network, and to predict equipment failure. These meters use Wireless M-Bus, a field
proven standard, to communicate with data collectors. However, the standard has been left
flexible in order to suit regulations across regions, which may introduce variations across
solutions.

The following thesis investigates the use of equipment from different vendors, by imple-
menting and testing a general WM-Bus kit in order to receive telegrams from a commercial
meter. Several setups were implemented with the purpose of verifying that the equipment
functioned as intended, and to test and experiment with different configurations.

The results show that the proposed system was unable to receive telegrams from a com-
mercial utility meter, due to problem with the WM-Bus mode used. An explanation was
found, showing that the software used was inoperable with the commercial meter.

The thesis concludes that the proposed system is not eligible for reception of telegrams
from the commercial meter, but shows great promises of being able to with specific changes
to the software stack. A proposal for a promising configuration of the system has been
given, based on the experiences from the demonstration project.

i

Sammendrag

Rørbrudd, forurensing og lekkasje er årsaker til store tap av vann i vannforsyningsnettet.
Feilene kan derimot bli oppdaget ved bruk av moderne målere som forutser feilene før
de inntreffer. Disse målerne kan bruke Trådløs M-Bus, som er en hyppig brukt og testet
standard for kommunikasjon med datainnsamlere. På grunn av at standarden skal passe til
forskjellige land og regioner har den blitt laget med stor fleksibilitet. Denne fleksibiliteten
kan medføre problematikk når utstyr skal brukes sammen.

Denne masteroppgaven undersøker sameksistens av utstyr fra forskjellige leverandører,
ved å implementere og teste en generell WM-Bus datainnsamler for å motta telegrammer
fra en kommersiell m. Flere oppsett ble implementert for å verifisere at utstyret fungerte
som det skulle, og for å teste og eksperimentere med forskjellige konfigurasjoner.

Resultatene viser at det foreslåtte systemet ikke klarte å motta telegrammer fra måleren.
Forklaringen p dette ble senere oppdaget, og skyldes at programvaren til demonstreringspros-
jektet ikke er kompatibel med den kommersielle måleren.

Oppgaven konkluderer med at systemet ikke er i stand til å motta telegrammer fra måleren.
Det antas derimot at det er gode muligheter for å klare det med spesifikke endringer i pro-
gramvaren. Et forslag til hvordan dette kan gjennomføres er oppgitt i slutten av oppgaven,
basert påerfaringer fra dette prosjektet.

i

Preface

This thesis is written for the Department of Engineering Cybernetics(ITK), a division of
the Faculty of Information Technology and Electrical Engineering(IE) at the Norwegian
University of Science and Technology (NTNU). The project is carried out with equipment
and assistance from ITK.

This thesis has one supervisor, Prof. Geir Mathisen from ITK, NTNU. Geir has pro-
vided the author with direction and structure of the thesis, as well as technical insights and
support for the demonstration project.

I would like to thank Geir for his support throughout the project, he has been extremely
helpful. I would also like to thank Ellen Beate Hove in the IE Faculty Administration, and
my parents Arild Vatland and Åse Elisabeth Vatland for their valuable support and guid-
ance in difficult times. Lastly, I would like to thank my loving girlfriend, Nicoline Myhre
Nedza, for her support and patience throughout my work on this thesis. I would not have
been able to complete my thesis without her.

ii

Table of Contents

Abstract i

Sammendrag i

Preface ii

Table of Contents v

List of Tables vii

List of Figures ix

Abbreviations x

1 Introduction 1
1.1 Background and motivation . 1
1.2 Limitations . 2
1.3 Disposition . 2

2 Theory 3
2.1 Introduction . 3
2.2 The Wireless M-Bus protocol . 3

2.2.1 General . 3
2.2.2 WM-bus modes . 5
2.2.3 Telegrams . 6

2.3 The STACKFORCE protocol stack . 10
2.3.1 Wireless M-Bus stack . 10
2.3.2 Abstraction layers . 12
2.3.3 Hardware abstraction layer . 14

iii

3 Literature Review 17
3.1 Introduction . 17
3.2 Previous masters thesis . 17
3.3 Reading raw data from a kamstrup electricity meter 18
3.4 Wireless M-Bus in industial IoT . 20

3.4.1 WM-Bus dialects . 20
3.5 Summary . 21

4 Specification 23
4.1 Introduction . 23
4.2 Technical specification . 23
4.3 Functional specification . 23
4.4 Acceptance criteria . 24
4.5 Method . 24

5 Design 25
5.1 Introduction . 25
5.2 Collector and dummy-meter . 27
5.3 Kamstrup meter and Kamstrup meter-reader 28
5.4 Collector and Kamstrup meter . 29
5.5 Collector, Kamstrup meter and dummy-meter 30

6 Implementation, Testing, and Results 31
6.1 Introduction . 31
6.2 Development enviroment . 31
6.3 First setup: collector and dummy-meter 32

6.3.1 Implementation of the collector 32
6.3.2 Implementation of the dummy-meter 34
6.3.3 Implementation of USB interface 34
6.3.4 Testing of first setup . 35
6.3.5 Results of tests . 36

6.4 Second setup: Kamstrup meter and Kamstrup Meter-Reader 37
6.4.1 Implementation of second setup 37
6.4.2 Testing of second setup . 38
6.4.3 Results of test . 38

6.5 Third setup: Kamstrup meter and own collector 39
6.5.1 Implementation of third setup 39
6.5.2 Testing of third setup . 40
6.5.3 Results of tests, third setup . 40

6.6 Fourth setup: Collector, Kamstrup meter and dummy-meter 41
6.6.1 Implementation of fourth setup 41
6.6.2 Testing of fourth setup . 42
6.6.3 Results of tests . 43

iv

7 Discussion 47
7.1 Introduction . 47
7.2 Major findings . 47

7.2.1 TPL demonstration project . 48
7.2.2 The setups . 49

7.3 Limitations . 51

8 Conclusion 53

9 Further work 55

Bibliography 57

v

vi

List of Tables

2.1 The parts of EN 13757 . 4
2.2 M-bus standard related to the OSI model 5
2.3 Data headers . 8
2.4 Short data header . 8
2.5 Long data header . 9
2.6 The structure of a meter entry . 13
2.7 The structure of a meter list . 13
2.8 APL Event callbacks . 14
2.9 The interfaces of the HAL . 15

3.1 Raw data frame from a Kamstrup electricity meter. Captured by [2] . . . 18

5.1 The different setups and their purpose to the project 25

6.1 Calls to RF driver when receiving a dummy-meter telegram 44
6.2 Calls to RF driver during testing . 44

7.1 APL vs. TPL callbacks . 49

vii

viii

List of Figures

2.1 OSI Model abstraction layers. Figure taken from [8] 4
2.2 The Wireless M-Bus Modes . 5
2.3 Mode parameters . 6
2.4 Frame format A. Adapted from [1] . 6
2.5 Frame format B. Adapted from [1] . 7
2.6 The STACKFORCE Wireless M-Bus Stack architecture. Taken from [7] . 10
2.7 Compatibility matrix for the WM-Bus modes. Taken from [7] 11
2.8 Unidirectional communication . 11
2.9 A typical flow of bidirectional communication. Taken from [7] 12
2.10 The role of the HAL. Taken from [7] 15

3.1 An overview of the raw data of a telegram, and what it means 19

5.1 Collector and dummy meter . 27
5.2 Kamstrup meter and Kamstrup meter-reader 28
5.3 Collector and Kamstrup meter . 29
5.4 Collector, Kamstrup meter and dummy meter 30

6.1 Collector and dummy meter . 32
6.2 Selecting device type . 32
6.3 Selecting device type . 33
6.4 Kamstrup PressureSensor and Kamstrup Meter Reader 37
6.5 Collector and dummy meter . 39
6.6 Collector, Kamstrup meter and dummy meter 41

ix

Abbreviations

Symbol = definition
API = Application Programming Interface
APL = Application layer
AMR = Automatic Meter Reading
DLL = Data Link Layer
ELL = Extended Link Layer
PHY = Physical Layer
M-Bus = Meter Bus
MCU = Microcontroller Unit
EN = European Norm
WM-Bus = Wireless Meter-Bus
HAL = Hardware abstraction layer
RF = Transceiver

x

Chapter 1
Introduction

1.1 Background and motivation

Fresh tap water is considered a limited resource, which is shared between industry, gov-
ernment facilities, and private households. The water is delivered by the water supply
network, a critical infrastructure with varying conditions across regions. Leakages, con-
tamination, and pipe breaks contribute to a large loss of clean water, and large expenses in
emergency repairs. In order to diminish the loss of water and increased costs, it is neces-
sary to detect changes in flow and pressure and to be able to predict failures in equipment
used in the water supply network. Such predictions will give the opportunity to respond
to incidents before they happen. In order to remain updated on the state of the water sup-
ply network, and to be able to predict failures, it is necessary to collect data from a large
amount of points spread across huge areas.

Trondheim municipality wishes to install an Automatic Meter Reading (AMR) solution
to monitor the water usage of its inhabitants and businesses to save money on billing ex-
penses. Such metering equipment may also include a pressure sensor, and the opportunity
cost of installing them simultaneously is likely lower than installing the equipment sepa-
rately. Modern metering equipment has the option of using Wireless M-Bus (WM-Bus)
to communicate with the data collection infrastructure, and thus data collectors may be
strategically placed to cover large areas of the water supply network, instead of adding
data collection infrastructure to each single meter. This is an option to be considered if or
when Trondheim municipality installs their AMR solution.

WM-Bus is a largely used and field proven standard for the remote reading of utility me-
ters. As the standard has been modified to suit the regulations of regions and needs of
customers, the standard has been left highly flexible. This flexibility introduces variations
across solutions, and may cause problems when using equipment from different manu-
facturers. Based on this information, this thesis seeks to investigate the use of WM-Bus
equipment from different manufacturers together, as it may be necessary or cheaper to

1

Chapter 1. Introduction

solve the above problem. In order to investigate interoperability of WM-Bus equipment
in this thesis, a general WM-Bus kit and a commercial pressure meter has been acquired.
The goal is to implement a demonstration project where the kit is used as a data collector,
which will receive telegrams from the commercial meter and sends the data to a computer.

1.2 Limitations
The system presented in this thesis is limited to be a proof-of-concept for the use of 3rd

party equipment to receive telegrams from an existing set of deployed Kamstrup Pres-
sureSensor meters operating in WM-Bus mode C1. Thus it is limited to the use of an
EZR32WG development kit as a data-collector using the STACKFORCE WM-Bus proto-
col stack mode C1. The implemented software may be portable to other ARM architec-
tures, but this is not tested by the author. As the scope of this project is to successfully
receive telegrams from a commercial meter, important factors to a real world system such
as range, power consumption and security has been mentioned, but is not evaluated thor-
oughly. The stack limits the experimentation heavily as it mostly consists of binary/object
code. The meters are limited to a Kamstrup PressureSensor and several ”dummy”-meters
using the same hardware and software as the collector. Furthermore, the documentation
on the PressureSensor delivered by Kamstrup is heavily limited, resulting in a lot of guess-
work and trial-and-error.

1.3 Disposition
Chapter 2: Theory presents the Wireless M-bus specification and the STACKFORCE
protocol stack.

Chapter 3: Literature review explores previous attemts at a similar project, and other
uses of the Wireless M-Bus protcol

Chapter 4: Specification presents the system specifications and acceptance criteria.

Chapter 5: Design presents an overview of the system design. There are 4 different
setups presented in this chapter, each of which will be described in detail.

Chapter 6: Implementation, testing and results explains how the system was imple-
mented, the tests conducted with each setup is presented, and the results are presented.

Chapter 7: Discussion discusses the results of the tests from the different setups, and
the system as a whole.

Chapter 8 and 9: Conclusion and Further work concludes the project, and presents
options for what could be worked on in the future.

2

Chapter 2
Theory

2.1 Introduction

This chapter describes the necessary theory to better understand the development choices
made by the author, and the functionality of the system. The WM-Bus protocol will be
described in detail, and an overview of the software stack provided by STACKFORCE
used in the demonstration project will be presented.

2.2 The Wireless M-Bus protocol

This section will give a brief overview of the WM-Bus protocol. The various modes will
be described, and the telegram formats will be explained.

2.2.1 General

The Wireless M-Bus protocol is a wireless expansion of the wired M-Bus, which is a
European Norm (EN), EN 13757 to be specific, that specifies the M-Bus standard. EN
13757 describes the M-Bus protocol in its entirety in seven different parts, shown in Table
2.1.

3

Chapter 2. Theory

Part Description
EN 13757 - 1 Data exchange
EN 13757 - 2 Wired M-Bus communication
EN 13757 - 3 Application protocols
EN 13757 - 4 Wireless M-Bus communication
EN 13757 - 5 Wireless M-Bus relaying
EN 13757 - 6 Local bus
EN 13757 - 7 Transport and security services

Table 2.1: The parts of EN 13757

Parts 1-3 describe the basis for creating an operational M-Bus application. Parts 4-7 de-
scribe additional features and functionality for specific usages. Relevant to this thesis is
part 4, which specifies the radio expansion of M-Bus.

The Wireless M-Bus is specified in EN 13757 part 4, hereby referred to as EN 13757-
4. EN 13757-4 gives a complete specification of a wireless application of the M-Bus
standard. The wireless protocol is designed to operate on licence free ISM bands.

The M-Bus protocol stack implements a minimum of three abstraction layers, following
the Open Systems Interconnection model (OSI model). The OSI model is an attempt at
abstracting and standardizing different partitions of a computer system designed to com-
municate with other systems, into defined layers, by the International Organization for
Standardization (ISO) [8]. The model presents seven layers of abstraction, divided as
shown in Figure 2.1.

Figure 2.1: OSI Model abstraction layers. Figure taken from [8]

In the M-Bus protocol, networking is not used, and as a result, the layers 4, 5, and 6 are
not implemented. The layers of M-bus can be compared to the OSI model in the following
way:

4

2.2 The Wireless M-Bus protocol

OSI model M-Bus
Application layer
Presentation layer
Session layer

Application layer

Transport layer
Network layer Used for additional security features

Data link layer Data link layer
Physical layer Physical layer

Table 2.2: M-bus standard related to the OSI model

The WM-Bus protocol replaces the Data Link Layer (DLL) and Physical Layer (PHY)
layers. If wireless relaying (EN 13757-5) is used, it implements the Network layer.

2.2.2 WM-bus modes

WM-Mus supports a variety of modes, specified to operate on a variety of different fre-
quencies and transfer rates. Each mode is assigned a combination of a letter and a number,
where the number indicates whether the mode is used in uni- or bidirectional communi-
cation. The number 1 means the mode is unidirectional, and 2 is bidirectional. Below, in
Figure 2.2 and Figure 2.3, is an overview of the most common modes used for WM-Bus.

Figure 2.2: The Wireless M-Bus Modes

5

Chapter 2. Theory

Figure 2.3: Mode parameters

The S,T, and C modes are also defined at the 433MHz frequency to be used in markets
where the 868MHz frequencies are not available or illegal.

As one can see from Figure 2.3, there is a trade-off between range and and transmission
rate between the modes S and T. S gives longer range at the cost of fewer transmissions
per day, whilst T mode allows more frequent transmits, but at the cost of a shorter range.
Notably, the C mode, which is the newest addition to the modes, combines the best part of
the two modes, allowing frequent transmissions at a long range. This is due to the support
of NRZ encoding from newer RF chips, which is les power intensive, and thus allows more
frequent transmissions within the same energy budget.

2.2.3 Telegrams

Frame formats

Wirless M-Bus supports two different frame formats, ”Frame format A” and ”Frame for-
mat B”. These are described by the figures 2.4 and 2.5 below.

Figure 2.4: Frame format A. Adapted from [1]

As one can see from Figure 2.4, the telegrams consists of a minimum of two blocks. The
first block contains information related to the DLL. The second block contains information
related to the application protocol used and the selected layer. This will be described
further in ”CI-Field” below.

6

2.2 The Wireless M-Bus protocol

Figure 2.5: Frame format B. Adapted from [1]

Frame format B is relatively similar to format A, the difference being that it does not con-
tain a CRC field in the first block, and that it has larger data fields in subsequent blocks.

Length specifies the length of the telegram. It specifies the number of bytes in the fol-
lowing fields, excluding the CRC bytes.

Control (Ctrl) contains information on the type of frame used. Several ”function codes”
are available for usage. The function code specifies whether the sender is a meter or col-
lector, and what type of communication is ongoing, i.e alarms, ACK’s1, commands. The
function code used in this project is 4h: Send application data without request(Send/no
reply). As the project only uses a unidirectional communication mode, this field is not
relevant to explain further.

Manufacturer (Manuf.) specifies a three letter manufacturer code. The code is calcu-
lated based on the following formula:

Manuf. id =[ASCII(1stletter)− 64] ∗ 32 ∗ 32+
[ASCII(2ndletter)− 64] ∗ 32+
[ASCII(3rdletter)− 64]

The code is formed from the 15 least significant bits. The MSB is used to specify whether
the address of the unit is unique world wide (0), or unique within the transmission range
of the device (1). Say the code is ”KAM”, the manufacturer id would be:

Manuf. id =[ASCII(K)− 64] ∗ 32 ∗ 32+
[ASCII(A)− 64] ∗ 32+
[ASCII(M)− 64]

=[75− 64] ∗ 32 ∗ 32+
[65− 64] ∗ 32+
[77− 64]

=11309

=2C2Dh

=10110000101101

Address is a number between 00000000 and 99999999. The number is either fixed or
1Acknowledgement messages, used in bi-directional communication

7

Chapter 2. Theory

changeable. In a telegram the address is coded as 8 Binary Coded Decimal (BCD) packed
digits. BCD simply means to represent each decimal with 4 bits, e.g

0 = 0000
1 = 0001
2 = 0010
3 = 0101

Version specifies the version of the meter. It is used by manufacturers to ensure that each
address within a version number is unique. Type specifies what the meter measures. Some
examples are electricity=02h, gas = 03h, pressure = 18h.

The second block contains a CI-field and a data field. The CI-field specifies the proto-
col used, and thus the format and type of data following in the data field. The CI-field
specifies the layer where the data is directed, which may be APL, TPL, or ELL. If ELL is
used the CI field specifies the length and services of the additional layer.

Data field contains the data of the telegram. The data field of the telegram contains a
data header, used to inform the receiver about the nature and encryption of the data.
There are three kinds of headers, as described in Table 2.3. The header is defined by the
mode used, according to EN 13757-4 [1]. Relevant to the demonstration project in this
thesis is the short header, which is used in mode C1.

Header Description
No header If the CI field is 78h, there is no data

header.
Short header Defines an access number, status

byte and configuration word.
Long header Contains all the fields from the

short header, in addition to fields for
ID, Manuf. ID, Type and Version.

Table 2.3: Data headers

Where the ”No header” indicates there are no information about the use of encryption,
thus the data in unencrypted. The short header is structured as shown in Table 2.4.

Access Status Configuration
1 byte 1 byte 2 bytes

Table 2.4: Short data header

The long header is implemented as shown in Table 2.5.

8

2.2 The Wireless M-Bus protocol

ID Manuf. Version Type Access Status Configuration
4 bytes 2 bytes 1 byte 1 byte 1 byte 1 byte 2 bytes

Table 2.5: Long data header

ID, Manuf. version and type correspond to the values in the first block.
Access number is used for detecction of repeated frames. The number is incremented for
each frame in order to ensure it is not already received.
Status contains data concerning the state of the meter. Used to alert the receiver about
alarms or errors.
Configuration is used to set the encryption mode and the length of the encrypted data.

9

Chapter 2. Theory

2.3 The STACKFORCE protocol stack

The software provided by STACKFORCE should be able to cover all region specific re-
quirements across Europe, and is compliant with EN13757-3, EN13757-4, and the OMS
specification [5]. It is available in binary/object code format and supports the ARM
Cortex-M0+, M3 and M4 cores. The stack consists of three major parts: the Wireless
M-Bus stack, RF driver, and HAL. These will be described in detail in order to give a
better understanding of how telegrams are transmitted and received. Figure 2.6 displays
an overview of the stack, which describes how the abstraction layers are connected to each
other, to hardware, and what utility and security features the stack includes.

Figure 2.6: The STACKFORCE Wireless M-Bus Stack architecture. Taken from [7]

2.3.1 Wireless M-Bus stack

In this section, a presentation of the WM-Bus stack will be given.

WM-Bus modes

The stack is highly configurable in terms of WM-Bus modes. It supports the use of all
modes described in Figure 2.2: S, T, C and N(a-f). Both meter- and collector devices can
be configured in any one of these modes. Usually, the collector and meter are configured to
use the same mode, but if for some reason another configuration is desired, STACKFORCE

10

2.3 The STACKFORCE protocol stack

has provided a table describing the compatibility of each mode, as can be seen in Figure
2.7 below:

Figure 2.7: Compatibility matrix for the WM-Bus modes. Taken from [7]

As depicted in Figure 2.7, the modes implemented by the stack are mostly only compatible
with devices using the same mode. The only exception is that a collector in C-mode is able
to receive telegrams from a meter in T-mode, in addition to C-mode.

As described in Section 2.2.2, EN 13757-4 specifies the use of uni- and bidirectional com-
munication. The stack implements these options for all modes. Figure 2.8 shows a simple
unidirectional communication scheme where the meter transmits its data to the collector.

Meter device Data collector

Data

Data

Interval
between

data
transmission

Figure 2.8: Unidirectional communication

In unidirectional communication the only sort communication is when a meter device
transmits data or errors/alarms to the collector. In Figure 2.9, a typical bidirectional com-
munication mode is described. The meter may measure several kinds of properties: ”User
data” and ”User data 2”. It may only be sending periodical telegrams containing one of
them (”User Data”) to the collector in order to save energy. Only sending User Data 2
when the collector requests it. It will repeat the response until the collector closes the
communication.

11

Chapter 2. Theory

Figure 2.9: A typical flow of bidirectional communication. Taken from [7]

In bidirectional communications, messages are passed back and forth between the meter
an collector. Several different forms of communications may occur such as sending of
alarms, requesting of data, configuration of meter etc.

2.3.2 Abstraction layers

In addition to implementing the APL specified by EN 13757-3 and the PHY and DLL
layers specified in EN 13757-4, the STACKFORCE protocol stack also implements an
Extended Link Layer (ELL) and Transport layer (TPL) for implementation of security and
privacy features.

APL

The application layer implements EN13757-3, as mentioned in Section 2.3.1. The APL is
responsible for handling application layer data, which normally is the data of a telegram
e.g pressure, energy etc. The application layer interface available to us is divided into
six modules. The APL documentation [7] following the software stack lists everything
available in this interface. The relevant parts for the demonstration project will be listed in
this section.

Enumerations

Enumerations are used for setting contents of messages, return values of functions that
add/remove meters, RF-adapters, and keys, and status for the application initialization
function. These enumerations are not used or edited in the demonstration project.

12

2.3 The STACKFORCE protocol stack

Structures

Relevant structures to mention is the structure of a meter, and the structure of the meter
list of the collector.

In order to be able to receive telegrams from any meter, the meter has to be added to
the meter list of the collector. This is done by creating a meter entry and adding it to the
list. A meter entry is a struct of the type s apl meterEntry t which contains the address,
mode, adapter adress (not used in this project), and encryption key of the meter. The data
fields of a meter entry is as seen in Table 2.6.

Type Tag Description
s wmbus addr t s meterAddr The meter address
E WMBUS MODE t e wmbusMode WM-Bus mode of the meter
s wmbus addr t s rfAdapter RF adapter (not used)
uint8 t pc meterKey[0x10U] Encryption key of the meter

Table 2.6: The structure of a meter entry

The meter list consists of the length of the list and a pointer to the first meter entry, as
descibed in Table 2.7:

Type Tag Description
uint16 t i numberOfMeters Number of meters in the meterlist
s apl meterEntry t ps meterEntry Pointer to the first meter entry

Table 2.7: The structure of a meter list

Event callbaks

There are four event callbacks ready to be used in the main file of the program. These
are called whenever a specific event occurs. The four events are: whenever a telegram
is received, whenever a telegram is sent, whenever a telegram is ready to be read, and
whenever the stack receives a telegram with an unknown CI-field. The callbacks are listed
in Table 2.8.

13

Chapter 2. Theory

Event callback Description
wmbus apl evt rx() Called whenever a telegram is suc-

cesfully received
wmbus apl evt tx() Called whenever a telegram is

transmitted
wmbus apl evt tlgAvailable() Called whenever a telegram is

available and ready to be read. This
is the inteded method for extraction
of data

wmbus apl evt getCiHeader() Called whenever a telegram with an
unknown CI-field is received. Used
to specify the type of header to use
in case of unknown CI-fields

Table 2.8: APL Event callbacks

The stack differentiates between three different data headers: no header, short header, and
long header. In the STACKFORCE WM-Bus C1 mode, the long header is used. The long
header is the first block of the telegram, described in frame format A (2.4).

TPL

The transport layer handles data headers, which defines the encryption mode used. There
are three different data headers, as described in Table 2.3.

ELL

The Extended Link Layer is not documented by SF. The only information is found in
Figure 2.6, where we can see the layer connects the DLL and Authentication and Frag-
mentation layer. From EN 13757-4, the ELL provides additional control fields (instead of
just one control field), which may include Synchronisation, Encryption, and Destination
Address.

Data Link Layer

The Data Link Layer (DLL) is mainly used to interface the the PHY-layer with the ELL
and TPL layers. It handles the first block of telegrams and sends the rest of the telegram
to the next layer, which is either the TPL or ELL, based on the control field.

2.3.3 Hardware abstraction layer

The Hardware Abstraction Layer (HAL) is responsible for abstraction of all the hardware
resources required by the stack and the RF driver. An overview of the HAL and how it
connects to the rest of the stack is given in Figure 2.10.

14

2.3 The STACKFORCE protocol stack

Figure 2.10: The role of the HAL. Taken from [7]

Table 2.9 further explains which interfaces between the stack and the harware that the
HAL is responsible for.

Interface Harware
WM-Bus HW accelerated AES
WM-Bus MCU core
WM-Bus Non-volatile memory
WM-Bus RF driver
WM-Bus HW timer
WM-Bus Serial
RF-driver GPIO
RF-driver SPI
RF-driver MCU

Table 2.9: The interfaces of the HAL

As seen in Figure 2.10, the HAL is divided into two parts, one part for general hardware
access, and one part for the transceiver (RF). The part which connects the stack to the
transceiver is a little confusing, as it is connected in several layers. The WM-Bus RF HAL
connects the WM-Bus stack to the Si446x RF library, which is separate from the WM-Bus
stack. The Si446x has its own HAL, which connects it to the underlying hardware. If the
stack should be used with another transceiver, the Si446x library has to be changed. Some
notable functions of the RF HAL used in the demonstration project are listed in Listing
2.1 below.

1

2

3 b o o l t w m b u s h a l r f r x I n i t (u i n t 8 t ∗ p c q u a l i t y , u i n t 8 t c l e n)
4 / / I n i t i a t e s t h e r e c e p t i o n o f d a t a . As soon as t h e s t a c k has been

i n f o r m e d a b o u t t h e d e t e c t i o n o f a t e l e g r a m , t h e s t a c k w i l l i n i t i a l i s e
t h e r e c e p t i o n p r o c e d u r e by c a l l i n g t h i s f u n c t i o n . More . . .

5

6 b o o l t w m b u s h a l r f r x D a t a (u i n t 8 t ∗ p c d a t a , u i n t 1 6 t i l e n)

15

Chapter 2. Theory

7 / / R e t r i e v e s a chunk of d a t a from t h e RF d r i v e r . J u s t l i k e t h e
t r a n s m i s s i o n , r e c e p t i o n o f d a t a i s done chunk−wise . For t h i s , t h e
f u n c t i o n w i l l be c a l l e d as f a s t a s p o s s i b l e t o r e t r i e v e a l l d a t a
r e c e i v e d by t h e t r a n s c e i v e r . More . . .

8

9 b o o l t w m b u s h a l r f r x F i n i s h (E HAL RF MODE t e mode)
10 / / F i n a l i s e s t h e r e c e p t i o n o f d a t a . At l e a s t w m b u s r f r x I n i t s h o u l d be

c a l l e d b e f o r e . More . . .
11

12 b o o l t w m b u s h a l r f s e t S i g n a l S t r e n g t h (u i n t 8 t c s i g n a l)
13 / / S e t s t h e s i g n a l s t r e n g t h f o r t r a n s m i s s i o n . R e q u e s t s t h e RF d r i v e r t o

s e t t h e o u t p u t power f o r t h e t r a n s c e i v e r t o t h e a p p r o p r i a t e v a l u e .
More . . .

Listing 2.1: A selection of some important functions of the WM-Bus RF driver

These functions are used in the fourth setup of the demonstration project. The implemen-
tation part of this thesis demonstrates how they are used.

16

Chapter 3
Literature Review

3.1 Introduction

A literature review has been conducted in order to collect useful insights on existing tech-
nology, the WM-Bus standard, and other similar projects. It showcases a previous master’s
thesis: Demonstrering av konsept for innsamling og sammenstilling av data fra flere vann-
mlere ved bruk av trdls M-Bus by Lier H. H. [4] and a security evaluation of the WM-Bus
standard: Wireless M-Bus Security Whitepaper by Cyrill Brunschwiler [2], which includes
some useful examples for reception and decryption of telegrams. The third literary piece is
an attempt at creating a versatile data-collection system for IIoT in Wireless M-Bus in In-
dustrial IoT: Technology Overview and Prototype Implementation by K. Zeman et al. [9],
and the last piece is an overview of the various implementations of the WM-Bus standard
by Sikora et al. in Recent advances in en13757 based smart grid communication.[6].

3.2 Previous masters thesis

An attempt at reading the Kamstrup PressureSensor was done by Lier, H. H. in Demon-
strering av konsept for innsamling og sammenstilling av data fra flere vannmlere ved bruk
av trdls M-Bus [4]. As the thesis is not published in English, this section will give a brief
overview of the work.

The work done by Lier [4] was aiming at reading the Kamstrup meter by using the same
equipment as presented in this thesis. Unfortunately, the project was unsuccessful in read-
ing the meter, thus the main focus of the thesis was redirected at creating a cloud service
for analysis of meter data, and remote configuration of the collector. The project used
several dummy-meters to simulate a real water supply network, and the Amazon Web Ser-
vices (AWS) for remote analysis of data and configuration of the collector. Lier states that
further work should focus on reading actual water meters, by troubleshooting and further
analysis of the WM-Bus standard, which is what this thesis will focus on.

17

Chapter 3. Literature Review

3.3 Reading raw data from a kamstrup electricity meter

This section covers the work done by Compass security AG [2] on the security of the
M-Bus standard. It includes relevant examples of how they received meter telegrams and
decrypted them. These experiments are highly applicable to the demonstration project in
this thesis, as we are trying to receive telegrams from a commmercial meter. The paper
concludes thath there are several issues with the confidenciality, integrity, authenticity,
and non-repudiation of the WM-Bus protocol. It is stated that the issues range from inad-
equate key lenght, manipulation of encrypted telegrams, to full exposure of key material.
However, the important part related to this thesis is the reception of telegrams and the de-
cryption and parsing of those.

In the tests conducted in order test the security of the WM-Bus protocol, Compass Se-
curity AG went through the raw data of a captured telegram from a Kamstrup electricity
meter step by step. The security issues of the analysis is outside the scope of this thesis,
and will not be discussed. However, it would be interesting to investigate the method for
reception and decryption of telegrams.

The reception of telegrams is done with a ”Wireless M-Bus Analyser 1.0” from AMBER
wireless GmbH. The analyzer is USB stick which allows reception of raw WM-Bus tele-
grams, to be displayed on a PC. For decryption of the telegrams, the CrypTool 1.4.3x., an
open-source Windows program for cryptography and cryptanalysis, was used. In writing
time, a new version of the M-bus analyzer is available, V3.0, which has integrated decryp-
tion, eliminating the need for an external crypto tool. The analyzer and cryptography tool
was used to receive and decrypt telegrams from a known set of meters. The raw data of
one of the telegrams received from a Kamstrup meter is presented in Table 3.1.

1E 44 2D 2C 07 71 94 15 01 02 7A B3 00 10 85 BF
5C 93 72 04 76 59 50 24 16 93 27 D3 03 58 C8

Table 3.1: Raw data frame from a Kamstrup electricity meter. Captured by [2]

To clarify what the contents of Table 3.1 means, an overview is presented in Figure 3.1,
adapted from the results of Brunschwiler [2]. The table presents the raw bytes of the tele-
gram and the parsed1 data. Both the unencrypted and decrypted data is presented. The
contents of the telegram can be summarized as follows: The telegram is sent from a Kam-
strup electricity meter, it is a unidirectional telegram requiring no reply, and the data is
encrypted requiring a separately forwarded key. The encrypted data protects the reading
of the meter, which is 341kWh.

The work of Compass Security show that it is possible to receive telegrams from a com-
mercial meter using third party equipment, and to decrypt the telegrams. The method of
decrypting data may be useful if for some reason we are only able to receive the raw data.

1Translated from machine readable content to human readable content

18

3.3 Reading raw data from a kamstrup electricity meter

Figure 3.1 is included in this literature review in order to present a complete picture of
what a telegram looks like, an what it is composed of. It is very useful to keep as a ref-
erence when the work of this thesis is presented. Although some telegrams may include
different or additional data fields, it is always useful to see a real world example of things.

Figure 3.1: An overview of the raw data of a telegram, and what it means

19

Chapter 3. Literature Review

3.4 Wireless M-Bus in industial IoT

In recent literature regarding implementation of general Wireless M-Bus systems that are
able to receive telegrams from various vendors, there is little to be found. There are, how-
ever, several papers evaluating the performance of WM-Bus in different scenarios. These
include demonstration projects which implement a collector able to receive from one, or a
few selected meters. There have been attempts at expanding the protocol to the scene of
Industrial Internet of Things (IIoT), such as in Wireless M-Bus in Industrial IoT: Technol-
ogy Overview and Prototype Implementation by K. Zeman et al. [9], which implements
a data collector on a Raspberry Pi3 for use in the IIoT landscape. The collector is able to
receive telegrams from several sensors/meters from different manufacturers, but it is stated
that the data from each of the devices has to be sniffed and analyzed separately because
the implementation of data packets is not identical.

There is a trend among academic research of having to analyze the raw data of the tele-
grams in order to implement a solution that can receive them. This seems to be a dig
downside with the Wireless M-Bus protocol, as the time and work of making sure third
party equipment are able to receive telegrams from only a selected few manufacturers may
be slowing down development and research. It seems like there is a need for a data collec-
tion unit able to receive telegrams from all kinds of meters, or at least easily configurable to
suit the required meters. The variety of different configrations can be classified in dialects,
which are seperate classes of adaptations of the EN 13757-4 standard.

3.4.1 WM-Bus dialects

In Recent Advances in EN13757 Based Smart Grid Communication by Sikora et al [6],
some of the dialects that has emerged is discussed, and categorized into three different
kinds:

The First class of dialects are adaptions or restrictions of the APL-layer. Restrictions
are done by the Open Metering System (OMS)-group and Dutch Smart Metering Recom-
mendations (DSMR). These are standards built on top of2 EN 13757 to further specify the
application layer. The OMS standard has restricted and defined the use of the telegram
fields, while DSMR has added additional features to the APL and application data block
(the second data block). A third example of this class of dialects is the standard produced
by Device Language Message specification (DLMS). DLMS has created a completely new
and ”standalone” version of the application layer.

The second class of dialects are country-specific dialects. Mainly the adaptations of the
standard in Italy and France. These dialects cover a wide range of the features and speci-
fications in EN 137573.

In the third class of dialects the focus is on security features. There are a wide field

2They are compliant to the standard
3Especially in Part 4

20

3.5 Summary

of different security layers implemented. Some examples of security protocols used are
Secure Sockets Layer (SSL), Transport Layer Security (TLS), and Advanced Encryption
Standard (AES).

3.5 Summary
As seen in this literature review, there is a large amount of different adaptations of the
Wireless M-Bus standard, and there is a need for a general data collection system, in order
to be able to receive telegrams from various meters. The stack developed by STACK-
FORCE combined with the WM-Bus kit is a proposed solution to this challenge, and this
thesis seeks to use it in order to implement a system for monitoring the state of the water
supply network.

21

Chapter 3. Literature Review

22

Chapter 4
Specification

4.1 Introduction
This chapter describes the specifications of the project, as well as the accompanying ac-
ceptance criteria. The specification describes crucial functionality and modules. The ac-
ceptance criteria describes the necessary conditions for the specifications to be fulfilled.

4.2 Technical specification
1. The collector and dummy-meter should be implemeted on a EZR32WG develop-

ment kit.

2. The collector and dummy-meter should use the STACKFORCE protocol stack.

3. The commercial meter should be a Kamstrup PressureSensor.

4. The interface between the collector and PC should be over USB, where the collector
acts as USB Device, and the meter acts as USB Host.

4.3 Functional specification
1. The collector, commercial meter and dummy-meter shall operate in WM-Bus C1

mode.

2. The collector should have a list of meters to receive telegrams from.

3. The collector should be able to receive telegrams from a commercial meter, specifi-
cally a Kamstrup PressureSensor.

4. The collector should be able to send received telegrams to a stationary computer
over USB.

23

Chapter 4. Specification

4.4 Acceptance criteria
The acceptance criteria are the measurements in witch a corresponding functional specifi-
cation statement should be evaluated.

1. The collector is able to successfully receive telegrams from the dummy-meter.

2. The collector is able to send received telegrams to a PC.

3. The collector is able to successfully receive telegrams from the Kamstrup meter.

4.5 Method
The following list presents how the work is carried out, and in which order.

1. Base the experiment on a test-setup implemented with the STACKFORCE protocol
stack.

2. Verify the the test-setup works as intended, verify the Kamstrup meter works as
intended.

3. Try to receive telegrams from the Kamstrup meter.

4. If unable to receive telegrams from the Kamstrup meter, create a setup combining
the test-setup and the Kamstrup meter

(a) Enter different layers in the stack and try to see where the Kamstrup telegrams
stops.

(b) Compare with dummy-meter

(c) Test and experiment with results

24

Chapter 5
Design

5.1 Introduction
In this chapter, the design of the various setups will be presented, and the hardware and
software choices will be explained.

With limited documentation on the Kamstrup meter, and limited options to make alter-
ations to the software stack, there has been a need to test varying setups and configurations
of the system. Therefore, this chapter will cover the design of the varying setups imple-
mented by the author. The design of the setups will be presented in the order of which they
were implemented, as seen in Table 5.1.

Setup Purpose

Collector and dummy-meter
Implement a functional collector,
verify it works by reading of
telegrams from a dummy-meter.

Kamstrup Meter Reader and
Kamstrup meter

Verify the Kamstrup meter is
transmitting telegrams

Collector and Kamstrup meter
Try to receive telegrams from a
commercial meter

Collector, Kamstrup meter and
dummy-meter

Investigate reception of telegrams
from the Kamstrup meter, experiment
with telegrams from dummy-meter

Table 5.1: The different setups and their purpose to the project

The first and second setup seek to establish a basis for reading commercial meters. This
is done by ensuring that the collector works with a meter implemented with the same
stack, and by testing the Kamstrup meter with Kamstrup equipment. The third setup seeks
to receive telegrams from the Kamstrup meter with the collector implemented with the

25

Chapter 5. Design

STACKFORCE stack. If the third setup fails, the fourth setup seeks to combine the first
and third setup in order to investigate and experiment with the STACKFORCE protocol
stack.

26

5.2 Collector and dummy-meter

5.2 Collector and dummy-meter

The first setup presented consists of a collector and a dummy-meter, both implemented
with the STACKFORCE protocol stack on a EZR32WG330 MCU mounted on a Wireless
Gecko(WG) development kit. In this setup, telegrams are transmitted from the meter to
the collector to the PC, as depicted in Figure 5.1.

The EZR32WG330 MCU is a Silicon Labs product designed for use in home automa-
tion, metering, alarm systems, etc. where low-power, sub-GHz1 wireless communications
is needed. The board is equipped with a transceiver module and a SMA2 connector for
the 868MHz radio band. The WG extends the functionality of the radio board with an
on-board J-Link debugger, a virtual COM port, USB and Ethernet connectivity, LED’s,
push-buttons, and EXP headers for I2C, USART, and SPI peripherals.

Both the meter and collector should operate in C1-mode, thus the meter will broadcast
telegrams with no dedicated receiver. As the meter operates in C-mode, frequent trans-
mission of telegrams is possible, allowing faster collection of data. In this setup, the trans-
mission rate of the dummy-meter will be configured to 6s. The collector will be listening
on the radio frequency specified by C1-mode3, and receiving all telegrams transmitted by
meters nearby. However, only the dummy-meter will be added to its meter-list, thus it will
only ”process” telegrams from that meter. All other telegrams will be denied in the DLL.
The collector is connected to a stationary PC with USB, where the collector acts as a USB
device and the PC a USB host.

The USB Host side should be able to receive messages and data from the collector. The
traffic received from the collector should be displayed in a terminal for analysis, and prefer-
ably written to a file or sent to a cloud service. Although it would be useful to implement
sending of commands from the PC to the collector, e.g for adding a new meter to the
collector’s meter list or request specific data, this will only be implemented if time allows.

Collector

EZR32WG

PC

USB
USB Host

Meter

EZR32WG

<Wireless M-Bus>
STACKFORCE

protocol
stack, meter,

C1 mode

STACKFORCE
protocol

stack,
collector, C1

mode

USB DEvice

Figure 5.1: Collector and dummy meter

1Radio frequencies below 1GHz
2Connector for RF coaxial connections
3868.95Hz

27

Chapter 5. Design

5.3 Kamstrup meter and Kamstrup meter-reader
In order to verify the Kamstrup meter is sending telegrams as it should, a Kamstrup USB
meter reader was introduced to the project. The USB meter reader is a tool that enables
reception of telegrams from Kamstrup meters. The device is plugged into a computer via
USB, and is used together with the Kamstrup ”Metertool” software, which they refer to as
”PC Base”.

With the USB reader connected to a Windows PC, a meter list can be initiated in the
PC Base and transferred to the USB reader. The USB reader can then start to receive
telegrams from nearby meters, either by leaving it connected to the PC or a laptop, or by
connecting it to a power supply and carrying it to the desired area. In this setup the USB
reader will remain connected to a stationary Windows laptop, as there is no need to carry
it around. When the USB reader has received telegrams from all meters in its meter list,
the data is transferred to the PC Base, ready to be exported for analysis.

Meter Meter-reader

Kamstrup
PressureSensor

Kamstrup
meter-reader

Wireless M-Bus
Kamstrup

firmware, C1
mode

Kamstrup
software

PC

USB
Kamstrup
MeterTool

Figure 5.2: Kamstrup meter and Kamstrup meter-reader

28

5.4 Collector and Kamstrup meter

5.4 Collector and Kamstrup meter
In this setup the collector will be configured the same way as in the previous setup in Sec-
tion 5.2, the only difference being a change in the meter list, where the dummy-meter is
removed and the Kamstrup PressureSensor is added.

The Kamstrup PressureSensor is a sensor designed to be installed directly connected to
a pipe network. In this project, the sensor will be used to measure the atmospheric pres-
sure, as the content of the transmitted telegrams are not important, but the telegram itself
is. The meter operates with WM-Bus C1-mode, and transmits telegrams once every 96
seconds. Kamstrup follows the OMS-standard

The sensor used to measure pressure is a Kamstrup PressureSensor. The PressureSen-
sor is designed to be installed directly connected to the pipe-network desired to monitor.
It collects samples at a rate of 10Hz, i.e ten times per second, which allows detection of
bursts of changes in pressure. The sensor transmits its recordings once every 96 seconds
over WM-Bus in mode C1, which allows 3rd party equipment to receive its telegrams,
given it has the ID and encryption key of the meter.

Meter

Collector

Kamstrup
PressureSensor

EZR32WG

<Wireless M-Bus>
Kamstrup

firmware, C1
mode

PC

USB
USB Host

STACKFORCE
protocol

stack,
collector, C1

mode

USB DEvice

Figure 5.3: Collector and Kamstrup meter

29

Chapter 5. Design

5.5 Collector, Kamstrup meter and dummy-meter
The fourth and last setup in this project is a combination of the setups in Section 5.2 and
5.4. In this setup, both the dummy-meter and Kamstrup meter is added to the meter list
of the collector. Some changes will be made to the addresses of these, in order to test
how the stack handles unknown addresses. Additionally, an attempt at tracking incoming
telegrams through the layers of the stack will be made.

Meter

Collector

Kamstrup
PressureSensor

EZR32WG

<Wireless M-Bus>
Kamstrup

firmware, C1
mode

PC

USB
USB Host

Meter

EZR32WG

<Wireless M-Bus>

STACKFORCE
protocol

stack, meter,
C1 mode

STACKFORCE
protocol

stack,
collector, C1

mode

USB DEvice

Figure 5.4: Collector, Kamstrup meter and dummy meter

30

Chapter 6
Implementation, Testing, and
Results

6.1 Introduction
This chapter combines the implementation, testing, and results of the project. These topics
have been combined, as there are four different setups presented, each of them having their
own separate implementation, tests, and results. The author found it suitable to structure
the chapter in this manner in order to ease readability. For each setup, the implementation
of the hardware and software will be explained, the tests conducted will be described, and
finally, the results of the tests will be presented.

6.2 Development enviroment
The software for the collector and meter devices is developed on the Windows version of
IAR Embedded Workbench. This IDE was chosen by the author as it supports the Cortex
M4 processor and has the development tools as needed: compiler, analysis tools, and de-
bugger. Additionally, the author had access to a licence to the complete IDE.

The software developed for the interface between collector and an external computer was
developed with Microsoft Visual Studio, by personal preference.

31

Chapter 6. Implementation, Testing, and Results

6.3 First setup: collector and dummy-meter

This section covers the implementation, testing, and results of the design presented in
Section 5.2. Some of the content may seem unnecessary to include, however, it has been
deemed important for reproducability. Figure 6.1 shows the first setup, which consists of
a collector and dummy-meter.

Collector

EZR32WG

PC

USB
USB Host

Meter

EZR32WG

<Wireless M-Bus>
STACKFORCE

protocol
stack, meter,

C1 mode

STACKFORCE
protocol

stack,
collector, C1

mode

USB DEvice

Figure 6.1: Collector and dummy meter

6.3.1 Implementation of the collector

As described in Section 2.3, a third party software stack delivered by STACKFORCE is
used as a basis for the development of the firmware used in the collector and dummy-meter
devices. The stack was downloaded from Silicon Labs’s website [7]. After downloading
the stack, the project can be opened in IAR Embedded Workbench. The project workspace
can be found under /ide/iar/, where there are four demo projects present. The one used in
this thesis was Demo SLWSTK220A. After opening the workspace in IAR, the correct
device type and mode was be selected. In IAR, this was done by following these steps:

1. Navigate to project→ options

Figure 6.2: Selecting device type

32

6.3 First setup: collector and dummy-meter

2. Navigate to general options and select the target tab. Under target, select the relevant
core architecture and device type. In this project the Cortex-M4 and Silicon Labs
EZR32WG330F265Rxx.icf is used.

Figure 6.3: Selecting device type

In order to configure the WM-Bus mode, the preinclude header had to be changed. This
was done by following these steps:

1. Navigate to project→ options

2. Within options, select C/C++ Compiler under Category.

3. Select the preprocessor tab and choose the desired configuration file. In this project
the ”collector C1.inf”

This set the correct configurations for the device to act as a collector in mode C1.

In order for the collector to receive telegrams from a meter, the meter has to be added
to the meterlist of the collector. In the project, the meter was initialized according to the
structure in Table 2.6, with the following values:

1 s a p l m e t e r E n t r y t g s m e t e r E n t r y O r g i n a l = {
2 / / WMBus mete r a d d r e s s
3 {{0 xce , 0 x9a } , /∗ M a n u f a c t u r e r (h e r e STZ) ∗ /
4 {0x80 , 0 x00 , 0 x00 , 0 x01 } , /∗ i d e n t number ∗ /
5 0x23 , /∗ v e r s i o n ∗ /
6 WMBUS DEV TYPE WATER} , /∗ type , h e r e w a t e r ∗ /
7

8 / / WMBus mode of t h e me te r
9 E WMBUS MODE UNKNOWN,

10

11 / / WMBus RF a d a p t e r a d d r e s s o f t h e mete r (unused)
12 {{0x0 , 0 x0 } ,{0 x0 , 0 x0 , 0 x0 , 0 x0 } ,0 x0 , 0 x0 } ,
13

14 / / WMBus mete r key

33

Chapter 6. Implementation, Testing, and Results

15 {0x00 , 0 x11 , 0 x22 , 0 x33 , 0 x44 , 0 x55 , 0 x66 , 0 x77 ,
16 0x88 , 0 x99 , 0xAA, 0 xBB , 0 xCC , 0xDD, 0 xEE , 0 xFF }} ;

As the dummy-meter does not use a RF adpter, this field was not used. A meter list was
initialized with the length of 1, and with the meter entry created.

1 s a p l m e t e r L i s t t g s m e t e r L i s t = {0x0001U , &g s m e t e r E n t r y O r i g i n a l } ;

To enable the collector to send messages to the PC via USB, the initialization of the USBD-
library was added to the main program of the collector. To enable sending of received
telegrams to the PC, the event callback (Table 2.8) for new available telegrams was used.
The data could be read into a local buffer, which could be used to extract the data. The
USBD write was then used to transmit the data of the local buffer to the USB Host1.

6.3.2 Implementation of the dummy-meter
The implementation of the meter was done in almost the same way as the implementation
of the collector in Section 6.3.1. Firstly, in order to simplify development of the different
configurations of the stack, a new build configuration was added to the project. Build
configurations are separate build versions of the same project2, often used to keep one
version for debug and one for release, or to use the same project on different target devices.
To add a new build configuration, the following steps were followed:

1. Navigate to project→ edit configurations..., and click new.

2. Give the new configuration a name, and choose a tool chain.

3. Lastly there is an option to base the new configuration on another project configura-
tion.

The meter configuration was created based on the the collector configuration. The only
changes to setting up the stack configured as a meter was to change the preinclude file for
the configuration. The preinclude file ”meter C1.inf” was chosen, as the desired mode of
the meter is C1.

In order for the collector to receive telegrams from the meter, the meter was given the
same address and key as in the meter added to the meterlist of the collector in Section
6.3.1. WM-Bus mode is set by the stack, and there is no RF adapter.

6.3.3 Implementation of USB interface
Collector side (USB Device)

The USB interface between the collector and the PC was implemented as a USB host-
to-device configuration, where the collector was configured to act as a UDB-device, and
the PC a USB-Host. This was done by adding the Silicon Labs USBD-library [3] to the
stack. The library is included with the stack when downloaded, but is not included in

1In this project the Host is a PC, but it could be any form of USB Host.
2For future development: Build configs can also be used to create configuratins for different modes

34

6.3 First setup: collector and dummy-meter

the project unless done manually. The library contains a lot of functionality, enabling
communcation both ways. However, the only function used in this demonstration project
was the ”USBD write”-function, which writes data to a buffer on the MCU. This buffer is
called a Device Endpoit, and is read by the USB Host. The device endpoints are defined
as follows:

1 # d e f i n e EP IN 0x81
2 # d e f i n e EP OUT 0x01

The direction of the endpoints are defined based on the host, thus EP IN is the buffer that
goes in the direction from the device to the host, and is the buffer USBD write writes to.
EP OUT would be the buffer to read from if commands are to be sent from a USB Host.

PC side (USB Host)

In the library downloaded from Silicon Labs [3], the USB host code is available. The
Library is ready for plug-and-play in Microsoft Visual Studio (MSVS). The project was
imported to MSVS, ready to be used. In order to communicate with the USB Device3,
the correct device vendor and id had to be defined. These are available in the USBD
library of the collector, and in this project they are as follows: Device vendor: 0x10C4,
and product ID: 0x0003. In addition, the device enpoint(s)4 has to be defined. These are
defined as EP IN = 0x81 and EP OUT = 0x01. With these defines in the MSVS project,
the program is ready to run. The USB Host program includes a basic ”pinging-loop” from
the host to the device, in order to see that the setup works as intended. After verifying
that the USB communication was up and running, some alterations were made to the
”receiveMessage” function and the main loop, in order to properly receive messages and
display them. Additionally, some quality-of-life changes were made to create an easier to
read presentation of the messages and data.

6.3.4 Testing of first setup

After implementing the collector and dummy-meter according to Section 5.2, the setup
was ready to be tested. This setup seeked to prove the communication between the collec-
tor and dummy-meter.

Receiving dummy-meter telegrams with the collector

To test that the collector was able to receive telegrams from the dummy-meter, the soft-
ware was downloaded to each of the devices, and the devices were started. Both devices
were placed in the same room, to ensure that range and obstacles would not interfere with
the test.

3The collector.
4Buffers on the device the Host can write to and read from

35

Chapter 6. Implementation, Testing, and Results

Testing varying telegram length

In order to verify that the collector could receive telegrams of varying length, not just
the length specified in the demo application, additional data fields were inserted into the
telegram of the dummy-meter. This was important to establish, as the length of telegrams
from the Kamstrup meter is unknown.

Adding additional meters

It is useful to know whether the collector can keep several meters in the meter list and
receive from them. To investigate this, a second meter was implemented and added to
the meter list of the collector. This meter was given a new vendor id, address, type, and
version, in order to verify that those worked as well.

6.3.5 Results of tests
This section covers the results from the tests conducted on the first setup.

Receiving dummy-meter telegrams with the collector

In the first test, the collector was able to receive the telegrams from a dummy-meter and
send them to the PC. The following data was displayed in the Windows console:

0 1 39 59 11 2 −123 4 1 19 12 0 1 2 15
33 −82 109 6 0 −91 27 0 32 −92 0

This data corresponds to the data that the dummy-meter is supposed to send, and thus
confirmed that the collector and dummy-meter worked as intended.

Testing varying telegram length

By adding additional data fields to the telegrams that the meter sent, we were able to
receive those as well, thus confirming that the stack can handle telegrams of varying length.

Adding additional meters

The collector handled reception of telegrams from two meters without any trouble, con-
firming that the collector was able to handle a meter list of two meters. A completely new
address was also given to the meter, which the collector accepted.

36

6.4 Second setup: Kamstrup meter and Kamstrup Meter-Reader

6.4 Second setup: Kamstrup meter and Kamstrup Meter-
Reader

This section covers the implementation, testing, and results of the design presented in
Section 5.3.

Meter Meter-reader

Kamstrup
PressureSensor

Kamstrup
meter-reader

Wireless M-Bus
Kamstrup

firmware, C1
mode

Kamstrup
software

PC

USB
Kamstrup
MeterTool

Figure 6.4: Kamstrup PressureSensor and Kamstrup Meter Reader

6.4.1 Implementation of second setup

In the third setup, a test intended to verify that the Kamstrup meter was transmitting tele-
grams was conducted. This was done by using a Kamstrup meter reader.

Kamstrup meter

The meter was placed in the same conditions as in Section 6.5.1.

Kamstrup meter-reader

To verify that the meter worked as intended, a Kamstrup Meter Reader and metertool
software was used. The meter tool is distributed by Kamstrup, and has to be delivered
by them. After installing the metertool program, the USB Reader can be inserted into
the PC. This prompts the user with a dialog box, where you can name and save the USB
Read. After the USB Reader is ready, a group5 of meters can be created6. In this case,
the meterlist consists of the Kamstrup meter. Firstly, the meter has to be added to the
MeterTool software. The meter can be added manually if it is unencrypted, however, if it
is encrypted, additional information has to be imported first. This can either be done by
importing a file7 forwarded by Kamstrup, or by logging in to their customer portal. In this
project, a file was forwarded by Kamstrup. After importing the meter information, a group
was created, and the meter was added to the group. The group was then added to the USB
reader by selecting the connected reader, and clicking add group.

5A meterlist
6The order doesn’t matter
7A .KEM file

37

Chapter 6. Implementation, Testing, and Results

6.4.2 Testing of second setup
With the meter added to the meter reader, everything left to do was to start reading with the
meter reader. When finished reading, the results were presented in the metertool software.

6.4.3 Results of test
After leaving the meter reader to read telegrams for two minutes, the results were ready.
A telegram was received, with values corresponding to the values displayed on the display
of the meter. As the meter operates in C1-mode, the meter reader could not interfere with
the meter, thus no changes or interferences with the meter had been made. Based on this,
we could hereby conclude that the Kamstrup meter sent telegrams correctly.

38

6.5 Third setup: Kamstrup meter and own collector

6.5 Third setup: Kamstrup meter and own collector
This section covers the implementation, testing, and results of the design presented in
Section 5.4.

Meter

Collector

Kamstrup
PressureSensor

EZR32WG

<Wireless M-Bus>
Kamstrup

firmware, C1
mode

PC

USB
USB Host

STACKFORCE
protocol

stack,
collector, C1

mode

USB DEvice

Figure 6.5: Collector and dummy meter

6.5.1 Implementation of third setup
In the second setup we sought to successfully receive a telegram from a Kamstrup Pres-
sureSensor with the collector implemented in Section 6.3.1. The only change implemented
in the collector was adding a ”ping” to the computer whenever a telegram with a short
header was available, as the demo only implemented functionality for extraction of tele-
grams with long headers. The ping was simply a message to the PC, saying the stack had
reached a specific point in the code. Additionally, the Kamstrup meter was added to the
meter list, as depicted in Listing 6.1 below.

1 s a p l m e t e r E n t r y t g s m e t e r E n t r y = {
2 / / WMBus mete r a d d r e s s
3 {{0x2C , 0 x2D} , /∗ M a n u f a c t u r e r (h e r e KAM) ∗ /
4 {0x30 , 0 x34 , 0 x32 , 0 x34 } , /∗ i d e n t number ∗ /
5 0x01 , /∗ v e r s i o n ∗ /
6 WMBUS DEV TYPE WATER} , /∗ type , h e r e w a t e r ∗ /
7

8 / / WMBus mode of t h e me te r
9 0x02 , / / C−mode

10

11 / / WMBus RF a d a p t e r a d d r e s s o f t h e mete r (unused)
12 {{0x0 , 0 x0 } ,{0 x0 , 0 x0 , 0 x0 , 0 x0 } ,0 x0 , 0 x0 } ,
13

14 / / WMBus mete r key
15 {0x31 , 0 x16 , 0 xa7 , 0 x35 , 0 xb1 , 0 x77 , 0 x20 , 0 x71 ,
16 0xda , 0 x78 , 0 xa5 , 0 xa4 , 0 x51 , 0 x6c , 0 xec , 0 x2c }} ;

Listing 6.1: Kamstrup meter entry

The address, mode, and key provided by Kamstrup was added to the meter, and the meter
was added to the meterlist.

The Kamstrup PressureSensor was delivered ready-for-use, and was not possible to change

39

Chapter 6. Implementation, Testing, and Results

without tools outside the scope of this thesis. The meter operates in WM-Bus mode C1,
and transmits is measurements once every 96 seconds. To ensure that the range between
the two devices would not impact the tests, the meter was placed within a range of five
meters from the collector.

6.5.2 Testing of third setup
The first test of this setup had the intention of trying to receive telegrams from the Kam-
strup meter without making any changes to the software described in the implementation
of this setup. This was done by downloading the stack to the collector device and running
it.

The second test included the use of the callback function wmbus apl evt getCiHeader,
which is called whenever a telegram with an unknown CI-field is received. If the CI-field
is unknown, we can investigate potential CI-fields and add them to the stack. To test wheter
the function was called, a simple ping over USB was inserted at the start of the callback
function.

Testing different WM-bus dialects was done by configuring the stack for different spec-
ifications, namely the OMS specification and the DSMR specification. This was done by
setting the global variables of OMS and DSMR, which enables/disables the standards in
wmbus global.h to true.

6.5.3 Results of tests, third setup
First test

After running the devices with the collector configured as described in Section 6.5.1, there
was no signs of received telegrams.

Second test

The second test tried to determine whether the stack did not know the CI-field of the
telegrams from the Kamstrup meter. The event callback for unknown CI-fields was never
called, indicating that the problem lied somewhere else in the stack.

Third test

The third test tried to determine whether the Kamstrup meter was using a WM-Bus addon.
The setup was tested for three WM-Bus dialects8: OMS, DSMR v405, and DSMR v22.
None of these standards gave any results.

8As described in ??

40

6.6 Fourth setup: Collector, Kamstrup meter and dummy-meter

6.6 Fourth setup: Collector, Kamstrup meter and dummy-
meter

This section covers the implementation, testing and results of the design preseted in Sec-
tion 5.5:

Meter

Collector

Kamstrup
PressureSensor

EZR32WG

<Wireless M-Bus>
Kamstrup

firmware, C1
mode

PC

USB
USB Host

Meter

EZR32WG

<Wireless M-Bus>

STACKFORCE
protocol

stack, meter,
C1 mode

STACKFORCE
protocol

stack,
collector, C1

mode

USB DEvice

Figure 6.6: Collector, Kamstrup meter and dummy meter

The goal of this setup is to further test why the collector is unable to successfully receive
telegrams from the Kamstrup meter. This will be done by trying to follow the flow of the
telegrams from both meters throughout the stack, and to try to figure out where it gets
rejected/accepted, and why. The telegrams from the dummy-meter are used as a reference
for accepted telegrams.

6.6.1 Implementation of fourth setup
Collector

The collector was mainly implemented in the same was as in Section 6.3.1. In addi-
tion, the Kamstrup meter was added to the meterlist. This was done by calling the ”wm-
bus apl col meterAdd” function after the initialization steps in the main program of the
collector. During the tests of this setup, changes will be made to the collector in order to
extract information on where the telegrams gets accepted/rejected.

Kamstrup meter

The Kamstrup meter was added to the system the same way as in Section 6.5.1 and 6.4.1.

41

Chapter 6. Implementation, Testing, and Results

Dummy-meter

The dummy-meter was implemented the same way as in Section 6.3.2. Some changes to
the meter address were implemented during testing.

6.6.2 Testing of fourth setup
In the fourth setup the goal was to try to track the received telegrams of both telegrams.

Investigating calls to the RF driver

As most of the stack is only available in object code, there are limitations on where we are
able to insert own code. In the WM-Bus hardware abstraction layer, the RF driver (which
abstracts the ”real” RF driver to the stack) calls methods in the Si446x RF driver. We do
not have the source file for the Si446x library, as it is delivered in object code, but we
do for the WM-bus RF driver. However, the possibilities are still limited, as most of the
functions simply call a corresponding function of the RF driver. For example:

1 vo id wmbus ha l r f powerOn (vo id)
2 {
3 s f r f p o w e r O n () ;
4 }

Listing 6.2: A call from the WM-Bus HAL tor the RF driver

We are not able to explore what happens inside sf rf powerOn(), or edit the code, but we
are able to insert own code in the wmbus hal rf powerOn() function. This lets us get some
insight of how the RF driver handles incoming telegrams. We are able to monitor all calls
from the stack to the RF-driver by adding a USB write of the function name, as depicted
in the following listing:

1 vo id wmbus ha l r f powerOn (vo id)
2 {
3 USBD Write (EP IN , ” powerOn ” , s i z e o f (” powerOn ”) , NULL) ;
4 s f r f p o w e r O n () ;
5 }

Listing 6.3: Adding code to monitor calls to RF driver

By adding a similar write to all the calls to the RF driver we are able to see which functions
are called and when.

Reading of telegram content before decryption

Some of the calls from the stack to RF driver passes on arguments to the RF driver, some
of them are parameters used to configure the operation of the tranceiver:

1 b o o l t w m b u s h a l r f s e t S i g n a l S t r e n g t h (u i n t 8 t c s i g n a l)
2 {
3 r e t u r n s f r f s e t S i g n a l S t r e n g t h (c s i g n a l) ;
4 }

Listing 6.4: RF operation

42

6.6 Fourth setup: Collector, Kamstrup meter and dummy-meter

Others are buffers to read from or write to:

1 b o o l t w m b u s h a l r f r x D a t a (u i n t 8 t ∗ p c d a t a , u i n t 1 6 t i l e n)
2 {
3 r e t u r n s f r f r x D a t a (p c d a t a , i l e n) ;
4 }

Listing 6.5: RF operation

The call to receive data to the RF driver passes on a pointer (*pc data) to a buffer where
the data retrieved from the transceiver is written. sf rf rxData reads the received data and
stores it in the buffer, then returns TRUE or FALSE based on whether the operation went
successfully. By creating a variable to store this boolean value, it is possible to initiate a
read of the content in the buffer before it is deleted or overwritten.

1 b o o l t w m b u s h a l r f r x D a t a (u i n t 8 t ∗ p c d a t a , u i n t 1 6 t i l e n)
2 {
3

4 / / C r e a t e temp t o e n a b l e e x t r a c t i o n o f b u f f e r d a t a
5 boo l temp = s f r f r x D a t a (p c d a t a , i l e n) ;
6

7 u i n t 1 6 t i ;
8

9 f o r (i = 0 ; i <= i l e n ; i ++)
10 {
11 USBD Write (EP IN , &p c d a t a [i] , s i z e o f (& p c d a t a [i]) , NULL) ;
12 }
13 r e t u r n temp ;
14

15 } /∗ w m b u s h a l r f r x D a t a () ∗ /

Listing 6.6: Sending rx data to the PC

By reading the data stored in the buffer pc data points to, we are able to send the data
retrieved from the tranceiver to a PC, where we can study the contents of the raw data.
Notably to add, most of this data is encrypted, but the header (the first block) is unen-
crypted.

6.6.3 Results of tests

Studying receive patterns

As mentioned in Section 6.6.2, the sf hal rf.c file was configured to transmit function calls
of RF driver to the USB host (PC). By analyzing these calls, a pattern could be observed.
Whenever the dummy-meter transmitted telegrams9, the following calls, described in Ta-
ble 6.1, were called by the collector WM-Bus stack to the RF-driver.

9Observed by toggeling a LED on transmission

43

Chapter 6. Implementation, Testing, and Results

Function call Order
wmbus hal rf rxInit 1
wmbus hal rf rxData 2
wmbus hal rf rxData 3
wmbus hal rf rxData 4
wmbus hal rf rxData 5
wmbus hal rf setPowerMode 6
wmbus hal rf rxFinish 7

Table 6.1: Calls to RF driver when receiving a dummy-meter telegram

In addition, the following pattern, as described in Table 6.2, was observed during the test,
occurring in a seemingly random fashion:

Function call Order
wmbus hal rf rxInit 1
wmbus hal rf rxData 2
wmbus hal rf rxFinish 3

Table 6.2: Calls to RF driver during testing

For now this is considered noise from other devices, as the stack seems to ignore them in
the layers above HAL. This is probably due to the fact that the telegrams may be sent from
a meter not added to the meter list, if not, they may be noise from other instruments not
operating with the wireless M-bus protocol.

Analyzing ”noise” patterns

The kamstrup PressureSensor is trnsmits telegrams every 96 seconds. By analyzing pat-
terns in the ”noise” received, a recurring signal was received every 96 seconds. In order to
verify that it is sent from the Kamstrup meter, the ID has to be verified.

Removing the dummy-meter from the meter list

To observe how the stack handles telegrams from a simulated meter not inculded in the
meterlist, the identification number (ID) of the meter was changed. Keeping the old ID
in the meterlist of the collector. By observing the data received, the observation that the
collector now receives the telegrams from the simulated meter, but neglects the data after
checking it’s ID. Similar to the noise described in Section 6.6.3. Worth mentioning, is the
fact that the new ID was the only data received and transmitted to the PC.

Reading of telegram content before decryption

Unfortunately, the extracted data did only contain the ID of the meter, not the whole tele-
gram. Limiting the usefulness of the extraction, as the goal was to extract data similar to

44

6.6 Fourth setup: Collector, Kamstrup meter and dummy-meter

what was done by Cyrill Brunschwiler in Wireless m-bus security whitepaper [2]. How-
ever, the data received on the PC-side contained some useful information. Firstly, we were
able to see the corresponding address sent from the dummy-meter, confirming that the ex-
traction was done correctly (the format of the data was transmitted to the PC correctly).
Secondly, the signal received every 96 seconds contained the meter address [24 04 00 77],
which is not the one provided by Kamstrup (30 34 32 34). By digging in the files provided
by Kamstrup in order to add the meter to the MeterTool software, the confirmation that the
meter address is 77000424 was found in an .xml file. This discovery gave us two results:

• The collector receives telegrams from the Kamstrup meter, but declines them due to
some unknown fact

• The address used in the third setup was wrong.

In light of the knowledge that the collector in the third setup contained the wrong meter
address, the tests of that setup had to be redone. The tests was conducted again, but with
no success. There were still no signs of reception of telegrams in the APL layer.

45

Chapter 6. Implementation, Testing, and Results

46

Chapter 7
Discussion

7.1 Introduction

The goal of this thesis was to investigate the possibilities of using third party equipment
to read utility meter data over Wireless M-Bus, in order to collect pressure and flow data
from end users of the water supply network. The means used to investigate challenges
with the coexistence of equipment from different manufacturers was through a literary
study on similar attempts and adaptations of the Wireless M-Bus standard, and an imple-
mentation of a demonstration project. Several test-setups were implemented and tested in
order to verify the equipment was functioning as intended, and to experiment with vari-
ous setups. The results of these tests demonstrated the implications and difficulties that
might arise when using third party equipment; the goal of successfully reading a telegram
from a Kamstrup meter was not accomplished. However, the results provided some useful
insights for future attempts at similar implementations.

7.2 Major findings

During finalizing the writing of this thesis, a major flaw in the demonstration project was
detected by the author. This section describes the flaw, and seeks to present a guide/-
solution for future attempts at a similar project. As the problem was detected after the
demonstration project was finished, the author found it suitable to address the problem in
the discussion part of the thesis.

In the ”release notes” file for the documentation, located under WMBUS Tools/Documen-
tation/release notes 1.0.6.txt in the project folder downloaded from Silicon Labs’s website
[7], the release note 2518 under Change log 2.3.2, says ”The demo application for the APL
don’t works with Mode C devices”. This means that the APL demo project is incompat-
ible with the Kamstrup meter, as it operates with WM-Bus mode C1. There are no other
mentions of this fact in other parts of the documentation, and this incompatibility is not

47

Chapter 7. Discussion

discussed or explained further. On Silicon Labs’s websites it is specifically stated that the
hardware and software used in this project should be able to communicate with mode C
devices. Additionally, the collector and dummy-meter implemented in the first setup was
using mode C1, and thus, the author of this thesis was working under the assumptions that
the collector would work with commercial mode C devices as well. This problem demon-
strates the importance of reading documentation on third party software and equipment.

As the release note specifically mentions that the APL demonstration does not work with
mode C devices, there is reason to believe that the TPL demonstration might work with
mode C devices, and thus the Kamstrup meter, based on the fact that no incompatability is
mentioned for the TPL demo. Based on this information, an attempt at explaining how a
similar demonstration project can be implemented with the TPL as the highest layer will
be given in Section 7.2.1.

7.2.1 TPL demonstration project
This guide represents a suggestion for further work to achieve the main goal of this thesis,
which was to demonstrate the interoperability between 3rd party equipment and commer-
cial meters. It is based on the author’s experiences in the scope of this thesis, and is not
tested in practise. The guide is intended for the use of the STACKFORCE protocol stack
on an EZR32WG330 MCU mounted on a Wireless Gecko starter kit. It is intended to be
used as a collector in mode C1, in order to achieve successful reception of telegrams from
a Kamstrup PressureSensor.

As mentioned in Section 7.2, there is reason to believe that the TPL version of the proto-
col stack might work, as the stack is advertised as fully compliant to S, T, C and N(a-f)
modes, but only the APL version is mentioned as not working in the release notes. In
order to implement the collector with the TPL as the highest layer the following steps are
recommended.

Download the stack, and import the project in IAR Embedded Workbench. The TPL
demonstration project is located in ”Wireless M-BUS stack/WMBUS Tools/Firmware/TPL
firmware/ide/iar/Demo SLWSTK6220A” named ”Demo apptpl.ewp”.
The main file of the TPL demonstration application is located under Wireless M-BUS
stack/WMBUS Tools/Firmware/TPL firmware/src/stack/src/apps/demos/tpl” named main collector.c.

Configure the mode and target device as done in Section 6.3.1. The TPL demonstra-
tion project should then be ready for implementation.

Add a communications interface between the collector and a PC. The TPL demo should
be able to use the same USBD library as used in the APL demo of this thesis.

Implement changes to the stack in order to receive and read telegrams from the Kam-
strup meter. There are a few differences in the TPL application demo compared to the APL
demo. The most notable ones are that the demo does not have an event callback function
for reception of telegrams and no event callback for reading of received telegrams. The

48

7.2 Major findings

TPL API does not contain an event callback for received telegrams1, but it contains an
event callback which triggers when a telegram is available, as seen in Table 7.1.

APL API callbacks TPL API callbacks
wmbus apl evt rx() Not listed
wmbus apl evt tlgAvailable() wmbus tpl evt tlgAvailable()

Table 7.1: APL vs. TPL callbacks

In the TPL demo, this callback is used to count telegrams received, and destroys the tele-
grams afterwards. This callback might be expanded to read the attributes of the telegram
before destroying them. The TPL API lists a function named wmbus tpl getTlgAttr(),
which might be used to read the telegram data and to write it to memory or send it to a PC
before destroying the telegram. If possible, then a similar method as in the APL demo of
extracting the telegram data may be used. Using the wmbus apl evt tlgAvailable() func-
tion as an inspiration or guideline seems like a good choice.

Further implementation will rely on the results of this approach, and has to be evaluated
thereafter. If this approach does not work, the thesis author would advise against using
the stack for this purpose, as it would be very challenging, if not impossible, to fix the
problem. This is due to the the fact that the stack is delivered in object code, and thus it
might not be possible to implement a working fix. However, as some troubleshooting is
expected to get the TPL version to work (if possible), then the following findings from the
setups of the demonstration project might also be useful.

7.2.2 The setups
Although the goal of the project was not reached, the different setups and tests provided
a lot of useful insights and results for future research on the development of a third party
system for reading of measurements from a commercial meter. The findings from each
setup will be presented in this section.

Findings from the first setup: General collector and dummy-meter

The first setup demonstrated a useful basis for testing and development of Wireless M-Bus
solutions. The stack provided by STACKFORCE includes a lot of flexibility regarding
choice of WM-Bus modes and the configuration of these, device architectures, interfaces
to external devices, and API’s. The system was only tested in a unidirectional commu-
nication scheme, with mode C1. Although other modes were not tested, the author is
confident that other modes and configurations would be relatively simple to implement
with the equipment used in this demonstration project.

It would be interesting to investigate how the demonstration project would handle equip-
ment using other modes, especially modes C2 and the N modes. C2 would be interesting

1Like the one used to toggle LED’s

49

Chapter 7. Discussion

as it is a bidirectional communication mode, which could enable more advanced function-
ality, not just meter readout. The N-modes would be interesting to test due to the long
range they offer. S and T modes are considered inferior to C mode, as C mode enables
either longer range or more frequent transmits as it uses a more energy efficient encoding.
The use of C mode is also supported by the OMS group, which specifically states that
modes S and T are deprecated/not recommended in their standard [5].

Findings from the second setup: Kamstrup meter and Kamstrup Meter Reader

The second setup was mostly set up for verification purposes, which was very useful. It
was important to know that the problem with receiving telegrams from the Kamstrup me-
ter did not originate from the meter itself. Additionally, when receiving telegrams from
an unknown meter, detected in the HAL, the equipment used for this setup was crucial
for being able to determine where the telegrams came from. The additional information
from the meter installation files provided by Kamstrup allowed for the confirmation that
the wrong address was being used for the Kamstrup meter. Unfortunately, the new infor-
mation did not yield any progress in reading Kamstrup meter telegrams.

A useful addition to this setup would be to introduce a similar WM-bus analyzer to the
one used by Cyrill Brunschwiler in the work on evaluating the security of the WM-Bus
protocol [2]. Such an analyzer would not only confirm the meter is sending, but it would
also give a lot of information on the format of the telegram. It would enable detection of
what frame formats, layers, data headers and encryption the Kamstrup meter uses, which
would be very valuable in order to narrow down the search of where the stack rejects the
telegrams. It might also be possible to emulate such an analyzer with the software stack
used in this project, if it is possible to extract the complete raw data of the received tele-
grams. Such a feature may be useful in the future if the proposed system works, because
new meters may include additional layers or unknown fields. Sniffing the raw data from
the telegrams of new meters may help in figuring out by which format they are transmitted,
and may simplify the implementations of systems consisting of equipment from different
vendors.

Findings from the third setup: Collector and Kamstrup meter

The third setup provided us with useful information regarding which layer the telegram did
not reach. It never appeared in the Application layer, which enabled us to limit the search
for where the stack rejected the telegrams to lower-level layers. The fact that the setup was
unable to provide us with the CI information of the telegrams is a huge weakness of this
demonstration project, as the CI field contains important information regarding how the
telegram should be handled. Especially the fact that the stack was unable to alert about an
unknown CI field was very unfortunate, as the information of knowing that the stack did
not recognize the CI field would allow more dedicated investigation of which CI message
the Kamstrup meter is using. The need for investigating the CI field further demonstrates
the importance of the fourth setup, where the focus was on figuring out where the stack
rejected the telegrams, by trying to extract and analyze the contents of the raw data. As the
attempts in the fourth setup were unsuccessful, the need for a device such as the analyzer

50

7.3 Limitations

discussed in the second setup is strengthened.

As mentioned in Section 2.2.2, C mode is the newest addition to the modes of the standard,
which may introduce some complications before the manufacturers are able to implement
the mode to work as intended, especially between vendors. This might be the reason as
to why the stack is not compatible with C-mode devices, as advertised. A weakness of
this setup is that it was only tested with one kind of meter. Even though the goal of the
project was to be able to read telegrams from a deployed set of Kamstrup meters, it would
be interesting to test for communication with commercial meters operating with different
modes, to investigate the use of these.

Findings from the fourth setup: Collector, Kamstrup meter and dummy-meter

The fourth setup allowed us to determine that the collector was receiving telegrams from
the Kamstrup meter, and that the telegrams were rejected somewhere in the stack, even
though the meter was added to the meter list correctly. This was achieved by reading
the content of the unencrypted telegrams after they were retrieved from the transceiver
by the RF driver, and comparing the extracted data with data of telegrams received from
the dummy-meter. Unfortunately, the setup was unable to extract the whole unencrypted
telegram, but only the ID part of the address. This is a weakness of the method, because if
the whole unencrypted telegram was available, there might be a way to configure the stack
to be able to handle the structure of the mode C telegrams.

Aside from implementing the stack with the TPL version as described in Section 7.2.1,
future implementation should focus on creating a functional ”sniffer” mode, to allow print-
out of the full set of raw data from received telegrams. The results of this setup suggests
that it might be possible to implement such a mode, as it demonstrates a partially func-
tioning one. The need for such a ”sniffer” mode is supported by the work of Zeman et al.
in Wireless m-bus in industrial iot: Technology overview and prototype implementation.
[9], where they emphasise the need for a data sniffer in order to configure the collector to
receive telegrams from different manufacturers. If the limitations of not having access to
the source code prevents the development of a sniffer mode, a WM-Bus analyzer may be
used instead, as suggested in the discussion of the second and third setup.

7.3 Limitations
The demonstration project presented in this thesis presents a system implemented with a
EZR32WG330 MCU mounted on a Wireless Gecko development kit, using the STACK-
FORCE WM-Bus protocol in order to try to receive telegrams from a Kamstrup Pressure-
Sensor. It is not tested on other equipment, but the stack should be portable to other Silicon
Labs wireless MCU’s with ARM based architectures. The system is only tested in mode
C1, but the stack should be able to handle both uni- and bidirectional communications
using S, T and N modes.

51

Chapter 7. Discussion

52

Chapter 8
Conclusion

This thesis investigated the use of third party equipment to read commercial water meters
using Wireless M-Bus, based on the need for a general data collection system in the water
supply network. This was done by implementing a general data collector and testing vari-
ous setups in order to successfully receive a telegram from a commercial Kamstrup meter.
Unfortunately, no telegrams were successfully received by the implemented data collector,
as the software stack configuration used to implement the collector was incomplete, and
thus it can be concluded that it is incompatible with the commercial meter.

The setups used to attempt reception, and later investigate problems with reception, in-
cluded; (i) a collector and dummy-meter in mode C1, to ensure that the collector was able
to receive telegrams in mode C1 and send the data to a connected PC, (ii) a verification of
the operability of the Kamstrup meter with Kamstrup equipment, (iii) an attempt at read-
ing the Kamstrup meter by configuring the collector according to EN 13757-4, an attempt
which was unsuccessful, and (iv) an implementation in order to investigate possible ex-
planations to why the collector was unable to receive telegrams from the Kamstrup meter,
which was done by printing out the raw data of received telegrams and comparing them
to the dummy-meter. Unfortunately, no valid cause was found. The explanation was later
found in the release notes of the stack, stating that the configuration that had been used
was unable to receive telegrams from meters using mode C. The specific cause of why the
stack is unable to receive telegrams from mode C devices, is not given.

Although the goal of the demonstration project was not reached, the setups demonstrated
promising functionality. The STACKFORCE stack includes a lot of flexibility, and works
as intended when using dummy-meters. A proposal for another configuration of the stack
has been provided in this thesis, which uses the transport layer as the highest layer. If the
proposed configuration is unable to receive telegrams, the setups presented in this thesis
may give inspiration on how to troubleshoot.

53

Chapter 8. Conclusion

54

Chapter 9
Further work

The following list presents the recommendations on further work on the system presented
in this thesis. Specific details are discussed in the Chapter 7, specifically Section 7.2.1,
which proposes a TPL version of the demonstration project.

• Implement the TPL version of the demonstration project as proposed in Section
7.2.1.

• Implement a complete ”sniffer mode”, in order to be able to view the complete set
of raw data of telegrams received, as discussed in the discussion of the fourth setup
in Section 7.2.2.

• An alternative to the sniffer mode is to acquire a WM-Bus analyzer, as described in
the discussion of the second setup in Section 7.2.2.

• If the TPL version of the demonstration project is able to receive telegrams from the
Kamstrup meter, create an interface to a cloud service in order to remotely access
data and configure the collector. The work by Lier, H. H., may be used as a reference
[4].

• If the proposed system works, and an interface to a cloud service or something
similar has been implemented, the system may be tested on actual meters connected
to the water supply network.

55

Chapter 9. Further work

56

Bibliography

[1] CENELEC, Aug. 2013. Communication systems for meters and remote reading of
meters - part 4: Wireless meter readout(radio meter reading for operation in srd bands).

[2] Cyrill Brunschwiler, C. S. A., Jun. 2013. Wireless m-bus security whitepaper.

[3] Labs, S., Nov. 2017. Efm32 as usb device. https://www.silabs.com/
documents/public/example-code/an0065-efm32-usb-device.
zip, Visted at 2019-10.

[4] Lier, H. H., Jun. 2018. Demonstrering av konsept for innsamling og sammenstilling
av data fra flere vannmlere ved bruk av trdls m-bus.

[5] OMS, Jan. 2014. Primary communication. Standard, Open Metering Systems Group,
Marienburger Strae 15, 50968 Cologne, Germany.

[6] Sikora, A., Lehmann, P., Anantalapochai, N., Dold, M., Rahusen, D., Rohleder, A.,
Sep. 2014. Recent advances in en13757 based smart grid communication. Journal of
Communications 9, 658–664.

[7] STACKFORCE, Mar. 2015. Stack reference manual. https://pages.silabs.
com/wireless-m-bus.html?utm_source=web, Visted at 2019-08.

[8] Wikipedia.org, 2020. Osi model. https://en.wikipedia.org/wiki/OSI_
model, Visted at 2020-01-16.

[9] Zeman, K., Masek, P., Krej, J., Ometov, A., Hosek, J., Andreev, S., Krpfl, F., May.
2017. Wireless m-bus in industrial iot: Technology overview and prototype imple-
mentation.

57

https://www.silabs.com/documents/public/example-code/an0065-efm32-usb-device.zip
https://www.silabs.com/documents/public/example-code/an0065-efm32-usb-device.zip
https://www.silabs.com/documents/public/example-code/an0065-efm32-usb-device.zip
https://pages.silabs.com/wireless-m-bus.html?utm_source=web
https://pages.silabs.com/wireless-m-bus.html?utm_source=web
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model

58

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Anders Vatland

Wireless M-Bus communication
between equipment from different
vendors

Trådløs M-Bus kommunikasjon mellom utstyr fra
forskjellige leverandører

Master’s thesis in Cybernetics and Robotics

Supervisor: Geir Mathisen

March 2020

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background and motivation
	Limitations
	Disposition

	Theory
	Introduction
	The Wireless M-Bus protocol
	General
	WM-bus modes
	Telegrams

	The STACKFORCE protocol stack
	Wireless M-Bus stack
	Abstraction layers
	Hardware abstraction layer

	Literature Review
	Introduction
	Previous masters thesis
	Reading raw data from a kamstrup electricity meter
	Wireless M-Bus in industial IoT
	WM-Bus dialects

	Summary

	Specification
	Introduction
	Technical specification
	Functional specification
	Acceptance criteria
	Method

	Design
	Introduction
	Collector and dummy-meter
	Kamstrup meter and Kamstrup meter-reader
	Collector and Kamstrup meter
	Collector, Kamstrup meter and dummy-meter

	Implementation, Testing, and Results
	Introduction
	Development enviroment
	First setup: collector and dummy-meter
	Implementation of the collector
	Implementation of the dummy-meter
	Implementation of USB interface
	Testing of first setup
	Results of tests

	Second setup: Kamstrup meter and Kamstrup Meter-Reader
	Implementation of second setup
	Testing of second setup
	Results of test

	Third setup: Kamstrup meter and own collector
	Implementation of third setup
	Testing of third setup
	Results of tests, third setup

	Fourth setup: Collector, Kamstrup meter and dummy-meter
	Implementation of fourth setup
	Testing of fourth setup
	Results of tests

	Discussion
	Introduction
	Major findings
	TPL demonstration project
	The setups

	Limitations

	Conclusion
	Further work
	Bibliography

