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Abstract 

Evolvability is the potential for evolution and can be defined as the ability of a population to 

produce and maintain genetic variation. Evolvability depends on the additive genetic variance 

that represents the part of the trait variance that is directly transmitted from parent to offspring. 

The absence of additive genetic variance may limit trait evolution and therefore constrain 

divergence among populations and species. To test this hypothesis, I performed a comparative 

analysis where I assessed if evolvability constrains evolutionary divergence, by analysing the 

relationship between populations and species divergence and evolvability in a broad range of 

traits. I searched the primary scientific literature for studies reporting additive genetic variances 

and trait means in order to calculate evolvability as additive genetic variance standardised by 

the trait mean square. Across all species and traits, evolvability predicted evolutionary 

divergence. Evolvability explained 30% of the divergence at the among-population level and 

12% at the among-species level. The relationship between evolvability and evolutionary 

divergence remained unchanged within trait and organism categories. These results seem to 

support the genetic-constraint hypothesis and hence contribute to connecting the micro- and 

macroevolutionary timescales.  

 
Keywords: Evolvability, genetic constraint, evolutionary divergence, microevolution, 

macroevolution, heritability 
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Sammendrag 

Evolverbarhet er potensialet for evolusjon og kan defineres som en populasjons evne til å 

produsere og opprettholde genetisk variasjon. Evolverbarhet avhenger av den additive 

genetiske variansen, som representerer den delen av trekkvariansen som overføres direkte fra 

foreldre til avkom. Fraværet av additiv genetisk varians kan begrense evolusjon av trekk og 

derfor begrense divergens blant populasjoner og arter. For å teste denne hypotesen, utførte jeg 

en komparativ analyse der jeg undersøkte om evolverbarhet begrenser evolusjonær divergens. 

Dette ble gjort ved å analysere forholdet mellom populasjons- og artsdivergens og 

evolverbarhet i et bredt spekter av trekk. Jeg søkte i den primære vitenskapelige litteraturen 

etter studier som rapporterte additive genetiske varianser og gjennomsnitt av trekk for å beregne 

evolverbarhet som additiv genetisk varians standardisert av det kvadrerte trekkgjennomsnittet. 

På tvers av alle arter og trekk forklarte evolverbarhet noe av den evolusjonære divergensen. 

Evolverbarhet forklarte 30% av divergensen mellom populasjoner og 12% mellom arter. 

Forholdet mellom evolverbarhet og evolusjonsdivergens forble uendret innen ulike trekk-

kategorier og organismer. Disse resultatene ser ut til å støtte hypotesen om genetiske 

begrensninger og dermed bidra til å koble sammen mikro- og makroevolusjon. 
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1 Introduction 
Phenotypic evolution can be measured as changes in the population mean and distribution of a 

phenotype over generations. Such changes are studied at both micro- and macroevolutionary 

timescales. Microevolution is often defined as short term dynamics of phenotypes within 

populations on a timescale of one to ca. hundred generations (Arnold et al., 2001, Merilä et al., 

2001, Hansen et al., 2011, Hansen, 2012). These dynamics include changes in allele 

frequencies, trait means and trait distributions, typically studied with methods and theory 

derived from population genetics or quantitative genetics (Falconer and Mackay, 1996, Conner 

and Hartl, 2004). In macroevolution, patterns of phenotypic change will be studied at the 

among-population and among-species level using comparative studies and the fossil record 

(Gould and Eldredge, 1977, Gould, 2002, Uyeda et al., 2011, Hansen, 2012, Voje et al., 2018).  

The transition from micro- to macroevolutionary timescale has been considered by some 

authors as a non-continuous path, where evolution at the different timescales depends on partly 

independent processes (Eldredge and Gould, 1972, Gould and Eldredge, 1977, Stanley, 1979, 

Gould, 2002). Punctuated equilibria, the morphological stasis observed within linages and 

sudden appearance of new lineages on a geological timescale in the fossil record, tend to support 

this view. With punctuated equilibria, morphological change is concentrated in rapid speciation 

events (Eldredge and Gould, 1972, Gould and Eldredge, 1977). This contrasts with the neo-

Darwinian gradualist view of evolution where morphological change is an ongoing process with 

similar rates within and among species. At the time this sparked a fierce debate in evolutionary 

theory which remains to this day (Charlesworth et al., 1982, Gingerich, 1984, Arnold et al., 

2001, Voje et al., 2020). Recently the best example of evidence for punctuated equilibria in the 

bryozoan genus Metrarabdotos (Gould, 2002) was refuted by Voje et al. (2020) who found no 

difference in the strength of selection between anagenesis (evolution within linages) and 

cladogenesis (evolution between linages), and showed that evolution happened mainly in the 

direction with above average genetic variation in both scenarios (Voje et al., 2020). 

Theoretical and empirical studies have suggested that changes in adaptive landscapes 

through time may provide mechanisms that explain patterns of punctuated equilibrium with 

gradual changes linking micro- and macroevolution. For instance, the morphological stasis 

within linages may be due to adaptation to stationary fluctuating optima generating no net 

evolution in the fossil record (Hansen and Martins, 1996, Estes and Arnold, 2007, Uyeda et al., 

2011, Hansen, 2012, Voje, 2016, Voje et al., 2018). More directional, semi-permanent or 

sudden changes to the adaptive landscape may induce divergent selection in lineages resulting 
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in cladogenesis (Simpson, 1944, 1953, Hansen and Martins, 1996, Arnold et al., 2001, Hansen, 

2012). Another approach to the continuous transition between the two timescales is the 

extrapolation of parameters describing variational properties within populations to explain 

patterns of macroevolution (Andersson, 1991, 1997, Schluter, 1996, Bégin and Roff, 2003, 

2004, Bolstad et al., 2014, Houle et al., 2017, McGlothlin et al., 2018, Voje et al., 2020). 

However, how far the parameters describing microevolutionary processes can be extrapolated 

to explain patterns of macroevolution remains an open question (Chenoweth et al., 2010, 

Futuyma, 2010). For instance, can patterns of genetic variation within populations (i.e. a 

microevolutionary timescale) explain patterns of evolutionary divergence among population 

and species (i.e. a macroevolutionary timescale)? If this is the case, genetic constraints are 

present.  

The genetic-constraint hypothesis predicts that genetic variational properties within a 

population limit phenotypic changes in response to random genetic drift or selection (Arnold, 

1992, Futuyma, 2010). Adaptive evolution depends on the standing genetic variation in a 

population, the strength of selection and time (i.e. number of generations). Lande (1976, 1979) 

modelled this response to selection over a few generations as: 

 ∆"̅ = %!&, (1.1) 

where ∆"̅ is the change in trait mean, $! is the additive genetic variance and % is the directional 

selection gradient. The selection gradient represents the slope of the fitness function at the 

populations mean. It is estimated as the slope of the regression of the individual relative fitness 

(&) on the individual trait values of the population (% = "	$(&)
"	& = ()*[$,&]

*./[&] ). The additive genetic 

variance is the part of the phenotypic trait variance ($0) that is due to directly transmittable 

genetic effects from generation to generation (Falconer and Mackay, 1996, Conner and Hartl, 

2004). This additive variance ($!) thus represents the potential for evolution (Houle, 1992, 

Hansen, 2006), and is assumed to be constant over the examined time period (Lande, 1976, 

Lande, 1979, Turelli, 1988). 

The response to selection in one trait may be constrained by genetic correlation with 

other traits. The multivariate version of the Lande equation estimates the response to selection 

(direct and indirect) in a set of correlated traits 

 ∆() = *+ (1.2) 

(Lande, 1979, Lande and Arnold, 1983), where ∆() is the response vector, the sum of the change 

in trait means (∆"1̅), * a matrix of the additive genetic variances ($!!) and covariances (cov12) 
and . is the vector of selection gradients (%1) for each trait (/ = 1, 2, … , 4). Lande (1977a, 1979, 
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1980) argued that the G-matrix stays roughly stable through time due to a selection, mutation, 

and recombination balance. Empirical work and simulations have shown that some features of 

the G-matrix stay remarkably stable (Schluter, 1984, 2000, Shaw et al., 1995, Jones et al., 2003, 

2007, Arnold et al., 2008, Hohenlohe and Arnold, 2008). 

The univariate (eq. 1.1) and multivariate (eq. 1.2) version of the Lande equation 

demonstrates that adaptive evolutionary changes may be constrained by lack of genetic 

variation, in amount or direction. Futuyma (2010) presented different forms of genetic 

constraint, including (i) little or undetectable genetic variation for a trait, (ii) genetic 

correlations between traits with opposing directional selection, (iii) divergence along the 

genetic line of least resistance (g-max), i.e. the direction of the G-matrix with the highest 

amount of variation (Schluter, 1996), and (iv) G-matrices with fewer detectable principal 

components than traits. 

The presence of genetic constraint would imply that the amount of genetic variation can 

predict the amount of divergence observed between populations and species. If the lack of 

genetic variation represents a constraint to evolution, then we expect macroevolutionary 

patterns (population and species divergence) to be partly explained by the available genetic 

variation (Arnold, 1992, Schluter, 1996, 2000, Bégin and Roff, 2003, 2004). Several studies 

have tested this hypothesis. Andersson (1991) showed that within- population genetic variation 

explained among-population variation in the plant Crepis tectorum. Similarly, Bolstad et al. 

(2014) found that the G-matrix predicts divergence among populations of two closely related 

Dalechampia (Euphorbiaceae) species. Among species of Anolis lizards, McGlothlin et al. 

(2018) found that the G-matrix predicted divergence. Houle et al. (2017) found that the 

mutational variance matrix, summarising the combined effects and accumulation of mutations 

over generations (Houle and Fierst, 2013), predicted divergence in Drosophilid taxa.  

Studying the scaling between evolvability and divergence among populations and 

species may help us understanding better the mechanisms causing the divergence. Models of 

the rate of divergence under different evolutionary scenarios may give an improved 

interpretation of which evolutionary processes generate the observed scaling relationships 

between evolvability and divergence. 

One way to model divergence over time is a neutral evolution model, which only 

assumes mutation and drift (Lynch and Hill, 1986, Lynch, 1990). This can be done with a 

Brownian-motion process with a flat fitness function and a high phylogenetic heritability 

(proportion of trait variance explained by relationships among taxa (Housworth et al., 2004)). 

This model predicts that the variance between two species has an expected rate of divergence 
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proportional to the mutational variance on a log-log scale (Lynch, 1990, Martins, 1994, Houle 

et al., 2017). Thus, they scale with a slope of 1 (Fig 1.1)  

Other evolutionary models assume directional divergent selection, using a Brownian 

motion process and linear fitness function divergent for the different species with intermediate 

phylogenetic heritability. In this scenario the rate of divergence scales with the mutational 

variance with a slope of 2 on a log-log scale (Houle et al., 2017). Bolstad et al. (2014) showed 

that for mean-scaled additive genetic variance (i.e. evolvability sensu Hansen et al. (2003b)) 

the scaling relationship with among-population variance is equivalent to the expectation for the 

mutational variance (Fig. 1.1).  

A third approach to modelling lineage divergence is to assume an Ornstein-Uhlenbeck 

(OU) process. Unlike the Brownian-motion process the OU-process has a “pull parameter”. 

This makes the OU-process capable of considering the mutational target and mutational average 

under drift and considering various scenarios where species are tracking fluctuating optima 

(Martins, 1994, Hansen and Martins, 1996, Hansen, 1997, Hansen et al., 2008). When 

populations track moving optima, the scaling relationship between evolvability and among-

population variance depends on the movement of the optima and the rate of adaptation (Bolstad 

et al., 2014). There is no detectable scaling relationship when the rate of adaptation of the 

populations is either too slow (unable to track) or too fast (perfectly tracked) compared to the 

movement of the optima. However, with rates of adaptation in the same order of magnitude as 

the movement of the optima where the populations manage, a scaling relationship between 

evolvability and divergence lies between 0 and 1 on a log-log scale. If the optima move fast, 

but are still in the range of where the populations manage to track them, the scaling relationship 

will be close to 1 (Bolstad et al., 2014). 
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Figure 1.1: The predicted scaling relationship of divergence 
between species or populations and evolvability for a trait on a 
log-log scale. Solid line: Divergent directional selection, slope = 2, 
represents the upper limit. Long dashed line: Genetic drift, slope 
= 1. Short dashed line: Stabilising selection, slope = 0. Any 
mixture of modes of evolution with time yields a slope somewhere 
between 0 and 2.  

 

As mentioned, different studies have tested aspects of the hypothesis that genetic 

constraint is important in the divergence of organisms. Most of these studies have been 

restricted to one species or a few closely related species and there is currently no general 

analysis of this pattern observed in specific groups of organisms. In this study I aim to test the 

generality of the genetic constraint hypothesis. To do so, I analyse a dataset containing a broad 

range of traits and organisms. The hypothesis is tested by asking to what extent genetic variation 

predicts divergence among populations and species. Specifically, I ask: (i) Does genetic 

variation predict evolutionary divergence? (ii) Does timescale affect the prediction? (iii) Are 

there differences among organisms and traits? (iv) How does evolutionary divergence scale 

with evolvability? 
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2 Methods 
To assess the relationship between evolvability and evolutionary divergence, I collected 

estimates of additive genetic variance and trait means from the primary scientific literature. 

Testing this relationship in a broad range of traits and organisms requires standardisation of the 

additive genetic variance estimates. Similarly, a meaningful comparison between evolvability 

and divergence need to be based on comparable scale types.  

There are different ways to standardise additive genetic variance, either proportional to 

the total variance or proportional to the mean (Houle, 1992, Hansen et al., 2003b, Hansen et al., 

2011). The phenotypic variance depends on the phenotypic mean of the entity and the variance 

is more comparable on a proportional scale. For example, an increase of five grams in body 

size does not affect a mouse and an elephant equally, because the change in the mouse is much 

larger in proportion of its body size. Hansen et al. (2003b) standardised the Lande equation by 

the trait mean, 

 
∆"̅

"̅
=
%!
"̅"
&"̅, (2.1) 

where the mean-scaled additive genetic variance is the evolvability (53 = 4"
&̅#  ). The mean-scaled 

selection gradient (%3 = %"̅) becomes an elasticity because it equals the proportional change in 

fitness per proportional change in trait mean (Hereford et al., 2004). Evolvability can be 

interpreted as the expected proportional change in the trait mean over the strength of selection.  

 ,# =
(
∆"̅

"̅
)

(&"̅)
=
%!
"̅"

 (2.2) 

If the trait is fitness itself, then %"̅ = 1, and 53 	× 	100 can be interpreted as the percent 

potential evolutionary change for a trait that is unconstrained by correlations with other traits 

(Hansen et al., 2003b, Hansen et al., 2011).  

Another common way to standardise the additive genetic variance is by dividing $! by 

the total phenotypic variance ($0),  

 
ℎ" =

%!
%$
. (2.3) 

This is called the heritability (ℎ6) and stems from the Breeders equation, 

 ∆"̅ = ℎ"1, (2.4) 

where : is the selection differential, that is, the difference between the population mean (")̅ 

before and after selection ("̅∗) (Lush, 1937). Heritability has been criticized as a measure of 

evolvability (Houle, 1992, Hansen et al., 2003b, 2011, Hereford et al., 2004, Hansen and Houle, 
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2008, Wilson, 2008). Phenotypic variance consists of the sum of the additive genetic variance 

($!), the trait variance due to epistatic interactions ($8), the variance due to dominance 

interactions ($9), the environmental variance ($:) and some residual variance ($;). Hence,  

 
ℎ" =

%!
%! + %% + %& + %' + %(

, (2.5) 

and dividing $! by $0 obscures the measure of $!, because $0 is itself a function of $! (Hereford 

et al., 2004). Consider the case where $!! + $9 + $: + $; = 0 for a set of traits, then ℎ6 = 1 

for all the traits, regardless of the amount of $!. Furthermore, measures of $!!, $9 and $: are 

shown to be correlated with $! (Hansen et al., 2011). Thus, the scale becomes stretched for high 

values of $!, and $! is therefore largely uncorrelated with ℎ6 (Lande and Arnold, 1983, Hansen 

et al., 2003b, Hereford et al., 2004, Hansen et al., 2011).  

2.1 Data collection 

I searched the primary scientific literature to build a meta-database for this comparative study. 

I only included studies where populations or species had diverged naturally. This excluded 

studies where divergence resulted from artificial selection, populations kept and bred in the lab 

(except for the generations in common garden for estimating genetic divergence) or populations 

constructed from inbred lines. The statistics required were a minimum of one genetic-variance 

estimate per trait with its corresponding mean (given in the form of one of the rows under 

“Genetic-varince estimates” in Table 2.1), and the phenotypic mean for two or more 

populations or species (Table 2.1).  

Table 2.1: The different options of statistics required for the genetic-variance estimate and the 
divergence estimate per trait. 

Genetic estimates  min. 1 population/species 

Evolvability !! = "!
#̅"   

Additive genetic variance, trait mean #%, %̅  

Coefficient of variation '#% = &"!
#̅ 		

Heritability, phenotypic variance, trait mean ℎ' = "!
"#

 , 	#%, 	% ̅ 

Additive genetic variance on log-transformed trait values #%[log(%()]  

Divergence  ≥ 2 population/species 

Trait mean % ̅ 
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Estimates of additive genetic variances and coefficients of variation are occasionally erroneous 

in the scientific literature (Garcia‐Gonzalez et al., 2012). The genetic parameters were therefore 

carefully checked for proper estimation. Additive genetic variances that were estimated on 

natural log-transformed trait values were included directly as an estimate of evolvability (Table 

2.1, row 6). This is because a logarithmic transformation is asymptotically equivalent to a 

proportion of the mean (Lynch, 1990). When  

 var[")]
"̅"

< 	1, var[log("))] ≃
var[")]
"̅"

. (2.6) 

The requirement of two or more populations per trait was the largest constraint to 

finding studies and greatly reduced the amount of useable studies. In some cases, different 

published papers were combined for one trait measure. However, only when I was certain that 

the trait was measured in the exact same way in the different papers (ref. Houle et al. (2011)). 

These papers were difficult to find and combine by search in a literature data base. Data were 

for instance published over several papers, occasionally with many years apart (e.g. Arnold 

(1988), Arnold and Phillips (1999) and Hohenlohe and Arnold (2008)) or conducted by 

different groups (e.g. clutch size, Van Noordwijk et al. (1981), Flux and Flux (1982), Gibbs 

(1988)). An overview of used studies, and those combined for one or several trait measures, is 

given in Table B1 in Appendix B. 

The basis for collection of trait measures were (i) studies gathered by Bolstad, Hansen 

and Pélabon for a review on genetic constraints in 2014, (ii) studies used in Hansen et al. (2011), 

Bolstad et al. (2014), Matthews et al. (2019), Noble et al. (2019) and Opedal (2019), and (iii) 

evolvability and divergence data on plants collected by Ø.H. Opedal as part of other ongoing 

projects. 

I also conducted a search with ISI Web of Science (date: 04/12/2019) with the key words 

“additive genetic variance” and “divergence” over all collections and all years. This was done 

to retrieve papers reporting additive genetic variance, heritability, coefficient of additive genetic 

variance or evolvability measures for different populations or species. The search returned 89 

papers, of which 75 were not already known. However, only two of these 75 papers had 

sufficient information to be included in the analysis. 

2.2 Issues with scale  

The standard deviation expressed as a proportion of the mean, i.e. the coefficient of variation 

(<$ = √4
&̅ ), is a dimensionless, comparable and easily interpretable measure of variation 

(Lewontin, 1966, Lande, 1977b, Houle, 1992, Pélabon et al., 2020). However, the 
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standardisation by the trait mean limits the use of CV (and mean-scaled evolvability (53 =
<$6)) to traits on a ratio or log-interval scale, where the mean and zero are meaningful and 

order, ratios and differences (only ratio scale) are preserved with multiplication by a constant 

(Lewontin, 1966, Yablokov, 1974, Hansen et al., 2011, Houle et al., 2011, Pélabon et al., 2020). 

This excludes traits such as laying date, temperature in degrees Celsius, colour (either as 

nominal (name) or interval (RGB domain)) and regression slopes such as reaction norms 

(Pélabon et al., 2020).  

Houle (1992) and Hansen et al. (2011) found that life history traits are more evolvable 

than morphological traits, and Opedal (2019) showed that vegetative traits have twice as high 

evolvabilities as floral traits. These differences may have biological meaning. For instance, 

vegetative traits may be under fluctuating or diversifying selection due to varying environment 

and resource allocation. Floral traits, on the other hand, are functionally linked to the 

reproductive process of the plants and may be under strong stabilizing selection to ensure e.g. 

pollinator fit with little size variation. However, it is important to be conscious of the 

proportionality between the mean and standard deviation when assigning biological meaning 

to these differences. 

The CV represents a measure of variation proportional to the mean. This allows for 

comparison of variation independently of the effect of the mean when the standard deviation 

increases proportionally with the mean. If this is not the case, differences in CV may be due to 

specific properties of the traits that effect the relationship between the standard deviation and 

the mean. Such properties may be the dimensionality of the trait or levels of measurement error 

(Pélabon et al., 2020).  

The dimensionality of the trait is important when considering non-proportionality 

between the mean and the standard deviation. Length, area (length2) and volume (length3) 

measures vary according to their dimensions (1, 2, and 3 respectively) and the correlation 

between these dimensions (Lande, 1977b). A volume has a CV up to three times and an area 

up to times the CV of a length measure.  

 ?%*+,-./ ≤ 3?%)))),/0123	BCD	?%45/4 ≤ 2?%)))),/0123 (2.7) 

A perfect correlation between the dimensions of an area or volume, i.e. a constant shape with 

varying size, represents the upper boundaries of the equation (2.7) (Lande, 1977b). For 

evolvability this implies that a volume has up to 32, and an area up to 22 the evolvability of a 

length measure due to the different dimensions. The dimensionality of the trait was thus 

carefully considered in this study.  
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Another common case of non-proportionality between the mean and the standard 

deviation involves non-normal or log-normal distributions of the trait. For instance, in a trait 

with a count measure such as clutch size in birds, the mean and standard deviation are not 

expected to scale proportionally. Birds with smaller clutch sizes have higher CV (Pélabon et 

al., 2020) as a consequence of this non-proportionality. However, this may also have biological 

meaning, e.g. that it is harder to evolve to the double clutch size in a clutch size of 9 than a 

clutch size of 2 eggs. I therefore included traits with expected Poisson distribution. In traits with 

binomial distributions, like probability of survival (0 ≤ p ≥1), variance is highest for p = 0.5 and 

zero for p = 0 and p = 1. The CV’s therefore approach infinity and zero for mean probability of 

survival (p) close to zero and one respectively. Due to this caveat, I excluded traits with 

binomial distribution from the analysis. 

2.3 Analyses 

2.3.1 The variables 

To perform the analysis, I computed one evolvability and one divergence estimate per trait from 

the collected trait means and genetic-variance estimates (Table 2.1). To ensure that the 

estimates grouped per trait were estimated from the exact same measure of the trait, a universal 

unique identifier (UUID) was assigned per trait. In traits where two sexes were measured, one 

UUID was assigned to each sex, to avoid confusing sexual dimorphism with divergence. To 

make a separation of timescale, I computed divergence among populations and among species 

separately. If the same trait was measured among populations and species, different UUID’s 

were assigned to the among-population and among-species measurements.  

The divergence between populations or species was computed as the variance of the 

log-transformed trait means ("1̅) for each trait:  

 F6 = var[log(")̅)], G = 1, 2, … , C, (2.8) 

where 4 is the total number of trait means, i.e. the number of populations or species measured, 

per trait. The == denotes mean-standardised divergence, since the log-transformation is almost 

equivalent to a mean-standardisation (eq. 2.6). Hence, the divergence measure is a 

dimensionless variance proportional to the mean square, comparable across traits and species, 

on the same scale as evolvability (eq. 2.2). One estimate of evolvability was used per unique 

trait in the analyses. If evolvability estimates were available for more than one population or 

species, I used the mean evolvability (5̅3) to avoid the complication of correlated estimation 

errors with several x-variable estimates per y-variable estimate. 
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,̅# = E J

%!!
")̅
" K , G = 1, 2, … , C		 (2.9) 

Here E[	] denotes the expected value, i.e. the mean. The mean was not weighted by the number 

of families in the estimation of the additive genetic variance, because an adequate number of 

families depends on the method and/or experimental design. An overview of the methods used 

for obtaining additive genetic variance in the different studies is given in Table B1 in Appendix 

B. Although the inverse squared standard error of the additive genetic variance, which is 

independent of the estimation method could be used as a weighing factor, only 32% of the 

additive genetic variance estimates were reported with their standard error (see Table 3.1). 

Thus, a non-weighted mean was used.  

To test whether the relationship between evolvability and divergence is sensitive to the 

choice of standardization, I also assessed the relationship between heritability and evolutionary 

divergence. I needed a population and species divergence measure compatible with heritability. 

Consequently, a variance-standardised divergence measure (=4) on the scale of the heritabilities 

was computed.  

 
F7 =

var[")̅]
E[%$!]

, G = 1, 2… , C (2.10) 

Here E[$0!] is the estimated mean of the phenotypic variances of the n different populations or 

species measured. 

2.3.2 Random-regression models 

To analyse the relationship between divergence and evolvability, I used random-regression 

models following Laird and Ware (1982) and Pinheiro et al. (2001). Divergence was fitted as 

the response variable with evolvability as fixed effect and species as a random effect. 

 L8 = M9N + OP + Q, (2.11) 

where divergence (A>) is the B × 1 response vector of the 42 traits in species C of the total 

number of species D, and B = ∑ 42?
2 . Evolvability (F@) is the	B × 2 design matrix, with a 

column of ones and a column of evolvability observations (53!$), for the vector G which consists 

of the two fixed-effect coefficients, intercept and slope (G = HIAIBJ). Species (K) is the 

B × (2	 × D) design matrix of zeros and ones for the vector N of random effect coefficients, the 

intercepts and slopes (N = H
OA2
OB2J = 2	 × D), and the residuals (P) an B × 1 vector. The random 
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effect (N) and residuals (P ) are assumed to be independent of each other, normally distributed, 

with means of zero 

cov[N, P] = 0, N	~	N(0,S), P~	N(0, T), 
and positive-semidefinite variance matrices  

S = var H
OA2
OB2J = WXA

6 XAB6
XAB6 XB6

Y , T = X6Z 

where the intercepts (OA2) and slopes (OB2) of the different species are assumed to be correlated 

with a covariance XAB6 . Z is the identity matrix of the observations independent on the individual 

level, conditional on G and N. The models were fitted with restricted maximum likelihood using 

the “lme4” R-package (Bates et al., 2015). Divergence and evolvability were log-transformed 

prior to model fitting. Thus, traits with zero divergence or evolvability were excluded from the 

analysis.  The best fit of the random effect (species), i.e. if the random effect could affect both 

slope and intercept or only intercept, was determined with model selection using Akaike 

information criterion (Akaike, 1974). Marginal ([C6 ) and conditional ([D6)) coefficients of 

determination were computed for the random-regression models following Nakagawa and 

Schielzeth (2013) with the R-package “MuMIn” (Barton, 2009). The marginal [C6  is the 

variance explained by the fixed effects over the total variance, while the conditional [D6 is the 

variance explained by both the random and fixed effects over the total variance. (Nakagawa 

and Schielzeth, 2013, Nakagawa et al., 2017).  

The random-regression model (eq. 2.11) was fitted for among-population and among-

species separately, as described under “2.2.3.1. The variables”. The random effect was the 

lowest shared taxonomic group for the divergence measure in question, i.e. species for the 

among-population variance and genus for the among-species variance. Estimates of 

evolvability from one study share the experimental design (sample size, estimation procedure) 

and may in theory be non-independent. Contrary to classical meta-analysis, the study or 

published paper does not represent here a valid indication of non-independence between data 

points because several studies can be used for the same trait (see Table B1). Using species (or 

genus) as a source of non-independence takes the experimental design into account along with 

the non-independence due to potential phylogenetic inertia (Hansen and Bartoszek, 2012).  

The objective of this analysis is to quantify how well evolvability predicts divergence. 

Thus, the models were kept simple with evolvability as the only fixed effect. To account for the 

non-proportionality between the standard deviation and the mean due to dimensionality (eq. 

2.7), the random-regression model (eq. 2.11) was fitted for each trait category, dimension or 

type. The trait categories with a sufficient number of traits to fit the model were morphological 
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and life history traits and the dimension or types were linear, count and ratio (i.e. shape). 

Physiological, growth, mass/volume, area, time and complex traits were not analysed separately 

(plotted in Appendix A, Figs. A1 and A2). Plants and animals were also separated to evaluate 

if there are differences due to very distant shared ancestry or functionality or due to 

methodological differences in their study (see discussion).  

I also checked if the distribution of evolvabilities (along the x-axis) differ between 

species, and if this affects the observed relationship between evolvability and divergence. If 

species differ in the distributions of evolvabilities, the overall scaling relationship (the slope) 

should be affected when the species are mean centred on the species mean evolvability. I mean 

centred within species data by taking the residuals of log^53_ as a function of species,  

` = ε1[log^53_~	bc]. The random-regression model (eq. 2.11) was then fitted with these 

residuals (d) as the B × 2 model matrix that is used to estimate the G vector of the fixed-effect 

coefficients. 

To assess whether the relationship between evolvability and divergence depends on the 

choice of standardization, I also modelled the relationship between heritability and population 

and species divergence. I fitted a similar random-regression model (eq. 2.11) with heritability 

as the fixed effect model matrix. The mean- (A>) and variance-standardised (AE) divergence 

were both fitted as response vectors. Heritability estimates above one and below zero were set 

to one and zero, respectively. Both mean- and variance-standardised divergence were log-

transformed, while heritability was kept on the original scale. Heritability estimates were not 

specifically targeted in the literature search (ref. “2.1.2 Data collection” and Table 2.1). 

Heritability was not set as a requirement, and it was only entered when ℎ6 or $0 were available 

alongside evolvability. Hence, the analyses presented for heritability are done on a subset of 

estimates in the meta-database.  

2.3.3 Attenuation bias 

Measurement error in the primary data may influence the patterns seen in the meta-analysis 

(Hansen and Bartoszek, 2012, Morrissey, 2016). Specifically, measurement error in the x-

variable (evolvability) may cause an attenuation bias in the regression slope between divergence 

and evolvability (Hansen and Bartoszek, 2012).  

Only 32% of the retrieved additive genetic variances came with reported standard errors. 

Hence, the uncertainty was not directly included in the model. However, the available standard 
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error estimates were used to assess the average attenuation bias in the slope of different 

regressions between divergence and evolvability. 

I calculated the error variance of the mean evolvability (log(5̅3)) per trait on log-scale 

using the error variance of the additive genetic variance estimates as: 

 

SE):
"
[logS,̅#T] =

E[
SE"[%!])
")̅
; ]

E[,#!
" ]

, G = 1, 2, … , C: , U = 1, 2, … , V (2.12) 

Here 42 is the number of populations or species per trait C of the total number of traits e. The 

steps to deriving equation (2.12) is given in Appendix C. I consider here the error variance of 

the trait mean to be negligible compared to error variance of the additive genetic variance 

estimate. 

The regression slopes (IB) of evolvability and divergence were corrected with a 

reliability ratio, K, following equation (2.13) from Hansen and Bartoszek (2012). 

 
αX<"#$$%"&%' =

αX<
Y
, (2.13) 

where the reliability ratio is the ratio between the true and observed variance of the predictor 

variable (Hansen and Bartoszek, 2012), estimated as one minus the error variance over the 

observed variance (relative error) as, 

 
Y = 1 −	

SE"[logS,̅#T\

var[logS,̅#T\
. (2.14) 

A correction with the reliability ratio (K) is justified (i.e. improves the accuracy of the estimated 

slope) when the relative error of the slope is under 30% for a limited range of K. For a relative 

error under 10% and a reliability ratio between 0.11 and 0.98, the accuracy of the slope would 

be improved by a correction (eq. 2.13) (Hansen and Bartoszek, 2012).  

2.3.4 Effect of environmental variation 

In this study I aim to test genetic constraints to evolutionary divergence. Here, evolutionary 

divergence refers to phenotypic divergence among populations or species that is due to changes 

in the underlying genetic properties (e.g. allele frequencies) of the population. The divergence 

of populations and species may, however, not solely reflect genetic divergence but may also 

result from phenotypic plasticity. To test whether phenotypic plasticity affects the estimated 

divergence, I compared the mean among-population and among-species variance in traits that 

were measured in the field or in a controlled environment (common garden experiments) for 

both plants and animals. I also included the environment in the random-regression model (eq. 
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2.11.) of evolvability and divergence as a covariate to see if it affected the observed relationship. 

The models were only fitted on the traits where the populations per trait were measured in one 

kind of environment. 

2.3.5 Sources of bias 

2.3.5.1 The number of populations 
The number of populations or species measured may influence the amount of divergence 

estimated. I assessed if the divergence was affected by fitting a regression with the divergence 

estimates over the number of populations or species measured per trait. If there is a correlation 

between divergence and the number of measured populations or species, it would only confound 

the pattern between evolvability and divergence if the evolvability measure also is correlated 

with the number of populations or species measured. I therefore fitted a regression of 

evolvability over the number of populations or species measured per trait.  

2.3.5.2 Publication bias 
The meta-data retrieved from the primary scientific literature may be subject to publication 

bias. Publication bias occurs when the true effect differs from the estimated effect reported by 

the published studies. This often results from the under-reporting / publication of studies where 

the focal parameter is statistically non-significant (Rosenthal, 1979, Palmer, 2000, Whitlock 

and Schluter, 2009, Nakagawa and Santos, 2012). Because larger sample size lead to higher 

precision in the estimate, a funnel plot of the effect size and sample size is a common tool for 

detecting publication bias. Plotting the assessed effect size against the sample size should 

therefore reveal a funnel shape, with less heterogeneity between the effect sizes with higher 

sample size. Deviation from this shape may indicate a publication bias (Palmer, 2000, Whitlock 

and Schluter, 2009).  

To assess if there is a publication bias present in the meta-database, funnel plots were 

made for evolvability and heritability. The number of families in the experimental design (i.e. 

the estimation of the genetic parameters) in the studies was used as a proxy for precision of the 

study (Palmer, 2000). For evolvability and heritability there is not one expected effect size, but 

a range of theoretically expected effect sizes. I therefore fitted a regression of evolvability (and 

heritability) on the number of families. Publication bias would be indicated by a negative slope, 

because small evolvabilities or heritabilities that are not significant due to small number of 

families in the experimental design are not published. 
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3 Results 
Out of the 302 studies initially considered, 57 met the requirements for inclusion (Table 2.1). 

Table 3.1 summarises the used studies, and the estimates retrieved from these. An overview of 

the used studies is given in Table B1 (Appendix B). 

 

Table 3.1: The number of used studies and estimates retrieved from these studies. 

Collected n 

Studies 57 

Additive genetic variance (with SE) 1043 (332) 

Trait mean (with SE) 2686 (1603) 

Heritability (with SE) 904 (224) 

Unique traits  409 
 

The majority of traits included were linear measurements of morphological traits. Plants, and 

especially eudicots, were best represented (Table 3.2). Table 3.2 presents how the unique traits 

were distributed among taxa, trait dimension or type and trait categories in the meta database. 

A more extensive view of taxa is given in Table B1. 

 

Table 3.2: The number of unique traits (n) distributed among taxa, trait dimension/type and trait 
category.  

Taxa n Trait dimension/type n Trait category n 

Monocots 9 Linear 238 Morphological 346 

Eudicots  282 Count 90 Life history 35 

Crustacea 9 Ratio1 40 Physiological 25 

Insecta 33 Mass/volume 15 Growth 3 

Amphibia 2 Area 11   

Reptilia 22 Time 6   

Mammalia 39 Complex2 9   

Aves 13     

1: Dimensionless e.g. shape traits with mm2/mm2. 2: Complex dimensions, e.g. area based 
photosynthetic rate (μmol CO2/m2 s). 

 

3.1 Genetic variation and evolutionary divergence 

The slope of the regression models of evolvability and divergence on a log-log scale represents 

the scaling relationship of divergence with evolvability.  
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Across all species and traits, evolutionary divergence scaled positively with increasing 

evolvability (Fig. 3.1). The slope ±SE of the linear regression on a log-log scale is 0.45 ±0.06 

with an R2 of 12%. Thus, evolvability does predict part of the divergence among populations 

and species.  

 

 
Figure 3.1: Among-population and among-species variance (divergence) as a function of 
evolvability on a log-log scale, with n = number of populations/species means per trait. All 
evolvability estimates are plotted, but the regression was fitted to the mean estimate per trait. 
Zeros are plotted as 0.0001%, but were not included in the linear regression. log(]=) = 0.20 
(±0.11) + 0.45 (±0.06) log(^>), _? = 12% 

 

In contrast, heritability explains little or none of the variation in evolutionary divergence among 

populations and species across all traits and organisms. For the phenotypic variance-

standardised divergence measure (eq. 2.10), heritability explains 2% of both the among-

population and -species variance (Fig. 3.2). For the mean-standardised divergence measure (eq. 

2.8) heritability explains 0% (fig 3.3). 
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Figure 3.2: Divergence standardised by the mean phenotypic variance (log-scale) as a 
function of heritability (original scale), with n = number of populations/species means 
per trait. All heritability estimates are plotted, but the regression was fitted to the 
mean estimate per trait. log(]@) = -1.49 (±0.30) + 1.82 (±0.67) `?, _? = 2%. 

 

 

 

 
Figure 3.3: Mean-standardised divergence (log-scale) as a function of heritability 
(original scale), with n = number of populations/species means per trait. All 
heritability estimates are plotted, but the regression was fitted to the mean estimate 
per trait. log(]=) = -0.41 (±0.27) + 0.57 (±0.62) `?, _? = 0%. 
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3.1.1 Effect of timescale 

When analysing the data separately at the among-population and among-species levels, more 

variation was explained at the among-population ([C6  = 30%, Fig. 3.4 A) than at the among-

species level ([C6  = 12%, Fig. 3.4 B). The scaling relationship was also steeper among 

populations (slope = 0.74 ± 0.08) than among species (slope = 0.55 ± 0.13). 

For heritability I found no qualitive difference between the among-population and 

among-species level (Table 3.4). 

 

 
Figure 3.4: Mean-standardised divergence as a function of evolvability on a log-log 
scale, with n = number of populations means per trait. All evolvability estimates are 
plotted, but the model was fitted to the mean estimate per trait. A: Among-population 
variance, log(]=) = -0.11 (±0.27) + 0.74 (±0.08) log(^>), _A?  = 30%. B: Among-species 
variance, log(]=) = 1.38 (±0.51) + 0.55 (±0.13) log(^>), _A?  = 12%. 

A 

B 
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I found no difference in the mean divergence among populations and among species (difference 

in mean divergence on log-scale of 0.34 ± 0.25, t-test, p = 0.17). However, when separating 

plants and animals the mean divergence among species was higher than the mean divergence 

among populations for plants, but not for animals (Fig. 3.5). 

 

 
Figure 3.5: Difference in among-population and among-species 
variance on log-scale for animals and plants. Means compared with a 
t-test, ns: p > 0.05, ****: p < 0.0001 

 

3.1.2 Trait category, type and dimensionality 

When analysing the trait categories separately, I found similar scaling relationship between 

among-population variance and evolvability on a log-log scale (fig 3.6). The slope was 0.68 

±0.19 with an [C6  of 29% for life history traits and 0.85 ±0.08 ([C6  = 36%) for morphological 

traits. Excluded trait categories are plotted in Figure A1.  

These trait categories may consist of traits with several dimensionalities or from 

different types, where for instance morphological traits are area, mass/volume, ratio (i.e. shape) 

and count traits. When I analysed the different trait dimensionality or types separately, the 

relationship between evolvability and divergence persisted. I found similar scaling relationship 

and explanatory power for among-population variance and evolvability across the different 

dimensionalities and types. The slope (log-log scale) of among-population variance on 

evolvability for linear traits was 0.87 ± 0.19 with a [C6  of 26%. For count traits the slope was 

0.48 ±0.12 with a [C6  of 21% and for ratio traits the slope was 0.80 ±0.14 with the [C6  = 51% 

(Fig. 3.7, Table 3.3). Trait dimensions or types excluded from the analyses are plotted in Figure 

A2.  
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I found no relationship of among-population variance and heritability when considering only 

linear traits (Table 3.4, Figs. A4 and A5). 

 

 
Figure 3.6: Among-population variance as a function of evolvability on a log-log scale, 
with n = number of populations means per trait. All evolvability estimates are plotted, 
but the model was fitted to the mean estimate per trait. A: Life history traits, log(]=) 
= 0.56 (±0.33) + 0.68 (±0.19) log(^>), _A?  = 29%. B: Morphological traits, log(]=) = -
0.26 (±0.30) + 0.85 (±0.08) log(^>), _A?  = 36%. 

 

A 

B 
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Figure 3.7: Among-population variance as a function of evolvability on a log-log scale, 
with n = number of populations means per trait. All evolvability estimates are plotted, 
but the model was fitted to the mean estimate per trait. A: Linear traits, log(]=) = -0.45 
(±0.36) + 0.87 (±0.19) log(^>), _A?  = 26%. B: Count traits, log(]=) = 0.22 (±0.28) + 0.48 
(±0.12) log(^>), _A?  = 21%. C: Ratio traits, log(]=) = 0.68 (±0.64) + 0.80 (±0.14) log(^>), 
_A?  = 51%.  

A 

C 

B 
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3.1.3 Comparison of taxa 

When analysing data on plants and animals separately, I found scaling relationships between 

evolvability and divergence at the among-population level in both type of organisms but only 

for plants at the among species level (Table 3.3). The average evolvability on log-scale for 

animals was -6.53 ± 0.09, which equals 0.15%. For plants the average was 1.21% (-4.42 ± 0.06 

on log-scale). The difference was strongly significant (t-test, p < 2 × 10-16). I found the same 

difference in the mean divergence, where plants were more divergent on average than where 

animals (plants: mean = 0.30 ± 0.13, animals: mean = -0.86 ± 0.21, t-test, p < 5 × 10-6). Despite 

this difference, the scaling relationship between evolvability and divergence was similar, 

consistent with similar levels of genetic constraints on evolutionary divergence. In this meta-

database plant studies among populations were more common (80%) than among species, while 

for animal studies among populations were less common (37%, Table 3.3, Fig. A3). This may 

have an impact to the differences I observed. 

The intercepts and slopes of the scaling relationships between divergence and 

evolvability varied among species, as quantified by the variance of the intercepts and slopes of 

the random-effect term (Table 3.3).  

When species were centred on mean evolvability, the scaling relationship of among-

population variance and evolvability became slightly steeper (Table 3.3). The slope of 

evolvability and among-population variance on log-log scale for all traits increased by 8% when 

mean-centring. For the linear traits the slope increased with 10% when mean-centring. This 

indicates some difference in distribution of evolvabilities between species. 

3.1.4 Effect of environmental variation 

I found an effect of the type of environment in which measurements for plants where the mean 

divergence (log-scale) was higher for traits measured in the field than for traits measured in a 

controlled environment (Fig 3.8). The difference was statistically significant between all 

environments, with the least difference between the field and controlled indoor environments. 

For animals there was no difference in divergence between traits measured in the field and traits 

measured in controlled indoor environments (Fig. 3.8) 
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Figure 3.8: Among-population and -species variance on log-scale as a 
function of the environment where the phenotypic (P) trait measures 
were taken. I = indoor, O = outdoor. Mean ±SE (log-scale) for animals: 
controlled (I) = -0.58 ±0.32, field = -1.09 ±0.27, for plants: controlled (O) 
= -1.54 ±0.40, controlled (I) = 0.37 ±0.14 and field = 1.92 ±0.45. Difference 
tested with a t-test, p<0.004 between controlled (I) and field and 
controlled (O) and field for plants. For animals there was no significant 
difference (p = 0.2). 

 

 

When I included the type of environment in which measures were recorded as a covariate in 

the random-regression models, there was a slight increase in the precision of the model for both 

plants and animals. For animals the [C6  was 49% for among-population variance as a function 

of evolvability on log-log scale with environment as a covariate (Fig. 3.9). However, the model 

including the environment and the one without were not conclusively different (∆AICc = 0.68) 

in the model selection and the simplest model had the lowest AICc. Similarly, for plants the 

simplest model without environment had the lowest AICc, but it was not conclusively different 

from the one including the environment (∆AICc = 1.46). For the plants the [C6  was 31% for 

among-population variance as a function of evolvability on log-log scale with environment as 

a covariate (Fig. 3.10). The model allowing for change in slopes between environments was not 

considered in either animals (∆AICc = 2.34 to the simplest model) or plants (∆AICc = 2.65). 
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Figure 3.9: Animals: Among-population variance as a function of evolvability on a 
log-log scale with the environment for the phenotypic measures as a covariate (_A?  = 
49%), n = number of population means per trait. All evolvability estimates are 
plotted, but the model was fitted to the mean estimate per trait. Black line: controlled 
environment, log(]=) = 0.57 (±0.53) + 0.70 (±0.11) log(^>), nt traits = 34. Blue line: 
field, log(]=) = -0.61 (±0.82) + 0.70 (±0.11) log(^>), nt traits = 9.  

 

 
Figure 3.10: Plants: Among-population variance as a function of evolvability on a log-
log scale with the environment for the phenotypic measures as a covariate (_A?  = 
31%), n = number of population means per trait. All evolvability estimates are 
plotted, but the model was fitted to the mean estimate per trait. Black solid line: 
controlled indoor environment, log(]=) = -0.16 (±0.33) + 0.82 (±0.08) log(^>), nt traits 
= 193. Black dashed line: controlled outdoor environment, log(]=) = -1.48 (±0.89) + 
0.82 (±0.08) log(^>), nt traits = 30. Blue line: field, log(]=) = 0.96 (±1.60) + 0.82 (±0.08) 
log(^>), nt traits = 4. 
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3.1.5 Attenuation bias 

The error variance in the mean evolvability estimates per trait on log-scale are presented in 

Figure 3.11 as percent of the total variance in evolvability. The mean relative error variance 

was 9.1%. This represents the mean relative error of the regression slopes of evolvability and 

divergence. The reliability ratio was K = 0.91, and the slopes were therefore corrected (eq. 2.13) 

to improve the accuracy of the slope estimates. The estimated and corrected slopes are presented 

in Table 3.3. 

 

 
Figure 3.11: Frequency distribution of the error variance of the mean evolvability 
estimates per trait in percent of the total variance in evolvability on log-scale. Dotted 
line: median = 5.8%. Dashed line: mean = 9.1%. The error variance of the zero 
evolvability estimates are plotted, but not included in the estimation of the mean and 
median.  

 

3.1.6 Correlation of heritability and evolvability 

Heritabilities and evolvabilities were essentially uncorrelated (Fig. 3.12), as expected from the 

contrasting relationships of each to divergence. Evolvability explained 4% of the variation in 

heritability. 
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Figure 3.12: Estimates of heritability plotted over evolvability (log-scale). The correlation 
r = 0.19 ± 0.03 and R2 = 4% with evolvability on original scale. For evolvability on log-
scale r = 0.27 ± 0.03 and R2 = 7%. 
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3.2 Sources of bias 

3.2.1 The number of populations 
Estimates of population and species divergence tended to increase with the number of 

populations or species measured per trait (Fig. 3.13) The weighted mean by the number of 

populations was higher than the mean and there was an increase in the linear regression  

(slope = 0.63 ±0.13, R2 = 6%). This means that the divergence measure is not independent of 

the number of populations or species that are measured per trait. Evolvability, on the other hand, 

showed no increase with the number of populations or species measured per trait  

(log(!!) = -0.36 (±0.17) - 0.12 (±0.10) log("), R2 = 0%), and is therefore independent of the 

number of populations or species measured.  

 

 
Figure 3.13: Divergence (!!) as function of the number of populations or species (") 
measured per divergence estimate (i.e. per trait) on a log-log scale. Black horizontal line: 
mean = 0.96 ±0.11, dashed horizontal line: weighted mean = 1.70, blue lines: 95% 
confidence intervals of the mean. Red line: log(!!) = -0.94 (±0.22) + 0.63 (±0.13) log("), 
R2 = 6% 

3.2.2 Publication bias 
Evolvabilities did not depend on the number of families included in the breeding design (Fig. 

3.14). The number of families explained none of the variance in evolvability estimates  

(R2 = 0%), and there was no difference in the mean and the weighted mean. Similarly, there 

was no relationship between heritability and the number of families in the experimental design 
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 (R2 = 0%, Fig. 3.15). Notice that 2% of the heritability estimates were outside the expected 

theoretically range of 0 ≤ ℎ" ≥ 1. 

 
Figure 3.14: Evolvability over the number of families (") in the experimental design 
(i.e. estimation of #") on a log-log scale. Black horizontal line: Mean = -0.52 ±0.08 (= 
0.6%), dashed horizontal line: weighted mean = 0.50, blue lines: 95% confidence 
intervals of the mean. Red line: log($#) = 0.06 (±0.41) – 0.16 (±0.11) log("), R2 = 0%. 
Zeros included as 0.0001% in the regression. 

 

 
Figure 3.15: Heritability (original scale) over the number of families (", log-scale) in 
the experimental design (i.e. estimation of #"). Black horizontal line: mean = 0.38, 
dashed horizontal line: weighted mean = 0.38 ±0.01, dotted horizontal lines: theoretical 
range of %$, blue lines: 95% confidence intervals of the mean. Red line: 
 %$ = 0.43 (±0.04) – 0.01 (±0.01) log("), R2 = 0%. One value of %$ > 2 excluded. 
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4 Discussion 
In this study, evolvability measured as mean-standardised genetic variance predicted 

evolutionary divergence among populations and among species. These results confirm the 

various case studies (Andersson, 1991, Bolstad et al., 2014, Houle et al., 2017, McGlothlin et 

al., 2018) and theory (Arnold, 1992, Schluter, 1996, Blows and Hoffmann, 2005), and suggests 

that genetic constraint to evolution may be a general case. This supports the idea that parameters 

describing microevolutionary processes may be important in describing patterns of divergence 

among species and populations on the macroevolutionary timescale. Similar patterns were 

found among all organisms and trait groups assessed (Table 3.3). 

An alternative interpretation to the pattern of increasing divergence with increasing 

evolvability, is that selection shapes genetic variation and among populations and species 

divergence similarly. Consider an adaptive ridge in a phenotype-fitness landscape. Trait’s 

whose variation aligns with the ridge will be under weak selection, and will possibly exhibit 

high genetic variance and may be highly diverged along the ridge. Trait variation orthogonal to 

the adaptive ridge will experience strong stabilising selection that may decrease the genetic 

variation and the divergence among populations and species. Selection would then generate the 

correlation between evolvability and divergence. This would be hard to distinguish from genetic 

constraints, since the history of the traits examined here is not known. Although there are 

suggested cases where selection may be shaping genetic variation to fit the fitness landscape 

(Pavlicev et al., 2011, Jones et al., 2014), there is also evidence where genetic variation does 

not align with the direction of selection (Blows et al., 2004). Theory also suggests that there is 

no strong relationship between selection and direction of genetic variation (Armbruster et al., 

2014). Thus, I believe the relationship between evolvability and genetic divergence observed 

in this study may be explained to some extent by genetic constraints. If selection is shaping 

genetic variation (and the G-matrix) and the divergence between populations and species, this 

would also provide a link between micro- and-macroevolution.  

The current data confirms the weak relationship between heritability and evolvability 

(Hansen et al., 2011, Houle, 1992, Opedal, 2019, Opedal et al., 2017), and also demonstrate 

that heritabilities fail as a predictor of divergence (Table 3.4). These results are consistent with 

the findings in Houle (1992), Hansen et al. (2011), Opedal et al. (2017) and Opedal (2019), who 

report similarly low correlations. The evolvabilities and heritabilities from these studies 

originate from a range of different traits and organisms in varying environments. Hoffmann et 

al. (2016), on the other hand, found higher correlations (r = 0.37 (R2 = 14%) on original scale 
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and r = 0.54 (R2 = 29%) on log-scale) between heritability and evolvability. In their analysis 

heritability and evolvability trait estimates originated form livestock, where the environments 

are considered to be relatively constant across the different commercial farms. This suggests 

that with constant environments heritability is closer to a measure of genetic variance available 

for evolution, however the error is still large. Heritability would therefore likely fail to predict 

divergence even in more constant environments. In this study, the environments are assumed 

to be highly variable due to the estimates originating from natural populations for a wide range 

of traits and organisms. Thus, the environment stretches the scale of heritability, so it does not 

show the true amount of genetic variance and fails to predict evolutionary divergence.  

4.1 Genetic correlations and conditional evolvability 
The genetic variance in a univariate trait may be bound up in correlation with other traits (eq. 

1.2). The amount of genetic variance available for evolution in one trait is less than the observed 

amount if other correlated traits are kept constant. Genetic correlation may limit the amount of 

genetic variance available for a trait to evolve (Hansen et al., 2003a) and this may affect the 

observed relationship between evolvability and divergence by including more noise in the 

predictor variable. Despite this caveat, I found a relationship between evolvability and 

divergence with evolvability predicting up to 51% of the divergence observed among 

populations. This might suggest that the amount of genetic variation may pose a constraint to 

evolution even on a macroevolutionary timescale. 

The ability of a trait to evolve independently of other traits is the measured by its 

conditional evolvability (Hansen et al., 2003a). Conditional evolvability incorporates genetic 

correlations with other traits under opposing or stabilizing selection, that may constrain the trait 

in question to respond to selection. It may be measured as the response to a unit strength of 

selection in a trait keeping all other traits constant (Hansen, 2003, Hansen et al., 2003a, Hansen 

and Houle, 2008). Conditional evolvability is therefore a measure of potential for evolution 

unconstrained by genetic correlations. Further studies are necessary to better understand how 

genetic correlations affects the observed genetic constraints on evolutionary divergence. I 

expect that even stronger genetic constraint to divergence among populations or species may 

be found. 

4.2 Timescale 
The relationship between divergence and evolvability was weaker with a higher intercept and 

a shallower slope at the among-species than at the among-population level. I found no 
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difference in the mean divergence among species and among populations, which may seem 

counterintuitive. This pattern is, however, consistent with the “blunderbuss pattern” found by 

(Uyeda et al., 2011). In this study the authors showed that the divergence among populations 

and species does not increase with time until one million years has passed since a common 

ancestor (Uyeda et al., 2011). One explanation to why I don’t observe any difference in the 

average divergence among populations and among species, may therefore be that the species 

compared for trait divergence in this study are closely related. It is plausible that less than a 

million years have passed since a common ancestor. The difference observed between the 

among-population and among-species levels in slopes and intercepts of the scaling relationship 

between evolvability and divergence can therefore not be explained just by the difference in the 

amount of divergence observed between the two levels. It is possible, however, that enough 

time has passed at the among-species level that the species have had time to reach their optima. 

Some divergence would therefore be present even when there is little genetic variance due to a 

longer timescale. The ability to detect a scaling relationship between evolvability and 

divergence hence decreases with increasing timescale. 

There was an effect of timescale on divergence and evolvability, when only plants were 

considered (Fig. 3.5). I found higher divergence on average at the among-species level. 

However, there was a higher proportion of traits measured in the field among species (n = 20, 

35%) than among populations (n =4, 0.02%) for plants and the traits measured in the field also 

showed higher divergence than traits measured in a controlled environment (Fig. 3.8). The 

effect of timescale on the average divergence in plants may therefore be confounded with the 

effect of environment.  

Even though additive genetic variance (and the G-matrix) have features that stay quite 

stable over time (Schluter, 1984, Shaw et al., 1995, Jones et al., 2003, 2007, Arnold et al., 2008, 

Hohenlohe and Arnold, 2008), the G-matrix itself may be subject to evolution. There is no 

guarantee for the consistency of the G-matrix, as new patterns in mutation and selection may 

change its size, shape and orientation (Turelli et al., 1988, Barton and Turelli, 1989, Turelli and 

Barton, 1994, Shaw et al., 1995, Jones et al., 2007). These changes in the G-matrix will result 

in changes in amount of additive genetic variance for a trait in the univariate case. The accuracy 

with which evolvability predicts divergence may therefore decrease as the timescale increases.  

In this study I considered only two discrete measures of timescale by comparing 

divergence among populations within species with divergence among species. This assumes 

that longer time has passed since divergence of populations within a species than the divergence 

between populations from different species. Although this holds in general, there may be cases 
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where the timescale is similar at both levels. Considering the phylogeny and the generations 

passed since divergence would improve the analyses. This would not be easy, however, because 

phylogeny is generally not estimated similarly at the species and population levels, and there 

are very few studies that estimate phylogeny among populations.   

4.3 Selection and random genetic drift 
The different evolutionary forces operating on the traits affects the predicted scaling 

relationship between divergence and evolvability (fig 1.1). The scaling relationships found in 

this study ranged from 0.53 to 1.06 (after correction) among populations. This is compatible 

with evolutionary processes dominated by genetic drift and populations tracking fluctuating 

optima with the rate in the same order of magnitude as movement in the optima (prediction: 

slope of 1 and 0-1 respectively (Bolstad et al., 2014, Houle et al., 2017)). However, the predicted 

scaling relationships of divergence and evolvability are based on one specific process of 

evolution for a pair of diverging species or populations. These predictions represent upper 

limits, when the mode of evolution remains constant. A combination of evolutionary forces 

operating at different times would yield scaling relationships somewhere between 2 and 0 

depending on how long the different forces operate. Hence, in practice it is difficult to 

distinguish between e.g. drift and directional selection followed by stabilising selection. In this 

study the evolutionary forces at work presumably differ both in time for the same trait and 

between different traits. Thus, concluding on a dominating mode of evolution may be difficult.  

Even though I cannot conclude on a dominating mode of evolution, the scaling 

relationships between evolvability and divergence found for different trait types and organisms 

were surprisingly stable. The variance in slopes (scaling relationships, after correction) between 

the different subgroups analysed was 0.02 at the among-population level and 0.04 for both 

among-population and among-species level. The mean scaling relationship for evolvability and 

among-population variance was 0.85 ± 0.05. Perhaps this is a general predicted scaling 

relationship when the mode of evolution varies among traits and organisms. Would the same 

mean scaling relationship be found if this study was repeated?  

4.4 Effect of environmental variation 
The $#"  increased from 43% to 49% for the relationship between evolvability and among-

population variance in animals when the environment in which traits were recorded was 

included as a cofactor. There is a slight effect of the environment, with higher divergence 

between the populations measured in the field. This may indicate that some of the divergence 
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measured in the field also include some phenotypic plasticity. However, the slopes did not differ 

between the environments. This means that even though the field measures may include some 

phenotypic plasticity, the relationship between evolvability and divergence holds. Which may 

be expected due to the positive relationship observed between genetic and residual variation 

(Hansen et al., 2011, Opedal et al., 2017). I found no difference in the divergence between the 

field and a controlled environment for animals, when both among-population and among-

species variance was considered (Fig. 3.8). Therefore, phenotypic plasticity does not seem to 

affect the observed divergence to a great extent in animals.  

For plants there was considerable difference in the mean divergence between the field 

and controlled environments, where the field measures showed more divergence. Consistent 

with the tendency for plants to be plastic in response to the environment (Pélabon et al., 2011). 

I also found similar patterns for plants as in animals, where the precision increased when both 

evolvability and environment predicted among-population variance, and only the intercept 

differed among environments. It has been suggested that plasticity is also aligned with 

directions of high plasticity (Noble et al., 2019), which is consistent with these results. 

4.5 Comparison of traits and taxa 
There were some differences among plants and animals. For instance, at shorter timescale 

(among populations) plants and animals show similar strong scaling relationships between 

evolvability and divergence. On a longer timescale (among species), the scaling relationship 

between divergence and evolvability differed. For animals, evolvability did not predict 

divergence among species. There were, however, proportionally more studies among species in 

animals than in plants, and vice versa for the studies among populations in the meta-database 

(Table 3.4, Fig. A4). If the amount of data for the two levels would have been proportionally 

equal for both plants and animals, the patterns could perhaps have been more similar at the 

among-species level.  

There was consistency of the relationship between evolvability and divergence across 

different trait dimensionalities and categories. This suggest that it is not spurious correlation 

between trait dimensionality, type or category and evolvability and divergence that is causing 

the observed relationship between evolvability and divergence. Though the scaling relationship 

of evolvability and divergence was mostly similar across the different trait dimensions or trait 

types, there were slight differences. Specific analyses of the mean and standard deviation 

relationships may be necessary to further understand whether these differences result from the 
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properties of the measurement or from real biological effects. The question is also if the number 

of traits available for analyses might have influenced the difference observed.  

4.6 Sources of bias 

4.6.1 Number of populations 
The divergence measure increases with the number of populations or species measured (R2 = 

6%). The estimation method of the divergence measure (eq. 2.8) that is a variance estimate of 

the log-transformed trait means, does not yield a bias towards a larger number of populations. 

It is possible that the bias comes from the expectation of catching more of the variance in a trait 

when more populations from different environments are sampled. This would only confound 

the observed pattern between evolvability and divergence if evolvability also increased with 

the number of populations sampled. I found no such increase (R2 = 0%). Thus, the slight bias 

in the divergence measure is not an issue to the analyses and does not affect the conclusion of 

evolvability predicting divergence among populations and species.  

4.6.2 Publication bias 
There was no detectable publication bias in the evolvability and heritability measures (Fig. 3.14 

and 3.15), contrary to Palmer (2000) who found a publication bias in heritability estimates. In 

Palmer (2000) 166 heritabilities form Weigensberg and Roff (1996) were examined, while I 

had 711 estimates for heritability that reported the number of families in the experimental 

design. I may therefore have captured a larger part of the published heritabilities. I also included 

heritabilities estimated from published additive genetic- and phenotypic variances, that were 

not initially published as heritability. This was because I wanted to examine if there was a 

publication bias in additive genetic variance measured as both heritability and evolvability. 

Thus, my results are not directly comparable to Palmer (2000). 

Theoretically we expect a range of genetic variances in the wild for different traits and 

organisms. Often more than one trait is assessed per study. Hence, studies estimating additive 

genetic variance are more likely to be published than a study testing a general effect size if 

some estimates are small and not statistically significant due to small sample size. The non-

significance may be interpreted as biologically meaningful (i.e. no genetic variance for the trait) 

and/or the study may be published with several genetic variance estimates of which only a few 

are non-significant. 
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It may be noticed that the number of families in the experimental design is not 

necessarily directly linked to the power of the estimation of additive genetic variance to detect 

significance. This varies across the different experimental designs (Palmer, 2000). The number 

of families is, however, an indication of the power to detect significance and is the same variable 

Palmer (2000) used.  

4.7 Conclusion and future directions 
In this study I found that evolvability predicted evolutionary divergence among populations 

with surprisingly high precision considering the many caveats to this analysis. The pattern was 

general, with similar scaling relationships between evolvability and divergence among traits 

and organisms. Evolvability was proven a measure of evolutionary potential, comparable over 

different traits, organisms and environments. This may suggest that there is genetic constraint 

to evolutionary divergence and that the microevolutionary process can to some extant explain 

macroevolution, however, the accuracy decreases with time.  

Future studies could consider the genetic correlations that may be obscuring the 

univariate pattern of divergence, using conditional evolvability and the G-matrix. However, 

estimates of G may be sparser in the primary scientific literature. It also raises the question of 

what traits are genetically correlated and how many traits is enough to understand the genetic 

constraints also posed by genetic correlations. In the future it would be interesting to understand 

and make predictions for how several evolutionary forces acting over different points in time 

and on different traits would affect the scaling relationship between divergence and 

evolvability. Lastly, further investigation may be done to how the evolution of evolvability (and 

the G-matrix) over time affects genetic constraints, and if the G-matrix tends to align with the 

adaptive landscape. Are some aspects of selection constant enough to produce the consistency 

observed in the G-matrix? 
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Appendix A: Additional figures 

 

 
Figure A1: Trait categories excluded from the analysis due to low number of 
traits. Among-population variance plotted over evolvability on a log-log scale. n = 
number of population means per trait. A: Physiological traits. B: Growth traits 
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Figure A2: Trait dimensions and type excluded from the analysis due to low number of traits. 
Among-population variance plotted over evolvability on a log-log scale. n = number of 
population means per trait. A: Area traits. B: Mass/volume traits. C: Time traits. D: Complex 
traits. 
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Figure A3: Left panels: Among-population variance over evolvability on log-log scale. Right 
panels: Among-species variance over evolvability on log-logscale. Upper panels: Animals. 
Lower panels: Plants. n = the number of populations/species means per trait. All evolvability 
estimates are plotted, but the model was fitted to the mean estimate per trait. Statistics in Table 
3.3. 

 

  



 

 
Figure A4: Linear traits. Variance-standardised divergence (log-scale) as a function of 
heritability (original-scale) for linear traits, with n = number of populations means per 
trait. All heritability estimates are plotted, but the model was fitted to the mean estimate 
per trait. log(!%) = -1.74 (±0.46) + 1.56 (±0.77) %$, &&$  = 3%. 

 
 
 

 
Figure A5: Linear traits. Mean-standardised divergence (log-scale) as a function of 
heritability (original-scale) for linear traits, with n = number of populations means per 
trait. All heritability estimates are plotted, but the model was fitted to the mean estimate 
per trait. log(!%) = -0.84 (±0.54) + 1.28 (±0.91) %$, &&$  = 1%. 

  



 

Appendix B: Table of included studies 
Table B1: Overview of the used studies and a summary of the gathered data. Taxa is the lowest 
shared taxa of the populations/species in the study. Method is the breeding design and estimation 
of additive genetic variance (abbreviations at the bottom of the table). The summary includes the 
number of species, population and/or sex (npop) measured, and the number of traits (nt), 
evolvabilities (ne) and trait means (nm) retrieved from the study. The grey background indicates 
studies that were grouped for one or more traits. 

Taxa Study Method npop nt ne nm 

Monocots       

Eichhornia paniculata Worley and Barrett (2001) FS 2 3 12 12 

Holcus lanatus Billington et al. (1988) NCII 2 6 12 12 

Eudicots (basal group)       

Aquilegia canadensis Herlihy and Eckert (2007) FS 10 3 14 24 

Nigella degenii Andersson (1997) POR 2 6 12 12 

Eudicots (Rosids)       

Arabidopsis lyrata Puentes et al. (2016) FSHS 4 4 16 16 

Brassica campestris Evans and Marshall (1996) FS 2 6 12 12 

Brassica cretica Widén et al. (2002) FSHS 5 7 35 35 

Dalechampia Opedal et al., various field data — 11 14 0 154 

Dalechampia scandens Bolstad et al. (2014) D 1 4 4 4 

Dalechampia scandens Bolstad et al., Mexico — 9 22 0 198 

Dalechampia scandens Hansen et al. (2003b) D 4 24 24 96 

Dalechampia scandens Opedal et al., Costa Rica — 17 18 0 426 

Medicago truncatula Bonnin et al. (1997) FS 2 24 48 48 

Quercus oleoides Ramírez-Valiente et al. (2018) FSHS 5 15 75 75 

Lythrum salicaria Colautti and Barrett (2011) FS 20 12 12 240 

Chamerion angustifolium Martin and Husband (2012) AS 2 1 2 2 

Clarkia dudleyana Podolsky et al. (1997) NCI 11 4 8 44 

Turnera ulmifolia Barrett and Shore (1987) — 10 4 0 40 

Turnera ulmifolia Shore and Barrett (1990) FS 1 4 4 3 

Eudicots (Superastrids)       

Schiedea Culley et al. (2006) PD 4 7 28 28 

Spergularia marina Delesalle and Mazer (1995) FS 4 9 36 36 

Talinum mengesii Carter and Murdy (1986) POR 11 5 5 55 

Eudicots (Astrids)       

Ambrosia artemisiifolia McGoey and Stinchcombe (2018) FSHS 6 4 24 24 

Heterosperma pinnatum Venable and Alberto (1989) FS 6 17 17 102 



 

Table 1: Cont.       

Taxa Study Method npop nt ne nm 

Senecio pinnatifolius Walter et al. (2018) FSHS 20 9 36 180 

Senecio integrifolius Widén and Andersson (1993) FSHS 2 26 52 52 

Impatiens pallida Schoen et al. (1994) FSHS 2 5 12 12 

Lobelia Caruso et al. (2005) FSHS 2 7 14 14 

Lobelia Caruso et al. (2003) — 2 6 0 12 

Lobelia siphilitica Caruso (2004) FSHS 2 6 12 12 

Mimulus Carr and Fenster (1994) POR 4 8 32 32 

Mimulus Fenster and Carr (1997) POR 8 4 16 16 

Collinsia heterophylla Charlesworth and Mayer (1995) FS 4 5 20 19 

Nicotiana Bissell and Diggle (2010) FSHS 2 11 22 22 

Solanum carolinense Elle (1998) D 3 5 15 15 

Crustacea       

Daphnia pulicaria Baer and Lynch (2003) ACV 2 9 18 18 

Insecta       

Diopsidae Baker and Wilkinson (2003) FSHS 15 9 9 135 

Diopsidae Wilkinson and Taper (1999) FSHS 12 3 36 36 

Drosophila melanogaster Coyne and Beecham (1987) POR 10 2 2 20 

Drosophila melanogaster Hangartner et al. (2019) FSHS 6 8 24 24 

Drosophila melanogaster Service (2000) FSHS 3 3 27 27 

Gryllidae Bégin and Roff (2004) FS 4 5 20 20 

Gryllus Bégin and Roff (2003) FS 3 5 15 15 

Amphibia       

Rana temporaria Palo et al. (2003) FSHS 6 2 12 12 

Reptilia       

Anolis McGlothlin et al. (2018) FSHS 7 8 56 56 

Colubridae Hohenlohe and Arnold (2008) — 34 2 0 68 

Thamnophis elegans Arnold and Phillips (1999) POR 4 6 24 24 

Aves       

Cyanistes caeruleus Charmantier et al. (2004) PED 3 2 6 6 

Cyanistes caeruleus Delahaie et al. (2017) PED 4 6 24 24 

Geospiza Grant and Price (1981) POR 2 3 6 6 

       

       



 

Table 1: Cont.       

Taxa Study Method npop nt ne nm 

Anser caerulescens Lessells et al. (1989) POR 1 1 1 1 

Ficedula albicollis Sheldon et al. (2003) POR 1 1 1 1 

Geospiza fortis Gibbs (1988) POR 1 1 1 1 

Parus major McCleery et al. (2004) POR 1 1 1 1 

Parus major Van Noordwijk et al. (1981) POR 2 1 2 2 

Sturnus vulgaris Flux and Flux (1982) POR 1 1 1 1 

Mammalia       

Saguinus Cheverud (1996) PED 2 39 78 78 

Abbreviations: 
ACV = Among clone variance 
AS = Artificial selection 
D = Diallel, FS = Full-sibs/family variance 
FSHS = Full-sib/half-sib breeding design 
NCI = North Carolina I 
NCII = North Carolina II 
PD = Partial diallel 
PED = Pedigree analysis 
POR = Parent offspring regression 

 



 

Appendix C: Derivation of the error variance equation 

Error variance of evolvability  
To convert the estimate of error variance (SE") of additive genetic variance ('$) to an estimate 

of error variance for evolvability on log scale (log(!!)) the following operation was done. First, 

the error variance of evolvability is 

 
SE')*(+ = SE' -

.)
/̅'1 =

SE'[.)]
/̅* , (C1) 

where the error variance of the trait mean (-)̅ is considered negligible. Then, the error variance 

of each estimate of log(!!) is converted to the scale of '$ using a Taylor approximation (eq. 

C2) to the first derivative around each estimate of evolvability (!̂!). 

 
SE')log(*̂()+ ≈ SE' <log(*̂() +

1
*̂(
(*( − *̂()@ (C2) 

 
SE' <

*(
*̂(
@ =

SE')*(+
*̂('

=
SE'[.)]
/̅*
*̂('

 (C3) 

In equation (C2) the estimates log(!̂!) and − %̂!
%̂!

 are constants and do not affect the variance 

measure. Hence, they are removed in C3. The random regression models (eq. 2.11) were fitted 

with the mean evolvability (log(!̅!)) per trait. I assume each estimate of '$ is independent and 

therefore use the mean error variance per trait. The error variance of evolvability on log-scale 

becomes: 

 

SE+,' )logA*̅(B+ =
E <SE

'[.)]+
/+̅*

@

E)*(!' +
, C = 1, 2, … , F, , G = 1, 2, … , H, (2.12)  

where "' is the number of populations or species per trait 1 of the total number of traits 2. 

 


