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Abstract

LNG is to an increasing extent traded through spot markets and short-term contracts. At

the same time, gas production is growing and the number of importers and exporters of

LNG is increasing. These trends lead to greater opportunities for actors who are looking

into speculative trading of LNG.

In this thesis, we develop two stochastic optimization models for buying, transporting

and selling LNG in the spot market. We take the perspective of an actor that owns LNG

vessels and does speculative trading. The objective is to maximize profit. This is done

by making optimal movement and trade decisions. Income is generated by buying and

selling LNG. Costs relate to operating the LNG vessel. The models make a trade-off

between maximizing revenue and minimizing cost. The price processes in the ports are

stochastic. We use scenarios to represent an approximation of the price development

process.

The models make use of a dynamic program to estimate the value of potential trade

sequences. Two stochastic models are run in combination with the dynamic program in

order to make movement and trade decisions. One is a mixed-integer program (MIP)

that is run by commercial optimization software (Xpress-Mosel). The other is a heuristic

written in Java. We present solutions for both deterministic and stochastic test instances.

The stochastic solution takes uncertainty into consideration and presents the decisions

that are best hedged against all outcomes of price development.

Our main focus is on comparing the stochastic and deterministic versions of the two

models, in order to identify the solution approach that best solves our problem. The

stochastic versions are found to provide better solutions than the deterministic ones.

This goes for both models. The heuristic solution outperforms the MIP when considering

both profit, run time and stability.

With minor adjustments the models can be used as real life decision tools.
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Sammendrag

Produksjonen av gass er økende, og Liquefied Natural Gas (LNG) utgjør en stadig større

andel av global gasshandel. 31.7% av all gass som ble handlet i 2012 ble solgt som

LNG. LNG handles i økende grad gjennom spothandel og korttidskontrakter, og antallet

importører og eksportører er voksende. Dette er faktorer som leder til økende muligheter

for aktører som bedriver spekulativ handel med LNG.

I denne avhandlingen utvikler vi to stokastiske optimeringsmodeller for kjøp, transport

og salg av LNG i spotmarkedet. Vi tar utgangspunkt i en aktør som eier LNG-skip

og bedriver spekulativ handel. Målet er å maksimere profitt. Dette oppn̊as gjennom

å gjøre optimale handels- og bevegelsesbeslutninger. Inntekt genereres ved å kjøpe og

selge LNG. Kostnader relaterer til å operere LNG-skipet. Modellene gjør en avveiing

mellom maksimering av inntekt og minimering av kostander. Prisprosessen i havnene

er stokastisk. Vi bruker scenarioer til å approksimere prisprosessen. V̊ar fokus er p̊a å

sammmenligne modellene med hverandre, med hensikt å finne ut hvilken som best løser

v̊art problem.

Modellene benytter seg av et dynamisk program til å estimere verden av potensielle

handelssekvenser, basert p̊a prisprognoser. The dynamiske programmet er implementert

i Java. To stokastiske modeller brukes i kombinasjon med det dynamiske programmet

for å finne optimale valg for handelstidspunkt og forflyning. Det ene modellen er et

mixed-integer program (MIP) som blir kjørt i kommersiell optimeringssoftware (Xpress-

Mosel). Den andre er en heuristikk som er skrevet i Java. Vi presenterer løsninger for

b̊ade deterministiske og stokastiske testinstanser. Den stokastiske løsningen forholder seg

til usikkerhet og presenterer de beslutningene som gir best utgangspunkt for alle utfall

av prisutviklingen.

Hovedfokuset v̊art er p̊a å sammenligne den deterministiske og stokastiske versjonen av de

to modellene, for å finne den fremgangsmåten som best løser v̊art problem. De stokastiske

versjonene gir generelt bedre resultat enn de deterministiske. Dette gjelder begge model-

lene. Heuristikken er bedre enn MIPen p̊a b̊ade profitt, kjøretid og stabilitet. Modellene

kan brukes som beslutningsverktøy hvis det gjøres små justeringer.
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Chapter 1

Introduction

Natural gas accounted for 23.9% of global primary energy consumption in 2012 and is one

of the fastest growing energy sources in the world (BP, 2013b). Liquefied Natural Gas

(LNG) is natural gas that has been cooled down until turning liquid, effectively reducing

the volume to 1/600 of its gaseous state. This makes it viable for long-distance transport

by sea. Liquefied Natural Gas’ (LNG’s) share of global gas trade was 31.7% in 2012.

The rest of the gas was sold through pipelines (BP, 2013b). Trading through pipelines

requires the producer and end consumer to be connected to the same pipeline network.

For many markets this is not a viable option, given the high cost of producing long

distance pipelines. The flexibility of LNG trade is also a major advantage over pipelines.

Pipelines are fixed and have a limited capacity, while LNG vessels can be redirected to

where they are currently needed.

LNG markets have changed in recent years, shifting from predominantly long-term ded-

icated contracts to an increased use of flexible contracts and spot trade. The emerging

spot markets opens up opportunities for speculative traders of LNG.

In this thesis we take the perspective of an actor that owns LNG vessels and does specu-

lative trading of LNG in the spot market. This includes buying, transporting and selling

LNG. The goal is to maximize profit.

The closest real-life example that we know of is Golar LNG, who contracted tonnage on

a speculative basis in 2002. Finding ship employment proved difficult and they ended up

converting vessels into storage systems and regasification terminals (Engelen and Dullaert,

2010a). The LNG market has changed a lot since then, and we believe there are greater

opportunities to be successful now.

The purpose of this thesis is to present a stochastic optimization model that makes

optimal movement and trading decisions for LNG vessels that are contracting LNG on a
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speculative basis. This is done by dynamically positioning empty vessels close to ports

where prices are low or expected to become so, and then moving in to buy when the time

is right. The full vessel is then dynamically positioned close to ports where prices are

high or expected to become so, before moving in to sell when the time is right. The costs

related to operating LNG vessels are also considered. We seek to optimize the positioning

and the timing of trade under price uncertainty. The decision-support models presented

gives the user an opportunity to make new decisions each time updated price information

is revealed.

The paper is organized as follows. First we present the gas industry, looking at produc-

tion of natural gas and trade of liquefied natural gas. We then present relevant literature,

looking into previous optimization work done on LNG, tramp shipping, stochastic mod-

elling and stochastic dynamic programming. Following this we describe our problem,

before presenting three models that are used to solve the problem. Two complete solu-

tion approaches that makes use of these models are then presented. An outline of how

the models are implemented is presented, before looking at the instances used to test the

model. Results from running the tests are then discussed, before we conclude and make

suggestions for further research.



Chapter 2

Natural Gas Production and Trade

of Liquefied Natural Gas

Projections indicate that global gas production will grow by 2% p.a. (per year) running

up to 2030. Liquefied Natural Gas (LNG) is predicted to play an increasingly important

role, with production growing at 4.3% p.a. in the same period (BP, 2013a).

LNG is natural gas that has been cooled down until turning liquid. This reduces the

volume to 1
600

of the gaseous state, making storage and transportation more convenient.

LNG technology is mainly used to transport natural gas over long distances at sea, where

pipelines are not cost effective.

The LNG trade has seen rapid growth, diversification and increased flexibility in cargo

movements over the last 20 years. Long-term contracts still dominate, but medium-term

contracts, short-term contracts and spot trades have taken up an increasing share of the

market. At the same time LNG technology is evolving, continuously making LNG trade

more cost effective.

In the following sections we take a closer look at the the fundamentals of natural gas

production and LNG trade. The LNG value chain is presented, looking at cost distribu-

tion and comparing the use of LNG to pipelines. Geographical markets are discussed,

as well as some numbers related to supply and demand of natural gas and LNG. Market

characteristics are presented, looking at LNG infrastructure, contracts and pricing. We

finally make some remarks about technological advances in LNG production and have a

look at the basics of LNG shipping costs.
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2.1. THE LNG VALUE CHAIN

2.1 The LNG value chain

This section describes the value chain of LNG, from reservoir to the end user. The

distribution of costs is also discussed.

The LNG value chain, illustrated in Figure 2.1, begins with natural gas being extracted

from a reservoir and sent through pipelines to a liquefaction plant. In the liquefaction

plant, impurities are removed from the gas and it is cooled down until passing its boiling

point at approximately −160 ◦C. This process of converting the gas into a liquid effec-

tively reduces the volume to 1
600

of its gaseous state. Volume reduction is what makes

LNG valuable, by enabling cost effective long distance transportation of gas. The LNG

is then stored in tanks or directly loaded onto ships, where it is kept below its boiling

temperature until reaching a regasification terminal. At the regasification terminal the

LNG is pumped into a storage tank, where it is kept until being warmed up, transforming

the LNG back into gas. It is then sent into the pipeline system for delivery to end users

(SLNG, 2010).

Figure 2.1: LNG value chain

(SLNG, 2010)

The distribution of capital costs in a LNG value chain is approximately as follows

(Maxwell and Zhu, 2011):

• Exploration and production: 15-20%

• Liquefaction: 30-45%

• Shipping: 10-30%

• Regasification and storage: 15-25%

As indicated by the above numbers, the process of converting the gas to LNG and back

constitutes a major cost. Liquefaction, regasification and storage together adds up to

45-70% of the total supply costs. The alternative to LNG is transporting the gas through

pipelines all the way to end consumers. A comparison of cost for the two alternatives

is shown in Figure 2.2. We see that the use of LNG makes more sense the greater the

distance. This is due to the high capital cost of building pipelines. It is also apparent

that offshore pipelines are more expensive than onshore pipelines.

The high cost of transporting natural gas over long distances has lead to a large share of
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Figure 2.2: Transportation cost per cubic meter of gas as a function of distance for

onshore pipeline, offshore pipeline and LNG

(Schwimmbeck, 2008)

trade being done within separate geographical markets. These markets are discussed in

the following section.

2.2 Geographical markets

There are three main geographical regions in the LNG trade; the Asia-Pacific Basin, the

Atlantic Basin and The Middle East. Japan and South Korea are the largest importers of

LNG in the Asia-Pacific market, while Indonesia, Malaysia and Australia are the largest

exporters. In the Atlantic Basin, the largest importer of LNG is continental Europe. The

largest exporter of LNG is Africa. The countries in the Middle East acts as swing suppliers

between the Asia-Pacific and the Atlantic Basin (BP, 2013a). These characteristics can

be observed in Figure 2.3, which illustrates worldwide LNG trade in 2012. We also see

that some LNG is transported all the way from the Atlantic Basin to the Asia-Pacific

Basin.

Figure 2.4(a) shows that all geographical regions are expected to increase their exports

of LNG in the coming years. Particularly strong growth is expected in the Atlantic and

Pacific Basin. Figure 2.4(b) shows that Europe and the Asian non-OECD countries are

responsible for most of the growth in imports.1

The increased exports have to be backed up by and increase in production. Predictions

for future production are discussed next.

1Japan and Korea are OECD countries, while India and China are not (OECD, 2013).
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2.3. SUPPLY OF NATURAL GAS

Figure 2.3: Global LNG trade movements in 2012

(GIIGNL, 2013)

(a) Exports (b) Imports

Figure 2.4: Projection of global export/import of LNG in different markets/country

groupings, 1990-2030

(Wood, 2012)

2.3 Supply of natural gas

Natural gas production is expected to see significant growth in the coming years. BP

projects that total gas production will grow by 2% p.a. (per year), reaching 4,744 bcma

(billion cubic meters per year) by 2030, compared to 3,363 bcma in 2012 (BP, 2013a).

Figure 2.5 shows EIA’s (U.S. Energy Information Administration) projection of natural
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2.3. SUPPLY OF NATURAL GAS

gas production. MENA is the Middle East and North Africa. We see that all country

groupings are expected to increase production. The share of production accounted for

by each country group remains relatively stable. Comparing LNG export numbers from

Figure 2.5 to gas production numbers from Figure 2.4, we find that more than 15% of

all gas production in 2030 is projected to be exported as LNG. This view is shared by

BP, which predicts that LNG trade will make up 15.5% of global gas trade by 2030 (BP,

2013a).

The largest exporters of LNG in 2012 were Qatar, Malaysia, Australia, Indonesia, Nigeria

and Algeria (BP, 2013b). Australia is expected to overtake Qatar as the largest LNG

exporter by 2018 and to account for 25% of global LNG production by 2030 (BP, 2013a).

Figure 2.5: Historical and projected global natural gas production, 2010-2040

(EIA, 2013)

The United States is expected to be an especially interesting market in the coming years.

Traditionally it has been a large importer, but the shale gas revolution is turning this

around. Multiple import terminals are now being converted to also handle export of LNG.

Planned projects indicate that the U.S. will be a net exporter by 2017 (BP, 2013a). The

Energy Information Administration (2013) has predicted that exports will reach 222 bcma

by 2040, making up net exports of 12%. In 2011, they had net imports of 8% (EIA, 2013).

Net imports/exports represent how much gas is imported/exported as a percentage of

total consumption. The U.S. will potentially have a key role as an exporter to both

Europe and Asia. The distance from the U.S. to these markets is long, meaning that

the use of LNG is more likely than building pipelines. This could mean new market

opportunities for a speculative trader of LNG.

7



2.3. SUPPLY OF NATURAL GAS

There are still vast amounts of unused gas resources. Based on current demand and the

International Energy Agency’s estimate of remaining gas resources, the world has more

200 years of natural gas left (Exxon Mobile, 2013). It is however important to notice that

only 23.7% of these resources are actually proven (BP, 2013b). The geographical distribu-

tion of total proven and estimated gas resources is shown in Figure 2.6. Unconventional

gas resources are less available than the conventional ones, due to lack of technology or

high cost of extraction. We see that Russia and the Middle East have a large share of

readily available gas resources left.

In the next paragraph we take a closer look at shale gas production, which is going to

play an important role in global gas trade in the coming years.

Figure 2.6: Estimate of total global conventional and unconventional natural gas reserves

(Exxon Mobile, 2013)

Shale gas. Projected global growth of shale gas production is shown in Figure 2.7.

Shale gas is predicted to account for more than 750 bcma by 2030, representing 37% of

the expected growth in the world´s natural gas supply, and making up approximately

17% of total gas production in 2030. This is a large increase from 2010, when shale

gas only accounted for 3% of total gas production. Shale gas produced in the U.S. and

Canada is expected to be responsible for most of the growth, making up 72.8% of shale
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Figure 2.7: Historical and projected global shale gas production, 1990-2030

(BP, 2013a)

gas production in 2030, and almost 10% of total natural gas production. China is the

country outside North America that is expected to be most successful in developing shale

gas, with estimated production of 62 bcma by 2030. European shale gas production is

challenging and is not likely to see any significant growth until after 2030 (BP, 2013a).

2.4 Demand for natural gas

The largest importers of LNG in 2012 were Japan, South Korea, Spain, China and India.

Japan alone was responsible for more than 35% of global LNG imports in 2012 (BP,

2013b).

China is likely to experience a rapid increase in imports in the coming years. The growth

in shale gas production is not enough to offset the increase in consumption. They will

need an import growth of 11% p.a. due to the rapid increase in consumption, reaching

186 bcma by 2030. The EU countries are also not expected to be able to offset their

coming decline of conventional gas production, leading to a 48% increase in net imports

by 2030, to a total of 413 bcma by 2030 (BP, 2013a). There is also a range of new

countries that are seeing gas as a way of diversifying their energy supply (Gkonis and

Psaraftis, 2009). One example is the Latin American countries, where Argentina, Chile

and Brazil are developing LNG infrastructure. They are likely to become key import

countries in the coming years (Wood, 2012).

The market characteristics of the LNG trade are discussed next.
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2.5 LNG market characteristics

LNG markets are evolving. New actors are entering the market and more infrastructure

is being built. Trade is diversifying and investors are showing increased interest for LNG.

Contract terms are evolving, with short-term and flexible contracts making up a larger

share of total trade. New sources of gas and new technologies continue to shift the

state of the markets. Examples of this can be seen in the U.S. shale gas revolution and

in Shell’s floating liquefaction plant project. Shale gas has taken the U.S. from being

a large importer to likely becoming an exporter by 2017 (BP, 2013a). Shell’s floating

liquefaction plant is making it possible to liquefy the gas where it is extracted, instead

of transporting it by pipeline to a liquefaction plant. This makes it possible to utilize

gas resources that have previously been unusable due to the distance from land (Wood,

2012).

2.5.1 Infrastructure, integration and diversification

Figure 2.8 shows historical and projected development of LNG infrastructure. We see

that there has been an increase in LNG infrastructure over the last years, and that the the

trend is projected to continue in the coming decade. New terminals and plants effectively

create new nodes in the LNG trading network.

Figure 2.8: Historical and projected number of liquefaction plants and regasification

terminals, 1990-2020

(BP, 2013a)

Along with the increase in LNG infrastructure we have seen an increase in diversification

of trade over the last decades. One indication is seen in the declining share of LNG
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accounted for by the largest importer and largest exporter. In 1990, the largest importer

accounted for 68% of total imports and the largest exporter accounted for 39% of total

exports. In 2012, the numbers were 35% and 32%, respectively (BP, 2013b). Figure 2.9

shows how the number of suppliers per importer and customer per exporter have gone

up in this period. The indicates increased competition. Nigeria and Qatar are leading in

export diversification, with an average of 20 customers in 2011. Europe and Asia are also

expected to further diversify their LNG supply with increased imports from East Africa

and the East Mediterranean (Wood, 2012).

Figure 2.9: Average number of suppliers per importer and customers per exporter in

LNG trade, 1991-2011

(BP, 2013a)

2.5.2 Contracts

Contracts in the LNG trade are typically long-term. The main reason for this is the need

for risk allocation in the value chain. Sellers face enormous risk in making the multibillion

dollar investments inherent in LNG projects. It also takes a long time before revenue is

actually generated. Typically there is a delay of more than four years between the final in-

vestment decision and project completion (Energy Charter Sec., 2009). This risk is shared

with buyers by having contracts that provide long-term off-take agreements (Wood, 2012).

Long-term contracts are predicted to make up the major part of trade in the future as

well. It is, however, expected that the long-term contracts will continue to become more

flexible, allowing cargoes to be traded in the short-term market (Gkonis and Psaraftis,

2009).

The long-term contracts normally include a take-or-pay clause shifting the volume risk
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to the buyer. The buyer has a volume risk because he has to receive the volumes that are

agreed upon in the contract. This can be either more or less than the future demand. If

the buyer refuses to receive the agreed upon volume, he still has to pay the whole price

(take-or-pay). The seller keeps the price risk through pricing clauses. Pricing clauses

usually link the price paid to the price of a substitute product such as oil, but it might

also be linked to gas market indicators such as the NBP (Energy Charter Sec., 2009). It

is also common that the contracts are dedicated. This means the contracts have desti-

nation clauses, preventing the buyer from reselling the LNG. Short-term contracts have

traditionally only been used to make up for the imperfect long-term planning (Engelen

and Dullaert, 2010b).

There has been an increase in the share of flexible contracts, short-term contracts and

spot trade in recent years. Figure 2.10 shows how the share of short-term contracts have

increased from 1992 to 2007. This trend has continued, with 25% of all LNG trade in

2012 made through spot or short-term contracts (GIIGNL, 2013). Short-term trading

includes contracts of three years or less and balancing trades among long-term contract

holders. Spot trades are transactions that are made at once, as opposed to a contract of a

future transaction. Some new gas development projects have gone forward with capacity

unclaimed, leading to excess volume and potential short-term sales (Rakke et al., 2011).

Figure 2.10: Share of short-term vs long-term contracts

(Energy Charter Sec., 2009)

Flexible contracts, as opposed to dedicated contracts, allow the cargoes to be diverted

if profitable opportunities emerge. Figure 2.11 shows the share of spot, flexible and

dedicated contracts in various markets in 2008. Unfortunately more recent numbers have

not been found. We see that the Atlantic Basin had the largest share of flexible contracts,

with almost half of the cargoes containing a destination flexibility clause. Trade in the

Asia Pacific Basin is more traditional, with almost all of the contracts being dedicated.

Pricing mechanisms and choice of contract type is heavily dependent on the degree of

gas market liberalization. The next section discusses factors contributing to gas market
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Figure 2.11: Amount of LNG traded through dedicated, flexible and spot contracts in

2008

(Engelen and Dullaert, 2010a)

liberalization, and considers how far different markets have come in the liberalization

process.

2.5.3 Gas market liberalization

Successful gas market liberalization creates a liquid market where gas can be traded as

a commodity. Energy Charter Secretariat (2009) identifies three preconditions that are

necessary for a successful gas industry liberalisation. These are:

• Competitive gas available to market

• Customers free to choose between suppliers

• Open and nondiscriminatory access to transmission system

There are huge differences in how far various countries have come in this liberalization

process. One of the main differentiating characteristics of these countries is their depen-

dence on domestic sources relative to imported gas. US and U.K. are two examples of

countries where gas supply historically has been mainly domestic. With domestic supply

they were able to use government regulation to control the gas trade. Many players were

given access on both the demand and the supply side. Security of supply was guaranteed

by transparent and liquid markets rather than political protection. Both these markets

now have established pricing points that is used for pricing of futures and comparison

with other prices. In the North American market the pricing point is the price at the

Henry Hub, a major pipeline junction in Louisiana. In the U.K. the price point is theo-

retical and is known as the National Balancing Point (NBP). In these markets short-term

trading has largely replaced long-term contracts, and any long-term contracts being made

13



2.5. LNG MARKET CHARACTERISTICS

have price clauses that are linked to gas market indicators (such as NBP) rather than oil

prices (Energy Charter Sec., 2009).

Countries that depend on imports have had to negotiate their contracts with exporting

countries and rely on long-term contracts, most of which still remain in force. The suppli-

ers of these contracts generally wanted a minimum price or some other kind of guarantee

for the entire delivery period. The buyer, however, preferred to have the gas price re-

sponsive to the price of substitutes such as oil (Asche et al., 2013). These pricing clauses

have prevented gas prices from being established through gas-to-gas price competition.

Limited pipeline capacity has also proven a challenge. It is hard to get pipeline capacity

for long distance movements of commodity gas, due to capacity constraints in the pipeline

grid, most of which is built for predetermined long-term contracts.

The import dependent countries with little or no domestic gas competition have generally

not been successful in liberalizing gas trade, and long-term contracts linked to oil-prices

still dominate. This is the situation for most of the European Continent and Northeast

Asia. The domestic producers that exist are price-takers.

For the import dependent countries that actually have been successful in liberalizing gas

trade, competition is on the terms of long-term contracts rather than on prices in a liquid

commodity market. There are, however, examples of import-dependent countries that

have more competitive trade than others. Two of them are Belgium and the Netherlands,

where the increased competition is due to the short distance to the U.K. (Energy Charter

Sec., 2009).

2.5.4 Pricing

The global gas market is not liquid. A variety of different mechanisms drive the prices in

different regions. As mentioned in the previous section, some markets almost exclusively

depend on long-term contracts that are linked to oil prices. Other markets have gradually

converted to shorter term contracts, with prices that are based on gas-to-gas competition.

In markets where domestic supply predominates over imports, such as in US and U.K.,

prices often fall below long-term equilibrium levels during domestic surpluses. This is

an example of an issue that international pricing of LNG would have to deal with. The

ideal global market would be where competition drives equilibrium prices to the long

run marginal costs of the supply just necessary to meet demand. This seems unlikely

to happen in the near future, with large regional differences and departures from the

competitive ideal (Energy Charter Sec., 2009). In regional markets we are likely to see

improved moderation of prices as the use of spot contracts increases (Wood, 2012).
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The four distinct markets that mainly influence global gas pricing are North America,

the U.K., the European Continent and Northeast Asia. As outlined in 2.5.3, North

America and the U.K. are liberalized, while the European Continent and Northeast Asia

still mainly depend on long-term contracts linked to oil prices. In the next parapgraphs

market prices are discussed, before looking at potential arbitrage opportunities for a

speculative trader.

Market prices

Asche et al. (2013) have studied the development of the European gas prices shown in

Figure 2.12.2 The figure shows the relationship between prices in three European gas

spot markets, namely the National Balancing point (U.K.), Zeebrugge (Belgium) and

Title Transfer Facility (the Netherlands), as well as the German long-term contract gas

price and the price for Brent oil. We see that the prices in the three spot markets

follow each other closely, and also that they seem to be correlated to the oil price. The

study done by Asche et al. (2013) did not find any evidence of an independent price

determination process in the European gas markets, and conclude that both the contract

gas price and the spot gas price is determined by the oil price. EIA found in a 2006 study

that natural gas and crude oil prices generally have had a stable relationship, despite

some periods where the prices have appeared to decouple (Villar and Joutz, 2006).

Figure 2.12: Historical price development for Brent oil and gas in Europe, 1999-2009

(Asche et al., 2013)

The Henry Hub in Louisiana has become a price reference point for the U.S. markets.

Prices in other parts of the U.S. reflect the transportation cost between the Henry Hub

2Prices in the following discussion is listed as $/MMBtu (million British thermal units). 1 BTU equals

28 cubic meters of natural gas.

15



2.5. LNG MARKET CHARACTERISTICS

and the market in question (Jensen, 2004). The U.S. Energy Information Administra-

tion (2013) projects that price in the Henry Hub will rice in the years to come. Their

projection of the Henry Hub natural gas spot price in the future can be seen in Figure

2.13. The figure shows that the price is expected to increase steadily the coming years.

Figure 2.13: Historical and projected average Henry Hub natural gas spot price

(EIA, 2013)

Figure 2.14 shows historical gas price development in the U.S.., Germany, U.K. and

Japan. The price point for each year is the average gas price for that particular year.

A large price difference can be observed between the different countries in recent years.

Japan has experienced a steep increase in prices over the last years, especially following

the Fukushima disaster of March, 2011, that lead to a shutdown of nuclear power plants.

This drove demand for alternative energy supply sources, pushing the prices up. The

United States has seen a sharp decline in prices after the shale gas revolution. A large

price difference between markets is partially able to sustain because of the high costs of

transporting LNG between markets. There are however potential arbitrage opportunities.

This is discussed in the next section.

Arbitrage opportunities

Prices being determined independently in each market leads to potential arbitrage op-

portunities. One example of this can be seen in Figure 2.15. It shows what the market

would look like from the perspective of a Nigerian shipper. The oldest numbers are hy-

pothetical, as the U.K. did not have a import terminal before 2005. It is clear that the

netbacks would differ dependent on trading with the U.K. or US. This arbitrage potential
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Figure 2.14: Historical LNG prices in different countries

(BP, 2013b)

could be utilized by redirecting flexible cargoes. The numbers also indicate a potential

opportunities for a spot trader, which could freely choose the market with the highest

return.

Figure 2.16 we see an example of how the Middle East potentially could be used as a

source of arbitrage between the Atlantic and Pacific Basins. With its location between the

basins, the Middle East has good opportunities to trade in the basin with most favorable

price. It can be seen that spot trades between Japan and Qatar have been especially

profitable.

Figure 2.15: Hypothetical netback to Nigeria from the U.S. Gulf and the U.K.

(Energy Charter Sec., 2009)
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Figure 2.16: Hypothetical netback to Qatar from the U.S. Gulf and from Japan

(Energy Charter Sec., 2009)

2.6 Technological advances in LNG production

The enormous profit potential in the LNG industry has helped drive innovation and re-

search on new technical solutions. There has been significant cost reductions in all stages

of the LNG chain over the last decades. This has made LNG more competitive compared

to other energy sources (Gkonis and Psaraftis, 2009). Logistics costs of liquefaction alone

is 1
3

of what it was in 1980 (Maxwell and Zhu, 2011). The cost of producing certain types

of carriers has almost halved over the last 30 years. Processing and storage capacity

has increased continuously, with the size of LNG trains going from approximately 1.36

bcma in 1970 to 10.9 bcma in 2010 (GIIGNL, 2013). LNG trains are the facilities in

liquefaction plants where the gas is purified and liquefied. The capacity of LNG carriers

has increased from 27,500 m3 in the 1960s to the new 265,000 m3 Q-max vessels that

entered the market in 2008 (Lopac, 2008). In general, we have seen an increase in size of

terminals and vessels that have lead to economies of scale (Engelen and Dullaert, 2010a).

Floating liquefaction plants is one of the more important technological innovations evolv-

ing in the industry. Shell’s Prelude project involves a 488 meter long floating liquefaction

plant weighing 600,000 tonnes when fully equipped and loaded. The hull was launched in

December 2013, but drilling is not expected to begin before 2017. Prelude is expected to

produce at least 4.9 bcma of LNG (Shell, 2013). Other companies are following closely to

see if this is a profitable way of production, and multiple similar projects are under con-

sideration. Onboard regasification and Floating Storage Regasification Units are other

technological innovations that have had success in recent years (Wood, 2012).
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2.7 LNG shipping

Shipping LNG is particularly expensive due to the need for specially designed vessels

that are able to keep storage tank temperatures below −160 ◦C. Until recently, the main

players in LNG transportation have been energy majors and national companies. The

increased demand and new conditions in the international energy scene has led to a

need of cost reduction and versatility in the market. This has given opportunities for

independent vessel owners and other investors to enter the market (Gkonis and Psaraftis,

2009).

2.7.1 The LNG fleet

The world LNG fleet currently consists of 365 vessels with a total capacity of 53,893,000

m3. 104 new vessels with a total capacity of 9,319,000 m3 are currently in the order

books (Lloyd’s, 2013). Two types of containment systems are used for LNG vessels,

membrane system and self supporting system. Examples of the two types are shown in

Figure 2.17 and Figure 2.18. The price of LNG carriers shifts with the market. Recent

contracts indicate a price of approximately $200 million for a 160,000 m3 vessel (Reuters,

2013). The prices were as high as $280 million for an equally sized vessel in the early

1990s, but competition and new technology has driven the prices down (Lopac, 2008).

Figure 2.17: Membrane LNG tanker

(Qatargas, 2013)
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Figure 2.18: Self supporting LNG tanker

(Global Security, 2013)

2.7.2 Transportation costs

Transporting LNG includes three main types of costs:

• Vessel costs

• Operative costs

• Voyage costs

Vessel costs relate to hiring a vessel. The price for hiring a 160,000 m3 LNG vessel lies

around $100,000 per day (Golar LNG, 2013a). The rates are highly volatile, going as low

as $30,000 in mid-2010 and reaching $150,000 in mid-2011 (Golar LNG, 2013b). Short-run

factors that impact vessel prices are weather forecasts, energy-policy, initiatives, gas-flow

problems and week-to-week changes in drilling activity. Long-run factors include world

economic growth, shale extraction, LNG development and carbon policies (Energy, 2010).

Operative costs include different costs related to operating an LNG vessel. An approxi-

mation of operative costs for a 138,000 m3 vessel is shown in Table 2.7.2. They sum up

to about $18,000.

Table 2.1: Average operating costs for a 138,000 m3 LNG vessel

(Lopac, 2008)

Insurance Maintenance Spare parts Adm. costs Crew costs Total

$/day 5,200 760 1,782 800 9,222 17,764

Voyage costs include fuel costs and boil-off, and are heavily dependent on uncertain

variables such as weather and fuel price. The boil-off rate is the daily percentage of total

cargo capacity that is lost. It is usually in the interval 0.10-0.25% (Lopac, 2008). It is

normal to keep some LNG in the tanks also when not currently transporting, to keep the

tanks cold. The boil-off contributes to LNG transport having a higher voyage costs than
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most other types of shipping, making it more expensive for a speculative LNG trader

to wait around for market opportunities. Voyace costs sum up to around $100,000 per

day (Golar LNG, 2013b).

The total cost of operating an LNG vessel is the sum of vessel, operative and voyage costs.

The estimates given above indicate a daily cost of approximately $220,000 for hiring and

using a LNG vessel.
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Chapter 3

Literature Review

In this thesis we develop a stochastic optimization model for buying, transporting and

selling LNG in the spot market. The objective is to maximize profit. Scenarios are used

to represent an approximation of the stochastic price development process in the ports.

The vessel acts as a tramp ship, not following a predefined schedule, but rather buying

and selling loads where and when prices are deemed most favorable. A rolling horizon

approach is used to make day-to-day decisions based on updated information. We seek

to optimize the positioning of the vessel and the timing of trade under price uncertainty.

We have reviewed literature regarding four main topics that we find relevant to our prob-

lem; LNG, tramp shipping, stochastic modeling and stochastic dynamic programming.

These topics are presented in the following sections. None of the articles are directly com-

parable to our thesis, but in total they cover many of the relevant aspects of our study.

After presenting the articles we discuss how our work fits in with existing literature.

3.1 LNG

In this section we first present papers regarding the LNG Inventory Routing Problem

(IRP). IRPs are problems that take both inventory management and routing into consid-

eration. IRPs span over liquefaction, shipping and regasification in the LNG value chain

(Figure 2.1). We move on to describe LNG Annual Delivery Problems (ADPs). An ADP

is a complete schedule of every ship’s sailing plan for the coming year. Articles combining

LNG and uncertainty are then presented, before briefly considering literature related to

the LNG production process.

The LNG IRP is first discussed in Grønhaug and Christiansen (2009). They present

a supply chain optimization model for the LNG business, looking at transporting and
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scheduling of LNG ships as well as inventory management at both liquefaction plants

and regasification terminals. Both a path-flow and an arc-flow model with pregenerated

paths are described. The computational study shows that the path-flow formulation is

faster in solving to optimum, but the arc-flow formulation is faster at finding the first

integer solution.

Grønhaug et al. (2010) solve the LNG IRP by a branch-and-price method. Inventory

management and port capacity constraints are handled in the master problem, while

the subproblems generate ship route columns. The model also includes an ad hoc DP-

algorithm for solving the longest path subproblem. A variety of acceleration strategies

are included in the model as well. The computational study shows that this approach

gives much better results (on average more than one magnitude faster) than the model

presented in Grønhaug and Christiansen (2009).

Fodstad et al. (2011) and Uggen et al. (2013) study a LNG IRP that includes contract

management and trading in the spot market. Goel and Furman (2012) present an arc-flow

formulation for the LNG IRP based on the MIP model of Song and Furman (2010). The

model optimizes ship schedule decisions together with inventory management at both

production and regasification terminals. Construction and improvement heuristics to

solve the model efficiently are presented, including several two-ship selection methods. An

overview of existing literature in the field of combined routing and inventory management

can be found in Christiansen and Fagerholt (2009).

Andersson et al. (2010) study the LNG supply chain, presenting two planning problems

that combine transportation planning and inventory management. One is for a producer

and the other for a vertically integrated company that controls both the liquefaction and

the regasification terminals in addition to transportation. The output of the model is an

Annual Delivery Program (ADP).

Rakke et al. (2011) present a rolling horizon heuristic for creating an ADP for a LNG

producer. The rolling horizon approach is used to simplify the complex problem into more

solvable sub-problems. They minimize the cost of fulfilling long-term contracts while

maximizing revenue from selling LNG in the spot market. A similar ADP problem is

discussed in St̊alhane et al. (2012). Here a multi-start local search heuristic is presented.

To improve the heuristic solution they use either a first-descent neighborhood search,

branch-and-bound or both. Halvorsen-Weare and Fagerholt (2013) present an alternative

model. Their solution method includes decomposition into a routing subproblem and a

scheduling master problem. Inner and outer time windows for deliveries are used, with

target dates that can be violated at a penalty cost. In Halvorsen-Weare et al. (2013)

uncertainties in production rates and sailing times are also considered. Three robustness

strategies are tested; adding slack to each sailed round-trip, adding target inventory levels
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and adding target accumulated berth use. They show that using each of the robustness

strategies, and a combination in particular, results in overall lower expected costs. Their

results show that there is a significant improvement potential in considering and dealing

with the uncertain parameters of LNG vessel routing and scheduling.

Ainouche and Smati (2002) present a stochastic dynamic programming model for re-

ducing production costs in LNG value chains. They take into account the increasingly

stochastic nature of LNG development projects resulting from spot market trades re-

placing long-term contracts. Khalilpour and Karimi (2012) consider contract selection

under uncertainty from a LNG buyer’s perspective. They present a mixed-integer linear

programming model that helps the buyer select the best combination of suppliers and

contracts. The sum of purchase and transport costs is minimized.

There are also examples of optimization being used to improve the chemical processes

of LNG production. Aspelund et al. (2010) present a optimization-simulation method to

minimize the energy requirements of a PRICO LNG process based on Tabu Search and

the Nelder-Mead Downhill Simplex. Wahl et al. (2013) use sequential quadratic program-

ming for optimizing a PRICO LNG liquefaction process. Hwang et al. (2013) present a

model for optimizing the dual mixed refrigerant (DMR) using the genetic algorithm and

sequential quadratic programming.

3.2 Tramp shipping

In this section we start by comparing tramp shipping to other types of shipping. We

then present articles about scheduling in tramp shipping, before briefly considering other

relevant applications of optimization in tramp shipping.

It is usual to divide shipping operations into three types: liner shipping, industrial ship-

ping and tramp shipping. Liner shipping follows a predefined schedule, similar to a public

bus service. Industrial shipping involves operators that are transporting their own cargo

between ports. Since the industrial operators own the ship and cargo themselves, their

goal is to minimize the cost. If there is any spare capacity on the ship, an industrial

operator can transport cargo from the spot market in order to make profits. Unlike lin-

ers, there are no given schedules or routes for the industrial operators. Tramp shipping

can be compared to the taxi business. Tramp operators might have contracts that oblige

them to transport cargo, but they seek the opportunity to pick up available cargoes when

the vessel has spare capacity. Their goal is to maximize profit (Hwang et al., 2008).

Christiansen et al. (2004) present a review over ship routing and scheduling. They found

that there was an ongoing shift in the market towards more use of tramp shipping, with
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companies starting to outsource the shipping operations. This leads to more market

interaction and increased opportunities for optimization-based tools in decision support.

Christiansen et al. (2013) have done a review on papers about ship routing and scheduling

from the last decade. They conclude that the volume of research on ship routing and

scheduling has more than doubled during this period. LNG shipping is mentioned as one

of the fields that has attracted more attention. The review serves as an introduction into

various part of ship routing. A review of maritime transportation in general can be found

in Christiansen et al. (2007).

Kim and Lee (1997) present a system for ship scheduling for bulk trade. The paper

concludes that there are great fluctuations in shipping rates of bulk trades, and that

there is great potential for increased profit with proper scheduling.

Brønmo et al. (2007a) present a local search heuristic for short-term tramp shipping

scheduling problems, where the objective is to maximize profits. Initial solutions are

made by an insertion heuristic, before a local search heuristic is used to improve a given

number of the best initial solutions. The paper also states that there has been little

attention to the tramp market historically. Korsvik and Fagerholt (2010) use a tabu-

search heuristic to solve the same problem. This heuristic allows infeasible solutions in

ship-capacity and time windows. The tabu search heuristic perform much better then

the multi-start heuristic for large and tightly constrained instances.

Malliappi et al. (2011) present a variable neighborhood search heuristic for solving a

routing and scheduling tramp ship problem. The computational results show that this

heuristic gives better solutions and faster computation times than the heuristics used by

Brønmo et al. (2007a) and Korsvik and Fagerholt (2010). Brønmo et al. (2007b) describe

a MP-model of a tramp shipping pickup and delivery problem with time windows, flexible

cargoes and multiple ships. Set partitioning is used to solve the problem, with columns

generated before the model starts. The objective function is to maximize profits. Brønmo

et al. (2010) address the same problem. Instead of generating all columns at the start

of the problem, they use dynamic column generation. This solution method can be used

with large or loosely restricted instances.

Hwang et al. (2008) use a branch-and-price-and-cut algorithm to present a set-packing

model that limits the risk of delivering spot cargoes in tramp routing and scheduling. Due

to volatile spot prices there is uncertainty in the spot market, and this model helps ship

owners make decisions based on their risk-aversion. Lin and Liu (2011) propose a tramp

shipping model that uses a genetic algorithm and simultaneously takes into account the

ship allocation, freight assessment and ship routing problem. Fagerholt et al. (2010)

present a decision support methodology for strategic planning in tramp and industrial

shipping. A combination of optimization and Monte Carlo simulation is used. A rolling
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horizon principle is applied, where information is revealed to the model as time goes by.

3.3 Stochastic modeling

In this section we start by covering papers that describe stochastic programming in

general. We then have a look at reviews on the use of stochastic programming in routing

problems. We conclude by presenting papers that have solved strategic routing problems

under uncertainty. Stochastic dynamic programming is discussed in the next Section 3.4.

Higle (2005) has written an introductory article to stochastic programming. The article

describes different stochastic models as two-stage and multistage, and also proposes solu-

tion methods. Higle points out that solving multistage problems is complex, and suggests

using decomposition. Flatberg et al. (2007) show the importance of using dynamic and

stochastic models, as opposed to deterministic models. This article also describe dynamic

and stochastic VRPs. Pillac et al. (2013) classify routing problems from the perspective

of information quality and evolution and present a comprehensive review of applications

and solution methods for dynamic vehicle routing problems.

Berbeglia et al. (2010) survey dynamic pickup and delivery problems. The article includes

basic issues and how the problems can be solved. A pickup and delivery problem with

time windows is discussed by Mitrović-Minić (2004). They use a heuristic that considers

both the short-term and long-term horizon. Hvattum and Løkketangen (2007) describe a

branch-and-regret heuristic for solving stochastic VRPs. The method used in the paper

outperforms previous heuristics. Ichoua et al. (2006) introduce probabilistic knowledge

about future requests to solve a dynamical real-time vehicle routing and dispatching

problem. Savelsbergh and Sol (1998) present a planning model for vehicle routing. The

model uses a branch-and-price algorithm and a rolling horizon approach. The vehicle

routing problem with time windows is solved by using a multiple scenario approach in

Bent and Van Hentenryck (2004). The model includes known requests and a future

request based on a probability function.

Christiansen and Fagerholt (2002) solve a shipping problem deterministically. They make

results more robust by putting a penalty on solutions that are risky, and thereby han-

dling uncertainty. A risky solution would e.g. be when vessels arrive in ports close to

weekends, thus risking having to wait in port until the following Monday. McKinnon and

Yu (2011) describe a stochastic ship routing problem with uncertain demand. A branch-

and-price algorithm is used to solve the problem. Tirado et al. (2013) consider a dynamic

and stochastic maritime routing problem that arises in industrial shipping. Applying

customized versions of three well-known heuristics, they show that average yearly cost
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savings of 2.5% can be achieved by including stochastic information in the model. The

savings are found to be substantially larger for instances with partial loads rather than

full loads. Shao et al. (2012) present a novel forward dynamic programming method for

weather routing that seeks to minimize ship fuel consumption during a voyage.

Ang et al. (2009) use stochastic models when planning container mixes for ships. The aim

of the work is to maximize the total expected profits over uncertain scenarios. They use a

two-stage stochastic model and solve it with a heuristic algorithm. Shyshou et al. (2010)

present a simulation study for a fleet sizing problem, including uncertainty in weather

conditions and spot price rates. Alvarez et al. (2011) present an optimization model for

fleet sizing and deployment problem. This model is robust and deals with uncertainty in

future prices and demand. The model applies the robust optimization technique used by

Bertsimas and Sims (2003), which gives the decisions-makers an opportunity to choose

their level of risk tolerance.

3.4 Stochastic dynamic programming

In the following section we first present articles about routing and inventory management

that uses stochastic dynamic programming. Following this we describe papers solving

other problems by applying the same solution approach.

Desai and Lim (2013) use stochastic dynamic programming to determine optimal routing

policies in a stochastic dynamic network. They also propose three techniques for prun-

ing stochastic dynamic networks, effectively speeding up the process of attaining optimal

routing policies. The techniques includes use of static upper and lower bounds, prepro-

cessing of the network by considering start time and origin of the vehicle, and a mix

of the two. Novoa (2009) examines the use of approximate dynamic programming algo-

rithms for the single-vehicle routing problem with stochastic demands from a dynamic or

reoptimization perspective. The rollout algorithm is extended by implementing different

a priori solutions, look-ahead policies, and pruning schemes. In addition to the direct

approaches, Monte Carlo simulation is used.

Azaron and Kianfar (2003) use stochastic dynamic programming to find the dynamic

shortest path for source node to sink node in stochastic dynamic networks, where arc

lengths are independent random variables with exponential distributions. There is also a

environmental variable in each node. This node evolves in accordance with a continuous

Markov process and has an impact on the transition time on arcs exiting the node. At

each node a decision is made on moving towards the sink node on the best outgoing

arc or waiting. The problem is discussed for both full and limited information about
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environmental variables.

Berman et al. (2001) consider an inventory and routing problem where the amount of

product at each customer is a known random process. The objective is to dynamically

adjust the amount of product provided to each customer to minimize total expected costs.

Costs comprise earliness, lateness, product shortfall and returning non-empty to the

depot. The policy is determined by stochastic dynamic programming. Yang and Grothey

(2012) use approximate dynamic programming to solve the top-percentile traffic routing

problem faced by Internet Service Providers (ISPs). They describe a multistage stochastic

optimization problem, where the routing decisions must be made before knowing the

amount of traffic to be sent. The integer variables introduced by top-percentile pricing

makes it hard to solve exactly. Use of approximate dynamic programming exploits the

structure of the problem to construct continuous approximations of the value functions

in stochastic dynamic programming.

Boutelier et al. (2000) use dynamic Bayesian networks to represent stochastic actions

in Markov decision processes. Dynamic programming algorithms are developed that

directly manipulate decision-tree representations of policies and value functions. The

method shows significant savings for certain types of domains. Cristobal et al. (2009)

outline a stochastic dynamic programming approach where a scenario tree is used in a

back-to-front scheme. Multi-period stochastic problems are solved at each given stage of

the time horizon. Each subproblem considers the effect of stochasticity of the uncertain

parameters from the periods of the given stage, by estimating the expected future value

of the objective function. The scheme is applied to a production planning problem and

is found to work well for instances on a very large scale.

Kelman et al. (1990) develop a technique called sampling stochastic dynamic program-

ming (SSDP) for reservoir optimization. The technique captures complex structures

of the streamflow process by using a large number of sample streamflow sequences.

Shapiro (2011) discusses statistical properties and convergence of the SDDP method

applied to multistage linear stochastic programming problems. The framework discussed

involves generating a random sample from the original distribution and then applying

the SDDP algorithm to the constructed Sample Average Approximation problem.

3.5 Our work

We present two models for solving a vehicle routing problem under price uncertainty.

The objective is to maximize profit. Stochastic dynamic programming is used to find the

value of being in specific ports on given days. The models tries to find optimal movement
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and trade decisions based on these values. One of the models is based on a mixed integer

program and the other on a heuristic. A rolling horizon approach is applied, where new

information is revealed to the model as time progresses. The rolling horizon approach

has two benefits; it allows us to use updated price information every day, and it splits

our problem into smaller subproblems. Our models can be used for any kind of tonnage

with only minor adjustments. It is especially well suited for bulk shipping, as we assume

a given price per unit of shipped goods.

To our knowledge no previous research has been done on contracting of tonnage on a

speculative basis in the shipping industry. Our problem is similar to previous research

in the sense that it maximizes profits of a shipping problem under uncertainty. Rakke

et al. (2011) use rolling horizon to decrease complexity in a problem that is similar to

ours. The difference between our problem and many other models is that we are making

move decisions in every time period. This lets us have more flexible movements than

traditional routing problems, where movements are dictated by a start port and an end

port.
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Chapter 4

Problem Description

We look into speculative trading of LNG in the spot market, including the shipping of

LNG from loading (buy) ports to unloading (sell) ports. The shipping resembles tramp

shipping, where the schedule is dynamically determined by the opportunities that are

present in the market.

The problem is considered from the point of view of a ship owner operating a single LNG

vessel. The goal of the ship owner is to maximize profit over time by making optimal

decisions related to the positioning of the vessel and the timing of trade. This is done

by maximizing income from buying and selling, while minimizing the cost of travelling

between ports.

Each time period a decision has to be made on whether the vessel should move, and if so,

in which direction. When reaching a port, it must be decided if the vessel should trade

or wait until a later time period. Each new time period brings an update of prices and

a corresponding forecast of future prices. There is uncertainty in the forecasted prices.

The ship has to trade full shiploads, and needs to be in a port to make a trade. Using

options and futures is not possible.
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Chapter 5

Models

In this chapter we state our assumptions and present the models used to solve our prob-

lem. There are three main models. The first model described is a Dynamic Program

(DP), the second a Mixed Integer Program (MIP) and the third a heuristic. The DP is

used in combination with either the MIP or the heuristic when solving the full problem.

The role of the DP is to find the best route to travel from each port in the long-term

horizon, and assign values to the ports based on this route. The MIP and heuristic then

use this information to decide the vessel’s short-term actions. The interaction between

the models is discussed further in Chapter 6.

5.1 Assumptions and modelling choices

In this section we state our main assumptions and modelling choices. We first present

how we have chosen to model geography and time, before looking at specific assumptions

regarding ports, vessel and trade. The assumptions stated apply to all models.

5.1.1 Grid

A grid is used to structure the geographical aspect of the problem. An example of a grid

is shown in Figure 5.1. Each grid point is a position that can contain a port and/or a

vessel. The vessel is only allowed to travel between grid points. Grid points in brown

areas are on land and cannot be visited by the vessel.

Figure 5.2 shows how the vessel is allowed to move. It has four straight and four diagonal

options. In each time period the vessel can choose between staying put or travelling to

one of the neighboring grid points. Ideally the vessel should have the option to travel to
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Figure 5.1: Example grid with one vessel (V), one buy port (B) and one sell port (S)

any position within a given area, as marked by the green area in Figure 5.3. Only allowing

a limited number of moves is a simplification of the problem. It does however fit well

with receiving new prices at predefined time intervals. The run time is also significantly

reduced. In addition, the number of grid points can easily be increased or decreased,

which makes it easy to adjust the precision of the model.

Figure 5.2: Allowed moves in the grid Figure 5.3: Allowed moves in real world
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5.1.2 Time

A decision to move, trade or wait is made every time interval. In our test instances

one time interval equals one day. It takes one day to move from one grid point to a

neighbouring grid point and one day to complete a trade. A decision to wait also lasts

one day.

The time interval decides how often the vessel can make a new decision. As long as

new price information is not received, there is no need of change the sailing direction

of the vessel. Thus, the time interval should be decided based on how often new price

information is given. There is a trade-off between a short and a long time interval. Long

intervals does not capture all changes in the price. Short time interval would be beneficial

in a real-life situation, but it makes the test run times very high when solving for many

days. We believe that a time interval of one day both captures the changes in price, and

is long enough that the model can be run for a long trade horizon in reasonable time.

The choice of time interval is strongly connected to the choice of map. When setting the

time interval to one day, we also set the precision of the grid to be one day of travelling

between each grid point.

A decision made at time t affects the time interval t to t + 1. For example, if the vessel

decides to make a move at time t, it arrives at the destination at time t+ 1. If the vessel

chooses to buy at time t, it is full at t+ 1. Figure 5.4 shows this relationship.

Figure 5.4: The decision made at time t takes place between t and t+ 1.

5.1.3 Sailing cost

The cost of a diagonal move is
√

2 times the cost of a straight move. We have set the

cost
√

2 times longer since the distance of a diagonal move is
√

2 longer than a straight

move. This is a simplification, as the vessel has to sail faster when moving diagonal, and

sailing costs are a cubic function of speed (Norstad et al., 2011). In addition to the cost

of sailing, the vessel incurs a basis cost every day. The basis cost relates either to the

cost of hiring a vessel, or the alternative cost of owning one.
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5.1.4 Ports

The ports are assumed to have infinite supply and demand. This means that the vessel

can trade in any port at any time, and that prices in the ports are unaffected by trades

done by the vessel. We believe that this is a reasonable assumption, as a single vessel

is not likely to impact the market prices alone. An Ornstein-Uhlenbeck price process is

used to forecast the prices in the ports. This process is described more in detail in Section

8.2.

5.1.5 Trade

All trades are discounted with a factor of 1% per 30 days. This is because of the time

value of money.
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5.2 Dynamic programming to find port values

The dynamic programming is used to determine the potential future value of being in a

port on a given day. In order to find these values we evaluate potential trade sequences.

This is done by generating routes that contain combinations of port visits. Labels are

used to keep control of generated routes, and a domination function is applied to limit

the number of routes under consideration. In this section we describe the features of the

dynamic program.

5.2.1 General description

The dynamic program takes a specific start port, start day and port prices for the trade

horizon as input. The trade horizon represents the amount of time the vessel has to

complete its trades. Port prices beyond the current day are forecasts based on the method

described in Section 8.2. Based on this input, the DP finds the most profitable route from

the start ports.

The first thing the vessel has to do is make a trade in the start port. This can be done

in the start day, or on one of the subsequent days. All options up to a maximum number

of wait days are considered. After the initial trade is made, the vessel moves on to its

next trade. If the vessel is in a buy port, the next trade will be in a sell port, and vice

versa. Again, it can either move directly to a port and trade, or wait a number of days

before making the trade. The program evaluate the impact on future trades. To do

this it considers all possible future trade sequences from each of the ports, including all

combinations of waitdays. This leads to an enormous number of routes generated. To

reduce the number of routes a domination function is applied. It removes routes that

are inferior to an other existing route. This domination function is explained in Section

5.2.3.

After the DP has evaluated all potential routes it returns the best route and the value

(profit) of this route. This value corresponds to the potential profit that can be earned

by moving to the start port on the given start day.

5.2.2 Labels

Labels are used to keep control of routes generated. A label contains current information

about port, day, profit, and the route travelled that far. See Figure 5.5 for an illustration.

This label indicates that the vessel is in port 2 on day 44 with a profit of $240,932. It

started in port 1, and then traded in port 5, 2 and 6, before ending up in port 2.
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Figure 5.5: Example label from the DP

The first thing done by the DP is to generate labels for the start port. Labels are made

for trading straight away, as well as for trading on subsequent days. The initial value

of the day parameter corresponds to the number of days the vessel has to travel before

reaching the start port, plus the number of wait days before making the first trade. These

labels are then extended with all possible options for the next action, creating a new label

for each of those possible actions.

The extended labels have updated fields for profit, time spent and route travelled. The

change of profit from one label to another is the sum of traveling cost and trade value.

The value of the trade can be both negative (when buying) and positive (when selling).

Figure 5.6 shows an illustration of label expansion. The vessel has bought in port 2 on

day 44 and is considering its sell port alternatives for the next action. The figure only

shows three of the vessel’s options, namely selling in port 5 on either day 49, 50 or 51.

The vessel also has the option of trading in port 5 on a later day, or trading in another

port. We see from the figure that label 16 has lower value than label 15. This is because

the price in the port has decreased from day 49 to day 50. In label 17 we however see

that the profit is higher than in label 15. This indicates that prices have developed in

a beneficial way. It is however important to notice that further expansions of label 15

are likely to get higher values than the expansions of label 17, as it has two more days

left for trading. New labels keep on being extended until all labels generated exceed the

trade horizon or are dominated by some existing label.

5.2.3 Domination

The number of labels grows exponentially. This is a major issue for model run time. With

3 sell and 3 buy ports we have 3 trade options for each trade. In addition we have the

option of waiting up to a certain number of days before making any one of the trades. A

maximum of 7 waiting days gives a total of 8 options per port (trading anywhere between

day 0 and 8), and a total of 24 options per trade (trading in any of the 3 ports). As each

of these options needs to be fully checked, 24x labels are generated, where x is the number
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Figure 5.6: Example of label extension in the DP

of trades in the trade horizon. The actual number of trades depends on the length of

the trade horizon, how many waiting days are used and the time spent travelling. The

number of labels grows rapidly, as shown in Table 5.1.

Table 5.1: Number of labels generated as a function of the number of trades

Number of trades 1 2 3 4 5 6 7

Labels generated 24 576 13,824 331,776 7,962,624 191,102,976 4,686,471,424

A domination function is used to deal with this problem. The domination function

effectively removes all labels that are guaranteed to end up with a lower profit than

some other existing label. Every new label is compared to all existing labels to see if it

is dominated by any of them, or if the new label dominates any of the existing labels.

Dominated labels are removed from the list of labels, and are thus not extended further.

Two labels can only dominate each other if they have the same start port and are currently

located in the same port. A label is dominated by another label if it has used more or an

equal number of days and has a lower or equal profit. This is because it is impossible for

the dominated label to make higher profits than the dominating one. The dominating

label has the same starting point for future trade as the dominated one, but more time

left and a higher profit to start off with.

Figure 5.7 shows an example of domination. The two labels are comparable because both

started in port 1 and are currently located in port 5. Label 15 dominates label 26 because

it has spent fewer days and has a higher profit. Note that the route sailed up to the last

port does not matter. For the label expansion shown in Figure 5.6 we have that label 15
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dominates label 16. Label 17 does not dominate label 15, as it has spent more days.

Basis cost are not added to the profit until all labels has been expanded. This prevents

labels for a later day to be dominated by an earlier label because of basis cost. In Figure

5.6 this could have happened with label 15 and 16. If basis cost of $100,000 pr day was

included for all labels, the real profit of label 15 would be less than the profit of label 16.

It would still be dominated by our algorithm.

Figure 5.7: Example of domination of labels in the DP

5.2.4 Length of trade horizon

The length of the trade horizon dictates how many days the vessel has at its disposal.

Each day can either be used for moving towards a trade port, awaiting better prices in a

port or as flexible days at the end of the trade horizon. We define flexible days as days

remaining in the end of the trade horizon after finishing the trades early. This is valuable

because it gives the vessel a better starting point for trades taking place after the end

of the trade horizon. These trades are not considered by the dynamic program, but are

relevant when solving a problem in combination with either the MIP or heuristic. In this

situation the DP only solves a limited part of the total problem period.

The benefit of finishing trades early is not automatically considered by the DP, as it does

not increase the profits generated in the current trade horizon. End-of-horizon values are

added to make up for this. They are discussed in Section 5.2.5.

There is a trade-off between making another trade, awaiting better prices and finishing

early. The value of making another trade is apparent. It gives profit based on the

difference between forecasted buy and sell price. The benefit of waiting in between trades

is that it is possible to get better prices in the ports. The estimated value of waiting is

decided by the variations in the price forecasts. The value of finishing early is based on an

estimated value of future trade, as given by the EOH-values. The model makes a trade-off

between the three alternatives based on these value estimations. Normally it performs
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the maximum number of trades, and then use the remaining days for a combination of

awaiting good prices and finishing early.

5.2.5 End-of-horizon values

When run in combination with the MIP or heuristic, the DP only considers a limited

part of the total problem period. Trades taking place after the end of this period are

not included in the DP. The vessel should still be compensated for finishing its last trade

early, as it enables the vessel to start off earlier on a trade taking place after the current

trade horizon. This is valid until we approach the end of the total problem period, after

which no more trades are made.

Finishing the last trade early does not give direct value in the DP, as it does not increase

the profits of the trades made. End-of-horizon values (EOH-values) are added to make

up for this, assigning a value to spare days at the end of the trade horizon. The value is

only given for unused days in the last 10 days of the trade horizon. This is to prevent

the vessel from not making actual trades because of the EOH-values.

Figure 5.8 shows value for a port as a function of remaining days in the trade horizon.

Please note that this graph is only meant as an illustration, and does not represent actual

numbers. Only the last segment of the trade horizon length is shown. The jump in Figure

5.8(a) is a sale being made. The reason for increases in the graph apart from the trade is

the flexible days. They are used to get better prices in the trades prior to the one shown.

The graph does not increase steadily. This is because extra days does not necessarily give

better prices in the ports. Price development can also be negative, but then the DP will

keep the original trade day. That is why the value never decreases.

From 5.8(b) we see that EOH-values reduces the effect of the sale on port value. This is

positive, as it reduces the effect of specific trade horizon length on port values. We would

like the vessel to travel a route that includes this port, even though it does not have time

to make the trade within the current trade horizon. It is important to remember that

the trade horizon only considers a limited part of the full problem period. Results from

tests with and without EOH-values are presented in Chapter 9.

The vessel is also compensated for buying at the end of the trade horizon. This is done

to make buying a valid last action. If no compensation was given for buying a load in the

end of the trade horizon, all trade horizons would end with a sale. This is because buying

has negative value and decreases the profit. A route ending with a buy would thus never

be considered the best route. The buy compensation is also only valid until we approach

the end of the total time period, as the vessel should sell in its final trade. The value is
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(a) Value graph without EOH-values (b) Value graph with EOH-values

Figure 5.8: Values in a port as a function of remaining days in the trade horizon

given as a multiple of the buy price. The multiple reflects the expected future payback

of selling the load that was bought.
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5.3 Mixed Integer Program (MIP)

In this section we present a Mixed Integer Program (MIP) used to decide daily vessel

actions. It is used in combination with the DP when solving the full problem. The MIP

takes port values from the DP as input, and decides which moves to make in the short-

term horizon. The interaction between the MIP and DP is described further in Section

6.2. The MIP uses all assumptions stated in Section 5.1.

5.3.1 General description

The MIP is used to decide optimal actions for the vessel. The decision is based on the

position and status (empty or full) of the vessel, and port values provided by the DP.

Actions considered by the MIP are moving, waiting or trading. A multi-day version of

the MIP that can solve the problem without using the DP is shown in Appendix C. The

stand-alone model has not been used in testing due to high run time.

5.3.2 Mathematical model

A stochastic model is presented. We start by introducing sets and indices, before looking

at parameters and constraints. Finally we present the objective function and constraints.

Sets and indices

G - Grid points, g

GN (g) - Neighboring grid points of g, g̃

GS(g) - Straight neighboring grid points of g, g̃

GD(g) - Diagonal neighboring grid points of g, g̃

GP - Ports, g

T - Time interval, t

S - Scenarios, s

Kt - Index set of scenario subsets at time t, k

Ωkt - Subset of scenarios at time t, ω

The sets of grid points are divided into multiple subsets. Neighboring grid points of g are

the points that can be reached in one time period of traveling. We distinguish between

straight neighbors of grid point g, and diagonal neighbors of grid point g. Figure 5.9

shows the placement of straight and diagonal neighbors, relative to the vessel. Straight

neighbors are given as GS(g), while diagonal neighbors are given as GD(g). All neighbors
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of grid point g are given as the set GN (g). GP are grid points with ports. Decisions

made at time t depict what is done in the time interval t to t + 1 (as seen in Figure

5.4). s indicates which scenario a variable belongs to. Ωkt are subsets of scenarios. ω is

a variable combining time and scenario. ω points to a subset of scenarios at a time t. Kt
is the index set of the scenario subsets at time t. The index sets show which scenarios

that belong to each time set in each time interval.

(a) Straight neighbors (b) Diagonal neighbors

Figure 5.9: Straight and diagonal neighbors (green) relative to the vessel (orange)

Parameters

Q - Capacity of the vessel

CB - Basis cost for the vessel (regardless of moving or not)

CMS - Extra cost for the vessel if it is moving straight

CMD - Extra cost for the vessel if it is moving diagonal

Vgts - Value of port g at time t in scenario s

Q is the capacity of the vessel. CB is the basis cost of the vessel. This is the cost of

operating the vessel one day regardless of the vessel action. CMS and CMD are extra

costs for the vessel if moving straight or diagonal, respectively. V are port values. The

port value is the value the vessel receives when conducting a trade in a port. These value

indicate how much the vessel can earn in the future by conducting the first trade in a

port at the given time.
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Variables

xgts - 1 if vessel is at grid point g at time t in scenario s, 0 otherwise

mS
ts - 1 if vessel moves straight from time t to time t+ 1 in scenario s, 0 otherwise

mD
ts - 1 if vessel moves diagonally from time t to time t+ 1 in scenario s, 0 otherwise

rgts - 1 if vessel trades in grid point g from time t to time t+ 1 in scenario s, 0 otherwise

xgω - Variables used as nonanticipativity constraints for position

rgω - Variables used as nonanticipativity constraints for trade

Objective function

maximize
∑
g∈GP

∑
t∈T

∑
s∈S

Vgts · rgts ·Q−
∑
t∈T

∑
s∈S

(CB + CMS ·mS
ts + CMD ·mD

ts)

The objective function maximizes profit. The first part of the objective function sums

the values from the trades. The second part of the objective function subtracts the basis

cost and the costs of the travelling between the ports.

Constraints

∑
g∈G

xgts = 1, t ∈ T , s ∈ S (5.1)

Constraints (5.1) prevent the vessel from being in more than one grid point at a time.

Since the position variables (xgts) are binary, only one of them can take the value 1 each

time period.

xg(t+1)s −
∑

g̃∈GN (g)

xg̃ts ≤ 0, g ∈ G, t ∈ 1 . . . T − 1, s ∈ S (5.2)

Constraints (5.2) ensure that the vessel is only allowed to move to grid points in its

neighborhood in the time interval t to t + 1. In order for the vessel to be in g at time

t+ 1, it needs to have been in the neighborhood of g in time t.

mD
ts − xg(t+1)s −

∑
g̃∈GD(g)

xg̃ts ≥ −1, t ∈ 1 . . . T − 1, s ∈ S (5.3)

mS
ts − xg(t+1)s −

∑
g̃∈GS(g)

xg̃ts ≥ −1, t ∈ 1 . . . T − 1, s ∈ S (5.4)
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Constraints (5.3) and (5.4) ensure that the move straight or move diagonal variable is set

to 1 when the vessel has moved straight or diagonal, respectively, in the time interval t to

t+ 1. If the vessel is in grid point g in time t+ 1, and was in the diagonal neighborhood

of g in time t, mD
ts is set to 1. The same principle applies for the straight neighborhood

and mS
ts.

∑
g∈GP

∑
t∈T

rgts ≤ 1, s ∈ S (5.5)

Constraints (5.5) ensure that the vessel is only allowed to trade once during the time

horizon. For each scenario, the total sum of all trades is less or equal to 1.

rgts − xgts ≤ 0, g ∈ GP , t ∈ T , s ∈ S (5.6)

Constraints (5.6) prevent the vessel from trading when it is not present in a port. The

trade variable (rgts) of a port has to be lower than the position variable of the same port.

mD
ts +mS

ts +
∑
g∈GP

rgts ≤ 1, t ∈ T , s ∈ S (5.7)

Constraints 5.7 ensure that the vessel has to spend one day in a port while trading. If

the vessel trades, it can neither move straight nor diagonal.

xgts − xgω = 0, t ∈ T , k = 1 . . .Kt, ω ∈ Ωk(t+1), (5.8)

rgts − rgω = 0, t ∈ T , k = 1 . . .Kt, ω ∈ Ωkt, (5.9)

Constraints (5.8)-(5.9) are nonanticipativity constraints (NACs). ω include both scenario

and time, and is therefore sufficient for describing which variables should be equal. It is

important to notice that the NACs in time t should force the position variable to be the

same in time t+ 1 for all scenarios in the same subset. In order for a move in time period

t to t + 1 to be equal between two scenarios, the position of the vessel in the scenarios

has to be equal at time t+ 1.

For the trade variables, the NACs are constraining in the same time period as the trade

happens. If a trade happens at time t in one of the scenario in the subset, the NACs

ensure that the trade happen at time t in the other scenarios in the same subset. The

difference in timing of the NACs is shown in Figure 5.10. The times where the NACs are

constraining are shown with red circles.
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rgts ∈ {0, 1} , g ∈ GP , t ∈ T , s ∈ S (5.10)

xgts ∈ {0, 1} , g ∈ G, t ∈ T , s ∈ S (5.11)

mS
ts,m

D
ts ∈ {0, 1} , t ∈ T , s ∈ S (5.12)

Constraints (5.10)-(5.12) are binary constraints on the variables.

(a) Position variables (b) Trade variables

Figure 5.10: Timing of nonanticipativity constraints for position and trade variables

Removal of redundant binary constraints

The x-variables that are out of reach for the vessel have their binary constraint removed.

By using this approach, the position variables become binary when they need to be binary.

This principle is shown in Figure 5.11. The grid points one day away from the vessel are

not binary until day two, while the grid points one step further out is not binary until

day three, and so on.

Figure 5.11: Overview of which day the position variables close to the vessel (orange)

become binary
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5.4 Heuristic

The heuristic presented in this section is an alternative to the MIP for selecting daily

vessel actions. It is used in combination with the DP when solving the full problem. The

heuristic take port values from the DP as input, and returns a move for the next day.

This interaction is described further in Section 6.3. The heuristic uses all assumptions

stated in Section 5.1. Both a deterministic and a stochastic version is presented.

5.4.1 General description

In the same way as the MIP, the heuristic makes decisions on whether the vessel should

trade, move or stay put. When in a trade port, the vessel has to choose between trading

right away or waiting for the next day. When at sea, the vessel has to choose between

staying in the same position or moving in one of eight possible directions. It makes the

move decision based on the estimated values of travelling to trade ports, as given by the

DP. A specific move is more likely if multiple ports with good values are located in that

direction.

We first take a look at the movement decisions made, before shortly considering the

timing of trade-decision. Examples are included to demonstrate how the heuristic works.

5.4.2 Calculating the value of possible moves

The movement decision made by the vessel reflects where the profit potential is predicted

to be highest. This is based on the estimated value of trade ports located in the direction

of travel. When choosing its next action, the heuristic calculates values for all eight

neighbouring grid points, and the value of staying put. These are the only nine options

the vessel has. The points are shown as triangles in Figure 5.12. For each point there are

different ports included in the value calculation. This is described in the next paragraphs.

Ports included in value calculation

Value is provided by trading in a port. The benefit of moving in a direction is that it

brings you closer to one or more ports. Each of these ports has the potential to be the

first trade port in a sequence of trades.

Two alternatives are used when selecting which ports to include in the value calculation

of a move. The first alternative is to only include ports that are closer (in travel days)
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Figure 5.12: Possible options (triangles) for the vessel (orange square)

to the vessel after the move. Figure 5.13 shows the areas included for this alternative.

The move considered is marked by a red cross. All ports that are located inside a green

field are included in the value calculation. Only a limited grid size is shown, but the area

would expand in the same manner for larger grids.

The second alternative is to also include ports that are the same number of days from the

vessel after the move. Figure 5.14 shows which grid points are included in this calculation.

Ports that you move away from are never included in the value calculation of a move.

The values of all ports are included for the option of staying put. Both alternatives are

tested for performance in Chapter 9.

Figure 5.15 shows an example of a map with a possible move marked by a red cross. Here

the second alternative is used, including all ports that we are not moving away from. The

considered ports are marked in blue, while the rest of the ports are marked in yellow.

(a) Lower (b) Right (c) Upper right

Figure 5.13: Area where ports are considered when including ports with fewer travel days
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(a) Lower (b) Right (c) Upper right

Figure 5.14: Area where ports are considered when including ports with the same or

fewer travel days

Figure 5.15: Example of ports considered for a northeast move in Atlantic Basin-map.

Potential ports are dark blue. Non-potential ports are light blue.

5.4.3 Stochastic vs deterministic

In this section we present two examples that show the difference between the stochastic

and deterministic heuristic.

Deterministic heuristic example

In the following example we use the map shown in Figure 5.16. The current position

of the vessel is marked by an orange square. The blue squares represent ports. Three

potential new positions are shown as green triangles. We assume that the vessel is in the

current position on day 1. It can thus be in any of the three new positions on day 2.

Table 5.2 shows the ports that are included when calculating the value of each potential

move. It also lists the first day a trade can be made in each of the ports. The second

alternative for port inclusion is used, including all ports that the vessel is not moving

away from. Port 2 is not included in the value calculation of position 1, as moving there

brings the vessel one day further away from this port.
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Figure 5.16: Example with two ports and three possible move options

Table 5.2: Ports considered for each possible new position

Position Ports considered Earliest trade day port 1 Earliest trade day port 2

1 1 4 6

2 1,2 4 5

3 1,2 4 4

Stay put 1,2 5 5

The values of the ports represent the future value of starting trade in the given port on

the given day. Table 5.3 shows the estimated value of starting trade in port 1 and 2 on

day 4 and 5.

Table 5.3: Forecasted port values in thousand $ for port 1 and port 2 in day 4 and 5

Port Day 4 Day 5

1 $10,300’ $10,250’

2 $10,500’ $10,480’

The potential profit of being in a position is decided by the port values, as well as the

travel time and the travel cost of moving to the ports. The travel time dictates which of

the port values in Table 5.3 can be used, while the travel cost have to be subtracted to

find the actual potential profit. Table 5.4 shows the value contribution from port 1 for

each of the potential positions. Note that the stay put option is using the port value for

day 5. This is because the earliest day the vessel can reach port 1 after a waiting is day

5. Table 5.5 shows the same information for port 2. Position 1 does not have a value for

port 2, as moving to position 1 brings the vessel away from port 2. The value given to a

position in the deterministic heuristic equals the highest of these port contributions. The
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final position values are listed in Table 5.6.

Table 5.4: Potential value contribution in thousand $ from port 1 for the different posi-

tions

Position Port value Travel cost Position value

1 $10,300’ $200’ $10,100’

2 $10,300’ $240’ $10,060’

3 $10,300’ $280’ $10,020’

Stay put $10,250’ $340’ $9,910’

Table 5.5: Potential value contribution in thousand $ from port 2 for the different posi-

tions

Position Port value Travel cost Position value

1 - - -

2 $10,480’ $340’ $10,140’

3 $10,500’ $280’ $10,220’

Stay put $10,480’ $380’ $10,100’

Table 5.6: Position values in thousand $

Position Port 1 value Port 2 value Position value

1 $10,100’ - $10,100’

2 $10,060’ $10,220’ $10,220’

3 $10,020’ $10,100’ $10,100’

Stay put $9,910’ $10,100’ $10,100’

We now have the value of being in each of the potential new positions. What we actually

need is however the value of each potential move. This is equal to the position value,

less the cost of moving there. The final move values are listed in Table 5.7. We see that

moving to position 2 gives the highest value, and is therefore chosen in this example.

Table 5.7: Move valuesin thousand $

Move to position Position value Travel cost Move value

1 $10,100’ $140’ $960’

2 $10,220’ $100’ $10,120’

3 $10,100’ $140’ $9,960’

Stay put $10,100’ $0 $10,100’
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Running the deterministic model with multiple price scenarios is done by using the ex-

pected value of all price scenarios. The stochastic model handles multiple price scenarios

in a different way. This is discussed in the next paragraphs.

Stochastic heuristic example

This section describes how the stochastic version of the heuristic works. An example is

used to describe the approach. The example grid used is shown in Figure 5.17. The

stochastic example has 21 scenarios. We only consider moving west to position 1 and

moving east to position 2. For these two moves it does not matter which alternative for

port inclusion is used, as all ports either get closer or further away. Port 1 is included

when calculating the value of moving to position 1, while ports 2 and 3 are included when

calculating the value of moving to position 2.

Figure 5.17: Example with three ports and two possible options of moving

Figure 5.18 shows the estimated value of going to the different ports for various scenarios.

The values for each port in each scenario are calculated the same way as the grid point

values in the previous example. The port values for port 1 and 3 are from day 5 and the

port values for port 2 are from day 7. The dotted line shows the expected value of all

scenarios. We see that port 1 has the highest expected value.

The stochastic heuristic does not use the expected value, but rather tries to incorporate

all available information. This is done by using the best value among the considered ports

for each scenario. By doing so we are able to incorporate the positive effect of having

multiple ports located in the same direction. Figure 5.19 shows how the graphs of the

two ports to the east are combined to evaluate the value of moving east. The combined

expected value is higher than for any of the two ports alone. If there are more than two

ports pulling in the same direction, the maximum of all these ports are calculated.
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(a) Port 1’s attraction of going west (b) Port 2’s attraction of going east

(c) Port 3’s attraction of going east

Figure 5.18: Values of going west or east in different scenarios

Table 5.8 shows the value of moving west and moving east. We see that the vessel will

travel east in the stochastic version. This is opposite of the deterministic model, which

would choose to travel west since port 1 has the highest expected value.

Table 5.8: Action values in thousand $ for each of the potential moves for stochastic

version

Move to position Position value Travel cost Action value

West $2,100’ $100’ $2,000’

East $2,130’ $100’ $2,030’
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(a) Port 2’s attraction of going east (b) Port 3’s attraction of going east

(c) Combined attraction of going east

Figure 5.19: Value of going east in stochastic problem
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Chapter 6

Solution Approaches

In this chapter we present two complete solution approaches. Both approaches are based

on the models explained in the previous chapter. One combines the DP with the MIP,

while the second combines the DP with the heuristic. We first make some general remarks

about the interaction between the DP and the two other models. Following this we

take a closer look at the combination of the DP and MIP model, before considering the

combination of the DP and heuristic. An alternative model which solves the multistage

problem using only the MIP is presented in Appendix C.

6.1 Interaction between the models

Using the DP in combination with either the MIP or heuristic model allows us to combine

short-term and long-term considerations in an efficient way. The DP is responsible for the

long-term aspect. It does not consider the total problem period, but rather finds optimal

routes for a limited trade horizon. The period that is considered shifts forward as the

problem progresses. We have defined this as a rolling horizon approach. It effectively

reduces the complexity of the problem and enables us to solve it faster. We only consider

trades d days ahead, even though the problem we are solving is over D days. The principle

is shown in Figure 6.1. Each day we move the rolling horizon frame one day ahead. If we

are e.g. in day 35 with a rolling horizon length of 60 days, we consider trades from day

35 to 95.

Given a start port and the travel time, the DP finds an optimal route and corresponding

profit for the rest of the trade horizon. This is done efficiently by assuming that the

vessel moves directly between the ports that look most profitable, given the current price

forecast.
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Figure 6.1: Graphical overview over the rolling horizon method

An example of a route calculated by the DP is shown in Figure 6.2. Buy ports are red

and sell ports are blue. The vessel is marked by an orange circle. We assume that the

vessel is in the current position on day 1. The first trade is made in port 1 on day 4.

The dynamic program finds the optimal route to travel after this first trade. The arrows

indicate the route of the vessel (1 - 5 - 2 - 6 - 3). The profit of this route corresponds to

the value of being in port 1 on day 4.

In a full model run we find optimal routes for initiating trade on subsequent days as well.

These routes can potentially have higher profits than for trading straight away, given

that prices in the start port develop in a beneficial way. Making the first trade on a later

day does however leave fewer days for trading in the rest of the trade horizon, which

often leads to lower port values. The DP is run for each potential trade port, calculating

routes and corresponding profits for different start days, up to a maximum number of

waitdays. A value is assigned to a port for each of these days. This value represents what

the long-term profit is expected to be if the vessel conducts the first trade in the port the

given day.

The MIP and heuristic make the short-term movement decisions. Based on the port

values from the DP, they calculate the best vessel action for the current day. If in a port,

it is a trade decision. If at sea, it is a movement decision. The vessel action chosen is

returned to the DP, which uses the updated information to calculate new port values for

the next day.
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Figure 6.2: Example of optimal route for starting trade in port 1 on day 4, found by the

DP

Decisions made the last days of the total problem period

The rolling horizon is made shorter towards the end of the problem period. No trades

beyond the problem period are considered. The end of horizon-values are also removed

towards the end. This ensures that the vessel sells as its last action.

6.2 Dynamic Program and Mixed Integer Program

The DP takes the position, the state of the vessel (empty or full) as input, and returns

values for each potential trade port. If the vessel is full it only returns value for the sell

ports. If the vessel is empty, it returns values for the buy ports. Ports with value are

called potential ports in the following discussion. Since the dynamic program tells us the

value of all future trades after arriving in a port, the MIP only has to consider which

port to sail to first. In other words, the DP has simplified the problem from optimizing

multiple trades to only optimize the first trade. Based on the values from the DP, the

MIP chooses an action for the vessel and sends an updated vessel position and status to

the DP, which again updates values for the ports.

There might be situations were the vessel chooses to leave a port before trading in it.

This is irrational, but can be explained by how he DP works. In a finite number of days it
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is only possible to complete a finite number of trades. This is likely to leave some flexible

days, as the vessel probably does not need every day in the trade horizon to complete

these trades. Sometimes it will be beneficial to spend these flexible days to visit a new

port, trade there instead, and still reach the same number of trades as if starting trade

in the original port. This leads to the DP returning high values for the other port. The

MIP will thus move the vessel towards the other port rather than trading in the port it

is currently in. Because of the large capacity of the vessel, small changes in price can

tempt the vessel to do this. Inside the rolling horizon it is the correct move to do, but

over the total problem period it is almost certain to give a bad result. The problem is

partly handled by the EOH-values, which gives the vessel an incentive to finish its trades

early. In addition we have added an extra constraint for the vessel. Once in a port, it is

not allowed to leave without making a trade. The vessel can stay as many days in a port

as it wants, but it has to trade before leaving. This is ensured by giving all other ports a

value of 0 until a trade is completed. Including this constraint reduces the complexity of

the problem when the vessel is in a port, as it now only has to decide the timing of the

trade.

An example of interaction between the MIP and DP is shown in Figure 6.4. The orange

square represents the vessel. The dark blue squares represent potential trade ports, while

the light blue squares represent ports that are currently not potential trade ports. In

day 1 we see that port 3 is the only potential trade port. The DP thus calculates values

for this port and sends it to the MIP. The MIP then calculates a new position for the

vessel based on this port value and returns the new position to the DP. After making the

move the vessel is in day 2 and currently located in a potential trade port. The DP then

calculates the value of trading the same day and the value of trading subsequent days,

and returns these values to the MIP. If the value is highest for trading straight away, the

MIP will choose to do so. If not, it will wait until the next day. The next day brings new

prices, and the calculation will be made again. In our case the highest value is for trading

straight away, and the vessel status is changed. We get new potential trade ports. The

DP calculates values for the new potential ports and returns the values to the MIP. The

MIP now has to make a new movement decision based on these values. It continues in

this matter until the end of the total problem period.

6.3 Dynamic Program and heuristic

A flow diagram for the heuristic is shown in Figure 6.4. The flow diagram is explained

in the paragraph below.
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Figure 6.3: Interaction between MIP and DP. The vessel is orange, potential ports are

dark blue and non-potential ports are light blue.

The heuristic takes a vessel position and status(full or empty) as input. It then checks

whether the vessel is located in a potential trade port, meaning a sell port if it is full and

a buy port if it is empty. If the vessel is in a potential trade port, it calculates whether a

trade should be made straight away. This calculation is done using the dynamic program.

The DP gives the future value of trading in the port on the current day, and the value of

trading on subsequent days. This information is returned to the heuristic. If the value of

trading on the current day is the highest, the trade will be made. If the maximum profit

comes from one the later days, it will wait until the next day and get new price forecasts.

The dynamic program then repeats the calculations based on the new price forecasts.

As for the MIP, a vessel is not allowed to leave a potential trade port without making a

trade. The reason is the same as for the MIP, and is explained in the previous section. If

the vessel is not currently in a potential trade port, the heuristic will find a new position

for the vessel. This decision is based on port values calculated by the dynamic program,

as described in Section 5.4.2. After each decision we move on to the next day. With

every new day we get an update of current prices and corresponding price forecasts for

each port.
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Figure 6.4: Flow diagram for heuristic approach
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Chapter 7

Implementation

In this chapter we present a brief outline of the code used to solve our problem. We

start with the implementation of models from Chapter 5, before presenting the solution

approaches described in Chapter 6.

7.1 Models

In this section we present the implementation of the Dynamic Program, the Mixed Integer

Program and the heuristic from Chapter 5.

7.1.1 Dynamic Program

The Dynamic Program (DP) for finding port values is implemented in Java. It takes

length of trade horizon, current port prices, price forecasts, start port for trade and

travel time to the start port as input. The length of the trade horizon dictates how many

days of trade the DP considers. The price forecasts are for all ports for the extent of the

time horizon. The start port is the first port where a trade is made.

The output of the dynamic program is the profit of the most profitable trade sequence

that initiates trade in the given start port, for each choice of wait days in port. These

values represent the potential value of starting trade in the given start port on each of

the days.

An overview of the code is shown in Algorithm 1. The code is run for every potential

start port of the vessel. Sell ports are potential start ports if the vessel is full, while buy

ports are potential start ports if the vessel is empty. A description of how the model
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works is presented in Section 5.2, while the full code is found on the attached CD. The

waiting days dictate how many days the vessel waits before trading, after arriving in a

port. Labels contain information about the current state of the vessel. The fields of a

label are day, profit and route. nrDays is the number of days in the trade horizon.

Input: Trade horizon, current prices, price forecasts, start port and travel time to

port, b

for all waiting days, w = 0..n do // Waiting days before trading

create label for start port with day set to b+w; // b is travel time to port

add label to list of labels;

end

while new labels in list do

for each new label do

for all potential trading ports do

for all waiting days, 0 .. n do

create new label with updated fields; // Day, profit, route

add label to list;

if label is dominated OR labelday > nrDays then

remove label from list;

end

else if label dominates otherLabel then

remove otherLabel from list;

end

end

end

end

end

Output: Profit of best route for each wait day option in start port

Algorithm 1: Dynamic program

7.1.2 Mixed Integer Program

Xpress-Mosel is used to implement the Mixed Integer Program (MIP). The MIP takes

port values from the DP as input. Based on this it finds the most profitable route for

the vessel. The output is the first day action of this route. This is a move decision if

the vessel is currently at sea, or a decision to trade or not if the vessel is currently in a

port. No pseduo-code is presented for the MIP, but the mathematical model is found in

Section 5.3, and the full code on the attached CD.
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7.1.3 Heuristic

The heuristic is implemented in Java. It takes port values from the DP and current

vessel status (empty or full) and position as input and gives an updated vessel status and

position as output. If the vessel is in a port to trade, the returned position will be the

same as the current position. A short stepwise description is given Algorithm 2. A full

description of the model is presented in Section 5.4, and the full code is found on the

attached CD. waitToTrade is a boolean variable that says whether it is most profitable

to make the trade straight away or to wait for better prices.

Input: Port values, vessel status, position

if In potential trade port then

calculate waitToTrade;

if waitToTrade == true then

break;

end

else if waitToTrade == false then

make trade;

update vessel status; // Empty or full

end

end

else

calculate grid point values based on port values;

choose new position based on grid point values;

end

Output: New vessel position and status

Algorithm 2: Heuristic

7.2 Solution approaches

7.2.1 Dynamic Program and Mixed Integer Program

The DP and MIP are combined through a BASH server script. This is done because we

need to run Java and Xpress interchangeably. An outline of the server script is shown in

Algorithm 3. A description of the solution approach is found in Section 6.2. The full code

can be found on the attached CD. Price data contains the current prices and a forecast

of future prices for all ports and scenarios. The output of the program is the route driven
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by the port and the corresponding profit, as found in movement.txt. totalProblemPeriod

decides how many days the problem is solved for. This is not the same as the trade

horizon in the DP. The trade horizon in the DP dictates how many days ahead the DP

considers when calculating port values. This period is shorter than the total problem

period.

Input: Initial status of vessel stored in MIP.txt

currentDay = 1;

while currentDay < totalProblemPeriod do

import price data for current day;

run DP (Java) using price data and vessel status from MIP.txt. Store port values

in verdiData.txt;

run MIP (Xpress) with port values from verdiData.txt and store updated vessel

status in MIP.txt;

update movement.txt with vessel position and profit;

currentDay + +;

end

Output: Route and profit in movement.txt

Algorithm 3: DP and MIP

7.2.2 Dynamic Program and heuristic

The DP and heuristic code are both written in Java and can be run as a combined

program. The work flow of the code is described in Algorithm 4. A description of the

approach is found in Section 6.3. The code is found on the attached CD. Price data and

totalProblemPeriod in the algorithm are the same as for the pseudo code with the DP

and MIP.
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Input: Price data

currentDay = 1;

while currentDay < totalProblemPeriod do

if in potential trade port then

run DP to get port values;

calculate waitToTrade based on port values;

while waitToTrade == true do

currentDay + +;

run DP to get port values;

calculate waitToTrade based on port values;

end

make trade and update profit;

end

else

run DP to get port values;

run heuristic to update position based on port values;

currentDay + +;

end

end

Output: Route and profit

Algorithm 4: DP and heuristic
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Chapter 8

Test Instances

In this chapter we describe the test instances used to examine the performance of our

models. We start by presenting the map used, including the locations of buy and sell

ports. Following this we take a look at the price forecasting method applied. We then

discuss the parameters used for testing our models. The parameters are split into two

groups; the ones that remain fixed throughout all tests, and those that are changed.

Stability tests used are then discussed, before concluding the chapter by presenting the

parameter values used in the base case test instance. Results from the tests are presented

in Chapter 9.

8.1 Map

We use the Atlantic Basin in our tests. The Atlantic Basin has the highest degree of

spot trade, as discussed in Section 2.5.2, and is the market for which we have the most

extensive historical price information.

A total of three buy ports and four sell ports are included. The main criteria for selecting

ports has been to generate interesting options for the vessel. This is achieved by including

ports from all corners of the Atlantic Basin. The ports are shown in Figure 8.1. Figure

8.2 shows the same map fitted to the grid used.

The ports we use in our test instances are Point Fortin (Trinidad and Tobago), Bonny

(Nigeria), Hammerfest (Norway), Lake Charles (US), St Johns (Canada), Marmara (Turkey)

and Milford Haven (UK). Travelling time between the ports are shown in Table 8.1. Ham-

merfest and Milford Haven are the two ports that are closest to each other, with a travel

time of 5 days. Lake Charles and Marmara are furthest away from each other, with 17

days of travel time.
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Figure 8.1: Ports used in test instance. Buy ports are red and sell ports are blue.

(outline-world map.com)

Figure 8.2: Map fitted to grid. Buy ports are red and sell ports are blue.

Table 8.2 shows the travel costs between the ports. Two trips are significantly cheaper

than the rest. The trip between Point Fortin and St Johns (cost of M$0.78), and the trip

from Hammerfest to Milford Haven (cost of M$0.66). It is important to note that there

is not a linear relationship between travel time and travel cost. The reason for this is the

diagonal moves in the grid. The diagonal moves use the same amount of time as straight

moves, but has a higher cost.
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Table 8.1: Travel time between ports (in days)

St Johns Marmara Milford Haven

(Canada) (Turkey) (UK)

Point Fortin (Trinidad and Tobago) 7 13 8

Bonny (Nigeria) 9 12 10

Hammerfest (Norway) 10 12 5

Lake Charles (US) 9 17 12

Table 8.2: Cost of travelling between ports (in million $)

St Johns Marmara Milford Haven

(Canada) (Turkey) (UK)

Point Fortin (Trinidad and Tobago) $0.78” $1.50” $1.12”

Bonny (Nigeria) $1.18” $1.40” $1.20”

Hammerfest (Norway) $1.16” $1.40” $0.66”

Lake Charles (USA) $1.06” $1.90” $1.52”

8.2 Ornstein-Uhlenbeck price process

An Ornstein-Uhlenbeck price process is used to forecast future prices in the ports. The

process was originally presented by Leonard Ornstein and George Eugene Uhlenbeck (1930).

We have made some modifications to the original process in order to make it fit our prob-

lem. These are correlation between ports port prices and lower price bounds. We have

added correlation between ports because we assume that the price processes are not inde-

pendent for each port. Due to the correlation we calculate price processes for all ports at

the same time. This differs from the original process which calculates one price process

at a time. Lower price bounds are used to prevent unrealistically low prices.

The Ornstein-Uhlenbeck price process takes a mean, variance and drift towards the mean

as input. The drift towards the mean is an indicator of how much the price tends to

return to its long time mean over time. Forecasts of future prices are calculated using

the values of these parameters. The parameter values we use are based on on prices in

the Henry Hub over the last five years.

Below we present the parameters and the model formulation. The parameters are split

into two groups; input parameters and parameters generated randomly by the model. We

implement correlation by correlating all the ports relative to one reference port. In the

following formulation we have defined port 1 as the reference port.
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Input parameters

Spt - price in port p at time t

Cp - correlation between port 1 and port p

µp - long-term mean of price in port p

σ - variance of data, assumed to be equal for all ports

λ - drift towards mean, assumed to be equal for all ports

t - length of one time interval

T - length of the full time period

Lminp - minimum limit for price at port p

Random parameters

rpt - random variable for port p in day t

Gpt - random number from Gaussian distribution for port p at time t

Formulation

r1t =

√
1− e−2λ·t

2 · λ
·G1t,∀t ∈ T (8.1)

The Ornstein-Uhlenbeck method starts by generating a random number. This is later

used to generate prices in the ports. Formula (8.1) generates a vector of random variables

to be used for price development in the reference port. The formula uses a number from

the Gaussian distribution to achieve randomness. This number is picked randomly for

every time t. r1t becomes the reference vector for the other ports. This reference is used

when implementing correlation later in the formulation.

rpt = Cp · r1t + (1− |Cp|) ·
√

1− e−2λ·t
2 · λ

·Gpt, p ∈ 2 . . . P, ∀t ∈ T (8.2)

Formula (8.2) generates vectors of random numbers to be used for price development

in all ports excluding the reference port. These random numbers are affected by the

correlation coefficient between each port and port 1. The higher correlation, the higher

the chance of getting the same random variable as the reference port. The calculation of

correlation coefficients are described in Section 8.2.

Spt = Sp(t−1) · e−λ·t + µp · (1− e−λ·t) + σ · rpt,∀p ∈ P, t ∈ 2 . . . TF (8.3)
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The random variables rpt from Formula (8.2) are used in Formula (8.3) to decide the port

prices in time 2 to T . The prices for t = 1 does not have to be calculated, as they are

given as input. All other prices are generated by the price process. As seen from the

formula, the prices generated depend on the price the day before.

if Spt < Lminp

then Spt = Lminp ,∀p ∈ P, ∀t ∈ 2 · T (8.4)

Formula (8.4) is added to the Ornstein-Uhlenbeck process in order to set a minimum price

limit. If the price generated is lower than the lower limit, the price is automatically set

to the lower limit. This adjustment is done ongoing for every day, meaning that Lminp

becomes the starting point for the next day if the price originally was less than Lminp.

Correlation

This section covers how correlation between port prices is decided, and how it impacts

price development.

Historical prices from the Henry Hub in the US and the National Balancing Point (NBP)

in the UK are used to decide correlation coefficients. These are the only two locations

for which we have good historical price data. We have used this data to calculate the

correlation coefficient between the Henry Hub and NBP. By assuming that the correlation

between two ports is based on an exponential function where the correlation decreases as

distance increases, we have made a model based which we use to determine correlation

between ports. We find it logical that the correlation changes in this way. The further

away to ports are from each other, the less of the same factors impact them. This leads the

correlation coefficient to decrease. The formula intersects with the calculated correlation

coefficient we found by comparing the historical prices from Henry Hub and the NBP.

Formula (8.5) takes distance as input and gives the correlation coefficient as output. The

correlation for port 1, the reference port, is defined as 1. dp is the distance from the

reference port to port p. Cp is the correlation between the reference port and the port

for which we are generating prices. The function is shown in Figure 8.3. The red lines

indicate where the correlation between Henry Hub and the NBP fits into the function.

Cp = 0.797 · e
dp

1000 ,∀p ∈ 2 · · ·P (8.5)
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Figure 8.3: Correlation coefficient as a function of distance

Figure 8.4 show how prices vary with correlation. All price paths in the examples have the

same starting point. The correlation to the reference price is indicated underneath each

figure. The price path from the reference port is included in every figure for comparison.

Figure 8.4(a) and 8.4(f) are perfectly negatively correlated, and the price processes is

exactly opposite of each other. Figure 8.4(d) is not correlated with any of the others. We

have assigned that the correlation coefficients relative to the reference port. This means

that the correlation between two of the other ports are not decided by how close they are

to each other, but how close each of them are to the reference port.

8.3 Fixed parameters

Some of the parameters are fixed throughout all our tests. These are presented in this

section. When testing the model our main focus has been to change parameters that

diversifies the performance of our different models. This has decided which parameters

we have chosen to fix.

8.3.1 Parameters used for price forecasting

The start prices for each port, lower limits and correlation coefficients used in the

Ornstein-Uhlenbeck process are shown in Table 8.3. The start prices are chosen in a

manner that should give an incentive to trade in multiple ports. For example, the margin

between Hammerfest and Milford Haven is small since those are the two closest port.

The minimum price limits are set to $1.80 for all ports. This is lower than any price

registered in the Henry Hub the last five years. The buy ports and the sell ports has the
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(a) Correlation = 1 (b) Correlation = 0.5 (c) Correlation = 0.2

(d) Correlation = 0 (e) Correlation = -0.7 (f) Correlation = -1

Figure 8.4: Price processes with starting price 5 and varying correlations

same lower limit. σ and λ are assumed to be equal for all ports. Their values are 0.163

and 0.0034, respectively. These are calculated from the prices in Henry Hub over the last

five years. The long-term mean of a port is set to the same value as the start price. We

chose the start prices in order to create many trading options for the vessel, and finds it

natural that the prices drift towards these prices to keep the options open.

Table 8.3: Values of parameters used in the Ornstein-Uhlenbeck process

Port Start price/MMBtu Lmin Correlation

Point Fortin $5.3 $1.8 0.260

Bonny $5.2 $1.8 0.240

Hammerfest $5.5 $1.8 0.474

Lake Charles $5.0 $1.8 0.174

St Johns $7.8 $1.8 0.420

Marmara $8.0 $1.8 0.331

Milford Haven $8.1 $1.8 1.000
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8.3.2 Number of days in total problem period

The number of days in the problem period is set to 200. This is based on a trade-

off between run time and generating interesting results. With 200 days the model has

enough time to see significant differences in the solutions found by the models, without

having a too high run times. In a real life situation this concept of problem period is not

interesting, as it is the day-to-day decisions that matter.

8.3.3 Price development

Actual price information for various trade ports is highly limited. We have therefore de-

cided to simulate the prices used in our tests. This is done with the Ornstein-Uhlenbeck

process, as described above. The price development used is seen in Figure 8.5. For the buy

ports, the price in Bonny increases the most, almost reaching a price of $7/MMBtu. Mar-

mara is the sell port which has the largest decrease in price, down to almost $6/MMBtu.

The price development is decided before the model starts running, but the models does

not have access to future prices. They only have price information for their current day,

and have to base the actions taken on price forecasts.

Figure 8.5: Price development for all ports used in the test instances
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8.3.4 Size of vessel

The capacity of the vessel is 142,500 m3, which equals approximately 3,000,000 MMBtu.

This is a normal size for an LNG vessel. We have chosen to not vary the size of the vessel.

This is because our main focus is comparing the two solution approaches, and we do not

see how this could contribute to separate the models from each other.

8.3.5 Basis cost and travelling costs

Each day the vessel incurs a basis cost of $100,000, regardless of moving or not. This cost

reflects the cost of hiring a LNG vessel, or the alternative cost of owning one. Making a

straight move costs an additional $100,000, while a diagonal move costs $140,000. The

diagonal move is more expensive because of the longer distance travelled. The numbers

we use are comparable to real numbers, as described in Section 2.7. We have chosen to

not test with different values for basis and travel costs, as we do not see how this could

contribute to separate the models from each other.

8.3.6 Starting conditions

The vessel starts empty in Milford Haven, which is a sell port. It starts empty because

we find it more interesting for the vessel to make complete trades, buying the LNG before

selling it. Milford Haven is chosen because it is located in between many ports, and thus

is a port that has many interesting trade options to start off with. We have chosen to

not test with different start positions. This is because we automatically get to test the

model for different positions as the vessel moves throughout the problem period.

8.3.7 Discounting factor

The discounting factor is set to 1% per 30 days. We have considered varying this factor,

but have concluded that a change does not lead to a big impact on the model.

The thought behind increasing the discounting factor is to make the vessel get more value

from the early trades. It would thus choose routes the routes that performs well early in

the trade horizon over routes that perform well late in the trade horizon. In that way the

the focus is on the short-term trading, where the price forecasts are more certain. The

long-term trading, with more uncertain price forecast, would still be taken into account,

but to a smaller extent. This theory is however incorrect, as there is no such thing as

routes performing poorly early in the trade horizon when using the dynamic program
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approach. These routes would be dominated away by better routes before reaching the

late trades. There will always be some optimal route that performs well both in the

beginning and towards the end.

There is however one factor that might give some impact on a change in the discounting

factor. This is the timing of the trades. The best routes will normally perform the

maximum number of trades, but the timing of these trades can vary. A high discount

factor would push the vessel to make trades early. The discount factor would however

have to be high enough to make up for the potentially positive price development from

one day to the other.

We have done some small tests with different discount factors, and these tests indicate

that the results does not change with a varying discount factor. The value of the discount

factor is therefore kept stable throughout our tests.

8.3.8 Nonanticipativity constraints in the MIP

We use nonanticipativity constraints for the first day in the MIP. For each day we are

only interested in finding the first action of the vessel, and there is no need to model

nonanticipativity constraints for later days. All scenarios that are used in the stochastic

model are included in the nonanticipativity subset. This ensures that the vessels in every

scenario commit the same action the first day.

8.3.9 Maximum run time of MIP

We have set the maximum run time of the MIP to be 3,600 seconds. The best solution

so far is returned if the solver has not a found a solution within the bounds by then. The

limit is set to 3,600 seconds because we find it unreasonable to spend more time on an

operational level decision.

8.4 Variable parameters

Below we present the parameters that are changed throughout our tests. These are the

parameters we find to be most interesting when it comes to impact on model performance.

The reason for choosing each of the parameters is described. The parameters values used

in the base case are presented in Section 8.6.
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8.4.1 Number of scenarios

By varying the number of price scenarios, we try to show that a larger number of scenarios

leads to a more correct impression of future prices. Our theory is that this leads to

improved vessel actions, which again gives higher profit. We have decided to run tests

with five different number of scenarios: 1, 5, 20, 50 and 100. The reason for the increasing

intervals is that we believe the increase in profit is diminishing as the number of scenarios

increase.

The run time should get higher as we add more scenarios. By doing these tests we try to

find a good trade-off between profit and run time.

8.4.2 End of horizon values

We vary the end of horizon values (EOH-values) to examine how much the they change

the incentive for the vessel to move. As discussed in Section 5.2.5, the profit loss of

not moving gets larger with EOH-values. Our theory is that the vessel moves more

frequently with EOH-values, in order to prevent this loss. We have tested the model with

and without EOH-values. The EOH-values include $400,000 in value for each flexible day

in the end of the rolling horizon, plus a 120 % return on the buy value, if buying as the

last trade.

We believe the run time time of the DP will be slightly lower with EOH-values. This is

because EOH-values leads to more domination towards the end of the trade horizon. A

route that finishes some days before the end of the horizon is likely to dominate some

later labels due to its additional EOH-value.

8.4.3 Rolling horizon length

Varying the length of the rolling horizon used in the DP potentially has an impact on the

profit. Increasing the length of the rolling horizon makes the dynamic program better

approximate the original problem, as the vessel is able to consider trades for a longer

period. Run times will however increase. The high uncertainty of future prices also

limits how many days ahead it is benefial to consider. By running these test we hope

to find the optimal length of the rolling horizon. We have chosen rolling horizon lengths

from 20 to 100 days with 10 day intervals.

The run time of the DP should increase with longer trade horizons, as there will be more

trades and thus more labels to extend. The run time of the MIP and heuristic should
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not be effected by a longer rolling horizon. From their point of view the only thing that

is changing is the values of the ports in each scenario.

To understand the interaction between the EOH-values and rolling horizon, we have also

tested changes in these two parameters together. Both parameters affect the vessel’s

incentives to move, and we believe that varying them together would make it easier to

understand this connection.

Decreasing rolling horizon length vs fixed rolling horizon length

We test the impact of using decreasing rolling horizon length. Decreasing rolling horizon

length means that the trade horizon considered by the DP decreases as long as the vessel

has not made a trade. This leads to a shorter and shorter trade horizon until the vessel

actually performs a trade. After the trade is conducted, the rolling horizon bounces back

to its original value. When the trade horizon decreases for each day, the vessel has a

greater incentive to move. This is because the vessel has to keep on moving in order to

be able to make the trades calculated by the DP. With a fixed-length trade horizon the

same opportunities will be there the next day. This makes it less risky to stay put for

the vessel, which again leads to less trading and a lower profit.

The decreasing rolling horizon should make the model run slightly faster, as the dynamic

program uses more time the longer the horizon is.

8.4.4 Gap in MIP

The gap in the MIP decides the maximum gap between the upper and lower bound of a

solution. As soon as this gap is reached, the current solution is accepted. Xpress-Mosel

solves an integer problem by closing in from two sides. The model relaxes the problem,

finding solutions which become upper bounds. Integer solutions found can be set as

lower bounds. The model constantly seeks to decrease the gap between these bounds. A

smaller gap should give a better result than a big gap.

The run time of the model should be higher as the gap increases. It requires more work

by the solver to close in to a small gap. We have chosen to do tests with gaps of 0.5%,

1%, 2% and 5%.
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8.4.5 Binary days in MIP

In this section we discuss some of the constraints from the MIP, which is described in

Section 5.3. These constraints are shown in Figure 8.6.

Figure 8.6: Constraints from the MIP that are affected by the number of binary days

The MIP can be relaxed by only keeping binary constraints on the position variables the

first days. This is possible since we only are interested in the vessel’s first day action

when we run the MIP together with the DP. When the binary constraints are removed,

the vessel is given the opportunity to divide itself into pieces. This is in conflict with

Constraints (5.6), which ensures that the vessel has to trade full loads. The vessel can

solve this by travelling in parts until it reaches the port, and merge together when arriving.

A removal of binary constraints is a relaxation, because it enables the vessel to travel as

far as it wants without any cost. This is because Constraints (5.3)-(5.4) are not restricting

with fractional variables spread over several grid points. Hence the move variables can be

set to 0. The model chooses to set the variables to 0, since the move variables contributes

to cost in the objective function. This leads to ports far away becoming more valuable.

The use of binary days can be expressed mathematically, where DB is used as the num-

ber of binary days. Instead of Constraints (5.11) and (5.12) we can use the following

formulations:

xgts ∈ {0, 1}, g ∈ G, t ≤ DB, s ∈ S
xgts ≥ 0, g ∈ G, t > DB, s ∈ S

mS
ts,m

D
ts ∈ {0, 1}, t ≤ DB, s ∈ S

mS
ts,m

D
ts ≥ 0, g ∈ G, t > DB, s ∈ S

81



8.5. STABILITY TESTING

We believe that a low number of integer days gives the vessel an incentive to wait. If the

vessel can travel for free in a few days, it could be beneficial for it to wait until then to

do the move. Thus, our theory is that the vessel performs better the more integer days

are included in the model.

The complexity of the MIP increases with the number of integer days. We therefore

expect an increase in run time as well. Tests are run for 2, 3, 4, 5 and 6 binary days to

try to find a trade-off between profit and run time.

8.4.6 Ports included in heuristic move calculation

As discussed in Section 5.4.2, there are two alternatives for which ports to include when

calculating the value of potential moves. The first alternative is to only include ports

that are fewer travel days away after the move. The second alternative inludes all ports

that are the same or fewer travel days away after the move. Both alternatives are tested.

The run time for these tests should be the same. This is because the DP, which is the

main contributor to run time, solves the same problem for both tests.

8.5 Stability testing

We have included stability testing to see how well the model performs in- and out-of-

sample. The basis for performing these tests are stochastic runs of the models. For the

in-sample tests we research what decisions would be made by each of the scenarios from

the stochastic problem, if they were run independently as deterministic problems. We

compare these decisions to the decisions made by the stochastic solution. For the out-

of-sample test we generate new scenarios, and research what decisions each these would

have made if faced with the same problems as the stochastic model.

The results from the stability tests give us an indication of how well the models are

able to exploit the additional information from adding new scenarios. We have divided

our stability testing into different situations for the vessel, based on where it is situated

relative to the ports, to see if any of the situations seems easier to solve than others. This

can later be used to make more effective models, e.g. by using more scenarios for some

vessel situations than others.

Our problem differs from others by solving many problems inside a problem period, with

no easy way of measuring how good a single move is for the long-term problem. We have
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not found any literature that tests stability in a similar way, and have therefore created

our own method. This method is described below.

8.5.1 Determining level of stability

When deciding the stability of a test, we look at the actions made by the vessel each day.

Our model solves a problem over a long time period, and for each day a decision must

be made. We try to compare these daily decisions. Decisions made when solving with

individual scenarios are compared to the decision made by the stochastic model. A value

is given to the deterministic action, depending on how close it is to the action chosen by

the stochastic model. There is a big difference between moving in an opposite direction

compared to for example staying put. We have assigned a value to all moves, based on

how close they are to the stochastic solution. The stability values for a moving vessel

are shown in Figure 8.7. The stability values that are used when in a port are shown in

Table 8.4.

(a) Straight move (b) Diagonal move (c) Staying put

Figure 8.7: Values used for moves in stability testing

We use three different vessel states: (1) the vessel moves, (2) the vessel stays put and (3)

the vessel is trading in a port.

The values for state 1 is shown in Figure 8.7(a) and 8.7(b). The value of almost choosing

the same move is given as 0.75, while choosing to go in the opposite direction gives a

value of 0. If the scenario chooses the same action as the vessel, it gets a value of 1. The

reason for these values is that we want to benefit the single scenario for doing almost the

correct move. A higher stability value means a higher degree of correlation between the

single scenario solution and the stochastic solution.

The values for state 2 is shown in Figure 8.7(c). When the vessel stays put, the single

scenario gets value 1 for also staying put. If the single scenario solution chooses to move,
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it gets value 0.5. The reason for a move giving some value is that moving does not have

to be a big mistake. The vessel in the stochastic solution might have been planning to go

in that exact same direction the next day. The value of moving cannot be set too high,

in case the vessel in the single scenario case is travelling the opposite way of the vessel

in the stochastic model.

The values for state 3 are shown in Table 8.4. This state differs from the other states.

While states 1 and 2 have nine possible options, state 3 only has two options. The

chance of making the right decision with two options is much higher, and we penalize

wrong decisions harder. If the stochastic model sells, and the scenario sells, it gets a

value of 1. If it does not sell, it gets a value of 0. The same principle goes for not selling.

Since state 3 is calculated different from the other states, it is not directly comparable

with the stability values calculated for the other states. However, it can be useful to test

how the vessels stability in the port differs for a different number of scenarios.

Table 8.4: Values used for trading in stability testing

Stochastic action
Scenario action

Sell Wait

Sell 1 0

Wait 0 1

The absolute values we calculate in the stability testing are of no worth, but the relative

difference between tests can decide how the tests perform compared to each other.

Numerical example

We present a numerical example from an in-sample test with five scenarios. The example

reflects one of the days in the total time period. In the example, the vessel starts it day

in grid point (5,5) and the stochastic solution is to move to point 5,6. Table 8.5 shows the

moves chosen by each of the scenarios deterministically. Figure 8.8 shows an overview of

the grid points in the example, where indices for every grid point is given. The choice of

the stochastic solution is shown with an arrow. The value given for each move is given

corresponds to the value in Figure 8.7. The total sample value for a day is calculated as

the arithmetic average of the sample values in each scenario.

8.5.2 Scenarios used in the stability testing

An overview over the scenarios used in the in-sample and out-of-sample tests are shown

in Figure 8.9. For in-sample stability we consider the same scenarios that were used to
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Table 8.5: Numerical example of stability test

Scenario Move to Value

1 5,6 1.00

2 5,5 0.50

3 4,6 0.75

4 4,5 0.25

5 5,6 1.00

Total sample value 0.70

Figure 8.8: Map used in numerical example of stability test

create the stochastic solution. Each day of the problem we find the action that would be

performed by the model if run with each of these scenarios, independently. The in-sample

stability test gives us the correlation between these deterministic actions and the actions

performed in the stochastic solution. This is helpful when selecting how many scenarios

to use for solving the stochastic problem. A high degree of correlation indicates that we

get a similar result in our model, regardless of which of the in-sample scenarios that is

used.

In the out-of-sample testing we test independent scenarios against the solution found

by the stochastic model. For each day we generate new scenarios and find the action

performed for each of these scenarios. The out-of-sample stability tests lets us research

how many scenarios are needed to get a stable solution. The gain from adding even more

scenarios is small when we already have produced a solution that fits well with random

scenarios. For the out-of-sample tests we test with 50 new scenarios.
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Figure 8.9: Overview over scenarios used for in-sample tests and out-of-sample tests

8.5.3 Stability situations for the vessel

We have divided the stability tests into four vessel situations: (1) on the way from a port,

(2) on the way to a port, (3) in a port and (4) in open sea. A vessel is defined on its way

from or to a port if it is less than two days of sailing from a port. If the vessel can trade

in the port, it is defined on its way to the port. If not, it is on its way from the port.

While staying in a port, a vessel is defined as in the port until it trades. After a trade it

is defined as travelling from a port, even if it chooses to keep on staying in the port. All

situations at least three days from a port is defined as in open sea. We have segmented

these results into groups for different number of scenarios. The in port values are not

directly comparable to the rest of the values. This is because there are only two options

and the stability values are assigned differently when waiting for a trade in a port than

for other situations. For the in-sample and out-of-sample tests we have found values of

stability for all these four situations.
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8.6 Base case

The base case is a test instance with the standard value for all parameters. For the fixed

parameters these are the values discussed in the Section 8.3. For the variable parameters

we have chosen values we believe to give good trade-off between run time and results.

The parameter values used in the base case are listed in Tables 8.6 and 8.7.

Table 8.6: Values for fixed parameters of the base case

Parameter Value

Vessel size 142,500 m3

Basis cost, per day $100,000

Travel straight cost $100,000

Travel diagonal cost $140,000

Number of days in total problem period 200

Discounting factor, per 30 days 1%

Days with NACs 1

Maximum run time for MIP 3,600 seconds

Table 8.7: Values for variable parameters of the base case

Parameter Value

Number of scenarios 20

EOH value, per day $400,000

EOH value, return on buy *1.2

Rolling horizon length 60

Decreasing rolling horizon Yes

Ports included in heuristic move calculation Fewer travel days

Gap in MIP 1%

Integer days in MIP 3

The base case is used as a starting point when testing with different parameter values.

All variable parameters that are not currently being tested are kept at their base case

value.
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Chapter 9

Results and Discussion

In this chapter we present and discuss the results from our tests. All tests are run as

complete instances of the full problem period, solved with a combination of the DP and

the MIP or heuristic. In the last two chapters these solution approaches are denoted as

MIP and heuristic, even though the DP is included in both solution approaches. The

price forecasts for each day are used to decide actions for the vessel, while the real price

development is used when calculating the profit. The profit of each test is found after the

test has run, by summing the trade values of all trades and subtracting the travel costs.

The trade values are negative for buying and positive for selling. The prices used comes

from the price development shown in Section 8.3.3.

We start the chapter by considering the dynamic program, looking at the effect of EOH-

values and rolling horizon length. Following this the results from stochastic runs of the

MIP and heuristic are presented. We discuss the effect on profit and run time when vary-

ing parameter values. The difference in performance between the MIP and the heuristic

is then discussed, before doing the same tests for the deterministic runs of the MIP and

heuristic. We conclude the chapter by comparing the stochastic and deterministic mod-

els. All test instances are run with the base case parameters presented in Section 8.6,

unless otherwise stated. In this chapter we mainly use figures to present the test results.

Tables with values for all diagrams is found in Appendix A.

89



9.1. TEST OF DYNAMIC PROGRAM

9.1 Test of Dynamic Program

In this section we examine how the number of days in the rolling horizon and the use of

EOH-values impact the performance of the DP. These concepts are described in Section

5.2. The parameters are tested in combination to identify any connection that might

exist between the two. The tests are run using the stochastic version of the heuristic.

We start the section by describing the results from tests without EOH-values. We then

proceed to discuss the tests with EOH-values, before comparing the two tests.

Figure 9.1 shows the profit and run time for decreasing length of rolling horizon, without

EOH-values.

Figure 9.1: Profit and run time without EOH-values when varying rolling horizon length

in the DP

The test without EOH-values has a high profit for medium trade horizon lengths. For

short trade horizons the vessel gets a low profit because it does not consider the long-term

effects when deciding the trades. Long trade horizons also seems to lead to low profits.

This is surprising, since a long trade horizon could give the vessel a better perspective over

the long-term. We believe that the increase in possible routes for a longer trade horizon is

the reason for the low profits. With a high number of routes it is likely that many routes

that have almost the same value. This reduces the loss of waiting an extra day, since it is

probable that a new route gives about the same profit the next day. This increasing the

chance of waiting. By examining the routes of the vessels we can confirm that the vessel

hesitates more as the trade horizon increases. A medium trade horizon seems to give a

good trade-off between incentives to trade and perspective over the long-term horizon.

Longer trade horizons give higher run time due to an increase in the number of labels

generated by the DP.

Figure 9.2 shows profit and run time with EOH-values included in the model. Running
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the model with EOH-values seems to perform best with a short trade horizon. The EOH-

values intensifies trading, giving value for finishing trades early and making buying a valid

last action in the DP. This compensates for the fact that few trades are considered. The

profit decreases as trade horizon length increases. We believe the reason is the same as for

the test without EOH-values, the increased number of options makes the vessel hesitate.

Figure 9.2: Profit and run time with EOH-values when varying rolling horizon length in

the DP

There is a growth in run time as the length of the rolling horizon increases. This is

because the number of labels created by the DP increases as the trade horizon becomes

longer.

Figure 9.3 shows a comparison between the model with EOH-values and the one without

EOH-values.

(a) Profit (b) Run time

Figure 9.3: Profit and run time when varying rolling horizon length and use of EOH-values

in the DP

The difference between the tests decreases as the number of days in the trade horizon

increases. We believe this is because we get more possible route combinations when
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considering longer trade horizons. It is likely that the vessel is able to use most of its

days for trading in some of these route combinations. This reduces the effect of the

EOH-values.

The tests with EOH-values are running faster for short rolling horizon lengths. This is

because the EOH-values leads to more routes being dominated away towards the end of

the trade horizon. This effect diminishes with increase in the trade horizon length, as the

relative value of the EOH-values become smaller compared to the total trade profit.

We have done tests showing that the EOH-values have the same influence on the MIP as

on the heuristic. The trends are the same as for the heuristic for both tests, and the profit

of the tests converges towards each other as the length of the rolling horizon increases.

Conclusion on parameter values

EOH-values leads to increased profit without any significant impact on run time, and

should thus be used. Given that EOH-values are used, we get the best results for short

trade horizons. Short trade horizons also solve faster. Using EOH-values and a trade

horizon of 20 seems to be the best choice of parameters for the dynamic program.
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9.2 Stochastic models

In this section we look at the results from the stochastic tests of our models. We first

look at the profit, run time and stability of the MIP and heuristic, respectively. Then we

conclude the section with a comparison of the two approaches.

9.2.1 Test of MIP

The MIP is tested by varying the number of scenarios, the number of binary day and

the size of the gap. These parameters are described in Section 8.4. We also consider the

effect of decreasing the size of the rolling horizon until a trade has been made. This is

discussed in Section 8.4.3. The rest of the parameters are kept at their base case values,

as described in Section 8.6. The stability of the results are tested through in- and out-of-

sample stability tests. We conclude by discussing the optimal parameter values for the

MIP.

Number of scenarios

Figure 9.4 show how different number of scenarios impact profit and run time.

(a) Profit (b) Run time

Figure 9.4: Profit and run time with decreasing horizon when varying the number of

scenarios in the stochastic version of the MIP

Using only one scenario gives a particularly poor result. For one scenario the vessel

hesitates a lot. The reason for this is that there is no uncertainty from the vessels point

of view. Hence, there is no need for the vessel to travel towards a port, unless the vessel

has to prevent a decreasing port value for the next day. This might lead the vessel to

wait with the trade until the length of the time horizon is exactly long enough to reach

the trade. Overall this induce a lot of waiting.

93



9.2. STOCHASTIC MODELS

For multiple scenarios the profit seems to decrease with an increase in the number of

scenarios. This is not as expected. We thought that a higher number of scenarios would

enhance the solutions. We believe that the reason for these results is that the vessel has

more options to consider. More options apparently leads the vessel to not sail directly to

a port, but rather wait or roam around. The value of better price forecasts is outweighed

by the hesitation it leads to. By examining the routes from the results, we see that the

number of waiting days increase as the number of scenarios increases. This leads to a

smaller number of trades and lower profit.

The run time increases steadily as the number of scenarios increase. This is natural, as

the problem becomes more complex with an increasing number of scenarios.

Type of rolling horizon

Figure 9.5 show a comparison of profit and run time between a decreasing rolling horizon

and a fixed rolling horizon.

(a) Profit (b) Run time

Figure 9.5: Profit and run time when varying the number of scenarios and type of rolling

horizon in the stochastic version of the MIP

It seems clear that using decreasing rolling horizon length leads to higher profit. This

is because the decreasing rolling horizon leads to less hesitation by the vessel. It has to

move towards ports in order to have the time to fulfill all trades inside the trade horizon,

as calculated by the DP. With fixed horizon length the vessel still has all the same options

the next day if staying put. This decreases the vessels incentive of moving. By examining

the routes chosen by the vessel, we see the same trends as for decreasing horizons. For the

fixed horizon the trend of hesitating more as the number of scenarios increase is stronger

than for the decreasing horizon.

The run time with decreasing rolling horizon length is a bit shorter than with fixed horizon

length. This is because the trade horizons are shorter on average, hence decreasing the
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run time of the DP.

Binary days

Figure 9.6 shows the impact on profit and run time when varying the number of days

with binary position variables. Binary position variables are discussed in Section 8.4.5.

Figure 9.6: Profit and run time when varying the number of binary days in the stochastic

version of the MIP

We cannot see a clear trend for the impact on profit. This is surprising, as reducing the

number of binary days is a relaxation. When examining the routes for the tests, it seems

like the vessel chooses the same route for all tests. The main difference in the routes,

is that the tests with more binary days tend to trade earlier in ports than the models

without. This should lead to more trades and a higher profit for the tests with many

binary days. But it turns out that for some trades, the tests with many binary days waits

in a port for the price to increase. These situations give the tests with few binary the

chance to catch up. This makes the total number of trades becomes the same overall.

The small differences observed in profit, is due to the timing of the trades. We believe

that the hesitation of the vessels with few binary days is explained by a wait day giving

the vessel an opportunity to travel fir free a later day.

A significant impact on run time can be observed. The test with two binary days runs

significantly faster than the test with six binary days, which is natural due to the increased

complexity of the problem.
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Gap

Figure 9.7 shows the run time and solution value for using different gaps in the MIP

model.

Figure 9.7: Profit and run time when varying gap value in the stochastic version of the

MIP

Lower gaps seem to lead to higher profit, with the exception of 0.5%. Studying the route

driven shows that this exception is caused by the model waiting longer in ports in order to

get optimal prices. This waiting leads to fewer trades completed, and thus lower profit.

The 1% test does not make the optimal timing of trade decision, and actually makes

mistakes by trading too early. In the end the 1% test is compensated by reaching more

trades in the total time period. The 2% and 5% tests makes bad choices both in and

between ports.

The run time increases as the gap decreases. The increase is largest between the 0.5%

test and 1% test. This can be explained by how the bound converges. The upper bound

of the gap decreases slow but steadily as the model is solved. The largest decrease in gap

value happens when a new integer solution is found. We have examined results from a

sample of tests, which indicate that the 2% and 5% gap is reached for the first or second

integer solution. The 1% gap is reached after about five integer solutions, while the 0.5%

gap is reached after about ten integer solutions. The decrease in gap by finding a new

integer solution diminishes as the number of solutions found increases, which explains

the big difference in run time from the 0.5% test to the 1% test.

Stability

The stability tests used are explained in Chapter 8.5. We first discuss overall in- and

out-of-sample stability for the stochastic MIP model. Then we discuss the in-sample
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tests and out-of-sample tests separately for different vessel situations. These situations

are described in Section 8.5.3.

Overall stability

Figure 9.8 shows an overview of the results from the stability tests.

Figure 9.8: Overall in- and out-of-sample values when varying the number of scenarios

in the stochastic version of the MIP

For the in-sample test, we neglect the value for one scenario in the discussion since its

value is 1 by default. For the rest of the scenarios, the in-sample stability decreases

as the number of scenarios gets higher than five. This is surprising, as more scenarios

should usually give a better in-sample value. A higher number of scenarios gives more

information to the model, and a better opportunity to create a good solution. We believe

that the bad results is due to the hesitations of the vessel as the number of scenarios

increase. This waiting both weakens the results, and turns out to perform different for

the scenarios in the sample.

The out-of-sample values seem to decrease steadily. The explanation is the same as for

the in-sample values. It is natural that the out-of-sample values converge with the in-

sample values as the number of scenarios increase. With a high number of scenarios,

the chance of getting a representative sample of scenarios is big. Hence, the samples of

scenarios in the in-sample and out-of-sample tests become more similar to each other as

the number of scenarios increase.

In-sample stability

Figure 9.9 shows in-sample stability for different situations.
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Figure 9.9: In-sample values for different situations when varying the number of scenarios

in the stochastic version of the MIP

There seem to be some clear trends for the in-sample stability. Five scenarios perform

significantly better than the others in three out of four situations. The trend seems to

continue for higher numbers of scenarios as well. It looks to be an advantage with few

scenarios in all situations except ”in port”. We believe this is because the stochastic

solution with five scenarios does not hesitate as much as solutions with a higher number

of scenarios, as described in the above discussion. ”In port” seems to be the only place

it is an advantage to have many scenarios. We think this is because there are only two

options. With two options the scenarios manages to find the best solution instead of

ending up not deciding because of having too many options.

The decrease in stability value ”from port” seems to be larger than the other decreases.

This might be because the decision ”from port” is tougher than the others. Our test-

ing shows that the MIP hesitates more when decisions are tough, thus creating a poor

solution.

Out-of-sample stability

Figure 9.10 shows out-of-sample stability for different situations.

The trends in for the out-of-sample stability are similar to the in-sample stability. The

stability value decreases for more scenarios in the situations ”to port”, ”from port” and

”in open sea”, and increases for more scenarios ”in port”. The explanation for the

behaviour is the same as for in-sample stability.
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Figure 9.10: Out-of-sample values for different situations when varying the number of

scenarios in the stochastic version of the MIP

Conclusion on parameter values

Decreasing length of the rolling horizon gives better results than fixed length. The results

from running with different scenario numbers indicate that increasing the number of

scenarios beyond 5 decreases the profit. Using 2 binary days seems like a good choice,

given the high profit and short run time. 1% seems to be the best choice of gap size, as

it is fast and results in high profit.

9.2.2 Test of heuristic

Ports included in value calculation

Figure 9.11 shows how changing the rule for port inclusion impacts profit and run time,

respectively. The first alternative is to only include ports that are closer after the move.

The second alternative is including all ports that are closer or at an equal distance in

travel days after the move. The use of port inclusion is described more thoroughly in

Section 5.4.2.

The model performs best when only including ports that are closer after the move. In-

cluding ports that do not get closer leads to the vessel being pulled between ports. This

makes the vessel roam around rather than sailing to a port to trade. This is confirmed

when examining the routes chosen by the vessel. The test with equal and closer ports

spends more time waiting in open sea and in ports, thus not reaching as many trades as

the test with decreasing horizon.

The run times are basically the same for both alternatives. This is because all the port
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(a) Profit (b) Run time

Figure 9.11: Profit and run time when varying the number of scenarios and port inclusion

in the stochastic version of the heuristic

calculations have to be made by the DP in both alternatives. The only difference is which

port values are included when considering each of the potential moves.

Number of Scenarios

Figure 9.12 show how the number of scenarios impact the results and run times. respec-

tively.

(a) Profit (b) Run time

Figure 9.12: Profit and run time with decreasing horizon when varying the number of

scenarios in the stochastic version of the heuristic

Increasing the number of scenarios seems to have a positive effect on the profit. A higher

number of scenarios gives a better approximation of future port prices, and thus a better

basis for making good decisions. The effect seems to be somewhat diminishing after 20

scenarios. This is probably because 20 scenarios is enough to give a balanced impression

of future prices.
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When examining the routes we find that the tests with few scenarios hesitates when

making big decisions in the tests. This can for example be a decision of crossing the

ocean. In the tests with many scenarios, the vessel is confident and crosses the ocean

from Europe to America. This is opposite of the MIP, which is indecisive when faced with

multiple scenarios. In the tests with few scenarios there is more hesitation, which costs

valuable time. It looks like the small number of scenarios is not enough to be confident

about a move.

Increasing the number of scenarios leads to a linear growth in run time. This seems

natural as the heuristic solves one scenario at a time.

Type of rolling horizon

Figure 9.13 show a comparison between the last test and the same model run with a fixed

length of the rolling horizon.

(a) Profit (b) Run time

Figure 9.13: Profit and run time when varying number of scenarios and type of rolling

horizon in the stochastic version of the heuristic

The model performs best when using decreasing length of the rolling horizon. This is due

to less hesitation by the vessel. A fixed horizon keeps the options open for the vessel, thus

not giving any incentives to move. When examining the routes chosen by the different

tests, we see that the vessel in the fixed horizon falls behind from the start, by spending

more time in the sea and ports.

Solving with decreasing rolling horizon length is a bit faster than with fixed horizon

length. This is because the dynamic program on average is run for shorter trade horizons

when using the decreasing rolling horizon.
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Stability

We start by presenting combined results for the stability tests. We continue by discussing

the results from the in-sample test and out-of-sample test for different vessel situations.

These situations are described in Section 8.5.3

Overall stability

Figure 9.14 shows total in- and out-of-sample stability for the heuristic.

Figure 9.14: Overall in- and out-of-sample values when varying the number of scenarios

in the stochastic version of the heuristic

The in-sample value for one scenario is neglected in the discussion, as it is defined as 1.

The in-sample values are higher than the out-of-sample values, as expected. Both the

in-sample values and the out-of-sample values increase with the number of scenarios.

This is reasonable. A model based on many scenarios is more likely to find a solution

that correlates with the independent scenarios. The more scenarios, the less variance

and the more correlation. For the out-of-sample a model with many scenarios is likely

to be better suited for testing with a range of random scenarios. When the number of

scenarios increase, the stability values from the in-sample test and out-of-sample tests

converge towards each other. This is logical, since the samples of scenarios in the in-

sample and out-of-sample tests become more similar to each other as the number of

scenarios increase.

In-sample stability

Figure 9.15 shows the in-sample test values for different vessel situations.
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Figure 9.15: In-sample values for different situations when varying the number of scenarios

in the stochastic version of the heuristic

We can see two main trends. The first is that the stability values is generally higher for

”to port” and ”open sea”. These are easier decisions to make than ”from port”, and it is

logical that the scenarios correlate more for these situations. ”From port” can in theory

choose to go to every port, hence the vessel has the possibility of going to many different

grid points. For ”to port” and in ”open sea” the decision of which port to visit is more

settled (if the vessel is close to a port value of this port becomes larger relative to other

ports), hence limiting the choices for the vessel. The second is that the stability values

increase as the number of scenarios increase for the ”from port” situation. We believe

that this is because the ”from port” situation is tough, which increases the benefit of

having many scenarios.

Out-of-sample stability

Figure 9.16 shows the results of the out-of-sample stability tests for different vessel situ-

ations.

We find three trends. The values of ”to port” and ”open sea” is generally higher than

”from port”. The reason for this is that ”to port” and ”open sea” is easier decisions than

”from port”. The added value of multiple scenarios is apparent both in ”to port” and

”from port”. The effect is strongest when leaving a port. This indicates that the use of

many scenarios has most impact when making tough decisions.
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Figure 9.16: Out-of-sample values for different situations when varying the number of

scenarios in the stochastic version of the heuristic

Conclusion on parameter values

It is apparent that decreasing rolling horizon length should be used when running heuristic

tests. It provides better results in a shorter run time. EOH-values should also be used,

since it enhances the performance without increasing the run time. The optimal number

of scenarios is a tougher trade off, as more scenarios results in a longer run time. The

results indicate a marginal growth in profit when increasing the number of scenarios

beyond 20. It does however only take 200 seconds to solve the problem for one day when

using 100 scenarios. It would thus be reasonable to use 100 scenarios.

9.2.3 Comparison between MIP and heuristic

Figure 9.17 show a comparison of profit and run time for the stochastic versions of the

MIP and heuristic.

Profit

The heuristic generally give better solutions than the MIP model. Adding more than 5

scenarios is positive for the heuristic result, while the impact seems to be opposite for

the MIP.
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(a) Profit (b) Run time

Figure 9.17: Comparison of profit and run time between the stochastic versions of the

MIP and heuristic when varying the number of scenarios

Run time

The run time clearly favors the heuristic for all tests. The difference increases with the

number of scenarios.

Stability

For both in-sample-stability and out-of-sample-stability, the heuristic outperforms the

MIP. It seems like the heuristic gets increasingly better stability value as the number of

scenarios increase, while the opposite happens for the MIP. The results from the MIP is

surprising, as the most natural development is that the stability increases as the number

of scenarios increases.

It is hard to find an obvious explanation for why the MIP and the heuristic develop in

opposite directions. One hypothesis is the number of possible options for the models.

The MIP has to consider all possible routes 20 days ahead, while the heuristic just

considers one move. The stability, and solution, seems to decrease with a increasing

number of scenarios when there are many options to consider. This is shown both by the

port inclusion of the heuristic test and the difference in trends of in sample values for ”in

port” and ”from port” in the MIP. Our theory is that the MIP overall deals with to many

options, leading to a worse result and stability as the number of scenarios increases.

There is a correlation between the performance in the stability tests and the profit of the

stochastic models. This makes sense, as a low stability value indicates that few scenarios

matches the solution, which suggests that the solution is bad.

105



9.2. STOCHASTIC MODELS

(a) In-sample stability (b) Out-of-sample stability

Figure 9.18: Comparison of stability between the stochastic versions of the MIP and

heuristic when varying the number of scenarios

Route considerations

The vessels in the MIP and heuristic basically choose the same route. The best route

from all our tests is found is shown in Section 9.3.3. This route is similar to the other

routes from our solutions. The difference in profit is made up by the frequency of trade.

The heuristic makes the vessel trade more often than the MIP, resulting in higher profit.

The MIP hesitates more both in and in between ports. This is caused by the MIP’s

indecisiveness when faced with many opportunities.

Summary

The heuristic performs better than the MIP when considering both profit, run time and

stability. It is the best solution approach for solving the stochastic problem.
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9.3 Deterministic models

In this section we consider the results from the deterministic tests of our model. The

deterministic model uses one price scenario that contains the expected value of all price

scenarios under consideration. The expected values are calculated as the arithmetic mean

of all price scenarios. In these tests we have only tested the impact of varying the number

of scenarios, as our main goal with the tests is to discover any differences between the

stochastic and deterministic models. The rest of the parameter are kept at their base

case values, as described in Section 8.6.

9.3.1 Test of MIP

Figure 9.19 shows the impact on run time and profit when varying the number of scenarios

used to compute the expected value.

(a) Profit (b) Run time

Figure 9.19: Profit and run time in the deterministic version of the MIP

The results seems to be increasing with the number of scenarios. This is logical, since an

expected value of a set of scenarios becomes closer to the true mean when the number

of scenarios increase. Since a random walk process is used when simulating prices, the

true mean should be a reasonable indication of future prices. The tests with one and

five scenarios has more variance than the others, as the expected value computed may

happen to correlate well with the actual price development. It looks like the EV of five

scenarios happens to fit well with the actual price development.

The run time is equal for all scenarios. This is as expected, since the problem solved

basically is the same for all tests - by solving one scenario with an expected value.
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9.3.2 Test of heuristic

Figure 9.20 show the impact on profit and run time when varying the number of scenarios

used to compute the expected value.

(a) Profit (b) Run time

Figure 9.20: Profit and run time in the deterministic version of the heuristic

There is no clear trend of how the number of scenarios impact the profit of the heuristic.

There does not seem to be any gain from using more scenarios when calculating the

expected value. This is a bit unexpected, since we believed that an expected value close

to the true mean would perform well.

The run times are similar for all tests. This is expected since the same problem is run

for each test, only varying the expected valued of the price scenario.

9.3.3 Comparison between MIP and heuristic

Figure 9.21 shows a comparison of the deterministic MIP and heuristic for different

number of scenarios.

Profit

The heuristic outperforms the MIP in the deterministic runs. It has higher profit for all

test instances.

Run time

The run time is almost double for running the MIP compared to the heuristic. The run

times are however negligible, as the daily run time on an operational level would be less

than 1000
200

= 5 seconds.
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(a) Profit (b) Run time

Figure 9.21: Comparison of profit and run time between the deterministic versions of the

MIP and heuristic

Route considerations

The heuristic trades more frequently than the MIP. The vessel in the MIP is indecisive,

with many waiting days. The waiting days leads to a smaller number of trades and less

profit. This is caused by the vessel being attracted by many ports at the same time, not

being able to decide which one it should go for.

Summary

The heuristic gives better results for all test runs. It is the best solution approach for

solving the deterministic problem.
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9.4 Comparison between stochastic and determinis-

tic models

In this section we discuss the differences between the stochastic and deterministic versions

of the models when it comes to profit and run time. We show results for both the MIP

and the heuristic.

9.4.1 MIP

Figure 9.22 show a comparison of profit and run time for the stochastic and deterministic

tests of the MIP.

(a) Profit (b) Run time

Figure 9.22: Comparison of profit and run time between the stochastic and deterministic

versions of the MIP

The stochastic version of the MIP performs better than the deterministic version. The

difference diminishes as the number of scenarios increase. This is because the vessel

hesitates when having to consider many alternatives. As the number of scenarios increases

the number of options increase, and the vessel hesitates more. The hesitation outweighs

the gain of having more information.

The run time of the stochastic model is significantly higher than for the deterministic

model, and increases linearly with the number of scenarios. This is logical since the

stochastic problem is far more complex than the deterministic.

9.4.2 Heuristic

Figure 9.23 shows a comparison of profit and run time for the stochastic and deterministic

tests of the heuristic.
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(a) Profit (b) Run time

Figure 9.23: Comparison of profit and run time between the stochastic and deterministic

versions of the heuristic

The profit from running the stochastic model increases with the number of scenarios.

The same trend is not seen for the deterministic version. The reason for a higher profit

is that the stochastic model uses more of the information given, thus being able to create

a better result.

The run time for the stochastic version is significantly higher than for the deterministic

version, and increases linearly with the number of scenarios. This makes sense since the

stochastic version solves the same problem as the deterministic problem one time for each

scenario.

9.4.3 Route considerations

The vessel hesitates less in the stochastic versions of the models, resulting in more trades.

The difference is especially big early in the problem period, indicating that the decreasing

horizon approach is exploited better by the stochastic than the deterministic model. The

timing of the trades when in ports are also better in the stochastic versions, meaning

that the vessel performs more profitable trades.

In Figure 9.24 we have shown the route of the best solution. This is the heuristic with

a 20-day horizon using EOH-values, shown in Figure 9.2. The vessel uses three different

trade routes between the ports. Trade 1 is between Hammerfest and Milford Haven, trade

2 is between Point Fortin and St Johns while trade 3 is between Point Fortin and Milford

Haven.

The vessel starts in Milford Haven, and conducts trade 1 six times. Then the vessel sails

to Point Fortin and conducts trade 2 two times. It continues by doing trade 3 once,

before doing trade 2 four more times. Most of the routes from our test instances follow
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the same pattern, but with differences in travelling time between the ports and waiting

time in the ports.

Summary

The stochastic versions outperforms the deterministic ones for both the MIP and the

heuristic. The value of the stochastic solutions (VSS) for different scenarios are shown

in Table 9.1. This table shows that the value of the stochastic solutions seem to increase

with an increasing number of scenario for the heuristic, while the opposite happens for

the MIP. The VSS is not shown for one scenario, since the stochastic solution of one

scenario by definition is the same as the deterministic solution.

Table 9.1: Value of stochastic solutions in million $ for a varying number of scenarios

Scenarios MIP Heuristic

5 $18.6” $0.5”

20 $14.3” $10.4”

50 $9.1” $17.0”

100 $1.2” $14.0”

The run time for the stochastic models are significantly higher than for the deterministic

models. A trade-off has to be made between profit and run time. Solving the stochastic

version of the heuristic with 100 scenarios is still quite fast, solving in less than 5 minutes.

This seems like a reasonable amount of time to use when solving a daily problem.

112



9.4. COMPARISON BETWEEN STOCHASTIC AND DETERMINISTIC MODELS

Figure 9.24: Trades conducted by the vessel sailing the route with highest profit
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Chapter 10

Concluding Remarks and Further

Research

In this thesis we have developed two decision support models for trading LNG on a

speculative basis. One model is based on a Mixed Integer Program approach, the other

on a heuristic. Given multiple scenarios of spot prices in different ports, the models

produce movement and trade decisions for LNG vessels. The goal is to maximize profits

by buying cheap and selling expensive, while minimizing cost related to moving between

ports. A review of existing literature found no previously published material with the

same focus.

Golar LNG tried to do speculative trading of LNG in 2002, but were not able to find

attractive tonnage for their vessels. LNG markets have opened up a lot since then, with

increased diversification and more LNG available for open trade. The share of flexible

contracts, short-term contracts and spot trade have increased. New opportunities arise

with this market development, and tools that address these opportunities are needed.

On a strategic level it is interesting to research whether speculative trading of LNG is

profitable at all. On a tactical level it is interesting to look at how to best structure

the use of flexible long-term contracts and spot trade. The models presented in this

thesis are relevant on an operational level. They can be used for continuous speculative

spot trading decisions, but with small modifications they can potentially also be used to

analyze when it is profitable to divert flexible LNG cargoes.

We have tested our models in to determine the one with best capability of being used

as a decision support tool, based on profit and run time. Both models have been tested

with different values of parameters, in order to see which parameters that has the largest

impact. The stochastic versions are compared to the deterministic ones, in order to

research whether there is any advantage of using a stochastic approach.
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10.1 Conclusion

The heuristic model performs better than the MIP. The main difference between the

routes found in the heuristic and MIP is that the vessel hesitates less in the heuristic.

This increases the number of trades, and also the profit. It seems like the MIP performs

worse because it has several options that it needs to consider, and is not able to decide

which one to go for. In the heuristic the value of a given port is only included in a

move calculation if the vessel is heading towards that port. The MIP considers all ports

when calculating the value a move, and calculates a route of 20 days. When testing the

heuristic with more ports included in the move calculation, we get worse results. This is

another indication that more options give worse solutions.

The stochastic version of the heuristic performs better than the deterministic version.

The stochastic model is able to use the information from the additional scenarios to

create a significantly better solution. The value of the stochastic solution increases with

the number of scenarios, but so does also the run time. The gain of adding scenarios

seems to be highest for the first 20 scenarios.

The models have not been compared to real life trading. It is however usable for real life

situations. New ports are easily added and the various parameters can be changed. The

model can also be used for any other kind of tonnage, with only minor adjustments. It

is especially well suited for bulk shipping, as we assume full shiploads and a given price

per unit of shipped goods.

10.2 Further research

We present six areas of further research. These are discussed in the next paragraphs.

The EOH-values can be improved. It is likely that the EOH-values could be im-

proved to generate better results. The current version is simple, with a predefined value

given per flexible day at the end of the trade horizon, and a compensation for buying

as the last trade. The flexible day value could probably be tweaked further to better

approximate the value of finishing the last trade early. The value could e.g. be based

on price forecasts. This is hard to implement, as the vessel can choose to travel to any

other port, and each of the ports has different price development. The value would have

to consider all of the price developments. The compensation for buying could also better

approximate the actual value it represents, based on what the return from a future sell

is likely to be.
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The price forecast can be more realistic. The price forecasts have a large im-

pact on the economical results of our models. In the current model we base the price

forecast for all ports on historical data from the Henry Hub. These forecasts could be

substantially improved by collecting historical prices and other relevant information for

all ports considered. We have not been able to find other historical price data then from

Henry Hub and the National Balancing Point. More complete price data could be used

to improve the forecasts generated by the Ornstein-Uhlenbeck process, or as a basis for

another price forecasting method.

The map representation can be enhanced. Our models uses a grid and movements

between grid points to approximate the geographical and time aspects of our problem.

This is a highly simplified representation of real life. It should be possible to make finer

grid points or even try to make it possible to travel in any direction. This can be done in

combination with lowering the length of the time intervals. This should raffine the move

that could be chosen to travel, and thus enhance the profit.

Using different number of scenarios for different situations By examining the

out-of-sample values from the stability tests, we see that there is a need of more scenarios

when tough decisions are made, for example when leaving a port. A future model could

use many scenarios when making hard decisions, and few for the easier ones.

Improve the MIP. If the MIP is to be used in further research, it has to be improved.

One way to improve the MIP could be by introducing a heuristic that only considers

closer grid points. Then the MIP would basically solve the same problem as the heuristic.

Including a smaller gap in order to get a better answer is not an option, as run time would

increase significantly, and the model could not be used in day-to-day planning.

The results can be compared to alternative uses of the LNG vessel. We do

not know how our models perform against using the vessel for other types of shipping. It

would be interesting to test our model on real test instances and compare the results to

alternative uses of the vessel, such as renting it out for fulfilling long-term contracts.
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Appendix A

Result Tables

All the profits in the tables are rounded of to the closest $100,000.

Table A.1: Profit in million $ and run time without EOH-values when varying rolling

horizon length in the DP

Scenarios Profit Run time

20 $85.9” 96

30 $78.0” 519

40 $86.7” 2,189

50 $99.0” 5,001

60 $96.1” 9,042

70 $94.5” 14,364

80 $90.3” 20,637

90 $82.1” 24,955

100 $78.2” 29,480

127



Table A.2: Profit in million $ and run time with EOH-values when varying rolling horizon

length in the DP

Scenarios Profit Run time

20 $110.7” 95

30 $102” 365

40 $95.4” 1,258

50 $95.6” 4,269

60 $94.6” 8,480

70 $94.2” 13,699

80 $100.4” 22,113

90 $85.1” 26,714

100 $81.6” 31,027

Table A.3: Profit in million $ and run time when varying rolling horizon length and use

of EOH-values in the DP

Trade horizon length
Without EOH-values With EOH-values

Profit Run time Profit Run time

20 $85.9” 96 $110.7” 95

30 $78.0” 519 $102” 365

40 $86.7” 2,189 $95.4” 1,258

50 $99.0” 5,001 $95.6” 4,269

60 $96.1” 9,042 $94.6” 8,480

70 $94.5” 14,364 $94.2” 13,699

80 $90.3” 20,637 $100.4” 22,113

90 $82.1” 24,955 $85.1” 26,714

100 $78.2” 29,480 $81.6” 31,027

Table A.4: Profit in million $ and run time with decreasing horizon when varying the

number of scenarios in the stochastic version of the MIP

Scenarios Profit Run time

1 $60.0” 806

5 $96.2” 7,564

20 $84.3” 49,193

50 $86.3” 184,165

100 $79.3” 344,277
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Table A.5: Profit in million $ and run time when varying the number of scenarios and

type of rolling horizon in the stochastic version of the MIP

Scenarios
Fixed RH Decreasing RH

Profit Run time Profit Run time

1 $64.0” 991 $60.0” 806

5 $90.6” 8,848 $96.2” 7,564

20 $75.2” 70,790 $84.3” 49,193

50 $55.6” 189,786 $86.3” 184,165

100 $31.2” 354,138 $79.3” 344,277

Table A.6: Profit in million $ when varying the number of binary days in the stochastic

version of the MIP

Binary days Profit Run time

2 $92.1” 38,017

3 $86.5” 52,408

4 $90.1” 91,510

5 $91.2” 122,249

6 $90.3” 153,675

Table A.7: Profit in million $ and run time when varying gap value in the stochastic

version of the MIP

Gap Profit Run time

0.5% $87.6” 112,432

1.0% $95.8” 54,215

2.0% $89.9” 48,140

5.0% $86.2” 45,412

Table A.8: Overall in- and out-of-sample values when varying the number of scenarios in

the stochastic version of the MIP

Scenarios In-sample value Out-of-sample value

1 1 0.723

5 0.814 0.687

20 0.637 0.632

50 0.634 0.634

100 0.629 0.626
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Table A.9: In-sample values for different situations when varying the number of scenarios

in the stochastic version of the MIP

Scenarios To ports From ports In ports Open sea

1 1.000 1.000 1.000 1.000

5 0.832 0.807 0.823 0.787

20 0.650 0.550 0.825 0.650

50 0.634 0.513 0.841 0.645

100 0.607 0.498 0.860 0.602

Table A.10: Out-of-sample values for different situations when varying the number of

scenarios in the stochastic version of the MIP

Scenarios To ports From ports In ports Open sea

1 0.741 0.734 0.591 0.746

5 0.717 0.635 0.777 0.728

20 0.648 0.535 0.829 0.658

50 0.642 0.514 0.843 0.634

100 0.604 0.494 0.862 0.593

Table A.11: Profit in million $ and run time when varying the number of scenarios and

port inclusion in the stochastic version of the heuristic

Scenarios
Closer grid points Equal and closer points

Profit Run time Profit Run time

1 $88.1” 494 $86.3” 469

5 $94.9” 2,027 $83.5” 2,034

20 $103.0” 8,369 $86.3” 8,305

50 $102.6” 20,278 $82.4” 20,168

100 $104.6” 40,482 $76.5” 42,177

Table A.12: Profit and run time with decreasing horizon when varying the number of

scenarios in the stochastic version of the heuristic

Scenarios Profit Run time

1 $88.1” 494

5 $94.9” 2,027

20 $103.0” 8,369

50 $102.6” 20,278

100 $104.6” 40,482

130



Table A.13: Profit in million $ and run time when varying the number of scenarios and

type of rolling horizon in the stochastic version of the heuristic

Scenarios
Fixed RH Decreasing RH

Profit Run time Profit Run time

1 $91.8” 550 $88.1” 494

5 $86.3” 2,564 $94.9” 2,027

20 $96.8” 9,107 $103.0” 8,369

50 $95.4” 21,346 $102.6” 20,278

100 $96.5” 44,174 $104.6” 40,482

Table A.14: Overall in- and out-of-sample values when varying the number of scenarios

in the stochastic version of the heuristic

Scenarios
Overall

In sample Out of sample

1 1.000 0.769

5 0.816 0.781

20 0.834 0.826

50 0.828 0.829

100 0.831 0.831

Table A.15: In-sample values for different situations when varying the number of scenarios

in the stochastic version of the heuristic

Scenarios To ports From ports In ports Open sea

1 1.000 1.000 1.000 1.000

5 0.941 0.907 0.561 0.942

20 0.940 0.907 0.561 0.975

50 0.952 0.922 0.532 0.963

100 0.969 0.933 0.540 0.970

Table A.16: Out-of-sample values for different situations when varying the number of

scenarios in the stochastic version of the heuristic

Scenarios To ports From ports In ports Open sea

1 0.914 0.774 0.537 0.944

5 0.929 0.874 0.470 0.900

20 0.938 0.905 0.533 0.988

50 0.954 0.921 0.535 0.969

100 0.968 0.932 0.539 0.979
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Table A.17: Comparison of profit and run time between the stochastic versions of the

MIP and heuristic when varying the number of scenarios

Scenarios
MIP Heuristic

Profit Run time Profit Run time

1 $60.0” 806 $88.1” 494

5 $96.2” 7,564 $94.9” 2,027

20 $84.3” 49,193 $103.0” 8,369

50 $86.3” 184,165 $102.6” 20,278

100 $79.3” 344,277 $104.6” 40,482

Table A.18: Comparison of stability between the stochastic versions of the MIP and

heuristic when varying the number of scenarios

Scenarios
In sample Out of sample

MIP Heuristic MIP Heuristic

1 1.00 1.00 0.723 0.769

5 0.814 0.816 0.687 0.781

20 0.637 0.834 0.632 0.826

50 0.634 0.828 0.634 0.829

100 0.629 0.831 0.633 0.831

Table A.19: Profit in million $ and run time in the deterministic version of the MIP

Scenarios Profit Run time

1 $60.0” 799

5 $77.6” 965

20 $70.1” 914

50 $77.2” 907

100 $78.1” 942

Table A.20: Profit in million $ and run time in the deterministic version of the heuristic

Scenarios Profit Run time

1 $88.1” 460

5 $94.4” 463

20 $92.6” 469

50 $85.6” 493

100 $90.6” 474
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Table A.21: Comparison of profit and run time between the deterministic versions of the

MIP and heuristic

Scenarios
MIP Heuristic

Profit Run time Profit Run time

1 $60.0” 799 $88.1” 460

5 $77.6” 965 $94.4” 463

20 $70.1” 914 $92.6” 469

50 $77.2” 907 $85.6” 493

100 $78.1” 942 $90.6” 474

Table A.22: Comparison of profit and run time between the stochastic and deterministic

versions of the MIP

Scenarios
Profit Run time

Stochastic Deterministic Stochastic Determinstic

1 $60.0” $60.0” 806 799

5 $96.2” $77.6” 7,564 965

20 $84.3” $70.0” 49,193 914

50 $86.3” $77.2” 184,165 907

100 $79.3” $78.1” 344,277 942

Table A.23: Comparison of profit and run time between the stochastic and deterministic

versions of the heuristic

Scenarios
Profit Run time

Stochastic Deterministic Stochastic Deterministic

1 $88.1” $88.1” 494 478

5 $94.9” $94.4” 2,027 482

20 $103.0” $92.6” 8,369 478

50 $102.6” $85.6” 20,278 482

100 $104.6” $90.6” 40,482 494
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Appendix B

Approximate Conversion Table

The table in Figure B.1 is used for converting different units throughout the thesis.

Figure B.1: Conversion table

(BP, 2013a)
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Appendix C

Stand-alone Mathematical Model

Mathematical model

We begin by introducing the sets and indices of the model. Then we present the param-

eters and variables, before presenting the objective function and constraints.

Sets and indices

G - Grid points, g

GN (g) - Neighboring grid points of g, g̃

GS(g) - Straight neighboring grid points of g, g̃

GD(g) - Diagonal neighboring grid points of g, g̃

GL - Buy ports, g

GU - Sell ports, g

T - Time interval, t

S - Scenarios, s

Kt - Index set of scenario subsets at time t, k

Ωkt - Subset of scenarios at time t, ω

Parameters

Q - Capacity of vessel

CB - Basis cost for the vessel (not moving)

CMS - Extra cost for the vessel if it is moving straight

CMD - Extra cost for the vessel if it is moving diagonal

Pgts - Price at port g at time t in scenario s
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Variables

xgts - 1 if the vessel is at grid point g at time t in scenario s, 0 otherwise

mS
ts - 1 if the vessel moves straight from time t to time t+ 1 in scenario s, 0 otherwise

mD
ts - 1 if the vessel moves diagonally from time t to time t+ 1 in scenario s, 0 otherwise

bgts - 1 if the vessel buys in grid point g at from time t to time t+ 1 in scenario s, 0 otherwise

sgts - 1 if the vessel sells in grid point g from time t to time t+ 1 in scenario s, 0 otherwise

fts - 1 if the vessel is full from time t to time t+ 1 in scenario s, 0 otherwise

xgt - Variables used as nonanticipativity constraints for position

fgt - Variables used as nonanticipativity constraints for status

Objective function

maximize
∑
g∈G

∑
t∈T

∑
s∈S

(Pgts · sgts − Pgts · bgts) ·Q−
∑
t∈T

∑
s∈S

(CB + CMS ·mS
ts + CMD ·mD

ts)

Constraints

∑
g∈G

xgts = 1, t ∈ T , s ∈ S (C.1)

xg(t+1)s −
∑

g̃∈GN (g)

xg̃ts ≤ 0, g ∈ G, t ∈ 1 . . . T − 1, s ∈ S (C.2)

mD
ts − xgts −

∑
g̃∈GD(g)

xg̃(t+1)s ≥ −1, t ∈ 1 . . . T − 1, s ∈ S (C.3)

mS
ts − xgts −

∑
g̃∈GS(g)

xg̃(t+1)s ≥ −1, t ∈ 1 . . . T − 1, s ∈ S (C.4)

∑
g∈GU

sgts − fts ≤ 0, t ∈ T , s ∈ S (C.5)

∑
g∈GL

bgts + fts ≤ 1, t ∈ T , s ∈ S (C.6)

f(t+1)s − fts −
∑
g∈GL

bgts +
∑
g∈GU

sgts = 0, t = 1 . . . T − 1, s ∈ S (C.7)

mS
ts +mD

ts +
∑
g∈GL

bgts +
∑
g∈GU

sgts ≤ 1, t ∈ T , s ∈ S (C.8)
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bgts + sgts − xgts ≤ 0, g ∈ GL ∪ GU , t ∈ T , s ∈ S (C.9)

xgts − xgω = 0, t ∈ T , k = 1 . . .Kt, ω ∈ Ωk(t+1) (C.10)

fgt − fgω = 0, t ∈ T , k = 1 . . .Kt, ω ∈ Ωk(t+1) (C.11)

bgts ∈ {0, 1} , g ∈ GL, t ∈ T , s ∈ S (C.12)

sgts ∈ {0, 1} , g ∈ GU , t ∈ T , s ∈ S (C.13)

xgts ∈ {0, 1} , g ∈ G, t ∈ T , s ∈ S (C.14)

mS
ts,m

D
ts, fts ∈ {0, 1} , t ∈ T , s ∈ S (C.15)
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