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Sammendrag

Fiskefôr utgjør den største andelen av produksjonskostnader for en lakseoppdretter
og tapte fôrdager er en stor kostnadsdriver. Norges største lakseoppdretter,
Marine Harvest Norway, ønsker å kutte kostnader og redusere risikoen for sene
fôrleveranser ved å begynne med egen fôrproduksjon. For å levere fôr til
oppdrettsanleggene på en effektiv og pålitelig måte, trenger de kostnadseffektive
og robuste transportplaner.

Denne masteroppgaven baserer seg på Marine Harvest Norway, heretter kalt Marine
Harvest, sitt planleggingsproblem for fôrleveranser. Målet er å lage en modell som
håndterer både lagerstyring på fabrikk og oppdrettsanlegg, samt ruteplanlegging
for fôrleveranser. I Ivarsøy og Solhaug (2013) utviklet vi en modell for å løse
et kombinert lagerstyrings- og ruteplanleggingsproblem, også kalt et Inventory
Routing Problem (IRP). Her har vi videreutviklet modellen til tre nye matematiske
formuleringer. Vi har også utviklet to rammeverk for parallell branch-and-bound i
et forsøk på å søke gjennom større deler av løsningsrommet på kortere tid.

De tre nye formuleringene har blitt testet på tre datasett, der ulikt antall
oppdrettsanlegg er inkludert. Det største datasettet er en realistisk representasjon
av planleggingsproblemet. De fleste parameterne som er brukt er reelle data fra
Marine Harvest, mens estimater har blitt gjort når det var nødvendig.

Den første formuleringen er en arc-load modell. De to andre formuleringene,
arc-flow og multi-commodity flow, er en utvidelse av denne og inkluderer mer
detaljert informasjon om last ombord på skip. Resultatene viser at arc-flow
modellen presterer best for alle tre datasett. Arc-load modellen presterer bra for de
to minste datasettene. Multi-commodity flow modellen skalerer dårlig og bruker
lang tid på å løse hver branch-and-bound node.

De parallelle rammeverkene fungerte ikke helt som vi hadde håpet. Det første
rammeverket parallelliserer arbeidet med å løse hver branch-and-bound node og
klarte ikke å finne hverken gode nedre grenser eller heltallsløsninger. Det andre
rammeverket paralleliserer arbeidet med å løse hele subtrær og virker mer lovende.
Vår enkle synkroniserte implementasjon, fant en marginalt bedre løsning enn den
sekvensielle kjøringen, men løsningstiden ble ikke redusert i forhold til økningen av
antall prosessorer brukt.
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Summary

Fish feed is the largest component of a salmon farmer’s production costs and lost
feed days are a large cost driver. Norway’s largest salmon farmer, Marine Harvest
Norway, hopes to cut costs and increase reliability of feed deliveries by starting
in-house feed production and distribution. In order to deliver feed to fish farms from
the new factory in an efficient and reliable way, they need to create cost-effective
and robust transportation plans.

The basis for this thesis is the problem of planning feed deliveries faced by Marine
Harvest Norway, hereby referred to as Marine Harvest. The goal is to provide a
model to simultaneously aid in routing of feed deliveries and inventory management.
We have further developed our Inventory Routing Problem (IRP) model from
Ivarsøy and Solhaug (2013) into three mathematical formulations. We have also
developed two frameworks for parallel branch-and-bound, in an attempt to search
through a larger part of the solution space in shorter time.

The three formulations have been tested on three various-sized test cases,
which differ in the number of fish farms considered, as well as production and
transportation capacity. The largest test case is a realistic representation of the
planning problem. Most of the parameters used are real data provided by Marine
Harvest, while we have made our own estimations when needed.

The first formulation is an arc-load formulation, similar to the one given in Ivarsøy
and Solhaug (2013). The arc-flow and multi-commodity formulations are extensions
of this, and include more detailed information about loads on board ships. Results
showed that the arc-flow model performed best for all test cases. The arc-load
model performed well for the smallest test case, while the multi-commodity model
suffers from long solution times for each branch-and-bound-node and has scaling
issues due to a large number of variables.

The parallel frameworks did not work as well as hoped. The first framework
parallelize the work of solving each branch-and-bound node, and did not manage
to find any integer solutions or good lower bounds. The second framework is more
promising, but our simple synchronous implementation only finds a marginally
better solution than the sequential run, and the solution time was not decreased
in accordance with the increased use of computing resources.
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Chapter 1

Introduction

Norway is the world’s largest producer of farmed salmon and the industry is
growing, as illustrated in Figure 1.1. In 2012 the production in Norway was 1.2
million metric tons, valued to approximately 28 billion NOK. Continued growth
is, among other things, dependent on sustainable solutions to environmental
challenges, change of regulations, increased demand and innovations in feed
production (Olafsen et al., 2012). If this is achieved, salmon farming will become
an increasingly important part of Norwegian exports in the future.

Figure 1.1: Sales volume and value of Norwegian farmed salmon, 2002-2012
(Statistisk sentralbyrå, 2013).
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Marine Harvest is a vertically integrated salmon farmer with business ranging from
egg production to processing, distribution and sales of finished products. Salmon
farmers are not traditionally involved in feed production, but Marine Harvest is
now aiming to integrate into both feed production and delivery. They will be the
only salmon farmer in Norway controlling the entire value chain. This allows for
implementation of vendor managed inventory (VMI), as opposed to the order-based
feed delivery common in the industry. VMI is a popular business practice in
supply chain management, and can give benefits such as lower inventory and
transportation costs and reduced risk of empty inventories (Simchi-Levi et al.,
1999, chap.8).

Costs related to feed account for approximately half of salmon production costs.
Another large cost driver is lost feed days. Marine Harvest hopes to lower costs and
secure stable deliveries of feed by gaining control over this critical part of the value
chain. In Ivarsøy and Solhaug (2013), we developed two alternative models for the
planning of feed deliveries and evaluated them on a reduced data set. The first
model is based on an inventory routing problem (IRP) and is able to achieve all the
flexibility of VMI by taking into account both routing and inventory management.
The other is based on a periodic vehicle routing problem (PVRP) where weekly
schedules with fixed delivery quantities are created. This gives predictable delivery
dates, but much of the flexibility and possible gains from VMI are lost.

In this thesis we will continue our work on the IRP model, in accordance with
Marine Harvest’s decision to implement VMI and abandon order-based feed
delivery. Our aim has been to develop a model which can support the process
of planning feed deliveries to fish farms. The model minimizes transportation costs
and avoids inventories below safety stock levels, resulting in a robust transportation
plan. The model decides on volumes loaded at the factory and discharged at each
fish farm, as well as the order of visits. Production capacity is not enough to
supply all fish farms and as demands vary, the model gives an indication of how
many fish farms it is realistic to serve at a given time of the year. The model is
flexible to allow for future changes in Marine Harvest’s planning situation, such as
an increased number of factories, fish farms and ships.

As opposed to many IRPs from maritime industry, Marine Harvest’s problem
includes several consecutive deliveries and no tight time windows. Another
complicating characteristic is that they do not have capacity to supply all fish farms
internally. Solution methods that have proven to work well on other applications,
may not be viable for this problem. We have focused on exact methods and
experimented with different formulations and valid inequalities. In an effort to
solve the real-sized problem, we have also combined the use of a commercial mixed
integer programming (MIP) solver with frameworks for parallel branch-and-bound.

Firstly, we give an introduction to the farmed-salmon value chain in Chapter 2.
In Chapter 3 we provide a detailed description of the transportation problem we
have based our modeling on. Chapter 4 is a review of research done on the IRP,
presenting important problem characteristics and solution methods along with
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relevant papers. Here, we also give an introduction to work done on frameworks
for parallel branch-and-bound. Chapters 5 and 6 presents our various model
formulations and the implementation of these. Chapter 7 presents the results from
running the models using three various-sized test cases, along with a comparison of
the formulations. We also present results from testing the two parallel frameworks
and explore the best solution found. Lastly, we provide concluding remarks in
Chapter 8 and ideas for future research in Chapter 9.
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Chapter 2

Salmon Farming Industry

This chapter gives relevant background information for the IRP model described in
Chapter 5, starting with an introduction of the industry players in Section 2.1. In
Section 2.2 we describe the production of salmon, while Sections 2.3 and 2.4 give
an introduction to the production of salmon feed and feeding of salmon. Lastly,
we provide thoughts on vertical integration of the farmed-salmon value chain in
Section 2.5. We will focus on the production cycle of salmon and production of
salmon feed, but the characteristics of the value chain apply to other species as
well. The farmed-salmon value chain is illustrated in Figure 2.1.

Figure 2.1: Illustration of the farmed salmon value chain (Marine Harvest, 2010).
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2.1 Industry Players

Salmon farmers have experienced rapid growth since the industry developed in the
1970s. Salmon farming requires specific environmental conditions and the industry
is therefore mainly located in Norway, Chile, North America and the UK, which all
have suitable conditions. Historically, the fish farming industry had several small
players, but in recent years there has been a consolidation. In Norway the industry
is more fragmented than in other countries, since one company can not own more
than 25% of the total licensed biomass and the government must approve license
acquisitions resulting in control of more than 15%. The term biomass refers to
the current standing fish mass at a farming facility or within a region. In Norway,
Marine Harvest controls nearly 25%, while other large producers are Lerøy, Salmar,
Cermaq and Grieg Seafood.

Figure 2.2: Export price of farmed salmon, 2012-2014
(Statistisk sentralbyrå, 2014).

Salmon prices have increased drastically since 2012, as illustrated in Figure 2.2,
although there seems to have been a price correction in April and May 2014.
Industry experts fear that salmon farming has reached its capacity and that prices
are going up because of expected lower supply. Constraints on future production
are diseases, environmental challenges and geographical limitations (Olafsen et al.,
2012). One important constraint on supply is the reduced availability of marine
resources such as raw material for fish feed. Therefore, feed producers are becoming
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an increasingly important part of the farmed-salmon value chain. Simultaneously
with the consolidation of the salmon farming industry, the salmon feed industry
has become an oligopoly of three strong players (Marine Harvest, 2013b). The
three feed producers EWOS, Skretting and BioMar control more than 97% of the
global salmon feed market, as can be seen in Figure 2.3.

Figure 2.3: Expected market share of salmon feed producers in 2013
(Marine Harvest, 2013a).

2.2 Production of Salmon

As described in Marine Harvest (2013b), the salmon farming production cycle
consists of two main phases, one in freshwater and one in seawater. The total
production cycle lasts from 24 to 40 months. Figure 2.4 illustrates how the fish
evolve from eggs to adult salmon.

Figure 2.4: Illustration of a salmon’s life cycle (Marine Harvest, 2010).

7



2.2.1 Freshwater production

After egg hatching, the salmon-to-be start off as alevins and feed is provided from
an attached yolk sac. When the alevins have grown large enough to consume
normal feed, they are referred to as fry. Fry grow into parr and move to larger
freshwater tanks where it is possible to control light intensity and to some extent
water temperature. Towards the end of the freshwater phase the parr go through a
smoltification process, which makes the fish ready for transfer to seawater. Salmon
farmers try to maintain a high utilization of the maximum allowable biomass set
by government regulations. In order to maintain a steady production of salmon
throughout the year, it is important to be able to transfer smolt to seawater
more than once a year. This is done by having some fish reach the smoltification
stage more quickly, by increasing light intensity and temperature in the tanks.
This fish will be released during fall and have a smaller release size than the
more slow-growing parr, which will become smolt and transferred to seawater the
following spring.

2.2.2 Seawater production

The main growth phase takes place after the smolt is transferred to net pens in
seawater and lasts for 14 to 24 months. Each fish farm usually has multiple net pens
and can receive smolt in different batches without losing traceability. In seawater
the salmon growth is strongly dependent on the sea temperature and in the range
8◦C to 14◦C, salmon growth increases with temperature. Therefore, the salmon
along the Norwegian coastline grows faster during summer than winter. When
reaching target weight, the salmon are harvested and transferred to a processing
facility to be gutted and put on ice. The salmon are then sold directly to retailers
or further processed into value-added products. Fish farms must be fallowed after
each production cycle. This means that they are kept empty for two to six months,
to prevent diseases from spreading between generations of fish.

2.3 Production of Fish Feed

The need for cost efficiency and economies of scale are the main reasons behind
the consolidation in the feed industry, while liberalizations related to biomass and
license regulations have contributed in the salmon farming industry. According to
calculations made by iLaks.no (2013), profitability in the feed market is strongly
correlated with production volumes. While the established players had an average
profit margin of 4% to 7% during the period from 2007 to 2012, the entrant
Polarfeed has consistently been losing money. In 2012 they posted their first
positive result and have plans for expanded production. The main challenge for
small producers is high fixed production costs. This gives the large producers an
advantage, as they can achieve economies of scale. Naturally, most salmon farmers
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in Norway buy feed from one or more of the three major industry players, EWOS,
Skretting and BioMar. Cermaq was an exception, with in-house production of feed,
until it sold EWOS in July 2013.

Fish feed is produced as pellets containing protein, fat and carbohydrates. Raw
materials are mixed before water is added and the mixture is extruded into pellets
of desired size. Different sized fish require feed of different size, since small fish can
not eat too large pellets. The pellets are then dried and oil is added, before they
are cooled down. The feed is distributed in large bags or as bulk from silo to silo.
Silo-to-silo is a newer technology being increasingly used today. It is important that
the feed sink at the right rate and tolerate handling in silos and feeding machines.

The type of feed consumed by the salmon is an important factor in determining
its growth and development. In the course of a salmon’s life, different amounts
of proteins and fatty acids are needed, depending on fish size, fish health and sea
temperature. High competence on feed composition is key to delivering feed that
will ultimately yield high growth and high quality fish. Therefore, fixed costs
related to product development are substantial for a fish feed producer. The
largest component in variable production costs is raw materials, with uncertain
prices due to volatile markets (Marine Harvest, 2013b). Feed producers transfer
the risk of varying raw material prices to salmon farmers through cost-plus
contracts. The farmer pays the realized raw material cost plus a premium including
transportation costs and profit margin.Traditionally, fish meal and fish oil were the
main components in salmon feed. Constrained availability of these resources and a
growing fish farming industry has led to a higher content of agricultural ingredients,
such as rape seed oil, soy protein and wheat. These are both cheaper and more
environmentally sustainable.

2.4 Salmon Feeding

Two feeding strategies can be distinguished, meal feeding and continuous feeding.
They differ in the timing and the duration of meals. Continuous feeding provides
feed throughout the day in small doses, while meal feeding outputs more feed over
a shorter period of time. Which strategy to apply depends on, among other things,
fish size and sea temperature. The available control equipment determines the
efficiency of feeding, for example by detecting when the salmon are full to ensure
that they are fed enough, while having minimum wastage of feed. Special types of
feed can be used to ensure higher immunity, higher growth rates or to help smolt
adapt to salt water. With a diversity of different sizes and types of food, the salmon
producer can customize feeding to the local environment, seasonal varieties and the
size and current needs of the fish.

As can be seen in Figure 2.5, feed costs account for approximately half of a
salmon farmer’s production costs. Therefore, cost-efficient feeding is important.
An important formula is the feed conversion ratio, given as consumed feed divided
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by increase in biomass (Skretting, 2009). The ratio measures how much feed is
needed to increase the biomass and should be as low as possible. Salmon has a
feed conversion ratio close to one, which is superior to other types of meat, such
as poultry and pork. Salmon are cold-blooded and therefore spends less energy on
staying warm. In addition, movement takes less energy through water compared
to on land.

Figure 2.5: Components of production costs for fish farmers in Norway
(Fiskeridirektoratet, 2013).

A planner forecasts demand for all fish farms with input from the location
manager of each fish farm, and place orders with the feed supplier. The delivery
time is around two weeks with an opportunity to adjust the quantity, within
negotiable limits, closer to delivery. Changing the ordered feed type is usually
not possible. Since salmon growth depends on many uncontrollable factors such as
sea temperature, sea conditions and disease breakouts, uncertain demand of feed
is a reality. Sea transportation can be uncertain due to weather conditions or ship
breakdowns. If a supplier has to prioritize among customers, the fish farmer is not
guaranteed to get his feed in time. This could be expensive since it results in a
production halt as salmon growth slows down.

2.5 Vertical Integration in the Salmon Industry

There are several reasons for a salmon farmer to buy feed externally, as well as
producing in-house. The main arguments are summarized in Table 2.1. The
production of fish feed is most profitable in companies producing large volumes.
A specialized company is able to maintain higher volumes by selling to several
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aquaculture companies. In addition to lower unit production costs, large producers
are able to maintain a cost-efficient inventory of many feed types. By aggregating
demand forecasts over several fish farms, the same service level can be retained with
less inventory (Simchi-Levi et al., 1999, chap.2). Also, the constrained supply of
marine ingredients for fish feed leads to the challenge of using alternative resources
while maintaining the nutritional value of the fish feed. Fish feed companies have
specialized employees with the necessary knowledge to create recipes that are both
highly nutritional and cost-efficient. The large quantity produced also enables them
to recover more of the potentially high research and development costs.

On the other hand, a large fish farmer could also attain economies of scale
with internal production. The internal producer only needs to produce for its
own needs and the variety in product types can be limited, allowing for more
efficient production. Agreeing on product specifications could be more effective
with the command line structure of an internal organization. By handing out
less information to external suppliers, the company will be able to better protect
trade secrets. Also, ordering and logistics can potentially be done more effectively
and there are no sales or marketing costs. An integrated company can maximize
across the entire value chain and thereby avoid suboptimizing on quality levels
or produced quantity. It is thus less exposed to the market power of suppliers
and double marginalization (Kreps, 2004, chap.6). Being an integrated company
could also ease the implementation of VMI, since this is dependent on effective and
truthful information sharing, which should be easier within the same company.
VMI may result in lower risk of empty inventories. Since the risk of changing
raw material prices is already transferred from feed producers to buyers, internal
production would not worsen the risk situation for the salmon farmer. All this
could result in lower costs compared to the transaction costs from buying in the
market (Coase, 1937).

External supply In-house production

Economies of scale Customized product line

Cost-efficient inventory Lower ordering and logistics costs

Specialized competence No sales or marketing costs

Hide trade secrets

Avoid suboptimization

Easier implementation of VMI

Table 2.1: Reasons for external feed supply versus internal feed production for a
salmon farmer.
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Chapter 3

Problem Description

Marine Harvest is integrating upstream to gain more control of the value chain
and capture synergies from in-house feed production. Implementing VMI for feed
delivery to fish farms is an important part of capturing these wanted gains. To
achieve such goals, it is necessary to create cost-effective and robust transportation
plans, taking into account both routing and inventory management. In Section
3.1 we present Marine Harvest’s planning situation and the challenges they are
facing. In Section 3.2 we give a detailed description of the problem we model in
Chapter 5, which is based on Marine Harvest’s planning problem. We also describe
the assumptions we have made to simplify the problem. Lastly, a summary of the
problem characteristics is given in Section 3.3. Information and data related to the
planning situation have been received by email and through meetings with involved
employees in Marine Harvest (Marine Harvest, 2014).

3.1 Problem Background

Marine Harvest is building a new feed factory at Valsneset in Sør-Trøndelag. This
will be ready for operation in June 2014. The capacity of the factory is nearly 400
000 metric tons per year, or 33 000 per month. Due to seasonal demand variations
and constrained storage capacity at the factory, the yearly production capacity
will not be fully utilized. Therefore, Marine Harvest predicts yearly deliveries from
the factory to be around 300 000 metric tons, while the total demand is 340 000.
The remaining 40 000 metric tons will be supplied externally by their current feed
suppliers, Skretting and BioMar.

Marine Harvest has around 115 fish farms located along the Norwegian coast,
as illustrated in Figure 3.1. The coast is divided into four regions, North, Mid,
West and South. An important aspect of the planning problem is that demands
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Figure 3.1: Marine Harvest’s fish farms located along the Norwegian coast. The
orange circle represents the feed factory (Marine Harvest, 2012).

vary considerably throughout the year. The monthly production rate is held fixed
before and during high season, but is reduced during winter, when the fish grow
more slowly. To balance these variations, fish farms are included or excluded in the
distribution plan according to season. During low season, Marine Harvest could
potentially serve all fish farms internally, while this is not possible during high
season, due to constraints on both production and transportation capacity. Then,
the factory will most likely supply fish farms in region Mid and parts of region
West and North, since it is located in region Mid.

Since the factory will mainly produce four sizes of standard feed, special feed must
be provided by external suppliers. As explained in Chapter 2, some fish farms
release smolt to seawater during fall instead of spring. These smolt are smaller
than normal and need small-sized pellets, which the factory does not produce. If
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the two feed boats are strained on capacity, it could be profitable to have external
suppliers completely serve fish farms with special feed needs. The decisions of
which fish farms to serve from the factory and for which to order externally must
be taken several weeks in advance. The current lead time on feed orders is around
two weeks, but this is expected to increase when Marine Harvest starts internal
production. This is both due to Marine Harvest becoming a less valuable customer
with smaller volumes and because of increased volatility in their orders.

Marine Harvest has invested in two LNG-fueled ships to deliver feed in bulk using
a technique called silo-to-silo. The feed is stored in silos at the factory, on board
ships and at fish farms. Different feed types must be stored separately. Loading and
unloading of feed takes time, and does sailing between locations. When a ship loads
at the factory, the factory stock is cleared, given that there is room on the ship.
The ships are not dependent on visiting the factory or fish farms during working
hours. However, at many of the fish farms, maximum silo capacity can only be
utilized when there are people at work who can control the unloading. Outside
normal working hours, these silos can only be filled up to a certain percentage of
capacity, usually around 90 %. The storage capacities, production rate and demand
rates constrain the scheduling of deliveries. A feed delivery plan must consist of
both the routing and scheduling of ships and the loading and unloading quantities
at the factory and fish farms.

In the current scheme, feed is usually delivered for four to five days at a time.
The silos should never run empty and to ensure this Marine Harvest maintains
a safety stock equal to one day of feed. Timely deliveries are important and
schedules should be robust enough to account for unforeseen events. Uncertainties
related to biological production and weather conditions lead to both uncertain
demands and deliveries. The demand of feed at each fish farm is determined by
fish growth, which is again determined by sea temperature and disease breakouts,
among other things. Bad weather conditions could lead to delays and ships could
break down. The resulting transportation plan should ensure in-time delivery of
feed, to avoid expensive emergency deliveries from other suppliers, while minimizing
transportation costs.

During our previous work with Marine Harvest it was not sure whether they
would implement continuous planning according to inventory levels or create weekly
schedules with predetermined quantities. The first option is able to realize the full
potential of VMI, while the second provides predictable schedules at the loss of
flexibility. Marine Harvest now considers the concept of a weekly schedule to be
too rigid and an artificial construction that does not make sense when deciding on
optimal feed deliveries. With constantly changing demands, the schedules would
have to be changed as often as every month and the argument of predictable delivery
dates falls short. Therefore, they are in the process of developing a new decision
support system (DSS) for production scheduling and delivery planning.

Currently, deliveries are planned using weekly demand forecasts from regional
managers. They also use a 12-month rolling horizon forecast of feed demand,
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but they do not account for starving or diseases resulting in lower demand. The
situation today is that many fish farms do not keep their numbers up to date
and mistakes are made. It is essential that routines for more frequent forecasting
and updating of data at each fish farm are in place before the new system is
implemented. The DSS will be run daily with updated demand forecasts and
current inventory levels. The user can input parameters such as stock capacities
and restrictions on visits to a fish farm. The system will most likely be based
on a heuristic in order to generate feasible solutions fast. We do not know how
good these solutions will be compared to solutions obtained from an exact method.
Unfortunately, the DSS will not be ready in time for us to compare its solutions
with our results.

3.2 Detailed Problem Description and
Assumptions

In order to model a problem based on Marine Harvest’s current planning situation,
we have made several assumptions. We wanted our model to be more general
and decided to include the possibility of having heterogeneous ships and several
factories. The fleet of ships is fixed and we assume that it is not possible
to hire capacity from elsewhere, since this is highly specialized equipment. If
production capacity is insufficient, feed must be bought externally. By considering
heterogeneous ships and several factories, the model is usable also if Marine Harvest
decides to expand production and transportation capacity. For the implementation
stage of our work, we will only look at the current situation with one factory and
two homogeneous ships. Our main purpose is to develop a model to aid Marine
Harvest’s planning of feed deliveries. Therefore, the model also includes problem
specific characteristics, such as clearing factory stock when loading and a reduction
in fish farm capacity outside working hours.

The objective is to minimize costs, while ensuring in-time deliveries. Costs related
to both transportation and external supply must be considered. Transportation
costs include fuel consumption and other costs of operation that do not incur
when a ship is idle. Fixed costs related to ships are disregarded as they are
not affected by the decisions to be made. Since we are dealing with a vertically
integrated supply chain, transportation will not affect inventory costs and these
costs are also disregarded. External feed costs consist of transportation costs plus
the supplier’s profit margin. For fish farms requiring external supply of special
feed, the transportation cost of external supply should be excluded. As agreed
with Marine Harvest, the focus is not solely on cost minimization, but also on
securing feed deliveries and creating robust delivery schedules, since lost feed days
is a large cost driver. Achieving high utilization of production and ship capacity
could be alternative objectives, as these are large investments.

Ships are allowed to wait upon arrival, but we assume that they do not need to stop
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for maintenance during operation. In accordance with Marine Harvest’s view of
operations, ships are assumed to clear the stock when loading at the factory. Due
to limited production capacity, there must be a certain number of days between
departures if the ships are to leave factories with close to full shiploads. Therefore,
we also assume that ships can not be loaded simultaneously, even though this is
physically possible. To ensure evenly distributed deliveries to fish farms, there
should also be a certain number of days between feed deliveries to a particular fish
farm.

Consumption and production rates are assumed constant within the planning
horizon, which is reasonable with a planning horizon of around two weeks. Feeding
is assumed to be continuous. For fish farms with a high demand rate, Marine
Harvest thinks it could be beneficial to deliver feed to a fish farm more than once
during a ship’s voyage. A voyage is defined as a visit to a factory for loading,
followed by consecutive visits to fish farms before returning to a factory.

Several simplifications are made in order to reduce the complexity of the problem.
We do not look into aspects of procurement of raw materials or production
scheduling. The scheduling of different feed types is assumed to be appropriately
carried out for the given forecasts, and we only look at an aggregated production
rate. Changeover time between producing different types, seasonal variations in
working hours and downtime in production will not be included explicitly in the
model, but are considered when calculating an average production rate. Neither
do we look into the production of smolt or salmon nor the growth rates of these.
This part of the value chain is only included through the demand forecasts made
by the local or regional managers.

In the real world, demands are inherently uncertain. We will limit ourselves to a
deterministic consumption rate where weekly demand at each fish farm is assumed
known beforehand. By running a DSS with daily updates, changes in demand
can be discovered and schedules adjusted in time. Marine Harvest does not have
any experience with how weather conditions could affect their operations, but they
realize that unforeseen events could have severe effects. The problem is complex
as it is and we have decided to not include stochastic elements. Even though
stochastic programming is not used, uncertainty is accounted for by incorporating
a safety stock level of one feed day.

The decisions to be made are which fish farms to visit and how much to deliver
of each feed type to each fish farm. Also, how much of each feed type to load
at each visit to a factory must be decided. There are multiple feed types and
multiple silos both in factories, on board ships and at fish farms. At fish farms, the
minimum stock level should be considered per type, while stocks are aggregated
when considering the maximum stock level. Most fish farms only have one feed type
delivered, but it is still important to consider safety stock levels for each type, to
ensure that inventories are not too low. The stock of feed at factories is aggregated
across different types. This assumption is reasonable due to the high number of
separate storage silos at the factory.
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On board the ships there are fewer silos, but allocating products to silos is a
complex combinatorial problem. One alternative is to dedicate silos to specific feed
types. Another alternative is to reduce the ship capacity if a solution turns out
to be infeasible regarding stowage, so that solutions are more likely to be feasible.
Both approaches could make the model too strict by cutting off feasible solutions.
Therefore, allocation of products is disregarded and we look at an aggregated ship
capacity. If a solution turns out to be infeasible in the real world, experience from
earlier runs can be used to set product specific capacity if necessary. Different
feed types have different densities and silo capacity in tons is dependent on type.
Since the differences are small and we aggregate product types when considering
silo capacities, we consider a single capacity given in tons for each silo.

Another decision to make is how many fish farms to serve internally, and the
volume of feed to order from external suppliers. If the transportation or production
capacity is insufficient to maintain non-negative stock levels at all fish farms, some
fish farms must be supplied externally. In that case, an external supplier takes
responsibility of the total demand throughout the planning period for those fish
farms. At times when production capacity is too low to serve all fish farms, the
fish farms farthest away from the factory will be excluded from the problem. Fish
farms that can not be supplied internally due to incompatible storage types will
also be excluded. The excluded fish farms must be supplied externally. Only fish
farms that require a delivery during the planning period will be included in the
problem.

3.3 Problem Summary

A summary of the problem we model in Chapter 5 is given below. The problem,
based on Marine Harvest’s current planning situation, is illustrated in Figure 3.2.

• Objective

– Minimize transportation costs

– Minimize cost of external supply

– Ensure in-time deliveries of feed and avoid low stock levels

• Routing and scheduling

– Fixed fleet of heterogeneous ships

– Fixed set of factories

– Fixed set of fish farms

– Constant speed of sailing

– Waiting on arrival is allowed

– Constant rates for loading and unloading

18



• Feed factories

– Production rate varies throughout the year, constant during planning
horizon

– Multiple products produced

– Maximum stock level aggregated over feed types

• Fish farms

– Feed supplied either internally or externally

– Demand rate varies throughout the year, constant during planning
horizon

– Demand for one or multiple feed types at each fish farm

– Maximum stock level aggregated over feed types

– Minimum stock level per feed type

– Unloading can only utilize maximum silo capacity within working hours

Figure 3.2: Illustration of Marine Harvest’s planning situation.
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Chapter 4

Related Literature

Applications of transportation problems are often variants of a vehicle routing
problem (VRP). The customers to visit and the quantities to deliver are given and
the problem is to decide on a route in order to satisfy all customer demand. For
a supplier implementing VMI it is necessary to simultaneously decide on routes
and manage the customers’ inventories. This motivated research on the inventory
routing problem (IRP) in the early 1980s. The IRP is also important for internal
distribution, where the supplier and customers are part of the same vertically
integrated company. Marine Harvest’s transportation problem can be categorized
as both an IRP and a periodic vehicle routing problem (PVRP). Literature on
similar problems use both formulations and we have considered both model types
in previous work (Ivarsøy and Solhaug, 2013). In this thesis, we continue our work
on the IRP formulation and the focus of this literature review will therefore be on
IRPs. We also present research on parallel branch-and-bound frameworks, because
we believe this could be combined with more traditional IRP solution methods to
solve real-sized instances. We ask the reader to bear in mind that this literature
review is not meant as an exhaustive review of all published literature on IRPs,
but rather a presentation of papers that we consider to be the most relevant for
our version of the IRP.

The earliest research on combining inventory and routing decisions is reviewed
in Federgruen and Simchi-Levi (1995), while more recent reviews are Andersson
et al. (2010) and Coelho et al. (2014). The classical VRP assumes transportation
by truck and this also applies to much research on the IRP. However, problem
applications from the past two decades are often set in the maritime transportation
industry, which will be the focus of the literature presented here. In Section
4.1 we will discuss differences between land-based transportation problems and
problems within maritime transportation. In order to relate our problem to
previous research, we will present relevant IRP characteristics in Section 4.2. In
Section 4.3 we will look at different solution methods and present articles using both
exact optimization methods and heuristics. Section 4.4 introduces the concept of
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parallel branch-and-bound and presents developed frameworks for implementing
such algorithms.

4.1 Maritime and Land-Based Transportation

Research on transportation problems has traditionally focused on land-based
transportation. A basic VRP has one supplier with several customers, and the
capacity of the vehicle is much larger than the delivery to one customer. Also,
the fleet of vehicles is homogeneous and different products can be stowed together.
Maritime transportation differs in several ways. In ship routing problems there are
often several loading and unloading ports and the coupling between these are not
necessarily fixed. Also, one delivery is often large compared to ship capacity. The
fleet is usually heterogeneous and there are multiple products transported that can
not be mixed. The nature of maritime transportation is also different. Little slack
in travel schedules and capital intensive operations make the effects of uncertainty
related to breakdowns and weather conditions severe in the maritime industry.

These differences are noted by Christiansen and Fagerholt (2009) in their
description of a basic inventory ship routing problem (ISRP). In Agra et al. (2013b)
the same type of problem is referred to as a maritime inventory routing problem
(MIRP). Andersson et al. (2010) and Coelho et al. (2014) point out that it is
difficult to decide on one standard version of the problem, since for every real
application of the problem, a new version is created. In the next section we will
use a classification scheme similar to the one used by Andersson et al. (2010) and
Coelho et al. (2014) to review articles by presenting characteristics relevant to our
problem.

4.2 Inventory Routing Problems

Aspects of the IRP include planning horizon, time considerations, inventory policy,
fleet of vehicles, structure of the distribution system, number of products and
nature of demand. Our problem has a planning horizon of ten days. During
the planning period, demands and production rates can be considered constant.
Inventories should not fall below a given safety stock level. The fleet of ships is
heterogeneous, and there can be many factories supplying multiple products to
many fish farms. In this section we will look into how the characteristics of our
problem relate to other applications of the IRP. Table 4.1 provides an overview of
problem characteristics related to the articles mentioned in this section.
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Time Dist.
network

Inventory Multiple
products

Fleet Demand

Our problem Cont. Many-to-
many

Non-neg.,
penalty
below
safety stock
level

Yes Het. Det.

Agra et al. (2013b) Disc. and
cont.

Many-to-
many

Non-neg. Yes, but
dedicated
compartments

Het. Det.

Al-Khayyal and Hwang
(2007)

Cont. Many-to-
many

Min. stock
level

Yes, but
dedicated
compartments

Het. Det.

Bertazzi et al. (2011)
Coelho et al. (2012)

Disc. One-to-
many

Can be
negative

No Hom. Stoch.

Christiansen (1999) Cont. Many-to-
many

Min. stock
level

No Het. Det.

Christiansen et al. (2011) N/A Many-to-
many

Min. stock
level

Yes Het. Det.

Dauzère-Pérès et al.
(2007)

Disc. One-to-
many

Min. stock
level

Yes Het. Det.

Grønhaug and
Christiansen (2009)

Disc. Many-to-
many

Min. stock
level

No Het. Det.

Popović et al. (2012) Disc. One-to-
many

Min. stock
level

Yes Hom. Det.

Ronen (2002) Disc. One-to-
one

Non-neg.,
penalty
below
safety stock
level

Yes Het. Det.

Table 4.1: Characteristics of problems from related research.

4.2.1 Planning horizon

The length of a planning horizon should depend on the decisions to be made.
Tactical decisions need a longer planning period than operational decisions. Since
a longer planning horizon often makes the problem more difficult to solve, Rakke
et al. (2011) use a rolling horizon approach to determine annual deliveries of natural
gas. Their problem is solved for a shorter planning period, and the output is used as
input for a new run, until the whole year is planned for. When uncertain forecasts
affect the decisions made now, a longer planning horizon could be useful also for
short-term decisions. There are many definitions of what is considered operational
and tactical decisions. A common view is that operational decisions are made on
a daily or weekly basis, while tactical decisions apply to months, up to a year
(Anthony, 1965). However, the classification also depends on the industry and
the decisions to be made within the planning horizon. Christiansen et al. (2006)
consider maritime IRPs in general to be tactical problems. Since our problem
has sailing legs that are significantly shorter than sailing legs in many maritime
transportation problems, it can be argued that our problem is operational. At
the same time, Marine Harvest needs to create preliminary schedules months in
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advance to decide on external supply, giving the problem a tactical nature. Due to
this lack of a single definition, it is difficult to classify problems as either operational
or tactical, and we have left this categorization out of Table 4.1.

4.2.2 Time

Time can be treated continuously or as discrete time periods. For an IRP with fixed
demand rates through the planning horizon, a continuous time formulation may be
appropriate. This approach is used in Christiansen (1999) for internal distribution
of ammonia by ship. A time discretized model is used by Agra et al. (2013b) in
a mixed integer formulation for a short sea fuel oil distribution problem. Time is
discretized because the consumption rates vary throughout the planning period,
but they also have continuous time variables constrained by given time windows
for port operation. Agra et al. (2013a) discuss differences between discrete and
continuous time formulations for MIRPs. Discrete time formulations result in large
problems, but they often enable creation of strong cuts and tend to provide better
bounds than continuous time models.

4.2.3 Inventory policy

In some applications, stock levels are not allowed to fall below zero or a certain
safety stock level. Other applications penalize negative inventory as lost sales or
they allow back-orders. Inventory constraints can be handled at both suppliers
and customers, or only at one end. Ronen (2002) addresses a planning problem
for shipping liquid bulk-products with inventory constraints at both suppliers and
customers. Violation of the safety stock level is allowed at a penalty cost, but the
stock levels can not be negative.

4.2.4 Fleet of vehicles

The fleet of vehicles can be homogeneous or heterogeneous. The first is common
in land-based transportation, while the latter is more common for maritime
applications. The number of vehicles can be fixed or unconstrained, if it is
possible to acquire extra capacity. In Dauzère-Pérès et al. (2007) a heterogeneous
fleet of vessels deliver calcium carbonate slurry to multiple European ports. The
different-sized ships makes it difficult to model the objective function correctly,
because of the nonlinear relationship between transportation costs and transported
quantity. Popović et al. (2012) model fuel delivery from one depot to several
petrol stations where vehicles are homogeneous and have multiple compartments.
A homogeneous fleet allows for fewer variables by considering only compartments,
instead of both vehicles and compartments.
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4.2.5 Structure of distribution network

The structure of the distribution network is important for the modeling of
the problem. Different networks are one-to-one, one-to-many or many-to-many.
Also, there can be one or multiple customers to visit per route. In maritime
transportation, continuous routing is common, where there are no well-defined
start or end port. Grønhaug and Christiansen (2009) study a pick-up and
delivery problem for LNG tankers, where routing is continuous and the network
is many-to-many. In Dauzère-Pérès et al. (2007) there is one supplier and several
customers, but ships usually visit only one customer per voyage.

4.2.6 Multiple products

Many real applications deal with transportation of multiple product types.
Maritime transportation problems often involve different products that need
to be shipped and stored in different compartments. To reduce complexity,
simplifications are often made. Both Al-Khayyal and Hwang (2007) and Agra et al.
(2013b) consider transportation of multiple products types where compartments
on board are dedicated to certain types, thereby avoiding the allocation problem.
In Christiansen et al. (2011) a cement producer transports multiple non-mixable
products and stowage decisions are taken into consideration. This greatly
complicates the problem, but is needed to ensure feasibility of ship schedules.

4.2.7 Nature of demand

Most models assume deterministic demand, either a constant rate throughout the
planning period, or a time-varying demand. However, demand is usually uncertain
and research has been done on the dynamic and stochastic IRP (DSIRP). Bertazzi
et al. (2011) and Coelho et al. (2012) study a problem where a supplier has one
vehicle to serve several customers with stochastic demands. Since the problems
are dynamic and stochastic, uncertain demand is revealed over time and stockouts
may occur. Both approaches use a rolling horizon where the model is rerun using
either current inventories or forecasts.

4.2.8 Objective

The research reviewed focuses on minimizing both transportation costs and
inventory costs. These are both relevant for a supplier engaged in VMI. For an
integrated company performing internal distribution, the inventory costs are most
likely not affected by transportation. In Christiansen (1999) distribution is within
the same company and inventory costs are disregarded. Another relevant objective
is to minimize penalty costs related to stock outs or falling below a given safety stock
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level, as in Ronen (2002). This encourages more robust schedules and attempts to
avoid expensive stockouts.

4.3 Solution Methods

The basic IRP is a generalized version of the VRP, proven to be NP-hard by
Lenstra and Kan (1981). Therefore, much of the available research involves using
heuristic solution methods. Literature on exact methods includes decomposition
methods and branch-and-cut algorithms. Note that when we discuss exact methods
we refer to exact optimization methods that may be terminated before reaching
optimality. Due to the complexity of the IRP, developing a tight formulation is
essential. In this section we start with a discussion of different formulations, before
we give examples of successful exact methods and common heuristics applied to
IRPs. Table 4.2 provides an overview of the different solution methods used by the
articles mentioned in this section.

Formulations Solution methods

Arc-flow Path-flow Ext.form. Val.
ineq. B&C Col.gen. Heur. Roll.

hor.
Adulyasak et al. (2014) 3 3 3

Agra et al. (2013b) 3 3 3

Agra et al. (2014) 3 3 3 3 3

Andersson et al. (2011) 3 3 3

Archetti et al. (2007) 3 3 3

Bredström and Rönnqvist
(2006) 3 3

Christiansen (1999) 3 3 3

Christiansen et al. (2011) 3

Coelho and Laporte (2013) 3 3 3

Dauzère-Pérès et al. (2007) 3

Engineer et al. (2012) 3 3 3 3

Grønhaug and
Christiansen (2009) 3 3

Grønhaug et al. (2010) 3 3 3 3

Hwang (2005) 3 3 3 3

Popović et al. (2012) 3 3

Rakke et al. (2011) 3 3

Solyali and Süral (2011) 3 3 3

Song and Furman (2013) 3 3 3 3

Stålhane et al. (2012) 3 3 3 3

Table 4.2: Formulations and solution methods used in related research: arc-flow,
path-flow and extended formulations, valid inequalities, branch-and-cut, column

generation, heuristics and rolling horizon.
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4.3.1 Model formulations

Many articles on IRPs start with an arc-flow formulation, which is further
developed into a path-flow formulation (Christiansen, 1999; Grønhaug and
Christiansen, 2009). The review by Andersson et al. (2010) reports on successful
path-flow formulations for ship routing problems and argues that the same
advantages could be obtained for IRPs. However, Rakke et al. (2014) argue that it
is not always appropriate to use a path-flow formulation for complex shipping
problems. If the extreme points of the resulting subproblems are integer, the
gain from a path-flow formulation is lost. An arc-flow formulation can also be
reformulated using extended formulations, typically with more variables to capture
the combinatorial structure better. Such a reformulation could lead to tighter
linear relaxations at the expense of more variables. A common approach to extend
an arc-flow formulation is to replace the flow variables with multi-commodity flows
(Vanderbeck and Wolsey, 2010).

Andersson et al. (2011) study a shipping problem with given quantities for
mandatory and optional cargo loads, where loads can be split and carried on
several ships. They first give an arc-flow formulation of the problem and then move
on to two alternative path-flow formulations. In the first path-flow formulation,
quantities are assigned to each selected route in the master problem. The second
formulation has aggregated quantity variables, independent of schedule. The
problem is solved using a branch-and-bound method where all non-dominated
schedules are generated a priori. The solution method is able to solve small
instances to optimality. By heuristically reducing the number of generated
schedules, larger instances can be solved.

Agra et al. (2013a) study continuous and discrete time arc-flow formulations for
a short sea inventory routing problem. They use valid inequalities and extended
formulations to reduce the integrality gap. This tends to increase the solution time
of the linear relaxation, but the size of the branch-and-bound tree is reduced. Valid
inequalities are created by calculating minimum and maximum number of visits to
customers. Also, models are improved by tightening constraints linking binary and
continuous variables and reducing the size of time windows. Tighter constraints
can be developed for discrete time formulations compared to formulations with
continuous time, as more information is included in the variables. Extended
formulations include an arc-load flow model and a multi-commodity flow model.
The multi-commodity flow model is the tightest formulation, but gives a dramatic
increase in variables. By using the arc-load flow model with continuous time, they
are able to solve real-sized instances with a planning period of 15 days to optimality.
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4.3.2 Exact methods

Branch-and-cut

A popular exact method is branch-and-cut, which was first introduced to solve
single vehicle IRPs to optimality by Archetti et al. (2007) and improved by Solyali
and Süral (2011). They use a time-discrete arc-flow formulation where subtour
elimination constraints are initially excluded. These are added when violated
during the branch-and-bound search, in order to create stronger bounds. Adulyasak
et al. (2014) and Coelho and Laporte (2013) further develop the branch-and-cut
algorithm to solve multi-vehicle instances to optimality. Adulyasak et al. (2014)
propose two different formulations, one with and one without a vehicle index.
For the formulation with vehicle index, symmetry breaking constraints are added.
Coelho and Laporte (2013) focus on solving less basic versions of the problem,
with constraints on delivery consistency. They also apply a solution improvement
algorithm that experiments with vertex removals and reinsertions whenever the
branch-and-cut procedure finds a new best solution.

Decomposition and column generation

The complexity of the arc-flow model studied in Christiansen (1999) calls for a
tailor-made solution approach. The model is reformulated as a path-flow model and
Dantzig-Wolfe decomposition is used to generate ship schedules in subproblems for
each ship and visit sequences in subproblems for each harbor. The master problem
includes additional coupling constraints to link auxiliary variables to the original
ones. Both types of subproblems are formulated as shortest path problems, and
solved by dynamic programming. The Dantzig-Wolfe column generation approach
only generates the most promising columns, which are the ship routes and harbor
visit sequences with the least reduced costs in the master problem.

Hwang (2005) suggests Lagrangian relaxation to decompose a similar problem
by penalizing violations to coupling constraints in the objective function using
Lagrange multipliers. Grønhaug and Christiansen (2009) and Grønhaug et al.
(2010) consider an inventory routing problem in the liquefied natural gas business.
In Grønhaug and Christiansen (2009) the path-flow model is solved by full
enumeration of columns and the algorithm suffers from low scalability. In Grønhaug
et al. (2010) column generation is used to find the best path to add to the master
problem. The subproblems are solved using dynamic programming, while the
master problem is solved using branch-and-bound. Also, valid inequalities are
added to tighten the formulation.

Engineer et al. (2012) present a path-flow formulation solved by combining column
generation and branch-and-cut in a branch-price-and-cut approach. Cuts are added
to the master problem during the branch-and-bound procedure to tighten the linear
relaxation. Two classes of cuts are added, the first is related to port and ship
capacity, while the second class is related to timing of visits. Branch-price-and-cut
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is also used in Stålhane et al. (2012) and valid inequalities such as cover inequalities
on cargoes, k-path inequalities and branching-dependent inequalities are added to
the master problem.

4.3.3 Heuristic methods

Many recent solution methods for IRPs are hybrid heuristics combining a heuristic
approach with metaheuristics or an exact optimization method. Dauzère-Pérès
et al. (2007) are only able to solve small instances of their calcium carbonate
slurry delivery problem to optimality using a standard solver. Instead, they base
their solution approach on a metaheuristic consisting of a greedy heuristic that
determines transportation plans for each location, a local search to improve the
solution and a genetic algorithm to expand the solution space. Christiansen et al.
(2011) use a similar approach. Another commonly used heuristic is the variable
neighborhood search heuristic, which is randomized by Popović et al. (2012) and
combined with branch-and-cut by Song and Furman (2013).

In order to handle long planning horizons, rolling horizon heuristics have been
developed. Agra et al. (2014) combine a rolling horizon heuristic with local
branching and a feasibility pump to solve their aforementioned arc-load flow
formulation. The feasibility pump finds initial solutions and local branching is
used to improve the current feasible solution. The rolling horizon heuristic works
by dividing the planning horizon into three periods. Binary variables are only used
in the central time period. In the first time period they are fixed, while in the last
time period they are continuous. This combination of heuristic strategies provides
promising results for problems with a long planning horizon. A similar rolling
horizon heuristic is used by Rakke et al. (2011) to determine annual deliveries of
natural gas and by Bredström and Rönnqvist (2006) to plan distribution of several
pulp products to customers. Agra et al. (2014) use a time-continuous formulation,
while the two latter articles have time-discretized formulations.

4.4 Parallel Algorithms

Industrial applications of combinatorial problems are often complex and have an
immense solution space. Therefore, much research has been done on using multiple
processors to search the solution space in parallel. It is important that the solution
time using a parallel algorithm scales linearly with the number of processors used,
to justify the use of extra resources. We will first present some general aspects of
parallel branch-and-bound algorithms, where it is the work of evaluating different
subproblems that is parallelized. A lower level of parallelism would be to parallelize
the work done on a single subproblem, not changing the overall structure of the
branch-and-bound algorithm. A higher level of parallelism would be to build
entire search trees in parallel. Lastly, we present some developed frameworks for
implementing parallel branch-and-bound. We have not found any articles related
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to IRPs, but we end the chapter with an application of parallel branch-and-bound
on a capacitated VRP.

4.4.1 Aspects of parallel branch-and-bound

A parallel system is the combination of a parallel architecture and a parallel
algorithm (Kumar and Gupta, 1994). The design of a parallel algorithm is strongly
influenced by the architecture it is implemented on. Corrêa and Ferreira (1996)
provide a classification of parallel branch-and-bound implementations with a shared
data model versus a distributed data model. Today’s high performance computing
(HPC) clusters are usually hybrid versions of these, implemented as a network
of shared memory computers. The three models are illustrated in Figure 4.1.
Gendron and Crainic (1994) discuss several aspects of parallelism at the hardware
level such as control, synchronization, granularity of work, communication and
number of processors. Algorithms are then categorized according to whether they
are synchronous or asynchronous and whether they have one or multiple work pools
to locate and store data. In synchronous algorithms, the processors synchronize
their work at certain points in time, while in asynchronous implementations, they
work independently of each other.

A branch-and-bound algorithm has four important rules. A selection rule says
which subproblem to branch from next and a branching rule governs which variable
to branch on. A bounding rule says how to compute a lower bound for a
subproblem and an elimination rule says when subproblems can be pruned. In
sequential branch-and-bound these rules are applied in sequence to the active
subproblem at each iteration of the algorithm. An efficient search is ensured
by considering the current best solution and the order of active subproblems.
In parallel branch-and-bound, each processor works on different subproblems in
parallel and one must consider the concurrent knowledge handling between them.
To enable an efficient search and high utilization of processors, knowledge must
be shared and work must be evenly distributed among processors through load
balancing strategies.

For a synchronous algorithm with shared memory, quantitative and qualitative
workload sharing is guaranteed. With asynchronous algorithms, local datasets
are not immediately updated and some processors risk working on subproblems
that should have been eliminated. The branch-and-bound tree is not known
beforehand, and subproblems are generated and selected in an unpredictable
way for asynchronous, distributed implementations, causing irregularities in
the algorithm. Trienekens and Bruin (1992) present a taxonomy of parallel
branch-and-bound algorithms with four dimensions considering how knowledge is
shared and used, how work is divided among processors and the synchronicity of
the algorithm. There is a trade-off between communication and search efficiency.
Synchronous algorithms tend to yield high idle times and the shared database
becomes a bottleneck with many processors requiring access. An asynchronous
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Figure 4.1: Illustration of a shared (a), distributed (b) and hybrid (c) data model.

algorithm avoids high latency times, but search efficiency could be lower because
of redundant work.

Work breakdown into smaller tasks requires some pre- and post-processing and
the granularity of tasks affects the amount of communication needed. This
initialization, termination and communication, along with possible redundant work
results in overhead time, which could make a parallel algorithm less efficient than
the sequential. There are many measures on the efficiency of parallel algorithms.
The speedup relates the solution time of the parallel algorithm to the solution time
of the best sequential algorithm. If TS is the sequential solution time and Tp is the
parallel solution time using p processors, the speedup S is defined as TS/Tp. The
efficiency E is then given as the speedup divided by the number of processors, S/p.
In theory, the maximum possible efficiency is one, but with asynchronous parallel
algorithms, acceleration anomalies can be observed causing super linear speedup.

The speedup does not continue to increase as the number of processors increases and
it peaks at a certain value. The isoefficiency function is a well-established measure
for the scalability of a parallel algorithm. It is the rate at which the problem size
must increase with respect to the number of processors to keep a constant efficiency
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(Grama et al., 1993). The algorithm is scalable if this rate is small, meaning that
it can utilize more processors efficiently even with a small increment in problem
size. This measure helps capture the effect of algorithms that seem attractive due
to low overhead, but have limited concurrency. The efficiency is dependent on the
time spent on each subproblem, speed of communication, the network topology, the
load balancing strategy and whether the problem experiences anomalies. Typical
characteristics of parallel designs related to low and high scalability are shown in
Table 4.3.

Low scalability High scalability
Centralized control Decentralized control

Synchronous operation Asynchronous operation
Shared memory Distributed memory

Fine-grained tasks Coarse-grained tasks

Table 4.3: Typical characteristics of algorithms with low and high scalability.

4.4.2 Applications

The simplest parallel implementation is a master-slave scheme, where one processor
controls all other processors. This central control results in a bottleneck as the
number of processors increases. Therefore, more scalable systems with several hubs
controlling subsets of workers have been developed. Eckstein (1994b) describes a
distributed implementation of parallel branch-and-bound which allows for a varying
degree of centralization. Design decisions on whether control should be centralized
or distributed and how to store and distribute data are discussed. Experiments are
done with one hub and many workers and with a fully decentralized implementation
where each worker is its own hub. The decentralized version is slower, mainly
because processors experience high idle times. In distributed schemes it is essential
to have a good work sharing strategy, both in terms of quantity and quality of
subproblems. As an improvement, Eckstein (1994a) combines a randomized work
sharing scheme with a global view of work balancing. This combination yields a
scalable method, competitive with more centralized schemes.

Eckstein et al. (2001) describe an object-oriented framework for parallel
branch-and-bound called Parallel Integer and Combinatorial Optimizer (PICO),
based on the aforementioned work in Eckstein (1994b). The goal is a general
framework, separated from the application and computing platform, to allow a
wide variety of branch-and-bound algorithms and parallel systems. This is realized
through polymorphism and inheritance in C++ and by using base classes, run-time
parameters and required and optional methods. PICO has a serial layer and a
parallel layer, where the parallel layer is designed using a distributed-memory
model and the standard message-passing interface (MPI) to pass messages between
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processors. Processors are partitioned into clusters controlled by hubs and
work is distributed both within and between clusters, as in Eckstein (1994b).
Computational testing reveals larger search trees for the parallel implementation,
due to the lack of a sophisticated incumbent heuristic, but the speedup is near
linear for 32 to 48 processors.

Ralphs et al. (2004) describe a library hierarchy for implementing scalable parallel
search algorithms for data-intensive applications. The base layer is the search
handling layer called Abstract Library for Parallel Search, (ALPS). This includes
search tree management and load balancing. On top of this is a data handling layer
called Branch, Constrain and Price Software (BiCePS), used to represent variables
and constraints and process subproblems. The framework is based on previous
work by the authors, the Single or Multi-Process Optimization over Networks
(SYMPHONY) written in C and COIN/BCP written in C++. SYMPHONY and
COIN/BCP are based on master-slave paradigms, making them difficult to use for
data-intensive applications. Therefore, ALPS has a layer of “middle management”
with hubs between the master and workers, as in Eckstein et al. (2001). To further
improve scalability, the processors work asynchronously and task granularity is
increased from subproblems to subtrees.

Ralphs (2003) implements a solver for a capacitated vehicle routing problem
using SYMPHONY. It is a modular implementation consisting of a master
module, node processing modules and two modules for managing global data,
one for search tree nodes and one for cuts. Storing search-tree nodes
and cuts is memory-consuming and node processing and information sharing
between processors is time-consuming. The parallel overhead is mainly due to
communication and the time it takes to employ all processors during initialization.
Since the number of nodes in the tree remains relatively constant as the number of
processors increase, the conclusion is that little redundant work is done. However,
this is mainly attributed to the single pool of data, which will be a scalability issue
with larger problems and more processors.
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Chapter 5

Model Formulations

In Chapter 4 we saw that the inventory routing problem (IRP) is a complex problem
and that every application provides a new version of it. This is also the case
with Marine Harvest’s transportation problem. In previous work we formulated a
time-continuous arc-load model based on an IRP and a frequency-based model
similar to a periodic vehicle routing problem (PVRP) (Ivarsøy and Solhaug,
2013). We identified problem specific characteristics to model the problem as
realistically as possible. Here we have further developed the IRP model, as this is
the most accurate representation of the planning problem described in Chapter
3. In this chapter, we provide an improved version of our original arc-load
formulation and two extended formulations with arc-flows and multi-commodity
flows. All formulations are more general than the specific problem currently faced
by Marine Harvest. We include the possibility to have several factories and a fleet
of heterogeneous ships.

In Section 5.1, we start with an introduction which applies to all three formulations.
In Sections 5.2, 5.3 and 5.4 we present the mathematical formulations of the
improved arc-load model and the two extended formulations. All sets, indices,
parameters, variables and constraints will be stated along with explanations of why
they have been included. When we discuss aspects that apply to both fish farms
and factories, we use the term locations. The complete mathematical formulations
can be found in Appendices A, B and C.

5.1 Model Introduction

5.1.1 Common model characteristics

When building an IRP model, one has to consider whether a time-discretized or
time-continuous model is most appropriate. A time-discretized model can handle
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time-varying production and consumption rates, while a pure time-continuous
model cannot. For time-discretized models there is a trade-off between the length
of the planning horizon and the granularity of time periods, to avoid an intractable
problem with too many time periods. A time-continuous model is less detailed
as it is restricted to use fixed rates, but the size of the model is smaller. With a
planning horizon of around two weeks, changes in demand and supply rates are
not significant and we have chosen to use a time-continuous model. In order to
separate different visits to a location, we enumerate each visit using visit numbers.

Ships have a given initial location and the model ensures that the ships start
here and then enter and leave all subsequent fish farms and factories. After the
last visit, the ship will travel to an artificial end node. Ships can unload outside
opening hours at fish farms, but to account for the loss in capacity when nobody
is there to control the unloading, soft time windows are added. This means that
ships are allowed to unload at any time, but more feed can be unloaded if service
starts within the given service time windows. Loading at factories can be done at
any time. Visits to a fish farm should be separated by a certain number of days
and this yields a lower bound on the quantity unloaded. The quantity loaded at
the factory is given by the current amount of stock, which should be cleared.

To encourage robust schedules, low stock levels are penalized. Penalty costs are
given per hour of having stock levels below the safety stock level. This means that
for an equal amount of underage, a fish farm with a low consumption rate and
thereby a low safety stock level is penalized more than a fish farm with a high
consumption rate. Constraints are included to make sure that stock levels at the
end of the planning period are within their limits. To account for end-of-horizon
(EOH) effects, where stock levels at fish farms are at the minimum and the factories
have reached maximum capacity, the constraints could be adjusted with upscaled
safety stock levels and downscaled capacities. A more flexible alternative is to use
aggregated constraints, where the total stock at fish farms must be above a certain
level and the total stock at factories must be below a certain level. This will be
further explored in the computational study in Chapter 7, but is not included in
the following mathematical formulations.

5.1.2 Model applications

The model should be used as an operational planning tool to support decisions on
delivery schedules. It should ideally be rerun once new information is available,
and could thereby support weekly or even daily decisions on delivery planning. The
operational decisions include how much to load on a boat that is due to leave the
factory, which fish farms to visit when and how much to unload. The model could
be used in a rolling horizon planning scheme, where operational decisions can be
made for the coming week, while also taking into account forecasts for following
weeks.

With a longer planning horizon, the model can be used as support for tactical
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decisions, by giving an indication of how many fish farms the factory can serve
throughout the year. Then, Marine Harvest can ahead of each season determine
approximately how much feed to order from external suppliers. As demand is
realized and forecasts are updated, adjustments on external orders can be made
in time. The model can also explore whether each ship should be fixed to serve
a particular set of fish farms, since there are fish farms both north and south of
the factory and several nearby. It could make sense to have the ships serve two
disjunct sets, or serve fish farms either in the north or south and share the supply
of fish farms near the factory.

As a strategic tool, the model can help plan transportation in an efficient way, in
order to avoid expensive and unnecessary investments in more ships, storage or
production capacity. It can also aid in decision making on further investments.
The model can be run with a variable number of ships or factories and sensitivity
analysis can be used to explore the gain of increased storage capacities for factories,
fish farms and ships. In this thesis, we have focused on the operational and tactical
applications of the model.

5.2 Arc-Load Formulation

Our original arc-load model, as presented in Ivarsøy and Solhaug (2013), used
binary variables to indicate where a ship ends its voyage. In our new arc-load
model we have removed these variables in favor of adding dummy nodes. After a
ship’s last visit, it is forced to travel to its end node, d(v). This simple change
turned out to give a significant reduction in the time required to achieve good
solutions, compared to the previous formulation. Ships have an initial position
o(v), which is either a visit to a factory or a fish farm. Other adjustments include
improvements of loading constraints and changes in the objective function. The
formulation is illustrated in Figure 5.1. The complete mathematical formulation
can also be found in Appendix A.
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Figure 5.1: Illustration of the arc-load formulation.

5.2.1 Definitions

Sets

NP Set of factories
NC Set of fish farms
Mi Set of visit numbers for location i
V Set of ships
SP Set of factory visits (i,m) where i ∈ NP and m ∈Mi

SC Set of fish farm visits (i,m) where i ∈ NC and m ∈Mi

S Set of visits, S = SP ∪ SC
Sv Set of feasible visits for ship v, Sv = S ∪ {d(v)}
P Set of products
D Set of days within the planning horizon
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Indices

i, j Locations
o(v) Start node of ship v
d(v) Dummy end node of ship v
m, n Visit numbers
v Ships
p Products
d Days

Parameters

B Penalty cost for stock levels below the safety stock level [NOK/hour]
Cij Transportation cost for sailing from location i to location j [NOK]
Ep Unit cost of buying product p externally [NOK/ton]
ETi Transportation cost for external feed delivery to fish farm i [NOK]

L0
vp Initial load of product p on ship v [tons]

KMAX
v Maximum capacity for ship v [tons]

QMIN
ip Minimum unloading quantity of product p for fish farm i [tons]

S0
i Initial inventory level at factory i [tons]
S0
ip Initial inventory level of product p at fish farm i [tons]
SMIN
ip Minimum inventory level of product p at fish farm i [tons]
SMAX
i Maximum inventory level at location i [tons]
Ai Reduction in storage capacity at fish farm i outside working hours [%]

TMAX Length of planning period [hours]
TSij Sailing time from location i to location j [hours]
TLi Loading or unloading time per ton of feed for location i [hours/ton]
TWS
d Start of service hours for day d [hours]
TWE
d End of service hours for day d [hours]

Ji Location type for location i, 1 for factories and -1 for fish farms
Rip Consumption rate of product p at fish farm i [tons/hour]
Pi Production rate at factory i [tons/hour]
Hi Time between visits to location i [hours]
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Decision variables

ximjnv 1 if ship v sails from visit (i,m) to visit (j, n), else 0
yim 1 if visit (i,m) is not made by any ship, else 0
ui 1 if fish farm i is supplied internally, 0 if supplied externally

qimvp Amount of product p loaded/unloaded by ship v during visit (i,m) [tons]
limvp Amount of product p on board ship v when leaving visit (i,m) [tons]

sim Amount of feed in stock at the start of visit (i,m) ∈ SP [tons]
sEim Amount of feed in stock at the end of visit (i,m) ∈ SP [tons]
simp Amount of product p in stock at the start of visit (i,m) ∈ SC [tons]
sEimp Amount of product p in stock at the end of visit (i,m) ∈ SC [tons]
dimp Amount of product p below SMIN

ip at the start of visit (i,m) ∈ SC [tons]

tim Time for start of service for visit (i,m) [hours]
tEim Time for end of service for visit (i,m), [hours]
σimd 1 if visit (i,m) ∈ SC is within service hours on day d, else 0

5.2.2 Model formulation

Objective function

min z =
∑

(i,m)∈S

∑
(j,n)∈S

∑
v∈V

Cijximjnv + TMAX
∑
i∈NC

∑
p∈P

EpRip(1− ui)

+
∑
i∈NC

ETi (1− ui) +
∑

(i,m)∈SC

∑
p∈P

B
dimp
Rip

(5.1)

The objective function (5.1) minimizes transportation costs, costs of buying feed
externally and penalty costs related to low stock levels. A transportation cost, Cij
is included for each arc used. External feed costs are added as two terms, a margin
per unit of feed, Ep, and a transportation cost,ETi . For fish farms with special
feed needs, the transportation cost of external delivery is ignored, since they need
external supply regardless of the decisions made by the model. The penalty cost,
B, is added for each unit of time that a fish farm is below the safety stock level.
The time is given by the fraction of underage over the rate of feed depletion from
stock.

Routing constraints ∑
(j,n)∈Sv

xo(v)jnv = 1 v ∈ V (5.2)
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Constraints (5.2) ensure that each ship leaves its initial visit. A ship can travel
directly from its initial visit to its dummy node, meaning the ship is not used.

∑
(j,n)∈S

xjnimv −
∑

(j,n)∈Sv

ximjnv = 0 (i,m) ∈ S\{o(v)}, v ∈ V (5.3)

Constraints (5.3) ensure that all subsequent visits to locations have equal ingoing
and outgoing flow.

∑
(j,n)∈S

xjnd(v)v = 1 v ∈ V (5.4)

Constraints (5.4) ensure that each ship ends in its designated end node.

∑
(j,n)∈Sv

∑
v∈V

ximjnv = 1− yim (i,m) ∈ S (5.5)

Constraints (5.5) set the value of yim, indicating that a visit is not made.

yim − yim−1 ≥ 0 (i,m) ∈ S|m > 1 (5.6)

By adding constraints (5.6) to the model formulation, we ensure that only the
smallest subsequent visit numbers are used. These constraints are needed for the
solutions to make sense, meaning that higher visit numbers are not used unless the
preceding number is also used. In addition, these constraints are important because
they reduce the number of symmetric solutions. They eliminate combinations of
visit numbers that appear different to the computer, but in reality give the same
solution.

ui = 1− yi1 i ∈ NC (5.7)

Constraints (5.7) set the variable ui to indicate if a fish farm is served by the
internal factories during the planning horizon. It is simply the opposite of the
variable yi1, which indicates whether the first visit to a location is made or not.
All fish farms are assumed to need at least one delivery during the planning horizon
and if the first visit to a fish farm is not made, external feed costs apply. To reduce
the number of variables, ui is not included in the implementation of the model, but
is included here for increased readability.
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Loading and unloading constraints

L0
vp + Jiqo(v)vp = lo(v)vp v ∈ V, p ∈ P (5.8)

Constraints (5.8) set the load for each ship after their initial visit equal to the sum
of its initial load and the quantity loaded or unloaded.

ximjnv(limvp + Jjqjnvp − ljnvp) = 0
(i,m) ∈ S, (j, n) ∈ Sv\{o(v)}, v ∈ V, p ∈ P

(5.9)

For all subsequent visits, ship loads are updated according to constraints (5.9).
This equation is obviously nonlinear and is not suited for direct implementation in
our solver of choice. Constraints (5.9) are therefore linearized and replaced with
constraints (6.1) and (6.2), as presented in Chapter 6.

∑
p∈P

limvp ≤
∑

(j,n)∈Sv

KMAX
v ximjnv (i,m) ∈ SP , v ∈ V (5.10)

Constraints (5.10) limit the outgoing load from a factory to not exceed a ship’s
capacity. If a visit is not made by ship v, the corresponding load variable is forced
to zero.

∑
p∈P

limvp ≤
∑

(j,n)∈Sv

KMAX
v ximjnv −

∑
p∈P

qimvp (i,m) ∈ SC , v ∈ V (5.11)

Constraints (5.11) limit the outgoing load from a fish farm to be no larger than
a ship’s capacity less the quantity unloaded. In our original model in Ivarsøy
and Solhaug (2013), loads where only constrained by the ship capacity. By also
subtracting the quantity, we achieve a tighter constraint. If a visit is not made by
ship v, the corresponding load variable is forced to zero.

∑
p∈P

qimvp ≤
∑

(j,n)∈Sv

SMAX
i ximjnv (i,m) ∈ SC , v ∈ V (5.12)

Constraints (5.12) limit the quantity unloaded to be less than or equal to a fish
farm’s maximum storage capacity. This is tighter than simply using ship capacity
as a bound, since this is much larger than the storage capacity at any fish farm.
The constraints are aggregated over product types. With product specific storage
capacities, the formulation would have become tighter. If a visit is not made by
ship v, the corresponding quantity-variable is forced to zero.
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∑
(j,n)∈Sv

QMIN
ip ximjnv ≤ qimvp (i,m) ∈ SC , v ∈ V, p ∈ P (5.13)

Visits to fish farms are required to be a certain amount of time apart, ensured by
constraints (5.35). We can calculate the amount of feed consumed during this time
and use it as a lower bound on the unloading quantity, as shown in constraints
(5.13).

∑
v∈V

∑
p∈P

qimvp = sim(1− yim) (i,m) ∈ SP (5.14)

Marine Harvest has specified that a ship visiting a factory should always clear
the stock. Constraints (5.14) ensure that the loaded quantity equals the current
stock level, if the visit is made. Since their factory and ships have equal storage
capacities, the entire factory stock can be loaded, assuming that ships arrive empty
at the factory. For a problem with smaller ship capacities, these constraints should
be eliminated and replaced with constraints equal to (5.12) and (5.13) for factory
visits. The constraints are linearized and replaced with constraints (6.3) and (6.4)
in Chapter 6.

Inventory constraints

All stock variables are required to be non-negative. If a stock variable is below the
safety stock level, an underage variable is set. If a fish farm is supplied externally,
its stock variables will remain at the fish farm’s initial stock level. This is because
constraints (5.30) ensure that time variables related to visits to this fish farm are
set to zero, and the stock variables will not be updated.

S0
i + Pitim = sim (i,m) ∈ SP |m = 1 (5.15)

S0
ip −Riptim = simp (i,m) ∈ SC |m = 1, p ∈ P (5.16)

Equations (5.15) and (5.16) set the stock level at the start of the first visit to
factories and fish farms as the initial stock plus the amount produced or consumed
before the first visit. The inventory constraints should ideally be written in a more
compressed form, using the location type parameter Ji. Since product types are
considered only at the fish farms, two sets of inventory constraints are needed, one
without and one with the p index, for factories and fish farms respectively.

sim + Pi(tEim − tim)−
∑
v∈V

∑
p∈P

qimvp = sEim (i,m) ∈ SP (5.17)
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simp −Rip(tEim − tim) +
∑
v∈V

qimvp = sEimp (i,m) ∈ SC , p ∈ P (5.18)

Constraints (5.17) ensure that the stock at the end of a factory visit equals the
stock at the start of the visit plus the amount of feed produced and less the amount
loaded during the visit. Constraints (5.18) ensure that the stock at the end of a
fish farm visit equals the stock at the start of the visit less the amount of feed
consumed and plus the amount unloaded during the visit. The end stock variables
sEim are included for readability and are not needed in the implementation as they
can be expressed using the start stock variables sim.

sEi(m−1) + Pi(tim − tEi(m−1)) = sim (i,m) ∈ SP |m > 1 (5.19)

sEi(m−1)p −Rip(tim − tEi(m−1)) = simp (i,m) ∈ SC |m > 1, p ∈ P (5.20)

Constraints (5.19) and (5.20) relate the stock at the end of a visit to the stock at
the start of the next visit by considering the production or consumption that takes
place between the visits. Looking at (5.17) and (5.18) together with (5.19) and
(5.20), it may seem like too many constraints are created and that it would have
been sufficient with one set of inventory update constraints. However, this would
enable a ship to load more than available at a factory or unload more than can be
stored at a fish farm, and then restore the variables to feasible levels before the
next visit. Therefore, we have one set of constraints for inventory update during
visits and one for inventory update between visits.

sim ≤ SMAX
i (i,m) ∈ SP (5.21)

∑
p∈P

sEimp ≤ (1−Ai)SMAX
i +AiS

MAX
i

∑
d∈D

σimd (i,m) ∈ SC (5.22)

Constraints (5.21) and (5.22) ensure that the stock level at the start of service in
a factory and at the end of service at a fish farm does not exceed the storage
capacities. Since loading and unloading rates are higher than production and
consumption rates, only these variables need to be constrained by upper limits.
Then, the stock variable at the end of service in a factory and the stock variable
at the start of service in a fish farm will never be above the maximum stock level.
Constraints (5.22) take into account that the storage capacity is reduced by Ai if
a fish farm visit starts outside service hours.

SMIN
ip ui ≤ simp + dimp (i,m) ∈ SC , p ∈ P (5.23)
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Constraints (5.23) ensure that the sum of the inventory level and the underage stays
above the safety stock level. If a fish farm is supplied externally, the constraint
is not binding. Note that constraints (5.23) only apply to fish farms. The lower
inventory limit at a factory is zero, ensured by non-negativity constraints on the
factory stock variables.

dimp ≤ SMIN
ip ui (i,m) ∈ SC , p ∈ P (5.24)

For fish farms served internally, the underage can not be larger than the minimum
stock level, as stated by constraints (5.24). If a fish farm is supplied externally, the
underage is forced to zero.

sEim + Pi(TMAX − tEim) ≤ SMAX
i (i,m) ∈ SP |m = |Mi| (5.25)

Constraints (5.25) are added to ensure a feasible inventory level for factories at the
end of the planning period. This is done by ensuring that the sum of the stock after
the last visit and the production during the remaining time is below the storage
capacity.

SMIN
ip ui +RipT

MAXui −RiptEim ≤ sEimp (i,m) ∈ SC |m = |Mi|, p ∈ P (5.26)

Constraints (5.26) are added to ensure feasible inventory levels for fish farms at
the end of the planning period. For fish farms supplied by the internal factories,
the inventory level at the end of the last visit must be enough to stay above the
safety stock level until the end of the planning period. If an external supplier
is given responsibility for a fish farm’s feed supply, the constraint is not binding,
since all the time variables for externally supplied fish farms are forced to zero by
constraints (5.30).

Timing constraints

tim +
∑
v∈V

∑
p∈P

TLi qimvp = tEim (i,m) ∈ S (5.27)

In order to relate the start and end time of a visit, constraints (5.27) are added.
They ensure that a visit ends when the loading or unloading operation has finished.
If no feed is loaded or unloaded, as when a visit is not made, the end time is set
equal to the start time. The end time variables tEim are included for readability and
are not needed for implementation as they can be expressed using the start time
variables tim.

∑
v∈V

ximjnv(tEim + TSij − tjn) ≤ 0 (i,m), (j, n) ∈ S (5.28)
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Constraints (5.28) ensure consistency in timing of visits. If a ship sails directly
between two visits, the start time of the next visit can not be earlier than the
end time of the previous visit plus the sailing time between the two locations.
By modeling the constraint as an inequality, waiting on arrival is allowed. The
constraints are linearized and replaced by constraints (6.5), as shown in Chapter
6.

tEim ≤ TMAX (i,m) ∈ S (5.29)

Constraints (5.29) ensure that visits cannot end later than the end of the planning
period. We assume that we start at time zero and so the end of the planning period
is equal to the length of the planning period given by TMAX . It is easy to include
a different start time, TSTART , where the end time of the last visit cannot be later
than TSTART + TMAX .

tim ≤ TMAXui (i,m) ∈ SC (5.30)

Constraints (5.30) ensure that if a fish farm is supplied externally, the start time
of visits to this fish farm are set to zero.

yim(tim − tEi(m−1)) = 0 (i,m) ∈ S|m > 1 (5.31)

Constraints (5.31) ensure that if a visit is not made, the start time should be set
equal to the end time of the preceding visit number. This creates artificial start
times so that the model can not bypass constraints (5.25) and (5.26) by setting a
larger visit end time on the last possible visit. The constraints are linearized in
Chapter 6 and replaced by constraints (6.6) and (6.7).

TWS
d − TMAX(1− σimd+yim) ≤ tim ≤ TWE

d + TMAX(1− σimd + yim)
(i,m) ∈ SC , d ∈ D

(5.32)

∑
d∈D

σimd ≤ 1 (i,m) ∈ SC (5.33)

Constraints (5.32) ensure that if a fish farm visit starts outside the given service
time windows, σimd is set to 0. Then, the storage capacity is reduced by Ai
in constraints (5.22). If a visit is not made, the constraint is not binding. For
each visit, at most one of the time window variables can be set to 1, ensured
by constraints (5.33). If the extra capacity is not needed, the variables are not
necessarily set to 1, even if the visit is within service hours.

∑
d∈D

σimd ≥ yim (i,m) ∈ SC (5.34)
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Visits that are not made should all have σimd equal to 1, ensured by constraints
(5.34). This is to ensure that the upper inventory constraints (5.22) for these visits
are not stricter than the upper inventory constraints for the preceding visit numbers
that are used.

tim +Hi(1− yi(m+1)) ≤ tim+1 (i,m) ∈ S (5.35)

Marine Harvest wants deliveries to their fish farms to be evenly spread throughout
the planning horizon. Due to production constraints, the factories can not provide
full ship loads every day and visits should be separated for factories as well. By
adding constraints (5.35), visits are separated by at leastHi hours for both factories
and fish farms.

Variable constraints

ximjnv ∈ {0, 1} (i,m) ∈ S, (j, n) ∈ Sv, v ∈ V (5.36)

yim ∈ {0, 1} (i,m) ∈ S (5.37)

ui ∈ {0, 1} i ∈ NC (5.38)

σimd ∈ {0, 1} (i,m) ∈ SC , d ∈ D (5.39)

qimvp ≥ 0 (i,m) ∈ S, v ∈ V, p ∈ P (5.40)

limvp ≥ 0 (i,m) ∈ S, v ∈ V, p ∈ P (5.41)

sim ≥ 0 (i,m) ∈ SP (5.42)

sEim ≥ 0 (i,m) ∈ SP (5.43)

simp ≥ 0 (i,m) ∈ SC , p ∈ P (5.44)

sEimp ≥ 0 (i,m) ∈ SC , p ∈ P (5.45)
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dimp ≥ 0 (i,m) ∈ SC , p ∈ P (5.46)

tim ≥ 0 (i,m) ∈ S (5.47)

tEim ≥ 0 (i,m) ∈ S (5.48)

5.3 Arc-Flow Formulation

To further develop our basic arc-load model, we tried two reformulations, as in Agra
et al. (2013a). In our first reformulation we replaced the load variables limvp with
limjnvp, indicating the flow on each arc instead of the load when leaving a visit. This
enables us to avoid the nonlinear load update constraints (5.9) and achieve tighter
constraints relating routing variables and load variables. The arc-flow formulation
is similar to the arc-load formulation except for constraints including the new
variables limjnvp. The loading and unloading constraints (5.8) - (5.11) are replaced
by the new constraints presented below. The formulation is illustrated in Figure
5.2 and the complete mathematical formulation can be found in Appendix B.

Figure 5.2: Illustration of the arc-flow formulation.
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5.3.1 Definitions

Decision variables

limjnvp Amount of product p on board ship v when traveling on arc (i,m, j, n) [tons]

5.3.2 Model formulation

Loading and unloading constraints

L0
vp + Jiqo(v)vp =

∑
(j,n)∈Sv

lo(v)jnvp v ∈ V, p ∈ P (5.49)

Constraints (5.49) set the load on board a ship after its initial visit equal to the sum
of its initial load and the quantity loaded or unloaded. They replace constraints
(5.8).

∑
(j,n)∈S

ljnimvp + Jiqimvp −
∑

(j,n)∈Sv

limjnvp = 0

(i,m) ∈ S\{o(v)}, v ∈ V, p ∈ P
(5.50)

For all subsequent visits, ship loads are updated according to constraints (5.50).
These are linear, as opposed to the previous load update constraints (5.9).

∑
p∈P

limjnvp ≤ KMAX
v ximjnv (i,m) ∈ S, (j, n) ∈ Sv, v ∈ V (5.51)

Constraints (5.51) limit a load to be equal to or less than a ship’s capacity and
replace constraints (5.10) and (5.11). If the arc (i,m, j, n) is not used by ship v,
the corresponding load variable is forced to zero.

Variable constraints

limjnvp ≥ 0 (i,m) ∈ S, (j, n) ∈ Sv, v ∈ V, p ∈ P (5.52)

5.4 Multi-Commodity Flow Formulation

In order to further tighten the formulation, we use the even more detailed load
variables limjnkovp. These include information about which visit (k, o) a load is
destined to, where (k, o) is a visit to a flow receiver. Flow receivers include all fish
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farms and the dummy end nodes d(v). If a ship has load destined to its dummy
end node, this load remains on board the ship at the end of the planning horizon.
As in the arc-flow model, we avoid the nonlinear load update constraints (5.9).
The constraints linking routing and load variables are further tightened, using the
extra information provided by the new variables. However, we also get a dramatic
increase in the number of variables and constraints. To avoid summing over a large
number of ximjnv variables in the many loading constraints, we have created a new
variable, wimv, indicating whether a visit (i,m) is made by ship v.

The multi-commodity flow model is similar to the arc-load and arc-flow models
except for constraints including the new variables limjnkovp and wimv. In this
section we present the variables and constraints in the the multi-commodity flow
model that differs from the arc-load and arc-flow models. A routing constraint to
set wimv according to ximjnv is added, and the loading and unloading constraints
(5.8) - (5.14) are replaced by the new constraints presented below. The formulation
is illustrated in Figure 5.3 and the complete mathematical formulation can be found
in Appendix C.

Figure 5.3: Illustration of the multi-commodity flow formulation.
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5.4.1 Definitions

Sets

SFv Set of visits to flow receivers for ship v, SFv = SC ∪ {d(v)}

Decision variables

wimv 1 if ship v makes visit (i,m), else 0
limjnkovp Amount of product p on board ship v on arc (i,m, j, n), [tons]

destined for visit (k, o)

Indices

k Flow receivers
o Visit numbers

5.4.2 Model formulation

Routing constraints∑
(j,n)∈Sv

ximjnv = wimv (i,m) ∈ S, v ∈ V (5.53)

Constraints (5.53) set the variable wimv according to whether ship v makes the
visit (i,m).

Loading and unloading constraints

L0
vp + Jiqo(v)vp =

∑
(j,n)∈Sv

∑
(k,o)∈SF

v

lo(v)jnkovp v ∈ V, p ∈ P (5.54)

Constraints (5.54) set the total load on board a ship after its initial visit equal
to the sum of its initial load and the quantity loaded or unloaded, and replace
constraints (5.8).

∑
(j,n)∈S

∑
(k,o)∈SF

v

ljnimkovp + Jiqimvp −
∑

(j,n)∈Sv

∑
(k,o)∈SF

v

limjnkovp = 0

(i,m) ∈ S\{o(v)}, v ∈ V, p ∈ P
(5.55)

For all subsequent visits, ship loads are updated according to constraints (5.55).
These are linear, as opposed to the original load update constraints (5.9).
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Constraints (5.56)- (5.60) replace constraints (5.10) -(5.12).

∑
(j,n)∈S

ljnimimvp − qimvp = 0 (i,m) ∈ SC , v ∈ V, p ∈ P (5.56)

∑
(j,n)∈Sv

limjnkovp −
∑

(j,n)∈S

ljnimkovp = 0

(i,m) ∈ SC , (k, o) ∈ SFv , v ∈ V, p ∈ P
(5.57)

When a load reaches a fish farm that is also its destination, constraints (5.56)
ensure that this load is equal to the quantity unloaded. When a load reaches a fish
farm that is not its destination, constraints (5.57) set the incoming load equal to
the outgoing load.

∑
(j,n)∈Sv

limjnkovp ≤
∑

(j,n)∈S

ljnimkovp + qimvp

(j, n) ∈ SP , (k, o) ∈ SFv , v ∈ V, p ∈ P
(5.58)

∑
(j,n)∈S

ljnimkovp ≤
∑

(j,n)∈Sv

limjnkovp

(i,m) ∈ SP , (k, o) ∈ SFv , v ∈ V, p ∈ P
(5.59)

Constraint (5.58) ensure that flows leaving the factory are not larger than the flows
entering the factory plus the quantity loaded. Constraints (5.59) ensure that flows
entering the factory must be smaller than or equal to flows leaving the factory.

∑
(k,o)∈SF

v

∑
p∈P

limjnkovp ≤ KMAX
v ximjnv (i,m) ∈ S, (j, n) ∈ Sv, v ∈ V (5.60)

Constraints (5.60) limit the total load on an arc to be below a ship’s capacity. If
an arc is not used by ship v, the corresponding load-variable is forced to zero.

∑
p∈P

limjnkovp ≤ SMAX
k ximjnv

(i,m) ∈ S, (j, n) ∈ Sv, (k, o) ∈ SFv , v ∈ V
(5.61)
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∑
p∈P

limjnkovp ≤ SMAX
k wkov (i,m) ∈ S, (j, n) ∈ Sv, (k, o) ∈ SC , v ∈ V (5.62)

Constraints (5.61) and (5.62) limit a load to be equal to or less than the
destination’s storage capacity. If an arc is not used by ship v or if the destination
of the load is not visited by ship v, the corresponding load variable is forced to
zero. Both constraints (5.61) and (5.62) are aggregated over product types. As
mentioned for constraints (5.12), the formulation would have been tighter if storage
capacities were product specific.

QMIN
ip wimv ≤ qimvp (i,m) ∈ SC , v ∈ V, p ∈ P (5.63)

∑
p∈P

qimvp = simwimv (i,m) ∈ SP , v ∈ V (5.64)

Constraints (5.63) and (5.64) are similar to constraints (5.13) and (5.14), except
that the new variable wimv is used instead of the ximjnv and yim variables.
Constraints (5.64) are nonlinear and replaced with linearizations similar to (6.3)
and (6.4) from Chapter 6.

Variable constraints

wimv ∈ {0, 1} (i,m) ∈ S, v ∈ V (5.65)

limjnkovp ≥ 0 (i,m) ∈ S, (j, n) ∈ Sv, (k, o) ∈ SFv , v ∈ V, p ∈ P (5.66)
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Chapter 6

Implementation

The three formulations described in Chapter 5 are written in Mosel and
implemented in Xpress-IVE Version 1.24.00, 64 bit. We have run all tests on
computers in NTNU’s HPC-cluster, Solstorm. The Xpress Optimizer Version of
these computers is 25.01.05. In the cluster, computers of the same type are located
in the same rack. Computers in rack 3 are faster than computers in rack 5, which
have more memory. Since many of our model runs need a lot of memory, we have
mostly used computers in rack 5. For one of our parallelization frameworks, speed is
more important, and for this we have used rack 3. The specifications for computers
in rack 3 and 5 are listed in Table 6.1.

Rack 3 Rack 5

Operating system CentOS Linux CentOS Linux

Processor 2.4GHz AMD Opteron 2431 2.2GHz AMD Opteron 6274

Number of processors 2 4

Cores per processor 6 16

Memory (RAM) 24 GB 128GB

Table 6.1: Specifications of computers in Solstorm.

In Section 6.1, we describe the test cases we have used for testing the three
formulations. In Sections 6.2 and 6.3 we present adjustments and simplifications
we have made to be able to implement linear and solvable models. Section
6.4 describes attempts to improve the models, such as tightening of constraints
and valid inequalities. Lastly, Section 6.5 presents our work on parallelizing the
branch-and-bound search by creating two frameworks.
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6.1 Test Cases

As mentioned in Chapter 3, we have implemented less general models than the
formulations given in Chapter 5. We look at the current situation with two
homogeneous ships and one factory and we will test our models using three test
cases with 20, 40 and 60 fish farms. We use realistic data provided by Marine
Harvest for Region North, Mid and West during high season. For the test cases
with 20 and 40 fish farms, the production rate and the storage capacity of the
factory and ships are downscaled to one-third and two-thirds, respectively. The
test case with 60 fish farms use full-scaled values and includes all fish farms from
Region North, Mid and West that have biomass during the period from which we
have calculated our demand rates. Since our demand data is from the high season,
we have excluded fish farms that have smolt release at this time, because smolts
released at fall are smaller and require special feed not supplied by the factory.

The production rate is an estimation given by Marine Harvest, since the factory
is not yet operating. It will vary throughout the year, but kept constant at an
estimated maximum level of 45 tons per hour during high season. Maximum storage
capacity of the ships, factory and fish farms are known. The ships and the factory
have an equal capacity of 3000 tons. The hourly consumption rates for fish farms
are calculated from historical monthly data. An overview of data related to the
factory, ships and fish farms for each test case can be found in Appendix D.

The safety stock level is set to one feed day for each fish farm. The service hours
at fish farms are from 8:00 a.m. to 4:00 p.m. every day. Outside working hours,
storage capacity is reduced with 10% for all fish farms. Visits to the factory and
fish farms should be separated by 24 hours. This enables us to calculate minimum
unload quantities for fish farms by finding the amount of feed consumed during
this time. The loading rate is 270 tons per hour, while the unloading rate is 180
tons per hour.

Travel distances between all locations are estimations provided by Marine Harvest
and travel times are calculated using a constant speed of 13 knots. The
transportation cost is 1600 NOK per hour, calculated with help from Ivar Christian
Ulvan (Egil Ulvan Rederi, 2014) and Océane Balland (Balland, 2014). The cost is
based on LNG consumption per hour and is dependent on LNG prices. The cost of
external supply is divided into two parts, a fixed transportation cost of 4400 NOK
for each fish farm and a profit margin of 250 NOK per ton of feed. The external
transportation cost is parameterized relative to the internal transportation cost,
while the profit margin is an estimation we have made using Marine Harvest’s
current cost of standard feed. The penalty cost per hour of being below the safety
stock level is parameterized to make cost-effective plans, while avoiding low stock
levels. It has been set to 400 NOK per hour and is equal for all fish farms. Since
all costs are rough estimations made by us, they should not be interpreted as real
cost values. More detailed calculations can be found in Appendix E

A planning horizon of two weeks resulted in a too large problem size. Therefore,
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we have decided to use a planning period of 10 days. This allows us to plan for
the coming week, while also accounting for three more days of production and
consumption. To be able to solve the problem, initial stock levels must be set in
accordance with the planning period. Fish farms have initial stock levels of six feed
days, since this was the lowest level that could be used with a planning period of
10 days. If initial stock levels are lower, the solver is not able to find any feasible
solutions after running for 10 hours. The initial stock level at the factory is set
to half capacity. Both ships are assumed to start at the factory and are initially
empty.

6.2 Model Adjustments

6.2.1 Linearizing constraints

In order to solve the models with Xpress-Optimizer, we have linearized the
nonlinear constraints from Chapter 5 by using the Big M method (Griva et al.,
2009).

limvp + Jjqjnvp − ljnvp +KMAX
v ximjnv ≤ KMAX

v

(i,m) ∈ S, (j, n) ∈ Sv\{o(v)}, v ∈ V, p ∈ P
(6.1)

limvp + Jjqjnvp − ljnvp −KMAX
v ximjnv ≥ −KMAX

v

(i,m) ∈ S, (j, n) ∈ Sv\{o(v)}, v ∈ V, p ∈ P
(6.2)

Constraints (6.1) and (6.2) linearize constraints (5.9). Since KMAX
v is the largest

value that limvp + Jjqjnvp − ljnvp can take and −KMAX
v is the smallest, the

constraints are only binding if an arc is used.

∑
v∈V

∑
p∈P

qimvp ≤ sim + SMAX
i yim (i,m) ∈ SP (6.3)

∑
v∈V

∑
p∈P

qimvp ≥ sim − SMAX
i yim (i,m) ∈ SP (6.4)

Constraints (6.3) and (6.4) linearize constraints (5.14). Since SMAX
i is the largest

value that qimvp + sim can take and −SMAX
i is the smallest, the constraints are

only binding if a visit made. By replacing yim with wimv, we get the linearizations
of constraints (5.64).

tEim + TSij
∑
v∈V

ximjnv − tjn + TMAX
∑
v∈V

ximjnv ≤ TMAX

(i,m) ∈ S, (j, n) ∈ S\{o(v)}
(6.5)
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Constraints (6.5) linearize constraints (5.28). Since (5.28) is an inequality, only one
relation is needed for the linearization. The largest value that tEim − tjn can take
is TMAX and the constraint is only binding if a visit is made.

tim − tEi(m−1) + TMAXyim ≤ TMAX (i,m) ∈ S|m > 1 (6.6)

tim − tEi(m−1) − T
MAXyim ≥ −TMAX (i,m) ∈ S|m > 1 (6.7)

Constraints (6.6) and (6.7) linearize constraints (5.31), by using two inequalities to
ensure equality when a visit is not made. The largest value that tim − tEi(m−1) can
take is TMAX and the constraint is only binding if a visit is made.

6.2.2 Slack in equality constraints

∑
v∈V

∑
p∈P

qimvp − kim ≤ sim + SMAX
i yim (i,m) ∈ SP (6.8)

∑
v∈V

∑
p∈P

qimvp + kim ≥ sim − SMAX
i yim (i,m) ∈ SP (6.9)

Constraints (6.3) and (6.4) ensure that the quantity loaded equals the current stock
level at the factory. Equalities may result in numerical problems for commercial
solvers and lead to infeasibility. Therefore, we include a slack variable kim in both
constraints and replace them with (6.8) and (6.9). To ensure that the stock is
cleared, the slack variable has a large cost term in the objective function.

6.3 Problem Reduction

6.3.1 Simplifications

The implementation is simplified due to lack of data regarding different product
types, which forces us to only use aggregated values. Therefore, we are not able
to explore the feasibility of solutions regarding stowage of product types on board
ships. Also, we have not received information about which fish farms that need
external supply of special feed and we will not be able to ignore the transportation
cost of external supply for any fish farms.
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6.3.2 Sets of fish farms

In order to reduce the number of routing variables, we have split the fish farms
into two sets and each ship is fixed to one set. Splitting results in a less flexible
model, but it helps reduce the number of symmetric solutions arising from the
fact that we have two homogeneous ships. This is also in accordance with Marine
Harvest’s view of operation, where each ship most likely will serve partly separate
areas. In Ivarsøy and Solhaug (2013) we considered two alternative splits, a full
split and a partial split. In the first splitting approach, the fish farms farthest
north are served by one ship, while the ones farthest south are served by the other
and the two sets are disjunct. The partial split includes the fish farms closest to
the factory in both sets, since it will not be a significant detour for a ship sailing
in either direction to visit them. We consider both the partial and full split to
be reasonable simplifications, due to the geographical situation of the fish farms
along the Norwegian coast. Results from Ivarsøy and Solhaug (2013) showed that
the partial split was the best alternative and we have continued using this. The
full split has been considered for the largest instance, as an attempt to reduce the
problem size further.

6.3.3 Reduced number of visits

Results in Ivarsøy and Solhaug (2013) showed that most fish farms are only visited
once with a planning horizon of 10 days. With initial stock levels of six days, no
fish farm requires more than one visit. Since each additional visit number leads
to one additional arc variable to all other locations’ visit numbers, the variable
reduction by setting this limit tight is significant. Reducing the number of visits
limits the model flexibility and therefore we allow two visits per fish farm for the
smallest test case. For the larger test cases, the number of visits must be reduced
to one, in order to achieve solutions within reasonable time limits. If the models
were to be run with a longer planning horizon, multiple visits would be necessary
to most fish farms.

6.3.4 Aspect of service hours removed

In Ivarsøy and Solhaug (2013) we discovered that the solutions obtained from the
model did not seem to utilize the extra capacity obtained when arriving within
service hours, since large deliveries are rarely made. If the extra capacity is not
needed, the σimd variables may not be set to 1, even though the visit is within
service hours. For the largest test case, we have also tested our formulations without
the aspect of working hours, as an effort to reduce the number of binary variables
and thereby problem complexity.
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6.3.5 Elimination of variables

To be able to solve the planning problem within reasonable time, elimination of
variables is essential. By disregarding multiple products, fixing ships to sets of
fish farms and only allowing one visit to each fish farm, the number of variables
is dramatically reduced. The decision variables x, y, u and w should only take the
values 0 or 1 and this results in a problem with many binary variables. Therefore,
we have made further effort to reduce the number of binary variables. As mentioned
in Chapter 5, u is not included in the implementation. Constraints (5.2), (5.5) and
(5.53) ensure that variables y and w are always set to 0 or 1, even when declared
as continuous. Therefore, it is enough to declare x as binary, but with five indexes
there are still many binary variables.

We have reduced the number of x variables by only creating variables where i 6=
j. Also, x variables are only created for allowed combinations of locations, visit
numbers and ships, with regards to sets of fish farms and allowed number of visits.
The restrictions on allowed combinations are also used when creating the other
variables, such as the load variables l. It is especially important to reduce the
number of load variables in the multi-commodity flow formulation, since these
variables have seven indexes. The elimination of variables also allows us to reduce
the number of constraints created, by only creating constraints where a related
variable exists for the corresponding index combination.

6.4 Attempts of Model Improvement

6.4.1 Special ordered sets

A time window for working hours is given for each day of the planning horizon. The
implementation of soft time windows is done using the binary variables, σimd. For
each fish farm visit (i,m), at most one of the |D| time window variables σimd can
be chosen. Therefore, we have also tried modeling the variables as part of a special
ordered set of type 1 (SOS1). A SOS1 is an ordered set of variables where at most
one variable can have a non-zero value. This means that there is one SOS1 for each
fish farm visit (i,m) and the set variables are ordered according to days. Branching
on SOS1 variables leads to more balanced search trees and is more efficient than
branching directly on binary variables, as discussed in Beale and Tomlin (1970).

6.4.2 Tightening constraints

We have attempted to tighten the models by creating time windows for the time
variables tim and tEim.
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Aim Earliest start time for visit (i,m)
Bim Latest start time for visit (i,m)
AEim Earliest end time for visit (i,m)
BEim Latest end time for visit (i,m)

Aim(1− yim) ≤ tim ≤ Bim (i,m) ∈ S (6.10)

AEim(1− yim) ≤ tEim ≤ BEim (i,m) ∈ S (6.11)

Constraints (6.10) and (6.11) limit the value of a visit’s start and end time. If a
visit is not made, the time variables are set equal to the end of the previous visit
and the lower bound should not apply.

The earliest start time for each first visit to a location is calculated as the travel time
from the nearest possible initial position. The earliest start time for subsequent
visits is set to the earliest start time of the previous plus the minimum number of
hours between each visit. The latest start time for the first visit to a fish farm is
when its stock level reaches zero, while for the factory it is when the maximum
capacity is reached. The latest start time for subsequent visits to fish farms is the
latest end time of the previous visit plus the time it takes to reach a stock level of
zero, given that it was filled to maximum. For the factory, the latest start time for
subsequent visits is given by the latest end time of the previous visit plus the time
it takes to again reach maximum capacity, given that the stock was cleared.

The earliest end time of a visit to a location is the earliest start time of the visit
plus the loading or unloading time of the minimum loading or unloading quantity.
The minimum loading or unloading quantity is given by the minimum number of
hours between visits to a location. The latest end time is set to the latest start
time plus the time it takes to load or unload the maximum quantity, given by the
location’s storage capacity. If any of the calculations give a value higher than the
end time, TMAX , the value is set to TMAX instead.

Creating time windows for each visit, allows us to tighten the linearizations of the
timing constraints, (6.5), (6.6) and (6.7). Instead of using TMAX as the Big M, we
use the time windows for the time variables.

tEim + (TSij +BEim −Ajn)
∑
v∈V

ximjnv − tjn ≤ BEim −Ajn(1− yj1)

(i,m) ∈ S, (j, n) ∈ S
(6.12)

In constraints (6.12) we use the difference between the latest end time of visit (i,m)
and the earliest start time of visit (j, n) as Big M. The tightening effect from using
time windows is strongest for the first visit numbers, since the difference between
start and end times is larger for higher visit numbers. The earliest start time of
visit (j, n) should only be subtracted from the right hand side if location j is visited.
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If the location is not visited, tjn is zero, and we risk infeasibility if tEim is larger
than BEim −Ajn.

tim− tEi(m−1) + (Bim−AEi(m−1))yim ≤ Bim−AEi(m−1) (i,m) ∈ S|m > 1 (6.13)

tim − tEi(m−1) − (Bim −AEi(m−1))yim ≥ −(Bim −AEi(m−1))
(i,m) ∈ S|m > 1

(6.14)

In constraints (6.13) and (6.14) we use the difference between the latest start time
of visit number m and the earliest end time of visit number (m− 1) as the Big M
for each location i.

6.4.3 Valid inequalities

In order to tighten the linear relaxation of the problem, we have attempted to create
valid inequalities to cut off solutions that are not integer feasible. This could make
the problem easier to solve. We have created cuts that are added a priori to the
formulations and also tried generating cuts dynamically as they are violated.

Minimum visit number

We have calculated the minimum number of visits required for each location i,
given by µi. µi is calculated by dividing location i’s net demand by its maximum
storage capacity. The net demand of the factory is given by the total production
during the planning horizon plus the initial stock, less the storage capacity. The
net demand of a fish farm is given by its total demand during the planning horizon
less its initial stock level.

∑
(j,n)∈Sv

∑
v∈V

xiµijnv = 1− yi1 i ∈ NC ∪NP (6.15)

The equalities (6.15) ensure that the visit number equal to a location’s minimum
number of visits is used, given that the first visit to the location is made. The
symmetry breaking inequalities (5.6) ensure that all visit numbers up to this are
used as well.
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Minimum load destined to a fish farm

For the multi-commodity flow formulation, the net demand NDi can be used as a
lower bound on loads destined to a fish farm i.

∑
(j,n)∈S

∑
m∈Mi

∑
v∈V

ljnimimv ≥ NDiui i ∈ NC (6.16)

The inequalities (6.16) ensure that the total load destined to a fish farm is at
least enough to cover its net demand. If the fish farm is supplied externally, the
constraints are not binding.

Subtour elimination constraints∑
v∈V

ximjnv +
∑
v∈V

xjnimv ≤ 1 (i,m), (j, n) ∈ S (6.17)

By running the models without binary restrictions on the routing variables ximjnv,
the problem solves immediately. We discovered that between pairs of fish farms
with short travel times, the routing variables are often set to a fractional value close
to one for both arcs connecting two nodes, (i,m, j, n) and (j, n, i,m). Constraints
(6.17) eliminate these subtours.

Dynamic cut generation

We have also tested a set of cuts called clique inequalities, as described in Agra
et al. (2014). These inequalities are created by finding conflicting routing variables.
In our implementation, this means finding a set of ximjnv variables where at most
one of the variables can be used. We have considered the following conflicts:

ximjnv and xjnimw where (i,m), (j, n) ∈ S, v, w ∈ V
ximjnv and ximkow where (i,m), (j, n), (k, o) ∈ S, v, w ∈ V
xjnimv and xkoimw where (i,m), (j, n), (k, o) ∈ S, v, w ∈ V
xjnimv and ximjow where (i,m), (j, n), (j, o) ∈ S|n > o, v, w ∈ V
xjnimv and ximkow where (i,m), (j, n), (k, o) ∈ S, v, w ∈ V|v 6= w

The first conflict is equal to the subtour elimination constraints (6.17). The second
says that you can not go from a location to more than one other location and the
third says that you can not go to a location from more than one other location.
The fourth conflict says that you can not come from a location with a visit number
n and then leave to the same location with a visit number lower than n. The last
conflict says that if you enter a location using ship v, you can not leave using ship
w.

Adding all such inequalities a priori would create a very large set of redundant
constraints. Instead, we have used the cut manager in Xpress to dynamically
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create clique inequalities as they are violated during the branch-and-bound search.
A current fractional solution is searched for conflicting variables and a conflict
matrix is created. Finding the maximum clique is an NP-hard problem, and instead
we use a heuristic approach to find some clique. First, we find the pair of conflicting
variables with the largest total fractional value and then other conflicting variables
are added in a greedy fashion. If the resulting clique of conflicting variables sums
to more than one, a cut is added. Due to this simple heuristic approach, cuts are
not necessarily found, even though there could be many.

6.4.4 Aggregated variables for branching

As explained earlier, an effort has been made to reduce the number of variables.
This includes only implementing variables that are strictly needed to solve the
problem. However, a variable that is aggregated from the x variables could be
preferable to branch on. In order to test this, we have added the variables wimv used
in the multi-commodity flow formulation to the arc-load and arc-flow formulations
as well. We have also experimented with prioritizing which binary variables to
branch on by using the function setmipdir in Xpress (Dash Optimization, 2007).

6.4.5 Stricter constraints

Stricter constraints could make the model more realistic and easier to solve.
Therefore, we have experimented with constraints to remove end-of-horizon (EOH)
effects and increased minimum unloading quantities.

EOH

To avoid unwanted EOH effects, constraints should be added to ensure that not all
stock levels reach their extreme values at the end of the planning horizon. We have
experimented with limits on aggregated stock levels for fish farms and a downscaled
capacity at the factory.

sEim + Pi(TMAX − tEim) ≤ 0.8 · SMAX
i (i,m) ∈ SP |m = |Mi| (6.18)

The EOH constraint for the factory is given as (6.18), where the end stock level is
limited to 80% of maximum storage capacity.

D
∑
i∈NC

SMIN
ip ui ≤

∑
i∈NC

[sEimp−Rip(TMAX − tEim)− S0
ip(1− ui) +RipT

MAX(1− ui)]

m = |Mi|
(6.19)
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The EOH constraint (6.19) for fish farms require the total fish farm stock to be
at least D times the total safety stock of all fish farms. We have experimented
with two and three times the total safety stock level. Externally supplied fish
farms should not contribute to the total amount. These fish farms have all stock
variables set to initial stock levels, and therefore this term is subtracted, while the
term for remaining demand is added to ensure that the right hands side equals
zero.

Minimum unloading quantities

In the original model, minimum unloading quantities were set to one feed day
for each fish farm. Marine Harvest believes that at least three feed days will be
delivered at each visit. Therefore, we have experimented with values of two, three
and four feed days.

6.5 Parallel Branch-and-Bound Search

The problem formulated in Chapter 5 is complex and has an enormous solution
space. In an effort to decrease the solution time, we have attempted to parallelize
the work of searching the solution space by embedding the formulation that
performs best, within a parallel branch-and-bound framework. We have explored
two levels of branch-and-bound parallelization, resulting in the development of two
frameworks. The frameworks are written in C++, while underlying models are still
solved using Xpress Optimizer. The C++ code for both frameworks can be found
in Appendix F.

As illustrated in Figure 6.1, we have a master process which governs n worker
processes. Communication is done using the standard Message Passing Interface
(MPI). The master sends subproblems to workers, while workers send solutions to
the master. There is no intermediate information sharing on current incumbent
solution or lower bounds and workers do not communicate with each other. To
account for the increased use of resources, the solution time should decrease
accordingly. As explained in Chapter 4, this is not necessarily the case, since
both detrimental and acceleration anomalies can occur.

The first framework utilize the fact that each branch-and-bound node can be solved
separately, and the branch-and-bound search is governed by the framework. The
second framework creates n subtrees and lets the workers completely solve these.
Here, the branch-and-bound search is only initiated by the framework and Xpress
Optimizer is used to search the subtrees created.
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Figure 6.1: Illustration of a parallel branch-and-bound framework.

6.5.1 Parallel work on nodes

The first framework parallelizes the work of solving branch-and-bound nodes.
Figure 6.2 shows the implemented classes with the most important fields and
functions. The search process is governed by bbclass and is run from the master.
Each node, represented by nodeclass, contains a list of which binary variables are
relaxed or fixed and a lower bound derived from its parent’s solution value.

The master starts by creating a node where all binary restrictions on variables are
relaxed. This node is sent to a worker process, governed by workerclass, which
solves the relaxed problem and returns a solution. If the solution is infeasible, the
problem is infeasible and the algorithm stops. If the solution is integer feasible, the
optimal solution is found. If the solution is feasible, but not integer feasible, the
problem is branched into two subproblems. A variable is fixed to either 0, creating
the down-child, or 1, creating the up-child. The parent node is removed from the
nodepool, and the two children nodes are added. Subsequent solutions that are
infeasible or integer feasible result in nodes being pruned, meaning they are simply
removed from the nodepool. If a solution is integer feasible and better than an
incumbent solution, the master saves this node as the incumbent node.

When all workers have returned their solutions, the master distributes the next
problems to be solved, meaning that the algorithm is synchronous. Solving each
node problem takes little time, since all binary variables are either relaxed or fixed.
Therefore, waiting for other workers should not lead to high idle times. However,
the master can become a bottleneck since it has to collect all solutions from workers,
branch or prune nodes, and distribute new problems.
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Figure 6.2: Classes implemented in the node-based parallel branch-and-bound
framework.

The decisions on which variable to branch on and which node to solve next are made
rather simply. If a problem is feasible, but not integer feasible, the worker returns
the variable with a value closest to 0.5 and the master branches on this. The node
list is sorted in a depth first search order, and the deepest node is always sent first.
We have tested sorting the down-child before the up-child and vice versa. There are
no heuristics or cuts added during the search or sophisticated branch-and-bound
rules. Due to this and the fact that our implementation is synchronous, we do not
expect to achieve linear speedup.

The node-based framework has been tested on computers from Solstorm’s rack 3,
since these computers are faster than those in rack 5. The computers in rack 3 have
24 gigabytes of memory each, while the computers in rack 5 have 128 gigabytes.
Since the first framework is based on having several workers solve LP problems,
little memory is needed for each worker. The master process could risk running
out of memory, since it needs to keep track of all open nodes, but we view the
increased speed as more important and chose to use rack 3.

6.5.2 Parallel work on subtrees

In our second framework, the master divides the original problem into n
subproblems by fixing log2 n binary variables. After this, the branch-and-bound
search is governed by Xpress, since each worker solves its problem as a mixed
integer program with the given fixed binary variables. When a worker is done
optimizing or the maximum time limit is reached, it reports back to the master
whether a problem was infeasible or feasible, and the value of the best integer
solution, if any. When receiving a solution, the master saves the best solution found
so far as the incumbent solution. Figure 6.2 shows the two classes implemented,
which are similar to the classes bbclass and workerclass for the first framework. No
representation of nodes is needed here, since the master only distributes subtrees
once.
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Figure 6.3: Classes implemented in the tree-based parallel branch-and-bound
framework

Solving each mixed integer program takes a long time. To achieve an effective
use of resources, the algorithm should be asynchronous. This means that workers
receive new work once they are free and the master reports on the current upper
bound to workers in order for them to terminate if working on a subtree with a
worse lower bound. However, developing an asynchronous algorithm is complex
and we opted for a simple synchronous algorithm where each worker solves their
designated integer programs, and the master waits for all workers to finish. The
choice of which variables to fix are made rather simple, but we have chosen to
fix variables that indicate whether an arc between two closely located fish farms
should be used or not, since we believe that these are likely to be used in a good
solution. In order to avoid workers becoming idle due to infeasible subtrees, we
have ensured that the binary variables to fix do not yield infeasible subproblems
for any combination of fixed variables.

The tree-based framework was tested on rack 5, since every worker needs a large
amount of memory to solve their assigned subtrees. A computing node in rack 5
has four processors, each consisting of 16 cores, meaning that there can be up to
64 workers on one computer. With multiple workers sharing one computer, the
total number of workers can be increased and hence more binary variables can be
fixed. However, Xpress Optimizer is able to utilize up to 50 parallel threads during
the branch-and-bound search and when many workers share one computer, there
will be less threads available for internal parallelization. This could lead to Xpress
working slower. The workers also risk running out of memory, as this will be shared
among them. With only one worker per computer, the worker can fully utilize the
internal parallelization of Xpress and does not need to share the 128 gigabytes of
memory with other workers.

We have tested the framework using several configurations, both with one and
multiple workers per computer. Due to strained availability of resources, we could
only use 16 computers from rack 5 for parallel testing. Therefore, the option
with one worker per computer was limited to a total of 16 workers. With several
workers sharing one computer, we have used 32 workers, where two workers share
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one computer, 64 workers, where four workers share one computer and 128 workers,
where eight workers share one computer. With 16, 32, 64 and 128 workers, we can
fix four, five, six and seven binary variables, respectively.
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Chapter 7

Computational study

This chapter gives an overview of the results from testing our three formulations
using three various-sized test cases. For each combination of formulation and test
case, tightened constraints and valid inequalities have been tested, both separately
and in combination. These are hereby referred to as test instances. Firstly, we
present the different test instances and the notation of these in Section 7.1. In
Section 7.2 we present results from the smallest test case. Here, we have tested the
effect of using special ordered sets of type 1 (SOS1) for the time window variables
σimd, as well as the effect of different cuts. Sections 7.3 and 7.4 present the results
from model runs for the medium and large test case, respectively. For the large
test case, we have also tested the effects of further improvements and problem
reduction. Section 7.5 gives a comparison of the three formulations. In Section 7.6
we present the results from testing our two parallel frameworks on the instance that
turned out to perform best. Lastly, Section 7.7 explores the best solution found
with regards to costs, underage and utilization of production and transportation
capacity.

7.1 Test Instances

Each test instance is named according to which test case it belongs to, which
formulation is used and which cuts have been added. The abbreviations used are
listed in Table 7.1. For example, 20_AL_T denotes the small test case, using
the arc-load formulation with limits on time variables. The TM instance is an
extension of the T instance, where the limits on time variables are used as Big
M in linearized time constraints. MV, S and ML denotes the valid inequalities
described in Chapter 6, related to minimum number of visits, subtour elimination
and minimum load to a destination. B is the basic formulation without tightening
of constraints or valid inequalities added.
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Test cases: Notation
20 fish farms 20
40 fish farms 40
60 fish farms 60
Formulations:
Arc-load AL
Arc-flow AF
Multi-commodity flow MCF
Cuts:
Basic - no cuts B
Limits on time variables T
Tightened linearizations of time constraints TM
Minimum number of visits MV
Subtour elimination constraints S
Minimum loads to a destination ML

Table 7.1: Notation for test instances.

In the result tables, we will list the best integer solution found, the lower bound and
the gap between these. Values are given in 1000 NOK. Note that we have used our
own cost estimates and hence the values should not be interpreted as actual costs.
The best solution and lower bound among the different formulations and instances
for a test case are boldfaced. If a subsequent model run finds a better solution or
bound for the test case, this value will also be boldfaced. A dash, – , means that
no integer solution was found within the set running time. An asterisk, *, means
that the instance ran out of memory before the set running time had passed. The
ML instance only applies to the multi-commodity flow model, and results are not
applicable, N/A, for the other two models.

We started our testing with the small-sized test case, then the medium-sized and
lastly, the real-sized test case. Along the way, we have made certain conclusions
and not all configurations are tested for all test cases. If a cut did not seem to
give any improvement or a formulation proved inefficient, it was excluded from
subsequent tests.

7.2 Small-Sized Test Case

In the small-sized test case, there are 20 fish farms to supply. We use a partial split
of fish farms, as explained in Chapter 6, and allow two visits to each fish farm.
The problem size of the basic instance for each formulation is shown in Table
7.2. We see that the number of binary variables is the same for all formulations,
while the multi-commodity flow formulation has a much larger number of variables
and constraints compared to the other two. This is because of the many load
variables, limjnkov. The arc-flow formulation has more variables than the arc-load
formulation, but fewer constraints, since the nonlinear loading constraints (5.9) are
avoided.
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20_AL_B 20_AF_B 20_MCF_B

Variables: Before presolve 2,493 4,130 46,020
After presolve 2,398 3,973 44,127

Binary variables: Before presolve 2,099 2,099 2,099
After presolve 2,034 2,033 2,032

Constraints: Before presolve 6,358 4,889 90,408
After presolve 6,017 4,460 83,264

Table 7.2: Problem size of the basic instances for the small test case.

Xpress Optimizer has an integrated presolve function which manages to reduce the
number of variables and constraints for all three formulations. The instances with
cuts added have more constraints than the basic instance before presolve. After
presolve is applied, the problem sizes are similar to the basic instance. This could
be because some of the added constraints are redundant and removed, but it could
also be that the added cuts help remove other constraints and variables.

7.2.1 LP bound

The solution of the linear programming (LP) relaxation for each combination of
formulation and instance is given in Table 7.3. As expected from theory, the LP
optimum of the arc-flow formulation is higher than for the arc-load formulation.
The multi-commodity flow formulation has a slightly higher LP optimum than the
arc-flow formulation for all but the MV instance. If constraints (5.61) and (5.62)
had not been aggregated over products, the multi-commodity flow formulation
probably would have been even tighter. We remark that the arc-load and arc-flow
models find the LP optimum in an instant, while the multi-commodity flow
model takes around 20 minutes to find the LP solution. A tighter formulation
results in a smaller branch-and-bound tree, but this often comes at the cost of
an increased number of variables and constraints. Then, the solution time of
each branch-and-bound node increases, as observed for the multi-commodity flow
formulation.

B T TM MV S ML MV_S
20_AL 94.50 94.50 94.50 101.04 98.60 N/A 105.5
20_AF 99.11 99.11 99.11 105.38 100.74 N/A 107.01
20_MCF 99.19 99.19 99.19 105.38 100.82 99.19 107.01

Table 7.3: LP optima for the small test case, all formulations and instances.

For all formulations, the LP optimum increases when adding the constraints for
minimum number of visits and subtour elimination, where the first has the largest
impact. The subtour elimination constraints have a larger impact on the arc-load
formulation than the two other formulations, since it has more subtours in its LP
solution. When combining the instances MV and S, the LP bound increases further
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for all three formulations. The tightenings related to time variables do not cut off
the LP optimum of the basic instance for any of the formulations and neither do
the minimum load constraints for the multi-commodity flow formulation.

7.2.2 SOS1

We have tested the basic instance for all three formulations with and without SOS1
for the σimd variables. The maximum running time was set to 10 hours. As can
be seen from Table 7.4, the instances with SOS1 achieve smaller gaps for all three
formulations. The best solution and bound for each formulation are found with
SOS1, but the arc-flow formulation finds the same solution without SOS1.

20_AL_B 20_AF_B 20_MCF_B

Without SOS1
Best solution 143.49 137.27 149.00
Lower bound 123.71 130.03 114.78
Gap 13.8% 5.3% 23.0%

With SOS1
Best solution 137.72 137.27 138.39
Lower bound 126.64 131.25 108.27
Gap 8.0% 4.4% 21.8%

Table 7.4: Results for the small test case, with and without SOS1. Running time:
10 hours.

The branch-and-bound tree will be different for implementations using SOS1
compared to only using binary branching. If the set is ordered in a good way, SOS1
could have a positive effect on the branch-and-bound search. However, Xpress
Optimizer use efficient strategies for binary branching as well. Even with a natural
order on the SOS1 variables, the effect could sometimes be positive, sometimes
negative. Since the effect appears to be positive for all formulations, we have
decided to use SOS1 in subsequent tests, although we have experienced that the
extra capacity obtained when visiting within service hours is rarely utilized. Hence,
all the σimd variables in a set are often set to zero, and if none of the variables in
a set is used, the set will not be branched on.

We are not sure if the positive effect results from random differences from a few
diverging branching decisions or from improved branching due to using SOS1. We
believe that with more correct data, the service hour aspect would be more utilized
and using SOS1 could prove to have a more pronounced positive effect. Even
though the σimd variables are rarely used, we wish to keep the aspect of service
hours in the model. Marine Harvest has emphasized that being able to load up to
100% of capacity is important.
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7.2.3 Tightened constraints and valid inequalities

Xpress Optimizer’s presolve function generates sophisticated cuts and improves
the bounds of the problem before the actual branch-and-bound search starts. In
general, disabling presolve should lead to a larger search tree and worse upper
and lower bounds. When testing the different cuts, we have run the models with
presolve disabled, as well as enabled, in order to test the effect of cuts without
having Xpress Optimizer generate improvements of its own. All instances have
been run for one hour, due to the large number of instances to test, even though it
is more common with longer running times. The results are given in Table 7.5. As
can be seen, some instances of the multi-commodity flow model did not find any
integer solutions.

Presolve B T TM MV S ML

20_AL

Off
Best solution 148.00 147.72 138.71 138.39 149.74
Lower bound 115.70 114.06 116.73 120.05 114.50 N/A
Gap 21.8% 22.8% 15.9% 13.3% 23.5%

On
Best solution 137.72 138.72 147.00 142.72 139.57
Lower bound 123.00 120.00 119.00 121.04 122.43 N/A
Gap 10.69% 13.5% 19.1% 15.2% 12.3%

20_AF

Off
Best solution 141.74 141.55 138.72 137.72 141.49
Lower bound 120.03 118.23 122.35 125.51 117.37 N/A
Gap 15.5% 16.5% 11.8% 8.9% 17.1%

On
Best solution 137.72 140.72 138.72 137.72 137.72
Lower bound 123.29 122.54 121.50 122.35 127.18 N/A
Gap 10.5% 12.9% 12.4% 11.2% 7.65%

20_MCF

Off
Best solution - 179.74 47,674 157.77 173.45 183.14
Lower bound 103.82 104.12 101.90 106.80 103.26 104.26
Gap - 42.1% 99.8% 32.7% 40.5% 43.1%

On
Best solution - 182.75 149.00 - 151.90 -
Lower bound 108.27 109.54 109.64 108.85 109.31 107.85
Gap - 40.1% 26.4% - 28.1% -

Table 7.5: Results for the small test case, with presolve enabled and disabled.
Running time: One hour.

The best solution among the three formulations is found using the arc-load and
arc-flow formulations, both with presolve enabled. The best bound is found by the
arc-flow instance S, which also finds the best solution. The best solution and lower
bound of 137.72 and 127.18 give a gap of 7.65%. In Table 7.5, these values are not
boldfaced as they are not better than the solution and bound found when testing
without and with SOS1 for 10 hours, see Table 7.4.

For the arc-load formulation with presolve disabled, three of the instances with
cuts are better than the basic instance. However, the basic instance with presolve
enabled is better than all instances for this formulation, indicating that Xpress
Optimizer is able to add these cuts more efficiently by itself. This is also the
case for the arc-flow formulation, where the basic instance with presolve enabled is
better than instances T, TM and S with presolve disabled.
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For the arc-flow formulation, the subtour elimination constraints only have a
positive effect on the lower bound of the basic instance with presolve enabled,
possibly because presolve is able to utilize the extra constraints better. The MV
instance with presolve disabled achieves a better lower bound than all but the S
instance with presolve enabled. This is not as expected and it is difficult to explain,
as we do not have sufficient knowledge about how presolve is performed by Xpress.

The multi-commodity flow formulation with presolve disabled finds integer
solutions for all but the basic instance. With presolve enabled no solution is
found for the MV and ML instances and they seem to complicate the formulation
more than improving it. This is not as expected, since presolve in general should
improve the branch-and-bound search, but we believe it is due to random differences
in branching decisions. All bounds for this formulation are better with presolve
enabled.

Of the three formulations, it is the arc-flow model that performs best and it has the
smallest gaps for all instances. None of the cuts appear to perform significantly
better or worse than others. Since using presolve in general should give better
solutions and bounds faster, subsequent tests are performed with presolve enabled.
We have increased the running time to 10 hours., which will also be used for
subsequent tests.

The results from running all instances for 10 hours can be found in Table 7.6. As
can be seen, the arc-load instance T ran out of memory before 10 hours had passed,
due to a very large number of active branch-and-bound nodes.

B T TM MV S ML

20_AL
Best solution 137.72 138.72* 140.57 140.27 138.85
Lower bound 126.64 123.03* 123.63 124.16 126.12 N/A
Gap 8.0% 11.3% 12.1% 11.5% 9.2%

20_AF
Best solution 137.27 138.72 137.27 137.27 137.27
Lower bound 131.25 129.81 131.34 131.43 137.26 N/A
Gap 4.4% 6.4% 4.3% 4.3% 0.0%

20_MCF
Best solution 138.39 141.17 137.72 146.37 141.36 144.26
Lower bound 108.27 110.20 114.89 109.53 117.65 112.96
Gap 21.8% 21.9% 16.7% 25.2% 16.8% 21.7%

Table 7.6: Results for the small test case. Running time: 10 hours.

The best solution and bound are found using the arc-flow formulation with subtour
elimination constraints added. The gap is negligible and we consider 137.27 to be
the optimal solution for the small-sized test case. Optimality was proved after
around seven hours, but the optimal solution was found after less than two hours
by instance S. The B, TM and MV instances also found this solution, but after
much longer time and with weaker bounds. The arc-load and multi-commodity
formulations finds a near-optimal solution of 137.72 using instances B and TM,
respectively. Based on the results in Table 7.6, we will for the remainder of this
section, analyze the different cuts.
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Time windows (T, TM)

For the arc-load formulation, neither the solution nor the lower bound improves
when using the T or TM instance. If only the time windows are created, the arc-flow
formulation is not improved, while the best solution is found if the time windows
are also used as Big M in linearizations. For the multi-commodity formulation,
the TM instance finds a near-optimal solution and improved bound, while the T
instance only slightly improves the bound and finds a worse solution.

Since the T instance appears to have little positive effect, except for a slight
improvement of the lower bound for the multi-commodity flow formulation, we
have decided to exclude this instance. The TM instance finds the optimal and
a near-optimal solution for the arc-flow and multi-commodity flow formulations,
respectively and improves their bounds. Therefore, we have chosen to continue
testing the TM instance.

Minimum number of visits (MV)

The constraints setting the minimum number of visits to locations do not
improve the solution or lower bound compared to the basic instance for the
arc-load formulation. For the arc-flow formulation it finds the optimal solution
and approximately the same bound as the basic and TM instances. The
multi-commodity flow formulation does not find a better solution when these
constraints are added, but the lower bound increases slightly.

These valid inequalities appear to complicate the arc-load and multi-commodity
flow models more than improving them and they appear to have little effect on the
arc-flow model. Still, the instance finds the optimal solution and it is the instance
that increases the LP bound the most for all formulations. Therefore, we will
continue testing the MV instance.

Subtour elimination constraints (S)

The arc-load formulation is not improved compared to the basic instance when
adding subtour elimination constraints. However, the arc-flow formulation finds the
optimal solution and proves optimality. The multi-commodity flow model achieves
a significantly stronger bound using this instance, compared with the basic instance.
Since the subtour elimination constraints appear to have a positive effect on lower
bounds and the arc-flow formulation proves optimality with this instance, we will
continue testing these cuts.

77



Minimum load constraints (ML)

The valid inequalities requiring loads to a destination to be at least as large as the
destination’s net demand improves the bound of the basic multi-commodity flow
instance, but the solution is not better. Since the lower bound is improved, we will
continue testing this instance.

Combinations of cuts

We have tested the combination of all remaining instances, as well as this
combination with each cut excluded. Instance T is not included in the
combinations. The results can be found in Table 7.7. The first combination,
TM_MV_S means all cuts for the arc-load and arc-flow formulations, while the
instance TM_MV_S_ML is the combination of all cuts for the multi-commodity
flow formulation. Again, the arc-load formulation ran out of memory for one
instance.

TM_MV_S TM_MV(_ML) TM_S(_ML) MV_S(_ML) TM_MV_S_ML

20_AL
Best solution 137.72 139.35* 140.74 137.27
Lower bound 124.00 125.00* 128.06 129.55 N/A
Gap 10.0% 10.3% 9.0% 5.6%

20_AF
Best solution 137.27 137.27 137.72 137.27
Lower bound 137.26 131.52 129.80 137.26 N/A
Gap 0.0% 4.2% 5.8% 0.0%

20_MCF
Best solution 140.72 137.72 138.39 137.72 138.72
Lower bound 115.28 109.80 119.54 116.71 115.93
Gap 18.1% 20.3% 13.7% 15.3% 16.5%

Table 7.7: Results for the small test case, combinations of effective cuts. Running
time: 10 hours.

When combining cuts MV and S, the arc-load formulation finds the optimal
solution. The bound is improved as well, giving a gap of 5.6%. For the arc-flow
formulation, optimality is proved for the combination with all cuts and MV_S.
When combining all cuts, optimality is proved after less than five hours, faster
than both the S and MV_S instances. The multi-commodity flow formulation
does not find the optimal solution, but its previously best bound is improved with
the combination TM_S_ML.

The multi-commodity flow model spends much time solving each branch-and-bound
node and therefore searches through fewer solutions during 10 hours than the
other two formulations. Using the MV_S_ML instance, the multi-commodity flow
formulation finds the solution 137.72, after around three hours and 20,292 processed
nodes. The MV_S instance for the arc-load formulation finds this solution after
20 minutes, but the number of processed nodes is 798,786. The same instance with
the arc-flow formulation finds this solution after around two hours and 2,493,234
nodes.
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The fact that the multi-commodity flow formulation finds good solutions with a
much smaller branch-and-bound tree, indicates that this is a tight formulation.
Since the formulation is tighter than the other two formulations, its solution space
should also be smaller. However, since the formulation has larger gaps than
the other two formulations after 10 hours, it does not seem like the increased
solution time of each branch-and-bound node is balanced out by the smaller solution
space. The formulation also suffers from scaling issues and we conclude that the
multi-commodity flow model is not viable for larger test cases. The problem will
be too large and complex and the solving of each branch-and-bound node will be
even slower. We will abandon this formulation, and continue with the arc-load and
arc-flow formulations. Therefore, the ML instance will also be abandoned.

7.3 Medium-Sized Test Case

The medium-sized test case has 40 fish farms to supply. We still use a partial split,
but none of the formulations found any integer solutions after 10 hours if fish farms
are allowed to have two visits. Therefore, we have reduced the problem size by only
allowing one visit to each fish farm. This is a reasonable simplification, since all
but one fish farm have only one visit in the optimal solution found for the small
test case. The problem size of the basic instance for each formulation is shown in
Table 7.8. We see the same differences as for the small-sized test case. Due to the
reduced number of allowed visits, the problem size of this test case is not much
larger than the problem size of the small-sized test case.

40_AL_B 40_AF_B

Number of variables: Before presolve 2,579 4,302
After presolve 2,479 4,153

Number of binary variables: Before presolve 2,185 2,185
After presolve 2,079 2,079

Number of constraints: Before presolve 6,538 5,183
After presolve 6,195 4,525

Table 7.8: Problem size of the basic instances for the medium test case.

7.3.1 LP bound

The solution of the LP relaxation for each formulation is given in Table 7.9. As for
the small-sized test case, only the instances MV and S tighten the LP bound, but
here it is the S instance that has the largest effect. We tested whether this change
was due to the reduction in the allowed number of fish farm visits, but when two
visits are allowed, the S instance still has the strongest LP bound. The fish farms
are spread over the same area in all test cases. With a larger test case, there are
more fish farms with short travel distances between them. After examining the
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LP solution, we discovered that this increases the number of subtours in the LP
solution, causing the subtour elimination constraints to have more effect.

B TM MV S MV_S
40_AL 102.81 102.81 107.31 125.50 130.00
40_AF 113.72 113.72 118.22 128.82 133.47

Table 7.9: LP optima for the medium test case.

7.3.2 Tightened constraints and valid inequalities

Results from running the remaining formulations on the medium-sized test case for
10 hours can be found in Table 7.10. As can be seen, three of the arc-load instances
ran out of memory before 10 hours had passed.

B TM MV S

40_AL
Best solution 235.04* 207.81* 253.42* 215.39
Lower bound 138.00* 138.76* 136.72* 138.77
Gap 41.3% 33.2% 46.1% 35.6%

40_AF
Best solution 197.58 199.11 193.46 192.56
Lower bound 152.85 154.24 152.79 154.76
Gap 22.6% 22.5% 21.0% 19.6%

Table 7.10: Results for the medium test case. Running time: 10 hours.

For the arc-load formulation, the best solution is found using the TM instance,
while the S instance is the second best. These instances also have the best bounds
for this formulation. The arc-flow formulation has better solutions and bounds than
the arc-load formulation for all instances. With instance S, the arc-flow model finds
the best solution, 192.56, and the strongest lower bound, 154.76, giving a gap of
19.6%.

Combinations of cuts

For the small-sized test case, combinations of cuts turned out to improve the
arc-load model. Therefore, we have tested combinations of cuts for both
formulations, even though the arc-flow formulation again performs best. The S
instance improves the basic instance of both formulations, while the TM and MV
instances behave different for the two formulations. Therefore, we will not exclude
any cuts before testing combinations. As for the small-sized test case, we have
tested the combination of all cuts, as well as the exclusion of each cut. The results
can be found in Table 7.11. Again, several of the arc-load combinations ran out of
memory.
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TM_MV_S TM_MV TM_S MV_S

40_AL
Best solution 213.29* 214.89* 212.02 248.10*
Lower bound 139.30* 136.51* 143.05 136.65*
Gap 34.7% 36.5% 32.5% 44.9%

40_AF
Best solution 225.71 192.56 199.11 193.21
Lower bound 155.89 156.37 152.45 155.04
Gap 30.9% 18.8% 23.4% 19.8%

Table 7.11: Results for the medium test case, combinations of effective cuts.
Running time: 10 hours.

The arc-load formulation improves its best bound most when combining instances
TM and S, but the best solution is found using the TM instance alone. Compared
to combining all cuts, removing the instance MV improves both the bound and
solution, indicating that the constraints on minimum number of visits have a
negative effect on this formulation. The best solution and bound of 207.81 and
143.05 give a gap of 31.2%, meaning the arc-load formulation is still weaker than
the arc-flow formulation.

The arc-flow formulation again finds the solution 192.56, using the combination
TM_MV. Strangely enough, this solution was found by the S instance in the
previous run, while here it was found using the combination without subtour
elimination constraints. The combination TM_MV also finds a better lower bound
of 156.37, which gives a gap of 18.8%. Again, it is the arc-flow formulation that
performs best, with smallest gaps for all instances. Therefore, we will continue
using only the arc-flow formulation for the largest test case.

7.4 Large-Sized Test Case

In the large-sized test case, there are 60 fish farms to supply. As for the
medium-sized test case, we use a partial split and only allow one visit to each
fish farm. The problem size of the basic instance for the arc-flow formulation is
shown in Table 7.12.

60_AF_B

Number of variables: Before presolve 8,464
After presolve 8,117

Number of binary variables: Before presolve 4,293
After presolve 4,214

Number of constraints: Before presolve 9,655
After presolve 8,541

Table 7.12: Problem size of the basic instance for the large-sized test case.
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7.4.1 LP bound

The solution of the LP relaxation for each formulation is given in Table 7.13. As for
the medium-size test case, only the instances MV and S tighten the LP bound and
the S instance has the largest effect. If combining these, the LP bound is further
increased for all three formulations.

B TM MV S MV_S
60_AF 116.08 116.08 120.58 137.85 142.35

Table 7.13: LP optima for the large test case.

7.4.2 Tightened constraints and valid inequalities

Results from running instances of the large test case for 10 hours can be found
in Table 7.14. No integer solutions was found using the MV instance, and the
basic instance has a gap of 63.2%. The best solution, 219.72, is found by the TM
instance, while S has the strongest lower bound, 166.19. This gives a gap of 24.4%.
The solution 219.72 is found after around four hours.

B TM MV S

60_AF
Best solution 447.92 219.72 - 242.87
Lower bound 164.97 165.47 163.14 166.19
Gap 63.2% 24.7% - 31.6%

Table 7.14: Results for the large test case. Running time: 10 hours.

Combinations of cuts

We have tested the combinations of all cuts and the results can be found in Table
7.15. A stronger lower bound was found when combining all cuts, but none of the
combinations found a better solution than the TM instance alone. Therefore, we
have chosen the instance TM for further testing.

TM_MV_S TM_MV TM_S MV_S

60_AF
Best solution 225.18 - 236.61 235.07
Lower bound 166.58 161.23 161.20 164.07
Gap 26.0% - 31.9% 30.2%

Table 7.15: Results for the large test case, combinations of cuts. Running time:
10 hours.
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7.4.3 Effects of further improvements

In order to achieve better solutions and bounds, we have attempted to both reduce
the problem size and further improve the arc-flow formulation. We have tested
using a full split, as explained in Chapter 6, and tried excluding the aspect of service
hours in an attempt to reduce the problem size. We have also tried to improve
the formulation by dynamically generating clique inequalities and by adding an
aggregated variable to branch on. Lastly, we have increased the minimum unloading
quantities and added end-of-horizon (EOH) constraints, in an attempt to make the
model more realistic and possibly easier to solve. All subsequent tests are done
using the arc-flow instance TM.

Problem reduction

We have reduced the problem size by using a full split and by excluding the aspect of
service hours, separately and in combination. We had hoped that this would make
the problem easier to solve, since the number of binary variables is reduced. The
results can be found in Table 7.16. Using a full split did not find better solutions
or bounds. The reduced problem size does not seem to outweigh the negative
effect from the reduced flexibility of a full split. Similar results are found for the
exclusion of service hours, since only 90% of storage capacity can be utilized at all
fish farms. Therefore, we continue using a partial split and the aspect of service
hours included. This is also what we consider to be the most realistic formulation
of Marine Harvest’s planning problem.

Full split Without service hours

60_AF_TM
Best solution 498.61 258.92
Lower bound 164.38 162.21
Gap 67.0% 37.4%

Table 7.16: Results of problem reduction for the large test case. Running time:
10 hours.

Dynamic clique inequalities

Motivated by research done in Agra et al. (2014), we implemented a dynamic
generation of clique inequalities, as explained in Chapter 6. This turned out to
significantly slow down the solution of every branch-and-bound node, since creating
the conflict matrix and finding a clique are time consuming activities. In addition
to this, the heuristic approach to create clique inequalities proved to be inefficient.
Very few usable clique inequalities were generated, because the sum of the fractional
values for clique members were not larger than 1, making it meaningless to add
the cut. We do not provide any results from these runs, as no integer solutions or
tighter bounds were achieved.
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Aggregated variables for branching

The wimv variables in the multi-commodity flow formulation are aggregated over
the ximjnv variables. Branching on aggregated variables could lead to more efficient
branching and we have added these variables to the arc-flow formulation as well.
However, neither the solution nor bound was improved, as can be seen in Table
7.17. This could be because of the increased number of binary variables. We
also tried prioritizing branching on these variables by using the Xpress function
setmipdir, with the same results. Therefore, we abandoned this approach.

Aggregated variables wimv

60_AF_TM
Best solution 235.90
Lower bound 160.23
Gap 32.1%

Table 7.17: Results for the large test case with aggregated variables for
branching. Running time: 10 hours.

Stricter constraints

Our last attempt to improve the results was to make he constraints related to
minimum unloading quantities stricter and add EOH constraints. We have tested
minimum unloading quantities of two, three and four feed days. The tests were
run for 10 hours and the results can be found in Table 7.18. No better solutions
were found, and we decided not to change these constraints.

Minimum unloading quantities 2 3 4

60_AF_TM
Best solution 238.65 249.23 -
Lower bound 165.99 164.28 162.47
Gap 30.5% 34.1% -

Table 7.18: Results for the large test case with larger minimum unloading
quantities. Running time: 10 hours.

As explained in Chapter 5, EOH effects should be taken into account. We have
tested the aggregated EOH constraint for fish farms, where the total stock in the
end must be more than two times and three times the total safety stock level of all
fish farms, denoted by AGG_2 and AGG_3. We have also tested the constraint
requiring the stock level at the factory to be below 80% of capacity in the end,
denoted by 80%. The tests were run for 10 hours and the results can be found in
Table 7.19.

No integer solutions were found using the instances 80% and AGG_2, while
AGG_3 finds a solution with a gap of 67%. We have chosen to not add any
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EOH 80% AGG_2 AGG_3

60_AF_TM
Best solution - - 480.94
Lower bound 161.67 163.1 157.91
Gap - - 67.2%

Table 7.19: Results for the large test case with EOH constraints. Running time:
10 hours.

EOH constraints, meaning that stock levels will be at their extreme values after 10
days. Therefore, the model should only be used to plan for the first seven days or
less and as new information is revealed, the model should be rerun.

None of the further improvements managed to find a better solution than the TM
instance. Figure 7.1 illustrates how the solution and lower bound changes with
time for this instance. We see that after around four hours, no better solution is
found and the bound is not improved much.

Figure 7.1: Illustration of how the solution and lower bound improves with time.
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7.5 Comparison of Formulations

The arc-load formulation has the weakest LP bound, but performs well for the
smallest test case. For the medium-sized test case, it is weaker than the arc-flow
formulation both in terms of bounds and solutions. The arc-flow formulation has
the strongest lower bounds and is the only formulation that proves optimality
for the smallest test case. The multi-commodity formulation has the strongest
LP bound, but the large number of variables and constraints makes the solving
of each branch-and-bound node slow. Therefore, its search tree after 10 hours
is significantly smaller than for the other two models. Since it is the tightest
formulation, it still finds good solutions after searching through a much smaller
number of nodes.

For the small-sized test case, the arc-load formulation have branch-and-bound trees
from 75 to 110 gigabytes for the different instances after 10 hours. The trees for the
arc-flow instances range from two gigabytes for the instance reaching optimality
to 75 gigabytes. The largest branch-and-bound tree of the multi-commodity
flow formulation is around five gigabytes. Therefore, the multi-commodity flow
formulation does not need the large memory available on rack 5 computers. The
model could have been run on the faster computers in rack 3, but we do not believe
that the increased speed would be enough to make the formulation viable for larger
test cases.

The arc-load model runs out of memory for several instances of the medium-sized
test case, even though each computer has 128 gigabytes of memory. This is partly
because it manages to search through more nodes than the arc-flow formulation
within the running time. Even though both formulations solve the LP relaxation
in what appears to be an instant, the arc-load model is faster, due to the smaller
number of variables. For some instances the arc-load formulation searches through
more than twice as many nodes as the arc-flow formulation. However, it also has
more active nodes relative to the number of processed nodes, meaning it is able to
prune less. Also, the arc-flow model appears to branch more efficient, since it finds
better solutions and bounds, with a smaller branch-and-bound tree. Overall, we
can conclude that the arc-flow formulation performs best.

7.6 Parallelization

We have tested our two parallelization frameworks on the large-sized test case, in
an attempt to achieve better solutions to the real-sized problem. For this test case,
only the arc-flow formulation was used and it was the instance TM that found the
best solution.
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7.6.1 Node-based parallelization

The node-based framework was tested with 17 and 129 workers. First, we tried
a running time of one hour, but no integer solutions were found and the lower
bound was not improved above the LP bound of 116.08. Even when increasing
the running time to 10 hours, the results were the same. The master process
becomes a bottleneck and only around 1,200,000 nodes have been processed after
10 hours. During the branch-and-bound search for the same instance performed
by Xpress on a single computer, around 2,500,000 nodes are searched. The lack
of good lower and upper bounds results in few nodes being pruned. We are not
able to match Xpress Optimizer’s superior branching strategies in our framework.
The lack of sophisticated methods using heuristics and cuts, makes our framework
highly inefficient. We had hoped that sorting the node list with the up-child first
would give better results as more nodes could be pruned earlier, but there was no
difference from sorting with the down-child first. Due to the disappointing results,
we did not test this framework further.

7.6.2 Tree-based parallelization

The second framework was first tested with one worker per computer, with the hope
that internal parallelization and memory could be fully utilized by each worker.
However, it turned out that each worker could only utilize 32 gigabytes of the
128 gigabytes of memory, and we were not able to resolve this issue. Therefore,
the benefit of running one worker on one computer was reduced to being able to
run internal parallelization in Xpress. Xpress Optimizer is able to utilize up to 50
parallel threads and having one worker per computer would waste 14 threads, since
each computer has 64 cores. Also, using 50 threads could lead to communication
overhead and slow down the processing. Therefore, we decided to not test the
configuration with one worker per computer.

Instead, we tested three configurations with 32, 64 and 128 workers. We had 16
computers available, meaning that two, four and eight workers shared one computer
in the respective configurations. When parallelizing work, the solution time should
decrease to justify the increased use of resources. In theory, we should obtain the
same solution as the sequential 10 hour run after around 40 minutes, since we
use 16 computing nodes instead of one. We did not believe that our synchronous
algorithm could achieve linear speedup and therefore we used a running time of five
hours when testing. This is an overconsumption of resources, but we wanted to see
if better solutions could be obtained. The focus has been on comparing solutions,
and not lower bounds, since these are given by the weakest lower bound among all
workers.

With 32 workers, there are two workers per computer and memory is wasted, since
each worker is only able to utilize 32 gigabytes of the memory. However, each worker
could utilize 32 threads for internal parallelization. The best solution, 222.00, is
found after almost three hours. The best solution when running the sequential
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TM instance, 219.72, was found after four hours. Therefore, no improvement was
achieved with this parallel configuration.

Due to the limitation of only being able to utilize 32 gigabytes of the memory, we
could run four workers on each computer, before each computer has less memory
available. This gives a total of 64 workers. The best solution is 219.27 and it is
found after a little more than two hours. This solution is slightly better than the
best solution found by the sequential run and it is found faster. However, it is not
nearly a linear decrease in solution time compared to the increase in processing
power.

Eight workers per computer gives a total of 128 workers, allowing seven binary
variables to be fixed. Each worker has 16 gigabytes of memory available on average.
The different worker processes share the available memory of 32 gigabytes in a
dynamic fashion, in stead of splitting it evenly. However, it appears that less
nodes have been processed by each worker after 10 hours, possibly due to the
reduced number of threads available for internal parallelization in Xpress. This
configuration has a best solution of 222.66 after five hours and no improvement
was achieved.

The configuration with 64 workers where four workers share one computer
performed best among the parallel configurations tested. Increasing from 32
workers to 64 workers, makes it possible to have six binary variables fixed instead
of five. This could help find better solutions faster. However, when increasing to
128 workers, the extra variable fixed does not seem to balance out the reduced
number of cores available for internal parallelization. The best solution found
using 64 workers in parallel is only marginally better than the best found by the
sequential run and the decreased solution time does not justify the increased use
of computing resources. In our case amn asynchronous algorithm would not have
performed better, since none of the workers found a lower bound worse than the
best solution found so far. However, with more sophisticated fixing strategies or
more variables fixed, an asynchronous algorithm could give improvements.

Figure 7.2 illustrates how the solution and lower bound improves with time for the
TM instance when run sequentially, and by the worker who finds the best solution
with the parallel configuration with four workers per node. We see that the parallel
configuration finds good solutions faster, but they end at almost the same solution
after around four hours. Note that it is only the solution process of one worker that
is shown. If we had illustrated the solutions found by all 64 workers, the graph of
the parallel algorithm would have shown more good solutions after less time.

7.7 Economical Results

In this section we will explore the solution found by the sequential run of the
arc-flow instance TM for the largest test case. The objective function value of this
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Figure 7.2: Illustration of the solutions found by the sequential and parallel run.

solution is 219,720 NOK, of which 192,000 NOK are transportation costs and the
remaining 27,720 NOK are penalty costs for low stock levels. Penalty costs are not
real monetary costs, but are used to encourage the creation of robust schedules.
12 fish farms have underage during the planning period, but for two of these,
the underage is negligible. The stock levels of two other fish farms come down
to half the safety stock level. If Marine Harvest prefers to avoid stock levels as
low as this, the penalty cost should have been slightly higher. If not, the current
parameterization is adequate, since the underage at most of the fish farms are
between zero and less than 20% of the safety stock.

An illustration of the solution can be found in Figure 7.3. External supply is not
used for any of the fish farms. Initial stock levels plus the production during the
planning period is more than enough to cover the total demand of fish farms. The
ships are not strained on capacity and it is reasonable that the model chooses
internal supply of all fish farms since this is the cheapest option. However, it is
possible that the absence of external supply comes from the cost parameters for
internal and external supply being incorrect relative to each other, or that the
production and ship capacity have been overestimated.

After investigating the solution further, we found that all fish farm visits are made
within the first six days of the planning period, except the last visit to the factory
made on the eighth day. The stock levels at fish farms end at their minimum
stock levels, while the factory’s stock level ends at 84% of capacity. Due to these
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Figure 7.3: Illustration of the best solution found by the sequential run of the
arc-flow instance TM.

EOH effects, the model should not be used to create a plan for the entire planning
horizon. Instead, a rolling horizon should be used where the model is run for 10
days and then rerun at an appropriate replanning point after less than 10 days.
In our solution, the results after approximately six days are acceptable, and this
is a suitable replanning point. An easy way to implement this is to use the stock
levels and loads at the point of replanning as initial data for the next model run.
However, more sophisticated frameworks exist, as presented in Chapter 4.

Table 7.20 shows the production utilization. With a replanning point of around
six days, full production utilization is achieved and the factory ends just below
its initial stock level at 50% of capacity. Feed delivered is slightly more than feed
produced. If this situation repeats, external supply will be necessary at some point.
It is possible that the estimated production rate is too high, since operation of the
factory has not yet started. Maintenance and changeover time between product
types could lead to a lower production rate, and external supply could be necessary
due to this as well.
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10 days ~6 days
Production 58% 105%

Table 7.20: Utilization of production for different replanning points.

Table 7.21 shows the ship utilization. The ship utilization increases significantly
when changing the replanning point from ten to approximately six days and when
initial waiting is disregarded. In our test cases, both ships start at the factory with
zero initial load. The first ship waits for the factory to build up stock, before it
leaves. The second ship has to wait at least 24 hours after the first ship starts
loading before it can load, which gives it a lower utilization than the first ship. If
we had used the situation after around six days as initial data, one ship would be
empty, while the other would have a small load. Then, the empty ship could go
directly to the factory for loading, while the other could unload at fish farms until
it is empty and then sail to the factory. This would reduce the initial waiting time
at the factory and give a more correct view of ship utilization. As can be seen
in Figure 7.2, the second ship attempts to utilize the time while waiting for the
factory to build up stock. First, it loads at the factory, before it supplies one fish
farm. Then it returns to the factory and loads up to almost full capacity, before
starting a longer route.

10 days ~6 days

Ship 1 Initial waiting included 46% 82%
Initial waiting excluded 50% 93%

Ship 2 Initial waiting included 28% 51%
Initial waiting excluded 36% 81%

Table 7.21: Utilization of ship capacity for different replanning points.

Unloading starts within service hours for 22 of the fish farm visits. This is as
expected since service hours make up one third of the total time. However, the
additional capacity achieved when arriving within service hours is only utilized for
five of these fish farm visits. This is in contrast with Marine Harvest’s view on
the importance of filling up to maximum capacity. The additional capacity will
probably be more important in real-life, were we believe the ships will be more
strained on capacity. With multiple product types that can not be mixed, less
capacity will be available on board ships. Delays or longer sailing times would also
lead to less capacity. Then, it will become more important to utilize full storage
capacity at fish farms and also external supply could be necessary.

Another important economical aspect of the solutions obtained by our model is
that the cost from one test case to another does not increase with the same rate as
the number of fish farms. In fact, when the number of fish farms double from 20
to 40, the cost of the best solution found only increases by 40%, while the increase
is 60% when the number of fish farms is tripled. This is mainly because the area
covered by fish farms does not increase much between test cases, it is only the
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density of fish farms that increases. Therefore, it is not twice as costly to serve
twice as many fish farms, as long as the ships have enough time and capacity. The
difference could be even smaller, since the solutions found by the medium and large
test cases are not optimal.
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Chapter 8

Concluding Remarks

Secure and robust feed deliveries are important in the salmon industry where
demands depend on biological factors. In order to remain competitive, this must
be done in a cost-effective way. Marine Harvest is trying to achieve this through
vertical integration and implementation of vendor managed inventory (VMI). In
order to aid Marine Harvest in planning of feed deliveries to fish farms, we have in
this thesis modeled their planning problem as an inventory routing problem (IRP).

Three formulations were developed and applied to three various-sized test cases,
where the largest is the real-sized planning problem. The arc-flow formulation
outperformed the arc-load and multi-commodity flow formulations, but it could
not solve the two larger test cases to optimality. For the real-sized problem, the
arc-flow formulation with tightening of timing constraints found a best solution
of 219.72. The best bound, 166.58 was found when combining all cuts and this
gives a gap of 24.2%. All formulations are data sensitive and we were only able
to get good solutions when using appropriate initial stock levels relative to the
planning horizon. We tried to balance this by using a rolling horizon approach,
and succeeded to find a suitable replanning point after approximately six days.

Tightening of constraints and valid inequalities have been tested, but none of the
attempted improvements were consistently performing better than others. Adding
subtour elimination constraints performed best for the arc-flow formulation in the
small and medium test case, while the best solution for the large test case was
found when tightening timing constraints. Adding tightenings and inequalities did
improve lower bounds in most cases, but the effects on the solutions were more
volatile. Also, combining the different tightenings and inequalities gave stronger
lower bounds, but solutions were not improved.

The best instance of the arc-flow formulation for the largest test case was embedded
within two parallel branch-and-bound frameworks. The node-based framework
could not find any integer solutions and the lower bound was not improved above
the LP bound. The tree-based framework found a slightly better solution than
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the sequential run, but the solution time was not decreased sufficiently to justify
the increased use of computing resources. We conclude that a more sophisticated
fixing strategy and an asynchronous implementation could improve the tree-based
parallel framework.

In the best solution found, all fish farms are supplied internally. Since there are
many estimations in our data, we believe that more fish farms in reality would need
external supply, due to both lower production and ship capacity. With a replanning
point of around six days, the model shows that production capacity is fully utilized.
At this point, the factory is filled up to half capacity, one ship has a small load
and the other is empty. If initial waiting is disregarded, ships are utilized at 81%
and 93%, respectively, meaning there is some waiting on arrival when delivering to
fish farms. This waiting can be regarded as slack in the schedule, making it more
robust regarding transportation delays. The model creates robust schedules with
little underage and high utilization of production capacity and ships are achieved.

94



Chapter 9

Future Research

Due to the complexity of the problem explored in this thesis, more research on
the presented formulations and parallel frameworks are needed to be able to solve
the real-sized problem to optimality. Possible improvements and extensions are
plentiful and some will be presented in this chapter.

In order to further improve the arc-flow formulation, one approach is to find more
valid inequalities or other ways to tighten the formulation. Other solution methods
could also be explored. A common approach for IRP models is reformulation and
decomposition. Due to the size of the problem, full enumeration of routes and
schedules would not be possible, but a branch-and-price approach utilizing column
generation could be viable. Another alternative is to include heuristic methods,
which is also commonly used for IRPs.

Further work on the parallelization frameworks could be fruitful. Parallelizing the
work of solving each branch-and-bound node was not efficient and it is difficult to
compete with the advanced branching and bounding strategies of Xpress Optimizer.
However, we believe that the second framework with parallel solving of subtrees
could be a viable method, as a much larger part of the solution space can be
searched in shorter time. One possible improvement is creating more sophisticated
strategies on fixing variables. Another step forward would be to develop an
asynchronous implementation of this framework. Also, it would be interesting
to test with more workers and thereby, more fixed variables.

It would be relevant to add aspects that were simplified in this thesis. If data
on different product types is made available, the model could be run as originally
formulated. The simplification to aggregate silo capacities could then be evaluated,
and if solutions are not feasible, necessary model adjustments should be made.
Other aspects mentioned by Marine Harvest are the inclusion of production
scheduling to the model and evaluation of different sailing speeds.

The formulations presented in this report are deterministic. Since feed demand
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depends on salmon growth, it is subject to many uncertain factors. It could
therefore be relevant to use a stochastic model instead, as this would be a more
realistic description of the planning problem. Different demand scenarios could be
generated, to account for variations and create more robust plans. Uncertainties
related to sailing times and weather could also be included as stochastic elements.
These extensions would come at the cost of increased complexity, which could make
it difficult to solve even small versions of the problem.

96



Bibliography

Adulyasak, Y., Cordeau, J.-F., and Jans, R. (2014). Formulations and
branch-and-cut algorithms for multivehicle production and inventory routing
problems. INFORMS Journal on Computing, 26(1):103–120.

Agra, A., Christiansen, M., and Delgado, A. (2013a). Discrete time and continuous
time formulations for a short sea inventory routing problem. University of Aveiro.
Working paper. URL: http://hdl.handle.net/10773/10561.

Agra, A., Christiansen, M., and Delgado, A. (2013b). Mixed integer formulations
for a short sea fuel oil distribution problem. Transportation Science,
47(1):108–124.

Agra, A., Christiansen, M., Delgado, A., and Simonetti, L. (2014). Hybrid
heuristics for a short sea inventory routing problem. European Journal of
Operational Research, 236(3):924 – 935.

Al-Khayyal, F. and Hwang, S.-J. (2007). Inventory constrained maritime routing
and scheduling for multi-commodity liquid bulk, part i: Applications and model.
European Journal of Operational Research, 176(1):106–130.

Andersson, H., Christiansen, M., and Fagerholt, K. (2011). The maritime pickup
and delivery problem with time windows and split loads. INFOR: Information
Systems and Operational Research, 49(2):79–91.

Andersson, H., Hoff, A., Christiansen, M., Hasle, G., and Løkketangen, A. (2010).
Industrial aspects and literature survey: Combined inventory management and
routing. Computers and Operations Research, 37(9):1515–1536.

Anthony, R. (1965). Planning and control systems: a framework for analysis, pages
15–23. Studies in management control. Division of Research, Graduate School
of Business Administration, Harvard University.

Archetti, C., Bertazzi, L., Laporte, G., and Speranza, M. G. (2007). A
branch-and-cut algorithm for a vendor-managed inventory-routing problem.
Transportation Science, 41(3):382–391.

Balland, O. (2014). Data received from Océane Balland, Associate Professor

97



II, Department of Marine Technology, Norwegian University of Science and
Technology, Trondheim .

Beale, E. M. L. and Tomlin, J. A. (1970). Special facilities in a general mathematical
programming system for non-convex problems using ordered sets of variables.
OR, 69:447–454.

Bertazzi, L., Bosco, A., Guerriero, F., and Laganà, D. (2011). A stochastic
inventory routing problem with stock-out. Transportation Research Part C:
Emerging Technologies, 27:89–107.

Bredström, D. and Rönnqvist, M. (2006). Supply chain optimization in pulp
distribution using a rolling horizon solution approach. Norwegian School of
Economics and Business Administration, Bergen. Discussion paper.

Christiansen, M. (1999). Decomposition of a combined inventory and time
constrained ship routing problem. Transportation Science, 33(1):3–16.

Christiansen, M. and Fagerholt, K. (2009). Maritime inventory routing problems.
In Floudas, C. and Pardalos, P., editors, Encyclopedia of optimization, pages
1947–1955. Springer Berlin, 2 edition.

Christiansen, M., Fagerholt, K., Flatberg, T., Haugen Ø., Kloster, O., and Lund,
E. H. (2011). Maritime inventory routing with multiple products: A case
study from the cement industry. European Journal of Operational Research,
208(1):86–94.

Christiansen, M., Fagerholt, K., Nygreen, B., and Ronen, D. (2006). Maritime
transportation. Transportation, 14:189–284.

Coase, R. H. (1937). The nature of the firm. Economica, 4(16):386–405.

Coelho, L. C., Cordeau, J.-F., and Laporte, G. (2012). Dynamic and stochastic
inventory-routing. Technical report, CIRRELT, Montreal.

Coelho, L. C., Cordeau, J.-F., and Laporte, G. (2014). Thirty years of inventory
routing. Transportation Science, 48(1):1–19.

Coelho, L. C. and Laporte, G. (2013). The exact solution of several classes of
inventory-routing problems. Computers & Operations Research, 40(2):558–565.

Corrêa, R. and Ferreira, A. (1996). Parallel best-first branch-and-bound in discrete
optimization: a framework. In Solving Combinatorial Optimization Problems in
Parallel, pages 171–200. Springer.

Dash Optimization (2007). Xpress optimizer reference manual. Dash Optimization
Ltd., Englewood Cliffs, New Jersey.

Dauzère-Pérès, S., Nordli, A., Olstad, A., Haugen, K., Koester, U., Myrstad, P. O.,
Teistklub, G., and Reistad, A. (2007). Omya hustadmarmor optimizes its supply
chain for delivering calcium carbonate slurry to european paper manufacturers.
Interfaces, 37(1):39–51.

98



Eckstein, J. (1994a). Control strategies for parallel mixed integer branch and
bound. In Proceedings of the 1994 ACM/IEEE conference on Supercomputing,
pages 41–48. IEEE Computer Society Press.

Eckstein, J. (1994b). Parallel branch-and-bound algorithms for general mixed
integer programming on the cm-5. SIAM Journal on Optimization, 4(4):794–814.

Eckstein, J., Phillips, C. A., and Hart, W. E. (2001). Pico: An object-oriented
framework for parallel branch and bound. Studies in Computational
Mathematics, 8:219–265.

Egil Ulvan Rederi (2014). Data received from Egil Ulvan Rederi. Contact: Ivar
Christian Ulvan.

Engineer, F. G., Furman, K. C., Nemhauser, G. L., Savelsbergh, M. W. P., and
Song, J.-H. (2012). A branch-price-and-cut algorithm for single-product maritime
inventory routing. Operations Research, 60(1):106–122.

Federgruen, A. and Simchi-Levi, D. (1995). Chapter 4 analysis of vehicle routing
and inventory-routing problems. In M.O. Ball, T.L. Magnanti, C. M. and
Nemhauser, G., editors, Network Routing, volume 8 of Handbooks in Operations
Research and Management Science, pages 297–373. Elsevier Amsterdam.

Fiskeridirektoratet (2013). Lønnsomhetsundersøkelse for matfiskproduksjon.
http://www.fiskeridir.no/statistikk/akvakultur/loennsomhet/
matfiskproduksjon-laks-og-regnbueoerret/. Data retrieved: 1. April,
2014.

Gendron, B. and Crainic, T. G. (1994). Parallel branch-and-branch algorithms:
Survey and synthesis. Operations Research, 42(6):1042–1066.

Grama, A. Y., Gupta, A., and Kumar, V. (1993). Isoefficiency: Measuring
the scalability of parallel algorithms and architectures. IEEE Parallel Distrib.
Technol., 1(3):12–21.

Griva, I., Nash, S. G., and Sofer, A. (2009). Linear and Nonlinear Optimization.
Society for Industrial Mathematics Pennsylvania.

Grønhaug, R. and Christiansen, M. (2009). Supply chain optimization for the
liquefied natural gas business. In Nunen, J. A., Speranza, M. G., and Bertazzi,
L., editors, Innovations in Distribution Logistics, volume 619 of Lecture Notes in
Economics and Mathematical Systems, pages 195–218. Springer Berlin.

Grønhaug, R., Christiansen, M., Desaulniers, G., and Desrosiers, J. (2010). A
branch-and-price method for a liquefied natural gas inventory routing problem.
Transportation Science, 44(3):400–415.

Hwang, S.-J. (2005). Inventory constrained maritime routing and scheduling
for multi-commodity liquid bulk. PhD thesis, Georgia Institute of Technology,
Atlanta.

99



iLaks.no (2013). Størst og mest lønnsom. http://ilaks.no/
storst-og-mest-lonnsom/. Data retrieved: 4. March, 2014.

Ivarsøy, K. S. and Solhaug, I. E. (2013). Feed delivery from production facility
to salmon farms. Norwegian University of Science and Technology, Trondheim.
Project thesis.

Kreps, D. M. (2004). Microeconomics for managers. W.W. Norton & Co. New
York.

Kumar, V. P. and Gupta, A. (1994). Analyzing scalability of parallel algorithms
and architectures. Journal of parallel and distributed computing, 22(3):379–391.

Lenstra, J. K. and Kan, A. H. G. R. (1981). Complexity of vehicle routing and
scheduling problems. Networks, 11(2):221–227.

Marine Harvest (2010). Seafood value chain. http://www.marineharvest.com/
en/Seafood-Value-Chain1/. Data retrieved: 15. December, 2013.

Marine Harvest (2012). Marine Harvest Norway’s regions. http:
//marineharvest.com/no/Marine-Harvest-Norge/Om-Marine-Harvest1/
Vare-regioner/. Data retrieved: 4. March, 2014.

Marine Harvest (2013a). Presentation Capital Markets Day. http:
//marineharvest.com/Global/Investor/Presentations/MHG_2013_CMD_
PRESENTATION.pdf. Data retrieved: 4. March, 2014.

Marine Harvest (2013b). The Marine Harvest Salmon Industry Handbook. http:
//hugin.info/209/R/1698446/559980.pdf. Data retrieved: 4. March, 2014.

Marine Harvest (2014). Data received from Marine Harvest. Contact: Espen
Moksnes, Nora Hindar, Vidar Myhre and Eivind Osnes.

Olafsen, T., Winther, U., Olsen, Y., and Skjermo, J. (2012). Verdiskaping basert
på produktive hav i 2050. http://www.sintef.no/upload/Fiskeri_og_
havbruk/Publikasjoner/%20basert%20p%C3%A5%20produktive%20hav%20i%
202050.pdf. Data retrieved: 4. March, 2014.

Popović, D., Vidović, M., and Radivojević, G. (2012). Variable neighborhood
search heuristic for the inventory routing problem in fuel delivery. Expert Syst.
Appl., 39(18):13390–13398.

Rakke, J. G., Andersson, H., Christiansen, M., and Desaulniers, G. (2014). A
new formulation based on customer delivery patterns for a maritime inventory
routing problem. http://pubsonline.informs.org/doi/abs/10.1287/trsc.
2013.0503.

Rakke, J. G., Stålhane, M., Moe, C. R., Christiansen, M., Andersson, H., Fagerholt,
K., and Norstad, I. (2011). A rolling horizon heuristic for creating a liquefied
natural gas annual delivery program. Transportation Research Part C: Emerging
Technologies, 19(5):896–911.

100



Ralphs, T. K. (2003). Parallel branch and cut for capacitated vehicle routing.
Parallel Computing, 29(5):607–629.

Ralphs, T. K., Ladányi, L., and Saltzman, M. J. (2004). A library
hierarchy for implementing scalable parallel search algorithms. The Journal of
Supercomputing, 28(2):215–234.

Ronen, D. (2002). Marine inventory routing: shipments planning. Journal of the
Operational Research Society, 53(1):108–114.

Simchi-Levi, D., Simchi-Levi, E., and Kaminsky, P. (1999). Designing and
managing the supply chain: Concepts, strategies, and cases. McGraw-Hill
United-States.

Skretting (2009). Formler og beregninger. http://www.
skretting.no/Internet/SkrettingNorway/webInternet.nsf/wprid/
2E81AEC2B788F022C125757F0036473C/$file/Foring_formler.pdf. Data
retrieved: 4. March, 2014.

Solyali, O. and Süral, H. (2011). A branch-and-cut algorithm using a strong
formulation and an a priori tour-based heuristic for an inventory-routing
problem. Transportation Science, 45(3):335–345.

Song, J.-H. and Furman, K. C. (2013). A maritime inventory routing problem:
Practical approach. Computers & Operations Research, 40(3):657 – 665.

Stålhane, M., Andersson, H., Christiansen, M., Cordeau, J.-F., and Desaulniers,
G. (2012). A branch-price-and-cut method for a ship routing and scheduling
problem with split loads. Computers & Operations Research, 39(12):3361–3375.

Statistisk sentralbyrå (2013). Akvakultur, 2012. http://www.ssb.no/
fiskeoppdrett/. Data retrieved: 1. April, 2014.

Statistisk sentralbyrå (2014). Eksport av laks. http://www.ssb.no/laks/. Data
retrieved: 30. May, 2014.

Trienekens, H. W. and Bruin, A. d. (1992). Towards a taxonomy of parallel branch
and bound algorithms. Technical report, Erasmus School of Economics (ESE),
Rotterdam.

Vanderbeck, F. and Wolsey, L. (2010). Reformulation and decomposition of integer
programs. In Jünger, M., Liebling, T. M., Naddef, D., Nemhauser, G. L.,
Pulleyblank, W. R., Reinelt, G., Rinaldi, G., and Wolsey, L. A., editors, 50 Years
of Integer Programming 1958-2008, pages 431–502. Springer Berlin Heidelberg.

101



102



Appendix A

Complete Arc-Load
Formulation

A.1 Definitions

A.1.1 Sets

NP Set of factories
NC Set of fish farms
Mi Set of visit numbers for location i
V Set of ships

SP Set of factory visits (i,m) where i ∈ NP and m ∈Mi

SC Set of fish farm visits (i,m) where i ∈ NC and m ∈Mi

S Set of visits, S = SP ∪ SC
Sv Set of feasible visits for ship v, Sv = S ∪ {d(v)}
P Set of products
D Set of days within the planning horizon

A.1.2 Indices

i, j Locations
o(v) Start node of ship v
d(v) Dummy end node of ship v
m, n Visit numbers
v Ships
p Products
d Days
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A.1.3 Parameters

B Penalty cost for stock levels below the safety stock level [NOK/hour]
Cij Transportation cost for sailing from location i to location j [NOK]
Ep Unit cost of buying product p externally [NOK/ton]
ETi Transportation cost for external feed delivery to fish farm i [NOK]

L0
vp Initial load of product p on ship v [tons]

KMAX
v Maximum capacity for ship v [tons]

QMIN
ip Minimum unloading quantity of product p for fish farm i [tons]

S0
i Initial inventory level at factory i [tons]
S0
ip Initial inventory level of product p at fish farm i [tons]
SMIN
ip Minimum inventory level of product p at fish farm i [tons]
SMAX
i Maximum inventory level at location i [tons]
Ai Reduction in storage capacity at fish farm i outside working hours [%]

TMAX Length of planning period [hours]
TSij Sailing time from location i to location j [hours]
TLi Loading or unloading time per ton of feed for location i [hours/ton]
TWS
d Start of service hours for day d [hours]
TWE
d End of service hours for day d [hours]

Ji Location type for location i, 1 for factories and -1 for fish farms
Rip Consumption rate of product p at fish farm i [tons/hour]
Pi Production rate at factory i [tons/hour]
Hi Time between visits to location i [hours]

A.1.4 Decision variables

ximjnv 1 if ship v sails from visit (i,m) to visit (j, n), else 0
yim 1 if visit (i,m) is not made by any ship, else 0
ui 1 if fish farm i is supplied internally, 0 if supplied externally

qimvp Amount of product p loaded/unloaded by ship v during visit (i,m) [tons]
limvp Amount of product p on board ship v when leaving visit (i,m) [tons]

sim Amount of feed in stock at the start of visit (i,m) ∈ SP [tons]
sEim Amount of feed in stock at the end of visit (i,m) ∈ SP [tons]
simp Amount of product p in stock at the start of visit (i,m) ∈ SC [tons]
sEimp Amount of product p in stock at the end of visit (i,m) ∈ SC [tons]
dimp Amount of product p below SMIN

ip at the start of visit (i,m) ∈ SC [tons]

tim Time for start of service for visit (i,m) [hours]
tEim Time for end of service for visit (i,m), [hours]
σimd 1 if visit (i,m) ∈ SC is within service hours on day d, else 0
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A.2 Model Formulation

A.2.1 Objective function

min z =
∑

(i,m)∈S

∑
(j,n)∈S

∑
v∈V

Cijximjnv + TMAX
∑
i∈NC

∑
p∈P

EpRip(1− ui)

+
∑
i∈NC

ETi (1− ui) +
∑

(i,m)∈SC

∑
p∈P

B
dimp
Rip

(A.1)

A.2.2 Routing constraints∑
(j,n)∈Sv

xo(v)jnv = 1 v ∈ V (A.2)

∑
(j,n)∈S

xjnimv −
∑

(j,n)∈Sv

ximjnv = 0 (i,m) ∈ S\{o(v)}, v ∈ V (A.3)

∑
(j,n)∈S

xjnd(v)v = 1 v ∈ V (A.4)

∑
(j,n)∈Sv

∑
v∈V

ximjnv = 1− yim (i,m) ∈ S (A.5)

yim − yim−1 ≥ 0 (i,m) ∈ S|m > 1 (A.6)

ui = 1− yi1 i ∈ NC (A.7)

A.2.3 Loading and unloading constraints

L0
vp + Jiqo(v)vp = lo(v)vp v ∈ V, p ∈ P (A.8)

ximjnv(limvp + Jjqjnvp − ljnvp) = 0
(i,m) ∈ S, (j, n) ∈ Sv\{o(v)}, v ∈ V, p ∈ P

(A.9)

∑
p∈P

limvp ≤
∑

(j,n)∈Sv

KMAX
v ximjnv (i,m) ∈ SP , v ∈ V (A.10)
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∑
p∈P

limvp ≤
∑

(j,n)∈Sv

KMAX
v ximjnv −

∑
p∈P

qimvp (i,m) ∈ SC , v ∈ V (A.11)

∑
p∈P

qimvp ≤
∑

(j,n)∈Sv

SMAX
i ximjnv (i,m) ∈ SC , v ∈ V (A.12)

∑
(j,n)∈Sv

QMIN
ip ximjnv ≤ qimvp (i,m) ∈ SC , v ∈ V, p ∈ P (A.13)

∑
v∈V

∑
p∈P

qimvp ≤ sim + SMAX
i yim (i,m) ∈ SP (A.14)

∑
v∈V

∑
p∈P

qimvp ≥ sim − SMAX
i yim (i,m) ∈ SP (A.15)

A.2.4 Inventory constraints

S0
i + Pitim = sim (i,m) ∈ SP |m = 1 (A.16)

S0
ip −Riptim = simp (i,m) ∈ SC |m = 1, p ∈ P (A.17)

sim + Pi(tEim − tim)−
∑
v∈V

∑
p∈P

qimvp = sEim (i,m) ∈ SP (A.18)

simp −Rip(tEim − tim) +
∑
v∈V

qimvp = sEimp (i,m) ∈ SC , p ∈ P (A.19)

sEi(m−1) + Pi(tim − tEi(m−1)) = sim (i,m) ∈ SP |m > 1 (A.20)

sEi(m−1)p −Rip(tim − tEi(m−1)) = simp (i,m) ∈ SC |m > 1, p ∈ P (A.21)

sim ≤ SMAX
i (i,m) ∈ SP (A.22)

∑
p∈P

sEimp ≤ (1−Ai)SMAX
i +AiS

MAX
i

∑
d∈D

σimd (i,m) ∈ SC (A.23)
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SMIN
ip ui ≤ simp + dimp (i,m) ∈ SC , p ∈ P (A.24)

dimp ≤ SMIN
ip ui (i,m) ∈ SC , p ∈ P (A.25)

sEim + Pi(TMAX − tEim) ≤ SMAX
i (i,m) ∈ SP |m = |Mi| (A.26)

SMIN
ip ui +RipT

MAXui −RiptEim ≤ sEimp
(i,m) ∈ SC |m = |Mi|, p ∈ P

(A.27)

A.2.5 Timing constraints

tim +
∑
v∈V

∑
p∈P

TLi qimvp = tEim (i,m) ∈ S (A.28)

∑
v∈V

ximjnv(tEim + TSij − tjn) ≤ 0 (i,m), (j, n) ∈ S (A.29)

tEim ≤ TMAX (i,m) ∈ S (A.30)

tim ≤ TMAXui (i,m) ∈ SC (A.31)

yim(tim − tEi(m−1)) = 0 (i,m) ∈ S|m > 1 (A.32)

TWS
d − TMAX(1− σimd+yim) ≤ tim ≤ TWE

d + TMAX(1− σimd + yim)
(i,m) ∈ SC , d ∈ D

(A.33)

∑
d∈D

σimd ≤ 1 (i,m) ∈ SC (A.34)

∑
d∈D

σimd ≥ yim (i,m) ∈ SC (A.35)

tim +Hi(1− yi(m+1)) ≤ tim+1 (i,m) ∈ S (A.36)
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A.2.6 Variable constraints

ximjnv ∈ {0, 1} (i,m) ∈ S, (j, n) ∈ Sv, v ∈ V (A.37)

yim ∈ {0, 1} (i,m) ∈ S (A.38)

ui ∈ {0, 1} i ∈ NC (A.39)

σimd ∈ {0, 1} (i,m) ∈ SC , d ∈ D (A.40)

qimvp ≥ 0 (i,m) ∈ S, v ∈ V, p ∈ P (A.41)

limvp ≥ 0 (i,m) ∈ S, v ∈ V, p ∈ P (A.42)

sim ≥ 0 (i,m) ∈ SP (A.43)

sEim ≥ 0 (i,m) ∈ SP (A.44)

simp ≥ 0 (i,m) ∈ SC , p ∈ P (A.45)

sEimp ≥ 0 (i,m) ∈ SC , p ∈ P (A.46)

dimp ≥ 0 (i,m) ∈ SC , p ∈ P (A.47)

tim ≥ 0 (i,m) ∈ S (A.48)

tEim ≥ 0 (i,m) ∈ S (A.49)
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Appendix B

Complete Arc-Flow
Formulation

B.1 Definitions

B.1.1 Sets

NP Set of factories
NC Set of fish farms
Mi Set of visit numbers for location i
V Set of ships
SP Set of factory visits (i,m) where i ∈ NP and m ∈Mi

SC Set of fish farm visits (i,m) where i ∈ NC and m ∈Mi

S Set of visits, S = SP ∪ SC
Sv Set of feasible visits for ship v, Sv = S ∪ {d(v)}
P Set of products
D Set of days within the planning horizon

B.1.2 Indices

i, j Locations
o(v) Start node of ship v
d(v) Dummy end node of ship v
m, n Visit numbers
v Ships
p Products
d Days

109



B.1.3 Parameters

B Penalty cost for stock levels below the safety stock level [NOK/hour]
Cij Transportation cost for sailing from location i to location j [NOK]
Ep Unit cost of buying product p externally [NOK/ton]
ETi Transportation cost for external feed delivery to fish farm i [NOK]

L0
vp Initial load of product p on ship v [tons]

KMAX
v Maximum capacity for ship v [tons]

QMIN
ip Minimum unloading quantity of product p for fish farm i [tons]

S0
i Initial inventory level at factory i [tons]
S0
ip Initial inventory level of product p at fish farm i [tons]
SMIN
ip Minimum inventory level of product p at fish farm i [tons]
SMAX
i Maximum inventory level at location i [tons]
Ai Reduction in storage capacity at fish farm i outside working hours [%]

TMAX Length of planning period [hours]
TSij Sailing time from location i to location j [hours]
TLi Loading or unloading time per ton of feed for location i [hours/ton]
TWS
d Start of service hours for day d [hours]
TWE
d End of service hours for day d [hours]

Ji Location type for location i, 1 for factories and -1 for fish farms
Rip Consumption rate of product p at fish farm i [tons/hour]
Pi Production rate at factory i [tons/hour]
Hi Time between visits to location i [hours]

B.1.4 Decision variables

ximjnv 1 if ship v sails from visit (i,m) to visit (j, n), else 0
yim 1 if visit (i,m) is not made by any ship, else 0
ui 1 if fish farm i is supplied internally, 0 if supplied externally

qimvp Amount of product p loaded/unloaded by ship v during visit (i,m) [tons]
limjnvp Amount of product p on board ship v when traveling on arc (i,m, j, n) [tons]

sim Amount of feed in stock at the start of visit (i,m) ∈ SP [tons]
sEim Amount of feed in stock at the end of visit (i,m) ∈ SP [tons]
simp Amount of product p in stock at the start of visit (i,m) ∈ SC [tons]
sEimp Amount of product p in stock at the end of visit (i,m) ∈ SC [tons]
dimp Amount of product p below SMIN

ip at the start of visit (i,m) ∈ SC [tons]

tim Time for start of service for visit (i,m) [hours]
tEim Time for end of service for visit (i,m), [hours]
σimd 1 if visit (i,m) ∈ SC is within service hours on day d, else 0
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B.2 Model Formulation

B.2.1 Objective function

min z =
∑

(i,m)∈S

∑
(j,n)∈S

∑
v∈V

Cijximjnv + TMAX
∑
i∈NC

∑
p∈P

EpRip(1− ui)

+
∑
i∈NC

ETi (1− ui) +
∑

(i,m)∈SC

∑
p∈P

B
dimp
Rip

(B.1)

B.2.2 Routing constraints∑
(j,n)∈Sv

xo(v)jnv = 1 v ∈ V (B.2)

∑
(j,n)∈S

xjnimv −
∑

(j,n)∈Sv

ximjnv = 0 (i,m) ∈ S\{o(v)}, v ∈ V (B.3)

∑
(j,n)∈S

xjnd(v)v = 1 v ∈ V (B.4)

∑
(j,n)∈Sv

∑
v∈V

ximjnv = 1− yim (i,m) ∈ S (B.5)

yim − yim−1 ≥ 0 (i,m) ∈ S|m > 1 (B.6)

ui = 1− yi1 i ∈ NC (B.7)

B.2.3 Loading and unloading constraints

L0
vp + Jiqo(v)vp =

∑
(j,n)∈Sv

lo(v)jnvp v ∈ V, p ∈ P (B.8)

∑
(j,n)∈S

ljnimvp + Jiqimvp −
∑

(j,n)∈Sv

limjnvp = 0

(i,m) ∈ S\{o(v)}, v ∈ V, p ∈ P
(B.9)

∑
p∈P

limjnvp ≤ KMAX
v ximjnv (i,m) ∈ S, (j, n) ∈ Sv, v ∈ V (B.10)
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∑
p∈P

qimvp ≤
∑

(j,n)∈Sv

SMAX
i ximjnv (i,m) ∈ SC , v ∈ V (B.11)

∑
(j,n)∈Sv

QMIN
ip ximjnv ≤ qimvp (i,m) ∈ SC , v ∈ V, p ∈ P (B.12)

∑
v∈V

∑
p∈P

qimvp ≤ sim + SMAX
i yim (i,m) ∈ SP (B.13)

∑
v∈V

∑
p∈P

qimvp ≥ sim − SMAX
i yim (i,m) ∈ SP (B.14)

B.2.4 Inventory constraints

S0
i + Pitim = sim (i,m) ∈ SP |m = 1 (B.15)

S0
ip −Riptim = simp (i,m) ∈ SC |m = 1, p ∈ P (B.16)

sim + Pi(tEim − tim)−
∑
v∈V

∑
p∈P

qimvp = sEim (i,m) ∈ SP (B.17)

simp −Rip(tEim − tim) +
∑
v∈V

qimvp = sEimp (i,m) ∈ SC , p ∈ P (B.18)

sEi(m−1) + Pi(tim − tEi(m−1)) = sim (i,m) ∈ SP |m > 1 (B.19)

sEi(m−1)p −Rip(tim − tEi(m−1)) = simp (i,m) ∈ SC |m > 1, p ∈ P (B.20)

sim ≤ SMAX
i (i,m) ∈ SP (B.21)

∑
p∈P

sEimp ≤ (1−Ai)SMAX
i +AiS

MAX
i

∑
d∈D

σimd (i,m) ∈ SC (B.22)

SMIN
ip ui ≤ simp + dimp (i,m) ∈ SC , p ∈ P (B.23)

dimp ≤ SMIN
ip ui (i,m) ∈ SC , p ∈ P (B.24)
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sEim + Pi(TMAX − tEim) ≤ SMAX
i (i,m) ∈ SP |m = |Mi| (B.25)

SMIN
ip ui +RipT

MAXui −RiptEim ≤ sEimp
(i,m) ∈ SC |m = |Mi|, p ∈ P

(B.26)

B.2.5 Timing constraints

tim +
∑
v∈V

∑
p∈P

TLi qimvp = tEim (i,m) ∈ S (B.27)

∑
v∈V

ximjnv(tEim + TSij − tjn) ≤ 0 (i,m), (j, n) ∈ S (B.28)

tEim ≤ TMAX (i,m) ∈ S (B.29)

tim ≤ TMAXui (i,m) ∈ SC (B.30)

yim(tim − tEi(m−1)) = 0 (i,m) ∈ S|m > 1 (B.31)

TWS
d − TMAX(1− σimd+yim) ≤ tim ≤ TWE

d + TMAX(1− σimd + yim)
(i,m) ∈ SC , d ∈ D

(B.32)

∑
d∈D

σimd ≤ 1 (i,m) ∈ SC (B.33)

∑
d∈D

σimd ≥ yim (i,m) ∈ SC (B.34)

tim +Hi(1− yi(m+1)) ≤ tim+1 (i,m) ∈ S (B.35)
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B.2.6 Variable constraints

ximjnv ∈ {0, 1} (i,m) ∈ S, (j, n) ∈ Sv, v ∈ V (B.36)

yim ∈ {0, 1} (i,m) ∈ S (B.37)

ui ∈ {0, 1} i ∈ NC (B.38)

σimd ∈ {0, 1} (i,m) ∈ SC , d ∈ D (B.39)

qimvp ≥ 0 (i,m) ∈ S, v ∈ V, p ∈ P (B.40)

limjnvp ≥ 0 (i,m) ∈ S, (j, n) ∈ Sv, v ∈ V, p ∈ P (B.41)

sim ≥ 0 (i,m) ∈ SP (B.42)

sEim ≥ 0 (i,m) ∈ SP (B.43)

simp ≥ 0 (i,m) ∈ SC , p ∈ P (B.44)

sEimp ≥ 0 (i,m) ∈ SC , p ∈ P (B.45)

dimp ≥ 0 (i,m) ∈ SC , p ∈ P (B.46)

tim ≥ 0 (i,m) ∈ S (B.47)

tEim ≥ 0 (i,m) ∈ S (B.48)
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Appendix C

Complete Multi-Commodity
Flow Formulation

C.1 Definitions

C.1.1 Sets

NP Set of factories
NC Set of fish farms
Mi Set of visit numbers for location i
V Set of ships

SP Set of factory visits (i,m) where i ∈ NP and m ∈Mi

SC Set of fish farm visits (i,m) where i ∈ NC and m ∈Mi

S Set of visits, S = SP ∪ SC
Sv Set of feasible visits for ship v, Sv = S ∪ {d(v)}
SFv Set of visits to flow receivers for ship v, SFv = SC ∪ {d(v)}

P Set of products
D Set of days within the planning horizon
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C.1.2 Indices

i, j Locations
k Flow receivers
o(v) Start node of ship v
d(v) Dummy end node of ship v
m, n, o Visit numbers
v Ships
p Products
d Days

C.1.3 Parameters

B Penalty cost for stock levels below the safety stock level [NOK/hour]
Cij Transportation cost for sailing from location i to location j [NOK]
Ep Unit cost of buying product p externally [NOK/ton]
ETi Transportation cost for external feed delivery to fish farm i [NOK]

L0
vp Initial load of product p on ship v [tons]

KMAX
v Maximum capacity for ship v [tons]

QMIN
ip Minimum unloading quantity of product p for fish farm i [tons]

S0
i Initial inventory level at factory i [tons]
S0
ip Initial inventory level of product p at fish farm i [tons]
SMIN
ip Minimum inventory level of product p at fish farm i [tons]
SMAX
i Maximum inventory level at location i [tons]
Ai Reduction in storage capacity at fish farm i outside working hours [%]

TMAX Length of planning period [hours]
TSij Sailing time from location i to location j [hours]
TLi Loading or unloading time per ton of feed for location i [hours/ton]
TWS
d Start of service hours for day d [hours]
TWE
d End of service hours for day d [hours]

Ji Location type for location i, 1 for factories and -1 for fish farms
Rip Consumption rate of product p at fish farm i [tons/hour]
Pi Production rate at factory i [tons/hour]
Hi Time between visits to location i [hours]
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C.1.4 Decision variables

ximjnv 1 if ship v sails from visit (i,m) to visit (j, n), else 0
wimv 1 if ship v makes visit (i,m), else 0
yim 1 if visit (i,m) is not made by any ship, else 0
ui 1 if fish farm i is supplied internally, 0 if supplied externally

qimvp Amount of product p loaded/unloaded by ship v during visit (i,m) [tons]
limjnkovp Amount of product p on board ship v on arc (i,m, j, n), [tons]

destined for visit (k, o)

sim Amount of feed in stock at the start of visit (i,m) ∈ SP [tons]
sEim Amount of feed in stock at the end of visit (i,m) ∈ SP [tons]
simp Amount of product p in stock at the start of visit (i,m) ∈ SC [tons]
sEimp Amount of product p in stock at the end of visit (i,m) ∈ SC [tons]
dimp Amount of product p below SMIN

ip at the start of visit (i,m) ∈ SC [tons]

tim Time for start of service for visit (i,m) [hours]
tEim Time for end of service for visit (i,m), [hours]
σimd 1 if visit (i,m) ∈ SC is within service hours on day d, else 0

C.2 Model Formulation

C.2.1 Objective function

min z =
∑

(i,m)∈S

∑
(j,n)∈S

∑
v∈V

Cijximjnv + TMAX
∑
i∈NC

∑
p∈P

EpRip(1− ui)

+
∑
i∈NC

ETi (1− ui) +
∑

(i,m)∈SC

∑
p∈P

B
dimp
Rip

(C.1)

C.2.2 Routing constraints
∑

(j,n)∈Sv

xo(v)jnv = 1 v ∈ V (C.2)

∑
(j,n)∈S

xjnimv −
∑

(j,n)∈Sv

ximjnv = 0 (i,m) ∈ S\{o(v)}, v ∈ V (C.3)

∑
(j,n)∈S

xjnd(v)v = 1 v ∈ V (C.4)
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∑
(j,n)∈Sv

ximjnv = wimv (i,m) ∈ S, v ∈ V (C.5)

∑
(j,n)∈Sv

∑
v∈V

ximjnv = 1− yim (i,m) ∈ S (C.6)

yim − yim−1 ≥ 0 (i,m) ∈ S|m > 1 (C.7)

ui = 1− yi1 i ∈ NC (C.8)

C.2.3 Loading and unloading constraints

L0
vp + Jiqo(v)vp =

∑
(j,n)∈Sv

∑
(k,o)∈SF

v

lo(v)jnkovp v ∈ V, p ∈ P (C.9)

∑
(j,n)∈S

∑
(k,o)∈SF

v

ljnimkovp + Jiqimvp −
∑

(j,n)∈Sv

∑
(k,o)∈SF

v

limjnkovp = 0

(i,m) ∈ S\{o(v)}, v ∈ V, p ∈ P
(C.10)

∑
(j,n)∈S

ljnimimvp − qimvp = 0 (i,m) ∈ SC , v ∈ V, p ∈ P (C.11)

∑
(j,n)∈Sv

limjnkovp −
∑

(j,n)∈S

ljnimkovp = 0

(i,m) ∈ SC , (k, o) ∈ SFv , v ∈ V, p ∈ P
(C.12)

∑
(j,n)∈Sv

limjnkovp ≤
∑

(j,n)∈S

ljnimkovp + qimvp

(j, n) ∈ SP , (k, o) ∈ SFv , v ∈ V, p ∈ P
(C.13)

∑
(j,n)∈S

ljnimkovp ≤
∑

(j,n)∈Sv

limjnkovp

(i,m) ∈ SP , (k, o) ∈ SFv , v ∈ V, p ∈ P
(C.14)
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∑
(k,o)∈SF

v

∑
p∈P

limjnkovp ≤ KMAX
v ximjnv (i,m) ∈ S, (j, n) ∈ Sv, v ∈ V (C.15)

∑
p∈P

limjnkovp ≤ SMAX
k ximjnv

(i,m) ∈ S, (j, n) ∈ Sv, (k, o) ∈ SFv , v ∈ V
(C.16)

∑
p∈P

limjnkovp ≤ SMAX
k wkov (i,m) ∈ S, (j, n) ∈ Sv, (k, o) ∈ SC , v ∈ V (C.17)

QMIN
ip wimv ≤ qimvp (i,m) ∈ SC , v ∈ V, p ∈ P (C.18)

∑
p∈P

qimvp ≤ sim + SMAX
i (1− wimv) (i,m) ∈ SP , v ∈ V (C.19)

∑
p∈P

qimvp ≥ sim − SMAX
i (1− wimv) (i,m) ∈ SP , v ∈ V (C.20)

C.2.4 Inventory constraints

S0
i + Pitim = sim (i,m) ∈ SP |m = 1 (C.21)

S0
ip −Riptim = simp (i,m) ∈ SC |m = 1, p ∈ P (C.22)

sim + Pi(tEim − tim)−
∑
v∈V

∑
p∈P

qimvp = sEim (i,m) ∈ SP (C.23)

simp −Rip(tEim − tim) +
∑
v∈V

qimvp = sEimp (i,m) ∈ SC , p ∈ P (C.24)

sEi(m−1) + Pi(tim − tEi(m−1)) = sim (i,m) ∈ SP |m > 1 (C.25)

sEi(m−1)p −Rip(tim − tEi(m−1)) = simp (i,m) ∈ SC |m > 1, p ∈ P (C.26)
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sim ≤ SMAX
i (i,m) ∈ SP (C.27)

∑
p∈P

sEimp ≤ (1−Ai)SMAX
i +AiS

MAX
i

∑
d∈D

σimd (i,m) ∈ SC (C.28)

SMIN
ip ui ≤ simp + dimp (i,m) ∈ SC , p ∈ P (C.29)

dimp ≤ SMIN
ip ui (i,m) ∈ SC , p ∈ P (C.30)

sEim + Pi(TMAX − tEim) ≤ SMAX
i (i,m) ∈ SP |m = |Mi| (C.31)

SMIN
ip ui +RipT

MAXui −RiptEim ≤ sEimp
(i,m) ∈ SC |m = |Mi|, p ∈ P

(C.32)

C.2.5 Timing constraints

tim +
∑
v∈V

∑
p∈P

TLi qimvp = tEim (i,m) ∈ S (C.33)

∑
v∈V

ximjnv(tEim + TSij − tjn) ≤ 0 (i,m), (j, n) ∈ S (C.34)

tEim ≤ TMAX (i,m) ∈ S (C.35)

tim ≤ TMAXui (i,m) ∈ SC (C.36)

yim(tim − tEi(m−1)) = 0 (i,m) ∈ S|m > 1 (C.37)

TWS
d − TMAX(1− σimd+yim) ≤ tim ≤ TWE

d + TMAX(1− σimd + yim)
(i,m) ∈ SC , d ∈ D

(C.38)

∑
d∈D

σimd ≤ 1 (i,m) ∈ SC (C.39)
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∑
d∈D

σimd ≥ yim (i,m) ∈ SC (C.40)

tim +Hi(1− yi(m+1)) ≤ tim+1 (i,m) ∈ S (C.41)

C.2.6 Variable constraints

ximjnv ∈ {0, 1} (i,m) ∈ S, (j, n) ∈ Sv, v ∈ V (C.42)

wimv ∈ {0, 1} (i,m) ∈ S, v ∈ V (C.43)

yim ∈ {0, 1} (i,m) ∈ S (C.44)

ui ∈ {0, 1} i ∈ NC (C.45)

σimd ∈ {0, 1} (i,m) ∈ SC , d ∈ D (C.46)

qimvp ≥ 0 (i,m) ∈ S, v ∈ V, p ∈ P (C.47)

limjnkovp ≥ 0 (i,m) ∈ S, (j, n) ∈ Sv, (k, o) ∈ SFv , v ∈ V, p ∈ P (C.48)

sim ≥ 0 (i,m) ∈ SP (C.49)

sEim ≥ 0 (i,m) ∈ SP (C.50)

simp ≥ 0 (i,m) ∈ SC , p ∈ P (C.51)

sEimp ≥ 0 (i,m) ∈ SC , p ∈ P (C.52)

dimp ≥ 0 (i,m) ∈ SC , p ∈ P (C.53)

tim ≥ 0 (i,m) ∈ S (C.54)
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tEim ≥ 0 (i,m) ∈ S (C.55)

122



Appendix D

Test Case Data

This appendix gives an overview of common problem data and data related to the
factory, ships and fish farms for the various-sized test cases. In order to maintain
data confidentiality, the names of fish farms are removed and they are listed in a
random order.

D.1 Common Data

Number of ships: 2
Number of days: 10

Ship speed, knots: 13
Unloading rate, tons per hour: 180
Loading rate, tons per hour: 270

Transportation cost per hour, NOK: 1600
External transportation cost, NOK : 4400
External feed cost per ton, NOK: 250
Penalty cost per hour, NOK : 400

D.2 Small Test Case

The production rate, storage capacity and initial stock for the factory are given in
Table D.1. The ship capacity and initial load are given in Table D.2.
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Factory
Production rate 15 tons/hour
Storage capacity 1000 tons
Initial stock 500 tons

Table D.1: Production rate, storage capacity and initial stock for the factory.

Ships
Storage capacity 1000 tons
Initial load 0 tons

Table D.2: Capacity and initial load for each ship.

Table D.3 lists initial stock levels, weekly demands, safety stock levels and storage
capacities for all fish farms. With a partial split, the first ship serves 12 fish farms,
while the other serves 13, and 5 fish farms are shared. With a full split, the ships
supply 10 fish farms each.
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Fish farm Initial stock Weekly demand Safety stock Storage capacity
Location 1 167 194 28 450
Location 2 81 95 14 230
Location 3 109 127 18 400
Location 4 179 209 30 228
Location 5 111 130 19 300
Location 6 113 132 19 230
Location 7 101 118 17 200
Location 8 225 26 38 400
Location 9 26 30 4 390
Location 10 124 144 21 372
Location 11 29 34 5 300
Location 12 110 128 18 400
Location 13 89 104 15 120
Location 14 81 94 13 250
Location 15 113 131 19 400
Location 16 135 157 22 250
Location 17 88 102 15 400
Location 18 150 175 25 400
Location 19 120 140 20 240
Location 20 190 222 32 400

Table D.3: Initial stock, demand, safety stock and maximum storage capacity for
each fish farm. All numbers are given in tons.

D.3 Medium Test Case

The production rate, storage capacity and initial stock for the factory are given in
Table D.4. The ship capacity and initial load are given in Table D.5.

Factory
Production rate 30 tons/hour
Storage capacity 2000 tons
Initial stock 1000 tons

Table D.4: Production rate, storage capacity and initial stock for the factory
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Ships
Storage capacity 2000 tons
Initial load 0 tons

Table D.5: Capacity and initial load for each ship.

Table D.6 lists initial stock levels, weekly demands, safety stock levels and storage
capacities for all fish farms. With a partial split, the first ship serves 24 fish farms,
while the other serves 27 and 11 fish farms are shared. With a full split, one ship
supplies 17 fish farms and the other 23.

Fish farm Initial stock Weekly demand Safety stock Storage capacity
Location 1 167 194 28 450
Location 2 94 109 16 400
Location 3 81 95 14 230
Location 4 221 258 37 390
Location 5 109 127 18 400
Location 6 193 225 32 400
Location 7 179 209 30 228
Location 8 146 170 24 260
Location 9 111 130 19 300
Location 10 63 73 10 400
Location 11 113 132 19 230
Location 12 116 135 19 400
Location 13 101 118 17 200
Location 14 105 123 18 200
Location 15 225 263 38 400
Location 16 250 292 42 300
Location 17 26 30 4 390
Location 18 124 144 21 372
Location 19 111 129 18 270
Location 20 49 57 8 130
Location 21 106 124 18 200
Location 22 29 34 5 300
Location 23 110 128 18 400
Location 24 132 154 22 180
Location 25 89 104 15 120
Location 26 147 172 25 400
Location 27 9 11 2 400
Location 28 81 94 13 250
Location 29 59 69 10 200
Location 30 113 131 19 400
Location 31 135 157 22 250
Location 32 91 107 15 200
Location 33 152 177 25 390
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Fish farm Initial stock Weekly demand Safety stock Storage capacity
Location 34 88 102 15 400
Location 35 255 298 43 400
Location 36 150 175 25 400
Location 37 120 140 20 240
Location 38 66 77 11 180
Location 39 144 168 24 400
Location 40 190 222 32 400

Table D.6: Initial stock, demand, safety stock and maximum storage capacity for
each fish farm. All numbers are given in tons.

D.4 Large Test Case

The production rate, storage capacity and initial stock for the factory are given in
Table D.7. The ship capacity and initial load are given in Table D.8.

Factory
Production rate 45 tons/hour
Storage capacity 3000 tons
Initial stock 1500 tons

Table D.7: Production rate, storage capacity and initial stock for the factory.

Ships
Storage capacity 3000 tons
Initial load 0 tons

Table D.8: Capacity and initial load for each ship.

Table D.9 lists initial stock levels, weekly demands, safety stock levels and storage
capacities for all fish farms. With a partial split, the first ship serves 36 fish farms,
while the other serves 41 and 17 fish farms are shared. With a full split, one ship
supplies 24 fish farms and the other 36.
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Fish farm Initial stock Weekly demand Safety stock Storage capacity
Location 1 167 194 28 450
Location 2 4 5 1 280
Location 3 94 109 16 400
Location 4 81 95 14 230
Location 5 78 91 13 390
Location 6 29 34 5 300
Location 7 221 258 37 390
Location 8 109 127 18 400
Location 9 193 225 32 400
Location 10 179 209 30 228
Location 11 154 179 26 400
Location 12 146 170 24 260
Location 13 76 89 13 250
Location 14 111 130 19 300
Location 15 63 73 10 400
Location 16 27 31 4 100
Location 17 113 132 19 230
Location 18 116 135 19 400
Location 19 101 118 17 200
Location 20 105 123 18 200
Location 21 225 263 38 400
Location 22 250 292 42 300
Location 23 29 33 5 300
Location 24 26 30 4 390
Location 25 124 144 21 372
Location 26 123 144 21 300
Location 27 106 124 18 280
Location 28 111 129 18 270
Location 29 54 63 9 200
Location 30 49 57 8 130
Location 31 107 124 18 210
Location 32 106 124 18 200
Location 33 29 34 5 300
Location 34 110 128 18 400
Location 35 170 198 28 420
Location 36 132 154 22 180
Location 37 89 104 15 120
Location 38 118 138 20 300
Location 39 147 172 25 400
Location 40 67 78 11 200
Location 41 9 11 2 400
Location 42 10 11 2 300
Location 43 81 94 13 250
Location 44 188 219 31 400
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Fish farm Initial stock Weekly demand Safety stock Storage capacity
Location 45 59 69 10 200
Location 46 158 184 26 400
Location 47 113 131 19 400
Location 48 135 157 22 250
Location 49 91 107 15 200
Location 50 152 177 25 390
Location 51 88 102 15 400
Location 52 82 96 14 220
Location 53 255 298 43 400
Location 54 12 14 2 400
Location 55 150 175 25 400
Location 56 120 140 20 240
Location 57 66 77 11 180
Location 58 144 168 24 400
Location 59 190 222 32 400
Location 60 80 93 13 400

Table D.9: Initial stock, demand, safety stock and maximum storage capacity for
each fish farm. All numbers are given in tons.
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Appendix E

Cost Calculations

This appendix gives an overview of our calculations of the internal transportation
cost and external feed costs.

E.1 Transportation Cost

E.1.1 LNG consumption

In order to find the LNG consumption per hour for the ships, we used data provided
by the shipping company building the ships, Egil Ulvan Rederi. We received Table
E.2 which gives predicted delivered power, PD for different speeds with a draft of
six meters and a controllable pitch propeller. We also received Table E.1, showing
energy consumption for different values of delivered power. With a speed of 13
knots, we get a predicted delivered power of 1,669 kW and a consumption of
approximately 14,000 MJ per hour.

Resistance Propulsion, Trial Condition (no S. M.), Headwind 0 Bft
Speed RT PE η0 ηd PD PB n P/D
[kts] [kN] [kW] [-] [-] [kW] [kW] [RPM] [-]
9 68.2 316 0.603 0.674 482 497 103.8 0.667
11 106.4 602 0.607 0.677 916 943 125.7 0.689
12 131.7 813 0.605 0.675 1,241 1,278 138.1 0.693
13 163.3 1,092 0.604 0.674 1,669 1,719 148.8 0.715
15 282.4 2,179 0.575 0.641 3,501 3,606 154.5 0.956

Table E.1: Delivered power and energy consumption for a draft of six meters and
controllable pitch propeller (Egil Ulvan Rederi, 2014).
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Controllable pitch propeller % 17% 28% 43% 63% 100%
Delivered power kW 406 683 1,049 1,539 2,438
Revolutions per minute RPM 600 700 800 900 1,000

Specific fuel consumption kJ/kWh 10,922 9,272 8,759 8,439 8,056

Fuel consumption MJ/h 4,434 6,333 9,188 12,988 19,641
kW 1,232 1,759 2,552 3,608 5,456

Table E.2: Consumption with controllable pitch propeller
(Egil Ulvan Rederi, 2014).

E.1.2 LNG prices

Prices of LNG are volatile, but after discussing with Océane Balland from DNV
GL Maritime Advisory, we decided on an estimated price of 120 NOK per million
BTU. 14,000 MJ converted to million BTU is 13.26 million BTU. This gives a
transportation cost per hour of 1,600 NOK.

Consumption per hour 13.26 million BTU
LNG price per million BTU 120 NOK
Transportation cost per hour 1,600 NOK

Table E.3: Transportation costs, equal to LNG fuel costs.

E.2 External Feed Costs

E.2.1 Fixed transportation cost

Marine Harvest’s main external supplier, Skretting, has feed factories located in
both region North, West and South. Therefore, the transportation cost related to
external feed delivery is set equal for all fish farms. We assume that the supplier
has a transportation cost similar to our internal transportation cost and that they
deliver to many fish farms and therefore do not travel from a factory to each
fish farm separately. Therefore, we have simply calculated the average LNG cost of
traveling to fish farms from the internal factory, and set the external transportation
cost to be 25% of this. This gives a fixed transportation cost for external delivery
of 4,400 NOK.
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E.2.2 Unit cost

The unit cost for external feed is calculated using Marine Harvest’s current cost of
standard feed, around 8,000 NOK per ton, and a profit margin of 3%. This gives
a unit cost for external feed of 250 NOK per ton.
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Appendix F

Parallel Frameworks

This appendix contains the two parallel frameworks, written in C++. Section F.1
gives the node-based framework, while the tree-based framework can be found in
Section F.2.

F.1 Node-Based Parallelization

F.1.1 main
#include <cs td l i b >
#include <cstd io>
#include " bbc l a s s . hpp "
#include " worke r c l a s s . hpp "

using namespace std ;

int main ( int argc , char∗∗ argv ) {

// S t a r t the MPI environment
MPI : : I n i t ( ) ;
MPI : : Intracomm communicator ;

communicator = MPI : :COMM_WORLD;

MPI : : Request r eque s t ;
MPI : : Status s t a tu s ;

// S t a r t the s o l v e r
XPRSinit (NULL) ;

// I f I am the master , I c re a t e a b b c l a s s o b j e c t
i f ( communicator . Get_rank ( ) == 0){

// Create a b b c l a s s o b j e c t
bbc l a s s i n s t anc e ;
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i n s t anc e . i n i t i a l i z e ( argv [ 1 ] , communicator ) ;
// Ca l l the b b c l a s s rou t ine to s o l v e
i n s t anc e . opt imize ( ) ;

// Else , I am a worker ,
} else {

// Create a workerc la s s o b j e c t
worke r c l a s s i n s t anc e ;
i n s t anc e . i n i t i a l i z e ( argv [ 1 ] , communicator ) ;
// Ca l l the worker rou t ing to s o l v e
i n s t anc e . opt imize ( ) ;

}

// End the s o l v e r
XPRSfree ( ) ;

// End the MPI environment
MPI : : F i n a l i z e ( ) ;

return 0 ;
}

F.1.2 bbclass

Header file

#ifndef BBCLASS_HPP
#define BBCLASS_HPP

#include " nodec l a s s . hpp "

#include "mpi . h "
#include " xprs . h "

#include <stdde f . h>
#include <cstd io>

struct nodes t ruct {
// the s t r u c t s t o r e s one node , and p o i n t e r s to the next
//and prev ious node in the l i s t

nodec l a s s node ;
nodes t ruct ∗next ;
nodes t ruct ∗ prev ious ;

} ;

class bbc l a s s {
public :

bbc l a s s ( ) ;
bbc l a s s ( const bbc l a s s& o r i g ) ;
virtual ~ bbc l a s s ( ) ;

// i n i t i a l i z e the b b t r e e with a l l b inary v a r i a b l e s r e l a x e d
void i n i t i a l i z e (char ∗ , MPI : : Intracomm ) ;
// the opt imize func t ion c a l l e d from main
int opt imize ( ) ;
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// t h i s w i l l take one node and branch i t , c r e a t i n g two c h i l d nodes
void branch_node ( nodes t ruct ∗ , int ) ;
// prune i f a node ’ s bound/ s o l u t i o n i s i n f e a s i b l e or worse than the incumbent .
void prune_node ( nodes t ruct ∗ ) ;
// send a n o t i f i c a t i o n to a worker , 1 means so l ve , 0 means terminate ;
void s end_not i f i c a t i on ( int , int ) ;
// send the s t a t u s o f the b i n a r i e s o f a node to a worker to s o l v e ;
void send_binar i e s ( int ∗ , int ) ;
// r e c e i v e the s o l u t i o n
void r e c e i v e_so l u t i on ( int ) ;

private :
MPI : : Intracomm communicator ;
MPI : : Request r eque s t ;
MPI : : Status s t a tu s ;

// the beg inning o f the l i n k e d l i s t
nodes t ruct ∗ f i r s t_node ;
// number o f proces sor s a v a i l a b l e
int numProc ;
// rank o f a processor
int myRank ;
//number o f nodes in the l i s t
int nodes_open ;
// the incumbent node , i f any , found so f a r .
nodes t ruct ∗ incumbent_node ;
// Number o f b inary v a r i a b l e s in the problem
int num_bins ;
// Sta tus o f the s o l u t i o n from each worker
int ∗ s o lu t i on_s ta tu s ;
// Value o f the s o l u t i o n from each worker
double ∗ so lut ion_va lue ;
// Branch v a r i a b l e from each worker
int ∗branch_variable ;
// current lower bound of the BB t r e e
double lower_bound ;
// Time when a lgor i thm s t a r t s
double i n i t i a l_ t ime ;

} ;

#endif /∗ BBCLASS_HPP ∗/

Source file

#include " bbc l a s s . hpp "
#include " nodec l a s s . hpp "
#include <cstd io>

using namespace std ;

bbc l a s s : : bbc l a s s ( ) {
}

bbc l a s s : : bbc l a s s ( const bbc l a s s& o r i g ) {
}

bbc l a s s : : ~ bbc l a s s ( ) {
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}

int bbc l a s s : : opt imize ( ) {

numProc=communicator . Get_size ( ) ;
i n i t i a l_ t ime = MPI : : Wtime ( ) ;

int nodes_sent ;
int sendProc ;
int count_rece ived ;

double sendTime ;
double rece iveTime ;

nodes t ruct ∗ cur rent = new nodes t ruct [ 1 ] ;

s o l u t i on_s ta tu s = new int [ numProc ] ;
so lut ion_va lue = new double [ numProc ] ;
branch_variable = new int [ numProc ] ;

nodes t ruct ∗∗node_to_processor = new nodes t ruct ∗ [ numProc ] ;

int i t_counter = 0 ;

while ( nodes_open > 0 and (MPI : : Wtime ( ) i n i t i a l_ t ime )<36000) {
nodes_sent = 0 ;

cur rent = f i r s t_node ;

// Counter f o r sending problems to workers
sendProc=numProc 1 ;

// Create array to save which processor r e c e i v e s which nodes t ruc t

while ( sendProc>0 and nodes_open>0) {
sendTime = MPI : : Wtime ( ) ;
// I f a node turns out to have a lower bound h igher than the
// incumbent value , prune t h i s
i f ( incumbent_node != NULL && current >node . get_lowerbound ( ) >

incumbent_node >node . get_value ( ) ) {
nodes t ruct ∗node_to_prune = cur rent ;
cur r ent = current > next ;
prune_node ( node_to_prune ) ;
nodes_open ;

}
else {

// Save which processor r e c e i v e s which nodes t ruc t
node_to_processor [ sendProc ] = cur rent ;

// Send n o t i f i c a t i o n
s end_not i f i c a t i on (1 , sendProc ) ;

int ∗ f ixed_vars = new int [ num_bins ] ;
current >node . ge t_b ina r i e s ( f ixed_vars , num_bins ) ;

// send the current nodes t ruc t to a processor
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send_binar i e s ( f ixed_vars , sendProc ) ;

delete [ ] f ixed_vars ;

// update processor_count
sendProc ;
nodes_open ;
nodes_sent++;

// Set current node to the next node in the l i s t
i f ( current > next != NULL) {

cur rent = current > next ;
}
else {

break ;
}

}
}

// r e c e i v e s o l u t i o n s from workers
count_rece ived = 0 ;

while ( count_rece ived < nodes_sent ) {
// Wait u n t i l something i s r e c e i v e d
while ( communicator . Iprobe (MPI : :ANY_SOURCE, MPI : :ANY_TAG, s t a tu s ) == 0 ) ;
i f ( count_rece ived == 0) {
rece iveTime = MPI : : Wtime ( ) ;
}
// Save i d e n t i t y o f o r i g i n worker
int or ig in_worker = s ta tu s . Get_source ( ) ;

// Receive the s o l u t i o n s t a t u s and va lue i f any
r e c e i v e_so l u t i on ( or ig in_worker ) ;

//Prune or branch according to s o l u t i o n _ s t a t u s r e c e i v e d
i f ( s o lu t i on_s ta tu s [ or ig in_worker ]==0) {

prune_node ( node_to_processor [ or ig in_worker ] ) ;
}
else i f ( s o lu t i on_s ta tu s [ or ig in_worker ] == 2 ) {

int ∗ f i x e d = new int [ num_bins ] ;
node_to_processor [ or ig in_worker ] > node . ge t_b ina r i e s ( f i xed , num_bins ) ;

i f ( incumbent_node == NULL) {
incumbent_node = node_to_processor [ or ig in_worker ] ;
incumbent_node >node . set_value ( so lut ion_va lue [ or ig in_worker ] ) ;
prune_node ( node_to_processor [ or ig in_worker ] ) ;

}
else i f ( so lut ion_va lue [ or ig in_worker ]<
incumbent_node >node . get_value ( ) ) {

incumbent_node = node_to_processor [ or ig in_worker ] ;
incumbent_node >node . set_value ( so lut ion_va lue [ or ig in_worker ] ) ;
prune_node ( node_to_processor [ or ig in_worker ] ) ;

}
else {

prune_node ( node_to_processor [ or ig in_worker ] ) ;
}

}
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else i f ( incumbent_node != NULL
and so lut ion_va lue [ or ig in_worker]>=
incumbent_node >node . get_value ( ) ) {

prune_node ( node_to_processor [ or ig in_worker ] ) ;
}

else i f ( s o lu t i on_s ta tu s [ or ig in_worker ] == 3 ) {
return 0 ;

}
else {

// Set the node va lue to be the s o l u t i o n va lue r e c e i v e d
node_to_processor [ or ig in_worker ]
>node . set_value ( so lut ion_va lue [ or ig in_worker ] ) ;
branch_node ( node_to_processor [ or ig in_worker ] , or ig in_worker ) ;

}
count_rece ived++;
}
// Set lower bound equa l to the f i r s t node ’ s lower bound
cur rent = f i r s t_node ;

i f ( incumbent_node != NULL) {
lower_bound = incumbent_node >node . get_value ( ) ;

}

else {
lower_bound = current > node . get_lowerbound ( ) ;
}

// Check a l l open nodes i f they have a lower bound below t h i s
for ( int i =0; i<nodes_open ; i++) {

i f ( cur r ent == NULL) {
break ;

}
else {

i f ( current >node . get_lowerbound ( ) < lower_bound ) {
lower_bound = current > node . get_lowerbound ( ) ;

}
cur rent=current > next ;

}
}
// I f current lower_bound i s equa l to or l a r g e r than the incumbent value ,
//we have found the opt imal s o l u t i o n
i f ( incumbent_node != NULL and lower_bound >= incumbent_node >node . get_value ( ) 0 . 0 1 ) {

break ;
}

i t_counter++;
}

delete [ ] node_to_processor ;
delete [ ] s o l u t i on_s ta tu s ;
delete [ ] s o lu t ion_va lue ;
delete [ ] branch_variable ;

i f ( incumbent_node != NULL) {
int ∗wr i t e_b ina r i e s = new int (num_bins ) ;
incumbent_node >node . ge t_b inar i e s ( wr i t e_b inar i e s , num_bins ) ;

}

140



//Once the l i s t i s empty , s e l e c t the opt imal s o l u t i o n
//and repor t 0 to workers ( terminate )
for ( int i =1; i<numProc ; i++) {

s end_not i f i c a t i on (0 , i ) ;
}
return 0 ;

}

void bbc l a s s : : i n i t i a l i z e (char ∗argv , MPI : : Intracomm comm){
communicator = comm;
myRank = communicator . Get_rank ( ) ;

// d e c l a r e an xpres s problem o b j e c t
XPRSprob prob ;
// a l l o c a t e memory us ing the ded ica ted func t i on
XPRScreateprob(&prob ) ;
// read the problem from the f i l e path prov ided s ince main
XPRSreadprob ( prob , argv , " " ) ;
// read the number o f b inary v a r i a b l e s in the problem
int nCols = 0 ;
XPRSgetintattr ib ( prob , XPRS_COLS, &nCols ) ;

char ∗ types = new char [ nCols ] ;
num_bins=0;
XPRSgetcoltype ( prob , types , 0 , nCols 1 ) ;
for ( int i =0; i<nCols ; i++) i f ( types [ i ]== ’B ’ ) num_bins++;

// s t a r t the node l i s t by p o i n t i n g the f i r s t_node p o i n t e r to a new node with
// a l l i t ’ s v a r i a b l e s r e l a x e d .

int ∗ f i x_r e l ax = new int [ num_bins ] ;

// f i l l the " a l l r e l a x e d " array
for ( int i =0; i<num_bins ; i++) f i x_re l ax [ i ] = 1 ;

// c r e a t e the f i r s t nodes t ruc t
nodes t ruct ∗ l i s t_node = new nodes t ruct [ 1 ] ;

// c a l l the i n i t i a l i z a t i o n method f o r the node member o f the s t r u c t
l i s t_node >node . i n i t i a l i z e ( f i x_re lax , num_bins , 0 ) ;

// f o r s a f e t y , po in t the next member o f the s t r u c t to where i t can ’ t hurt
l i s t_node > next = NULL;

// f o r s a f e t y , po in t the next member o f the s t r u c t to where i t can ’ t hurt
l i s t_node > prev ious = NULL;

//make the " f i r s t_node " f i e l d o f the c l a s s po in t to t h i s new node
f i r s t_node = l i s t_node ;
nodes_open=1;

incumbent_node = NULL;

delete [ ] types ;
delete [ ] f i x_r e l ax ;
XPRSdestroyprob ( prob ) ;

}

141



// Function to send n o t i f i c a t i o n to worker , 0 means terminate , 1 means s o l v e
void bbc l a s s : : s end_not i f i c a t i on ( int n o t i f i c a t i o n , int proc ) {

r eque s t = communicator . I s s end (&no t i f i c a t i o n , 1 , MPI : : INT , proc , 0 ) ;
r eque s t .Wait ( s t a tu s ) ;

}

// Function to send the s t a t u s o f b inary v a r i a b l e s to a worker
void bbc l a s s : : s end_binar i e s ( int ∗ b ina r i e s , int proc ) {

r eque s t = communicator . I s s end ( b ina r i e s , num_bins , MPI : : INT , proc , 1 ) ;
r eque s t .Wait ( s t a tu s ) ;

}

// Function to r e c e i v e s o l u t i o n _ s t a t u s from a worker , 0 means i n f e a s i b l e s o l u t i o n
//1 means LP f e a s i b l e s o l u t i o n and 2 means i n t e g e r f e a s i b l e s o l u t i o n
void bbc l a s s : : r e c e i v e_so l u t i on ( int or ig in_worker ) {

communicator . Recv(&so lu t i on_s ta tu s [ or ig in_worker ] , 1 ,
MPI : : INT , origin_worker , 2 , s t a tu s ) ;

// I f the s o l u t i o n i s f e a s i b l e , the va lue i s r e c e i v e d as w e l l
i f ( s o lu t i on_s ta tu s [ or ig in_worker ]==1) {

communicator . Recv(&so lut ion_va lue [ or ig in_worker ] , 1 ,
MPI : :DOUBLE, origin_worker , 3 , s t a tu s ) ;
communicator . Recv(&branch_variable [ or ig in_worker ] , 1 ,
MPI : : INT , origin_worker , 4 , s t a tu s ) ;

}

else i f ( s o lu t i on_s ta tu s [ or ig in_worker ]==2) {
communicator . Recv(&so lut ion_va lue [ or ig in_worker ] , 1 ,
MPI : :DOUBLE, origin_worker , 3 , s t a tu s ) ;

}
}

void bbc l a s s : : branch_node ( nodes t ruct ∗node_to_branch , int or ig in_worker ) {

double parent_value = node_to_branch >node . get_value ( ) ;
int parent_tag = node_to_branch >node . get_tag ( ) ;

// Create nodes f o r c h i l d r e n
nodec l a s s child_down , child_up ;

// Create b inary arrays f o r both c h i l d r e n
int ∗binaries_down = new int [ num_bins ] ;
int ∗binar ies_up = new int [ num_bins ] ;

node_to_branch >node . ge t_b inar i e s ( binaries_down , num_bins ) ;
node_to_branch >node . ge t_b inar i e s ( binaries_up , num_bins ) ;

// Choose a v a r i a b l e to branch on
binaries_down [ branch_variable [ or ig in_worker ] ]=0 ;
binar ies_up [ branch_variable [ or ig in_worker ] ]=1 ;

child_down . i n i t i a l i z e ( binaries_down , num_bins , parent_value ) ;
child_up . i n i t i a l i z e ( binaries_up , num_bins , parent_value ) ;

delete [ ] binaries_down ;
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delete [ ] b inar ies_up ;

// Create nodes t ruc t f o r the up c h i l d
nodes t ruct ∗ ch i lds t ruct_up = new nodes t ruct [ 1 ] ;

// Set prev ious node o f the up c h i l d to be the down c h i l d and the next to be
// the next o f the branched node
ch i ldstruct_up >node = child_up ;

i f ( node_to_branch > next != NULL) {
chi ldstruct_up > next = node_to_branch > next ;
node_to_branch > next > prev ious = ch i lds t ruct_up ;

}
else {

chi ldstruct_up > next = NULL;
}
chi ldstruct_up > prev ious = node_to_branch ;

// Replace branched node with down c h i l d and s e t next node to be the up c h i l d
node_to_branch >node = child_down ;
node_to_branch > next = ch i lds t ruct_up ;

nodes_open++;
nodes_open++;

}

void bbc l a s s : : prune_node ( nodes t ruct ∗node_to_prune ) {
//There i s j u s t one in the l i s t
i f ( node_to_prune > prev ious == NULL and node_to_prune > next == NULL) {
}
// I f the node to prune i s f i r s t in the l i s t , s e t the f i r s t_node to be the next
else i f ( node_to_prune > prev ious == NULL ) {

f i r s t_node = node_to_prune > next ;
node_to_prune > next = NULL;
f i r s t_node > prev ious = NULL;

}
// I f the node i s l a s t o f the l i s t , s e t the prev ious node ’ s next to NULL
else i f ( node_to_prune > next == NULL) {

node_to_prune > previous > next = NULL;
node_to_prune > prev ious = NULL;

}
// Else , the node to prune i s in the middle o f the l i s t , remove i t
else {

// Set parent node ’ s next node to the pruned node ’ s next node
node_to_prune > previous > next = node_to_prune > next ;

// Set next node o f pruned node to n u l l
node_to_prune > next > prev ious = node_to_prune > prev ious ;

node_to_prune > prev ious = NULL;
node_to_prune > next= NULL;

i f ( incumbent_node != node_to_prune ) {
delete [ ] node_to_prune ;
}

}
}
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F.1.3 workerclass

Header file

#ifndef WORKERCLASS_HPP
#define WORKERCLASS_HPP

#include " xprs . h "
#include "mpi . h "

#include <cs td l i b >

class worke r c l a s s {
public :

wo rke r c l a s s ( ) ;
worke r c l a s s ( const worke r c l a s s& o r i g ) ;
virtual ~worke r c l a s s ( ) ;

// i n i t i a l i z e s the problem reading the f i l e
void i n i t i a l i z e (char ∗ , MPI : : Intracomm ) ;

// c a l l s xpres s to opt imize the problem , func t i on run from main
int opt imize ( ) ;

// r e c e i v e s a message from the master , e i t h e r to s o l v e (1) or terminate (0)
void r e c e i v e_no t i f i c a t i o n ( ) ;
// r e c e i v e s s t a t u s o f b inary v a r i a b l e s from the master
void r e c e i v e_b ina r i e s ( ) ;
// re turns the worker s o l u t i o n to the master
void r e turn_so lu t i on ( ) ;

private :

XPRSprob prob ; // t h i s w i l l s t o r e the Xpress o b j e c t which w i l l be s o l v e d

MPI : : Intracomm communicator ;
MPI : : Request r eque s t ;
MPI : : Status s t a tu s ;

// rank o f the worker
int rank ;
// number o f v a r i a b l e s in the problem
int nCols ;

//we need to know how may binary v a r i a b l e s are t her e
int num_bins ;
// the s t a t u s o f the b inary v a r i a b l e s in the problem
int ∗ b i n a r i e s ;
// the v a r i a b l e index o f each binary v a r i a b l e

int ∗ indexBinVar ;

// i n s t r u c t i o n from the master , 0 f o r terminate , 1 f o r s o l v e
int i n s t r u c t i o n ;

// whether the s o l u t i o n i s i n f e a s i b l e , f e a s i b l e or i n t e g e r f e a s i b l e
int s o lu t i on_s ta tu s ;

// the va lue o f the f e a s i b l e or i n t e g e r f e a s i b l e s o l u t i o n
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double so lut ion_va lue ;
// the va lue o f the v a r i a b l e s in the s o l u t i o n
double ∗x ;
// which b inary v a r i a b l e to branch on
int branch_variable ;

} ;

#endif /∗ WORKERCLASS_HPP ∗/

Source file

#include " worke r c l a s s . hpp "

#include <cmath>
#include <sstream>

using namespace std ;

worke r c l a s s : : worke r c l a s s ( ) {
}

worke r c l a s s : : worke r c l a s s ( const worke r c l a s s& o r i g ) {
}

worke r c l a s s : : ~ worke r c l a s s ( ) {
}

void worke r c l a s s : : i n i t i a l i z e (char∗ argv , MPI : : Intracomm comm) {
communicator=comm;
rank = communicator . Get_rank ( ) ;

// a l l o c a t e memory f o r press problem
XPRScreateprob(&prob ) ;

// read the problem from the f i l e path prov ided from main
XPRSreadprob ( prob , argv , " " ) ;

//Get number o f v a r i a b l e s in the problem
XPRSgetintattr ib ( prob , XPRS_COLS, &nCols ) ;

char ∗ types = new char [ nCols ] ;
int ∗ temp_bin_indices = new int [ nCols ] ;

// Store type o f each v a r i a b l e in the problem
XPRSgetcoltype ( prob , types , 0 , nCols 1 ) ;

num_bins=0;
// Count number o f b inary v a r i a b l e s in the problem
for ( int i = 0 ; i < nCols ; i++) {

i f ( types [ i ] == ’B ’ ) {
temp_bin_indices [ num_bins ] = i ;
num_bins++;

}
}

// copy the i n d i c e s i n t o the proper f i e l d and des t roy the temporal array
indexBinVar = new int [ num_bins ] ;
for ( int i =0; i<num_bins ; i++){
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indexBinVar [ i ] = temp_bin_indices [ i ] ;
}
delete [ ] temp_bin_indices ;
delete [ ] types ;

}

int worke r c l a s s : : opt imize ( ){
// r e c e i v e from the master a n o t i f i c a t i o n o f what to do :
//1 to so l ve , 0 to terminate
r e c e i v e_no t i f i c a t i o n ( ) ;

// i f I am t o l d to s o l v e
while ( i n s t r u c t i o n != 0){

// r e c e i v e from the master a s e t o f f i x e d v a r i a b l e s
b i n a r i e s = new int [ num_bins ] ;

r e c e i v e_b ina r i e s ( ) ;

// change the upper bounds according to the f i x i n g v e c t o r
double ∗bounds = new double [ 2∗num_bins ] ;
char ∗type_of_bound = new char [ 2∗num_bins ] ;
int ∗var_index = new int [ 2∗num_bins ] ;
int nn = 0 ;

// f i l l the array to change the upper bounds :
for ( int i =0; i<num_bins ; i++){

i f ( b i n a r i e s [ i ] == 1 ) {
type_of_bound [ nn]= ’U ’ ;
bounds [ nn ] = 1 ;
var_index [ nn ] = indexBinVar [ i ] ;
nn++;
type_of_bound [ nn]= ’L ’ ;
bounds [ nn ] = 0 ;
var_index [ nn ] = indexBinVar [ i ] ;
nn++;

}
else i f ( b i n a r i e s [ i ] == 1) {

type_of_bound [ nn]= ’B ’ ;
bounds [ nn ] = 1 ;
var_index [ nn ] = indexBinVar [ i ] ;
nn++;

}
else i f ( b i n a r i e s [ i ] == 0) {

type_of_bound [ nn]= ’B ’ ;
bounds [ nn ] = 0 ;
var_index [ nn ] = indexBinVar [ i ] ;
nn++;

}
}

XPRSchgbounds ( prob , nn , var_index , type_of_bound , bounds ) ;

delete [ ] type_of_bound ;
delete [ ] bounds ;
delete [ ] var_index ;
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// So lve the LP r e l a x e d problem
XPRSlpoptimize ( prob , " " ) ;

// Get s t a t u s o f the s o l u t i o n
XPRSgetintattr ib ( prob ,XPRS_LPSTATUS,& so lu t i on_s ta tu s ) ;

// Check i f the s o l u t i o n i s i n f e a s i b l e
i f ( s o lu t i on_s ta tu s == 2) {

so lu t i on_s ta tu s = 0 ;
}
// Check i f the s o l u t i o n i s LP opt imal
else i f ( s o lu t i on_s ta tu s == 1) {

int i n t_fea s = 1 ;

// Read the v a r i a b l e v a l u e s in the s o l u t i o n
x = new double [ nCols ] ;
XPRSgetlpsol ( prob , x , NULL, NULL, NULL) ;

// Set i n i t i a l branch_variab le to the f i r s t b inary v a r i a b l e
branch_variable = 0 ;

// Check i f some binary v a l u e s are not 0 or 1
for ( int i = 0 ; i < num_bins ; i++) {

i f ( x [ indexBinVar [ i ] ] > 0.0001 and x [ indexBinVar [ i ] ] < 0 .9999) {

// Find the v a r i a b l e with s o l u t i o n va lue c l o s e s t to 0.5
//and s e t as branch v a r i a b l e
i f ( abs ( x [ indexBinVar [ i ] ] 0 . 5 ) <

abs (x [ indexBinVar [ branch_variable ] ] 0 . 5 ) ) {
branch_variable=i ;

}
// I f any o f the v a r i a b l e s are s t r i c t l y between upper and
// lower bounds we no not have an i n t e g e r f e a s i b l e s o l u t i o n
i n t_fea s = 0 ;

}
}

// Check i f the s o l u t i o n i s i n t e g e r f e a s i b l e
i f ( in t_fea s == 1) {

so lu t i on_s ta tu s = 2 ;
}

// i f not i t i s a lower bound
else {
so lu t i on_s ta tu s = 1 ;

}

// Save the o b j e c t i v e va lue
XPRSgetdblattrib ( prob , XPRS_LPOBJVAL, &so lut ion_va lue ) ;

delete [ ] x ;
}

// i f LPSTATUS i s d i f f e r e n t from 1 or 2 , something i s wrong .
else {

so lu t i on_s ta tu s = 3 ;
r e turn_so lu t i on ( ) ;
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break ;
}
delete [ ] b i n a r i e s ;

//Return the s o l u t i o n to the master
r e turn_so lu t i on ( ) ;

// Receive new i n s t r u c t i o n
r e c e i v e_no t i f i c a t i o n ( ) ;

}
// e l s e I am t o l d to terminate

delete [ ] indexBinVar ;
XPRSdestroyprob ( prob ) ;

return 0 ;
}

void worke r c l a s s : : r e c e i v e_no t i f i c a t i o n ( ){
communicator . Recv(& in s t r u c t i on , 1 , MPI : : INT , 0 , 0 , s t a tu s ) ;

}

void worke r c l a s s : : r e c e i v e_b ina r i e s ( ) {
communicator . Recv ( b ina r i e s , num_bins , MPI : : INT , 0 , 1 , s t a tu s ) ;

}

void worke r c l a s s : : r e turn_so lu t i on ( ){
r eque s t=communicator . I s s end (&so lut ion_status , 1 , MPI : : INT , 0 , 2 ) ;
r eque s t .Wait ( s t a tu s ) ;
// I f s o l u t i o n i s LP optimal , re turn va lue and branch v a r i a b l e
i f ( s o lu t i on_s ta tu s==1){

reque s t=communicator . I s s end (&so lut ion_value , 1 , MPI : :DOUBLE, 0 , 3 ) ;

r eque s t .Wait ( s t a tu s ) ;

r eque s t=communicator . I s s end (&branch_variable , 1 , MPI : : INT , 0 , 4 ) ;
r eque s t .Wait ( s t a tu s ) ;

}
// i f s o l u t i o n i s i n t e g e r f e a s i b l e , re turn va lue
else i f ( s o lu t i on_s ta tu s==2) {

reque s t=communicator . I s s end (&so lut ion_value , 1 , MPI : :DOUBLE, 0 , 3 ) ;
r eque s t .Wait ( s t a tu s ) ;

}
}

F.1.4 nodeclass

Header file

#ifndef NODECLASS_HPP
#define NODECLASS_HPP

#include <f loat . h>

#include <stdde f . h>
#include <cstd io>

class nodec l a s s {
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public :
nodec l a s s ( ) ;
nodec l a s s ( const nodec l a s s& o r i g ) ;
virtual ~ nodec l a s s ( ) ;

void i n i t i a l i z e ( int ∗ , int , double ) ;
char get_status ( ){ return s t a tu s ; } ;
double get_value ( ){ return value ; } ;
int ∗ ge t_b inar i e s ( ){ return f i x ed_b ina r i e s ; } ;
void ge t_b inar i e s ( int ∗ , int ) ;
int get_processor ( ){ return proc e s s o r ; } ;
double get_lowerbound ( ){ return lower_bound ; } ;
int get_tag ( ){ return node_tag ; } ;

void s e t_status (char p_status ){ s t a tu s = p_status ; } ;
void set_value (double p_value ){ value = p_value ; } ;
void s e t_proce s so r ( int rank ){ p ro c e s s o r = rank ; } ;
void set_lowerbound (double lbound ){ lower_bound = lbound ; } ;

stat ic int master_tag ;

private :
// id o f node

int node_tag ;

//an array o f v a l u e s to i n d i c a t e whether each b inary has been
// f i x e d to 1 , 0 , or r e l a x e d
int ∗ f i x ed_b ina r i e s ;

// the s t a t u s o f the node , s o l v e d or unso lved
char s t a tu s ;
// the va lue o f the s o l u t i o n , i f s o l v e d and f e a s i b l e
double value ;
// number o f b inary v a r i a b l e s in the problem
int num_bins ;
// the node shou ld know which processor , i f any , i s hand l ing i t
int proc e s s o r ;
// Value o f parent node , o p t i m i s t i c bound on t h i s node
double lower_bound ;

} ;

#endif /∗ NODECLASS_HPP ∗/

Source file

#include " nodec l a s s . hpp "
#include <iostream>
#include <s td i o . h>
#include <f loat . h>

using namespace std ;

int nodec l a s s : : master_tag=0;

nodec l a s s : : nodec l a s s ( ) {
}
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nodec l a s s : : nodec l a s s ( const nodec l a s s& o r i g ) {
}

nodec l a s s : : ~ nodec l a s s ( ) {
}

void nodec l a s s : : i n i t i a l i z e ( int ∗ f ixed_array , int s i z e , double lbound ){

// every node must know how many binary v a r i a b l e s the problem have
num_bins = s i z e ;

// a l l o c a t e memory f o r the array with the s t a t u s o f the b inary v a r i a b l e s
f i x ed_b ina r i e s = new int [ s i z e ] ;

// f i l l in the s t a t u s o f the b inary v a r i a b l e s
for ( int i =0; i<num_bins ; i++) f i x ed_b ina r i e s [ i ]= f ixed_array [ i ] ;

// ass i gn a pre l iminary va lue o f the node to the
//maximum p o s i t i v e number f o r doub l e s
value = DBL_MAX;

// ass i gn a pre l iminary s t a t u s o f the node as unso lved
s t a tu s = ’U ’ ;

// s e t lower bound as lbound
lower_bound = lbound ;

// s e t the id as the current number o f master_tag , say ing how many nodes
// have been crea ted so f a r
node_tag = master_tag ;

// increment the number o f nodes crea ted
master_tag++;

}

void nodec l a s s : : g e t_b ina r i e s ( int ∗ array , int s i z e ){
for ( int i =0; i< s i z e ; i++) {

array [ i ]= f i x ed_b ina r i e s [ i ] ;
}

}

F.2 Tree-Based Parallelization

F.2.1 main

#include <cs td l i b >
#include <cstd io>
#include " bbc l a s s . hpp "
#include " worke r c l a s s . hpp "

using namespace std ;

int main ( int argc , char∗∗ argv ) {
// S t a r t the MPI environment
MPI : : I n i t ( ) ;
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MPI : : Intracomm communicator ;

communicator = MPI : :COMM_WORLD;

MPI : : Request r eque s t ;
MPI : : Status s t a tu s ;

// S t a r t the s o l v e r
XPRSinit (NULL) ;

// I f I am the master , I c re a t e a b b c l a s s o b j e c t
i f ( communicator . Get_rank ( ) == 0){

// Create a b b c l a s s o b j e c t
bbc l a s s i n s t anc e ;
i n s t anc e . i n i t i a l i z e ( argv [ 1 ] , communicator ) ;
// Ca l l the b b c l a s s rou t ine to s o l v e
i n s t anc e . opt imize ( ) ;

// Else , I am a worker ,
} else {

// Create a workerc la s s o b j e c t
worke r c l a s s i n s t anc e ;
i n s t anc e . i n i t i a l i z e ( argv [ 1 ] , communicator ) ;
// Ca l l the worker rou t ing to s o l v e
i n s t anc e . opt imize ( ) ;

}
// End the s o l v e r
XPRSfree ( ) ;

// End the MPI environment
MPI : : F i n a l i z e ( ) ;

return 0 ;
}

F.2.2 bbclass

Header file

#ifndef BBCLASS_HPP
#define BCLASS_HPP

#include "mpi . h "
#include " xprs . h "

#include <stdde f . h>
#include <cstd io>
#include <iostream>

#include <vector>

using namespace std ;

class bbc l a s s {
public :

bbc l a s s ( ) ;
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bbc l a s s ( const bbc l a s s& o r i g ) ;
virtual ~ bbc l a s s ( ) ;

// i n i t i a l i z e s the problem
void i n i t i a l i z e (char ∗ , MPI : : Intracomm ) ;

// the opt imize func t ion c a l l e d from main
int opt imize ( ) ;

// send a n o t i f i c a t i o n to a worker , 1 means so l ve , 0 means terminate
void s end_not i f i c a t i on ( int , int ) ;

// send the s t a t u s o f the b i n a r i e s o f a node to a worker to s o l v e
void send_binar i e s ( int ∗ , int ) ;

// r e c e i v e s the s o l u t i o n
void r e c e i v e_so l u t i on ( int ) ;

private :
MPI : : Intracomm communicator ;
MPI : : Request r eque s t ;
MPI : : Status s t a tu s ;

// number o f proces sor s a v a i l a b l e
int numProc ;

// rank o f a processor
int myRank ;

// the worker who returned the current incumbent s o l u t i o n
int incumbent_worker ;

// the incumbent node , i f any , found so f a r .
double incumbent_value ;

// Number o f b inary v a r i a b l e s in the problem
int num_bins ;

// Sta tus o f the s o l u t i o n from each worker
int ∗ s o lu t i on_s ta tu s ;

// Value o f the s o l u t i o n from each worker
double ∗ so lut ion_va lue ;

} ;

#endif /∗ BBCLASS_HPP ∗/

Source file

#include " bbc l a s s . hpp "
#include <cstd io>
#include <vector>
#include <math . h> /∗ l o g2 ∗/
#include <f loat . h>

using namespace std ;
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bbc l a s s : : bbc l a s s ( ) {
}

bbc l a s s : : bbc l a s s ( const bbc l a s s& o r i g ) {
}

bbc l a s s : : ~ bbc l a s s ( ) {
}

void bbc l a s s : : i n i t i a l i z e (char ∗argv , MPI : : Intracomm comm){

communicator = comm;

myRank = communicator . Get_rank ( ) ;

numProc=communicator . Get_size ( ) ;

// d e c l a r e an xpres s problem o b j e c t
XPRSprob prob ;
// a l l o c a t e memory us ing the ded ica ted func t i on
XPRScreateprob(&prob ) ;
// read the problem from the f i l e path prov ided s ince main
XPRSreadprob ( prob , argv , " " ) ;
// read the number o f b inary v a r i a b l e s in the problem
int nCols = 0 ;
XPRSgetintattr ib ( prob , XPRS_COLS, &nCols ) ;

char ∗ types = new char [ nCols ] ;
num_bins=0;
XPRSgetcoltype ( prob , types , 0 , nCols 1 ) ;
for ( int i =0; i<nCols ; i++) i f ( types [ i ]== ’B ’ ) num_bins++;

incumbent_worker = 0 ;
incumbent_value = DBL_MAX;

delete [ ] types ;
XPRSdestroyprob ( prob ) ;

}

void intToBin ( int n , vector<int> &bin ){
int d=n ;

i f (n > 1) {
d = n % 2 ;
intToBin (n / 2 , bin ) ;

}

bin . push_back (d ) ;
}

int bbc l a s s : : opt imize ( ) {

// Count how many s u b t r e e s have been crea ted
int node_counter = 0 ;

// Number o f v a r i a b l e s to f i x
int f ixed_vars = log2 (numProc 1 ) ;
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// Array to send to worker
int ∗ f i x_r e l ax = new int [ num_bins ] ;

// Arrays to ho ld s o l u t i o n s t a t u s and v a l u e s
s o lu t i on_s ta tu s = new int [ numProc ] ;
so lut ion_va lue = new double [ numProc ] ;

// Vector to f i l l in b inary r e p r e s e n t a t i o n o f a number i up to numProc
vector<int> bin ;

for ( int i =0; i<numProc 1 ; i++) {

// F i l l in ve c t o r with b inary r e p r e s e n t a t i o n o f number i
intToBin ( i , bin ) ;

// F i l l v ec t o r with 0 s b e f o r e the b inary r e p r e s e n t a t i o n
while ( bin . s i z e ()< f ixed_vars ){

bin . i n s e r t ( bin . begin ( ) , 0 ) ;
}
// F i l l v ec t o r with 1 a f t e r the b inary r e p r e s e n t a t i o n
while ( bin . s i z e ()<num_bins ){

bin . push_back ( 1 ) ;
}
node_counter++;

// Fix v a r i a b l e s up to f i xed_vars
int f i x e d = 0 ;

f i x_r e l ax [0 ]= 1 ;

for ( int i =0; i<num_bins 1 ; i++) {
// Fix every 40 th v a r i a b l e
i f ( i % 40 == 0 and f i xed<f ixed_vars ) {
f i x_r e l ax [ i +1]=bin [ f i x ed ] ;
f i x e d++;
}

else {
f i x_re l ax [ i +1]= 1 ;

}
}
// Send n o t i f i c a t i o n
s end_not i f i c a t i on (1 , node_counter ) ;

send_binar i e s ( f i x_re lax , node_counter ) ;

delete [ ] f i x_r e l ax ;
bin . c l e a r ( ) ;

}
// Count r e c e i v e d s o l u t i o n s
int count_rece ived = 0 ;

// While not a l l workers have returned
while ( count_rece ived < numProc 1 ) {

// Wait u n t i l something i s r e c e i v e d
while ( communicator . Iprobe (MPI : :ANY_SOURCE, MPI : :ANY_TAG, s t a tu s ) == 0 ) ;
// Save i d e n t i t y o f o r i g i n worker
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int or ig in_worker = s ta tu s . Get_source ( ) ;

// Receive the s o l u t i o n s t a t u s and va lue i f any
r e c e i v e_so l u t i on ( or ig in_worker ) ;

i f ( s o lu t i on_s ta tu s [ or ig in_worker ]==1) {
i f ( so lut ion_va lue [ or ig in_worker ]<incumbent_value ) {

incumbent_value = so lut ion_va lue [ or ig in_worker ] ;
incumbent_worker = or ig in_worker ;

}
}
count_rece ived++;

}

delete [ ] s o lu t ion_va lue ;
delete [ ] s o l u t i on_s ta tu s ;

return 0 ;
}
// Function to send n o t i f i c a t i o n to worker , 0 means terminate , 1 means s o l v e
void bbc l a s s : : s end_not i f i c a t i on ( int n o t i f i c a t i o n , int proc ) {

r eque s t = communicator . I s s end (&no t i f i c a t i o n , 1 , MPI : : INT , proc , 0 ) ;
r eque s t .Wait ( s t a tu s ) ;

}
// Function to send the s t a t u s o f b inary v a r i a b l e s to a worker
void bbc l a s s : : s end_binar i e s ( int ∗ b ina r i e s , int proc ) {

r eque s t = communicator . I s s end ( b ina r i e s , num_bins , MPI : : INT , proc , 1 ) ;
r eque s t .Wait ( s t a tu s ) ;

}
// Function to r e c e i v e s o l u t i o n _ s t a t u s from a worker ,
//0 means i n f e a s i b l e s o l u t i o n , 1 means LP f e a s i b l e s o l u t i o n
//and 2 means i n t e g e r f e a s i b l e s o l u t i o n
void bbc l a s s : : r e c e i v e_so l u t i on ( int or ig in_worker ) {

communicator . Recv(&so lu t i on_s ta tu s [ or ig in_worker ] , 1 ,
MPI : : INT , origin_worker , 2 , s t a tu s ) ;
// I f i n t e g e r s o l u t i o n was found , r e c e i v e va lue as w e l l
i f ( s o lu t i on_s ta tu s [ or ig in_worker ]==1) {

communicator . Recv(&so lut ion_va lue [ or ig in_worker ] , 1 ,
MPI : :DOUBLE, origin_worker , 3 , s t a tu s ) ;

}
}

F.2.3 workerclass

Header file

#ifndef WORKERCLASS_HPP
#define WORKERCLASS_HPP

#include " xprs . h "
#include "mpi . h "

#include <cs td l i b >

class worke r c l a s s {
public :
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worke r c l a s s ( ) ;
worke r c l a s s ( const worke r c l a s s& o r i g ) ;
virtual ~worke r c l a s s ( ) ;

void i n i t i a l i z e (char ∗ , MPI : : Intracomm ) ;

// c a l l s xpres s to opt imize the problem
int opt imize ( ) ;

// r e c e i v e from the master a n o t i f i c a t i o n o f what to do :
//1 to so l ve , 0 to terminate
void r e c e i v e_no t i f i c a t i o n ( ) ;

// r e c e i v e s s t a t u s o f b inary v a r i a b l e s f r o m the master
void r e c e i v e_b ina r i e s ( ) ;

// re turns the worker s o l u t i o n to the master ;
void r e turn_so lu t i on ( ) ;

private :
XPRSprob prob ; // t h i s w i l l s t o r e the Xpress o b j e c t which w i l l be s o l v e d

MPI : : Intracomm communicator ;
MPI : : Request r eque s t ;
MPI : : Status s t a tu s ;

int rank ;

// number o f v a r i a b l e s in the problem
int nCols ;

//we need to know how may binary v a r i a b l e s are t her e
int num_bins ;

// the s t a t u s o f the b inary v a r i a b l e s in the problem
int ∗ b i n a r i e s ;

// the v a r i a b l e index o f each binary v a r i a b l e
int ∗ indexBinVar ;

// i n s t r u c t i o n from the master , 0 f o r terminate , 1 f o r s o l v e
int i n s t r u c t i o n ;

// whether the s o l u t i o n i s i n f e a s i b l e , f e a s i b l e or i n t e g e r f e a s i b l e
int s o lu t i on_s ta tu s ;

// the va lue o f the f e a s i b l e or i n t e g e r f e a s i b l e s o l u t i o n
double so lut ion_va lue ;

// the va lue o f the v a r i a b l e s in the s o l u t i o n
double ∗x ;

} ;

#endif /∗ WORKERCLASS_HPP ∗/

Source file
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#include " worke r c l a s s . hpp "

#include <cmath>
#include <sstream>

using namespace std ;

worke r c l a s s : : worke r c l a s s ( ) {
}

worke r c l a s s : : worke r c l a s s ( const worke r c l a s s& o r i g ) {
}

worke r c l a s s : : ~ worke r c l a s s ( ) {
}

void worke r c l a s s : : i n i t i a l i z e (char∗ argv , MPI : : Intracomm comm) {
communicator=comm;

rank = communicator . Get_rank ( ) ;

// a l l o c a t e memory us ing the ded ica ted func t i on
XPRScreateprob(&prob ) ;

// read the problem from the f i l e path prov ided s ince main
XPRSreadprob ( prob , argv , " " ) ;

//Get number o f v a r i a b l e s in the problem
XPRSgetintattr ib ( prob , XPRS_COLS, &nCols ) ;

char ∗ types = new char [ nCols ] ;
int ∗ temp_bin_indices = new int [ nCols ] ;

// Store type o f each v a r i a b l e in the problem
XPRSgetcoltype ( prob , types , 0 , nCols 1 ) ;

num_bins=0;
// Count number o f b inary v a r i a b l e s in the problem
for ( int i = 0 ; i < nCols ; i++) {

i f ( types [ i ] == ’B ’ ) {
temp_bin_indices [ num_bins ] = i ;
num_bins++;

}
}
// copy the i n d i c e s i n t o the proper f i e l d and des t roy the temporal array
indexBinVar = new int [ num_bins ] ;
for ( int i =0; i<num_bins ; i++){

indexBinVar [ i ] = temp_bin_indices [ i ] ;
}
delete [ ] temp_bin_indices ;
delete [ ] types ;

}
int worke r c l a s s : : opt imize ( ){

// r e c e i v e from the master a n o t i f i c a t i o n o f what to do
// 1 to so l ve , 0 to terminate
r e c e i v e_no t i f i c a t i o n ( ) ;

// i f I am t o l d to s o l v e
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while ( i n s t r u c t i o n != 0){

// r e c e i v e from the master a s e t o f f i x e d v a r i a b l e s
b i n a r i e s = new int [ num_bins ] ;
r e c e i v e_b ina r i e s ( ) ;

// change the upper bounds according to the f i x i n g v e c t o r
double ∗bounds = new double [ 2∗num_bins ] ;
char ∗type_of_bound = new char [ 2∗num_bins ] ;
int ∗var_index = new int [ 2∗num_bins ] ;

int nn = 0 ;
// f i l l the array to change the upper bounds :
for ( int i =0; i<num_bins ; i++){

i f ( b i n a r i e s [ i ] == 1 ) {
type_of_bound [ nn]= ’U ’ ;
bounds [ nn ] = 1 ;
var_index [ nn ] = indexBinVar [ i ] ;
nn++;
type_of_bound [ nn]= ’L ’ ;
bounds [ nn ] = 0 ;
var_index [ nn ] = indexBinVar [ i ] ;
nn++;

}
else i f ( b i n a r i e s [ i ] == 1) {

type_of_bound [ nn]= ’B ’ ;
bounds [ nn ] = 1 ;
var_index [ nn ] = indexBinVar [ i ] ;
nn++;

}
else i f ( b i n a r i e s [ i ] == 0) {

type_of_bound [ nn]= ’B ’ ;
bounds [ nn ] = 0 ;
var_index [ nn ] = indexBinVar [ i ] ;
nn++;

}
}
XPRSchgbounds ( prob , nn , var_index , type_of_bound , bounds ) ;

delete [ ] type_of_bound ;
delete [ ] bounds ;
delete [ ] var_index ;

XPRSset intcontrol ( prob , XPRS_MAXTIME, 2 2 5 0 ;

// So lve the i n t e g e r problem with the f i x e d v a r i a b l e s
XPRSmipoptimize ( prob , " " ) ;

// Get s t a t u s o f the s o l u t i o n
XPRSgetintattr ib ( prob ,XPRS_MIPSTATUS,& so lu t i on_s ta tu s ) ;

// MIP i s i n f e a s i b l e .
i f ( s o lu t i on_s ta tu s == XPRS_MIP_INFEAS) {

so lu t i on_s ta tu s = 0 ;
}
// I n t e g e r s o l u t i o n found , but search i s not complete .
else i f ( s o lu t i on_s ta tu s == XPRS_MIP_SOLUTION) {
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s o lu t i on_s ta tu s = 1 ;
XPRSgetdblattrib ( prob , XPRS_MIPOBJVAL, &so lut ion_va lue ) ;

}
//MIP i s s o l v e d to o p t i m a l i t y
else i f ( s o lu t i on_s ta tu s == XPRS_MIP_OPTIMAL) {

so lu t i on_s ta tu s = 1 ;
XPRSgetdblattrib ( prob , XPRS_MIPOBJVAL, &so lut ion_va lue ) ;

}
// Search i s complete , but no s o l u t i o n found
else i f ( s o lu t i on_s ta tu s == XPRS_MIP_NO_SOL_FOUND ) {

so lu t i on_s ta tu s = 0 ;
}
// LP has not been opt imized .
else i f ( s o lu t i on_s ta tu s == XPRS_MIP_LP_NOT_OPTIMAL ) {

so lu t i on_s ta tu s = 0 ;
}
//Problem was not loaded
else i f ( s o lu t i on_s ta tu s == XPRS_MIP_NOT_LOADED ) {

so lu t i on_s ta tu s = 0 ;
}
// Optimizat ion h a l t e d a f t e r LP o p t i m i z a t i o n
else i f ( s o lu t i on_s ta tu s == XPRS_MIP_LP_OPTIMAL ) {

so lu t i on_s ta tu s = 0 ;
XPRSgetdblattrib ( prob , XPRS_LPOBJVAL, &so lut ion_va lue ) ;

}
else {

so lu t i on_s ta tu s = 0 ;
}
//Return the s o l u t i o n to the master
r e turn_so lu t i on ( ) ;

delete [ ] b i n a r i e s ;
delete [ ] indexBinVar ;

XPRSdestroyprob ( prob ) ;

// Receive new i n s t r u c t i o n
i n s t r u c t i o n =0;

}
// e l s e I am t o l d to terminate
return 0 ;

}
void worke r c l a s s : : r e c e i v e_no t i f i c a t i o n ( ){

communicator . Recv(& in s t r u c t i on , 1 , MPI : : INT , 0 , 0 , s t a tu s ) ;
}
void worke r c l a s s : : r e c e i v e_b ina r i e s ( ) {

communicator . Recv ( b ina r i e s , num_bins , MPI : : INT , 0 , 1 , s t a tu s ) ;
}
void worke r c l a s s : : r e tu rn_so lu t i on ( ){

r eque s t=communicator . I s s end (&so lut ion_status , 1 , MPI : : INT , 0 , 2 ) ;
r eque s t .Wait ( s t a tu s ) ;
// I f an i n t e g e r s o l u t i o n was found , send the va lue
i f ( s o lu t i on_s ta tu s == 1) {

reque s t=communicator . I s s end (&so lut ion_value , 1 , MPI : :DOUBLE, 0 , 3 ) ;
r eque s t .Wait ( s t a tu s ) ;

}
}
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Appendix G

Contents of Enclosed CD

Root folder Contents
Input Input data files for all three testcases, both in .xlsx and .dat format.
Mosel Mosel files for the basic instance, and the instance with all cuts, for

all three formulations. Mosel code used to generate dynamic clique
inequalities.

C++ C++ source and header files for both parallelization frameworks, in
separate subfolders.

Output Output .dat file for the solution illustrated
Report This report in PDF format.

Table G.1: Contents of enclosed CD.
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