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Abstract

This paper investigates the dynamically optimal risk-taking by a loss-averse

hedge fund manager who takes the possibility of fund liquidation into account.

To achieve this, I develop a novel two-reference point utility-model based on

Prospect Theory, and employ it within a numerical discrete time framework.

The manager portrays complex risk-taking that varies considerably with fund

value, time, fee rates, managerial ownership and optimization horizon. In

many cases, the manager pursues excessively high risk-levels relative to those

preferred by a loss-averse investor. The extent and economic significance of

the resulting manager-investor conflict of interest is assessed for varieties of

fee rates and managerial ownership. I find that the incentive fee option is the

chief root of misalignments, and suggest using managerial fund shares to re-

solve the conflict, as investors otherwise may suffer substantial losses. The

incentive fee is estimated to considerable value given low managerial owner-

ship rates, thereby adding further to investors’ costs.

Sammendrag

Denne artikkelen estimerer den dynamisk optimale risikotakingen til en tapsavers

hedgefondforvalter som tar hensyn til muligheten for fondslikvidasjon. Jeg

oppnår dette ved å utvikle en ny nyttemodell med to referansepunkter ba-

sert på prospektteori, og å anvende den i et numerisk tidsdiskret rammeverk.

Forvalteren viser kompleks risikotaking som varierer betydelig med fondsver-

dien, tiden, honorarrater, forvalterens andel og optimeringshorisonten. I man-

ge tilfeller forfølger forvalteren overdrevent høye risikonivåer i forhold til en

tapsavers investor. Omfanget og den økonomiske signifikansen til den resulte-

rende interessekonflikten evalueres for variasjoner av honorarrater og fonds-

andeler. Insentivhonoraret utpekes som konfliktens hovedkilde, og jeg foreslår

å bruke fondsandeler som dempende faktor for å unngå reelle tap for investo-

rer. Videre estimeres insentivhonoraret til å være av betydelig verdi gitt lave

fondsandeler, noe som påfører investorer ytterligere kostnader.
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1 Introduction

"If you want to predict how people will behave, you only have to look
at their incentives."

- Charlie Munger

In some categories of capital management, it is customary to include a so called

incentive fee in the contract between manager and investor. Hedge funds repre-

sent one branch that utilize such contracts, which are often considered state of the

art.

Incentive fees are essentially designed as periodical European call options on as-

sets under management (AUM). In addition, hedge funds often require a periodical

management fee amounting to a certain fraction of AUM.1 The typical fee rates for

the management- and incentive fee is 2 and 20 %, respectively. This fee structure

is thus often dubbed "2/20", or "two and twenty". The underlying benchmark of

the incentive fee frequently follows a so-called high-water mark mechanism, but

may also be a simple constant rate or follow a reference index.

The intuitive perspective of the incentive fee as a deliverer of superior performance

is frequently used in marketing toward potential investors. However, there is also

some concern tied to the incentive fee, as it may give the manager an incentive to

set hazardously high portfolio risks. This view is partly founded on Markowitz-

portfolio theory (e.g. Markowitz, 1952), which implies that the manager is forced

to set a portfolio risk that at least exceeds that of the benchmark in order to get

the incentive fee.2 This risk-level may in turn be higher than investors’ preferred

level.3 Another argument supporting these concerns is the fact that the incentive

fee has a strongly convex option gamma for relatively short time horizons, which

intuitively should result in a distinctively non-linear managerial risk-taking.4

Much research on the topic of risk-taking in hedge funds (e.g. Carpenter, 2000;

Goetzmann et al., 2003; Kouwenberg and Ziemba, 2007; Hodder and Jackwerth,

2007; Basak et al., 2007; Agarwal et al., 2009; Motaze, 2013) has agreed that there

exists considerable misalignment of interest between manager and investors. In-

1The actual payments are done monthly, quarterly or weekly at scaled rates.
2Strong-form market efficiency is inherently assumed in this deduction.
3Given that the investor is only looking to replicate the benchmark, it must be so. In the case of

hedge funds however, that is not always the goal.
4Seeing as the option is a European call, the convexity of its gamma is generally very high for short

time horizons, but declines with longer time horizons.
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deed, concerns of this kind appear to be the foundation of the newly imposed bonus

cap on risk-taking banking employees in the European Union (Kolinska, 2013).

This paper presents a theoretical analysis of the incentives that act upon a hedge

fund manager and the resulting dynamic pattern of risk-taking. This problem

bears similarities to the optimal asset allocation problem, as pioneered by Merton

(1969), but is complicated by a range of necessary model extensions; most promi-

nently the incentive option. The paper further evaluates the extent to which there

exists manager-investor conflicts of interest, and investigates possible solutions to

such misalignments.

Carpenter (2000)’s work is seminal to the research area. She uses a continuous-

time martingale framework to analyse the risk-taking of a fund manager subject

to the hyperbolic absolute risk-aversion (HARA) utility-function. The paper’s main

three findings are:

• The optimal risk taking for the manager is excessive compared to that of the

HARA-investor when the incentive option is deeply out-of-the-money (OTM).

• The manager decreases the portfolio risk when the option is in-the-money

(ITM) to a level lower than investors.

• The manager’s optimal portfolio risk is negatively correlated with the incen-

tive fee rate.

Furthermore, Carpenter accentuates the dynamic nature of managerial behaviour,

which at any time depends on option moneyness. Following the third of said find-

ings, a hedge fund manager could argue strongly in favour of high incentive fees in

contract negotiations with investors, as this would increase alignment of interest.

While Carpenter’s model sheds light on several interesting aspects of incentive

fees and yields some surprising findings, it also has a number of shortcomings.

The paper’s general model does not include the management fees popularly used

in hedge fund’s fee structures, nor does it take the fact that many hedge fund

managers have considerable amounts of their own wealth invested in the fund

into account.

Many subsequent papers extend on Carpenter (2000), and also find indications of

conflicts of interest between hedge fund managers and investors through a broad

array of methodologies and assumptions (e.g. Goetzmann et al., 2003; Kouwenberg

and Ziemba, 2007; Hodder and Jackwerth, 2007; Basak et al., 2007; Agarwal et al.,



3

2009; Motaze, 2013). Yet there is major disagreement concerning in which situa-

tions managerial riskiness is excessive or deficient and the severity of the discrep-

ancies. The recent papers of Panageas and Westerfield (2009) and Guasoni and

Obloj (2013), represent the opposite side of the debate, as their methods suggest

that hedge fund managers set constant portfolio risks in compliance with investor-

preferences. Research outcomes consequently appear to be highly sensitive to the

choice of assumptions and methods.

Hodder and Jackwerth (2007) make use of a discrete time-framework and flex-

ible numerical methods to identify the optimal portfolio risk of a fund manager

with constant relative risk aversion (CRRA).5 The results describe a much more

nuanced and varied behavioural pattern than most other research, which may be

contributed to their unusual choice of methods. A manager who optimizes wealth

at the end of a single fee evaluation period is found to set risk as follows:

• In the region immediately below the benchmark, risk is drastically increased

in an attempt to get the option ITM. Similar propensities have been observed

by Carpenter (2000); Kouwenberg and Ziemba (2007) and may be dubbed the

break-even effect.

• Following an increase in moneyness beyond ATM, the optimal risk first plum-

mets, and then stabilizes and flattens out as the option turns ITM. Intu-

itively, once the incentive option is quite safely ITM, the manager will try

to minimize risk in order to retain the option fee. This is often called the

lock-in effect.

• Following a decrease in moneyness quite far beneath ATM, the optimal risk

first sees a drastic drop before it stabilizes and flattens out as the option

turns OTM. This risk-averse behaviour is attributed to the manager’s liqui-

dation aversion, as implemented by Hodder and Jackwerth. In contrast, the

models of Carpenter (2000); Kouwenberg and Ziemba (2007) do not include

a mechanism of this kind, and their results therefore imply that the optimal

risk level rises into theoretical infinity as moneyness decreases.

Kouwenberg and Ziemba (2007) extend on the work of Carpenter (2000) and Goet-

zmann et al. (2003), but due to their manager being described by loss-averseness,

as defined by Prospect Theory (Kahneman and Tversky, 1979), rather than a risk-

5Also known as isoelastic utility.
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averse variant of von Neumann/Morgenstern utility theory6, they find strongly

contradicting results: The two latter out of the three major findings of Carpen-

ter do not hold.7 Their model indicates that the manager’s optimal portfolio risk

is positively correlated with the incentive fee level, and that the manager’s risk-

taking is excessive relative to the level preferred by investors for all states of op-

tion moneyness.

Another interesting finding by Kouwenberg and Ziemba is that hazardous risk-

taking can be greatly reduced by increasing managerial ownership in the fund.

They estimate that with a share of 30 % the behaviour of the manager will ap-

proximate that of a person operating a personal account.8 On the other side of

the scale, they find incentives that pull the manager to extreme risk-taking when

he/she has a fund share below 10 %.

In addition to their theoretical analysis, Kouwenberg and Ziemba perform an em-

pirical study using a large European hedge fund database, which poses some in-

teresting observations. The relation between incentive fee rate and fund perfor-

mance (Sharpe ratio) is found to be negative. This stands in stark contrast to

the theoretical finding of Carpenter (2000). Additional results suggest that funds’

management fee rates are also negatively correlated with performance. With that,

the use of high management and incentive fees as selling points toward potential

investors appears unjustified.

The complexity of the topical problem makes a numerical approach particularly at-

tractive, as analytical solutions often require model simplifications that are detri-

mental to realism. One common such simplification, is to assume a continuous

time framework and fee accruements. My analysis of managerial risk-taking con-

versely employs a fundamental model based on Hodder and Jackwerth (2007),

using realistic discrete time portfolio revisions and fee accruements. The model is

used in combination with three different behavioural frameworks; CRRA-utility,

Prospect Theory (PT) (Kahneman and Tversky, 1979; Tversky and Kahneman,

1992) and a custom two-reference point (TRP) model based on Tversky and Kah-

neman (1992); Wang and Johnson (2012). Out of these, the latter is intended to

portray the most complete picture of managerial risk-taking, as it incorporates

6Henceforth simply referred to as utility theory.
7In this text, "utility" will frequently be used irrespective of behavioural model, despite the popular

use of "value" in connection to Prospect Theory.
8Thus approximating the behaviour of his/her investors, given that they have the same fundamental

risk-preferences.
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both loss-aversion and managerial aversion against fund liquidation. With that,

the TRP model and its results represent the paper’s foremost contribution to the

literature. On one hand, it extends on Hodder and Jackwerth (2007), by taking the

widely accepted shortcomings of utility theory into consideration by replacing it

with the descriptively more accurate PT. On another hand, it extends on Kouwen-

berg and Ziemba (2007) by adding a time-dimension and managerial liquidation

aversion to their analysis. In a separate part of the paper, I give a novel perspec-

tive to the assessment of a loss- and liquidation averse manager’s behaviour by

increasing his/her optimization horizon to span over multiple fee evaluation peri-

ods rather than the usual single period.9

Moreover, the paper presents an unprecedented focus on quantification of manager-

investor interest discrepancies as a function of fee structure and managerial fund

share varieties. This facilitates a deeper understanding of the underlying causes

of misalignments, how they impact the investor and how they can be minimized

within the prevalent contract framework. I give two different methods to measure

the conflict of interest, each with its strengths and weaknesses. As it is useful

for investors to know the costs of the incentive fee, the closing study estimates its

value for a set of common assumptions.

The remaining part of the paper thus begins with the establishment of the funda-

mental numerical model used for most subsequent analysis. Second, each of the

three behavioural models and their respective single-period horizon results are

presented in sequence. Third, my approach for a multi-period assessment of risk-

taking is introduced, followed by illustrative results using the TRP model. Fourth,

the two methods for measuring manager-investor alignment are given, along with

explanatory results. Fifth, the value of the incentive fee is estimated. Finally, I

provide some concluding comments, including a summary of the most important

results and implications. I also point out some promising perspectives for future

investigations of the topical problem, and some alternative application areas for

the model.

9To my knowledge, the only papers giving an extensive review of multiple-period managerial risk-
taking are Hodder and Jackwerth (2007); Panageas and Westerfield (2009); Guasoni and Obloj (2013);
yet none of these take on the advancements of PT, which my paper does.
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2 Fundamental Model Setup

To estimate the dynamic risk-taking of a hedge fund manager, I consider his/her

optimal portfolio problem within a single evaluation period consisting of T market

days. In finance literature, it is standard to assume 252 market days in a year.

As performance is often evaluated quarterly, I set T = 252/4 = 63.10 This and all

subsequently introduced parameters are listed in Appendix B with their standard

case assumptions. The chosen evaluation period length is merely of practical rele-

vance, as testing shows it has insignificant effects on results.

The optimization problem will be solved using a discrete time model, with a single

market day as the smallest time unit. This limits the manager to a maximum

portfolio revision frequency of once per day.11 Note also that the model does not

take transaction costs into account, which in practice would lay considerable re-

strictions on the manager’s scope of action.12

The manager’s initial wealth is W(0), and the initial size of assets under manage-

ment (AUM, or fund value) is F(0). Oftentimes, the manager will own a fraction

of AUM, denoted 0 ≤ S ≤ 1. Thus, external investors own the remaining fraction

of assets (1−S). At terminal time T, the manager’s own share in the fund will

then amount to SF(T). Furthermore, the annual and quarterly management fee

rate is denoted α ≥ 0 and αq ≥ 0, respectively. It is assumed for the rest of the

paper that management fees are paid at the end of each quarter.13 This yields

a quarterly management fee amounting to αq(1−S)F(T). The annual and quar-

terly incentive fee rate is given as β and βq, respectively. Since this fee essentially

is a European call option on AUM with the benchmark B(T) as strike, it adds

βq(1−S)max{0,F(T)−B(T)} to the manager’s wealth at terminal time T. Through-

out this paper it will be assumed that the manager does not hedge his/her owner-

ship share with any external personal portfolio. In fact, hedge fund contracts com-

monly forbid such behaviour. Assuming that the manager’s external wealth grows

at the risk-free rate Rq each quarter, it amounts to Z ≡ [1+Rq][W(0)−SF(0)] at

terminal time T. For simplicity, this parameter is set to zero in the standard case.

As will become clear later on, the manager’s external wealth is irrelevant under

10Annual evaluations are also common.
11However, the model allows this frequency to be changed readily. Experiments were done with

higher frequencies, but were not found to yield significant changes in results.
12The upside of ignoring transaction costs is that it enables the examination of managerial intensions

to remain untouched by practical obstacles.
13The frequency of payments is also commonly monthly or weekly.
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the loss-aversion assumption.

Note that the use of a single benchmark B(t) represents a deviation from reality, as

most hedge funds use personal benchmarks for each investor. The benchmark used

here should thus be conceptualized as an aggregate of all investor benchmarks.

The total terminal time wealth of the manager can now be expressed

W(T)= SF(T)+αq(1−S)F(T)+βq(1−S)max{0,F(T)−B(T)}+Z, (1)

Appendix A provides a summary of explanations to the these and all subsequently

introduced variables.

In order to facilitate a feasible solution to the optimization problem, I assume that

the fund is invested in a risky asset (e.g. a stock) and/or a riskless asset (e.g.

government bonds). Thus, the dynamic investment strategy of the fund manager

consists purely of adjusting the balance of investment weights between these two

assets, and the fund value depends only on their movements. The weight in the

risky asset is denoted κ(F, t) ≡ κ, which makes the weight in the riskless asset

(1−κ). For ease of exposition, the risky asset weight is referred to simply as kappa

for the remainder of the paper. Note that the risky asset does not necessarily have

to be a stock. It should instead be conceptualized as a compound of multiple more

or less advanced investment assets known to be utilized by hedge funds.

The value of the riskless asset X1, is assumed to follow the discrete time equiva-

lent to the continuous time linear process

dX1(t)= Rd X1(t)dt, (2)

so that it has the constant daily risk-free rate Rd as drift and zero standard devi-

ation.

It is standard for the risky asset value X2, to follow a Brownian motion process so

that its continuous time equivalent is given by

dX2(t)=µX2(t)dt+σX2(t)dz(t), (3)

where the constants µ and σ are the daily expected return and the daily standard

deviation of the asset, respectively; and z(t) is a Brownian motion. The standard

settings of µ and σ are presented and reasoned for in Appendix B. With these
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assumptions, the risky asset return follows the normal distribution. This may be

criticized as an unrealistic model choice since hedge fund returns tend to be dis-

tinctively non-normal, with significant negative skewness and high kurtosis (see

Asheim, 2013; Brooks and Kat, 2002; Getmansky et al., 2004; Fung and Hsieh,

1997; Malkiel and Saha, 2005).14 The assumption is nevertheless made due to its

simplifying properties. Note however that other distributions could be used with

some relatively mild alterations to the model; the main disadvantage being longer

runtimes. It is likely that the use of skewed and leptokurtic distributions would

yield results suggesting either unchanged or increased risk-taking by the man-

ager, depending primarily on the choice of behavioural model and fund share S.

In particular, with utility theory the results would likely be near unchanged since

the impact of a loss and a gain are quite equal with this model. On the other hand,

with a behavioural model based on loss-aversion, the distribution’s negative skew-

ness would give an increased probability of ending up with a bad fund value at

terminal time. This may in turn have significant effects on exhibited risk-taking.

Berkelaar et al. (2004) show that in such cases, a loss-averse investor increases

portfolio risk in the state space area just below the benchmark. By intuition, a

hedge fund manager with a sufficient fund share S is likely to react in a similar

manner.

I now return from the previous digression and conclude that with the chosen as-

sumptions, F(t) follows the discrete time equivalent of the process

dF(t)= F(t)[(1−κ)dX1(t)+κdX2(t)] (4)

= F(t)[(1−κ)Rddt+κ(µdt+σdz(t))].

Changes in lnF(t) are consequently normally distributed.15

The next step is to establish a framework for asset movements and portfolio choices

to work within. To enable dynamic choices, a dynamic programming approach is

required. By discretizing and truncating the set of possible fund values and time

points, the stochastic choice process of the manager becomes a finite-state Markov

chain. In accordance with Hodder and Jackwerth (2007), a two-dimensional grid

of possible fund values and time points is established, and thus represents the dis-

crete state space. In contrast to Hodder and Jackwerth however, I truncate both

14The dynamic investment strategies of hedge funds are likely to be the cause of this. Asheim (2013)
suggests two-component normal mixture or Lévy alpha-stable as fitting distribution choices.

15Alternatively: Changes in F(t) are lognormally distributed.
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sides of the fund value-dimension.16 Since changes in lnF(t) are normal, it is con-

venient to set the grid up so that the step between each fund value is logarithmi-

cally constant. Formally, ∆(ln(F)) ≡ C = constant. The grid’s time steps are equal

so that ∆t = constant. Additionally, in order to ensure that the process reaches

a grid point when the manager chooses to invest purely in the riskless asset (i.e.

κ= 0), all fund values grow at the rate exp(Rd∆t) with each time step. The possible

logarithmic changes in F(t) then become Rd(T−t)+iC, where i is an integer index.

My standard case uses i = −150,−149, . . . ,0, . . . ,150 and C = ln(10)/199 ≈ 0.01157.

With min[F(0)] = 0.1 this setup gives max[F(0)] ≈ 3.21. By standard, the initial

fund value F(0) and the benchmark B(T) are set to 1 and Rd(T −1) ≈ 1.0125 (the

value of 1 at T), respectively.

By assuming that the fund manager seeks to maximize his/her future utility at

terminal time, the expectation values of this as a function of the current state

becomes the optimization problem’s objective function. The sole decision variable

is of course κ(F, t). Formally, the optimization problem in each grid state, can

be expressed maxκ(F,t) E[U(W(T))]. Here U(· · · ) is given by the manager’s utility-

function.

To find the expectation values, the probabilities of ending up at all possible termi-

nal time fund values {F(T)} are needed. These can be calculated via the probabil-

ities of future fund value movements, which conveniently only depend on time t
and kappa-choice κ(F, t). A a three dimensional lookup-table of probabilities can

thus be established and used in each grid state.

For a given κ and current time t, it is seen that

∆ ln(F)∼ N(µκ,t,σκ,t)= N([κµ+ (1−κ)Rd − 1
2
κ2σ2](T − t), κσ

p
T − t), (5)

where µκ,t and σκ,t is the daily mean and standard deviation of fund returns given

κ and remaining time T − t > 0.

The probability density f i,κ,t of the fund value moving Rd(T−t)+iC logarithmically

during the time period between t and T becomes

f i,κ,t = 1

σ
p

2π
exp

[
−

(
Rd(T − t)+ iC−µ

)2

2σ2

]
. (6)

16This proves to be no issue as long as the grid boundaries are set broad enough.
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The corresponding discrete probabilities pi,κ,t can then be estimated by dividing

each probability density by its sum over all i:

pi,κ,t =
f i,κ,t∑150

i=−150 f i,κ,t
. (7)

The three-dimensional lookup table of probabilities is finally established using (7)

with a discrete set of kappas. My standard parameter set uses

{κ}= {0, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3, 3.5, 4, 5, 6, 7, 8,

10, 20, 30, 40, 50, 60, 80, 100, 120, 140, 200, 250},

prior to accuracy testing; a procedure that will be presented shortly. This is an ex-

tremely wide set of kappas, giving the manager a near unlimited degree of freedom

in regard to risk adjustments. In reality, the upper end of the kappa set is unlikely

to be conceivable. The assumption is nonetheless made to ensure a complete and

unhindered picture of managerial intensions.

All necessary foundations for running the model are now in place. The first step of

the optimization routine is to calculate the terminal time utilities for all possible

terminal fund values in the grid. I then take one step backwards in time, so that

t = t−1, and use the lookup table of probabilities together with the vector of ter-

minal utilities to compute expected utilities for each combination of current fund

value F(t) and kappa-choice κ(F, t). The optimal kappa is then the one in the set

that maximizes expected terminal utility. This routine is completed for all t, thus

ultimately creating a matrix of optimal kappas as a function of current fund value

and time. Formally, this matrix is denoted K∗ ≡ (κ∗F,t).

The advantage of this optimization procedure over a standard gradient method is

that it avoids the prospective problem of local extrema, and that the lookup-table

of probabilities speeds up the process considerably.17

Since the probabilities of the model are discrete, it is important to check for reason-

able accuracy. Low and high kappas in particular are expected to give the largest

inaccuracies. Distributions for small kappas are prone to suffer from limited grid

fineness due to low drift rates; and large kappas are likely to yield inaccuracies if

the grid edges are too narrow, as they result in a loss of distribution tail.

17The lookup-table is incompatible with gradient methods.
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Using a goodness-of-fit test, the grid structure and the set of kappa can be cal-

ibrated so as to enable as precise estimations as possible. I use a test-statistic

similar to the one suggested by Hodder and Jackwerth (2007, p. 825). It is based

on the average squared difference between the 4 first raw moments of the approx-

imated discrete distribution and the corresponding theoretical moments. Since

estimates of the approximated distribution’s moments are prone to inaccuracies

themselves, the statistic is scaled by the variance of estimation (Stuart and Ord,

1994, p. 349):

1
4

4∑
r=1

[
µ̂r −µr

1
n
(
µ2r −µ2

r + r2µ2µ
2
r−1 −2rµr−1µr+1

)]2

, (8)

where I set n = 1 and µ0 = 0.

The test is done for each possible combination of kappa-choice and number of re-

maining days to evaluation, thus giving good indications in regard to dismissable

kappas.

After some testing, the interval κ ∈ 〈0,1.0〉 is dismissed from the standard param-

eter set due to inaccuracies in their distribution approximations. There are also

some relatively minor inaccuracies for the higher kappas, but these are restricted

to very early times in the evaluation period. As will be seen in the coming results,

the higher kappa values are most prominently chosen by the manager at later

time points, which is why they are kept in the set.18 The final set thus becomes

{κ}= {0, 1.0, 1.5, 2.0, 2.5, 3, 3.5, 4, 5, 6, 7, 8,

10, 20, 30, 40, 50, 60, 80, 100, 120, 140, 200, 250}.

To ensure satisfactory fineness in surface graphs of K∗, they use a more refined

set of kappa.

As the goodness-of-fit test does nothing to remove probability distortions stemming

from tail losses near the grid edges in the fund value-dimension, I further limit

the functioning region of optimal kappa matrices K∗ in that dimension. With the

standard parameter set the imposed restriction is F ∈ [0.60,2.52]. The lower limit

is set equal to the later introduced liquidation boundary L for convenience, as

optimal kappas below this limit are often incomprehensibly high.19

18This is the case for all behavioural models.
19The manager will be willing to risk anything to beat the boundary.
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3 CRRA-Utility Model

In the following three sections, I put the established fundamental model into use

with three different behavioural models. To begin with, a similar study to the

single-period analysis of Hodder and Jackwerth (2007) will be done, with constant

relative risk aversion (CRRA) to model the manager’s risk-preferences. This in-

quiry is made mostly to provide comparability of results.

The CRRA utility-function is given as

U[W(t)]= W(t)(1−γ) −1
1−γ

if W(t)> 0,W(t) 6= 1 (9)

= ln[W(t)] if W(t)= 1

where γ is the risk-aversion coefficient set to 4 in the standard case. This is iden-

tical to what is used in Hodder and Jackwerth (2007).

My version of the CRRA-model uses a simpler kind of liquidation boundary than

that of Hodder and Jackwerth (2007). It assumes that the fund cannot be liq-

uidated before the terminal time, thus giving the manager time to surpass the

boundary after having fallen behind. Following a liquidation the manager thus

retrieves the period’s full management fee and the remaining fund share. In the

standard parameter set the liquidation boundary is set to 60 % of the benchmark,

so that L = 0.6B(T).

As Hodder and Jackwerth (2007) point out, it is useful to consider the seminal find-

ings of Merton (1969) for the optimal asset allocation problem of a CRRA-investor

before attempting novel inquiries. That paper concludes that for an independent

investor, the lifetime optimal kappa is

κ∗ = µa −Ra

γσa2 , (10)

where µa and σa is the risky asset annual mean and standard deviation; and Ra

is the annual risk-free rate. With the standard set of parameters this yields a

constant κ∗ = 2. So what would the equivalent result be using my model? By

setting S = 1,α= 0,β= 0, and using (9) to compute utilities my model captures the

behaviour of an independent CRRA-investor. With these values, the optimal kappa

surface is found to be identical to that of Merton (1969) for all states (K∗ = 2). For
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the fund portfolio risk to fully comply with rational investor preferences, the fund

kappa should thus be set to this constant value.20

With the investor’s risk-preferences in mind, I explore the matter from the per-

spective of a CRRA-manager. Figure 1 shows the manager’s optimal kappa surface

assuming a 10 % fund ownership.
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Figure 1: The optimal kappa surface K∗ for a manager with CRRA utility-function,
10 % fund share.

Similarly to Hodder and Jackwerth (2007), the manager is found to set a relatively

high risk-level in the vicinity of the benchmark (break-even effect). This tendency

is further strengthened as the terminal date approaches (last-minute bet). The

moment the incentive option goes ITM, the manager drastically reduces risk to a

level lower than investors would prefer (the Merton constant). This is known as

the lock-in effect, as it stems from the manager’s attempt to secure option fees.

As the option goes more deeply ITM however, the manager increases the risk to

a level eventually equalling that of Merton.21 In opposition, when the fund value

declines starting from the benchmark, the manager reverts directly to a strategy
20Assuming γ= 4.
21As this change of policy comes about very slowly, it is less visible in the graph.
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consistent with Merton. Due to the aforementioned differences from Hodder and

Jackwerth (2007) in implementation of the liquidation boundary, the observed be-

haviour surrounding it differs somewhat from what was found by them. Whereas

their manager quickly reduces risk to zero as the liquidation boundary becomes

perilously close, my manager maintains a constant Merton-risk even as the fund

value falls slightly beneath the boundary.

In summary, the CRRA model suggests that the acceptability of fund risk from

the point of view of investors is highly dependent on the current situation. The

peak of risk-taking near the benchmark could be hazardous and should therefore

be considered the most important finding.

4 Loss-Aversion Model

The concept of loss-aversion was introduced as a part of Prospect Theory (PT)

(Kahneman and Tversky, 1979) and has since been recognized through a large col-

lection of experimental and empirical research. As a descriptive theory, it models

actual behaviour rather than rationally optimal behaviour.22 A recent study by

Haigh and List (2005) finds exceptionally loss-averse behaviour in a sample of op-

tion traders.23 Given the similarities of their professions, hedge fund managers

should consequently be susceptible to similar traits.

I proceed to run the fundamental model in combination with the PT framework

as presented in Tversky and Kahneman (1992), but exclusive of their subjective

probability weighting feature.24 The utility-function of the manager can thus be

modelled as

U[W(t)]=
−A[θ−W(t)]γ1 if W(t)≤ θ

[W(t)−θ]γ2 if W(t)> θ
, (11)

which is also used in Kouwenberg and Ziemba (2007). θ ≡ θ(t) is the reference

point that separates gains from losses in the manager’s mind. It will henceforth

often be referred to as the status quo. It is natural to assume that this personal

threshold is given by the incentive fee benchmark. In my context of use, θ then

becomes the terminal wealth level that the manager achieves when the terminal

22As a consequence, the optimal kappa found with loss-aversion is not rationally optimal. Instead, it
describes what the decision taker considers to be the optimal kappa in the given situation.

23Most other experimental tests of loss-aversion use students as subjects.
24I disregard this part of PT as I want to focus on the more consequential loss-aversion feature.
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fund value is exactly at the benchmark:

θ = SB(T)+α(1−S)B(T)+Z, (12)

With zero fund ownership, the manager does not take on a major loss of mone-

tary wealth by underperforming the benchmark,25 yet it is reasonable to assume

that he/she suffers a relatively strong feeling of loss of opportunity and reputa-

tion. Furthermore, Getmansky (2012); Agarwal et al. (2004) show that future net

fund flows are likely to be reduced following unsatisfactory performance, thereby

leading to an undesirable decrease in future management fees.26

In my standard case, the manager is given the median preference parameters

found experimentally by Tversky and Kahneman (1992). Additionally, it is as-

sumed that all of the manager’s initial wealth, if any, is invested in the fund. The

value of this wealth then becomes SF(0), and as a result Z = 0.27

Before analysing the behaviour of loss-averse managers, it is useful to build a basis

of comparison by examining the risk-taking preferences of loss-averse investors.

While rational investors may prefer the fund to follow the Merton constant (10),

their realized risk-preferences are better described by PT. The risk-taking of loss-

averse investors can easily be estimated by setting S = 1,α= 0,β= 0 and running

the fundamental model together with the PT utility-function. The resulting opti-

mal kappa surface is given in Figure 2.

It immediately becomes clear that the behaviour of a loss-averse individual is very

different from that of a risk-averse individual. Due to a stronger emotional impact

felt from losses compared to gains, the investor exhibits irrationally prudent risk-

taking whenever the fund value is near the benchmark (valley of loss-aversion).28

Generally speaking, the investor’s optimal risk is an increasing function of fund

value-benchmark distance. As can be seen in the area below the benchmark, the

investor becomes risk-seeking in the face of losses.29 Conversely, in the face of

gains, the portfolio risk is slowly increased due to a lowered probability of end-

ing up below the benchmark. All of the aforementioned trends are consistent

25Some direct losses will however incur through decreases in management fees.
26This particular eventuality is dependent on a broad range of external factors, the most important

of which are identified by (Getmansky, 2012).
27As noted earlier, the value of Z is irrelevant for a loss-aversion analysis.
28The optimal kappa is actually set to zero in the valley’s base.
29Put another way, once the portfolio is at a current loss, the actual magnitude of losses appear to

become less important.
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Figure 2: The optimal kappa surface K∗ for a loss-averse investor, who behaves
identical to a loss-averse manager with S = 1,α = 0,β = 0. Standard parameters
are used otherwise.

with Kouwenberg and Ziemba (2007). An interesting characteristic not captured

by their model however, is the distinct increase in optimal risk with time. This

phenomenon is explained by noting that as the evaluation date approaches, the

probability for the portfolio value to get worse is substantially decreased; thereby

encouraging gambling behaviour. The effect is most prominent for low portfolio

values, as the aspiration to equal or beat the benchmark overwhelms the increased

probability of diminishing losses. This gives origin to an area with especially risky

behaviour (last-minute bet).

Berkelaar et al. (2004) perform a similar analysis for a loss-averse investor, yet

with a very different methodology. They find that the initial risk-level is set high

when the portfolio value starts off lower than the PT reference-point, which is

coherent with what is found here.30

30Their model is time static, and is thus unable to say anything about the tendency to increase risk
as terminal time approaches. Moreover, they do not consider the case when the reference-point initially
is set lower than the portfolio value, thus yielding no comparability in the region above the reference
point. It is also worthwhile to mention that differences in kappa-level between that paper and those
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I now turn to analyse managerial behaviour, starting off with the optimal kappa

surface of a manager with 10 % fund share (Figure 3).
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Figure 3: The optimal kappa surface K∗ for a loss-averse manager with fund share
S = 0.1.

There are evidently only subtle differences relative to a loss-averse investor. Both

parties exhibit the same propensities, but the manager’s overall optimal risk-level

is slightly higher. This is in perfect alignment with Kouwenberg and Ziemba

(2007), who find that risk-seeking increases with the incentive fee rate irrespective

of fund value.

In Kouwenberg and Ziemba (2007), the fund share of the manager is emphasized

as the most important tool available for interest alignment between manager and

investor. With that in mind, I introduce the optimal kappa surface of a manager

with zero fund share and otherwise unchanged parameters (Figure 4).

The decrease in fund share is seen to have a profound effect on risk-taking. Ex-

tremely high levels of risk are observed in almost all regions of the state space ex-

cept for very high fund values, thereby confirming said proposal from Kouwenberg

found here are likely to stem from differences in Sharpe ratio.
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Figure 4: The optimal kappa surface K∗ for a loss-averse manager with fund share
S = 0.

and Ziemba (2007). Yet, the pattern of risk-taking bear some of the same tenden-

cies as with 10 % fund share. Most noticeably, there is still a peak of risk-taking

for low fund values and short time left to evaluation (peak of risky betting). How-

ever, it is now a near ubiquitous phenomenon, as its influence stretches far beyond

the benchmark and past the half-time spot. In conjunction with this, the valley of

loss-aversion and option safeguarding has vanished. The overall risk-level can be

described as a monotonously declining function of fund value. The risky behaviour

accordingly diminishes once the benchmark has been exceeded greatly (lock-in).

What is more, the inclination toward increasing riskiness as time passes is still

very much in place.
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5 Two-Reference Point Model:
Loss- and Liquidation Aversion

A realistic complication to the loss-averse model is the possibility of fund liquida-

tion following bad performance (e.g. Goetzmann et al., 2003; Hodder and Jack-

werth, 2007; Liang, 2000). This eventuality is likely driven by both exterior and

interior factors. Investors are expected to withdraw their money more frequently

when the fund performs badly (Getmansky, 2012). This lowers management fees,

making fixed fund costs harder to pay; thus strengthening the manager’s incentive

to perform an endogenous liquidation. A loss of reputation more severe than with

only small losses in AUM should also be expected, thereby resulting in decreased

future net fund flows (Getmansky, 2012).

Goetzmann et al. (2003) use a predetermined constant boundary in their imple-

mentation of the phenomenon; quite similar to one used in Section 3. In their

most advanced implementation, Hodder and Jackwerth (2007) give the manager

a choice between carrying on managing the fund and endogenously liquidating it

in favour of outside compensation opportunities. This leads him/her to liquidation

whenever expected fees become lower than the outside compensation. In the fol-

lowing, I alter the standard PT utility-function so that it takes the possibility of

fund liquidation into account. I then use this novel function to analyse the be-

haviour of a more realistic manager than those portrayed in previous sections and

much of the existing literature.

A considerable amount of research suggests that decision makers often are better

modelled as considering more than just one reference-point - such as the status

quo of PT - during the evaluation process (see Wang and Johnson, 2012; Koop and

Johnson, 2012; Ordónez et al., 2000; Sullivan and Kida, 1995). Wang and Johnson

(2012) suggest a model that extends on PT, but uses three reference-points rather

than one, and refer to them as the "goal", the "status quo" and the "minimum

requirement". These three reference-points divide risky outcomes into four func-

tional regions: success, gain, loss and failure. In the context of this paper, such a

model proves particularly useful as it allows for realization of liquidation risk in

the form of a "minimum requirement" reference-point.

Guided by Wang and Johnson (2012) and Tversky and Kahneman (1992), I in-

troduce a utility model founded on two reference-points (TRP) dubbed the status
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quo and the liquidation point/boundary.31 The status quo of this new model corre-

sponds to the one used in PT. Here too, it represents the separation of gains and

losses in the mind of the manager. Similarly to PT in Section 4, the new model will

use θ to denote the location of the status quo in terms of managerial wealth W(t).

The novel liquidation point is intended to represent the verge of failure in the

mind of the manager, chiefly caused by the possibility of a complete fund liquida-

tion. While the manager is assumed to retain all of his fund share and possibly

parts of the management fees accrued through the current period upon liquida-

tion, there can be no doubt that such an event has a severe psychological impact

on him/her. Brown et al. (2001) find that in the hedge fund industry, a return to

fund management following a liquidation is unlikely, although it has been known

to happen.32 It is thus reasonable to envision major changes in a manager’s career

following a liquidation. In wealth and fund value terms the liquidation point is

denoted λ and L, respectively. With that, I have

λ= SLF(0)+α(1−S)LF(0)+Z. (13)

The basic utility-function suggested by Wang and Johnson (2012) splits evaluation

at each reference-point with a piecewise linear formula, but does not include stan-

dard PT’s convex/concave shape over losses/gains. To ensure compatibility with PT

and comparability to Kouwenberg and Ziemba (2007), the TRP-function therefore

combines the functions of Tversky and Kahneman (1992) and Wang and Johnson

(2012) to create

U[W(t)]=


τλλ if W(t)<λ

τ−
[
θ−W(t)

]δ− if λ≤W(t)≤ θ

τ+
[
W(t)−θ

]δ+ if W(t)> θ

, (14)

with the restrictions

τλ < τ− ≤ τ+,

τλ < 0, τ− < 0, τ+ ≥ 0

31The "goal" reference-point of Wang and Johnson (2012) is not included in the model as it arguably
has no useful purpose in the context of a fund manager.

32In situations where the manager has fallen far behind on many high-water marks, making the
prospects of earning incentive fees slim, a last resort could be to do an endogenous liquidation and
start a new fund from scratch.
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imposed.33

Here, δ− and δ+ are the respective curvature coefficients over losses and gains;

while τλ, τ− and τ+ are coefficients representing the respective psychological im-

pact of liquidation, losses and gains.34 Since the liquidation point is to be con-

sidered the absolute low, the evaluated value beneath that point is constant, as

shown in the formula’s first case. This is intuitive given that the fund is assumed

to be liquidated with certainty for those values.

To facilitate compatibility with the standard PT parameters of Tversky and Kah-

neman (1992), I have

δ− = γ1 = 0.88, δ+ = γ2 = 0.88, τ− =−A =−2.25, τ+ = 1.

τλ can be set so that the value of (14) is equal to its PT equivalent (11) at the lowest

possible W(t)-value, zero. It is then seen that τλ = −Aθγ1
λ

. This sets the impact of

a liquidation measured by TRP equal to the impact of zero wealth measured by

PT. An alternative approach is to calibrate τλ so that the TRP-utility equals the

PT-utility at a predetermined wealth-level, thereby assuming that the manager

has external compensation opportunities. Such an approach is comparable to the

endogenous liquidation mechanism of Hodder and Jackwerth (2007). However,

testing with their external compensation of 0.0045 of initial AUM for a manager

with 10 % fund share showed no significant changes in behaviour. Additionally,

the method is unapplicable for low fund share values, since utility values then,

in opposition with intentions, become higher once the fund value creeps below the

liquidation boundary. For simplicity this alternative practice is therefore not taken

into use.

With these assumptions, variable substitution yields

U[W(t)]=


−Aθγ1 if W(t)<λ

−A
[
θ−W(t)

]γ1 if λ≤W(t)≤ θ[
W(t)−θ

]γ2 if W(t)> θ

. (15)

It may be noted that the TRP-function bears similarities to the utility-function

33As Barberis et al. (2001) point out, the curvature coefficients are strictly speaking unnecessary in
this area of application, as they are most relevant for decision processes involving only gains or only
losses. The main reason for keeping them is therefore comparability concerns.

34In Wang and Johnson (2012), they are denoted βF , β− and β+.
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employed by Barberis et al. (2001), who alter the original PT-function so that it

takes an investor’s past-dependent sensitivity to losses into account.

Figure 5 graphs a typical TRP-function and its corresponding PT-function for a

linear W(t) interval, under the standard parameter assumptions presented above.

It is seen that the two curves perfectly coincide for W(t) ≤ λ. For W(t) < λ how-

ever, the TRP-utility immediately drops to the level held by the the PT-function at

W(t)= 0.

0
W(t)

U
[W

(t
)]

Loss Gain

0

τ
λ
 λ

λ θ

Liquidation

Figure 5: The solid green curve shows a typical TRP utility-function, while the
dotted blue curve shows its corresponding PT utility-function. Note that the two
curves coincide perfectly in the interval λ ≤ W(t) <∞. The concave/convex prop-
erty of the curves is in place, but difficult to see due to relatively high settings for
γ1 and γ2.

Figure 6 shows the estimated optimal kappa surface for a TRP-manager with zero

fund share. Comparison to the corresponding PT results in Figure 4 indicates no

major differences caused by the added possibility of liquidation. As the manager

has no large fund wealth to lose, the added emotional impact is not enough to

stagger the risky betting taking place near the boundary and terminal time.
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Figure 6: The optimal kappa surface a manager subject to TRP with a fund share
of S = 0.

In line with the previous section, I now graph the estimated kappa surface for a

manager with 10 % fund share (Figure 7).

It can immediately be seen that a significant fund share introduces far more inter-

esting dynamism and richness to the manager’s behaviour. There are few traces

left of the monotonic tendencies found for a manager with zero fund share. The

overall risk-taking is considerably reduced across the state space compared to both

the corresponding PT results in Figure 3 and the TRP results with zero fund share.

A closer analysis using intuition may help identify the rationale behind the man-

ager’s behaviour. What first catches the eye may be the two independent peaks

of riskiness, separated only by the deep valley of prudence in the vicinity of the

benchmark. In the valley, the loss-aversion of the manager causes a minimized

portfolio risk in an attempt to avoid fund share losses and gain option fees. This

same tendency was also found with PT (see Figure 3). The two peaks represent

gambles taken by the manager in situations where the fund value is sufficiently far

from either the liquidation point or the benchmark, while also being low enough
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Figure 7: The optimal kappa surface for a manager subject to TRP with a fund
share of S = 0.1.

for a lock-in to remain unattractive. In coherence with previous results, both peaks

gain steepness as time passes due to a "last-minute betting"-effect stemming from

the decreased probability of ending up in a worse position.

The leftmost peak appears for the same reasons as the "last-minute bet" peak

found for a PT-manager with 10 % share and a PT-investor (see Figures 3, 2).

However, the added liquidation boundary and increases in fund share has pushed

its summit down and effectively curbed risk-taking on its left side (liquidation

aversion). In the region between the liquidation boundary and the benchmark, this

manager can generally be said to prefer a risk-level lower than the PT-investor.

The rightmost peak represents a largely new phenomenon. It rises in the area

where the probability of ending up below the boundary is considered small and the

preliminary size of fund share- and incentive fee gains are small enough to induce

some greediness into the manager. Starting from the rightmost peak’s summit,

further increases in fund value slowly satisfies the greed of the manager, who

ultimately reverts to a mild lock-in like behaviour.
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As a final remark, it should be stressed that TRP is unapplicable to an investor,

since he/she naturally does not suffer a negative psychological impact from the

possibility of fund liquidation beyond what is already captured by PT.35 As such,

the appropriate utility-function and kappa surface for a realistic investor remains

that of (11) and Figure 2, respectively.

6 The Multi-Period Case

The results presented hereto assumes a manager that maximizes expected utility

at the termination of a single evaluation period. Such a manager may be charac-

terized as a myopically optimizing individual, in the sense that he/she uses a rela-

tively short optimization horizon.36 On the contrary, it may be argued that hedge

fund managers hold a multi-period perspective, which is expected to dampen ex-

treme risk-taking (e.g. Panageas and Westerfield, 2009; Guasoni and Obloj, 2013).

This is particularly true when the benchmark has a high-water mark mechanism:

With it, the manager knows that he/she will have to regain any losses that are

sustained in the current period in subsequent ones in order to accrue incentive

fees. The negative consequences of getting far out-of-the-money thus become more

severe.

Further indications of the risk-dampening effects of long horizons can be found

by considering the incentive fee option in isolation. As stressed earlier, it can be

modelled as a European call option on AUM. It is known that the gamma of such an

option is a decreasing function of time-to-maturity, which in this case translates

to the length of the manager’s optimization horizon. Hence the option delta is

increasingly linearized for longer horizons. As a consequence, an incentive option

with a very long time horizon is expected to affect current managerial behaviour

in a manner that is analogous to management fees and fund shares. Considering

only the incentive fee option, which may be the chief root of risk-taking, risky

behaviour should therefore be dampened in a multi-period model.

Panageas and Westerfield (2009) and Guasoni and Obloj (2013) find that a man-

ager using a perpetual utility optimization process is likely to set a constant weight

to the risky asset. However, Hodder and Jackwerth (2007) questions the realism

35Except for the minor opportunity losses that may incur from having to reinvest funds.
36In the following, I will often use "horizon" as short form for ”optimization horizon", which is analo-

gous to the "evaluation period" used by Benartzi and Thaler (1995).
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of their use of continuous time fee accruements and state space structures. They

present, with their discrete time framework, a comparative analysis suggesting

that CRRA-managers do use a more prudent risk-taking in a multi-period setting,

but that it takes a horizon of several decades for the optimal risk-level to approach

that of investors.37

With PT or TRP, building a multi-period model is particularly challenging due to

the path dependency of the status quo and the high-water mark. More importantly

however, there is a considerable amount of research suggesting that investors are

myopic (see Benartzi and Thaler, 1995; Thaler et al., 1997; Gneezy and Potters,

1997; Gneezy et al., 2003; Haigh and List, 2005). Research has also found a posi-

tive correlation between portfolio monitoring frequencies and the exhibited degree

of myopia. It is reasonable to assume that myopia applies to hedge fund managers

as well, thereby giving some validation to the single-period analysis of previous

sections.38 Conversely, a multi-period framework may yield unrealistic results, as

the myopic property of hedge fund managers is likely to be predominantly deter-

mined by each single fee evaluation period.

A relevant perspective on short and long term risk attitudes is that of Levy and

Wiener (2013). They recognize investors as myopically loss-averse in the short

run, but argue that investors turn to the traditional utility theory framework in

the long run. Assuming a completely non-myopic manager, their supposition thus

agrees with the multi-period CRRA analysis of Hodder and Jackwerth (2007).

In spite of said disagreements, I will in the following present the procedure for a

multi-period analysis of managerial behaviour subject to PT or TRP. The bench-

mark is assumed to follow a high-water mark, and the initial fund value is set

equal to it. A feasible implementation requires the following assumptions:

• The manager is able to estimate expected utility in future periods as a func-

tion of the current period’s developments.

• The status quo θ is always equal to the high-water mark of the current pe-

riod.

• The liquidation boundary L is always a constant fraction of the current pe-

37As they assume annual evaluation periods, it should be noted that with quarterly periods the
required horizon would be correspondingly shorter.

38Haigh and List (2005) confirms myopic loss-aversion for a sample of professionals with many simi-
larities to hedge fund managers (option traders).
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riod’s initial fund value.

The first and second assumption implicitly assumes that the manager rationally

forecasts the loss-aversion he/she will feel in the future as well as changes in

his/her personal status quo θ. In regard to the first issue, Loewenstein et al. (2003)

suggest a more complex reality in which people have trouble forecasting their feel-

ings about future events. The reasonability of the second assumption is also often

disputed when downward adjustments of the status quo are possible, as it may

be inconsistent with loss-aversion itself (see Levy and Wiener, 2013). However, it

poses less of a problem here since the status quo is assumed to follow the fund’s

high-water mark, and can thus never be reduced, only increased.

Hodder and Jackwerth (2007) provide the basis of my approach for the multi-

period model. I first consider the initial period in a two-period model. To include

the second period into the manager’s decision process, the future consequences of

asset movements and risk choices in the first period have to be included in first pe-

riod’s decision foundation. Thus, the manager’s terminal time compensation has

to be augmented by the certainty equivalent of the expected utility of the second

period, thereby altering risk-taking in period one. This certainty equivalent is

dependent on status at the first period’s terminal time T1:

• F(T1) < L: The fund is liquidated, yielding a certainty equivalent of zero

from period two, and an unaltered terminal wealth for period one.

• L < F(T1) ≤ B: The high-water mark B remains unchanged in the next pe-

riod, but incurred losses in AUM have to be regained in the next period for

incentive fees to be earned. The terminal compensation for period one there-

fore has to be augmented by the certainty equivalent of a period two with

initial fund value equal to the terminal fund value of period one. Formally,

F(02)= F(T1).

• F(T1) > B: The high-water mark is reset for the next period. The terminal

wealth for period one has to be augmented by the certainty equivalent of a

period two with initial fund value equal to period one’s initial value (F(02)=
F(01)).

The certainty equivalents for the two latter cases are found through Monte Carlo

simulation using the second period optimal kappa matrix with necessary varia-
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tions of F(02).39 That particular matrix is identical to the single-period kappa

matrix since it is the last period on record. With PT, certainty equivalents are

given by

W(U)=

θ−
(
− 1

A U
)1/γ1

if U < 0

θ+U1/γ2 if U ≤ 0
; (16)

and correspondingly, with TRP

W(U)=


0 if U < τ−(θ−λ)δ−

θ−
(

U
τ−

)1/δ−
if τ−(θ−λ)δ− ≤ U ≤ 0

θ+
(

U
τ+

)1/δ+
if U > 0

. (17)

In the first case of (17), the mathematical solution is actually an infinite set. How-

ever, as it corresponds to F(T1) < L, the certainty equivalent is simply set to zero

there (which is one of the possible solutions). Note that since the status quo is

updated for each new period, there is no need to scale the certainty equivalent of

future periods with the increasing value of fund shares and fees.40 Also, since the

fund value grid for a single period already grows at the risk-free rate, there is no

need to manually scale the certainty equivalents for decreasing time value.

With a recursive algorithm, the results for any number of evaluation periods can

be found by starting at the last evaluation period and doing a backward sweep,

performing the given procedure for each extra period.

Figure 8 shows the initial quarter optimal kappa surface of a zero fund share-

manager subject to TRP who optimizes four quarters ahead.41

The surface shows a remarkable similarity to Figure 7, in which the single-period

TRP manager has a 10 % fund share. As predicted by the time-declining convexity

of the incentive option-gamma, the introduction of multiple long horizon options

into the manager’s decision basis has given an effect analogous to that of fund

share increases.

39By assuming a constant κ until the initial period terminal time and over the second period, the
certainty equivalents can be computed directly. I do not make that assumption. By using Monte Carlo
simulations, I instead assume that the manager has accrued, through some experience, some intuition
concerning the probability of future period outcomes.

40On the contrary, this is a necessity in Hodder and Jackwerth (2007), as they use CRRA-utility.
41This choice of optimization period is partly founded on Benartzi and Thaler (1995), as their average

evaluation period length is estimated to a year.
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Figure 8: The initial quarter optimal kappa surface for the TRP-manager with an
optimization horizon of four quarters and fund share S = 0.

More generally, the average optimal kappa-level of a TRP-manager is found to

be a decreasing function of horizon-length.42 The state space region between the

liquidation boundary and the high-water mark is heavily affected, as the conse-

quences of a liquidation become increasingly severe with longer horizons (liquida-

tion aversion): In the event of a fund liquidation, the manager is guaranteed a

compensation of zero in all of the remaining recorded periods.43

For the state space region above the high-water mark, changes in risk-level are not

as significant for longer horizons. Even with a horizon of 16 quarters (four years),

the pattern of risk-taking in that area remains largely unchanged from the fourth

quarter (Figure 9). This is quite intuitive since the probability of underachieving

the high-water mark is relatively low there. Beneath the benchmark however, the

risk is reduced to a level close to the Merton constant (10).

42The same is found for a PT-manager.
43Using a lower compensation limit instead, the changes in risk-level as a function of horizon are

mildly dampened.
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On an important note, the trends observed here are highly dependent on the

length of fee-evaluation periods (T). Using annual fee-evaluations,44 what takes

four quarters with this paper’s assumptions, would take roughly four years instead.
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Figure 9: The initial quarter optimal kappa surface for the TRP-manager with
an optimization horizon of 16 quarters and fund share S = 0.1. Note that due to
the decreasing significance of S with longer horizons, the surface is practically
unchanged with S = 0.

Although the multi-period results are highly interesting, the difficulties with re-

alistic assumptions stressed earlier in the section should not be forgotten. The

multi-period assumption is consequently abandoned in favour of the single-period

one for the remainder of the paper.

44Such as Hodder and Jackwerth (2007); Kouwenberg and Ziemba (2007).



31

7 Extent and Economic Significance of Misalign-
ments

Given the indications of manager-investor interest conflicts in previous sections,

one may ask whether it generally is sensible to invest in hedge funds. Due to the

relatively high fees used in the industry, it is clear that investors must believe

strongly in the fund manager’s abilities to create excess value compared to the

overall market.

Research shows no consensus regarding hedge funds’ ability to attain alpha. See

for instance Fung et al. (2008); Amin and Kat (2003a); Edwards and Caglayan

(2001); Brown et al. (1999). The same goes for persistency and the existence of

manager-skill (Agarwal and Naik, 2000; Kat and Menexe, 2003; Baquero et al.,

2005). Yet hedge funds have grown in popularity among investors, and the in-

dustry is set to reach $3 trillion under management in 2014 (Hedge fund assets
seen reaching $3 trillion this year - survey, 2014). The discussion concerning

performance, persistency and manager-skill is beyond the purview of this paper.

Nonetheless, it is useful to explore exactly how strong excess performance a hedge

fund has to deliver to be able to justify possible interest-misalignments.

Seemingly, the trivial solution to any misalignment problem is to remove the in-

centive fee option completely from the fee structure. This is in line with Kouwen-

berg and Ziemba (2007), who find that the severity of the misalignment increases

monotonically with higher incentive fee rates. As argued by Goetzmann et al.

(2003) however, the incentive fee has become the industry standard; making it

very difficult to remove. A more realistic measure could thus be to either increase

managerial ownership, or increase management fees in exchange for lower incen-

tive fees.

By intuition, both fund share and management fees should lead managerial risk-

taking closer to that of a corresponding investor. As the wealth function (1) shows,

the manager’s earnings from either of them are a linear function of AUM. Their

effect on behaviour are thus expected to be equal, but with different strength of

impact. Through the option gamma argument of Section 6, it is seen that the

earnings from incentive fees are highly non-linear, thereby yielding an opposing

effect.

With that, the interplay between the three determining variables α, β and S
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should be a prime research interest. In the following, I therefore present two

different methods aiming to quantify the extent of manager-investor conflicts of

interest, as a function of these variables. Pros and cons of each method and illus-

trative results are also given and discussed.

7.1 Manager-Investor Kappa-Difference

A straight-forward way to measure misalignments is to compute the optimal kappa-

difference between investor and manager investment policies for varieties of α, β

and S:

abs[K∗
M(α,β,S)−K∗

I (α,β,S)]. (18)

Here, K∗
M(α,β,S) = (κi j) and K∗

I = K∗
M(0,0,1) is the manager and investor’s opti-

mal kappa matrix, respectively.

For convenience, a scalar measure can be given through the use of a matrix norm.

A suitable norm for the current application is

M(α,β,S)= 1
G(T −1)

G∑
i=1

(T−1)∑
j=1

abs[(κi j)], (19)

where G denotes the fund value grid height, and (κi j) is the i, j-th entry of (18).45

By dividing with G(T −1) the measure becomes interpretable as the mean differ-

ence in kappa irrespective of the probabilities of paths.

In the following I present and discuss estimations of M(α,β,S) for varieties of in-

put parameters using the TRP model for the manager and PT for the investor. By

doing this, the kappa-profile of the PT-investor is implicitly taken on as the man-

ager’s reference point for perfect interest alignment. Seeing as PT is a psycho-

logical model capturing human irrationality, it might not represent the investor’s

ideal preferences. An alternative could thus be to use the lifetime optimal risk

of Merton (1969) given by (10) as reference for kappa. On the other hand, this

approach may be considered unfair on the manager’s behalf. Additionally, and in

line with the discussion in the beginning of Section 6, the performance demands

45The sum is from 1 to T −1 and not T because the model is set up so that the period ends on the
T-th day (the terminal day), which makes kappa unchangeable on this day.
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from fund investors are likely to be shaped by myopic loss-aversion.46 In light of

these considerations, I find it most reasonable to use the investment policy of a

PT-investor as point of reference.

To start with, I am interested in the interplay between the two fee rates. As fund

share is expected to dominate the influence of management fee rates, I ensure

isolation of the two fee rates by setting S = 0 while varying α and β. The resulting

estimates for M(α,β,0) are graphed in Figure 10.
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Figure 10: The mean manager-investor kappa-difference M(α,β,0) for a set of
α ∈ [0,0.05] and β ∈ [0,0.30].

The graph suggests that M quickly grows with increases in β. Furthermore, man-

agement fees are shown to be an inhibitor to this relation, but a weak one at

that. Management fees accordingly do not appear to be an effective tool for inter-

est alignment. The necessity of major jumps in charged management fees would

certainty also contribute to this view.

By setting S = 0.1 and rerunning the estimation, it is further verified that the

behavioural effect of fund shares strongly dominates that of management fees.
46This is particularly true if investors monitor fund performance with relatively high frequencies.
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With this setting, the influence of management fees is insignificant.

I now turn to look into the incentive effects of managerial fund share by graphing

M(0.02,0.20,S) in Figure 11.
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Figure 11: The mean manager-investor kappa-difference M(0.02,0.20,S) graphed
over S ∈ [0,0.1].

The graph goes on to confirm the managerial ownership rate as a strong alignment

tool, as its introduction into the fund structure has an immediate and profound

effect on managerial behaviour. A relatively low rate therefore goes a long way in

reducing adverse risk-taking. With 3 % fund ownership, almost all of the positive

effects of managerial share have been used up, and beyond 10 % the benefits from

fund share increases are negligible.

Note that with the current assumptions, M(α,β,S) can never be zero because the

manager has a liquidation boundary, which the investor does not. As hinted in the

graph, its minimum value, at S = 1, is approximately 6.

Due its equal weighting property, M(α,β,S) measures misalignments irrespec-

tive of the probability attributed to entering each state. This property is a two
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edged-sword: On one hand, it ensures a certain neutrality to the measure. On

another hand, one may ask why investors should be concerned with unfavorable

managerial risk-taking in situations that are unlikely to ever take place. Another

disadvantage is the measure’s non-monetary dimension.

7.2 Costs of Hedge Fund Investing

The investor may be best served with a probabilistic measure that captures possi-

ble utility-losses. It would then be possible to assess the economic significance of

adverse managerial behaviour, thereby giving an answer to how much excess re-

turn a hedge fund should deliver to justify its risk-taking. The following presents

the procedure for such a measure, as well as illustrative results.

The mean terminal time investor utility can be computed with Monte Carlo meth-

ods: A large sample of stochastic paths through the fund value grid is generated,

regulating risk at each time step in accordance with the predetermined optimal

kappa matrix. Each sample path ends up with a terminal time investor-utility

UI ; the occurrence of which is counted.47 Thus, with a large enough sample, the

expected investor-utility E(UI ) can be estimated.

This simulation procedure is performed twice, using either investor- or manager

risk-taking policies, represented by their respective optimal kappa matrix, in each

run. The difference between the two expected investor-utilities is then the in-

vestor’s loss (or gain) in utility caused by managerial control. The economic sig-

nificance of the utility-loss is given by the investor’s loss in certainty equivalent,

as found with (16). I now take on the usual TRP-manager/PT-investor assumption

and present some interesting results.

The investor’s expected utility using his/her own risk policies - is estimated to

E(UI ) = 0.0211. Conversely, with managerial control and zero managerial owner-

ship, the same number is found to be −0.1740. These are quite surprising results.

Not only is there a discrepancy in preferred risk-taking; the investor’s expected

utility is even negative due to managerial incentives. In other words, the investor

should be discouraged from placing an investment at all. Remember that this hap-

pens in spite of the higher expected return yielded by managerial risk-preferences.

As such, the investor appears to prefer a relatively low risk-profile to a relatively

47As fund values are discretized, terminal utilities are too.
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higher expected return.

To put the consequences of the manager’s adverse behaviour into perspective, con-

sider an investor whose initial hedge fund investment amounts to $10m. The loss

in certainty equivalents is then an estimated $ 670,000. The manager would thus

have to achieve a pure alpha return of 6.7 pp in excess of current expected returns
through managerial expertise, technology and effort to justify the fund’s risk-level

to investors. This corresponds to a 40 % raise in Sharpe ratio. On top of this, the

expected cost of fees comes to an additional 2.6 pp, resulting in a total cost at 9.3

% of the initial investment.48

By running the simulation for a variety of fee structures a study corresponding to

that which was done for the mean kappa-difference of Section 7.1 can be done.49

The results show similar tendencies: The utility divergency increases with the

incentive fee rate. As was also found with previous analysis, the management

fee rate moderates this propensity by raising the point of impact. Illustratively, by

raising the management fee rate from 0 to 5 %, the major leap in utility divergency

occurs at an incentive fee rate of about 15 % rather than immediately. For practical

purposes however, management fees again appear to confirmed to be too minor to

make it interesting for use in alignment issues.

With that, I once more turn to managerial fund share as a restraining instrument.

Figure 12 shows the investor’s costs as a function of S, before (solid) and after fees

(dotted). The results suggest that with an 8 % fund share or higher, the manager-

investor conflict of interest is completely eliminated.50

The reader is encouraged to remember that since this analysis is based on expec-

tation values, the regions of the state space that exhibit the stronger deviances are

averaged out by the areas with weaker deviances. The fact the that deviations in

kappa-preference across the state space sometimes pull in opposite directions also

contributes to this effect.

As a final remark, it should be remembered that there have been put no practi-

cal limitations on the kappa of the manager. Complications such as transaction

48The methods for this calculation are given later.
49Fund share is set to zero for the same reasons as there.
50At that point, the manager’s optimal initial day risk, is zero. As can be seen in Figure 7, this locks

him/her into the so-called valley for the remainder of the period. Since the PT-investor’s optimal risk is
also zero in that area, the conflict principally speaking no longer exists. This "lock-in" tendency can be
avoided by forcing the kappa to a minimum of 1, but the resulting changes in certainty equivalent-loss
are very minor, due to the probability of large movements still being quite low.
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Figure 12: The solid curve graphs the expected quarterly loss in certainty equiv-
alent, measured in percentage of initial investment. The dotted curve augments
the certainty equivalent-loss with expected fee costs, thereby giving the total costs
of investing. S is capped at 10 % as both curves go flat from 8 % and onwards.
Incentive fees are computed as in Section 8.

costs and a roof on leverage would thus be expected to limit the manager-investor

conflict of interest somewhat.

8 Incentive Fee Option Value

For hedge fund investors it is useful to know the isolated cost of the incentive fee

option. Using the TRP-manager’s optimal kappa matrix and Monte Carlo meth-

ods, I estimate the quarterly ATM option value as a function of fund share S for

β = 0.1, 0.2, 0.3 and otherwise standard parameters (Figure 13). As a point of

reference, the option value for a manager with a constant kappa of 1 and β = 0.2

is also graphed.

As expected due to the close connection between option value and managerial be-
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Figure 13: The at-the-money 10, 20 and 30 % incentive fee option values as a
percentage of initial AUM for the interval S ∈ [0,0.1]. Additionally, the dotted
curve graphs the corresponding value for a manager with a 20 % incentive option
fee and a constant kappa of 1.

haviour, the graph’s curves are quite similar to that those of Figure 12. They show

a sharp decline in option value with increasing fund share. For comparison, the

management fees with zero managerial fund share amount to 0.5 % of AUM.

9 Concluding Comments

The novel TRP model and the fundamental numerical approach of this paper pro-

vide the means to analyse the dynamic risk-taking of a realistic hedge fund man-

ager. It extends current research by combining contemporary loss-aversion, a new

implementation of the concept of managerial fund liquidation aversion and an ac-

curate discrete time framework.

With a single-period horizon, the TRP-manager generally portrays more complex

and dynamic behavioural patterns than the corresponding loss- or risk-averse
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manager. An absence of fund ownership inclines the manager to take risks accord-

ing to a monotonically decreasing function of fund value. For all but exceptionally

high fund values, this manager’s risk-level is shown to be hazardously high com-

pared to the preferences of a loss-averse investor.

Perhaps the most interesting behaviour however, is observed when the manager

has a significant fund ownership. His/her risk-taking then becomes distinctively

bimodal. Near the benchmark, when the incentive option is ATM, the manager

shows characteristically loss-averse prudence. Similar tendencies are also induced

by the manager’s liquidation aversion for very low fund values. In the state space

regions sufficiently detached from the benchmark and the liquidation boundary

on the other hand, the manager dramatically increases the the fund’s risk-level.

A final interesting and systematic characteristic is the loss-averse individual’s
propensity to increase risk as the terminal time approaches nearer. The observed

risky behaviour by managers may provide a reasonable explanation to the rela-

tively low survival rates of hedge funds, as documented by Amin and Kat (2003b)

and Brown et al. (1999).

In the paper’s examination of incentive effects for longer optimization horizons

than a single evaluation period, the manager is found to reduce the overall risk-

level with longer horizons. This is consistent with the time-decreasing convexity

of the incentive option gamma. Importantly however, the risk-taking of a manager

with a very long horizon is still found to be excessive compared to that of investors

when the option is ITM and the terminal time is near. Although it yields some

interesting results, the multi-period model is omitted from extensive consideration

because it requires some arguably unrealistic assumptions.

From an external perspective, the fund’s risk should principally follow the prefer-

ences of its investors. A primary interest should thus be to identify ways to reduce

adverse managerial behaviour. I explore this issue using a probabilistic approach

estimating the investor’s utility-loss from leaving control of his/her assets to the

fund manager. By varying fee rates and managerial fund share fraction, I find

that the easiest way to achieve manager-investor interest alignment is to increase

the latter. In a fund with the typical 2/20 fee setup, a fund share at 8 % of AUM or

more would yield near perfect alignment. Some hedge funds already comply with

this requirement: The hedge fund sample of Agarwal et al. (2009) has a manage-

rial fund share mean of 7.1 %. However, their bottom quartile is at 0.1 %, thereby

implying that a great number of hedge funds use perverse managerial incentives.
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Given the relatively high fees of hedge funds, it is clear that investors must believe

quite strongly in their ability to deliver performance in excess of the market. My

analysis suggests that, depending mostly on managerial fund share and in addi-

tion to fees, investors may suffer substantial economic losses from adverse man-

agerial incentives. In the case of zero fund share, the mean total costs of investing

are estimated to 9.3 % quarterly.

A common perception expressed by hedge funds is that the incentive fee helps

align interest with investors.51 I suggest the strict opposite by pointing it out as

the chief root of misalignments. As I see it, there are two basic explanations for

this incoherence. The first is given by considering the option contract demanded

by the manager as part of the agency problem, rather than its solution. The sec-

ond implies that my model fails to capture some influential aspect of managerial

incentives. One possible such aspect is given by the recent long-term perspective

of Levy and Wiener (2013). Another may be the addition of practical limitations

such as transaction costs and leverage restrictions.

While this paper has focused on the situation of a hedge fund manager, it is

clear that its general approach is applicable to any process where an individual

holds control over a stochastic process determining that same individual’s util-

ity. With some additional model complications, mutual fund managers and some

bank trader types easily fit the bill. By conceptualizing a firm’s more or less risky

value creation process as being manipulated by a stock option holding CEO, the

methodology could also be used to analyse his/her incentives.

In relation to mutual fund managers, there are now especially good reasons to ap-

ply the model perspective, as a growing number of them add incentive options to

their compensation structure.52 This aptly raises concerns regarding their risk-

taking. These concerns are somewhat reduced by the stringent leverage regula-

tions put on mutual funds,53 but a mutual fund can often circumvent these limi-

tations to some degree through derivative investments.54

51This notion is supported by Carpenter (2000).
52An example is the Norwegian Skagen Fondene, which recently introduced a 20 % high-water mark

to some of their funds.
53In the US for example, there is a 300 % asset coverage requirement.
54Given that the fund is allowed to invest in them.



41

A Variable Notation

Table 1: Variable notation

W(t) Fund manager wealth at time t
F(t) Assets under management (AUM)/fund value at time t
B(t) Benchmark at time t
Z External wealth of the manager at terminal time T

κ(F, t) Risky asset weight/kappa

X1(t) Riskless asset value

X2(t) Risky asset value

z(t) Brownian motion process

θ PT/TRP status quo

λ TRP wealth liquidation point

B Standard Parameters

The table at the end of this appendix presents the standard case parameters used

for illustrative results throughout the paper. The rationales behind chosen pa-

rameters for asset returns and the liquidation boundary are given in the following

discussion.

To achieve realistic results it is essential to find reasonable values for µ, σ and

Rd , which jointly constitute the movements of the risky and riskless asset. In this

regard, the Sharpe ratio is very useful. As a measure of risk-adjusted performance,

it can be used to calibrate the balance of attractiveness between the risky and

riskless asset.

I start the calibration process by setting the annual risk-free rate to 5 %. The daily

risk-free rate is then Rd = 0.05/252≈ 2×10−4.

Hodder and Jackwerth (2007) use an annual expected return of 7 % and volatility

of 5 % for the risky asset, which together with a risk-free rate at 5 % gives a Sharpe

ratio of 0.42. A way to check the rationality behind this choice of parameters is to

compare it to the Sharpe ratio of a hedge fund index. A simple analysis of the
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Credit Suisse Broad Hedge Fund Index55 implies an annual 9.05 % mean and 9.48

% volatility.56 At first glance then, the risky mean and volatility used by Hodder

and Jackwerth both appear to be misestimated. However, the index does in fact

have a Sharpe ratio of 0.43,57 which is almost identical to that of Hodder and

Jackwerth. For the purpose of portfolio selection, the only measure that matters is

the risk-premium to deviation ratio. Therefore, the actual means and volatilities

of the two assets are irrelevant, as long as they jointly yield a reasonable Sharpe

ratio.

On an additional note, it is interesting to consider the effect that different market

regimes have on the typical hedge fund Sharpe ratio. The Credit Suisse index’

statistics includes data from the Dot-com bubble and the 2007/2008 financial cri-

sis. Using a Sharpe ratio of 0.43 would thus assume that the model hedge fund

manager takes the possibility of future market extremities into account. During

relatively calm periods, higher Sharpe ratios are likely.58

There are a few other aspects worthy of consideration when choosing an appropri-

ate Sharpe. The ratio assumes normal returns, arguably making it unsuitable for

use with hedge fund returns, as is also discussed in the main paper. The proper-

ties of hedge fund returns generally bias the Sharpe ratio high, thus calling for a

lower setting of Sharpe than what is empirically measured (e.g. Brooks and Kat,

2002). As a final remark, all indices, including the Credit Suisse index used here,

are prone to diversification effects, thus biasing the volatility low.59 This also calls

for a conservative Sharpe choice.

In light of the aforementioned perspectives, the asset settings of Hodder and Jack-

werth (2007) are replicated for the standard parameters. This gives a risky asset

daily mean and standard deviation of

µ= 0.07/252≈ 2.8×10−4

σ= 0.05/
p

252= 3.1×10−3,

55A global index comprised of over 9000 hedge funds, beginning in January 1994. Monthly data and
additional information can be found at www.hedgeindex.com.

56Assuming normal and independent returns.
57Assuming the same risk-free rate of 5 %.
58For instance, in the period 2002-2007; the Credit Suisse index had a 9.54 % mean, 3.92 % volatility

and a Sharpe of 1.15 (given a 5 % risk-free rate). Brooks and Kat (2002); Brown et al. (1999) reveal
similar findings.

59This is particularly true for the broad Credit Suisse index.



43

with the assumption of normal and independent returns.

The predetermined liquidation boundary used by Hodder and Jackwerth (2007) is

at 50 % of the benchmark. Goetzmann et al. (2003) do their computations with a

liquidation boundary at 0, 50 and 80 % of the individual high-water mark. They

argue that most hedge fund investors would retract their funds following a fall of

15 to 25 %, but give no empirical data to support their estimation. Based on the

aforementioned two papers and my quarterly evaluation period I set the prede-

termined and constant liquidation boundary L to 60 % of the benchmark in the

standard case.
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Table 2: Standard parameters

Standard Parameters

Fundamental Model Setup
Period length & terminal time T 63 market days

Initial fund value F(0) 1

Fund value grid step C ln(10)/199≈ 0.0116

Grid, lowest theoretical value - 0.1

Grid, fund value height G 301

Grid, practical lower value - 0.60

Grid, practical upper value - 2.52

Possible risky asset weights/kappa {κ} {0, 1, 1.5, 2, 2.5, 3, 3.5, 4,

5, 6, 7, 8, 10, 20, 30, 40,

50, 60, 70, 80, 100,

120, 140, 200, 250}

Asset Return and Volatility
Risky asset, annual expected returns µa 0.07

Risky asset, daily expected return µ 2.8×10−4

Risky asset, annual standard deviation σa 0.05

Risky asset, daily standard deviation σ 0.0031

Risk free annual rate Ra 0.05

Risk free quarterly rate Rq 0.0125

Risk free daily rate Rd 2×10−4

Fund Structure
Management fee rate, annual α 0.02

Management fee rate, quarterly αq 0.02× (63/252)≈ 0.0050

Incentive fee rate, annual β 0.20

Incentive fee rate, quarterly βq 0.20× (63/252)≈ 0.0500

Benchmark B Rd(T −1)≈ 1.0125

Managerial Fund Share S (no std. value)

(. . . )
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Standard Parameters

(. . . )

CRRA-Utility Model
CRRA gamma γ 4

Loss-Aversion Model
Loss curvature constant γ1 0.88

Gain curvature constant γ2 0.88

Loss-aversion constant A 2.25

Initial manager wealth - SF(0)

Two-Reference Point Model
Liquidation impact coefficient τλ −Aθγ1 /λ

Loss impact coefficient τ− −A =−2.25

Gain impact coefficient τ+ 1

Loss curvature coefficient δ− γ1 = 0.88

Gain curvature coefficient δ+ γ2 = 0.88

Miscellaneous
Liquidation boundary L 0.6B(T)
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