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Chapter 1

Introduction

This thesis presents several applications of optimization within the natural gas
supply chain, particularly focusing on issues relevant for Norway. That is, the
main focus is on the upstream supply chain from production to market, and most
models take a producer’s perspective.

The main sponsor for this work has been the project RAMONA involving
the University of Bergen, NTNU, SINTEF, the University of Stavanger, Cog-
nIT, Gassco, Statoil, and the Research Council of Norway. The objective of
this project was ‘to develop new theory, methods and tools to optimize regu-
larity and capacity utilization in gas production, processing and transportation
systems’. Several other projects have also contributed to some of the papers in
this thesis. These are the VENOGA project involving Statoil, SINTEF and the
Research Council of Norway, ‘Maritime transportation and logistics’ 1 involving
among others SINTEF, Statoil, and Suez Energy International, and LNGShip-
ping involving GdFSuez, Statoil, NTNU, SINTEF and the Research Council of
Norway.

The first chapter of the thesis describes the background for the work, with
an introduction to the natural gas supply chain and an overview of operations
research applied in the natural gas industry. The chapter is ended with a short
presentation to each of the seven papers that form the research contributions in
the thesis. The following seven chapters are reprints of the papers.

1.1 The Natural Gas Supply Chain

Natural gas is an important part of the global energy system, being the third
largest primary energy source in 2010, after oil and coal (IEA 2012). Global
gas production is expected to grow further, by 17 - 55 % from 2010 to 2035,
driven by the general increase in global energy demand and through taking an
even stronger position in the energy mix (IEA 2012). In the current debate on
transforming the energy system to a more environmental friendly one, natural
gas is frequently given a role as a transition fuel because of the reduced green

1Original project title in Norwegian: ‘Maritim transport og logistikk’

1



Chapter 1 Introduction

house gas emission levels compared to coal, and of its flexibility to balance more
intermittent renewable sources in the system (EIA 2011). Another decisive fac-
tor is how production of unconventional gas, that has dramatically shifted the
supply balance in North America, will propagate globally and thereby increase
the natural gas reserves (IEA 2012). Norway was in 2011 the third largest gas
exporting country in the world (Norwegian Ministry of Petroleum and Energy &
Norwegian Petroleum Directorate 2013), exporting 100 bcm which corresponds
to 20 % of EU consumption (British Petroleum 2011). Norwegian gas production
is expected to slightly rise for at least another decade (Norwegian Ministry of
Petroleum and Energy & Norwegian Petroleum Directorate 2013). Only 3 % of
the Norwegian gas is consumed nationally.

Supply Chain Components

The main components of the upstream part of a natural gas supply chain are
exploration and production, processing, transportation, storage and sale. These
will shortly be described here, taking a Norwegian perspective.

Exploration and Production

Natural gas is found in reservoirs formed in permeable rocks below the surface of
the earth. To locate petroleum reservoirs with certainty, drilling of exploration
wells is a necessity. Since these are costly operations the ground is first examined
with geophysical methods like seismology. (Gassco 2012, NaturalGas.org 2012)
All Norwegian exploration activity is offshore on the Norwegian Continental Shelf
(NCS).

The Norwegian gas is produced at approximately 50 fields, mainly located in
the North Sea and the Norwegian Sea (Norwegian Ministry of Petroleum and
Energy & Norwegian Petroleum Directorate 2012). In most fields gas production
is associated with oil, natural gas liquid (NGL) or condensate production. Be-
cause of the superior market price of these products relative to gas, the operation
of such fields treats gas as a by-product. Production in fields with mainly gas,
often denoted swing fields, is on the other hand varied to balance gas demand
and supply over the season. Such fields typically have a production license set
by the authorities that limits the amount of gas that can be produced each year.

Processing, Transportation and Storage

Natural gas extracted from reservoirs is rich gas, which is a mixture of hydro-
carbons (methane, ethane, propane, n-butane, isobutane and naphtha) and some
contaminants like carbon dioxide (CO2) and hydrogen sulfide (H2S). Through
processing the gas is separated into dry gas and wet gas. Dry gas is traded in

2
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Figure 1.1: Existing and projected pipelines in the Norwegian petroleum export
system. Source: The Norwegian Petroleum Directorate
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Chapter 1 Introduction

Figure 1.2: Transportation costs depending on distance and scale. Source: Gas
Strategies Consulting Ltd.

gas markets and contains mainly methane and some ethane. Wet gas contains
the heavier components that can appear in liquid form under pressure. (Gassco
2012) These components can be fractioned into separate components, shipped by
vessels and sold bilaterally (Myklebust, Tomasgard & Westgaard 2010).

Most Norwegian gas is transported in pipelines from fields to processing plants
and further to gas markets in Continental Europe and United Kingdom. The
transportation network, which consists of nearly 8000 km of offshore gas pipelines
(Gassco 2012) is shown in Figure 1.1. Gas flow through the pipelines is driven by
the pressure difference between the upstream inlets and the downstream outlets,
which is controlled by compressors and valves.

The Snøhvit field with pipeline to Melkøya liquefaction plant is an indepen-
dent system which exports liquefied natural gas (LNG) and covers 5 % of the
Norwegian gas export (British Petroleum 2011). By cooling dry gas down to
−160◦C it condenses into liquid form and improves its energy content per vol-
ume approximately 600 times relative to gaseous form. This process is costly,
but on the other hand it enables transportation of the gas by specialized vessels
over large distances (NaturalGas.org 2012) and provides market choice also after
installation. The competitiveness of LNG compared to pipeline exports of gas de-
pends on several parameters, two of them being distance and scale as illustrated
in Figure 1.2.

There are both seasonal and short term variations in gas demand. Also on
the supply side there are variations in the gas flows caused for instance by main-
tenance. Both to smooth out variations and to balance supply and demand,
storages are needed. Storing gas is also a way of improving security of supply
in case of unforeseen events that disrupt supply. Most commonly gas is stored

4



1.1 The Natural Gas Supply Chain

underground in depleted gas reservoirs, aquifers and salt caverns. LNG can be
stored in LNG storage tanks onboard vessels and onshore. (NaturalGas.org 2012)
Further, gas pipelines can provide storage capabilities by increasing the inlet pres-
sure and inserting more gas to the pipeline than what is withdrawn at the outlet
(Midthun, Nowak & Tomasgard 2007). Different storage types have different
characteristics when it comes to storage capacity, injection rate, withdrawal rate
and proximity to market, which make them fit different purposes.

Sale, Market and End-use

Traditionally, natural gas has been traded in long-term contracts. Usually these
contracts have prices linked to smoothed oil or coal indexes and a take-or-pay
structure that lets the buyer decide on the daily delivered volume within upper
and lower bounds. Contracts have been a means to share the risk coming from
large investments costs. With the deregulation of natural gas markets, that first
started in Northern America and United Kingdom, market hubs with standard-
ized gas contracts on spot and derivate trade have emerged. This trend tends to
increase the price volatility due to increased sensitivity to short term factors as
weather-related demand variations and upstream supply problems (Jensen 2004,
Heather 2010).

There are three main regional gas markets, the North American, the European
and the Asian. The North American market is the most developed with mainly
gas-to-gas competition and large traded volumes in the leading market, Henry
Hub. On the other extreme is the Asian market that is dominated by oil-linked
long-term contracts, even though increasing amounts of LNG spot trades are seen
here as well. (Holmes 2007, IEA 2009) The European market is a bisected one,
with large shares of oil-linked contracts on the Continent, but with UK’s National
Balancing Point (NBP) as a liquid trading hub. Several other hubs are seeing
increasing trade as illustrated by the volumes reported in Figure 1.3 (IEA, IEF,
IMF & OPEC 2011).

Natural gas has a range of end-uses, mainly as a source of energy through
burning, but also as raw material for several products such as paint and plastics
(NaturalGas.org 2012). The largest end-use sectors of OECD Europe are electric
power generation, residential and commercial buildings and industry (EIA 2011).

Supply Chain Organization
During the last 15 years the European natural gas industry has gone through
a deregulation process driven by European Union legislations stated in three
natural gas directives(1998/30/EC, 2003/55/EC, 2009/73/EC).2 An overall goal
2Note, deregulation of the gas industry in UK started earlier than in the rest of Europe,

initiated by the Gas Act already in 1986 (Heather 2010).
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Chapter 1 Introduction

Figure 1.3: Trade and physically delivered volumes on European hubs. Source:
(IEA et al. 2011).

has been to form a single European gas market. A vital tool to achieve this is the
opening of the transportation infrastructure with third party access and a cost-
reflective and non-discriminatory tarification system. (Neumann & Cullmann
2012)

As a consequence of deregulation the highly integrated Norwegian gas industry
was divided to make different roles independent. The transmission system opera-
tor (TSO), Gassco, was founded in 2001 to facilitate third party access to the gas
infrastructure. Gassco operates most of the Norwegian infrastructure on behalf
of the joint venture Gassled who owns it. Gassco also administrates the alloca-
tion of transportation capacity among shippers through a primary market with
allocation rules and preset tariffs, and they facilitate a secondary market where
shippers can resell capacity bilaterally. (Gassco 2012) Due to the relatively lim-
ited upstream trade in the Norwegian system, the same company usually has the
producer, the shipper and the marketer role in the supply chain. Both the terms
producer or shipper will be used to represent these integrated companies in this
thesis, depending on the context it is used. There are approximately 40 compa-
nies with shares in operating fields, with huge differences in the total production
capacity between the different producers (Norwegian Ministry of Petroleum and
Energy & Norwegian Petroleum Directorate 2012).

6



1.2 Operations Research in the Natural Gas Industry

1.2 Operations Research in the Natural Gas

Industry

‘In a nutshell, operations research3 (OR) is the discipline of applying advanced
analytical methods to help make better decisions.’ (INFORMS 2013) The field
draws upon a broad range of disciplines, such as applied mathematics, economics,
statistics, computer science and industrial engineering. The boundaries of the
field is not clear cut, but ‘varies depending on the background and interests’
of the one asked. (Gass & Assad 2005) Mathematical programming is a corner
stone in the theoretical fundament of OR. Programming should in this setting
be understood as planning (Williams 1999), and the terms program, problem and
model is often used interchangeably.

In this section I will first present different model classes in OR defined by
their mathematical properties, briefly mention algorithmic issues and exemplify
with features in the natural gas supply chain that are typically modeled with the
presented model classes. For a general and thorough introduction to OR, see for
instance Hillier & Lieberman (2001). Further I give an overview of different OR
applications in the natural gas industry. Finally, I discuss stochastic programming
and portfolio and supply chain optimization which are perspectives particularly
relevant for the papers presented in the coming chapters of the thesis. As this
presentation takes multiple perspectives to the same topic, operations research in
the natural gas industry, there are several parts of the literature that could fit in
several subsections. In these situations I have chosen to only include references
where I find them most relevant for my presentation to economize on the text
and avoid repetitions.

Model properties and tractability
Model classes within OR define mathematical structures and properties of models
that are decisive for tractability and algorithmic choice. Here some model classes
and motivating features from the natural gas industry are presented.

Linear programs (LP) are a widely used problem class. LPs are convex prob-
lems since linear functions per definition are convex. They are easy to solve since
an optimal solution will be at the intersection of some constraints. This is uti-
lized by the Simplex algorithm that examines the intersections and disregards
the remaining parts of the solution space. (Williams 1999) For further literature
on linear programming, see Vanderbei (2008).

Several elements in the natural gas industry have a non-linear behavior, which
give rise to non-linear programs (NLP). A special case of NLP is convex non-
linear programs, where the constraint set forms a convex solution space and the
3[operational research in British English]
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Chapter 1 Introduction

Figure 1.4: Plot of the Weymouth equation describing the relation between flow
and pressure in and out for a pipeline. When pressure out exceeds
pressure in, the flow will go in the opposite direction, represented as
negative flows in the plot.

objective function is concave and maximized or convex and minimized. Convex
problems are more tractable than non-convex problems, because a local optimum
is always a global optimum in such problems. For an introduction to non-linear
optimization, see Floudas (1995).

An example of a convex non-linear element in natural gas industry is Golombek
et al.’s production cost function, a + bq + c ln(1 − q

Q ) where q is the production
decision variable, Q is the production capacity and a, b and c are parameters
(Golombek, Gjelsvik & Rosendahl 1995). The pressure drop over a pipeline in
steady state4 is another example of a non-linear property that can be incorpo-
rated in convex models. The Weymouth equation that describes this property
relates the flow (fij) and inlet and outlet pressures (pi and pj) in a pipeline,
fij = Kij

√
p2i − p2j , where Kij is a constant given by pipeline properties and the

surrounding conditions (Campbell 1992). It can be seen from the plot in Fig-
ure 1.4 that the equation is non-linear and neither concave nor convex, but in the
area where inlet pressure exceeds outlet pressure the function is concave. This
means that single-directional pipelines can be modeled in a convex NLP problem.

4Steady (or stationary) state means a state where the flow is constant through out the pipeline
and constant over time (Martin, Möller & Moritz 2006). For modeling of transient flows
describing how changes in pressure, flow and density propagate in time and space, see for
instance Moritz (2007).

8



1.2 Operations Research in the Natural Gas Industry

Because of the preferable computational property of LPs, a NLP is sometimes
formulated as a LP relaxation through piecewise linear approximation. This is
how the Weymouth equation is modeled in, for example, Rømo, Tomasgard,
Hellemo, Fodstad, Eidesen & Pedersen (2009), where the equation is replaced
with a set of inequalities that represent a relaxation. Van der Hoeven (2004)
presents several non-linear elements in a natural gas transportation network and
ways of linearizing them.

Quadratic programs (QP) are a special case of convex NLP, where the objective
function is a convex quadratic function and the constraint set is linear. Modeling
trade in a market with a linear demand function will for instance give a quadratic
objective function. Several special algorithms exist for this problem class, where
a modified version of Simplex is one of them. (Hillier & Lieberman 2001)

Several elements in the natural gas supply chain have neither convex nor con-
cave properties and give rise to non-convex programs. The compressor cost func-
tion, describing the compressor fuel cost as a function of input and output pres-
sure (Martin et al. 2006) is such an example. Other examples are the Weymouth
equation for bidirectional pipeline and the pooling problem. The pooling problem
represents the splitting of a gas flow that consists of a mixture of different gas
qualities. If for instance the flows from two fields meet in a node (i, the pool) that
has two outgoing pipelines to nodes j and k, the challenge is to make sure these
outgoing flows have the same gas quality. (1.1) represents this mathematically,
where c1 ∈ C represents a gas component, for instance methane, from the set of
all gas components C.

fijc1
fikc1

=
fijc
fikc

c ∈ C (1.1)

Several approaches have been taken to solve this non-convex problem, see for
instance Hellemo & Tomasgard (n.d.) for a recent overview.

Mixed integer problems (MIP) is a class of non-convex problems formed by
introducing integrality or binary requirements on some of the variables of a LP.
This ability to describe discreteness has a broad range of applications, for instance
opening or closing a valve, deciding on the number of vessels to invest in, setting
the direction of the flow in a bidirectional pipeline and thereby separating the
non-convex Weymouth equation in two convex parts, and deciding a vessel’s next
destination on its route.

Vehicle routing and inventory routing problems has an extensive use of binary
variables to decide on the routing and scheduling of a fleet of vehicles, for example
LNG vessels. These are classical problems that are known to be hard to solve due
to the exponential growth in possible ways of combining departures and arrivals
in feasible schedules as the number of vehicles, locations and time periods grows.
This is often referred to as the combinatorial explosion. Discrete variables can
also be introduced in an approximation of non-linear functions. This is done by

9



Chapter 1 Introduction

Ulstein, Nygreen & Sagli (2007) and Rømo et al. (2009) who uses a discretization
of possible split fractions between the outgoing flows in the pooling problem, and
thereby transforms the problem into a MIP. The approach is developed further
by Hellemo & Werner (2013).

A large variety of solution approaches has been proposed for MIP over the years.
One category is heuristics, which is algorithms where the goal is to establish a
good solution fast, but usually at the cost of not having any guarantee to ever
converge to the globally optimal solution. The opposite of heuristics are exact
approaches, where it can be mathematically proven that the solution process
will find the optimal solution, but at the risk of a long solution time. Several
approaches utilize decomposition techniques, where the problem is divided into
smaller and easier solvable subproblems that can help to narrow the solution
space for the original problem. Wolsey (1998) gives an introduction to integer
programming and Conejo, Castillo, Minguez & García-Bertrand (2006) describes
decomposition techniques for both MIP and general NLP problems.

The Karush-Kuhn-Tucker optimality conditions (KKT) are a constraint set
derived from a problem. This set can be used to evaluate the optimality of a
solution or guide the search for a solution. For most constrained differentiable
NLPs, including LP and QP, a solution necessarily satisfies the KKT conditions
to be a candidate for the optimal solution. For a convex problem satisfaction of
the KKT conditions is sufficient to conclude that a solution is optimal.

KKT conditions take the form of a complementarity problem. A subclass,
mixed linear complementarity problems (MLCP), covers the KKT conditions of
LP and QP and can be formulated as

Eu+ Fv ≥ 0 ⊥ u ≥ 0

Gu+Hv = 0, v free
(1.2)

where u and v are variable vectors and E,F,G, and H are parameter matri-
ces. A generalization where some of the constraints include a nonlinear element
is a mixed complementarity problem (MCP), while a specialization without the
equality constraint would turn the MLCP into a linear complementarity problem
(LCP). A defining feature of a complementarity problem is the complementar-
ity constraint, represented with ⊥, stating that either of the two expressions
surrounding ⊥ should hold with equality. This constraint makes the problem
non-convex and non-linear. Complementarity constraints can be reformulated
with binary variables γ, a large constant M , and new constraints Eu+Fv ≤Mγ
and u ≤M(1−γ). For an introduction to complementarity problems and the gen-
eralization called variational inequalities (VI), see for instance Billups & Murty
(2000) and Facchinei & Pang (2003).

Optimization models are best suited to model situations where all involved
agents have a common overall objective or do not affect each others decisions (as
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in a perfect competition situation). On the contrary, a complementarity prob-
lem can model equilibria between multiple agents with differing interests. This
is achieved by letting the KKT conditions of agents’ optimization problems, in
addition to a set of market clearing conditions, form a complementarity problem.
Gabriel & Smeers (2006) give a thorough explanation of how both a perfect com-
petition equilibrium and a Nash-Cournot equilibrium for the natural gas supply
chain can be formulated as complementarity problems.

Bilevel programs (BP), or more generally multilevel programs are particularly
suitable to model situations where different agents have different level of influence
or different timing for their decisions. A classical example, that was the moti-
vation for the first description of a BP, is the Stackelberg game where a leader
makes a decision knowing the follower will observe his decision and optimize his
own decision thereafter. The simplest form of a BP, which is a linear bilevel
program can be formulated as

max
x

cx+ dy

s.t. Ax+By ≤ b

y ∈ S(x)

(1.3)

where

S(x) = max
y

fy

s.t. Gy ≤ h−Kx
(1.4)

(1.3) represents the leader’s problem denoted upper level, and has the decision
variable vector x. The upper level solution space and objective function are
affected by the follower’s decision problem that are represented by the lower level
problem (1.4) with decision variable vector y. c, d, A,B, b, f,G, h, and K are
parameters. Due to S(x) (1.3) can be non-convex even when all other elements of
both upper and lower level are linear. A particular issue in bilevel programming
is the ambiguity that arises if the lower level problem solution is not unique
for a given x. This gives rise to the notion of optimistic and pessimistic solution
concepts, where the lower level solution are selected from S(x) in accordance with
or opposite to the upper level objective function, respectively. If the optimistic
solution concept is chosen, (1.3) can be rephrased to a NLP by replacing y ∈ S(x)
by the KKT conditions of (1.4). For further reading on BP see Dempe (2002)
and Mersha (2008).

Mathematical programs with equilibrium constraints (MPEC) are a problem
class closely related to BP. The difference is that the lower level problem of a
MPEC is a variational inequality (the generalization of complementarity prob-
lems). Through a reformulation with KKT conditions, as mentioned above, a BP
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is actually transformed into a MPEC. The ability to model lower level equilibria
makes MPEC a generalization of BP, but on the other hand, the BP is more gen-
eral in its ability to capture the pessimistic solution of a non-unique lower level
(Dempe 2002). For a broader introduction to MPEC, see Luo, Pang & Ralph
(1996).

Both BP and MPEC have been used in models of the natural gas business. This
has become particularly relevant as the deregulation has given more agents with a
clearer separation of roles in the supply chain. The cash-out problem is a typical
example of a BP, where a natural gas shipper (leader) minimizes his imbalance
penalty cost while taking into account how the system operator (follower) will try
to balance the system and charge imbalance penalty costs (Kalashnikov, Pérez-
Valdés, Tomasgard & Kalashnykova 2010, Dempe, Kalashnikov, Pérez-Valdés &
Kalashnykova 2011). Siddiqui & Gabriel (2012) present an example of a MPEC
used to model a Stackelberg game in the U.S. natural gas market, where the shale
gas producers are Stackelberg leaders.

Applications of OR

There is a broad variety of OR applications within the natural gas industry. I
will here give an overview of different applications where optimization is a vital
part. Hierarchical production planning, originating from management science,
provides a taxonomy and framework that can be used to classify and character-
ize different applications. It defines three levels of decision making and planning,
strategic planning, tactical planning and operational control initially named by
Anthony (1965). I will include yet another level between tactical planning and
operational control called operational planning. Strategic planning is character-
ized by long planning horizon, high level of aggregation and low frequency of
replanning, as opposed to operational planning that is short term, detailed and
frequent. Strategic planning typically relates to design and investment decisions,
while tactical planning relates to resource allocation and planning for seasonal
variations. Operational planning is the short-term planning of components in
the supply chain and trade in short-term markets, seeking efficient adaptation
to short-term variations. Operational control is about controlling the actual op-
eration and is often part of automated systems for process control, for instance
in closed-loop controllers. Planning horizons differs between industries. Within
the natural gas industry strategic planning usually convers several decades with
a yearly resolution, while tactical planning usually covers 1-3 years with weekly
or monthly resolution. Operational planning usually has a horizon of weeks with
hourly or daily resolution, and operational control usually cover minutes up to
hours with resolutions down to less than a second. Naturally, long-term decision
will affect the possibilities and constraints of decisions on shorter horizons, and
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the operations constitute an evaluation of the tactical and strategic decisions. For
a general introduction to hierarchical production planning, see Bitran & Tirupati
(1993). Stremersch, Michalek & Hecq (2008) motivates for the different planning
perspectives in the LNG industry seen from a business participant’s perspective.
Foss (2012) describes the planning hierarchy with focus on the production in
fields. In the following overview I will not go further into operational control.

There is a substantial literature on gas market models, where the purpose is to
analyze the impact of policies, competitive situations or large infrastructure de-
velopments. These are strategic issues and the models typically have a wide geo-
graphical coverage and models horizons of several decades. A heavily used perfect
competition model is the The National Energy Modeling System (NEMS) for the
U.S. energy sector that uses an iterative approach to integrate several modules,
including a LP on natural gas (Gabriel, Kydes & Whitman 2001). Mathiesen,
Roland & Thonstad (1987) and De Wolf & Smeers (1997) are early examples
of a complementarity model and a stochastic MPEC, respectively, modeling im-
perfect supply side competition in the European natural gas industry. Boots,
Rijkers & Hobbs (2004) present the GASTALE model for the European natural
gas market with Cournot competition both among producers and traders, for-
mulated as a MCP. This model is further extended by Lise & Hobbs (2008) who
include transportation and storage capacity expansions in multiple years. The
World Gas Model (WGM) is a MCP that covers the global natural gas market
and assumes traders with market power. A thorough presentation of WGM is
given in Egging (2010), and Gabriel, Rosendahl, Egging, Avetisyan & Siddiqui
(2012) presents one of several analysis done by the model. Abada, Gabriel, Briat
& Massol (2013) includes fuel substitution in a MCP for the European natural
gas market.

The optimization of offshore oil and gas field infrastructure development is a
strategic problem that has received considerable attention over several decades.
Haugland, Hallefjord & Asheim (1988) and Sullivan (1988) focus on the modeling
of reservoir and wells within a single field, while for instance Aboudi, Hallefjord,
Helgesen, Helming, Jørnsten, Pettersen, Raum & Spence (1989) and Nygreen,
Christiansen, Bjørkvoll, Haugen & Kristiansen (1998) and Carvalho & Pinto
(2006) take a network perspective coordinating several fields with a common
transportation and processing infrastructure. The models typically decide on
which fields to develop at what time and with what capacity and planned pro-
duction profile, and what pipelines and processing capacities to invest in. How
uncertainty in market price and demand (Jørnsten 1992, Haugen 1996, Jons-
bråten 1998) and in reservoir properties (Jonsbråten 1998, Goel & Grossmann
2004, Tarhan, Grossmann & Goel 2009) should affect these strategic decisions are
also studied. Most commonly these models describe a steady state between each
long-term decision, typically with a yearly granularity, while (Hellemo, Midthun,
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Tomasgard & Werner 2013) points out the importance of also taking operational
considerations and short-term variability and uncertainty into account when de-
signing the infrastructure, and includes both strategic and operational decisions
in their model. MIP is the dominating model class for this application, where
discrete variables are used both for investment decisions, to approximate non-
linear reservoir properties and to control the resolution of uncertainty when this
is decision dependent.

Zhang & Zhu (1996) takes a narrower scope, discussing the pipeline dimen-
sioning problem, and uses a BP reformulation to solve their problem. André
(2010) extends this with several NLP and mixed integer non-linear problem for-
mulations on pipeline network extensions and dimensioning for given supply and
demand. A related MIP is described by Zheng & Pardalos (2010) who seek a cost
minimizing plan for coordinated transmission network expansions and LNG re-
gasification plant localization. Whereas Zheng & Pardalos (2010) jointly consider
pipeline and LNG regasification investments, Werner, Uggen, Fodstad, Lium &
Egging (n.d.) [Paper IV in this thesis] present a MIP for investment decisions
solely within the LNG supply chain. This model includes both liquefaction, trans-
portation and regasification investments, and accompanying the investments are
decisions on contract mix for LNG purchase and sale. Sönmez, Kekre, Scheller-
Wolf & Secomandi (2011) also model the LNG supply chain from liquefaction
to regasification, however limited to one supply and one consumption location.
They perform a strategic analysis of technology choice in capacity investment
decisions where their technology options are conventional onshore regasification
plants and onboard regasification. Simulation is used to evaluate the performance
of the alternative investment options and MIP decides on technology choice and
capacity.

Contract portfolio management and contract valuation are problems that can
have both a strategic and tactical nature, depending on the duration of the con-
tracts being analyzed. Also, it is common to use tactical models to evaluate the
consequence of strategic choices, for instance evaluating the performance of a
certain contract mix. There is an extensive literature on contract portfolio man-
agement problems seen from local distribution companies’ point of view. These
problems are linear problems minimizing supply costs while controlling the risk of
being short on customer deliveries, usually modeling price or demand uncertainty
(Avery, Brown, Rosenkranz & Wood 1992, Bopp, Kannan, Palocsay & Stevens
1996, Aouam, Rardin & Abrache 2010). Allevi, Bertocchi, Vespucci & Innorta
(2007) and Maggioni, Vespucci, Allevi, Bertocchi & Innorta (2008) present both
a deterministic and a stochastic contract portfolio management model that are
nonlinear MIPs due to complex price structures and discrete customer choice.
Guigues, Sagastizabal & Zubelli (2010) describes a similar stochastic MIP where
the objective is to manage and price LNG contracts with cancellation options
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as part of a supply mix together with other supply contracts, costly alternative
fuels, and operation of storages and pipelines. Haurie, Smeers & Zaccour (1992)
on the other hand, describes a stochastic LP and searches an optimal mix of gas
contracts seen from a producer’s point of view. They define a range of possible
contracts with different duration, expected netback prices and price variations,
and decide on contract mix to balance the portfolio’s expected return and risk
expressed as netback variance. Supply is limited by a production capacity that
can be expanded cumulatively over time at a development cost, whereas no other
transportation or production capacity limitations are explicitly addressed. The
models in Tomasgard, Rømo, Fodstad & Midthun (2007), Fodstad, Midthun,
Rømo & Tomasgard (2011), Fodstad, Uggen, Rømo, Lium, Stremersch & Hecq
(2010/11) and Werner et al. (n.d.) [Papers I-IV] also use a portfolio approach
seen from a producer’s perspective.

A typical issue in tactical planning is how to handle elements that create de-
pendencies between operations in different time periods. For instance Fodstad
et al. (2011) [Paper II] discusses the allocation of natural gas over time in the
Norwegian pipeline supply chain, where the cumulative daily production and
transportation capacities exceeds yearly production concessions and future price
and demand patterns are uncertain. A similar issue arises in the operation of
seasonal storages, where one has to decide when to inject gas into and when to
withdraw gas from storage taking into account price variations and uncertainty.
Ejarque (2011) describes a dynamic programming model for a storage problem,
and uses it to evaluate the cost of strategic restrictions from regulations requiring
minimum safety stock levels.

In the LNG business the transportation by vessels creates a time dependency
since a single voyage can take weeks. This motivates the use of annual deliv-
ery programs, which are yearly plans for how to fulfill contracted volumes with
scheduled dates for loading and unloading in terminals, agreed upon by supplier
and customer. Several MIPs have been developed to support the creation of such
annual delivery programs based on variants of the inventory routing problem,
that include upstream and downstream storage management in addition to ves-
sel routing, see for instance Grønhaug & Christiansen (2009), Rakke, Stålhane,
Moe, Christiansen, Andersson, Fagerholt & Norstad (2011) and Halvorsen-Weare,
Fagerholt & Rönnqvist (2013). The LNGScheduler, presented in Fodstad et al.
(2010/11) [Paper III] treats the same problem, but extends the scope along the
supply chain to also capture interaction with downstream natural gas markets
and gives a richer description of contracts.

Operational models often increase the level of detail when describing technical
components and physical laws compared to tactical models. For instance Flores-
Salazar, Vázquez-Román, Grossmann & Iglesias-Silva (2011) provide a detailed
description of pressure dynamics in reservoirs, wells and pipelines. Their mixed
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integer non-linear model describes a gas production system with multiple reser-
voirs, wells and platforms, and decides how to fulfill a daily demand through
the decision of production rates on individual wells and pressure levels through-
out the system. Selot, Kuok, Robinson, Mason & Barton (2008) and Foss &
Halvorsen (2009) take a broader scope, modeling the upstream supply chain in-
cluding a liquefaction plant. Selot et al. (2008) use a single period mixed integer
non-linear non-convex model and describe both physical properties like pressure
dynamics and gas blending and splitting, and contractual requirements in a net-
work of fields and processing trains. Foss & Halvorsen (2009) on the other hand
uses a NLP with a simpler network, but provide greater detail on the modeling
of individual components in the liquefaction plant. Their planning horizon is 1-2
weeks with 3-6 hours time resolution.

Operational modeling of transportation and transmission network flows has
received substantial attention. The objective of these models are usually to min-
imize operation costs by deciding flows and pressures in networks with sources,
pipelines, valves, compressors and sinks. Two subgroups of network flow models
are steady-state models and transient models, where the first ones require coarser
time resolution to justify not modeling how pressure changes propagate through
the pipelines (transient). For thorough presentations of network flow models, see
Van der Hoeven (2004) and Moritz (2007). Rømo et al. (2009) present a MIP
called GassOpt that extends the classical network flow models with fields and
processing plants. GassOpt is designed to evaluate security of supply in the Nor-
wegian supply chain in case of unplanned events in the system. Midthun et al.
(2007) present a stochastic LP applied on the Norwegian supply chain. They
evaluate the value of utilizing the capabilities of the transportation network as
a flexible short-term storage, and thereby allow imbalance between injection and
withdrawal. The possibility for a shipper of being imbalanced in the daily oper-
ations also gives rise to the previously presented cash-out problem presented in
Kalashnikov & Ríos-Mercado (2006) and Kalashnikov et al. (2010).

Optimization under uncertainty

An optimization model often requires a substantial amount of input data rep-
resenting for instance capacities, prices, costs and efficiencies. Since the models
usually are used to describe or plan for future situations, such data may be un-
certain. In this situation a common approach is to do several model runs with
different assumptions for the uncertain data, and through this search for insight
in how to solve the underlying uncertain problem, by for instance looking for
common properties in the solutions. Sensitivity analysis, what-if analysis, worst-
case analysis and scenario analysis are all methods that build on this approach.
A weakness of this approach is that the uncertainty is never explicitly repre-
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sented in the model that is optimized, and as a consequence making decisions
that provide flexibility or robustness for different future outcomes are not chosen
unless this flexibility and robustness comes for free. A simple example illustrates
this observation: if a person is offered to buy fire insurance for his house, where
the period of insurance is the previous year, he would only be willing to pay
for that insurance if his house actually did burn the previous year. Stochastic
programming is an approach that explicitly represents uncertainty in the model
formulation, and deterministic programming is the term representing the coun-
terpart. The motivation for stochastic programming and a thorough discussion
of the differences between stochastic and deterministic programming is given in
Wallace (2002), while Kall & Wallace (1994) and Birge & Louveaux (1997) give
more mathematical introductions to the topic.

A deterministic linear programming program can for example have the form:

max
x,y

cx1 + dx2

s.t. Ax1 ≤ b

Tx1 +Wx2 ≤ h

x1 ≥ 0

x2 ≥ 0

(1.5)

where x1 and x2 are vectors of decision variables for two different points in time,
c and d are objective function coefficients, A, T, and W are constraint matrix
coefficients, and b and h are right-hand-side coefficients. If d, T,W, and h are
uncertain parameters, a stochastic programming program can be formulated as:

max
x,ys

cx1 +
∑
s∈S

psdsx2,s

s.t. Ax1 ≤ b

Tx1 +Wx2,s ≤ hs s ∈ S
x1 ≥ 0

x2,s ≥ 0 s ∈ S

(1.6)

This problem is denoted a 2-stage stochastic problem or recourse problem. The
set of scenarios, S, represents a discretization of the possible outcomes of the
uncertain parameters with matching probabilities, ps. The first stage decisions
that are taken before the outcome of the uncertain parameters becomes known
are represented with x1. The second stage decisions, or recourse decisions, can
be adapted to each scenario since they are taken after the uncertainty is resolved,
and are represented with x2,s. (1.6) can be generalized to a multistage stochastic
program, with repeated resolution of uncertainty and recourse decisions.
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a) deterministic c) 3-stage stochasticb) 2-stage stochastic

Figure 1.5: Examples of small scenario trees

The decision and information structure of a model can be illustrated by a
scenario tree, where nodes represent decision points and branching illustrates un-
certainty. Each branching separates one stage from the next. A path from the
root node to a leaf node is called a scenario. Figure 1.5 illustrates examples of
small scenario trees for a deterministic problem, a 2-stage and a 3-stage prob-
lem. See Kaut, Midthun, Werner, Tomasgard, Hellemo & Fodstad (2013) for a
discussion of scenario trees structures.

Each node within a stage in a scenario tree contains an outcome of the un-
certainty resolved in that stage and the probability of this outcome. Scenario
generation is the process of filling the scenario tree with these outcomes, which
usually implies making an approximation of the true probability distributions for
the uncertain parameters and the interdependencies between them (like correla-
tions). For multistage problems the scenario generation also needs to handle con-
ditional distributions to capture the time dependency between outcomes within a
scenario. Several methods have been suggested for scenario generation, see for in-
stance Dupačová, Consigli & Wallace (2000), Kaut & Wallace (2007) and Pflug &
Pichler (2011). The number of scenarios in a scenario tree directly affects the size
of the stochastic model since a duplicate of the decision variables and constraints
of a stage is needed for each node within that stage. Therefore a vital trade-off
when generating scenario trees is to minimize the number of scenarios while still
describing the important characteristics of the underlying uncertain parameters.
Römisch (2009) and Morales, Pineda, Conejo & Carri (2009) present scenario
reduction techniques that seek a guided reduction in scenario tree size. Lium &
Kaut (2006) discuss evaluation of scenario generation approaches and scenario
tree sizes, using measures of stability in the stochastic model results for different
scenario trees.

In stochastic programming problem sizes grow rapidly as the number of uncer-
tain variables or stages are increased, as can be seen even by the small examples
in Figure 1.5. This has given rise to substantial work on development of so-
lution methods particularly designed to solve stochastic programs, for instance
Van Slyke & Wets (1969), Carøe & Schultz (1999), Kleywegt, Shapiro & Homem-
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De-Mello (2001), Escudero (2009) and Kuhn, Wiesemann & Georghiou (2011).
These often utilize the particular structure of stochastic programs, with similar
subproblems for each node in a stage being linked together by common predeces-
sor nodes. Scenario decomposition is an example of such an algorithm, which is
described further and used in Shim, Fodstad, Gabriel & Tomasgard (2012) [Pa-
per VII]. For introductions to stochastic programming algorithms, see for example
Birge & Louveaux (1997) and Schultz (2003).

Portfolio and Supply Chain Optimization

All applications presented in this thesis take a portfolio and supply chain per-
spective to the optimization. These two terms are closely related, but they have
different origin and slightly different meaning. Portfolio optimization has its ori-
gin from finance, and its aim is to put together a portfolio of financial assets
in a best possible way taking both value and uncertainty into account. Supply
chain optimization has its origin from the introduction of OR methods into the
supply chain management tradition. This tradition argues for integration along
the supply chain to improve systemwide performance, with a main focus on effi-
cient logistics and cost minimization.5 Common for the two terms are the focus
on seeing several units together in a system, rather than optimizing the perfor-
mance of the units independently, and therefore system perspective will be used
to describe the union of both terms here.

While assets are financial instruments in a financial portfolio, it can cover a
whole range of physical and non-physical elements in the natural gas value chain.
Assets treated in this thesis are production capacities, processing capacities, phys-
ical and contracted transportation capacities and natural gas sales and purchase
contracts.

The deregulation processes in the British and European natural gas industries
have brought about market hubs with short-term trade and a separation of re-
sponsibilities between the TSO and producers. At least in theory, this process
could make the system perspective superfluous. That would be the situation if
each asset could be planned and operated independently using the price in a per-
fect market as guidance, and without any limitations in the use of this market.
Bjørkvoll, Fleten, Nowak, Tomasgard & Wallace (2001) and Wallace & Fleten
(2003) illustrate this decoupling for the scheduling of power producing units.
Despite this development towards a deregulated market, I argue that there are
several issues that make a system perspective valuable for the participants in the
Norwegian natural gas export system. Generally, these are bottlenecks that limit
the access to a market or system effects that interlink assets in dynamic ways.

5The term value chain optimization is largely overlapping with supply chain optimization, and
these will be used as synonyms in this thesis.
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A producer meets transportation capacity bottlenecks that separate the pro-
duction capacities from markets. Certainly there is a transportation market that
allocates transportation capacity between the producers, but most of the capac-
ity is sold in the primary market where tariffs are set a priori, which means it
does not give sufficient coordinating signals to operate the fields independently.
Another market imperfection is contracts where the producer is obliged to de-
liver gas from own production, called equity gas, rather than gas bought in the
market. There can also be delivery contracts located upstream of any market,
which naturally means delivery in such contracts need to be coordinated with
upstream production. And even when a market can be reached without any
bottleneck, the liquidity in the market can be limited, which is the situation for
several of the immature European markets. In these markets the amounts that
can be sold without affecting the price is limited, and as pointed out by Wallace
& Fleten (2003), a gap between achievable purchase and sales prices disqualifies
the decoupling argument.

The two most important causes for system effects in the transportation net-
work are pressure – flow dynamics and gas quality. Gas flows through pipelines
from the high pressure end to the low pressure end. The capacity depends on
pipeline properties and the pressure difference from inlet to outlet, and this rela-
tion is described in the Weymouth equations presented on page 8. As shown by
Midthun, Bjørndal & Tomasgard (2009) changing the pressure and flow in one
part of the network can change the capacity in other parts of the network, which
gives dynamic dependencies between different parts of the system. In a similar
way gas quality requirements create dependencies in the system. Different fields
produce gas of different quality that is often off the specification for gas deliver-
ies. In addition to processing, blending sour gas from one source with sweet gas
from another source is a measure to reach the delivery requirements. Such de-
pendencies, or system effects, requires a system perspective on the transportation
network by the TSO to optimize the network performance.

Also the operation of a LNG supply chain is affected by bottlenecks and sys-
tem effects. Scarce processing, transportation, or storage capacity can cause
bottlenecks in the supply chain. Further, the discrete nature of transportation
by vessels gives a combinatorial puzzle that provides profound system effects.
For instance reducing the production rate in a liquefaction plant can delay a ves-
sel which again delays delivery or can cause a rerouting to avoid emptying the
storage in the regasification plant. Some contract clauses also cause dependen-
cies in the supply chain. These are destination clauses that limit the share of
LNG from some liquefaction plants that can be delivered to certain regasification
plants. Further, there can be profit sharing or netback pricing mechanisms that
make the upstream purchase price dependent on the destination or sales price
(see Paper III page 123 for a detailed presentation of the contract clauses).
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1.3 Papers and Contributions

A unifying property among the applications presented in this thesis is the sys-
tem perspective, where we seek to integrate the business understanding found
in the portfolio management tradition with the understanding of logistical chal-
lenges that is found both in the supply chain management tradition and in OR
literature on gas transportation. In the part of the industry using pipeline trans-
portation these perspectives are partly decoupled due to the deregulation with
separation of shippers and TSO and an increasing number of market hubs. As
previously argued, this deregulation is not sufficient to remove the value of a
system perspective, but the separation of roles motivates new modeling that re-
flects the different roles and the transportation market that links the agents in
the system.

An overview of the papers presented in this thesis is given in Figure 1.6. Pa-
pers I-V focus on modeling, while the two last are algorithmic papers. There are
four papers on natural gas transportation by pipeline [Papers I, II, V and VII]
and three papers on LNG transportation [Papers III, IV and VI]. Both trans-
portation modes are represented with both strategic and tactical models. The
models for the pipeline supply chain can further be separated into those explic-
itly representing multiple agents with separate roles and those taking a single
agent’s perspective. The first algorithmic paper, Paper VI, solves a model on
tactical planning in the LNG business that is presented in Paper III. The model
motivating the algorithm presented in Paper VII is not presented in a separate
paper, but a short description is given within the algorithmic paper.

All papers in the thesis are published, or in the review process, in international
journals or books with peer review. A short presentation of each paper is given
in this section, while each complete paper is presented in the next seven chapters.

Paper I: Optimization Models for the Natural Gas Value Chain
In this paper we give an introduction to the natural gas supply chain. We present
ways to model both physical and commercial parts of the supply chain and dis-
cuss the importance of using a portfolio perspective when planning in this supply
chain. The modeling covers the pressure-flow dynamics in pipelines, bidirec-
tional pipelines, compressors, gas quality and the pooling problem, processing
plants, storages, long-term contracts, market trade and valuation of gas reserves
in reservoirs. The paper is mainly based on two models for operational and tac-
tical planning, GassOpt and Venoga, that are developed by SINTEF and NTNU.
It does not contain any numerical analysis.

I did the implementation and contributed with an equal part of the modeling
of Venoga, a stochastic portfolio model. The model unites technical and commer-
cial modeling, both presented in the paper. Co-authors are my supervisor Asgeir
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Figure 1.6: Overview of the application area for each of the papers presented
in the following chapters of the thesis. The two underlined paper
numbers indicate algorithmic papers, while the other papers have a
modeling focus.

Tomasgard, and Frode Rømo and Kjetil Trovik Midthun in SINTEF. The pa-
per is published in Hasle, Lie and Quak (eds.), Geometric Modelling, Numerical
Simulation and Optimization, Springer Verlag, 2007.

Paper II: Tactical Portfolio Planning in the Natural Gas
Supply Chain

In this paper we present a version of the Venoga model that is designed for tac-
tical planning seen from a producer’s perspective. The model covers production,
booking of transportation capacity, long-term contract obligations and spot mar-
ket trade. The main contribution in the paper is a thorough discussion of the
value of incorporating short-term market trade in the tactical planning, and to
use stochastic programming to properly describe market uncertainty. We show
through numerical examples how spot trade can provide flexibility through geo-
graphical and time swaps, and that uncertain contract obligations, contract prices
and spot prices require robust decisions and make flexibility particularly valuable.

I have had an equal part in modeling and implementing the model and in
writing the paper. Additionally I have performed the analysis. Co-authors are
Kjetil Trovik Midthun and Frode Rømo in SINTEF and my supervisor Asgeir
Tomasgard. The paper is published in Bertocchi, Consigli, Dempster (eds.),
Stochastic Optimization Methods in Finance and Energy, International Series
in Operations Research & Management Science 163, Springer Science+Business
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Media, 2011.

Paper III: LNGScheduler: A Rich Model for Coordinating
Vessel Routing, Inventories and Trade in the LNG-Supply
Chain

In this paper we present a model for tactical planning in the LNG supply chain.
Previous publications on this topic use vehicle routing problems (VRP), where
the main focus is on the efficient utilization of the vessel fleet, or the extension of
VRP into inventory routing problems, where also inventory management onboard
and in the terminals are modeled. We extend the scope even further, by including
decision on liquefaction rates, regasification rates, downstream spot markets and
several contract types. We show through numerical analysis that taking a broader
supply chain perspective can change the decisions relative to the traditional praxis
and increase the profit margins.

I have done a major part of modeling and implementing the model, and an
equal part in the analysis and writing the paper. Co-authors are Kristin Tolstad
Uggen, Frode Rømo, and Arnt-Gunnar Lium in SINTEF and Geert Stremersch
and Stéphane Hecq in GDFSuez. The paper is published in The Journal of
Energy Markets, 3 (4), 31-64, Winter 2010/11.

Paper IV: Stochastic Mixed Integer Programming for
Integrated Portfolio Planning in the LNG Business

In this paper we present a model for strategic planning in the LNG supply chain.
The model has a portfolio perspective and suggests investment decisions on liq-
uefaction and regasification terminals, vessels and long-term contracts. It also
approximates the operation of the resulting supply chain, with liquefaction, trans-
portation, regasification, purchase and sales decisions. The future prices are
treated as uncertain parameters in the stochastic model. We present two small
numerical examples that, respectively, illustrate the effect of a portfolio view
benchmarked with the traditional net present value method, and compare the
difference between our stochastic model and a deterministic model.

I have contributed an equal part in modeling and writing the paper. Co-authors
are Adrian Werner, Kristin Tolstad Uggen, and Arnt-Gunnar Lium in SINTEF
and Ruud Egging in SINTEF and NTNU. The paper is accepted for publication
in Energy Journal.
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Paper V: Adding Flexibility in a Natural Gas Transportation
Network Using Interruptible Transportation Services

In this paper we analyze the effect of supplementing firm transportation services
with interruptible transportation services in a natural gas network with capac-
ity reducing events. We develop a model framework of stochastic optimization
models that mimics a decision sequence for a shipper and a transportation sys-
tem operator. We show through numerical analysis on data from the Norwegian
Continental Shelf that offering interruptible services increases the throughput in
the system.

I have done the implementation and analysis, and have contributed with an
equal part in modeling and writing the paper. Co-authors are Kjetil Trovik
Midthun in SINTEF and my supervisor Asgeir Tomasgard. The paper is submit-
ted to an international journal.

Paper VI: Using and Extending Fix-and-Relax to Solve
Maritime Inventory Routing Problems

In this paper we present a new algorithm to solve inventory routing problems,
such as the LNGScheduler model presented in Chapter 4. The algorithm is a
heuristic based on fix-and-relax time decomposition, with extensions to reduce
solution time and improve solution quality. Numerical tests on four cases for the
LNGScheduler are presented and show that the algorithm reduces solution time
considerably relative to solving the whole problem in a general MIP solver, at
the cost of slightly worse objective function values.

I have contributed with a minor part of algorithmic development and imple-
mentation, and an equal part in analysis and writing the paper. Co-authors are
Kristin Tolstad Uggen and Vibeke Stærkeby Nørstebø in SINTEF. The paper is
published in TOP, and was made available online on March 2011.

Paper VII: A Branch-and-Bound Method for
Discretely-Constrained Mathematical Programs with
Equilibrium Constraints

In this paper we develop an exact algorithm to solve mathematical programs with
equilibrium constraints with discrete variables in the upper level. The algorithm
decomposes a MIP representation of the problem into a Benders master and sub
problem. A branch-and-bound scheme is used to partition the non-convex domain
of the Benders sub problem into convex subdomains, and Lagrangean relaxation
is used for bounding in this scheme. We show how scenario decomposition can
be used to decompose the problem further in case of a stochastic lower level
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problem. Numerical results are presented for random generated test instances,
where the algorithm outperforms the previously published heuristic counterpart
for instances of various sizes. We also briefly describe an application from the
natural gas supply chain formulated as a discretely-constrained MPEC. This is a
strategic model with investments in a natural gas pipeline network in the upper
level. The lower level describes the operation of the network with a TSO and
multiple shippers that face price and demand uncertainty. Numerical results are
presented for small instances of this model.

I have contributed with a major part of the algorithm design and implemen-
tation for stochastic problems and the natural gas application, a minor part of
the remaining parts of algorithm design, and an equal part in writing the paper.
Co-authors are Yohan Shim and Steven A. Gabriel at University of Maryland,
US, and my supervisor Asgeir Tomasgard. The paper is published in Annals of
Operations Research, and was made available online from July 2012.
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Chapter 2

Optimization Models for the Natural Gas

Value Chain

Abstract:
In this chapter we give an introduction to modelling the natural gas value
chain including production, transportation, processing, contracts and mar-
kets. The presentation gives insight in the complexity of planning in the
natural gas supply chain and how optimization can help decision makers in
a natural gas company coordinate the different activities. We present an
integrated view from the perspective of an upstream company. The chapter
starts with decribing how to model natural gas transportation and storage,
and at the end we present a stochastic portfolio optimization model for the
natural gas value chain in a liberalized market.

2.1 Introduction

The models in this chapter are based on the authors experience from making
decision support tools for the Norwegian gas industry. Our focus is on describ-
ing modeling techniques and important technological issues, rather than a very
detailed representation needed for commercial models. We study the natural gas
value chain seen from the point of view of an upstream company with a portfolio
of production fields. Such a company should plan its operations considering long
term contract obligations, the short term markets and transportation capacity
booking. In particular we describe how the operations and planning are influ-
enced by the existence of spot markets and forward markets. For the models to
make sense it is also critical to include the technological characteristics of natural
gas transportation and processing. We therefore give a set of models where the
interplay between the technological characteristics of natural gas and the markets
are highlighted. In these models the economical content and the understanding
of gas markets is essential.

We structure the paper by gradually introducing the different levels of the
supply chain. We start by describing the most important components of the
natural gas value chain in Section 2.2. Then in Section 2.3 we focus on how to
model natural gas transportation in a steady-state situation. This is the type of
transportation models suitable for planning problems with time resolution weeks,
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months or years. In Section 2.4 we introduce gas storages and in Section 2.5
we describe a portfolio perspective and start investigating the integrated supply
chain view. Here we introduce short term markets. In Section 2.6 we see how
the spot-markets can be used to price natural gas storage capacity and indicate
how to estimate the terminal value of natural gas still in storages or in reservoirs
at the end of the planning horizon using the concept of an Expected Gas Value
Function. An appendix describing all notation used in the paper is included at
the end. All together these sections will give a supply chain optimization model
with an integrated view of the value chain, from production, via transportation
and processing to contract management and gas sales.

2.2 The Natural Gas Value Chain

Here we give a brief description of the different elements of the natural gas value
chain on the Norwegian continental shelf: production, transportation, processing,
contract management and sales. The first action is to transport the natural gas
from production fields to processing plants or transportation hubs where gas
from different fields is mixed. Rich gas components are extracted and sold in
separate markets. The remaining dry gas is transported to the import terminals
in UK or on the European continent. In these hubs bilateral contracts and spot-
trades are settled. Also upstream markets exist, where the gas is sold before it is
transported to the import terminals. We focus on the value chain of a producing
company, hence the issues of transmission and distribution to end customers are
not considered.

In Figure 2.1 we show the main components of the natural gas export value
chain. Before we go in detail on these we give a short summary of the main
effects of liberalization and regulation in the European gas market.

Production

Production of natural gas takes place in production fields. Often these fields
have several owners, and each owner has production rights that are regulated by
lifting agreements. Typically a producer’s rights allow him to produce between
a minimum level of production and a maximum level of production within a set
of time periods of different length. This production band may be flexible so that
gas can be transferred between periods within predefined limits. Normally such
production intervals are defined for single days, for years, and for intermediate
periods in between like weeks and months.

Much of the natural gas produced is traditionally committed to take-or pay
contracts where the buyer has agreed to take a volume in a given import terminal
for a sequence of years. Again there is flexibility on when to take the gas within a
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Figure 2.1: Important objects in the natural gas value chain

year (or other time periods) and typically the daily offtake is within a minimum
and maximum level. The customer nominates volumes within the take-or-pay
agreements, and the producer has to deliver. These nominations are often done
weekly, with final nomination the day before production. In take-or-pay contracts
the price is usually indexed to other commodities like oil, to temperature and
several other parameters.

Transportation and Processing

Natural gas is transported in pipelines by using compressors to create a higher
pressure in the originating end of a pipeline, so that molecules will flow towards
the end. Several pipelines may meet in a node in the transportation network.
They may have different pressure at the end of the pipeline, but the input pres-
sure of all pipelines going out of a transportation node must be smaller than
the smallest end pressure of pipelines coming into the node, unless there is a
compressor in the node.

An example of an export network for natural gas is the one you find at the
Norwegian continental shelf which consists of 6600 km of pipelines. Here natural
gas from different fields have different quality, in terms of energy content and
its chemical composition (methane, ethane, propane and several more). Hence
when natural gas from different fields is blended in the transportation network,
it is critical to either keep track of the energy content of the blend or the total
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content of each natural gas component.
Some of the components can be extracted from the rich gas in processing

plants. Processing facilities separate the rich gas into its various components.
The components are liquefied petroleum gases like ethane, propane and butanes,
which are exported by ship to separate commodity markets. The remaining dry
gas (methane and some ethane) is transported in pipelines to import terminals
in the UK, France, Belgium and Germany.

The organization of transportation markets varies a lot from region to region.
One will often find that existing transportation rights already accounts for much
of the available transportation capacity in the network. The Gas Directive (Euro-
pean Union 1998) enforces undiscriminating third party access to the remaining
capacity (see Section Liberalization and Regulation on page 43 for a discussion
of The Gas Directive). One way of resolving this is to introduce primary mar-
kets for transportation capacity where capacity can be booked. In some cases
a fixed tariff is used for zones or for pipelines, in other cases bids are given for
capacity and the market settled by some auction mechanism. In all cases the
market is cleared and capacity is allocated by given transparent rules. In a sec-
ondary market with shorter time horizons transportation capacity is balanced
with transportation needs for the different shippers.

In this paper we will only focus on the utilization of transportation capacity,
while the capacity allocation regime and tariff regime is not discussed. For a
further discussion on these topics see Dahl, Rømo & Tomasgard (2003).

Storage

There exist several types of natural gas storages. Abandoned oil and gas fields
have high capacity and thereby a cost advantage. They also have low risk as geo-
logical data are known. In aquifers water is replaced with gas. They have higher
risk as seismic investigation is necessary. Salt caverns are underground storage
tanks washed out from salt layers. They typically have high costs. Injection
rates, capacities, withdrawal rates and characteristics depending on filling rate
vary between the types. Storages are important in planning models because they
allow us to store natural gas close to the market and thereby use them to exploit
spot-market variations. They also allow producers to produce in time periods
where demand is low and to thereby utilize the available transportation capac-
ity. Also they can be used as seasonal storages to smooth out seasonal effects.
Whether storage is used as to avoid bottlenecks in the system in high demand
periods or to utilize market possibilities, today’s storage capacity is very limited
when compared to the total production volumes.
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Import Terminals and Markets

The import terminals are landing facilities for natural gas where the export
pipelines end. Natural gas is delivered here according to specification on mini-
mum and maximum pressure and energy content. These characteristics are often
specified by the contracts as terms of delivery. Further transportation from the
import terminals are taken on by the buyer using a transmission network to
distribute the gas to the end customers.

Originally these terminals were the points of deliverance for the many take-or-
pay contracts. Recently these terminals have also been the location of the growing
spot markets for natural gas and for financial derivatives on the spot market. The
leading European hubs in terms of liquidity are the National Balancing Point in
Great Britain, TTF in the Netherlands and Zeebrugge in Belgium.

A different type of markets is also emerging upstream in the pipeline network.
The main idea here is to have standardized trading mechanisms for natural gas
at some important locations in the network to be able to provide an additional
flexibility for the producers. Upstream markets are used to perform trades of
natural gas before transportation takes place. They are useful because there is
a need for having standardized mechanisms to exchange gas between producers.
They include additional flexibility for producers in terms of being able to stay
within the limits of their own lifting agreements, transportation capacities and
contract commitments in case of unexpected events or in case overselling or un-
derselling of natural gas has occurred. The buyer of gas upstream also has the
responsibility to transport the gas to downstream markets. Upstream markets
are not as well developed as the other markets. Still the idea is old and the former
variant was the less standardized bilateral long term swing agreements between
different producers, allowing fields with little flexibility an option to draw gas
from fields with more flexibility in volumes.

Liberalization and Regulation

The European natural gas industry has developed rapidly over the past thirty
years. The European Commission has worked toward strengthening the compe-
tition within the complete gas- and energy value chain. A breakthrough in this
process came on the 22nd of June 1998 when the gas directive was passed in the
European Commission (European Commission & Transport 2002). In the direc-
tive a stepwise liberalization of the European gas market is described. The key
components of the gas directive are third party access to all transportation in-
stallations, division of activities within the firms in the value chain (physically or
by accounting) and the possibility for certain consumers to obtain their gas from
the supplier of their choice. The directive was followed by a second gas directive
in 2003 (European Union 2003) which moved another step towards liberalization.
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Another implication of the gas directive and of EU competition laws was the
2002 closing down of the Gas Negotiation Committee (GFU), the forum for co-
ordinated gas sales from the Norwegian continental shelf. The GFU formerly
coordinated the supply of Norwegian natural gas producers Statoil and Hydro.
Now the sales are company based and rarely linked to a specific production field.

An expected result from these changes is that short-term markets will evolve for
natural gas. Though liquidity is still low, there are already clear signs indicating
that short-term contracts and spot-trades will play an important role in the
future. The prior market structure is dominated by long-term agreements and
thus minimizes the uncertainty for the participants. In practice the producers
take the price risk, as prices are fixed towards various indexes, while the buyers
take the volume risks by going into long term agreements. The new markets will
include short-term bilateral contracts, spot markets and financial markets. The
introduction of short-term markets will most likely also lead to higher volatility
and thus higher uncertainty.

Abolishment of the GFU-system and the introduction of a system where the
individual companies are responsible for disposal of their own gas reserves called
for a new access and tariff regime in the transportation network. The first step in
the Norwegian transportation system was taken with the creation of Gassco AS in
May 2001 under the provisions of a Norwegian White Paper. Gassco is assigned
all the operator’s responsibilities warranted in the Norwegian Petroleum Law
and related Regulations. As a State owned company, Gassco AS should operate
independently and impartially and offer equal services to all shippers. Systems
operated by Gassco are the rich and dry gas systems previously operated by
Statoil, Norsk Hydro and TotalFinaElf.

The models presented in this paper are simplified variants of models developed
in co-operation with Gassco and Statoil to deal with the changes mentioned
above.

2.3 A Natural Gas Transportation Model

When modeling natural gas pipeline flow it is important to have a conscious
view on how time and the dynamics of gas flow should be handled. The model-
ing of natural gas flow in continuous time has clear links to the process control
paradigm (Hofsten 2000). Within this paradigm one normally uses active control,
to operate the system according to a predetermined load and supply, finding a
sequence of control actions which leads the system to a target state. The control
regime often focuses on single processes or single components in the network.
For our purpose we need to model a system of pipelines with a set of production
fields, processing plants and markets. The natural choice is to look at mixed
integer programming models from the modeling paradigm of mathematical pro-
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gramming. Here time is discretized. If the resolution of time periods is minutes
or hours there is a need to model the transient behavior of natural gas. Some at-
tempts on optimizing the transient behavior of a system of natural gas pipelines
are Westphalen (2004) and Nowak & Westphalen (2003), but only systems of
limited size and complexity can be handled. To be able to handle the complexity
needed for our models, we leave the concept of modeling the transient behavior
of natural gas and approximate the time dimension by discrete time periods of
such length that steady-state descriptions of the flow will be adequate. When
the time resolution of the model are months, weeks, and maybe days, rather than
minutes and hours, we can assume that the system is in a steady-state in each
time period. The mathematical optimization models used to describe natural gas
flow in the case of steady-state models are typical non-linear and non-convex. An
approach using a non-linear formulation of the mathematical models is illustrated
in De Wolf & Smeers (2000). We present here a linearized model based on mixed
integer programming to optimize routing of natural gas in pipeline networks. We
base our presentation on work done on linearization from Rømo, Tomasgard &
Nowak (2004). Several examples on linearization of natural gas flow exist in the
literature. For a recent PhD thesis on linearization of natural gas flow see Van der
Hoeven (2004).

In this paper we describe the essential constraints needed to model the tech-
nological characteristics of natural gas flow in a steady-state setting. Issues like
pressure, gas quality and gas components are dealt with from a pipeline trans-
portation perspective. More detailed models very similar to the one we present
here are today in use by Statoil and Gassco in the software package GassOpt
developed by SINTEF. GassOpt is mainly used by the operator of the gas trans-
portation system in the Norwegian sector of the North Sea. They are obliged to
verify the delivery capabilities and robustness of the pipeline system transporting
natural gas to European markets.

In the model presented in this section, we will focus on the transportation alone
with the main purpose to meet demand for transportation generated by planned
production profiles for the different fields. This typically represents the situation
facing the neutral operator. The pipeline system is a natural monopoly, and is
controlled by the authorities. This verification is also of strategic importance
for the independent producers and customers in Germany, Belgium and France.
The security of supply will influence the price possible to achieve for long term
contracts, and contribute to infrastructure investment decisions, and GassOpt is
one of the tools used to ensure maximum utilization of the infrastructure.

GassOpt itself focuses on analyzes of transportation possibilities. It can be
used for optimal routing decisions from a flow maximization perspective. Also it
is used to reroute natural gas when unexpected incidents lead to reduced capacity
(in production units or pipeline). Thirdly, it can be applied at more tactical/op-
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Figure 2.2: Network presentation in GassOpt

erational level by a commercial player in capacity planning and capacity booking.
In this section we present a static model of one period. Demand for natural

gas in the import terminal is assumed to be aggregated over the contracts in the
terminals and planned production volumes given as constants to represent the
license holders’ production plans. So the main task of this model is to operate the
transportation network to make sure demand is met by the planned production.
In Section 2.4 we extend the model with several time periods and storage capa-
bilities. In Section 2.5 we include contracts, markets and a portfolio perspective
on managing the natural gas supply chain with stochastic prices and demand.

The GassOpt Modeling Interface

In GassOpt, the underlying physical network is represented in a graphical mod-
eling environment with nodes and arcs. The modeling tool is hierarchical and
applies to general network-configurations. Figure 2.2 indicates the network com-
plexity for the North Sea network. The squared nodes contain subsystems with
further nodes and pipelines. When modeling the North Sea system we need
approximately 75 nodes and 100 arcs to represent the network.
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The GassOpt Mathematical Model
This network model includes flow balances, blending of different gas qualities
from different fields, processing nodes for extracting components of the natural
gas, compressor nodes, node pressures and the nonlinear nature of pressure drop
in pipelines. The model describes a steady-state situation where the network
is in equilibrium in terms of pressures and natural gas mix. It is typically the
kind of model used to model situations where flows are aggregated over a given
time period. When the time period gets short enough, for example hours or
minutes, this steady-state description will not be good enough because of the
need to describe the transient behavior of natural gas flow. The objective for the
optimization model is to ensure optimal routing and mixing of natural gas.

The model should make sure the nominated volumes are delivered to the import
terminals within a time period. This objective can be achieved in several ways.
Penalties are introduced in the objective function to influence the impact of the
following goals:

1. Maintain planned production from the producers, where this is physically
possible.

2. Deliver natural gas which meets quality requirements in terms of energy
content.

3. Deliver within the pressure requirements in the contracts.

4. Minimize the use of energy needed in order to deliver the natural gas to the
customers by minimizing the pressure variables.

A typical optimization case describes a specified state of the network, includ-
ing expected production and demand (characterized by volume and quality),
shutdown situations and turn-up capacity (additional available but unplanned
production capacity) from production fields. In a normal situation, there will
be several possible strategies to deliver the maximum amount of gas to the cus-
tomers. To make the model generate and report these realistic flows, we have
introduced penalty costs in the objective function on deviation from planned pro-
duction, quality requirements, pressure agreements and the energy use. These
penalty costs can of course theoretically interfere with and prevent us to achieve
the main goal, to deliver in accordance with the demand of the customers. The
tests we have performed on the full North Sea network, show that this ‘multi-
criteria’ aspect does not sacrifice much of the maximal flow potential, but is
rather used to choose between alternative solutions with about the same flow.
In a fault situation, for example if a field or pipeline is down, the model will
prioritize to deliver the nominated volumes in the import terminals. For more
information about multi-criteria decision making, see for instance Rardin (1998).
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Seen from an operator’s point of view the model tries to meet the customer’s
requirements for a given state of the network: either by optimal routing of gas or
by turning up production in fields with flexibility on the production side. In the
last case we say that we use turn-up capacity, which is available in some fields
with flexible production characteristics.

Sets

Below the sets used in the mathematical description of the model is presented.

N The set of all nodes in the network.
B The set of nodes where gas flows are splitted into two or more

pipelines.
M Nodes with buyers of natural gas: typically import terminals.
I(n) The set of nodes with pipelines going into node n.
O(n) The set of nodes with pipelines going out of node n.
R The set of nodes with processing capabilities.
S The set of nodes with storage facilities.
K(b) The set of contracts in node b ∈ B.
C The set of components defining the chemical content of the

natural gas.
T The set of time periods included in the model.
L The set of breakpoints used to linearize the Weymouth equation.
Z The set of split percentages used to discretize possible split

fractions in split-nodes of the network.
Y The number of discretized storage and injection rate levels used to

linearize storage characteristics.

Objective Function

Our goal is to route the gas flow through the network, in order to meet demand
in accordance with contractual obligations (volume, quality and pressure). In
the formulation given below, variable fim is the flow of gas from node i into
market node m, pinij is the pressure into the pipeline going from node i to j, ε+m
and ε−m is the positive and negative deviation from the contracted pressure level
respectively, Δ+

g and Δ−
g represents underproduction and the use of turn-up in

relation to the planned production in field g, δl−m is the negative deviation from
the lower quality level limit, and δu+m is the positive deviation from the upper
quality level limit in market node. The value of the flow to the customer nodes is
given by the constant ω. Furthermore, κ is the penalty cost for pressure level, �
is the penalty cost for deviation from contracted pressure level, χ is the penalty
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cost for deviation from contracted quality to customers and ι for use of turn-up.

maxZ =
∑

i∈I(m)

∑
m∈M

ωmfim −
∑
i∈N

∑
j∈N

κpinij −
∑

m∈M
�
(
ε+m + ε−m

)

−
∑
g∈G

ι
(
Δ+

g +Δ−
g

)
−
∑

m∈M
χ
(
δl−m + δu+m

) (2.1)

Energy consumption for transporting the natural gas is minimized through
making the penalty cost (κ) insignificant in size as compared to the value of the
natural gas transported. This contributes to reduce the necessary build up of
pressure to a minimum, without interfering with the correct volume, quality and
pressure to the customer terminals. The penalty on using turn-up capacity will
make sure that planned production in the fields is prioritized first, as long as
it does not influence the throughput of the pipeline system. For most practical
cases the contracted pressure level is not a soft constraint, and will then rather
be put into a hard constraint instead of being penalized in the objective function.

Constraints
Production capacity The following constraint says that the total flow out of
a production node g cannot exceed the planned production of the field in that
node. Here fgj is the flow from production field g to node j:∑

j∈O(g)

fgj ≤ Gg, g ∈ G. (2.2)

Demand This constraint says that the total flow into a node with customers
for natural gas must not exceed the demand of that node:∑

j∈I(m)

fjm ≤ Dm, m ∈M. (2.3)

Mass balance for node j The following constraint ensures the mass balance in
the transportation network. What flows into node j must also flow out of node
j: ∑

i∈I(j)
fij =

∑
n∈O(j)

fjn, j ∈ N . (2.4)

Pressure constraints for pipelines Offshore transportation networks often con-
sist of very long pipelines without compression, where it is crucial to describe
the pressure drops in the pipeline system. We use the Weymouth equation to
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Figure 2.3: A three-dimensional illustration of how the Weymouth relates pres-
sure at the inlet and outlet points to the capacity in the pipeline.

describe the flow in a pipeline as a function of input and output pressure. The
Weymouth equation is described in e.g. Campbell (1992). In the Weymouth
equation Wij(p

in
ij , p

out
ij ) is the flow through a pipeline going from node i to node

j as a consequence of the pressure difference between pinij and poutij :

Wij(p
in
ij , p

out
ij ) = KW

ij

√
pinij

2 − poutij
2
, j ∈ N , i ∈ I(j). (2.5)

Here KW
ij is the Weymouth constant for the pipeline going from i to j. This

constant depends among others on the pipelines length and its diameter and is
used to relate the correct theoretical flow to the characteristics of the specific
pipeline. Figure 2.3 illustrates the Weymouth equation. The figure shows that
the function in the interesting area (positive pressure levels) is one fourth of a
cone. The cone starts in origo, and is limited by the inlet pressure axis, and the
45◦ line between the inlet pressure and outlet pressure axes.

Through Taylor series expansion it is possible to linearize Equation (2.5) around
a point (PI, PO) representing fixed pressure into the pipeline and fixed pressure
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out of the pipeline respectively:

Wij(p
in
ij , p

out
ij ) ≤Wij(PI, PO) +

∂Wij

∂pinij
(pinij − PI)

+
∂Wij

∂poutij

(poutij − PO), j ∈ N , i ∈ I(j).
(2.6)

We introduce a set of points to linearize this expression, (PIl, POl), where
l = 1, . . . , L. Then we replace for each pipeline the nonlinear function (2.5) with
L linear constraints of the type:

fij ≤KW
ij

PIl√
PI2l − PO2

l

pinij

−KW
ij

POl√
PI2l − PO2

l

poutij , j ∈ N , i ∈ I(j), l = 1, . . . , L.

(2.7)

For any given pipeline flow, only one of these L constraints will be binding,
namely the one that approximates the flow best. The planes described in (2.7)
will be tangent to the cone at the line where the ratio between pressure in and
out of the pipeline is equal to the ratio between PIl and POl. Together the
planes give an outer approximation of the cone. This approximation will consist
of triangular shapes defined by these planes.

Pipelines without pressure drop For physical pipelines between nodes where
the distances are very limited it is not necessary to model pressure drops by the
Weymouth equation. In this case a simple maxflow restriction is:

fij ≤ Fij , j ∈ N , i ∈ I(j), (2.8)

where Fij is the capacity. In this case there is no pressure drop, so:

poutij = pinij , j ∈ N , i ∈ I(j). (2.9)

Relationship between pressures into a node and out of a node To achieve a
relevant flow pattern, it is sometimes preferable to model the pressure out of all
the pipelines going into the same node homogenously:

poutin = poutjn , n ∈ N , i ∈ I(n), j ∈ I(n). (2.10)

Another important issue is the relationship between pressure in ingoing pipelines
and the outgoing. In general for a node n the input pressure of all pipelines going
out of n must be lower than the lowest pressure out of any pipeline going into
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Node n

Node i1 Node iN

Node j1 Node jN

Figure 2.4: Example of a split node with the possibility to shut down operation
of one of the pipelines. The upper nodes, i, have pipelines going to
node n. The lower nodes, j, have pipelines coming from node n. The
index on i and j goes from 1 to N , where N is the total amount of
nodes.

node n, see Figure 2.4. There is one exception, and that is the case where a
pipeline into the node has 0 flow. The end pressure of this arc is neglected. In
the Equation (2.11) the variable ρij is 0 for pipelines without flow and 1 for the
others. M is a number which is large enough to not restrict the pressures when
the flows are 0. Then the following constraints make sure that the input pressure
of a pipeline leaving n is less than the output pressure of a pipeline ending in n
as long as both pipelines have a flow larger than 0.

pinnj − poutin +M(ρnj + ρin − 1) ≤M, n ∈ N , i ∈ I(n), j ∈ O(n) (2.11)

fnj ≤Mρnj , n ∈ N , j ∈ O(n) (2.12)

ρnj =

{
i if flow from node n to node j

0 otherwise.
(2.13)

The Weymouth equation used gives an upper bound on the flow in a pipeline.
This means that even if there is a pressure difference in a pipeline the flow can
be zero. Because of this property it is not necessary to explicitly model the
possibility of shutting down a pipeline. The model can simply put the flow to
zero, and still keep the desired pressure. If omitting the constraints presented
above one has to be aware of this when interpreting the results from the model.

Modeling bidirectional pipelines For pipelines designed to handle flows in both
directions, the ρij variable defined in the previous paragraph is used to determine
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the direction of flow. Equations (2.14) and (2.15) make sure that there only flows
gas in one direction in the pipeline.

fij ≤Mρij , i ∈ N , j ∈ O(i), (2.14)
ρjn = 1− ρnj , n ∈ I(j), j ∈ I(n). (2.15)

Nodes with compression or pressure drop In some cases we allow the pressure
to increase in a node by using a compressor, or we force a pressure drop in the
node. We here present a simplified formulation for modeling compression nodes
where pressure can be built up or forced down. The compressor characteristics
includes a compressor factor Γ used to limit how much the gas can be compressed
in a node. If there is no compressor, this factor is 1. If there is a compressor,
this Γ is a function of the flow fn =

∑
j∈I(n) fjn into the node:

Γn(fn) =

(
Wmaxη(Ka − 1)

100Kafn
+ 1

) Ka
Ka−1

, n ∈ N (2.16)

In this expression, the parameter Ka is the adiabatic constant for a certain gas
type, Wmax is the power output capacity of the compressor, and η is the com-
pressor efficiency (Campbell 1992). Here we simplify this by using a constant
compression factor independent of the flow. Then the pressure out of the com-
pressor node n is limited by the compressor factor times the pressure into the
node n:

Γnp
out
jn ≥ pinni, n ∈ N , j ∈ I(n), i ∈ O(n). (2.17)

Pressure drop is modeled in the same way, but with a reduction factor Θn instead
of a compressor factor:

Θnp
out
jn ≥ pinni, n ∈ N , j ∈ I(n), i ∈ O(n). (2.18)

Here Θn and Γn are constants, where 0 < Θn ≤ 1 and 1 ≤ Γn. The formulation
is only meaningfull if at most one of the factors is different from 1 in a node.

Contracted pressure It may be necessary to model the contracted pressure in
nodes with customers. Most import terminals have a limited range around a
target pressure Pm which they accept for incoming gas:

poutim + ε−m − ε+m = Pm, m ∈M, i ∈ I(m). (2.19)

Here ε−m and ε+m are negative and positive deviations from the target pressure.
These deviations are penalized in the objective at a level reflecting how hard the
pressure constraint is in practice.
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It is also possible to specify restrictions for each pipeline for example for the
pressure into and out of a given pipeline. Pressure restrictions often apply to
nodes with compression or nodes where processing of the gas is being performed.
These constraints are called technical pressure constraints. Examples are min-
imum and maximum pressure out of pipeline (represented by (2.20) and (2.21)
respectively).

poutij ≥ Pmin
ij , j ∈ N , i ∈ I(j). (2.20)

pinij ≤ Pmax
ij , j ∈ N , i ∈ I(j). (2.21)

Gas quality and energy content In this model, gas quality can be specified
in two different ways, focusing on combustion value (GCV) of the natural gas,
or the content of CO2. These properties are both technically and economically
important for the customer. When dealing with CO2, the customer accept a
maximum content in terms of [mol %]. This is typically due to environmental
taxes or to requirements related to avoiding corrosion in pipelines. If we focus
on GCV, the customer accepts deliveries between a minimum and maximum
combustion value. High GCV is in itself tractable as the energy content is higher,
but in practice the plants using the natural gas are technically calibrated for a
certain GCV-range. The quality is then measured in [MJ/Sm3]. Here we only
give the formulation for GCV:

Qmin
m ≤ qim ≤ Qmax

m , m ∈M, i ∈ I(m), (2.22)

where qim is gas quality (GCV ) in a pipeline going from node i to market
node m. In practice we need more flexibility in the model by allowing reduced
quality in order to increase the flow. Modeling this as hard constraints could lead
to situations where unexpected shutdowns of production fields or pipelines may
lead to a complete stop in deliveries to a customer due to the contractual quality.
If it is an alternative to get some deliverances, outside the contracted limits, but
within what is technically acceptable the latter will be chosen. This tradeoff will
be valued in economical terms as reduction in the customer price. We need the
variables δl+m and δl−m to indicate the positive and negative deviation from the
lower quality limit Qmin

m of customer node m. Likewise we need δu+m and δu−m to
indicate the positive and negative deviation from the upper quality limit Qmax

m :

qim + δl−m − δl+m = Qmin
m , m ∈M, i ∈ I(m), (2.23)

qim + δu−m − δu+m = Qmax
m , m ∈M, i ∈ I(m). (2.24)

Gas quality and blending Gas quality is a complicating element because we have
to keep track of the quality in every node and pipeline, and this depends on the
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flow. Where two flows meet, the gas quality out of the node to the downstream
pipelines depends on flow and quality from all the pipelines going into the node.
The flow in each pipeline is a decision variable in the model, and so is the quality
out of each node. We assume that the resulting blending quality is common for
all the downstream pipelines being connected to a node, and that it is decided
by the convex combination of inflow qualities to the node:

qij =

∑
n∈N qnifni∑
n∈N fni

, i ∈ N , j ∈ O(i), (2.25)

or:
qij
∑
n∈N

fni −
∑
n∈N

qnifni = 0, i ∈ N , j ∈ O(i). (2.26)

This equation has two quadratic terms on the form qnifni. These terms can
easily be reformulated in the following way: Define α = qni−fni and β = qni+fni.
Then qnifni = 1/4(α2 − β2). Linearizing α2 and β2 is straightforward using
Special Ordered Sets of type 2 (SOS2) (Williams 1999). In the SOS2 set at most
two variables can be non-zero, and the two variables must be adjacent. Still this
means that we need to move into solution techniques from integer programming,
in particular branch and bound, so solution time will increase exponentially with
the numbers of SOS2 sets needed.

Modeling multi-component flows If we model the flow of C components of the
natural gas we require that the split fractions of the components going into the
different pipelines out of the node n is equal for all components. For simplicity
let us assume we always have only two pipelines out of a split node n ∈ N going
to node j1 and j2 (see Figure 2.5). Let us also denote the first component in the
set C of components for c1. All components are indexed from c1, . . . , cC . Then
the relation of the volume split between j1 and j2 is equal for all components:

f c1
nj1

f c1
nj2

=
f c
nj1

f c
nj2

, n ∈ N , c ∈ C. (2.27)

This is a quadratic expression, and we reformulate it using the Equations (2.28)
to (2.32). We need a set of binary variables ϑnz where z = 1, . . . , Z, each repre-
senting the choice of a split percentage for the share of natural gas going to node
j1. The ϑnz variable is modeled as a special ordered set of type 1 (SOS1), where
only one variable can be non-zero (Williams 1999). For each ϑnz we define a
constant Ez giving the percentage related to the z. We also define a new variable
enz representing the flow through node n of component c if ϑnz = 1.
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Node n

Node j2Node j1

Figure 2.5: The flow is split in node n to node j1 and j2.

The first constraint says that the flow from n to j1 of component c equals the
percentage Ez multiplied with the total flow through node n of the component c.

f c
nj1 =

Z∑
z=1

Eze
c
nz, n ∈ B. (2.28)

The set B consists of all split nodes in the network. Then we need to restrict the
formulation so that only one ϑnz is positive for each node:

Z∑
z=1

ϑnz = 1, z ∈ {1, . . . , Z}, n ∈ B. (2.29)

The ecnz variables giving the flow through the node of each component is con-
strained by the capacity of the node, corresponding to the active ϑnz.∑

c∈C
ecnz ≤ Fnϑnz, z ∈ {1, . . . , Z}, n ∈ B. (2.30)

We also require that what flows through the node of each component either goes
to node j1 or to node j2:

Z∑
z=1

ecnz = f c
nj1 + f c

nj2 , n ∈ B, c ∈ C. (2.31)

And to make sure that there does not flow more out of the node of each component
than what comes in:

f c
nj1 + f c

nj2 =
∑
i∈N

f c
in, c ∈ C, n ∈ B. (2.32)

Processing plants Some of the gas components are extracted and sold in sep-
arate component markets. The extraction is handled in processing plants in the
network. In the modeling of this process it is assumed that the volume of each
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component extracted is a constant fraction of the total volume of that component
in a processing plant (Ac

r). Hence, no decision on the configuration of the pro-
cessing plant is made, but pressures and gas flows through a processing plant can
be modeled by several processing nodes in sequence or parallel. This is expressed
in Equation (2.33). The mass balance for the processing plant nodes can then be
formulated as in Equation (2.34). The variable acr is used to keep track of how
much of component c is extracted from the flow in processing plant r.

acr = Ac
r

∑
i∈N

f c
ir, c ∈ C, r ∈ R (2.33)

∑
i∈N

f c
ir =

∑
j∈N

f c
rj + acr (2.34)

Modeling turn-up: flexibility in the production fields Turn-up is an expression
used for the flexibility present in some production fields. For example reduced
transport capacity due to a shutdown in one part of the network may be com-
pensated by turning up the planned production from other gas fields not directly
affected by the reduced capacity. When modeling this turn-up capacity it is im-
portant to keep in mind that even if one are free to utilize this flexibility, it is
not acceptable from a practical point of view that the model presents a flow al-
location where fields with significant turn-up capacity will take over production
from minor fields, which basically is not affected by the shutdown. The turn-up is
only used to take over production from fields that for some reason are prevented
to deliver. Hence, our first priority is to meet demand in the network and our
second priority is to produce in accordance with the planned production at the
fields.

We model this by adding a penalty cost for using turn-up in the objective
to avoid turn-up to be used at the expense of normal production capacity in
other fields. This works because not delivering gas to customers would generate
a loss which is considerably higher than the small penalty put on using turn-up
capacity.

The variables Δ−
g and Δ+

g represent underproduction and the use of turn-up
in relation to the planned production of Gg for field g. As before fgj is the flow
from g to j: ∑

j∈O(g)

fgj +Δ−
g −Δ+

g = Gg, g ∈ G (2.35)

2.4 Management of Natural Gas Storages

As a consequence of the liberalization process in the natural gas industry, the
natural gas markets have become more dynamic. The spot markets and the
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possibility to trade gas in forward markets have increased the importance of gas
storages. In this section we discuss models for gas storage operations in a market
with uncertain demand.

In order to discuss the management of natural gas storages, a couple of terms
need to be established (see Figure 2.6 for an illustration of the terms):

Storage capacity gives the maximal volume of natural gas in the storage facility.
The storage capacity is limited by the physical properties of the storage.

Volume of natural gas in the storage is the total volume of natural gas in a
given storage at a given time.

Cushion gas is the amount of gas needed to create necessary pressure in order
to lift gas from the storage. The amount of cushion gas needed varies with
the type of storage and the geological conditions at the storage location.
For some types of storages the cushion gas requirement is as high as 80%
of the total gas volume in the storage.

Working gas is the gas volume available during normal operation of the storage.
This corresponds to the total amount of gas in the storage subtracted the
cushion gas.

Storage Facilities
The most common storage facilities are abandoned oil- and gas reservoirs, aquifers,
salt caverns and LNG-storages. In the following, a short overview of advantages
and disadvantages of these possibilities will be given. For further discussion of
storage facilities, see Administration (2002).

Abandoned oil- and gas reservoirs are the most common storage facility. One
reason for this is the relatively low startup costs. The storage facility is
already in place, and so is most of the surface installations needed. Another
advantage of this type of storage is the fact that infrastructure is normally
already in place. One major drawback is the amount of cushion gas needed
for operation.

Aquifer is a porous, underground water-bearing layer which can be transformed
into a storage facility by replacing the water with natural gas. When using
abandoned oil- and gas reservoirs the geological properties are known, this
is not the case when using aquifers. This adds risk to the development
of this type of storages. Cushion gas in the amount of 80 to 90 % is
needed for operation, and the development takes time and is costly. These
storages are normally only used in locations where no oil- and gas reservoirs
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Cushion gas

Working gas

Storage 
capacity

Injection

Extraction

Figure 2.6: The complete square is the total storage capacity. The lower part
of the figure is the cushion gas needed for operation of the storage,
and the upper part of the figure is the gas currently available for
extraction from the storage.

are available. One advantage of this type of storage is the relatively high
delivery rate.

Caverns are created from underground salt or rock formations. In the salt cav-
erns, water is used to dissolve halite and to shape cavities in natural salt
formations. These cavities have the properties of a high-pressure gas con-
tainer, with impenetrable walls. The storages have a high delivery capacity,
and a cushion gas requirement of only approximately 25 %. The process
of dissolving halite and shaping the cavities makes this alternative more
expensive than the previous two alternatives.

LNG-storages are, in contrast to the previously presented alternatives, above-
ground facilities. These storages consist of tanks containing liquefied natu-
ral gas (LNG) or liquefied petroleum gas (LPG). The capacity of these tanks
is normally very limited compared to the other alternatives presented.

Motivation for Utilization of Storage
The possibility of storing natural gas gives the participants increased flexibility
with regards to production and transportation decisions. One important use of
natural gas storages is to take advantage of the strong seasonal pattern in prices.
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Figure 2.7: Illustration of the linearization of the injection rate of a storage.

Since the primary use of natural gas is for heating and production of electricity,
the fundamental price determinant in the markets is the weather conditions. The
demand is normally higher in winter than in summer, and the production capac-
ity is also lower than the peak demand. This means that the monthly demand for
natural gas may be much higher than the possible changes in production level can
satisfy. The difference between production capacity and peak demand can to a
certain degree be satisfied through utilization of storages. The use of storages can
substitute for investments in new production fields and transportation capacity.
Traditionally the storages have been used in order to ensure a high security of
supply. When problems occurred either in the production or transportation facili-
ties, storages could be used to supply the downstream participants. The storages
operate as a security buffer in this case. With the development of short-term
markets and volatile spot prices, the storages will be important for participants
wanting to utilize the price fluctuations. Especially for gas producers not having
a reservoir close to the market this will be important. It can take several days
before a decision to change production level at the field will result in increased
delivery in the market.

Modeling Storage

The maximum in- and outflow rates of the storage varies with the current storage
level. The maximal injection rate is a strictly decreasing convex function of the
storage level. Likewise the outflow rate can be given as a strictly increasing
convex function of the storage level. To be able to realistically represent the in-
and outflow rates, the use of special ordered sets of type 2 is chosen (Williams
1999). An illustration of the implementation of the SOS2 is shown in Figure 2.7
for the injection rate. The storage levels are discretized by a set of constants
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X1, . . . , XY , the corresponding injection rates are H1, . . . , HY and the variables
ν1, . . . , νY are used to give a convex combination of two of the points. This means
that if νy has a value different from 0, then only one additional variable can be
non-zero. The only two candidates in this case are νy−1 or νy+1. The storage
level at a given time t is represented by xt

s.

∑
i

f t
is ≤

Y∑
y=1

νtysHys, s ∈ S, (2.36)

Y∑
y=1

νtys = 1, SOS2, s ∈ S, (2.37)

xt
s =

Y∑
y=1

νtysXy, s ∈ S, (2.38)

xt
s = xt−1

s +
∑

i∈I(s)
f t
is −

∑
i∈O(s)

f t
si, s ∈ S. (2.39)

The maximum and minimum levels of storage are modeled implicitly with
the representation given. The maximal level (equal to the total capacity of the
storage) is restricted by the inflow function. When the storage reaches the upper
capacity level, the associated inflow rate is equal to zero. The minimum level
(coming from the requirement of a certain level of cushion gas in the storage)
is handled in a similar way: when the minimum storage level is reached, the
associated outflow rate will be equal to zero.

2.5 Value Chain Optimization and Portfolio

Management

We will here give a short description on how to include markets and portfolio
optimization in the natural gas value chain. For more advanced models on port-
folio optimization in the natural gas value chain see Rømo, Tomasgard, Fodstad
& Midthun (2004) from which most of the ideas presented here originate. Other
relevant references are Nygreen, Christiansen, Bjørkvoll, Haugen & Kristiansen
(1998) which consider portfolio optimization for oil and gas fields in a strategic
horizon and Ulstein, Nygreen & Sagli (2004) which consider tactical value chain
coordination, but without stochasticity and without multi-commodity flows.
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Different Levels of Portfolio and Value Chain Integration
The models presented here have both a portfolio and a value chain perspective.
These are important properties of a natural gas optimization model. The impor-
tance of these perspectives can be realized when considering the complexity of the
transportation system. Due to the technical nature of the gas network, several
physical and technical threshold-values exist. If such values are trespassed, only
minor incremental deliveries in one part can cause significant unintended reduc-
tions elsewhere. The bottlenecks in the transportation system make the flexibility
incorporated in a system perspective valuable. We will not give all the previous
formulations of the transportation network again, but each time period t in a
value chain model will include transportation network constraints and variables
like the ones from Section 2.3 with an additional index t on all variables.

The motivation behind the portfolio and value chain perspectives can be sum-
marized by considering four levels of planning:

1. Traditional production planning: In this first level the model ensures bal-
ancing of the production portfolio with the contract portfolio. Stochastic
demands and prices that are not perfectly correlated motivate a portfolio
perspective on the planning, as the portfolio variation will be lower than
the variation of the stochastic parameters of separate fields or contracts.

2. Production and market optimization: At this level markets are used to
supplement the physical production in order to gain more from the physical
production capabilities. The market can be used to resolve bottlenecks in
the transportation network or on the production side. The purpose is to
maximize the profit from production and contract obligations using also
spot markets. At this level geographical swaps and time swaps of gas can be
performed using the market, and they are used to fully utilize the flexibility
in the system.

3. Trading: At this level contracts and financial instruments are traded in-
dependently of the physical production and contract obligations based on
market opportunities. The trading is similar to the previous level in terms
of using the spot market and financial instruments like futures and options,
but the motivation is now speculation, not solving bottleneck problems.
These trades are in no way connected to the physical production and con-
tract obligations, unless the producer has market power.

4. Risk management: So far we have assumed the producer is risk neutral and
tries to maximize expected profit. In that case it is enough to supplement
physical production with trades in the spot market at level 2. If the pro-
ducer is risk averse hedging the portfolio outcome using futures, forwards
or options may be optimal.
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Figure 2.8: Example of a natural gas network

The distinction between level 2 and 3 is clear in theory, but in practice the
transition will be gradual.

Utilization of Short-Term Markets in Value Chain
Optimization
The use of short-term markets allows for considerable flexibility in the system.
Consider the network in Figure 2.8. In a situation where field B needs to produce
and the company has an obligation to deliver in a bilateral contract in Emden
several possibilities exist:

• Field A supplies Emden, while field B sells spot in Zeebrugge

• The company may buy spot in Emden and the production from field B can
be sold in the spot market in Zeebrugge.

• The company buys spot in Emden, while it sells the production from B
spot in the upstream market.

• Storage might be used to supply Emden, while the production from field B
is sold elsewhere.

These simple geographical swaps makes the system more flexible and gives the
company the possibility to maximize the flow of natural gas (and the value of
their production) beyond what traditional transportation planning would have
done. For example bottlenecks in the production or in the transportation may
be resolved or moved using the markets actively.

A different reason to use the markets is time swaps. Consider Figure 2.8 again.
This time field B needs to produce in time 1, and the company has an obligation
to deliver in time 2. Several options are then available to the company:
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• In period 1 field B may supply storage, and in period 2 the storage supplies
Emden.

• In period 1 field B can sell spot in Zeebrugge, and in period 2 either use a
forward contract or buy spot in Emden.

• In period 1 field B can sell spot upstream, and then use either a forward
contract or the spot market to supply Emden

This is just some of many possibilities that exist for geographical swaps and
time swaps. The network considered is also very small. When expanding the
network to, for instance, 20 fields, 80 pipelines and 10 markets, the number of
possible routing decisions gets very large and the flexibility increases. It is this
flexibility we try to capture when modeling the portfolios of production fields
and contracts. The flexibility further increases when perfect spot markets are
added. The need for flexibility comes from the fact that demands and prices
are stochastic. The gain from portfolio thinking increases because they are not
perfectly correlated. We assume the company is a price taker. For simplicity of
notation, we assume there is only one company in the markets. If not, we would
also need to model the other companies’ transportation needs.

Including Markets and Contracts

In Section 2.3 only aggregated deliveries to take-or-pay contracts in the different
customer nodes m ∈M were considered. When including market transactions in
the model a representation of the uncertainty in the price process is important.
Based on this representation scenarios describing the uncertainty can be gener-
ated and optimal decisions in the interaction between the physical system and the
market can be made. In this description some simplifications have been made.
Only one company is considered, so no upstream market exists, the possibility
of delaying production through lifting agreements will be disregarded, and only
trades in the spot market will be considered. The possibility of trading forward
contracts is only interesting for a risk averse company. This will be discussed
shortly at the end of this section.

Figure 2.9 illustrates how the market nodes are included in the model. The
arrows show that gas might flow from the transportation network to the market.
There is no flow from the market to the network (as would be the case for an
upstream market). In addition, transactions within the market node can be
performed. In the spot market the company can purchase or sell volumes of
natural gas. Obligations in the take-or-pay contracts can be fulfilled either by
flow from the network to the market node, or by transactions within the market
node.
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Figure 2.9: The market node

Modeling Stochasticity

We use the modeling paradigm of stochastic programming to represent uncer-
tainty in the models, see for example Kall & Wallace (1994). Uncertainty is then
represented in a scenario tree, see Figure 2.10. The nodes in the scenario tree
represent decision points, and uncertainty is resolved along the arcs going out
of a node with several branches. In practice decisions are only made when new
information becomes known. A stage is the set of time periods elapsing between
each time information is learned by the decision maker. Each stage in the tree
typically consists of several time periods, but only nodes after a branching are
decision points, as they are the only time periods when new information about
the future is resolved. Still, decision variables are present in time periods where
information is not resolved, hence the time periodization using time periods t
reflect in which time period the decision has effect. In Figure 2.10 there are 3
time periods. Time periods 1 and 2 are in stage 1, starting with the decision in
node 0 and ending just before the new decisions at stage 2 (in nodes 2, 6 and 10).

In a two-stage stochastic programming model we define a set of time periods t ∈
T1 = {t1, . . . , T1} belonging to the first stage where information is deterministic,
and a set of time periods t ∈ T2 = {T1 + 1, . . . , T2} where some parameters
are stochastic (as seen from t ∈ T1). When time passes on and one enters the
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Figure 2.10: An example of a scenario tree

first t ∈ T2, uncertainty is resolved and also the remaining time periods can be
considered deterministic.

In the model presented here we use a two-stage formulation for ease of notation.
Several parameters are stochastic in reality. We will consider stochasticity in:
contractual demands, contract prices and spot prices. We denote the stochastic
contract price for contract k in customer node m at time period t ∈ T2 as φ̃t

mk.
Stochastic demand for contract k in customer node m at time period t is μ̃t

mk.
The stochastic spot price is represented with ψ̃t

m. The vector of all stochastic
variables in time period t is ξ̃ = (ψ̃t, φ̃t, μ̃t).

We use a tilde over the variable to reflect that it is stochastic (as seen from
t ∈ T1) and remove the tilde when the variable is deterministic. We then get the
following:

ξ̃tm Stochastic variables for customer node m in time period t ∈ T2 seen from a
point in time t′ ∈ T1.

ξtm Deterministic parameters for customer node m in t ∈ T1, or t ∈ T2 after
uncertainty is resolved (Seen from a point in time t′ where t′ ∈ T2 ).

A scenario tree can be constructed for example using price processes for natural
gas or descriptions of the dynamic aspects of stochastic demand. We will not go in
detail on how to do this here, but assume the scenario tree exists in the remaining
part of this paper.

The Objective
We describe the supply chain portfolio optimization model as a two-stage stochas-
tic program with relatively complete recourse Kall & Wallace (1994). The only
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stochasticity that is present is in the right hand side and in the objective. The
typical length of a time period for a tactical planning model is one month, and
the planning horizon would typically be 12 months, where for example the first 6
months would belong to T1 and the last 6 months to T2 in a two-stage formula-
tion. The objective is to maximize expected profit taken into consideration cash
flows and shortfall costs. Hence the objective can be described by summing the
expected cash flow of the time periods. The cash flow of each time period t can be
described as a function Πt(xt−1; ξt) (or ξ̃t if stochastic) where xt−1 is the storage
level in the start of the time period. The decision variables and constraints are
equal in all time periods, except for initialization in time period 0 where only
initial storage levels are defined x0

ns and for the terminal conditions at the end of
the model horizon. We use the vector x0 to denote the initial level of all storages
and xt to denote the level of all storages in time period t. The profit function for
time period t ∈ T1 ∪ T2 can be formulated as:

Πt(xt−1; ξt) =
∑

m∈M

∑
k∈K

φt
mkμ

t
mk +

∑
m∈M

ψt
m(ζt−m − ζt+m ), (2.40)

where the first term is the income from delivery in contract k in market m at
time t and the second term gives the profit from trading in the spot market in
node m in time period t.

The two-stage stochastic program with fixed relatively complete recourse is:

max
∑
t∈T1

Πt(xt−1) +Q(xT1), (2.41)

where
Q(xT1) = maxEξ̃[

∑
t∈T2

Πt(xt−1; ξ̃t) + EGV
(
xT2
)
], (2.42)

subject to a set of constrains representing transportation, production and mar-
kets. These constraints are mainly the constraints described earlier in this paper,
but we will look closer at the ones changing because of the introduction of markets
and contracts. The constraint sets are identical for all time periods t ∈ T1 ∪ T2.
For the last time period the objective includes the terminal value of the natural
gas in storages expressed by the Expected Gas Value function, EGV(xT2). This
function is described in more detail in Section 2.6.

The solution resulting from maximizing expected profits will normally be differ-
ent from the solution reached with the objective function presented in Section Ob-
jective Function on page 48. This means that the solution does not necessarily
maximize the throughput in the network, or minimize the cost of achiving a given
throughput. The solution will however show how the network should be managed
in order to achieve the highest possible expected profit.
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Constraints Including Markets and Contracts
The mass balance in the market node for each time period and each scenario is
expressed as:∑

i∈I(m)

f t
im + ζt+m = ζt−m +

∑
k∈K(m)

μt
mk, ∀m ∈M, ∀t ∈ T . (2.43)

In (2.43), ζtm represent transactions in the spot market in node m in time period
t. The + sign indicates purchases of natural gas whilst the − sign indicates sales.
Delivery in contract type k in the node m in time period t are included in μt

mk.
The mass balance equation illustrates the flexibility gained by including markets
in the model. It is no longer necessary to ship the gas to the market node in
order to fulfill the contractual agreements, since the spot market can be utilized
for this. This means that geographical and time swaps are now available to the
company.

Risk Aversion

In the discussion so far only the possibility for trading natural gas through the
spot market has been discussed. For a risk neutral company that is maximizing
expected profits this is an adequate approach. Since the forward price is a good
predictor of the expected future spot price, trading in the forward market would
on average be approximately equal to trading on the spot market (this is based
on a simple arbitrage argument, see for instance Hull (2003). The fact that
natural gas is a commodity makes the argument less obvious, but under some
assumptions still valid. In the case where the company is risk averse however the
situation changes and some tools to handle risk management are needed. The
inclusion of a forward market then gives the company the possibility to hedge,
that is: to reduce the risk of their position. By trading forward contracts a given
price can be locked in on advance.

In this case the company will no longer maximize expected profits from their
operations, but rather maximize a utility function that incorporates the risk
aversion of the company. Another way of doing this is to introduce a penalty
function that will put extra cost in the objective function on deviations from
some target profit value. In addition to the change in the objective function, the
mass balance in the market node (see (2.43)) will be changed to incorporate the
possibility to trade in the forward market.

Solution Times

The complexity of the models introduced in this paper to a large extent depends
on the modeling of the gas components. The inclusion of gas components adds

68



2.6 The Expected Gas Value Function (EGV)

a large number of integer variables to the problem. When excluding the gas
components, a stochastic model with a network consisting of approximately 80
nodes and 1000 scenarios, can be solved within an hour. This problem will have
approximately one million rows, one and a half million columns, four million
non-zero elements and fourteen thousand binary variables. When including gas
components the solution time increases significantly, and it is difficult to find
an optimal solution. For a physical system similar to the one above, with 100
scenarios and 10 breakpoints (see Section Modeling multi-component flows on
page 55), a solution with an integrality gap of 4% to 5 % typically can be reached
within 12 hours. If the objective is only to maximize flow in a static model,
solution times are within minutes when components are omitted and increases
correspondingly when components are added.

2.6 The Expected Gas Value Function (EGV )

So far no considerations have been made with respect to how the final period in
the planning horizon will be handled. The model presented so far will most likely
end up with a very low storage level, and the production might also be higher
than optimal when considering a longer horizon (since the value of the gas still
contained in the reservoirs is neglected).

In order to handle the end-of-horizon problem, several possibilities exist. One
way of handling the storage problem is to set a target value for the storage level
at the end-of-horizon, for instance the starting level.

xT
s ≥ x0

s (2.44)

This level might also be made dependent on various factors, such as the season in
which the end-of-period belongs. This way of modeling the end-of-period however
allows for limited flexibility and also neglects the true value of the gas contained
in the storage. A way of determining the optimal level for the storages in the last
period is by using the expected gas value function.

The Expected Gas Value function (EGV ) gives an estimate of the value of
a unit of gas in storage at some point in time t, based on expectations for the
future development of the spot price of natural gas. When the EGV is used as
a boundary value, the alternative value of the natural gas in storage is thereby
included. This alternative value comes from the opportunities present after the
end of the model horizon. Hence for each end-of-horizon storage level, the EGV
must reflect the value of an optimal out-of-horizon strategy for injecting gas in
the storage and selling gas from the storage.

If high prices are expected in the future, the EGV will encourage a high storage
level in final time period T2, whilst if lower prices are expected the optimal level
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in period T2 may be lower. Figure 2.11 illustrates how the EGV is included in
the existing optimization model. As the figure shows, the estimation of EGV is
performed independently from the value chain model and the purpose is to give
a boundary condition for the value of gas.

EGV
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Storage
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Figure 2.11: The estimation of the EGV is performed in a stochastic optimiza-
tion model that is independent of the existing optimization model.
The EGV is then used in the value-chain model as a boundary value
on the gas in storage and reservoirs.

An important element in the model used to estimate EGV is the development
of the natural gas spot price represented through spot price curves. These can
be modeled using stochastic processes. Several versions of such models exist,
for an overview of some of them, see Schwarz (1997). Based on the chosen price
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model, scenarios describing possible future outcomes can be constructed (see Fig-
ure 2.12). Hence, for any given initial storage level a strategy is found for injection
and withdrawal of natural gas based on a stochastic process for the gas price. In
practice this is a real-options approach used to value the value of gas in the
storage. The option value in gas storages comes from the operational flexibility.
The company can switch between injection, withdrawal or idle modes, depending
on the price development. For references on real-options, see for instance Hull
(2003). It is possible to do this estimation both for individual storages, and also
for the combination of all or some of the storages in the network. In the latter
case a more complicated model is needed for estimation of the EGV.
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Figure 2.12: Representation of the development of the spot price of natural gas.
In this case a recombining trinomial tree. The arcs in the figure
represent price movements, while the nodes represent different price
scenarios.

In the following, an example of how the EGV can be calculated is given. The
procedure is based on Scott, Brown & Perry (2000) and Manoliu (2004), and use
a stochastic dynamic programming framework. For references to similar work
in hydro power, see for instance Pereira, Campodónico & Kelman (1999) and
Pereira & Pinto (1991). After choosing a stochastic model to represent the price
of natural gas, a discrete approximation of the storage facility state space is
made. A tree similar to the one constructed for the spot price (Figure 2.12) can
be constructed also for the storage level. In this case the nodes represent different
storage levels, while the arcs represent injection and withdrawal of natural gas
in the storage. A multilevel tree representing the spot price and the amount
in storage is then created. The valuation is performed by backward induction
through the tree. The option value is calculated in each node by taking the
maximum of the decision values of hold, injection and withdrawal. The hold
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decision value is equal to the expectation of the option value of the next steps,
when storage level is unaltered. The injection value is the negative value of gas
injected in this period, plus the expected value of increased storage level in future
nodes. The withdrawal value is then the value of releasing gas in this period, plus
the expectation of option values of decreased storage levels in coming nodes. This
can be illustrated by (2.45), which shows the value in a given node in the tree:

It(τ t) = πt
(
ϕt
)
+ It+1

(
τ t+1

)
. (2.45)

It(τ t) is the value of storage level τ in time period t in the node considered.
This is determined by the value of flow πt (ϕt), (where ϕt is the volume injected
or withdrawn in period t) in the node in period t plus value of the storage level
τ t+1 in the next time period (in nodes following the considered one). The storage
level is updated according to (2.46):

τ t+1 = τ t + ϕt. (2.46)

An illustration of a gas value function is given in Figure 2.13. The challenge is
in finding the appropriate total value for each level of storage, as well as finding
the breakpoints.

T
o
ta

l
v
a
lu

e
o
f

s
to

ra
g
e

Storage level

MV1

MV2

MV3

MV4

Figure 2.13: An example of an expected gas value function. The MVs shows the
expected marginal value of gas for various levels of storage. This is
the additional value of one more unit of natural gas in the storage.

Even though short-term markets for natural gas are developing in Europe,
the liquidity in these markets is still very limited. This lack of liquidity makes
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estimation of the spot-price process difficult, and therefore also estimation of the
EGV difficult. Given that a spot-price model can be modeled for any given time
horizon, a time-horizon of a couple of years may be appropriate for estimating
the EGV. As the time-horizon for estimation is increased, the discount rate will
make the gas value in the last periods decrease strongly.

2.7 Conclusions

In this paper we have gradually introduced the complexity of a stochastic op-
timization model for the natural gas value chain. We focus on coordination of
the different levels of the chain and on a portfolio perspective. We started out
by defining necessary constraints for a steady-state formulation of the underlying
transportation network, supporting multi-commodity flows and pressures. Next
we introduced the time aspect and the use of storages. Thereafter we introduced
stochasticity in demands and prices and gave a stochastic programming formula-
tion for a portfolio optimization model. Natural extensions of this model would
be contract selection and more advanced modeling of the production flexibility
reflected by lifting agreements. Finally we defined the Expected Gas Value func-
tion and explained its use for giving the terminal value of stored natural gas and
indicated how to calculate it.

Most of the model formulations presented here are simplified variants of models
that are implemented for commercial use on the Norwegian continental shelf. In
this paper we have taken the position of a large producer, but many of the
formulations would be relevant for more general models focusing on other parts
of the natural gas value chain.
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Appendix

2.A Notation and Definitions

Sets

N The set of all nodes in the network.
G The set of nodes in the network with production fields .
B The set of nodes where gas flows are splitted into

two or more pieplines.
M Nodes with buyers of natural gas: typically import terminals.
I(n) The set of nodes with pipelines going into node n.
O(n) The set of nodes with pipelines going out of node n.
R The set of nodes with processing capabilities.
S The set of nodes with storage facilities.
K(b) The set of contracts in node b ∈ B.
C The set of components defining the chemical content of the natural

gas.
T The set of time periods included in the model.
L The set of breakpoints used to linearize the Weymouth equation.
Z The set of split percentages used to discretize possible split fraction

in split-node of the network.
Y The number of discretized storage and injection rate levels used to

linearize storage characteristics.

Indexes

n Used for nodes in general. n ∈ N . When more indexes are needed,
i and j will be used.

g Used for nodes with production fields, g ∈ G.
b Split nodes, m ∈M.
m Customer nodes b ∈ B.
r Used for nodes with processing plants.
s Storage facility s ∈ S.
k Contract k ∈ K.
c Component c ∈ C.
t Time period t ∈ T .
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l Breakpoits in linearized Weymouth restrictions.
z Breakpoints in linearization of split percentages in split nodes.
y Breakpoints for linearization of injection rate levels in storages.

Constants

Gg Planned production [Sm3/|t|] in field g ∈ G.
Fij Upper limit for flow through the pipeline from

node i ∈ N to node j ∈ N .
Fn Upper limit for flow through node n ∈ N .
Pmax
n Max pressure [bar]into a node n ∈ N .

Pmax
ij Max pressure [bar] into the pipeline from

node i ∈ N to node j ∈ N .
Pmin
ij Min pressure [bar] out of the pipeline from

node i ∈ N to node j ∈ N .
Pb Target pressure [bar] for deliverances to a customer node b ∈ B.
Qmax

n Max energy content requirement for gas deliverances to node n ∈ N .
Energy quality is given by (GCV or CO2) or [MJ/Sm3]

[mol%] , where GCV
is the (Gross Caloric Value).

Qmin
n Min energy content requirement for gas deliverances to node n ∈ N .

Db Demand in standard cubic meter pr time unit [Sm3/|t|] for natural
gas in node b ∈ N .

Sl Storage capacity [Sm3/|t|]in node s ∈ S.
KW

ij The Weymouth constant is used as a constant in an empirical
expression for linking flow and pressure in pipelines.

Ac
r Fraction of component c in processing plant r that is extracted

from the flow.
PI Fixed point for pressure into a pipeline.
PO Fixed point for pressure out of a pipeline.
Γn Compressor factor in node n ∈ N .
Θn Pressure reduction factor in node n ∈ N .
η Compressor efficiency.
Ka Adiabatic constant for a certain gas type.
Wmax Power output capacity of the compressor.
ωb Value of gas to customer b.
κ Penalty cost for pressure level.
� Penalty cost for deviation from contracted pressure level.
ι Penalty cost for use of turn-up.
χ Penalty cost for deviation from contracted quality to customers.
Ez Gives the split percentage related to a given z in linearization of

split nodes.
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Xy Discrete representations of storage level in linearization of storages.
Hy Discrete representations of injection rates in storages.

Decision Variables

f c
ij Flow from node i ∈ N to node j ∈ N of component c.

In some cases index c is omitted when we do not consider
multi-commodity flow.

fn Total flow into node n.
enz Flow through node n of component c used for linearization in

splitting nodes m ∈M.
pinij Pressure [bar] into the pipeline going from node i to node j.
poutij Pressure [bar] out of the pipeline going from node i to node j.
qij Gas quality (GCV or CO2) in pipeline going from node i to node j.
νy Give convex combinations of Xy and Hy.
σin Equal to 1 if flow from i to n, otherwise 0.
ϑnz Binary variable representing split percentage in node n.
acr Amount extracted of component c in plant r.
ρij Equal to 1 if flow goes from i to j, otherwise 0.
ζt−m Volume sold in spot market m in time period t.
ζt+m Volume bought in spot market m in time period t.
δl+b Positive deviation from the lower quality limit Qmin

b of customer
node b.

δl−b Negative deviation from the lower quality limit Qmin
b of customer

node b.
δu+b Positive deviation from the upper quality limit Qmax

b of customer
node b.

δu−b Negative deviation from the upper quality limit Qmax
b of customer

node b.
xt
s The storage level at a given time t in a storage s ∈ S.

ε+b Positive deviation from the contracted pressure to customer b.
ε−b Negative deviation from the contracted pressure to customer b.
Δ+

g Positive deviation from the planned production in field g.
Δ−

g Negative deviation from the planned production in field g.

Functions

EGVt(xs) Expected gas value in time period t as a function of the
storage level in storage s.

Wij(PI, PO) Flow resulting from pressure difference between Pressure in,
PI and
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pressure out, PO, of a pipeline according to the
Weymouth equation.

Γ(fn) Compressor factor as a function of flow fn into the
node n ∈ N .

Stochastic Variables
φ̃t
bk Contract price for contract k in customer node b in time period t.

μ̃t
bk Demand for contract k in customer node b in time period t.

ψ̃t
m The spot price in market m in time period t.

ξ̃t The vector of all stochastic variables φ̃t, μ̃t and ψ̃t.

In time periods where these parameters are not stochastic or where uncertainty
is resolved, the tilde is dropped in the variable name.
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Chapter 3

Tactical Portfolio Planning in the Natural

Gas Supply Chain

Abstract:
We present a decision support tool for tactical planning in the natural gas
supply chain. Our perspective is that of a large producer with a portfo-
lio of production fields. The tool takes a global view of the supply chain,
including elements such as production fields, booking of transportation ca-
pacity, bilateral contracts and spot markets. The bilateral contracts are
typically take-or-pay contracts where the buyer’s nomination and the prices
are uncertain parameters. Also the spot prices in the market nodes are un-
certain. To handle the uncertain parameters, the tool is based on stochastic
programming.
The goal for the producer is to prioritize production over the planning period
in a way that makes sure that both delivery obligations are satisfied and that
profits are maximized. The flexibility provided by the short-term markets
gives the producer a possibility to further increase his profits. Production
and transportation booking decisions in the early periods are taken under the
uncertainty of the coming obligations and prices which makes flexible and
robust solutions important. There will be a trade-off between maximum
profits and robustness with respect to delivery in long-term contracts.

3.1 Introduction

Portfolio optimization is commonly used to manage portfolios of financial as-
sets (Ziemba & Vickson 2006, Mulvey 2001, Zenios 1993), but also physical asset
portfolios can benefit from this methodology. We look at portfolio optimization
applied for the natural gas supply chain, with a special focus on the sub sea sys-
tem on the Norwegian Continental Shelf (NCS) which is illustrated in Figure 3.1.
The basic components of this supply chain are production fields, intermediate
nodes, storages, the contract delivery points and downstream spot markets, all
connected with a grid of pipelines for transportation. Traditionally long term
contracts have been most common and some large producers have dominated in
this supply chain.

The portfolio perspective is particularly interesting given the liberalization
process which the European natural gas business is going through at the moment.
The process is mainly driven by two EU directives (European Union 1998, 2003,
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European Commission & Transport 2002). This liberalization process has led to
the emergence of new short-term market hubs, i.e. in Zeebrugge, and we also see
developing derivative markets with natural gas as the underlying commodity, for
instance the International Petroleum Exchange (IPE). It could be noted that the
evolution of the UK market, NBP, which is the most developed European market,
was mainly market driven and started prior to the EU directives (Heather 2010).

On the NCS, the main changes include the separation of transportation and
production into separate companies. This is accompanied with third-party-access
to the infrastructure. The tariffs for transportation are regulated by the Norwe-
gian Ministry of Petroleum and Energy with the objective that profits should
be generated in production and sale, not in transportation. Further, each pro-
ducer now sells their gas independently, not through the mutual Gas Negotiating
Committee as before (Dahl 2001).

In Ulstein, Nygreen & Sagli (2007) planning of offshore petroleum production
is studied on a tactical level. The model has a supply chain approach where
production plans, network routing, processing of natural gas and sales in the
markets are considered. In addition, quality restrictions in the markets and
multi-commodity flows are considered. The pressure constraints in the network
are however not included in the model. The non-linear splitting for chemical
processing is linearized with binary variables. The resulting model is a mixed
integer programming model.

Selot, Kuok, Robinson, Mason & Barton (2008) presents an operational model
for production planning and routing in the natural gas supply chain. The model
combines a detailed infrastructure model with a complex contractual model.
There is no market for natural gas included in the model. The infrastructure
model includes non-linear equations for relating pressure and flow in wells and
pipelines, multi-commodity flows and contractual agreements in the market nodes
(delivery pressure and quality of the gas). The contractual model is based on a
set of logical conditions for production sharing and customer requirements. The
combined model is a mixed integer nonlinear programming model (MINLP). In
addition, the model is non-convex due to the pressure-flow relationship and the
modelling of multi-commodity flows.

A tactical portfolio optimization model with a focus on the physical properties
of the natural gas transportation network is presented in Tomasgard, Rømo,
Fodstad & Midthun (2007). The paper provides a stochastic formulation, but
do not include any numerical examples. Midthun, Bjørndal & Tomasgard (2009)
show how the properties of pressure and flow of gas in pipelines give system effects
in a network that affect efficient utilization. Midthun, Nowak & Tomasgard
(2007) present an operational portfolio optimization model where decisions are
taken under uncertainty in demand and spot prices. Especially the paper focuses
on the commercial value of utilizing line-pack, which is excess storage capacity
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in the pipelines system.
In this paper we focus on the business environment faced by a large natural

gas producer: how can the portfolio of production rights, booking rights and
market opportunities be handled in an optimal way? The physical network and
routing are not included since these decisions are made by an independent system
operator, and are out of the producers’ control. This means that the most impor-
tant decisions made by the producer are the booking of transportation capacity,
distribution of production over the planning period, sales in spot markets and
delivery in contracts. We present a multi-stage stochastic optimization model
and provide numerical examples to illustrate the value of portfolio optimization
in the natural gas supply chain.

In Section 3.2 we present the portfolio perspective in our model. The mathe-
matical formulation is given in Section 3.3 before we discuss scenario generation
for multi-stage stochastic models in Section 3.4. In Section 3.5 we provide some
results and numerical examples before we give some conclusions in Section 3.6.

3.2 Portfolio Optimization

Even though the natural gas producers do not control the routing in the network,
they still face bottlenecks that make the portfolio perspective valuable:

• Limited liquidity in the market nodes

• Equity gas requirements in the contracts

• Booking capacity

• Production capacity

The limited liquidity in the market nodes makes it challenging to match produc-
tion plans from uncoordinated fields with the delivery obligations downstream.
For some of the delivery contracts there may be requirements regarding equity
gas. This means that a ratio of the total gas delivered should come from the pro-
ducer’s own production (and not from the spot markets). Lastly, limited booking
and production capacity makes the coordination between markets favourable with
respect to prioritizing between the fields.

Planning Perspectives

As the operational framework and market structure evolve, also the producer’s
activities and organization may change. This is reflected in a evolution line of
different planning perspectives illustrated in Figure 3.2 . Traditional production
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planning has the focus on balancing the production portfolio with the contract
portfolio. With the access to short-term and derivative markets, the possibility
of combined production and market optimization is opened. At this level empha-
sis is on using the market flexibility to avoid physical bottlenecks and thereby
maximize the total profit. This can evolve further into a trading level where
transactions in the financial markets to maximize profits are done independently
of the physical operations. Finally, for a risk averse company portfolio manage-
ment can be integrated with risk management. Whether or not such integration
is advisable depends amongst other on the completeness of the markets, exis-
tence of market power and organizational costs. This is discussed further in
Bjørkvoll, Fleten, Nowak, Tomasgard & Wallace (2001) and Fleten, Wallace &
Ziemba (2002) related to the electricity market. In this paper we will focus on
a model for the production- and market optimization level, but with the greedy
nature of a optimization model the border to trading is not as clear in the model
as in the organizational structure and strategies of a company.

In
te

gr
at
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n

Integrated production 
and market planning

Trading

Risk management

Production
planning

Figure 3.2: Evolution in planning perspectives

Anthony (1965) suggests to classify planning and control activities in three
classes that are often named strategic, tactical or operational. This classification
is frequently used in hierarchical planning (see e.g. Hax & Meal (1975), Bitran
& Tirupati (1993)) that can also be applied on the natural gas supply chain. A
producer’s planning can be seen as a hierarchy of strategic, tactical and opera-
tional planning where the more long-term plans give limitations and guidelines
for the more short-term plans. The strategic planning has several years horizon
with a focus on investments, long-term contracts and energy allocation between
the years. Tactical planning typically covers up to three years with a focus on
energy allocation in a seasonal perspective, transportation capacity booking and
positioning in the short-term markets. Operational planning relates to daily or
weekly planning with short-term production planning based on market possibili-
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ties, secondary market transportation booking and physical constraints. All the
hierarchical levels can utilize portfolio planning to facilitate a global view of the
available resources. In this paper the focus is on the tactical level.

A tactical portfolio optimization model gives decision support in several ar-
eas. It optimizes how to employ the production capacities of different fields and
thereby helps on establishing production plans. Further it finds preferable trans-
actions to make in the natural gas markets that can be used as input to tactical
energy allocation. Similarly the model illustrates the need for transportation
booking that can be input when booking decisions is to be made. Suggestions on
booking and market transactions are useful both to initiate actions and as guid-
ance for the operational planning. Besides the operational planning a tactical
portfolio optimization model can be used to evaluate possible strategic decisions
and for valuation of assets in the supply chain.

3.3 Model Description

The model presented here is a multi-period multi-stage linear programming prob-
lem. The period length can be chosen freely, but to support readability we assume
all periods to have equal length in this presentation. The uncertainty is repre-
sented discretely by scenarios with outcomes for all the uncertain variables in
each period.

The network that forms the basic structure of the model consists of fields,
contract delivery nodes, spot markets and intermediate nodes. Any of these can
be entry or exit nodes of the transportation market, here denoted as booking
nodes. The possible flows are given by directed transportation links. Fields are
sources that cannot have any inflow, whereas all other nodes can have both inflow
and outflow. Market and delivery nodes can only have outflows going to other
market or delivery nodes. This comes from the fact that there are no upstream
markets and the direction of flow is determined in all the export pipelines from
NCS. An example of a network is given in Figure 3.3.

We use a steady-state representation where the natural gas flows through this
network without any time lag. In reality the time for a production rate change
to be observable in the downstream markets can be several days, but this is still
assumed to be neglectable in a tactical horizon.

Constraints and Objective

Mass balance In all nodes we have to make sure that the volumes entering the
node correspond to the volumes leaving the node. Since fields are assumed to
have no inflow this implies production should equal total outflow in each field:
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Field node

Intermediate node

Delivery node

Spot market

Transportation link

Figure 3.3: Example of a valid network

kgts =
∑

i∈O(g)

fgits, g ∈ G, t ∈ T , s ∈ S. (3.1)

In other nodes than fields we require total inflow to equal total outflow minus
what is sold or delivered to contracts within the node. Note that vcnts and qnts
only exist for n ∈ D and n ∈M respectively.∑

i∈I(n)
fints =

∑
c∈C(n)

vcnts + qnts +
∑

i∈O(n)

fnits (3.2)

n ∈ N \ G, t ∈ T , s ∈ S.

Transportation capacity We model a transportation market similar to the one
existing on the NCS. The operations of the transportation network are unbundled
from the production and marketing of natural gas, so physical requirements like
pressure and gas blending are taken care of by an independent system operator
(ISO). The network modelled here is a commercial network where booking nodes
and transportation links are included according to how transportation capacities
are made available by the ISO. Because of the ISO’s flexibility of swapping dif-
ferent producers’ gas the commercial network is typically more flexible than the
underlying physical one.

The booking system on the NCS is closely related to a zonal system with entry
and exit booking in each zone. It consists of a primary and a secondary market.
In the primary market producers can buy capacity from the ISO within booking
time windows at a fixed price. Each producer has an upper booking limit in each
booking node that are calculated by the ISO based on the network capacity and
the producer’s production capacity and long term obligations. The secondary
market is a bilateral market where a producer can resell booked capacity to
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another producer. The secondary market is not included in the model presented
here because this market has a very limited liquidity which makes it unreasonable
to base tactical planning on the ability to trade in the market.

To model the transportation market we use two sets of variables, transaction
variables hbτts representing the booking decisions and balance variables abτts
representing the amount that is booked so far. In each booking period the balance
is updated according to the booking decisions and the balance from the previous
period. The balance is initiated with the amount booked prior to the model
horizon.

abτts = ab,τ−1,ts + hbτts, b ∈ B, t ∈ T booking, τ ∈ T , t ≥ τ, s ∈ S, (3.3)
ab0ts = Xbt, b ∈ B, t ∈ T , s ∈ S. (3.4)

The booking should not be allowed to exceed the upper booking limit described
above. Since selling transportation capacity is not included in the model, it is
sufficient to make sure the balance in the period of transportation does not exceed
the upper limit.

abtts ≤ Abt, b ∈ B, t ∈ T , s ∈ S. (3.5)

At last we restrict the total flow into a booking node from exceeding the booked
capacity. Since fields do not have any inflow this constraint relate to total outflow
for fields. ∑

i∈O(g)

fgits ≤ agtts, g ∈ G, t ∈ T , s ∈ S, (3.6)

∑
i∈I(b)

fibts ≤ abtts, b ∈ B \ G, t ∈ T , s ∈ S. (3.7)

Fields The production in the field nodes is restricted by the minimum and
maximum daily level. Some fields also have maximum yearly production limits
which are concessions from the authorities. The flexibility of a field is reflected
in how these levels relate. Many fields produce both gas, condensate and oil
simultaneously, and the producer has very limited possibility to affect the ratio
between the products. Since gas is the least valuable of these products typically
the difference between daily minimum and maximum production is small for a
field having a low gas-to-oil ratio. Fields mainly producing gas typically have a
wider daily flexibility. The concessions are tighter than what could be achieved
within the daily maximum production limits, which gives flexibility in how to
allocate the gas within the year.
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The daily and yearly limits are modelled below. The constants of the daily
limits are aggregated to match the length of the periods in the model.

F gt ≤ kgts ≤ F gt, g ∈ G, t ∈ T , s ∈ S, (3.8)∑
t∈T (y)

kgts ≤ F year
gy , g ∈ G, y ∈ Y, s ∈ S. (3.9)

Markets Trade limits The market does not have perfect competition, but a
constant price within a interval as modelled below. To approximate how large
volumes would influence the price several price intervals can be used to give
a piecewise linear convex function. Alternatively the price elasticity could be
expressed in a quadratic objective.

qmts ≤ Qm, m ∈M, t ∈ T , s ∈ S, (3.10)
qmts ≥ −Qm, m ∈M, t ∈ T , s ∈ S. (3.11)

Split contracts
Some of the contracts give the producers the flexibility to choose which delivery
point to send the gas to. This is constrained by upper and lower limits on the
fraction of the delivery that can be sent to each delivery node:

vcdts ≤ Cmax
cd Vcts, d ∈ D, c ∈ C(d), t ∈ T , s ∈ S, (3.12)

vcdts ≥ Cmin
cd Vcts, d ∈ D, c ∈ C(d), t ∈ T , s ∈ S. (3.13)

Meet demand
The demand in each contract should always be met (either by equity gas or by
utilizing the spot markets):∑

d∈D(c)

vcdts = Vcts, c ∈ C, t ∈ T , s ∈ S. (3.14)

Equity gas For some of the contracts there is a requirement that parts of the
deliveries should be equity gas. This means that a fraction (γc) can be sourced
freely, while 1− γc must come from the producer’s own production. The alterna-
tive to own production is gas bought in a spot market. According to the network
definition spot gas can appear in market nodes and delivery nodes only. This
means gas arriving the delivery node from fields or intermediate nodes, but not
from other delivery nodes or market nodes is defined as equity gas.

The source requirement is modelled with two constraints in order to also take
care of the both the contracts with single and multiple delivery nodes. We start
with a formulation for the contracts single delivery nodes:
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∑
n∈I(d)\M\D

fndts −
∑

c∈Csplit (d)

veqcdts −
∑

n∈O(d)

fdnts ≥
∑

c∈C(d)\Csplit

(1− γc) vcdts,

(3.15)

d ∈ D, t ∈ T , s ∈ S.

The equity gas available for delivery in the delivery node d is given by the
inflows fndts. This gas can be used in two different ways; it can be delivered in
a long-term contract or it can be transported to a connected downstream node.
The contract deliveries can be divided further in single and multiple deliveries
node contracts. The right-hand side in Constraint (3.15) gives the total deliveries
in contracts with one delivery node multiplied with the equity gas requirement.
The second and third term on the left-hand side then gives the gas used for other
purposes, the gas delivered in contracts with multiple delivery points and the gas
transported out of the node, respectively. In sum, the constraint specifies that
the delivery of equity gas in contracts with one delivery point has to satisfy the
equity gas requirement in the contracts.

It then remains to take care of the contracts with multiple delivery points.
Since veqcdts is known to represent equity gas by the previous equations, we add up
these equity gas deliveries from all the possible delivery nodes and require this
sum to at least correspond to the required amount of equity gas.

∑
d∈D(c)

veqcdts ≥ (1− γc)
∑

d∈D(c)

vcdts, c ∈ Csplit , t ∈ T , s ∈ S. (3.16)

Non-anticipativity We use a scenario tree, as illustrated in the upper part of
Figure 3.4, to represent the information structure and possible outcomes of the
stochastic variables. The information structure is the sequence of decision points
and information flow telling what will be known and what will be uncertain at
the time a decision should be taken. Branches in the scenario tree represent
points where new information becomes available and some stochastic variables
become certain. Decisions are taken in each node in the tree. A stage starts with
a decision and ends with a branching.

Our model formulation corresponds to the scenario representation given in the
lower part of Figure 3.4. To make sure the decisions taken in the early stages
do not depend on foresight we need to add non-anticipativity constraints for all
nodes for which the history of information are equal. These constraints force all
decisions taken in one node to be equal for all scenarios containing that node (see
Rockafellar & Wets (1991)).
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3.3 Model Description

Stage 1 Stage 2 Stage 3

Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7

Figure 3.4: Representation of uncertainty. The upper part as a scenario tree, the
lower part as single scenarios with non-anticipativity constraints.
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1

|S(z)|
∑

s′∈S(z)

(kgts′ , qmts′ , fijts′ , vcmts′ , v
eq
c′mts′ , abτts′ , hbτts′) = (3.17)

(kgts, qmts, fijts, vcmts, v
eq
cmts, abτts, hbτts) , z ∈ Z, s ∈ S(z), t ∈ T (z).

Objective function The objective is to maximize profits from contract sales,
spot market trades, production and booking decisions. This leads to the following
mathematical formulation:

max
∑
t∈T

∑
s∈S

πts

⎛
⎝ ∑

c∈Csplit

P contr
cts

∑
d∈D(c)

vcdts +
∑

m∈M
P spot
mts qmts

−
∑
g∈G

Kgkgts −
∑
b∈B

∑
τ∈T :τ≤t

Hbhbτts

⎞
⎠ (3.18)

The first term gives the income from deliveries in the long-term contracts; the
second term gives the income from trades in the spot market whilst the third
term is the production costs and the fourth the costs from additional capacity
booking. Only income from contracts with multiple delivery nodes are included
in the objective, since there are no decision flexibility in the other contracts and
the contract prices are given. Similarly the cost of booking decisions taken prior
to the model horizon is left out. When the model is used for asset valuation these
constant terms might be added after the optimization.

3.4 Scenario Generation

The uncertain parameters in our portfolio optimization model are the natural gas
spot price in the markets, the demand in the bilateral contracts and the price in
the bilateral contracts. The price in the contracts will typically depend on an
underlying commodity such as the spot price of natural gas or of a competing
fuel. In order to represent the uncertainty in our model, we construct scenario
trees.

The structure of the scenario tree depends on the flow of information in our
decision problem. In periods where we receive new information, we should in-
clude more than one branch. The size of the scenario tree will however directly
influence the size of the optimization model. This means that we will have to
keep the scenario trees at a reasonable size, and thus a trade-off between ac-
curately describing the information flow and the total model size is important.
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3.4 Scenario Generation

In addition, the properties of the stochastic parameters will influence how many
branches we need to add for each stage. In the following, we give an introduc-
tion to how scenario generation can be performed for multi-stage models. A nice
discussion and overview on scenario generation for multi-stage models are given
in Dupačová, Consigli & Wallace (2000), and an evaluation of different methods
can be found in Kaut & Wallace (2007).

There are two important elements to consider when building scenario-trees for
multi-stage problems: a good representation of the properties of the stochastic
parameters in each branching, and the linking of time periods. In a scenario-
generation tool developed at SINTEF, the linking of time periods is done with
a prediction function while the branching is done by moment-matching. The
moment-matching technique is based on finding a discrete representation of con-
tinuous distributions, where the first four moments (expectation, variance, skew-
ness and kurtosis) as well as the correlation between the different stochastic pa-
rameters are kept. The moment-matching procedure is based on Høyland, Kaut
& Wallace (2003). The scenario generation is done in four steps:

1. Estimate prediction function

2. Find prediction errors

3. Build scenario tree for the prediction errors

4. Use the prediction function on the scenario tree

The procedure is independent of the chosen prediction function. This gives
the user flexibility when it comes to representing the uncertainty in the given
decision problem. For presentational purposes, we will here focus on an Ornstein-
Uhlenbeck price process (Uhlenbeck & Ornstein 1930). The Ornstein-Uhlenbeck
process is a mean reverting process that is given by the following stochastic
differential equation:

dpt = η (p− pt) dt+ σdWt, (3.19)

where pt is the price in time t, the long-run equilibrium level is given by p,
the volatility by σ and the rate of mean reversion by η. Wt denotes the Wiener
process.

Example of a Scenario Generation Procedure

In the following example, we focus on the uncertainty in spot prices. In each
node in the scenario-tree, there will then be a spot price for each of the market
hubs in the network. We use the Ornstein-Uhlenbeck models to represent the
spot price in all market nodes. A similar procedure can also be used for other
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price processes / forecasting methods. The Ornstein-Uhlenbeck model can be
discretized in the following manner:

pt = e
ln [pt−1]e

−ηΔt+(1−e−ηΔt)
(
ln [p]−σ2

4η

)
+σ

√
1−e−2ηΔt

2η N(0,
√
Δt), (3.20)

where the last term, N
(
0,
√
t
)
, represents sample from a normal distribution.

It is this last term that forms the basis for our scenario generation. We use
the general scenario generation procedure presented in Section 3.4 to generate
scenarios for the normal distribution. The moment matching is performed with
the given values for mean and variance, as well as the standard values for skewness
and kurtosis. Figure 3.5 shows an example of a scenario tree for the standard
normal distribution. The indexes f1 and f2 give the number of branches in
the first and second stage, respectively. The value of εstage, branch

t is zero in all
nodes in the scenario tree, except for the nodes in the first period in a new stage
(corresponding to period t+1 and t+6 in Figure 3.5). We generate S multivariate
scenarios for the prediction error with the correct correlation between the markets
and with correct moments for the individual error terms.

ε11t+1

ε
(1,f1)
t+1

ε21t+6

ε
(2,f2)
t+6

ε
(2,S−f2)
t+6

ε
(2,S)
t+6

Figure 3.5: The scenario tree for the prediction errors.

Finally, we combine the discretization of the Ornstein-Uhlenbeck process (Equa-
tion (3.20)) with the scenario tree for the prediction errors to one scenario tree.
Each scenario presents a path from the root node to the leaf node (there are S
unique paths through the tree). The value in each node in a path through the
scenario tree can then easily be found by applying Equation (3.20). Hence we use
the forecasting method to predict the expected price, and scenario generation to
describe the variation (error) around this price.

Uncertain Demand in the Bilateral Contracts

Traditionally, the bilateral contracts in the North-Sea have a take-or-pay struc-
ture where the yearly off-take is given. However, some of these contracts give
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the customers substantial flexibility. This is true both with respect to the yearly
volume, and the daily volume. The yearly and daily off-take must be within given
limits. For instance, the daily off-take can be within 50 and 110% of a daily aver-
age contracted level. This means that for the producers, the volume uncertainty
represents a challenge with respect to production and portfolio planning.

We model the uncertainty in the bilateral contracts is modelled by assuming
that the customers in the contracts treat the contracts as real options. When
the spot price is higher than the contract price, the customers will nominate a
large volume of gas in the contract. On the other hand, when the spot price
is lower than the contract price, the customer will nominate a small volume
in the contract. Since some of the customers will have limited flexibility with
respect to drastically changing their nominations based on the spread between
spot price and contract price (due to limited liquidity in the markets and supply
from their own customers), we include two different customer groups (this is a
similar approach to the one used in Midthun et al. (2007)). The two customer
groups are illustrated in Figure 3.6.

Figure 3.6: An illustration of two different customer types.

Risk Aversion

Risk can be handled in several ways in the portfolio optimization model. In the
version we present in this chapter we have focused on the risk of not being able to
deliver according to the obligations in the bilateral contracts. Since the market
liquidity is limited, this means that we have to be able to supply the customers
mainly from our own production. This also means that we must distribute the
production concessions over the planning period to be able to deliver in the
contracts. In this perspective it may be interesting to evaluate the situation
where the scenario tree do not represent the real underlying uncertainty well in
the tails of the distributions. If the real demand outcome follows the spot price in
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the manner expected during scenario generation, the decisions in the model will
always make it possible to deliver according to the obligations. If however the
demand turns out to be higher than we have anticipated in our scenario tree, we
may risk having insufficient production concessions compared to the demand in
the contracts. In order to handle this risk, we can add extreme scenarios to our
scenario tree. This means that we introduce highly unlikely scenario (scenario
with a zero probability of occurring) with maximum demand over the planning
period. By including these scenarios we constrain our feasible region and thus
we will also get a lower (or equally good) solution as before these scenarios were
added. Since the probability of them occurring is zero, the profit in the scenarios
will not be included in the objective function of the model. By running the
model with and without these extreme scenarios, we can also find the cost of
maintaining a high security of supply.

3.5 Numerical Examples

In this section we provide numerical examples to illustrate the importance of
portfolio optimization and the use of a stochastic model to handle the uncertainty
faced by the decision maker. We start with a simplified setting to show how the
availability of short-term markets provides the producer with the flexibility to do
profitable time-swaps and geographical swaps. Then we use a realistic data set
to recognize these effect in a large-scale setting.

Time-Swap

We will illustrate how a producer can gain valuable flexibility through coordinated
optimization of physical balancing and transactions in the spot market. To make
the effects as visible as possible, we use a simplified example with one field,
one market and no transportation limitations or costs. The producer has daily
production capacity limitations and a concession limiting the yearly production.
Further the producer has one take-or-pay contract where the buyer each morning
decides on the daily volumes to be delivered. Let us assume for simplicity that the
contract price is known with a seasonal variation, but the delivery obligation is
a stochastic parameter since the producer does not know the buyer’s nomination
in advance. On the other hand, the producer and buyer have had a long-lasting
business relation, so the producer is very confident with its delivery obligation
forecast. Based on this we use only two scenarios in each stage, the forecast and
an extreme scenario with a infinitely small probability and a volume given by the
maximum contracted obligation. Both price and the two scenarios are plotted in
Figure 3.7.
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Let us analyze the producer’s planning problem in the situation with and with-
out a spot market. Without a spot market the producer have no real decisions
to make. Each day he will have to produce and deliver the volume defined by
the buyer which gives an expected production equal to the expected obligation.
We include a spot market with a spot price equal to the contract price and a
limitation on the volumes assumed available for that price. Figure 3.7 shows
the expected production together with the two scenarios for obligations. When
the production is below the expected obligation it means spot purchase and the
other way around. As can be seen the producer will use the spot market to move
the production capacity from periods with low price to periods with better price.
The volumes to swap is limited by the assumed spot liquidity and the extreme
scenario forcing the producer to hold back enough gas to fulfil the obligation if
the unlikely extreme scenario is realized.
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Figure 3.7: Illustration of the case study with and without a spot market. The
figure on the left shows the price and demand scenarios, while the
figure on the right shows the production results in the model version
with and without the availability of a spot market.

Geographical-Swap
To illustrate how the existence of short-term markets makes geographical swaps
profitable, we use a similar setting to the one used for time-swaps. This time
we consider a slightly larger network with one field node and two market nodes
(see Figure 3.8). In market node A, the producer has a contract obligation. In
the first case, there is a spot market available only in market node B. In the
second case, there is a spot market available also in market node A. When there
is a positive price difference between markets B and A, it will be profitable for
the producer to use the spot market in node A to fulfil his commitments and
sell a corresponding volume in market node B. The example is summarized in
Figure 3.8. In networks where the producer is responsible for the routing in
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addition to the production / booking decisions, the effect of geographical swaps
will be even larger. The existence of booking limits will nevertheless give the
possibility to perform geographical swaps a potential high value also in the setting
that we present in this paper.

A B
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PriceA=10
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PriceB=15

flowA=20 flowB=0

A B
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+
=

Figure 3.8: Illustration of the case study with varying liquidity in the spot mar-
kets.

Comparison of Stochastic and Deterministic Models
We will illustrate the difference in plans suggested by our multistage stochastic
model and a corresponding deterministic model. For our tests we assume the
scenario tree is an exact representation of the future. The deterministic model
uses a single scenario with the expected values from the scenario tree. This
corresponds to letting the deterministic model use the same forcasting method as
the stochastic model. The deterministic model is ran in a dynamic way where the
forcast is recalculated and the plan is reoptimized every time new information
becomes available according to the scenario tree. In order to highlight the effects
from including the stochasticity in the model, we use small cases. The structures
will however appear (and often be enhanced) in real datasets.

When comparing stochastic and deterministic models the notion of expected
value of expected solution (EEV) is frequently used. The expected solution is the
solution of a deterministic model where all uncertain data are replaced with their
expected values. EEV is defined for two-stage models as the expected objective
value of the stochastic model if the first stage decisions are fixed according to the
expected solution (Birge & Louveaux 1997). On the other hand the stochastic
model (recourse problem) gives the stochastic solution and the objective value
denoted RP. The value of the stochastic solution (VSS), defined as V SS = RP −
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EEV for maximization problems, is a measure of the expected objective value
gain from using the stochastic model instead of the deterministic for the given
description of the stochastic future. VSS is non-negative, since RP is optimizing
its solution on the scenario tree while EEV is just evaluating the given expected
solution on the same scenario tree.

Escudero, Garín, Merino & Pérez (2007) extends these concepts into a multi-
stage setting through a dynamic way of defining the expected solution. For every
node i in the scenario tree a solution is calculated for a problem where the future
is described by the average value of the descendents of i and the decisions of the
ancestors of i are fixed according to the previously calculated dynamic expected
solutions of those nodes. Based on this procedure the expected value of the dy-
namic expected solution for a period t (EDEVt) can be calculated as the weighted
average objective values of the scenario tree nodes of that period. The dynamic
value of the stochastic solution is defined as (V SSD) = RP − EDEVT where T
is the last time period. Analogous to VSS, V SSD is non-negative. We use this
dynamic procedure to represent the deterministic model in our comparison.

We use a test case with three time periods, each with duration of 120 days. The
network consists of one field, one contract and one spot hub. The contract can be
supplied both from the field and the spot market in the hub. The production has a
constant daily limitation of 10 MSm3/day and a yearly limitation of 1200 MSm3.
No production cost is included. Transportation capacity booking is required for
the exit from the field at a fixed price of 0.01 MNOK/MSm3. Firm capacity
equals the daily production capacity in the first period and is zero the two last
periods. Until 10 MSm3/day of capacity for each of the two last periods can be
booked in the first period. The trade limit in the spot market is 5 MSm3/day.
The contract obligation and spot prices are uncertain and given in Figure 3.9.
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Figure 3.9: Input data for small test case. Left part: spot prices [MNOK/MSm3]
and probabilities. Right part: Delivery obligations [MSm3/day]

Note that the scenario tree is not balanced in this case, but rather has an
’upside’ scenario with high price and obligation at a low probability. The expected
spot price is falling through out the model horizon. Further, note that the field
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is very flexible in the sense that the daily production capacity is high compared
to the yearly capacity.

Let us look at how the yearly production capacity is allocated by the two
models. The production and spot trade decisions are given in Figure 3.10. The
deterministic model uses the production capacity as early as possible and utilizes
the whole sales trade capacity the first period. This is reasonable, since the model
takes its decisions based on the constantly falling expected spot price curve. On
the contrary, the stochastic model saves capacity in the first period; to be able
to utilize the high price in the second period if the ’upside’ scenario is realized.
If the ’upside’ scenario is not realized the gas is sold in the last period since this
gives a better expected price than the middle period. The value of using the
stochastic model instead of the deterministic (V SSD) is for this test case a 3%
addition to the expected profit achieved through exploiting the volatility of the
spot prices. This might seem like a small payoff, but in a business where the
profits are very large, the values can be substantial.
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Figure 3.10: Result from the stochastic and deterministic models on the small
test case with 5 MSm3/day as trade limit (all results are given
as MSm3/day). Left part: production decisions. Right part:
Spot trade decisions (positive means sale). Upper part: Stochastic
model. Lower part: Deterministic model.

Now, let us change the trade limit in the spot market to 2 MSm3/day and
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otherwise keep the test case unchanged. The new production and spot trade
decisions are given in Figure 3.11. In this new situation the contract can no
longer be fully supplied by the spot market which implies the model has no
longer relative complete recourse. This causes the deterministic model to become
infeasible in two of the four scenarios in the last stage. There are two decisions
in the early stages that cause these infeasibilities, too little production capacity
saved for the last period and too little transportation capacity booked for the
last period.
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Figure 3.11: Result from the stochastic and deterministic models on the small
test case with 2 MSm3/day as trade limit. All results in MSm3/day.
Left part: production decisions. Right part: Spot trade decisions
(positive means sale). Upper part: Stochastic model. Lower part:
Deterministic model.

To fulfil the obligation in the last period at least 1 MSm3/day of the production
capacity must be available, but as the deterministic model bases the decisions on
expected values it only sees the need for saving 0.5 MSm3/day. In the ’upside’
scenario it can clearly be seen how the deterministic model saves less than 0.5
MSm3/day of the yearly production capacity for the last period and thereby
becomes infeasible.

The first period is the only possible booking period in this test case. Table 3.1
contains the transportation booking decisions made by the two models. The de-
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Table 3.1: Booking decisions [MSm3/day]
Model Midle period Last period
Deterministic 4.2 0.8
Stochastic 4 4

terministic model prefers early deliveries to late deliveries because of the falling
expected spot price, which gives a similar pattern for the transportation booking.
This implies booking enough transportation capacity to both fullfill the expected
delivery obligation and fully exhausts the spot trade limit in the middle period.
Booking for the last period corresponds to the remaining yearly production ca-
pacity that cannot be delivered the two first periods. Since this remainder is less
than the 1 MSm3/day needed to fulfil the last period obligation in two scenarios
this transportation booking decision makes the deterministic model infeasible in
these two scenarios.

Theoretically we could argue that these infeasibilities mean the V SSD is in-
finite in this situation. In real business, there typically are more instruments
available to treat an ’infeasible’ state, but these can be very expensive. Exam-
ples are buying replacement gas beyond the trade limit at a very high price or
failing to fulfil an obligation with penalty fees and weakened reputation as a
consequence.

In general, what we have seen in these two situations is how the stochastic
model sees a value of making robust decisions in the early stages by making
capacity (production and transportation) available till more information is avail-
able.

Experiences with Large-Scale Realistic Data
In this section we use a large-scale example with realistic data for the NCS to show
the same effects as illustrated in the previous sections. The data set represents a
gas year with 6 time periods of 2 month each. The scenario tree is symmetric with
4 stages, 14 branches from each stage and 2744 scenarios. The example has 112
nodes, of which 35 are fields, 6 are spot markets and 7 have delivery obligations.
We use real data describing fields, the spot prices are based on historical data
while the data on contracts and transportation booking rights are sensitive data
in the business and therefore substituted by synthetic but realistic data. In this
section the model build from this large-scale example with the model description
given in Section 3.3 is defined as the base case. All results reported are expected
values.

The model is implemented in Mosel and solved by Xpress version 7.0.0
(www.fico.com). The base case has approximately 386000 variables and 205000
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3.5 Numerical Examples

Table 3.2: Effect of removing spot purchase possibility
Spot TransportationModel Profit

income cost
Without spot purchase -4% -10% 14%

constraints after presolve and is solved in 71 seconds on a computer with 2.33
GHz CPU and 3 GB RAM.

We will first analyse the value of coordinating market and production planning
and thereby being able to use time and geographical swaps. The model is run
with and without the possibility of buying spot gas in the markets, since this is
a condition to be able to make swaps. The results reported in Table 3.2 show
a 10% decrease in the spot income. The differences in total volume traded are
only marginal, so the profit decrease is mainly a result of achieving lower prices
for the gas. Totally the decrease in profit is 4% which in absolute values is in
the order of 200 million Euro. (Note that only the decision dependent profit is
included in the calculations. That includes transportation cost, production cost,
spot sales income and income from contracts with optional delivery nodes.)

Further we look into the robustness and risk profile of different model struc-
tures. We use three models, the first iteration of the dynamic deterministic model
(Deterministic, described in Section Comparison of Stochastic and Deterministic
Models on page 100), the stochastic model (Base) and the stochastic model with
a extended scenario tree (Stochastic extreme). The Deterministic model uses a
single scenario given by the expected values from the scenario tree of the Base
model. The extended scenario tree has a new extreme scenario after each node
except the leaf nodes. These extreme scenarios have zero probability and contract
obligations equal to the maximum level the customer can nominate within each
contract. Adding extreme scenarios in the stochastic model corresponds to a risk
averse policy where the probability of not being able to fulfilling an obligation is
zero.

Table 3.3 shows how the expected value of the objective function components
deviates from the Base model. The Deterministic model achieves better expected
values and the Stochastic extreme model achieves worse than the Base model.
There are no differences in contract income and only marginal differences in vol-
umes traded spot in the three models. The extreme scenarios reduce the flexibility
to make spot trade decisions based on preferable prices which limits the spot in-
come in the Stochastic extreme model. Further the capacity booking increases
with 177% compared to the Base model to be able to cover the obligations in
the extreme scenarios, but because of low tariffs the effect on the total expected
profit is limited.
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Table 3.3: Deviations from base case with different models tested on the large-
scale example.

Spot TransportationModel Profit
income cost

Deterministic 1% 1% -29%
Stochastic extreme -3% -7% 177%

Note that these results orders the models according to the spread of the scenario
tree optimized over, which can be interpreted as a ordering according to the level
of risk aversion. The Deterministic model utilizes the resources very efficiently
but the solution is less robust for deviations from the expected scenario. The
Stochastic extreme model on the other hand can handle any outcome in the
support of the stochastic parameters, but for this robustness a risk premium is
paid.

The true values of these solutions are not realized until the actual outcome of
the stochastic parameters is known. This is recognized in the procedure calculat-
ing EDEV (Section Comparison of Stochastic and Deterministic Models on page
100) where the solution of the Deterministic model is evaluated on an other tree
than the single scenario tree it is optimized over. For the large-scale example
the dynamic deterministic solution turns out to be infeasible in the last itera-
tion, partly because of too aggressive spot sales in the spring and partly because
of lacking transportation booking, which corresponds to the effect pointed out
for the small examples. On the other hand, if a less than maximum offtake in
the contracts is realized the Stochastic extreme model will prove unnecessarily
cautious. The choice on which model to use should be taken based on the risk
policy in the company and a judgement of the possibility and cost of handling
high offtakes with means not included in the model.

3.6 Conclusions

We have presented a tactical portfolio optimization model for a natural gas pro-
ducer. The model includes concession on fields, short-term markets, booking
of transportation capacity, handling of contract commitments and uncertain pa-
rameters (price and demand in long-term contracts and price in the short-term
markets). The model has been used for different analysis concerning portfolio
optimization by a large natural gas producer for several years.

The numerical examples illustrate the potentially high value of utilizing short-
term markets for geographical-swaps and time-swaps. In order to utilize this
flexibility in an optimal manner, the portfolio view on the set of concessions,
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3.6 Conclusions

contracts and market opportunities is vital. We have also included a large-scale
example based on realistic data (market data, network data and field data),
where we show a substantial economic potential of using stochastic programming
and a portfolio perspective with coordinated production and trade decisions in
planning.
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Appendix

3.A Notation

Sets
N The nodes in the transportation network
B Booking nodes, B ⊆ N
G Production fields, G ⊆ B
D Delivery nodes for the contracts, D ⊆ B
M Spot markets in the network, M⊆ B and M∩D = ∅
I(n) Nodes with outflow going to node n
O(n) Nodes with inflow coming from node n
C The contracts in the portfolio
Csplit Contracts in the portfolio with multiple delivery nodes,

Csplit ⊆ C
C(d) The contracts in delivery node d, C(d) ⊆ C
D(c) The delivery nodes of contract c, D(c) ⊆ D
Y The years included in the optimization horizon
T The time periods in the optimization horizon
T booking The time periods where booking decisions can be made
T (y) The time periods included in year y
S The scenarios
Z Event nodes in the scenario tree
S(z) Scenarios passing through event node z

Constants
Kg The unit cost for production in field g
Hb The per unit tariff in booking node b
Xbt Booked firm capacity in booking node b for transporta-

tion in time t
Abt Volume available for booking in node b for transportation

in time t
Qm The maximum trade in spot market m, time t and sce-

nario s
Cmax

cd The maximum fraction of nominated gas in contract c
that can be delivered in delivery node d
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Cmin
cd The minimum fraction of nominated gas in contract c

that can be delivered in delivery node d
γc The fraction of gas that can be sourced freely for delivery

in contract c
Fij The flow capacity between the downstream nodes i and

j
F gt The maximum daily production in field g and time t

(Aggregated to match period length.)
F gt The maximum daily production in field g and time t

(Aggregated to match period length.)
F year
gt The maximum yearly production in field g and year y

Tz The time period of event node z

Stochastic parameters
P spot
mts The spot price in market m in time t in scenario s

P contr
cts The price in contract c in time t in scenario s

Vcts The demand in take-or-pay contract c in time t in sce-
nario s

πts The probability of scenario s

Variables
kgts Production in field g in time t in scenario s
qmts Spot sale in time t in scenario s. Negative values repre-

sent purchase.
vcdts Volume delivered in take-or-pay contract c in delivery

node d in time t in scenario s
veqcdts Equity gas delivered in split contract c in delivery node

d in time t in scenario s
abτts The balance of transportation capacity booked from

booking node i to booking node j at time τ for trans-
portation in time t in scenario s

hbτts The booking of transportation capacity from booking
node i to booking node j in time τ for transportation
in time t in scenario s

fijts Flow from nodes i to node j in time t and scenario s
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Chapter 4

LNGScheduler: A Rich Model for

Coordinating Vessel Routing, Inventories

and Trade in the LNG-Supply Chain

Abstract:
Natural gas (NG) is one of the fastest growing sources of energy in the world
and, due to liquefaction to liquefied natural gas (LNG), NG markets are
becoming global and involve moving LNG over large distances by vessel.
We present an optimization model that provides decision support for the
LNG supply chain by coordinating vessel routing, inventory management
upstream, onboard and downstream, trading, and contract obligations. The
model maximizes profit by utilizing different trading contracts, seasonal vari-
ations in pricing, price differences between different markets and inventory
routing. We look into how the model may change some of the business
practices in the industry.

4.1 Introduction

Natural gas (NG) is one of the fastest growing sources of energy in the world.
Due to the liquefaction of the natural gas into liquefied natural gas (LNG) which
makes it easier to transport, the natural gas market is becoming global and
involves moving LNG over large distances by vessel. In this market, players
have to make decisions on how to manage their inventories of LNG upstream,
onboard the vessels and downstream the supply chain. Further, they have to
determine the rate of production of LNG upstream as well as the regasification
rate of LNG into NG downstream. In addition the players need to coordinate the
maintenance and routing of their own vessels as well as when to charter additional
vessels and how to operate them. These decisions must be made in accordance
with a plethora of constraints related to vessel operations, port operations and
contractual obligations. To complicate planning further LNG and NG can be
purchased and sold several times on its voyage from the producer to the consumer.
As the players in the industry are growing with larger fleets serving more ports,
the planning is becoming more complex and as a result, they are more and more
interested in using optimization-based decision support systems when planning
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their operations in order to obtain economies of scale.

Extensive research has been done on vehicle routing problems (VRP) since they
were first described in a paper by Dantzig & Ramser (1959), and the interested
reader is referred to Toth & Vigo (2002) and Crainic & Laporte (1997) for an
introduction to the topic. However, the overwhelming majority of these papers
address land-based transportation which has very different characteristics from
deep sea transportation. This is especially true when it comes to dealing with the
planning horizon. Land-based applications typically assume that operations hap-
pen instantaneously or that there is a somewhat natural way of partitioning the
planning horizon, for example by planning one day at a time. These assumptions
rarely hold in sea-based transportation, as highlighted by Christiansen, Fagerholt,
Nygreen & Ronen (2006). Early examples of combining inventory management
and vehicle routing can be found in Golden, Assad & Dahl (1984) and in Dror,
Ball & Golden (1985). For an early example of inventory routing at sea, Miller
(1987) addresses the problem of planning the transportation of chemicals. For
an overview of papers on this topic the reader is referred to Andersson, Hoff,
Christiansen, Hasle & Løkketangen (2007).

Review of the ship routing literature (see for example Christiansen et al. (2006)
for an overview) reveals that there is usually a strong focus on how to improve
the maritime operations and less on how to improve the overall performance of
the supply chains these operations are a part of. When the scope is extended
to inventory routing or on improving larger parts of the supply chain this is
typically done with a focus on fulfillment of obligations and cost minimization
(Andersson et al. 2007, Christiansen, Fagerholt & Ronen 2004). However, this
is not always in line with the supply chain management philosophy presented
by, e.g., Simchi-Levi, Kaminsky & Simchi-Levi (2003) that the objective is ‘to
be efficient and cost-effective across the entire system’ to avoid sub-optimization
based on differing objectives in different parts of the chain. Expecting the LNG
markets to become more liquid and flexible, it is reasonable to look into the more
market oriented OR literature, e.g. portfolio optimization. Here the focus is
not on cost minimization, but on profit maximization in order to best utilize the
possibilities given by the markets. A similar change in objective was seen earlier
in models for the electricity business where the development of markets has come
further (Wallace & Fleten 2003). An introduction to some of the issues that
should be addressed in order to coordinate decisions across the LNG supply chain
can be found in Stremersch, Michalek & Hecq (2008). The first attempt to bridge
this gap between supply chain management, portfolio optimization and routing
in the LNG supply chain was done by Grønhaug & Christiansen (2008) and
Grønhaug, Christiansen, Desaulniers & Desrosiers (2008), who created schedules
for a heterogeneous fleet of LNG-vessels, while at the same time addressing the
inventory levels, so that profit was maximized.
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The problem we address is a more extensive version of the LNG-Inventory
Routing Problem (LNG-IRP) Grønhaug & Christiansen (2008) worked on. Our
model addresses larger parts of the LNG-supply chain and incorporate more
details compared to their model. Further, it also addresses the many facets
associated with serving a wide range of contracts and trading in a spot market.
Being able to fully use the difference in contract structures as well as trading
in a spot market have a stronger impact on profit margins than just looking at
transportation related costs.

We present a model for planning on the tactical level and maximizing profit
throughout the LNG-supply chain from the liquefaction of NG upstream to NG
sales downstream. We present a richer model compared to what is found in
literature and give examples of how some of the new features change the solutions.
We compare our results with those found in the literature and find our solution
times to be competitive. In order to test the new features of our model, additional
instances have been created. The model being presented is in its implementation
phase at GDF SUEZ and Statoil, and is expected to be used in their planning on
a regular basis.

The outline of the paper is as follows. Section 4.2 provides a more in-depth
presentation of some of the most important features of the LNG- supply chain, the
economical drivers in the LNG-industry as well as the most important features
of the model. The experimental setting and the instances used are presented in
Section 4.3, followed by the computational results. An analysis of our findings and
their practical applications is presented in Section 4.4. We conclude in Section 4.5.

4.2 The LNG-Supply Chain

With an estimated growth in consumption from 153 million tons of LNG per
year in 2006 to between 300 and 450 million tons per year by 2020, LNG/NG
is becoming a more and more important source of energy. In 2007 there were
13 exporting and 17 importing countries worldwide. While there are several
thousands of operational gas-wells worldwide, only 23 liquefaction plants were
operational in 2006, supplying 58 regasification plants (Foss 2007). In March
2007 there were 224 LNG vessels operating around the world, with 145 on order.
Indeed, this industry’s strong growth is reflected in the composition of its fleet,
where 40% of the vessels operated today are less than five years old.

The physical part of the LNG-supply chain starts with the exploration and
development of natural gas fields. The gas is then brought to a liquefaction facility
where most of the heavy hydrocarbons and contaminants are removed. This paper
address the stages of the LNG-supply chain coming after this extraction process.
The cleaned NG is cooled down to a temperature of approximately −162 degrees
Celsius, which makes it condense into a liquid (LNG). Liquefaction reduces the
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volume of the gas by a factor of 610, making it economically feasible to transport
by vessel over large distances where pipelines are not an option.

After liquefaction, LNG can be held in an inventory onshore before it is loaded
onto a vessel or sold ‘free-on-board’ at the port, as indicated to the left in Fig-
ure 4.1.

Transport at sea is usually done at atmospheric pressure in specially built
LNG vessels typically with a capacity of 135 000 to 155 000 cubic meters. During
voyage some of the LNG is lost as boil-off. The LNG can be unloaded at a buoy
port at sea or at a conventional port onshore. LNG can also be purchased from
other companies’ vessels to fulfill contracts at the consumption ports. Buoy ports
can only be served by vessels with onboard regasification equipment. After being
converted from LNG to NG, the gas is sent through pipelines to a NG-hub for
sale on a spot market or to fulfill some contract. The conversion from LNG to
NG and the flow downstream the supply chain is shown in Figure 4.1 where the
black arc represents the flow of LNG and the grey arcs represents the flow of NG.

Conventional consumption ports onshore is somewhat different from buoy ports
as they are equipped with storage facilities for LNG, which means that there is no
need for the regasification process to happen during the offloading of the vessel.
This reduce the vessels time in port. At these ports LNG can be sold in some
special ex-ship contracts to a shared storage, where the inventory level must
be kept within certain levels. The LNG can also be sold in ex-ship contracts
without any restrictions on storage capacities. A third alternative is for the
LNG to be transferred to a storage tank onshore from which it can either be
transferred directly to vehicles or converted into NG for further transport to a
NG-hub, using pipelines, from which it can be sold on a spot market or used
to fulfill some contract. The flow of LNG/NG through the LNG-supply chain is
shown in Figure 4.1, while a more in depth description of modeling is given in
Appendix 4.A.

Shipping

Transportation is a vital part and a significant cost component in the LNG-
industry. Overall growth for the LNG-industry combined with acquisitions and
mergers (such as the merger between Suez and Gaz de France) result in larger
fleets which in turn can result in economies of scale. Unfortunately a larger
fleet also means increased complexity in the planning process; hence, making an
optimization based decision support system invaluable to obtaining economies of
scale. When planning their operations, companies have to create plans for how
to trade and transport LNG. This involves not only negotiating contracts but
also operating the company’s heterogeneous fleet of vessels as well as chartering
extra capacity when required.
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Maintenance

Consumption1

Consumption2

Consumption3

Production1

Production2

Vessel A Vessel B Chartered vessel

1 2 3 4 5 6 7 8 9 10
Days

Figure 4.2: Possible routing decisions with diagonal links as traveling, horizontal
solid links as port calls and horizontal broken links as waiting

In the model we have chosen to use an arc-flow formulation with a daily time
granularity for vessel routing. Generally the vessels are allowed to travel to and
from any port, but a link can be specified as inadmissible for one or more vessels.
Further, any combination of vessels and ports can be defined as incompatible
for example to represent a special draft or equipment requirements. A vessel is
allowed to wait an optional number of days prior to a port call. Off-shore buoys
are referred to as ports and treated as conventional ports when nothing else is
mentioned. Figure 4.2 gives an illustration of the routing, where horizontal links
represent waiting and port calls and diagonal links represent traveling.

Allowing the model to choose how many days the vessel should wait outside
a production or a consumption port makes the problem significantly larger com-
binatorially due to the increased number of binary variables. However, it allows
for some alternative routes for the vessel which the model otherwise would have
been forced to ignore. This choice of modeling allows a company to let vessels
wait outside a production or consumption port for as long as it is economically
sensible. Although this may incur additional costs it also provides more flexibil-
ity for the vessels to deliver their cargo when prices are high, rather than being
forced to deliver at lower rates due to some constraint limiting the waiting time.

Occasionally a vessel has to undergo planned maintenance at a maintenance
port for a certain number of days, though this maintenance does not have to take
place at strictly enforced intervals. This means that the company operating the
vessels has to decide when the maintenance should take place. Removing a vessel
from the operation reduces income as well as incurs costs related to maintenance
and possibly creates the need to charter a replacement vessel. It is therefore vital
that the planned maintenance is performed at the least inconvenient time in terms
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of cost and lost revenue. In contrast to other ports, the number of waiting days
in a maintenance port prior to maintenance is limited by a user-defined number
of days in order to limit the number of discrete decisions in the model.

Some of the LNG onboard the vessel will be lost during transportation. This
loss is caused by vaporizing LNG and is referred to as boil-off. As a general
rule about 0.15 % of the storage content is lost every day. However, the boil-
off rate depends on the vessel and the type of voyage. Laden voyages typically
have a higher boil-off rate than ballast voyages. Consequently the difference
between the volume loaded and unloaded increases when the travel time between
production port and consumption port increases. If a cargo tank runs empty,
the temperature will increase and the tank will need to be cooled down before
LNG can be loaded again. This process is costly and time consuming and should
therefore be avoided, which is why some of the cargo is always left in the tanks.

There are several costs related to operating the vessels that can affect their
routing. One of them is the cost of port calls which are port dependent. Another
cost component are the canal fees due, for example, at the Suez or Panama
canal. We differentiate between four states of operation, each incurring different
fuel costs: laden voyage, ballast voyage, port time and waiting. Some vessels are
able to utilize the boil-off for propulsion, and thereby lower their fuel cost.

Port and Terminal Operations

Terminals in an LNG-supply chain typically have multiple owners who all have
certain rights to make decisions related to their operations. However, in order to
reflect how the different stakeholders address the management of the terminals
in a model, some generalizations have to be made. We define three basic levels of
terminal influence in our model: 1) terminals where the model controls all aspects
related to the operations of a terminal; 2) terminals where the model knows the
inventory level at a terminal and have to make sure that their own cargoes do
not cause a violation of storage limitations; or 3) terminals where the model only
buys LNG from a liquefaction storage or sells LNG to a regasification storage
without having to deal with inventories or other issues related to operating a
terminal.

We define each port to have one function: a production port; a conventional
consumption port; a buoy port or a maintenance port. Consumption port is used
to refer to both buoy ports and conventional consumption ports. All ports have a
travel time in relation to other ports, a compatibility state related to each vessel
and a jetty capacity limiting the number of vessels that can visit the port simul-
taneously. These three characteristics are sufficient to describe a maintenance
port; however, other ports have additional characteristics. A buoy port has a
maximum unloading rate and a link to one or more NG hubs. A production
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port and a conventional consumption port have a liquefaction terminal and a
regasification terminal, respectively. These terminals are modeled with the same
general properties but contrary to the buoy ports they have an inventory whose
level must be kept between some upper and lower limits. The operating level for
the process rate (liquefaction or regasification) is given, with the possibility to
reduce the process rate below this level. It is not possible to increase the rate
since the operating level typically is close to the maximum level and a tactical
model should not plan to utilize this last margin. An interruption cost can be
given for process rates below the operating level. Also, a minimum level for the
process rate is given, since completely stopping the process should be avoided
because of high start-up costs. During the regasification process there may be
some loss caused by boil-off.

The LNG-Market and its Contracts

Contrary to most internationally traded commodities, such as grain and crude
oil, there exists no global price for NG or LNG. Most of the LNG is traded in
long-term contracts without publicly known prices. Because of the limited avail-
ability of LNG to be traded on a spot market and the fact that it is a relatively
infrequently traded product, one could argue that the LNG market is not an effi-
cient one. One could say that the globe is divided into three NG-markets: North
America, Europe and Asia. The North American market is the most developed
with gas-to-gas competition while the Asian market is strongly affected by long-
term contracts commonly linked to oil prices. Put in a tabloid way one could
say that the European NG market is half way between the North American and
the Asian NG market (Holmes 2007). However, the NG markets are undergo-
ing a gradual deregulation, opening up for new entrants and an increased use of
short-term contracts. Together with the growth in the LNG business this gives
an evolution toward a global NG market.

To better deal with the risks associated with the high costs of constructing
liquefaction plants, long-term contracts of 25-30 years have been and are still
frequently used. Using long-term contracts has the advantage of creating stability
for both sellers and buyers, at the cost of losing market opportunities due to the
inflexibility such a system represents (Evan 2003). The short-term contracts that
are becoming more common are typically of 2-5 years where prices, volumes and
timing of deliveries are left open to be negotiated for each cargo. This, combined
with increased trade in the spot markets, is making the industry more volatile.
As a consequence it is becoming even more important to have the flexibility
to adapt to changing market conditions. From an operational point of view,
moving to more short term and more flexible contracts implies more frequent
re-planning of vessel routes and inventory levels across the supply chain. Trading
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is done to maximize profit, either by fulfilling the contracts yourself or by paying
a competitor to fulfill the contracts for you. Such trading in the supply chain
is typically done in relation to the liquefaction and regasification terminals and
is usually done in bilateral contracts. The trade of NG is usually somewhat
more centralized around NG hubs, where both bilateral trading and trading in
standardized contracts like spot and forwards takes place. The relatively long
planning horizon of this industry and the price difference in different markets
create the possibility for arbitrage situations. Such arbitrage situations can be
exploited using different contracts available to the players in the LNG business
to obtain higher margins without having to be exposed to more risk.

In the model we assume that all contracts can be described in a general form
with an exogenously given daily varying price. A contract can be seen from the
buyer’s or the seller’s perspective and the location of their obligation are given.
A contract can have upper and lower quantity limits within any user-defined time
window.

When investing in facilities (such as liquefaction and regasification terminals)
required to operate in the LNG-supply chain the two most significant risks are
related to how much LNG/NG will be sold from the facility and at which price
it is going to be sold. The industry uses different types of contracts to reduce
the risk of opportunistic behavior. One such contract type is profit sharing.
Somewhat simplified this implies that if the shipper wants to deliver LNG to
another destination than the one in the contract to obtain a larger profit, he/she
has to share the extra profit with the seller in the production port or the original
buyer at a consumption port. This means the realized purchase price in the
contract is:

profit sharing purchase price = purchase price −α −β (sales price)
−γ (sales price − reference sales price)

where α, β, and γ are parameters in the contract. Reference sales price is the
sales price in the contracted destination and sales price is the sales price in the
actual destination. Another type of contract used to reduce risk associated with
price fluctuation is called netback pricing. The netback purchase price is calcu-
lated as follows:

netback purchase price = sales price
− transportation costs − buyer’s margin

This is often transformed into:

netback purchase price = (1− δ)sales price

where δ covers the buyer’s margin and a predefined transportation tariff.
The common property of these schemes is that the purchase price depends
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upon the destination where the LNG is sold and is, hence, an important part
of the decision process. Such dependencies between purchase and choice of des-
tination also create a close connection between routing and trading. To enable
modeling of this dependency the origin purchase contract of any LNG flowing
in the supply chain is traced in the model. Purchase contracts with destination
dependent pricing are split into several contracts serving one consumption port
each. Together with quantity limitations this makes it possible to model the
described pricing schemes.

Tracing the purchase contracts through the supply chain also enables the mod-
eling of destination clauses. This is modeled as a set of constraints which stipulate
that the quantity purchased in a set of purchase contracts and unloaded in a set
of consumption ports within a time-window should be limited by upper and lower
bounds.

Some contracts have clauses that are closely linked to the routing of vessels.
There can be regulations on how much can be unloaded at any port within a
time window for a set of contracts. Contracts can also limit which vessel can or
cannot visit a port, the number of times vessels can visit a specific port and the
frequency at which vessels should visit a port. Our model addresses all the before
mentioned features.

In the hubs, downstream, trade is done in contracts with the general charac-
teristics described previously. Additionally a hub has a spot market with a given
daily varying price, and an upper limit on the amount allowed to be bought or
sold within a day.

4.3 Experimental Setting and Computational

Results

The model was implemented in Mosel reading data from an MS-Access database
and solved using Xpress-MP 2008A. A graphical user interface to our model has
been developed using C++ and C#. We later refer to this implementation as
LNGScheduler. The computational tests have been done on an Intel Xeon 3 GHz
computer with 3 GB RAM running Windows XP.

In order to benchmark the performance of the LNGScheduler we have used the
same 27 test instances that were used in Grønhaug & Christiansen (2008) and
Grønhaug et al. (2008), done some model adaptations and compared solution
times. We have also added one large test instance based on the instances used
by Grønhaug et al. (2008). Results from these tests as well as test instance
descriptions are given in Appendix 4.B. However, our model addresses larger
parts of the LNG-supply chain and provides additional features compared to
what has previously been addressed in the literature. These changes are reflected

124



4.3 Experimental Setting and Computational Results

in the 16 new test instances that we have created. The additional features for
the new instances and the computational results are reported in Section 3.1.

In general we observe that the results of the LNGScheduler are competitive
when it comes to solution times for the test instances known from the literature.
For further details, see Appendix app:results.

Addressing Larger and Richer Problems

Compared to previous work, the LNGScheduler addresses larger sections of the
LNG-supply chain, upstream as well as downstream. It also deals with a wide
range of contractual issues which affect operations. Further, it provides a differ-
ent way of addressing boil-off and gives the model flexibility to provide decision
support on the number of days to wait outside a port. The LNGScheduler also
allows for any combination of loading and unloading, such as loading in multiple
ports before unloading in multiple ports (which makes the problem combinato-
rially significantly larger). Compared to previous work, such as Grønhaug et al.
(2008), we have modeled the problem with more details which we believe makes
it closer to the real problem. Although these new features make the problems
computationally harder, they also make it possible to find solutions that would
not be found using the models found in the literature. These new features can
not only yield better solutions (with higher objective function values) compared
to previous work but also have the potential to change common knowledge in the
literature as well as in the industry.

In order to test how these extra features change the solutions as well as the
computational performance, we have created 16 additional test instances. The
new instances are significantly larger in terms of the number of vessels, the num-
ber of ports, the contracts addressed, the hubs served and in particular the length
of the planning horizon addressed. As a consequence they have up to 4.7 times
as many decision variables as the largest instance known from the literature. The
new test instances have been created by GDF SUEZ and Statoil, and represents
relevant cases for these companies. The only difference from real cases is that
some of the prices and the actual contracts may not be the same as those pre-
sented here as they are considered business secrets. However, this is not expected
to affect the general findings or the performance of the LNGScheduler.

The newly created instances can be divided into two groups which have very
different characteristics. One group of instances which we refer to as ‘tight’ is
very constrained with a plethora of contractual obligations and fixed production
rates. The other group of instances is referred to as ‘loose’ and has few contractual
obligations and is very flexible in terms of allowing reduction in production and
regasification rates. Having instances that are as constrained as the ‘tight’ ones
makes it very challenging to find a solution. However, the opposite is true for
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Table 4.1: Overview of instances from GDF SUEZ and Statoil
No. No. Ports No. No. Time

Group Vessels (Production, Contracts NG Hubs periods
Consumption)

tight 8 7(4,3) 7 4 181
loose 2 7(1,6) 2 6 181

the ‘loose’ instances where finding a feasible solution is fairly easy but provides
challenges in terms of dealing with the many possible combinations related to
operating on a spot market, serving a larger number of consumption ports and
obtaining geographical arbitrage. An overview of the two groups of instances is
shown in Table 4.1 below.

To be able to test the new features of our model we perform the tests on the
new instances having some important features either turned on or off. We tested
the effect of using the following three additional new features:

Waiting days on the consumption and the production side (off means waiting is
only allowed on the production side)

Partial loading and unloading of the vessels (off means that the model is only
allowed to load and unload full vessel loads)

Spot markets sale and purchase (off means that no NG spot hub is considered)

Both groups have been tested for all possible combinations of these three fea-
tures. It can be noted that within a group (‘tight’ or ‘loose’) the only differences
between the instances are that the three new features are being combined in dif-
ferent ways. The maximum computation time for each instance is set to 10 hours.
The setup of the instances can be seen in Table 4.2. The column ID identifies the
computational test, the Group column says which group the instance belongs to
and the columns Waiting, Partial and Spot indicate whether the feature has been
turned on or off during the test. It can be noted that if we did not allow any
waiting days at all we would end up with infeasible solutions. To accommodate
for this we have chosen to test with waiting days allowed outside all types of
ports (on) and waiting allowed only outside production ports (off).

An overview of the results from the computational test of the 16 instances
is shown in Table 4.3, below. The first column shows the ID of the instance,
the second column shows the objective value after 10 hours, the third shows the
optimality gap after 10 hours, the fourth shows the number of vessel voyages
performed and the fifth shows the unloaded volume of LNG in the consumption
ports.
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Table 4.2: Test setup for instances from GDF SUEZ and Statoil
ID Group Waiting Partial Spot
29 tight off off off
30 tight off off on
31 tight off on off
32 tight off on on
33 tight on off off
34 tight on off on
35 tight on on off
36 tight on on on
37 loose off off off
38 loose off off on
39 loose off on off
40 loose off on on
41 loose on off off
42 loose on off on
43 loose on on off
44 loose on on on

It can be noted from Table 4.3 that the optimality gap is larger for all the tests
with spot markets compared to the corresponding tests without spot markets,
which indicates a slower convergence when using this feature.

Allowing for waiting days on both the production side and on the consumption
side will result in fewer voyages since the vessels are allowed to wait if that is more
profitable. Allowing for waiting days not only reduces the number of voyages it
also reduces the port fees and costs related to bunkers and, to a large extent,
allow the purchase of LNG when prices are low and its sale when prices are high.

Permitting partial loading, unloading and operating on a spot market has the
opposite effect as it results in an increased number of voyages, ceteris paribus.
Not surprisingly, allowing for partial loading, unloading and operating in the spot
markets increases the volume unloaded (with the exception of one instance). It
can be noted that for the group of ‘tight’ instances the volume unloaded decreased
when allowing waiting days to be used. For the group of ‘loose’ instances we
are not able to draw conclusions related to the use of waiting days. A general
observation related to the objective function values shown in Table 4.3 is that
there hardly seems to be any connection between the number of voyages, the
unloaded volume and the objective function value. An example of this is instance
36 which obtained the highest objective function value in the group of ‘tight’
instances despite transporting the lowest volume of LNG.
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Table 4.3: Results for instances from GDF SUEZ and Statoil
Objective No. UnloadedID

function value
Gap in %

voyages volume
29 5 147.3 7.44 97 6 465
30 5 243.6 9.65 99 6 564
31 5 354.4 5.55 110 6 586
32 5 481.3 7.58 111 6 799
33 5 129.6 9.06 95 6 431
34 5 271.6 10.06 97 6 554
35 5 317.2 5.97 101 6 470
36 5 507.2 7.54 104 6 325
37 597.1 0.00 18 1 253
38 893.7 9.00 19 1 253
39 634.9 1.10 25 1 286
40 1 067.3 11.13 46 1 395
41 597.1 0.00 18 1 268
42 893.7 12.80 19 1 277
43 634.9 1.80 25 1 286
44 1 058.7 12.25 42 1 340

Since the tests are not solved to optimality there is some uncertainty when it
comes to indicating effects of the modeling features. For this reason a method
from statistics, full factorial design, has been chosen for analyzing the effects. See
for instance Box, Hunter & Hunter (2005) for an introduction to the topic. We
use a 24-factorial design with objective value as response and the factors waiting,
partial, spot and group (off = ‘tight’). Three-factor and four-factor interaction
effects are assumed to be insignificant. Figure 4.3 shows the normal plot of the
main effects and two-factor interaction effects, with red squares indicating effects
that are significant at any level > 0.05.

Not surprisingly, the group has a significant impact on the objective value.
This is shown in the plot by the point labeled D. This supports the fact that the
objective values in ‘tight’ are much larger than those in ‘loose’. Other significant
features are partial loading and unloading and the existence of spot markets. The
two-factor interaction effects show that the effects of spot and partial loading/un-
loading are larger in ‘loose’ than in ‘tight’. The features partial loading/unloading
and spot markets strengthen each other (labeled BC). The ability to have waiting
days on both sides in the supply chain does not have a significant impact on the
objective function value. However, in practice this feature is required for some
instances in order to maintain feasibility.
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Figure 4.3: Normal plot of effects.

4.4 Practical Applications

Using the LNGScheduler
Traditionally, planning in the LNG shipping industry has been done manually
by experienced planners. The shipping companies have typically partitioned the
planning problem in order to make it more manageable in term of size and com-
plexity. This often implies having several groups of planners, where each group
plans the operations of a limited number of vessels in the fleet operating in a spe-
cific geographical region. By partitioning the problem the planners have been able
to create schedules within reasonable time. Using the LNGScheduler, planners
are capable of obtaining economies of scale associated with coordinated planning
and operations of a larger fleet. In addition to building more cost efficient routes
for the vessels, global planning allows for profiting from geographical arbitrage,
which would not have been found without using such a tool.

The cost of acquiring and operating vessels and terminals are significant. As
a consequence, some of the players in this industry are running their operations
with very little slack, making it a challenge to find feasible solutions and deal
with unforeseen events. With the help of an optimization based tool, the user
may be able to find feasible solutions that otherwise might not be found.

The LNGScheduler has proven to be useful in situations where plans had to
be made or changed quickly. An example of this is when a consumption port
operator plans the port operations for the following few months. During this
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planning phase the various users of the port are asked to come up with a plan for
when they wish to visit that specific port over the next months. The final joint
plan is set in a meeting where adjustments have to be made on very short notice.
This is somewhat challenging as the users not only have to take into account this
specific port but their entire operation when accepting or rejecting a slot at the
port at hand. Initial tests with LNGScheduler by GDF SUEZ in such situations
give reason to expect useful decision support related to this planning in the future.
The ability to make plans quickly is also useful when spot opportunities need to
be evaluated on short notice, for unforeseen events such as the breakdown of a
vessel, or in other situations that require new plans to be made quickly.

The LNGScheduler can be used to evaluate whether a fleet is sufficient to serve
existing contracts. It can also give an indication of whether the capacity offered
by the company’s own vessels is appropriate or whether it should be changed,
either to a lower level or to be increased to be able to handle more contracts and
more deliveries on a spot market. The LNGScheduler provides information to
the user on when maintenance should take place so that the negative economical
impact of this activity is reduced to a minimum.

Changing Business Practices with LNGScheduler

Planning in the LNG business is often separated in subtasks according to the
different functions in the supply chain. In this setting the routing and scheduling
has traditionally had a strong focus on utilizing their vessels as efficiently as pos-
sible. This has been obtained by operating with high load factors in combination
with routing decisions that minimize distance traveled as well as waiting time at
port. However, when changing focus from cost minimization to profit maximiza-
tion for an entire supply chain, decisions which increase transportation costs can
make sense as long as they are outweighed by an increase in revenue. The use of
the LNGScheduler has provided several examples were it has been beneficial to
abandon the traditional way of operating almost exclusively fully loaded vessels.
When maximizing the profit of the entire supply chain, use the flexibility that
comes with some of the contracts and the ability to trade NG, a very different
business practice than the one of today appears. While the traditional way of op-
erating vessels is with full loads, the LNGScheduler fairly often suggests that the
vessels should leave the production port only partly loaded which incurs higher
transportation costs (due to the reduced load factor). Nonetheless, this is out-
weighed by increased revenue due to the ability to perform more trips over the
year and to better respond to high prices occurring at different points in time in
different markets.

Another tradition in shipping, using a similar reasoning as operating full vessels
only, is that vessels should never be idle. In LNGScheduler we have included
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waiting days, which means that we move away from the idea that all vessels should
travel unless they are in port. The inclusion of waiting days is, in the traditional
cost minimization setting, not very efficient as you increase costs without doing
anything. In a profit maximization setting, waiting can enable a company to
use price differences and possibly provide fulfillment of contracts in a better way.
These gains will outweigh the costs incurred during the waiting period as the
LNGScheduler chooses to use waiting days only when it is profitable to do so.
Introducing such flexibility can also make it easier to find schedules that are
feasible because the number of possible solutions increases. On the other hand
the increased solution space makes it harder to have a manual overview to find
the best solutions and can also make it harder for the optimization tool to prove
that the solution is optimal.

Different markets have different demand patterns over the year. These fluc-
tuations mean that there is a higher demand for vessels at certain times (for
example when demand is high in areas far from the liquefaction site). It also pro-
vides market opportunities in form of geographical arbitrage due to high prices
in certain areas during their ‘peak’ season. As a consequence the LNGScheduler
typically would suggest routes that involve few days not spent at sea during the
‘peak’ season.

Due to the capacity of the pipeline system there can be capacity constraints on
the quantity of NG that can be delivered to the different markets at a given point
in time. One way of overcoming this potential lack of capacity in parts of the
pipeline system is to deliver additional energy to one or more of the hubs in the
system using LNG-vessels. When delivering LNG by vessel to an NG hub, not
only does it add transport capacity but more importantly it provides flexibility.
This flexibility typically comes in the form of an inventory which provides a real
option of being able to deliver LNG to more ports or having energy come to a
NG-hub from more sources. It also provides additional energy, enhancing the
possibility to ‘play the market’. The practical consequences of this is that a
company may be able to serve one or more high yield markets without having
to divert NG from other markets in the region. Not only does this allow for
additional revenue from high yield markets, it also reduces the risk of not being
able to deliver. One could say that it generates a larger potential for exploiting
geographical arbitrage within the region served by a pipeline.

The users are, with the help of the LNGScheduler, able to create optimal or
near optimal plans for how to operate vessels, ports and pipeline systems for all
existing contracts within a few hours, and to give a good estimate on how much
money the company can expect to make over the planning horizon. This feature
of the LNGScheduler has already shown one of the industrial partners that their
portfolio of contracts could potentially lead to future operational problems, and
by acting on these findings, they have been able to reduce their costs significantly.
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4.5 Conclusion and Future Work

In this paper we have shown that it is possible to create richer models that cover
larger parts of the LNG-supply chain, compared to what has been presented in
the literature. Addressing larger parts of the supply chain, up- and downstream,
is important as the user is able not just to look into more than just the routing
of the vessels but also how to manage parts of the operations onshore. This
enables the user to investigate the operations onshore for the LNG delivered by
their own vessels, and it also makes it possible to buy or sell additional LNG/NG
along the supply chain if this is necessary to fulfill contracts or if it turns out
to be more profitable. The improved control over all parts of the supply chain
makes it easier to evaluate the effect and value of current and future contracts. It
also makes it easier to deal with more complex and shorter term contracts, often
involving much larger flexibility with respect to price and volume, compared to
what traditionally has been the case in the industry.

Our model has to some extent changed some of the ‘common knowledge’ in
the industry where the best thing to do is to operate only fully loaded vessels to
reduce the cost of transportation. Using the LNGScheduler we have shown that
this approach may not always be the most profitable, and that there can indeed
be situations where it is more profitable to operate vessels with less than full
load. This is often the case when prices for natural gas are very high in certain
markets for a limited number of weeks. Being able to deliver LNG when prices
are high can more than outweigh the increased cost of transportation, not only
due to increase revenue but also due to the fact that each vessel can do more
trips during a year instead of being idle at ports waiting to be loaded.

As the players in the LNG-industry operate larger fleets visiting more ports,
there is a need for algorithmic improvements to be able to tackle even larger
problems than what is currently addressed. The LNGScheduler quickly calculates
the costs and revenues associated with different decisions for a large part of
the LNG-supply chain. However, the routing decisions are somewhat harder to
address. One possible future development would be to combine exact methods
and metaheuristics by having some metaheuristic attend to the routing decisions,
while leaving the evaluation of the performance of the different routes to the
LNGScheduler.
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Appendices

4.A Model Formulation

This appendix presents the mathematical formulation of the model. As described
earlier this is a very rich model, so some functionality is only described in words
to limit the size of the description. Also, special modeling needed to take care
of start- and end-horizon effects are omitted for brevity’s sake. In this appendix
Greek letters are used to denote variables, calligraphic Latin letters represent sets,
lower case Latin letters are indexes and upper case Latin letters are constants.
N is a set of physical ports, which is indexed by i, j and k. The set is sep-

arated into disjoint subsets representing different port types. Production ports
are given by NP , conventional consumption ports by NC , buoy ports by NB

and maintenance ports by NM . Consumption ports can be connected to one or
more market hubs that are defined by the set H and are indexed by h. Further,
V, indexed by v, represents a heterogeneous fleet of vessels. The days within the
planning horizon are represented by the ordered set T , indexed by t and t′.

Contracts are elements of the set W indexed by w and u. Each contract is
available in one and only one port. W is split into disjoint subsets WNG,WP ,
and WS representing NG sales contracts, LNG purchase contracts, and LNG
sales contracts respectively. Each contract is described by its production or con-
sumption port as well as delivery clauses in terms of price, quantity and other
restrictions that can be applicable to a contract. There are four types of LNG
sales contracts represented in different subsets of WS : 1) free-on-board sales
WSF , 2) ex-ship sales WSE , 3) ex-ship sales with inventory management WSI ,
and 4) local sales WSL. Free-on-board contracts are related to production ports
and the other three contract types are related to consumption ports.

The flow and storage of LNG and NG is given by continuous decision variables.
An overview with the name and place in the supply chain is given in Figure 4.4.
All the variables in the figure represent LNG except χiht, ψut, and ωht which
represent NG. The variables are explained wherever they are used in the text.
Almost all variables representing LNG and related mass conservation constraints
throughout the supply chain have an index w which represents the purchase
contract. This is done to keep track of the origin of the LNG, making it possible
both to model dependencies between purchase and sales locations given in some
contracts and to distinguish LNG with different energy content. Qw gives the
energy content of the LNG purchased in contract w, and is needed to convert
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volumes into energy. All trading is in energy, not volume.

Mass Conservation in the Supply Chain
The basis for the model is mass conservation through out the supply chain. Each
junction in Figure 4.4 requires a mass conservation constraint. In this subsec-
tion mass conservations outside storages are described. γwt represents a purchase
where the source is either a withdrawal from the inventory in a production port
or an ex-ship purchase in a consumption port. LNG sales in contract u are repre-
sented with σwut, where w represents the purchase contract from where the LNG
originates. LNG sales are possible in production ports in free-on-board contracts
or in several different contract types in conventional consumption ports. Loading
and unloading a vessel is represented with ηivwt and λivwt. πiwt represents LNG
from contract w sent to a conventional consumption port inventory and φiwt is
the corresponding withdrawal for regasification. NG from the regasification pro-
cess sent to a hub is denoted χiht. Sales of NG in contracts or spot are given by
ψut and ωht, respectively.

γwt =
∑

u∈WSF

σwut +
∑
v∈V

ηivwt

∀i ∈ NP , w ∈ WP , t ∈ T
(4.1)

∑
v∈V

λivwt +
∑

u∈WP

γut = πiwt +
∑

u∈WSE∪WSI

σwut

∀i ∈ NC , w ∈ WP , t ∈ T
(4.2)

∑
w∈WP

Qw

(
1− FC

it

)
φiwt =

∑
h∈H

χiht

∀i ∈ NC , t ∈ T
(4.3)

∑
v∈V

∑
w∈WP

Qw

(
1− FBV

ivt

)
λivwt +

∑
w∈WP

Qw

(
1− FBW

iwt

)
γwt =

∑
h∈H

χiht

∀i ∈ NB , t ∈ T
(4.4)

∑
i∈NC∪NB

χiht =
∑

w∈WNG

ψwt + ωht

∀h ∈ H, t ∈ T
(4.5)

Constraints (4.1) - (4.5) all represents mass conservation. Balance by the
production port jetty and conventional consumption port jetty are given in con-
straints (4.1) and (4.2). Constraint (4.3) treats the regasification process in con-
ventional consumption ports, where FC

it is the loss factor during the process.
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4.A Model Formulation

Constraint (4.4) enforces mass conservation in a buoy, where FBV
ivt and FBW

iwt are
the loss factors from regasification from a vessel and from an ex-ship purchase,
respectively. The mass conservation in a hub is modeled in constraints (4.5).

Routing
A vessel can travel from one port to another, load or unload in a port or wait
one or more days before entering a port. Traveling is represented with the binary
variables Δijvt for vessel v leaving port i on day t heading for port j. The voyage
will take TT

ijvt days. After each voyage a vessel is assumed to visit a port for
loading or unloading and the port stay will last for TP

iv days. A port stay is also
defined by the variable Δijvt. An exception is port stays in buoy ports where
the duration is set by the model through the binary variables Θivt that is 1 if
the vessel v stays in the port i at day t. This exception is included since the
unloading rate in a buoy port is significantly lower than in conventional ports,
which makes it reasonable to model a port stay that depends on the unloaded
volume.

Between the voyage and the port stay any number of waiting days can be
planned. Waiting days are given by Φivt. These variables take binary values, but
do not need to be defined as binary variables since the constraints (4.6) and (4.7)
defined below will make sure they take on binary values.

∑
j∈N

Δijvt +Φiv t−TP
iv

=
∑
k∈N

∑
t′ ∈ T |

t = t′ + TP
iv + TT

kivt′

Δkivt′ +Φiv t−TP
iv−1

∀i ∈ NP ∪NC , v ∈ V, t ∈ T

(4.6)

∑
j∈N

Δijvt +Φiv t−TP
iv
+Θivt =

∑
k∈N

∑
t′ ∈ T |

t = t′ + TP
iv + TT

kivt′

Δkivt′

+Φiv t−TP
iv−1 +Θiv t−1 ∀i ∈ NB , v ∈ V, t ∈ T

(4.7)

The constraints controlling the routing decisions in non-buoy ports and buoy
ports are given in (4.6) and (4.7) respectively. Both represent conservation of
flow for vessels, and make sure a vessel does not leave a port it has not arrived in.
Figure 4.5 illustrates Constraint (4.6), where t′ − 1 is the time the vessel started
to load/unload in the previous port (denoted i), t′ is the time when the vessel
left the previous port and t− 1 = t′ + TT

ijvt′ is the earliest possible time the ship
can start loading/unloading in port j. Loading and unloading takes one day in
this example. If the model decides that t − 1 is a waiting day, t + 1 will be the
earliest possible departure day for the vessel, as t will be the unloading day.
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Arrival Departure Arrival Departure

Loading Traveling Waiting Unloading

 Travel time

Waiting

t'-1 t' t-1 t t+1

Figure 4.5: Vessel activities along the time line as used in the routing constraints

Maintenance
All required maintenances are defined in the set M, indexed by m. The bi-
nary variable Γmt represents the start of a maintenance stay m at day t for the
vessel V M

m ∈ V in the port NM
m ∈ NM . This start time must be within the

interval
[
TMF
m , TML

m

]
, where TMF

m and TML
m defines the time-window for main-

tenance start. TM
m represents the required length of the maintenance. To limit

the number of binary variables in the model, travel variables to a maintenance
port and waiting variables in a maintenance port are only created in connection
with maintenance stays. TMW

m gives the number of such waiting variables prior
to TMF

m .

∑
i∈NC∪NB

∑
t′ ∈ T |

t = t′ + TT
iNM

m V M
m t′

ΔiNM
m V M

m t′ +ΦNM
m V M

m t−1

= Γmt +ΦNM
m V M

m t−1 (4.8)

∀m ∈M, t ∈
{
TMF
m − TMW

m , . . . , TML
m

}

∑
i∈NP

ΔNm
m iV M

m t+TM
m

= Γmt ∀m ∈M, t ∈
{
TMF
m , . . . , TML

m

}
(4.9)

Constraint (4.8) makes sure the vessel V M
m is available in the maintenance port

NM
m within a time window, either through a direct travel from a consumption port

to maintenance or through some waiting days by the maintenance port. The ves-
sel is forced to leave the maintenance port TM

m days after the maintenance starts
and go to a production port, as described in Constraint (4.9). Vessels should
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4.A Model Formulation

be empty during maintenance, which makes it reasonable to require a vessel to
arrive at maintenance from a consumption port and depart to a production port.

Vessel Inventory, Boil-off and Fuel
θvwt is the volume of LNG on board a vessel at the end of a day and κvwt is the
boil-off. The total inventory level is limited by Vv, which is the storage capacity
of the vessel.

θvw t−1 +
∑

i∈NP

ηivwt = θvwt + κvwt +
∑

i∈NC∪NB

λivwt

∀v ∈ V, w ∈ WP , t ∈ T (4.10)∑
w∈WP

θvwt ≤ Vv ∀v ∈ V, t ∈ T (4.11)

Inventory balance for the vessels is described in constraint (4.10). The total
volume on board a vessel should never exceed the storage capacity, as modeled
in Constraint (4.11).

A vessel’s minimum boil-off volume per day is given by GB
v and GL

v for vessels
on ballast and laden voyages, respectively. Voyages heading for a production port
are assumed to be ballast voyages and voyages heading for a consumption port
are assumed to be laden voyages. Boil-off rates during waiting days are defined
by the preceding voyage.

GB
v

⎛
⎝∑

i∈N

∑
j∈N\NM

t′=t∑
t′=t−TT

ijvt−TP
− jv+1

Δijvt′ +
∑

j∈NP

Φjv t−TP
jv

⎞
⎠

≤
∑

w∈WP

κvwt ∀v ∈ V, t ∈ T (4.12)

GL
v

⎛
⎝∑

i∈N

∑
j∈NC

t′=t∑
t′=t−TT

ijvt−TP
jv+1

Δijvt′ +
∑

j∈NC

Φiv t−TP
jv

⎞
⎠

+GL
v

⎛
⎝∑

i∈N

∑
j∈NB

t′=t∑
t′=t−TT

ijvt−TP
jv

Δijvt′ +
∑

j∈NB

Φjvt +
∑

j∈NB

Θjvt

⎞
⎠

≤
∑

w∈WP

κvwt ∀v ∈ V, t ∈ T (4.13)
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Constraints (4.12) and (4.13) force the total boil-off
∑

w∈WP κvwt never to fall
below the minimum boil-off level in ballast and laden states respectively. How-
ever, they also provide flexibility to boil-off more than what is strictly required
for physical reasons, if this should be more profitable. If the vessel has LNG from
several purchase contracts on board, it is left to the model to decide from which
contracts the boil-off volume should be taken.

Fuel consumption depends on whether a vessel is waiting in port, or in a laden
or ballast voyage. It is modeled in a similar fashion as boil-off, but with extra
constraints identifying port time and waiting. It is also possible to include boil-off
as a source of fuel and thereby reduce fuel cost.

Port Visits, Loading and Unloading

Uiv is the maximum unloading rate for vessel v in buoy port i ∈ NB . For
production ports and conventional consumption ports TP

iv is the fixed port stay
duration.

∑
w∈WP

ηivwt ≤
∑
j∈N

t+TP
iv∑

t′=t+1

Δijvt′
V

TP
iv

∀i ∈ NP , v ∈ V, t ∈ T (4.14)

∑
w∈WP

λivwt ≤
∑
j∈N

t+TP
iv∑

t′=t+1

Δijvt′
V

TP
iv

∀i ∈ NC , v ∈ V, t ∈ T (4.15)

∑
w∈WP

λivwt ≤ ΘivtUiv ∀i ∈ NB , v ∈ V, t ∈ T (4.16)

Constraints (4.14)-(4.16) make sure no loading or unloading takes place in a
production port, conventional consumption port or buoy port, respectively, unless
the vessel is in that port. They also make sure the quantities loaded do not exceed
the maximum loading/unloading rates.

Further, optional upper or lower limits on loaded/unloaded volume during a
port call can be added. These are represented with Livt and Livt for loading and
U ivt and U ivt for unloading and the constraints are given as (4.17) and (4.18).

Livt

∑
j∈N

Δijv t+TP
iv
≤
∑

w∈WP

t+TP
iv−1∑

t′=t

ηivwt′ ≤ Livt

∑
j∈N

Δijv t+TP
iv

∀i ∈ NP , v ∈ V, t ∈ T

(4.17)
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U ivt

∑
j∈N

Δijv t+TP
iv
≤
∑

w∈WP

t+TP
iv−1∑

t′=t

λivwt′ ≤ U ivt

∑
j∈N

Δijv t+TP
iv

∀i ∈ NC ∪NB , v ∈ V, t ∈ T

(4.18)

Ports can have limitations related to the minimum and maximum number of
days between each port call within a given time window. This is used to represent
contractual guidelines as ‘approximately evenly spread ’ deliveries. A port has
a finite capacity in terms of the number of vessels that can stay there at one
time. Further, the model includes constraints that regulate the minimum and
maximum number of visits during one or more time windows. This can be used
to make sure that a vessel visits a port within a given time window or on a specific
day. For brevity’s sake, the latter constraints have not been written algebraically.

Inventories and Onshore Facilities

The processing capacity at production and consumption ports is given by Ait

and the production is allowed to go Bit below Ait. There are also lower and
upper bounds on the inventory levels at the different ports given by Iit and Iit,
respectively.

The liquefaction rate and regasification rate are given as αit and φiwt. Similarly,
the inventory levels in production and conventional consumption ports are defined
as βit and ρiwt, respectively.

αit ≤ Ait ∀i ∈ NP , t ∈ T (4.19)∑
w∈WP

θiwt ≤ Ait ∀i ∈ NC , t ∈ T (4.20)

αit ≥ (Ait −Bit) ∀i ∈ NP , t ∈ T (4.21)∑
w∈WP

θiwt ≥ (Ait −Bit) ∀i ∈ NC , t ∈ T (4.22)

The constraints (4.19) and (4.20) enforce that the maximum processing limit
for liquefaction and regasification is not exceeded. Limitations on how far these
processing rates can be reduced below the maximum level are given by Con-
straints (4.21) and (4.22).

Iit ≤ βit ≤ Iit ∀i ∈ NP , t ∈ T (4.23)

Iit ≤
∑

w∈WP

ρiwt ≤ Iit ∀i ∈ NC , t ∈ T (4.24)

141



Chapter 4 A Rich Model for Coordinating the LNG-Supply Chain

Upper and lower limits on the inventory level at the end of each day are given
for liquefaction and regasification inventories in the constraints (4.23) and (4.24).

βi t−1 + αit = βit +
∑

w∈WP

γwt ∀i ∈ NP , t ∈ T (4.25)

ρiw t−1 + πiwt = ρiwt + φiwt +
∑

u∈WSL

σwut

∀i ∈ NC , w ∈ WP , t ∈ T (4.26)

The inventory balances for liquefaction and regasification are given in Con-
straints (4.25) and (4.26). They say that the inventory level on day t equals the
level of the previous day plus inflows minus outflows.

For ex-ship contracts with inventory management (WSI), a separate storage
is modeled with the storage level δiwt. These storages have constraints similar
to (4.24) and (4.26), but with additional fixed injections and withdrawals repre-
senting other companies’ transactions at the storage facility.

Contract Limitations
There are several volume limitations in the contracts, represented by d ∈ D.
These limits come in addition to physical limits of the system and are needed to
ensure that the model respects contractual agreements. Three types of limitations
are modeled, plain volume limits, destination clauses and destination dependent
pricing, represented with the subsets DV , DD and DP , respectively. The different
types are described in detail below. The right-hand-sides of a limit d are given
by Dd and Dd which represent the lower and an upper limit, respectively.

A plain volume limitation applies to one contract Wd, and sets lower and upper
limits on the amount of energy that can be traded in this contract within a time-
window, [TDS

d , TDE
d ].

Dd ≤
TDE
d∑

t=TDS
d

∑
w∈WP

QwσwWdt ≤ Dd ∀d ∈ DV |Wd ∈ WS (4.27)

Constraint (4.27) gives the equations necessary to limit the amount of LNG
sold in a sale contract. Similar restrictions for purchase of LNG and sale of NG
are included in the model, but omitted for brevity’s sake.

Dd ≤
∑
i∈Nd

∑
v∈V

∑
w∈Wd

TDE
d∑

t=TDS
d

Qwλivwt ≤ Dd ∀d ∈ DD (4.28)
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Figure 4.6: Example of destination dependent purchase prices modeled through a
split of a purchase contract into several purchase contracts dedicated
to different consumption ports

Constraint (4.28) models destination clauses where the choices of purchase
contracts and consumption ports are made dependent. It states that the amount
of energy purchased in a set of purchase contracts Wd ⊆ WP , and unloaded in a
set of consumption ports Nd ⊆ NC∪NB within a time-window should be limited
by upper and lower bounds.

Destination dependent purchase price involves a purchase contract serving sev-
eral different consumption ports with different purchase prices depending on
which port the LNG is delivered to. There will also typically be restrictions
on the amount of LNG transported to the different consumption ports. Fig-
ure 4.6 shows with an example how to model destination dependent purchase
prices in a contract. In order to model this, we first split the original purchase
contract w into three individual purchase contracts w1, w2, w3 that constitute the
set Wd. Each of these new contracts permits deliveries to one specific port only.
For instance LNG bought in w1, γw1t, can be unloaded in C1 and not in C2 or
C3. Instead of having one purchase price Wwt, we can now have three different
purchase prices, one for each of w1, w2, w3.

To make sure transactions in the three contracts do not violate the volume-
constraints of the original contract w, constraint (4.29) is applied.

Dd ≤
TDE
d∑

t=TDS
d

∑
w∈Wd

Qwγwt ≤ Dd ∀d ∈ DP (4.29)
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Constraint (4.29) states upper and lower limits on how much can be pur-
chased from the subset of purchase contracts representing w in a time-window.
Using constraint (4.27) we can put limits on volumes purchased in w1, w2 and
w3 separately in order to ensure any required volume distribution between the
consumption ports.

The combination of constraints (4.27), (4.28) and (4.29) can thus be used to
model different purchase prices for different consumption ports and also control
volumes. These properties can then be utilized in order to model destination
dependent pricing, netback pricing and even profit sharing clauses in contracts.

Some additional constraints mentioned in Section The LNG-Market and its
Contracts on page 122 are omitted in this mathematical description.

The Objective Function

The price of energy traded in a contract is given by Wwt and the spot price in a
hub is Hht. To denote various costs we use the parameter C with a superscript
for each cost component, such as CCL

ijv and CCB
ijv to represent the canal cost from

i to j with a loaded or empty vessel, respectively. CP
iv denotes the cost for a

port call. If the liquefaction or regasification rate drops below max capacity, an
interruption cost CI

it occurs.

The objective function is given in (4.30a)-(4.30g). This objective function
maximizes the profit in the supply chain over the time horizon. (4.30a) represents
the income and costs associated with LNG contract trades. Revenue from sales
in contracts and net spot sales at NG hubs are given by (4.30b). The cost of
visiting a port is given in (4.30c), with buoy ports treated separately in (4.30d).
In conventional ports the cost of visits is vessel and port dependent. In buoy
ports, the cost of visiting is vessel and port dependent as well as dependent on
how many times a vessel enters the buoy during its visit (it can be profitable
to leave and re-enter a port if there will be a price increase in the near future).
There is also a cost if a vessel uses a canal on its voyage between two ports.
This fee is dependent on the canal used and whether it is a laden or a ballast
trip, and is formulated in (4.30e). (4.30f) and (4.30g) describe the cost associated
with reducing the liquefaction and regasification rate below the maximum level,
respectively. Fuel cost is also included in the objective as a given unit cost charged
for the fuel consumption as described in Section Vessel Inventory, Boil-off and
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Fuel on page 139, but this modeling is not included here.

max
∑

w∈WP

∑
u∈WS

∑
t∈T

WutQuσwut −
∑

w∈WP

∑
t∈T

WwtQwγwt (4.30a)

+
∑

w∈WNG

∑
t∈T

WwtΨwt +
∑
h∈H

∑
t∈T

Hhtωht (4.30b)

−
∑

i∈N\NB

∑
j∈N

∑
v∈V

∑
t∈T

CP
ivΔijv t+TP

iv
(4.30c)

−
∑

i∈NB

∑
v∈V

∑
t∈T

CP
iv

⎛
⎜⎝Θivt +

∑
j∈N

|T |∑
t′=t−TT

ijvt′

Δijvt′ +Φiv t−1 − 1

⎞
⎟⎠ (4.30d)

−
∑
i∈N

∑
v∈V

∑
t∈T

⎛
⎝ ∑

j∈NC∪NB

CCL
ijv Δijvt +

∑
j∈NP∪NM

CCB
ijv Δijvt

⎞
⎠ (4.30e)

−
∑

i∈NP

∑
t∈T

CI
it (Ait − αit) (4.30f)

−
∑

i∈NC

∑
t∈T

CI
it

(
Ait −

∑
w∈WP

φiwt

)
(4.30g)

4.B Computational Results

Our formulation deviates somewhat from the one described by Grønhaug & Chris-
tiansen (2008) and Grønhaug et al. (2008) as they divide the vessel into separate
tanks and require each tank to be fully loaded. Our model assumes a single tank,
but allows for partial loading. We have chosen, after advice from GDF SUEZ,
not to split the load into several tanks when planning. However, to get a better
comparison with Grønhaug & Christiansen (2008) and Grønhaug et al. (2008),
the LNGScheduler assumes the use of separate tanks when tested on their in-
stances. This is achieved through the use of bounds on the loaded and unloaded
volumes as described in constraints (4.17) and (4.18) in Appendix 4.A. To make
the comparison as fair as possible we have chosen to use the same approach
for calculating boil-off as Grønhaug & Christiansen (2008) and Grønhaug et al.
(2008) for instances 1-28. Further, we have turned off all constraints regarding
the number and frequency of vessels visiting ports, all constraints related to con-
tracts that are not ex-ship sales in consumption ports or free-on-board purchase
in production port as well as the possibility to regasify the LNG, deliver NG to
hubs and sell on the spot market, in order to better match the formulation by
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Grønhaug & Christiansen (2008) and Grønhaug et al. (2008).
An overview of the test instances can be found in Table 4.4. The first column

identifies the instances which were used by Grønhaug & Christiansen (2008)
and Grønhaug et al. (2008), except from number 28 which is a newly created
test instance. The instances have been divided into 7 groups (A to G), each
assuming different number of vessels, tanks and ports. Each group consists of
4 test instances which only deviate in the length of the planning horizon. The
instance IDs are equal to the IDs used by Grønhaug et al. (2008), while instance
number 28 is the instance we have added.

When performing the test we have set the maximum computation time for
each instance to ten hours, similar to Grønhaug et al. (2008). Table 4.5 shows
the time to find the first integer solution (MIP1), the shortest time to find the
first integer solution reported in the literature (MIP1- Best), the time to find the
best solution (MIP*), the time to find the best integer solution reported in the
literature (MIP*-Best), the total running time (Total), the total running time
reported in the literature, the optimality gap for the best solution that we found
(Gap) and the optimality gap for the best solution reported in the literature
(Gap-Best). In the case where no optimal solution is found either in literature or
using our model, we have assumed that the computational test with the smallest
optimality gap is considered to be the best both in terms of total running time
and best solution found.

As can be noted from Table 4.5 the LNGScheduler produces the first feasible
integer solutions faster than what is currently reported in the literature for 9 of
the 27 instances, while for 5 of the 27 test instances the LNGScheduler performs
on pair with what has previously been reported. When looking at computation
times for optimal solutions we can note that the LNGScheduler reduced the
solution time for 13 of the 27 instances, while being equally good for 5 of the
27 instances. When it comes to proving optimality the LNGScheduler has the
lowest computational time for 15 of the 27 instances, and produces on pair for 3
of the 27 test instances known from literature. When it comes to the different
test instance groups, the LNGScheduler performs best for groups A, B, E and F
except the 75 day instance for group F. The arc flow formulation from Grønhaug
& Christiansen (2008) is by far the best for group C and also dominates group
D and G, except for the 75 day instance of group D where the LNGScheduler is
best. Even though the arc flow formulation gives good results, the Branch and
Price approach from Grønhaug et al. (2008) gives more even results. If one looks
at the different time horizons, the 30 day horizon has such low solution times that
the differences are ignorable. When it comes to the 45 day and 60 day horizons
the results are more spread among the different models. For the 75 day instances,
the LNGScheduler is dominant, and also manages to find solutions for group G
on a 75 day horizon.
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Table 4.4: Instance overview
No. No. No. Ports Time

Group ID Vessels Tanks (Production, periods
consumption)

A 1 1 2 4 (1,3) 30
A 2 1 2 4 (1,3) 45
A 3 1 2 4 (1,3) 60
A 22 1 2 4 (1,3) 75
B 4 2 2 3 (1,2) 30
B 5 2 2 3 (1,2) 45
B 6 2 2 3 (1,2) 60
B 23 2 2 3 (1,2) 75
C 7 2 2 4 (2,2) 30
C 8 2 2 4 (2,2) 45
C 9 2 2 4 (2,2) 60
C 24 2 2 4 (2,2) 75
D 10 2 1 5 (2,3) 30
D 11 2 1 5 (2,3) 45
D 12 2 1 5 (2,3) 60
D 25 2 1 5 (2,3) 75
E 13 2 2 5 (2,3) 30
E 14 2 2 5 (2,3) 45
E 15 2 2 5 (2,3) 60
E 26 2 2 5 (2,3) 75
F 16 3 1 4 (2,2) 30
F 17 3 1 4 (2,2) 45
F 18 3 1 4 (2,2) 60
F 27 3 1 4 (2,2) 75
G 19 5 1 6 (3,3) 30
G 20 5 1 6 (3,3) 45
G 21 5 1 6 (3,3) 60
G 28 5 1 6 (3,3) 75
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Table 4.5: Computational results (in seconds). Values written in italic indicate
that the LNGScheduler performed better than the benchmark.

MIP1 - MIP* - Total - Gap Gap -ID MIP1
Best

MIP*
Best

Total
Best [%] Best [%]

1 0 0 0 0 0 0 0 0
2 0 0 0 0 2 3 0 0
3 2 11 8 15 12 32 0 0

22 5 104 5 112 38 233 0 0
4 0 0 0 0 1 1 0 0
5 0 0 3 13 4 26 0 0
6 2 4 12 1 393 32 1 580 0 0

23 3 4 152 18 657 389 26 527 0 0
7 2 0 2 1 2 1 0 0
8 17 1 76 3 118 4 0 0
9 4 155 2 138 454 3 819 456 0 0

24 7 1 877 3 900 19 285 30 213 19 707 0 0
10 0 0 0 0 1 0 0 0
11 1 0 4 3 11 9 0 0
12 3 2 47 27 107 56 0 0
25 7 2 334 1 756 334 2 889 0 0
13 1 0 1 1 1 5 0 0
14 3 0 6 63 9 95 0 0
15 7 63 76 1 599 102 3 107 0 0
26 17 11 558 4 148 565 18 315 0 0
16 1 0 1 10 2 10 0 0
17 60 0 134 206 214 1 219 0 0
18 8 0 883 3 354 11 242 36 000 0 16.60
27 1 323 10 826 29 650 33 342 36 000 36 000 317.10 183.71
19 1 0 5 3 11 14 0 0
20 7 11 15 248 3 074 36 000 36 000 23.19 0.06
21 178 41 33 173 12 214 36 000 36 000 34.66 25.10
28 798 n/a 25 248 n/a 36 000 n/a 48.48 n/a
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Chapter 5

Stochastic Mixed-Integer Programming

for Integrated Portfolio Planning in the

LNG Supply Chain

Abstract:

We present a new model to support the strategic planning by actors in
the liquefied natural gas market. The model takes an integrated portfolio
perspective and addresses uncertainty in future prices. Decision variables
include investments and disinvestments in infrastructure and vessels, char-
tering of vessels, the timing of contracts, and spot market trades. The model
accounts for various contract types and vessels, and addresses losses. The un-
derlying mathematical model is a multistage stochastic mixed-integer linear
problem. Industry-motivated numerical cases are discussed as benchmarks
for the potential increases in profits that can be obtained by using the model
for decision support. These examples illustrate how a portfolio perspective
leads to decisions different than using the traditional net present value ap-
proach. We show how explicitly considering uncertainty affects investment
and contracting decisions, leading to higher profits and better utilization
of capacity. At the same time, model run times are very competitive with
current business practices of manual planning.

5.1 Introduction

Stochastic mixed-integer programming has been used to examine a number of
issues in energy economics, including investment planning in the natural gas
industry (Guldmann and Wang 1999, Zheng and Pardalos 2010). The great
majority of these applications have taken a cost-minimization approach. In this
paper we take the perspective of firms that maximize expected profits. When
doing so we look at the whole value chain in a portfolio perspective. We consider
contracting decisions, while allowing for arbitrage trades in the spot market,
whereby physical shipments can be re-directed to take advantage of geographical
price differentials. This is illustrated using an example with price uncertainty
inspired by a real-life application.

The increasing importance of liquefied natural gas (LNG) is illustrated by its
rapid growth in recent years. In 2000, twelve LNG exporters traded 220 million
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m3 to ten LNG importing countries (BP 2001). By 2010, this had more than
doubled, with 18 LNG exporting countries trading 483 million m3 to 23 LNG
importers (BP 2011, GIIGNL 2010).

The LNG supply chain typically includes the production of natural gas, trans-
portation to a liquefaction terminal, the liquefaction process and loading of ves-
sels, shipping of the LNG to regasification terminals, and finally regasification to
natural gas for distribution through the pipeline grid. Figure 5.1 on page 159
provides an overview of the supply chain elements considered in our model, from
liquefaction to transportation and regasification to markets for natural gas. For
a thorough description of this chain we refer to Fodstad, Uggen, Rømo, Lium,
Stremersch, and Hecq (2010).

Natural gas markets are dynamic and unpredictable both in the long and in the
short term. Retrospectively, the US Energy Information Administration (EIA)
observed that in their yearly energy outlooks the deviations between projections
and market outcomes, regarding both volumes and prices, were larger for natu-
ral gas than for all other fuels (EIA 2010). Despite the significant uncertainty,
lower operating and shipping costs and an increasing LNG market liquidity has
induced a shift away from risk-reducing long-term contracts over the last decade.
Due to a tenfold increase, spot and short-term trade accounted for 25% of total
LNG trade in 2011 (GIIGNL 2011). Currently, an increasing share of short-term
contracts and cargo re-routing is used to benefit from arbitrage opportunities in
spot markets. These developments make it more difficult to devise profitable,
yet flexible long-term strategies. It is, therefore, paramount to address uncer-
tainty and recourse adequately when developing models to support investment
and contract timing decisions.

The main contribution of the LNGPlanner model is to be a tool to perform
integrated analysis of an industry actor’s portfolio of both existing and poten-
tial investments along the LNG supply chain which accommodates price uncer-
tainty. It focuses on both physical and economic aspects, allowing to exploit the
flexibility in the supply chain to benefit from market opportunities while meet-
ing operational criteria. The mathematical model forms a multistage stochastic
mixed-integer linear programming (SMILP) problem, accommodating the uncer-
tainty through a scenario tree approach. The model has been developed for and
in close collaboration with several partners from the LNG industry to provide
decision support for some of their strategic decisions.
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5.2 Literature Review

There is an extensive base of literature on optimal1 investment strategies; how-
ever, integrated approaches for LNG business that take uncertainty into account
are underrepresented. Investment models such as the one in André (2010) tend
to focus on deterministic cost minimization rather than stochastic profit maxi-
mization. In a recent paper, MirHassani and Noori (2011) explicitly addressed
the drawbacks of the use of scenario analysis assuming perfect foresight for a
realistic problem. Birge and Loveaux (1997) showed that stochastic optimization
approaches are needed to make optimal decisions and to represent the hedging
behavior of investors facing uncertainty.

Alternative means for evaluating investment opportunities are provided by
real-options approaches. Murto and Keppo (2002), Klaassen, Kryazhimskii, and
Tarasyev (2004), and Krey and Minullin (2005) emphasized game-theoretic as-
pects among the investors. Real option approaches for investment decisions in
the oil and gas industry can be found in Smith and McCardle (1999), Bøck-
man, Fleten, Juliussen, Langhammer, and Revdal (2008), Kaminski, Feng, and
Pang (2008), Thompson, Davison, and Rasmussen (2009), and Lai, Wang, Kekre,
Scheller-Wolf, and Secomandi (2011). Such approaches provide useful insight into
the timing of investments. However, they have limitations with regard to cap-
turing the interrelations of multiple investment opportunities within the same
modeling framework.

The stochastic dynamic programming (SDP) approaches for energy planning
problems discussed in Botterud and Korpås (2007), Fleten (2000), and André
(2010) potentially allow for the flexibility needed for optimal capacity and timing
decisions that affect each other. However, due to the combinatorial characteristic
of the problems, heuristics are needed to provide solutions within acceptable time
limits. To circumvent these combinatorial challenges, Pereira and Pinto (1991),
Granville, Oliveira, Thome, Campodonico, Latorre, Pereira, and Barroso (2003),
Bezerra, Barroso, Kelman, Flach, Latorre, Campodonico, and Pereira (2010), and
Aouam and Yu (2008) developed the concept of stochastic dual dynamic programs
(SDDP). Although some of these concepts and insights can be transferred to
other fields, the applicability of the SDDP approach to the problem studied in
this paper is limited. SDDP requires a discretization of the potential values for

1Throughout this chapter, we use the word optimal in the sense that it is used in Operations
Research literature, namely as a solution that maximizes or minimizes a specified function.
For an economist, “optimal” often means “Pareto optimal” or “efficient,” or at least utility,
profit maximizing, cost, or expenditure minimizing. In particular, in the economics lit-
erature, maximization or minimization of an intertemporal objective function also entails
specifying “transversality conditions” for the capital stocks or their shadow prices that follow
from the underlying consumer or producer objectives and constraints. In our model, the
continuation values are specified exogenously.
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the decision variables while our approach includes continuous variables that may
take a large range of values.

Other approaches have also been used for solving energy planning problems.
Egging (2010) developed a stochastic mixed complementarity problem addressing
optimal capacity expansion by various actors on the global natural gas market.
The approach does not allow for integer variables and does not scale well in terms
of the number of scenarios that can be accommodated. In a more operational
setting, Tomasgard, Rømo, Fodstad, and Midthun (2007) presented an integrated
operational and financial approach to manage and optimize the various elements
of the natural gas supply chain from production to sales, taking into account
uncertainty in both demand and prices in a two-stage recourse approach. Zheng
and Pardalos (2010) propose a SMILP problem for location of LNG terminals
and expansion of pipelines. Their model is highly relevant albeit complementary
to the work presented here, as they minimize expected costs while we maxi-
mize expected net present value. The authors include pipeline expansions and
regasification terminals in their model, while our model includes: regasification
and liquefaction terminals, vessel investments and charter, contract decisions and
spot markets, but not pipeline expansions.

Important stepping-stones to the model presented here are papers by Nygreen,
Christiansen, Bjørkvoll, Haugen, and Kristiansen (1998), Fodstad et al. (2010),
and Grønhaug, Christiansen, Desaulniers, and Desrosiers (2010). Nygreen et al.
(1998) developed a model for optimally operating and expanding the pipeline
network on the Norwegian continental shelf using a project-based approach for
timing the start-up of production fields. The work of Fodstad et al. (2010) and
Grønhaug et al. (2010) focused on tactical planning in the LNG business including
routing of ships, typically within a yearly horizon, while LNGPlanner has a much
longer planning horizon (typically 10–25 years).

The remainder of this paper is organized as follows. The next section presents
the model. Sections 5.4 and 5.5 discuss two test cases, illustrating selected model
features. The first case elaborates on uncertainty, hedging, and spot trading while
the second one discusses the added value of the portfolio approach. Section 5.6
concludes and provides directions for future research. Appendix 5.A and 5.B
provides more detailed results for the two test cases.

5.3 The Model

Our stochastic mixed-integer linear programming model covers the supply chain
from liquefaction to shipping and regasification to natural gas markets. The
objective of the model is to maximize the expected NPV of a company’s portfolio
of terminals, vessels, and contracts. This chapter gives a verbal description of
the model, while the corresponding mathematical formulation can be found in
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Werner, Tolstad Uggen, Fodstad, Lium, and Egging (2012).

Strategic Decisions
The main decisions are investments and disinvestments that design the supply
chain, and these constitute the integer and binary variables in the model. Invest-
ment opportunities are denoted as “projects” and cover liquefaction terminals,
regasification terminals, vessels, and contracts. The timing of investments and
disinvestments is chosen by the model, but is limited to a given time interval. The
decisions typically make some capacity available in the time periods following the
decision and generate a series of cash flows. In some situations, a project depends
on other projects being started first; for instance, a terminal cannot be built un-
less the related feasibility study has been completed and the necessary permits
are obtained. The model allows for mutually exclusive projects; for instance, it
is not possible to choose two different sizes of terminal for a given location.

Vessel projects represent investments in different vessel types with varying
capacities and costs. Furthermore, the fleet can be supplemented by chartering
vessels. Unused vessels can be chartered out or sold. In contrast to buying and
selling vessels, prematurely ending a charter is not possible.

The finite time horizon of a MILP model can often distort decisions close to
the end of the horizon. For instance, it is unlikely for this model to invest in new
assets in the last part of the time horizon because that would incur investment
costs while the model only covers small parts of the operational period of the asset.
A common way of handling this issue is to model and solve with a substantially
longer time horizon than needed for the analysis. How much longer the time
horizon should be depends on both the lifetime of the assets and the discount rate
that reduces the importance of distant-future revenues and costs. It should also
be kept in mind that for decision support only the first few periods are critical,
since the model should be re-optimized as time goes by and new decision points
are reached. To alleviate this distortion effect, we include an approximation of the
discounted expected remaining value of the assets in the portfolio at the end of
the horizon. For terminals, we assume that the remaining value is the investment
cost less depreciation. Vessels have a predefined lifetime, and their remaining
value is set to the charter rate for the remaining lifetime. Remaining values of
contracts are approximated according to market prices. For sales contracts, a
contract price increase relative to the market price gives a positive remaining
value, and a decrease gives a negative value.

Operational Decisions
To be able to evaluate the operational consequences of the strategic decisions,
the supply chain operations are included in the model. Figure 5.1 illustrates
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the operational supply chain as it is modeled; purchase and sales contracts in
different parts of the supply chain are represented by stacks of rectangles.

Liquefaction terminals transform natural gas into LNG at a fixed unit cost, at
a rate between the terminal’s minimum production rate and maximum capacity.
The produced volumes should match contractual purchases from the liquefaction
terminal. By including both the production rate and the purchase contracts, it
is possible to describe liquefaction terminals with different ownerships and levels
of control. LNG storage is an important component in the daily operations of an
LNG terminal. Typically, storage capacity covers a few days of operations with
very limited flexibility to store for later months or (peak) seasons. Hence, storage
has little relevance in a strategic context and is omitted here.

LNG bought at a liquefaction terminal can be either sold under contract at
this terminal or shipped by the company’s vessels. Vessel routing determines how
much transportation capacity a fleet of vessels can give. It is a highly discrete
operation that, from an optimization point of view, is known to be combinatori-
ally challenging (Toth and Vigo 2002). To keep the model tractable, a continuous
approximation has been chosen, matching transportation demand and total fleet
capacity available. The former is determined from the amount of LNG to be
transported and the travel time between each pair of terminals while the latter
is described by the number of own and chartered vessels and their capacities, ad-
justed by a utilization factor reflecting ballast voyages. Additional limitations can
be added to specific terminals and vessel types in order to address compatibility
issues such as buoy ports requiring vessels with on-board regasification facilities.
Some LNG is lost during transportation due to boil-off such that volumes avail-
able for regasification are lower than volumes sent out from liquefaction. In short
time periods, part of the volumes sent out may arrive at a subsequent period due
to long travel times.

LNG arriving at a regasification terminal can be either sold in a contract at
the jetty or sent to the regasification facility. LNG can also be bought through a
contract with delivery at the jetty. Regasification, converting LNG into natural
gas, is subject to lower and upper limits on the production rate and happens
at given unit costs. Losses during the process are described as a fraction of the
regasification rate. Natural gas is sent to a market hub through pipelines that
may also have capacity limitations. Similar to liquefaction terminals, storage
facilities at regasification terminals are omitted from the model.

A market hub has a spot market for natural gas trading. The spot price is
uncertain and, for a price-taker, independent of the traded volume. Because
the real markets are not necessarily well-functioning, we include limits on the
positions that can be taken on the purchases and the sales sides.

The model contains both purchase and sale contracts at different places in
the supply chain as illustrated in Figure 5.1. They all have the same structure
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and the commodity traded is LNG, except for contracts at the natural gas hubs
which trade natural gas. All contracts can have uncertain prices. Furthermore,
there can be limits on the amounts traded in the contracts. The simplest form
of limitation is lower or upper bounds within a time interval. A single contract
can have several such limits with overlapping time intervals. Destination and
source clauses are limitations linking purchase and sales contracts. A destination
clause states a lower or upper limit on the amounts that can be delivered from a
given purchase contract to a set of sales contracts in a time interval. Similarly,
source clauses restrict the sourcing from a set of purchase contracts to a given
sales contract.

In the following two sections, we illustrate how our modeling choices with
portfolio perspective, stochastic prices, and inclusion of spot markets can affect
suggested decisions. Since our data sets are synthetic, our focus is not on the
absolute values given by the tests, but rather on how different methods evaluate
the projects and portfolios differently.

We implemented the model using off-the-shelf software, more precisely, XPress-
MP. Obviously, solution times depend strongly on the size of the solution space
(number and range of the variables), the length of the time horizon, and the
description of the uncertainty, i.e., the size of the scenario tree. For test cases
such as the ones presented in this paper, solution times were in the range of a
few seconds to one minute. For larger realistic cases with up to 1600 scenarios,
we experienced solution times of up to one hour. However, while we focused on
efficient implementation, solution speed was not within the main scope of the
development work. Moreover, such investment analyses are often performed only
once in a while and, therefore, speed is not a major issue.

5.4 Test Case 1 – Valuing Robustness and

Flexibility

We use this test case to illustrate and discuss two model features, the use of
stochastic programming to handle uncertain prices and the use of a supply chain
perspective including spot markets where physical supply and trading are inte-
grated.

Case Setup

In order to make the discussion easier to follow, we simplify the physical value
chain as much as possible. We consider a small system that consists of one
liquefaction and one regasification terminal with a related natural gas hub. The
existing terminals are assumed to have infinite capacity and there are no terminal
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investment options. We assume sufficient transportation capacity, no transporta-
tion delay, and no natural gas or LNG losses in the supply chain. We also ignore
all operational costs. The planning horizon has three periods of equal length and
uncertain price information is revealed after each period, resulting in a three-stage
problem.

Initially, no contract obligations exist, and all contracts must be sealed one
period prior to any delivery. The liquefaction terminal has a single purchase
contract option with a constant price of e6/MMBtu and contract limits of [250,
1 000] MMBtu in each period. On the downstream side, there is a spot mar-
ket (S) with an uncertain price that can be either low (e7.95/MMBtu) or high
(e9.95/MMBtu) for each time period. Two types of natural gas contracts are
also available in the market hub. A long-term contract (LC) can be entered in
the first period, with deliveries within the range of [600, 700] MMBtu in the two
following periods. Short-term contracts (SC) are available for entry in the two
first periods, each with delivery within the range of [500, 525] MMBtu in the next
period only. All contract prices are assumed to have a price formula with time
lag, such that the price is known one period in advance. Spot and sales contract
prices are presented in Figure 5.2 where all nodes in each time period have equal
probability.
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Figure 5.2: Prices in Test case 1 (e/MMBtu).
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Table 5.1: Expected incomes from spot, long-term contract and short-term con-
tract and profits for various planning approaches (e). All approaches
have a exptected purchase cost of 6,000 e.

Planning approach E[Spot] E[LC] E[SC] E[Profit] % of STO
STO 5 370 12 600 0 6 150 100.0
DET 5 370 12 600 0 5 970 97.1
Avg DETd 6 116 11 950 0 6 066 98.6
SA_c 19 900 0 0 7 900 128.5
SA_d 13 726 0 5 198 6 924 112.6
SA_e 13 726 0 4 673 6 399 104.1
SA_f 4 770 11900 0 4 670 75.9
Avg SA 13 031 2 975 2468 6 473 105.3
EVPI -2 582 2 975 -69 323 5.3
VSS 9 497 -11 950 2537 83 1.4

Dealing with Uncertainty

As discussed in Section 5.2, stochastic programming is often preferred over sce-
nario analysis when uncertainty is an important characteristic of the problem.
We investigate how the solutions for this test case change with different planning
approaches such as stochastic programming (abbreviated to STO in Table 5.1),
scenario analysis (SA_c – SA_f, where the last characters refer to leaf nodes rep-
resenting scenarios in the scenario tree), and deterministic optimization assuming
expected prices (DET). We also include dynamic deterministic optimization as
described by Escudero, Garín, Merino, and Pérez (2007), where the strategy is
re-optimized with updated expected prices as time goes by (Avg DETd). This
mimics a decision maker who uses a deterministic decision support tool, but
re-optimizes his decisions in each period.

Table 5.1 provides an overview of the objective function values for the different
approaches. The bottom rows present the expected values from the scenario
analysis (Avg SA), the expected value of perfect information (EVPI), and the
value of the stochastic solution (VSS) (Birge and Loveaux 1997). The sales
volumes corresponding to the results given in Table 5.1 are given in Appendix 5.A.

Table 5.1 shows that the stochastic solution yields a lower profit than the
scenario-analysis solutions. This is hardly surprising as the scenario-analysis ap-
proach assumes perfect knowledge about the future and will plan accordingly.
That is, for each of the four scenarios, a tailor-made solution is found. It is,
however, worth noting that the deterministic solution performs worse than the
stochastic solution. This seems somewhat surprising considering that the stochas-
tic solution is not perfectly adapted to any single scenario. The explanation is that
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Table 5.2: Contract commitment decisions. 1 means entering, 0 not entering.
Solution 1st stage 2nd stage
approach LC SC_1 SC_2U SC_2L
STO 0 0 1 0
DET 1 0 0
DETd 1 0 0 0
SA_c 0 0 0 n/a
SA_d 0 0 1 n/a
SA_e 0 1 n/a 0
SA_f 1 0 n/a 0

the stochastic solution is flexible enough to take advantage of upside variations of
the prices while hedging for downside variations. The deterministic solution does
not consider such price variations although the periodical contract limits still
allow for some flexibility. The dynamic deterministic approach observes price
variations as operational decisions are made, but it has limited ability to value
future flexibility because future prices are seen as deterministic.

The differences in the strategic decisions are shown in Table 5.2, where SC_1,
SC_2U, and SC_2L refer to short-term contracts in period 1, the upper node in
period 2, and the lower node in period 2, respectively. The deterministic model
suggests to enter the long-term contract, because this is the alternative with
highest price expectation, and thereby lock up more than half of the available gas.
The stochastic model, on the other hand, sacrifices revenue from this expected
high price, and thereby keeps the flexibility to choose between spot sales or the
short-term contract when the contract prices are revealed in the second period.
The dynamic deterministic approach is only partly able to offset the difference
between the deterministic and stochastic models by allocating volumes to spot
sales or to a long-term contract, depending on prices. This is because the contract
obligations limit how large the volumes are that can be sold spot. The results in
Table 5.2 illustrate a problem that can arise when using scenario analysis. The
decisions in the four scenarios are all different, and it is hard to extract a pattern
that provides a single optimal decision for the stochastic decision problem.

In our comparison of the stochastic and dynamic deterministic approaches, we
evaluated both models with the data from the scenario tree in Table 5.2. Because
the information in this tree was actually available to the stochastic model during
optimization, this evaluation favors the stochastic approach. If the actual prices
exactly matched the anticipated values, the deterministic model would perform
better than the stochastic one. This shows that the performance of the different
modeling approaches is highly dependent on the prices used for evaluation. Gen-
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erally, a more balanced evaluation method for the model approaches would be
to evaluate the model results on real-world outcomes over several time periods.
Alternative evaluation methods use discrete-event simulation or truth trees (see
Lium and Kaut (2006) for an example), both of which rely on the same assump-
tions on statistical properties for the distribution of the uncertain parameters as
those used when generating the scenario tree. It should be noted, though, that
these methods are more challenging in a multi-stage setting than for traditional
two-stage problems. Because we study a synthetic case with a very small scenario
tree, neither real outcomes nor evaluations based on the statistical properties in
the tree are meaningful. The important aspect is not the quantitative perfor-
mance of the different models, but rather the different structures of the found
decisions. As long as there is uncertainty that can make flexibility valuable,
a stochastic model is better suited to determine the most flexible position for
realizing this value.

In this test we have used a risk-neutral stochastic model, which prefers to
deliver predominantly to the spot market. In real life, many companies are risk
averse and would see this strategy as too risky. However, for such companies
stochastic optimization is still a good approach because it can express the value
of flexibility in an uncertain environment and, therefore, allow for a quantified
trade-off between risk and profit.

Trading on the Spot Market

In this section we illustrate the value of flexibility from the possibility of trading
on a spot market as a supplement to contractual deliveries. As a reference we
use the stochastic-programming approach (here called Spot) from the previous
section. We compare this with a test instance where no spot trade is possible (No
spot) and an instance where spot trade is possible but the maximum purchase
volume is limited to 700 MMBtu. The results are summarized in Table 5.3,
while the complete set of results for these tests are presented in Appendix 5.A.
Removing the opportunity to trade on the spot market forces the stochastic model
to enter the long-term contract and deliver at its maximum level in each period,
thereby reducing the expected NPV by e1 950. The major difference comes from
a reduction from 1 000 MMBtu to 700 MMBtu in the volume delivered, which
is caused by the lack of flexibility on the sales side to perfectly balance sales
and purchase capacity. If the purchase capacity is restricted to a maximum of
700 MMBtu, the expected NPV is improved by e180 compared to the no-trade
situation. Again the model avoids the long-term contract in order to exploit
the price spread between spot and short-term contract sales. This results in an
improved average sales price and, thereby, a higher expected profit.

It should be emphasized that not only spot sales, but also spot purchases
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Table 5.3: Expected volumes, average prices, and NPV with different trading
options.

Test Expected volume Expected avg. price Expected NPV
(MMBtu) (e/MMBtu) (e)

Spot 1 000 6.15 6 150
No spot 700 6.00 4 200
Max700 700 6.26 4 380

can add value. If contract obligations can be satisfied by spot purchases rather
than own gas, volumes can be redirected to deliveries in other markets or in other
time periods where prices are more favorable. Spot purchases enable geographical
swaps and time swaps that make it possible to exploit price spreads for arbitrage.
A consequence of a geographical swap is that transportation needs can change,
which will increase or decrease fleet utilization, transportation costs, and boil-
off depending on the relative distance from the source to each of the alternative
markets.

5.5 Test Case 2 – Highlighting the Integrated

Perspective

In this test case we focus specifically on the added value of the portfolio ap-
proach by comparing today’s planning practice with solutions achieved with the
LNGPlanner framework.

Case Setup
We consider a market with three liquefaction terminals (L1, L2, L3) and five
regasification terminals (R1, ..., R5) over a twenty-period planning horizon where
each period is one year. Each regasification terminal is connected to a market
hub (H1, ..., H5) as illustrated in Figure 5.3. The economic life time of terminal
L1 ends after period 5. There are two investment options, L1A and L1B, that can
extend this terminal’s life. These two options differ in life time, up-front costs, and
production costs as shown in Table 5.4. Although the accumulated production
capacities are almost identical, the maximum yearly production capacity of option
L1B is approximately 40% higher than that of option L1A.

Terminal L1 is owned by the considered company and has production costs
of e0.5/MMBtu. The other two liquefaction terminals are not owned by the
company, and production costs are internalized in the corresponding contract
prices. All regasification terminals have production costs of e0.5/MMBtu.

165



Chapter 5 Stochastic MIP for Portfolio Planning in the LNG Supply Chain

L1 

L2 

L3 

R1 

R5 

H1 

 Purch.   
 contr. 
 

     

  NGSale  
   contr. 
 

 

 LNGSale  
 contr. 
 

 Purch.   
 contr. 
  

H5 

 Purch.   
 contr. 
  

 

 LNGSale  
 contr. 
 

     

  NGSale  
   contr. 
 

Figure 5.3: System layout in Test case 2.

Table 5.4: Main characteristics of the two investment options.
Invest- Life time Investment Production Aggregated max.
ment costs cost (change) production volume
option years Mill. e e/MMBtu Mill. MMBtu
L1A 15 1 200 0.3 (−40%) 4 260
L1B 10 800 0.6 (+20%) 4 230
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Figure 5.4: Prices and volume limits of LNG purchase contracts at liquefaction
terminals, varying over 20 time periods.
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Figure 5.5: Prices and volume limits of LNG sales contracts to regasification
terminals, varying over 20 time periods.

There are LNG purchase contracts at all liquefaction terminals including the
extension options, LNG sales supply contracts to all regasification terminals, and
natural gas sales contracts at the hubs. The prices and volume limits of these
contracts vary with both the location of the respective markets and the time as
illustrated in Figures 5.4 – 5.6. Figure 5.4b shows that the purchase contracts at
liquefaction terminals allow for ramp-up and -down periods of the corresponding
terminal. Natural gas can also be sold spot at the hubs at prices illustrated in
Figure 5.6c with yearly volume limits of 150 MMBtu, 250 MMBtu, 50 MMBtu,
125 MMBtu, and 100 MMBtu, respectively.

Transportation can be carried out using vessels of two sizes; small vessels that
have a capacity of 120,000 m3 and an investment cost of e220 million while
large vessels can transport 220,000 m3 with an investment cost of e300 million.
Vessels can also be chartered in and out at yearly rates which start at e26.88
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Figure 5.6: Prices and volume limits of natural gas sales contracts and spot prices
at hubs, varying over 20 time periods.
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Table 5.5: Revenues (Rev.), costs, and profits for the initial portfolio without
extesions (No ext.), evaluation of each project in isolation (Isolated),
keepting the existing portfolio fixed when including new projects
(Fix.) and re-optimizing the whole portfolio including new projects
(Re-op.) [Mill. e].

No ext. L1A L1B Fix. Re-op.
Isolated L1A L1B L1A L1B

R
ev

. Sale 18 404 9 069 11 622 30 629 33 804 29 386 32 354
Charter 271 172 78 74 516

C
os

t

Purchase 15 933 25 002 28 639 23 549 25 611
Operations 951 864 554 1 465 1 592 1 379 1 487
Charter 535 766 737 599 1 117
Investm. 300 497 745 797 1 045 797 1 045

Profits 956 7 708 10 323 2 771 1 870 3 136 3 611

million and e18.85 million, respectively, and increase yearly by 2%. Initially, the
company does not own any vessels and must decide whether to buy or charter
vessels. Average transportation costs vary on the different links between liquefac-
tion and regasification terminals, reflecting the terminals’ locations. For example,
it costs e6.18/m3 to ship LNG from L1 to R1, e3.18/m3 to R2, e4.07/m3 to
R3, e20.63/m3 to R4, and e8.59/m3 to R5. All costs and prices are in nominal
terms and the discount rate is set at 10% annually.

It has to be decided which investment option to execute and which contracts to
enter into. At the same time, an optimal fleet size and mix need to be determined.

In the remainder of this section, we discuss and compare several approaches
to solving this planning problem. Table 5.5 shows revenues, costs, and profits
achieved with these approaches while Appendix 5.B provides more detail about
the amount of LNG and NG traded and the fleet sizes. For an easier comparison,
the NPV of investment options L1A and L1B has been discounted to the first
time period, too.

The Current Planning Process
The current practice at a number of energy companies is to evaluate potential
investments in several steps before they are implemented. At each step, the level
of detail increases and the analysis becomes more precise. If a potential project
appears feasible and economically sound, it will be considered for implementation.
If there are mutually exclusive projects, the project with the highest NPV is
chosen.

Manual planning typically analyzes each long-term investment opportunity in-
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dividually and, to a lesser extent, how it affects the existing asset portfolio. This
implies that the potential new portfolio is not fully re-optimized when investi-
gating how the new investment will complement the existing portfolio, but the
projects are rather evaluated isolated from the existing portfolio. We denote this
approach “Isolated”. For the test case, excluding the other liquefaction terminals
and focusing exclusively on the two options, the NPV of the longer running op-
tion, L1A, will be e7 708 million, and that of the shorter option, L1B, will be
e10 323 million. Obviously, it is more profitable to invest in the shorter option
that allows for higher production volumes in earlier years. Note, however, that
this evaluation assumed that all LNG produced at the terminal can be sent to
the most profitable market. This assumption is, in general, somewhat optimistic.

Analyzing the investment opportunities as complements to the existing port-
folio of assets, keeping all other decisions fixed, and observing market limitations
gives a solution where the purchase contract at the considered liquefaction termi-
nal cannot be utilized to its full potential. We denote this approach “Fixed”. In
this instance, the NPV of operating the whole system is e2 771 million if option
L1A is chosen and e1 870 million for L1B. Choosing not to invest in either option
yields a NPV of e956 million. This implies that option L1A would add a value
of e1 815 million to the system and option L1B a value of e911 million. Conse-
quently, the longer running option L1A appears more profitable now because it
allows the full potential of the associated contracts to be realized.

In summary, analyzing investment options in a simplistic fashion, instead of
re-optimizing the entire portfolio, can lead to an overly optimistic evaluation in
some cases, while it may mean assets are not utilized optimally in other cases. In
this particular example we end up in situations where an investment decision is
based on flooding the premium market or where a new purchase contract cannot
be fully utilized.

From Individual Projects to Portfolio Management

An investment in one element of the supply chain is likely to affect other elements
of the chain; however, often it is not immediately clear what those effects will be.
Not only may it affect the utilization of physical assets such as terminals, vessels,
pipelines, or hubs but it may also impact existing contracts. Furthermore, it will
have an effect on the company’s ability to sign new contracts and to operate in
the spot market. Re-optimizing the whole system considered in this test case
instead of just trying to ‘fit in’ the new project, denoted “Re-optimized”, the
system’s NPV increases to e3 136 million for option L1A and to e3 611 million
for option L1B. Hence, the added value of option L1A is e2 180 million while
that of the shorter option L1B is e2 655. Again, the shorter option appears more
profitable.
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In the previous section, we observed that the purchase contract at the terminal
could not be fully utilized with the shorter option L1B. This is partially due to
limitations from contracts in markets where the LNG could be sent without
economic losses. A re-optimization of the decisions over the entire portfolio leads
to a change of nearly all deliveries. Almost all sales contracts are affected, either
through a changed source purchase contract or through changed volumes. This
concerns not only assets directly linked to the two upgrade options, but also
seemingly completely unrelated assets. This re-organization, however, allows for
a complete and fully optimal utilization of the added LNG volumes.

Another observation is that the longer option, L1A, allows for profitable routing
of LNG to more markets than option L1B because the volume is produced over
a longer time span. This helps to avoid volume limitations in contracts in the
more profitable markets or in transport capacity. But this positive effect is not
sufficient to outweigh the lower investment cost associated with L1B.

Note that this solution is quite different compared to what manual planners
would have found. In particular, since it requires changing the way delivery
obligations are satisfied for nearly all contracts, the solution may never have
been found with the current planning practice. The value of the best solution
without re-optimizing the whole portfolio is e1 815 million. While re-optimizing
the system not only leads to a different choice of upgrade option, it also increases
the value of implementing this option to e2 655 million. Consequently, in the
considered test instance, the evaluation of the investment opportunities using a
complete portfolio management approach leads to a solution stipulating an e40
million increase of the system’s NPV. Even if the sub-optimal option L1A were
chosen, adapting all assets in the system to the new option would yield a e475
million higher NPV for the whole system compared to just fitting the new option
to the existing system.

5.6 Conclusions and Perspectives

We presented a stochastic mixed-integer linear programming problem to support
strategic planning processes in the LNG value chain. The model focuses on invest-
ments and disinvestments into infrastructure and vessels, on chartering decisions,
and on decisions about purchases and sales of LNG and natural gas. Selected
features of the model were illustrated by numerical case studies motivated by our
industry partners: Explicitly taking into account uncertainty (for example, about
the future price development) can lead to increased efficiency and higher profits.
We also demonstrated that taking an integrated portfolio perspective may yield
different solutions compared to traditional approaches.

Recent developments in liquefied natural gas technology may affect the mar-
ket dramatically in the future. For instance, some terminals will become bi-
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directional, so that both liquefaction and regasification can be performed. Also,
larger plants and vessels are built in order to benefit from technological advances
and economies of scale (see, e.g. Spilsbury, McLauchlin, and Kennington (2005)).
On the other hand, small-scale plants are becoming economically viable. Floating
liquefaction (FLNG) allows for the production from gas fields that were previ-
ously considered too small and too far away (GIIGNL 2010). These developments
will doubtless challenge traditional planning and modelling approaches further,
amplifying the need for further work on decision support tools based on mathe-
matical programming approaches.
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Appendices

5.A Results of Test Case 1

This section supplements the results for Test case 1, with Table 5.6-5.8 present-
ing the amounts of LNG sold spot, delivered in the long-term contract and in
the short-term contracts for each model run presented in Section Dealing with
Uncertainty on page 162. Solution approach “STO” is identical with the test
“Spot” and is therefore only listed once in the tables. The columns in the tables
corresponds to the nodes in the scenario tree presented in Figure 5.2. Note that
“DET” takes a single decision independent of the nodes in each period, which is
represented with one centered value for each period in the tables. “—” indicates
combinations of node and solution approach that is not defined.

All model runs give a purchased volume of 1 000 MMBtu except “No spot” and
“Max700” that give a purchase of 700 MMBtu.

Table 5.6: Spot sale volume decisions for each solution approach and test in
Section Trading on the Spot Market on page 164 [MMBtu].

Solution Period 2 Period 3
approach Node a Node b Node c Node d Node e Node f
STO 1 000 1 000 500 475 1 000 1 000
DET 300 300
DETd 400 300 300 300 400 300
SA_c 1 000 — 1 000 — — —
SA_d 1 000 — — 475 — —
SA_e — 475 — — 1000 —
SA_f — 300 — — — 300
No spot 0 0 0 0 0 0
Max700 700 700 200 175 700 700

5.B Results of Test Case 2

This section gives an overview of results of the non-portfolio planning approaches
for Test case 2 discussed in Section 5.5. Table 5.9 shows how much LNG is
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Table 5.7: Long-term contract delivery volume decisions for each solution ap-
proach and test in Section Trading on the Spot Market on page 164
[MMBtu].

Solution Period 2 Period 3
approach Node a Node b Node c Node d Node e Node f
STO 0 0 0 0 0 0
DET 700 700
DETd 600 700 700 700 600 700
SA_c 0 — 0 — — —
SA_d 0 — — 0 — —
SA_e — 0 — — 0 —
SA_f — 700 — — — 700
No spot 700 700 700 700 700 700
Max700 0 0 0 0 0 0

Table 5.8: Short-term contract delivery volume decisions for each solution ap-
proach and test in Section Trading on the Spot Market on page 164
[MMBtu].

Solution Period 2 Period 3
approach Node a Node b Node c Node d Node e Node f
STO 0 0 500 525 0 0
DET 0 0
DETd 0 0 0 0 0 0
SA_c 0 — 0 — — —
SA_d 0 — — 525 — —
SA_e — 525 — — 0 —
SA_f — 0 — — — 0
No spot 0 0 0 0 0 0
Max700 0 0 500 525 0 0

purchased at the liquefaction terminals and sold at the regasification terminals
in all analyzed time periods. The amounts of natural gas sold in a contract
or spot at a hub are indicated in Tables 5.10 and 5.11, respectively. Finally,
Table 5.12 lists the fleet size and composition needed to transport the LNG from
liquefaction to regasification.

Empty cells indicate zero purchases or sales – despite having the possibility –
while “—” entries in Table 5.9 mark the availability of the option in the given
time period.
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5.B Results of Test Case 2

We compare the planning approaches of choosing not to extend terminal L1’s
lifetime (“No extension”), evaluating the NPV of both extension options L1A
and L1B in isolation (“Islolated”), fitting the extension into the existing fixed
system (“Fixed”), and re-optimizing all decisions when phasing in an extension
option (“Re-optimized”). Note that for the latter two approaches, only the results
of selecting the shorter extension option L1B are shown as this option yields a
higher profit than option L1A.

Evidently, the solution in the “Re-optimized” approach differs slightly from
the “No extension” and “Fixed” approach solutions also in periods 1 – 5 where a
potential investment in an extension should not make any difference. This may be
due to different profit-maximizing solutions for one of the approaches having the
same objective function value despite different variable values during the periods.
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5.B Results of Test Case 2

Table 5.10: Natural gas sold in contracts at hubs H2 – H5, choosing option L1B
for the “fixed” (Fix.) and “re-optimized” (Re-op.) approaches. There
are no NG sales in contracts at hub H1 or after period 16. [MMBtu]

Hub 2 Hub 3 Hub 4 Hub 5
Time No Fix. Re- No Fix. Re- No ext. No Fix.

ext. op. ext. op. & Fix. ext.
1 248.8 248.8 8.8
2 50 50 2.4
3 57.9 57.9 50 50 50 32.4 32.4
4 72.3 72.3 50 50 50
5
6 248.8 169.1 50 50 13.9
7 50.1 248.8 248.8 50
8 21.8 10
9
10 50
11 52.5 52.5
12 248.8 55.1
13 246.7 57.9
14
15 63.8
16 13.9
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5.B Results of Test Case 2

Table 5.12: Fleet sizes – number of vessels of each type.

Time Large vessel Small vessel
No ext. Fix. Re-op. No ext. Fix. Re-op.

1 2 2 2 1 1 1
2 2 2 2 1 1 1
3 3 3 3 0 0 0
4 3 3 3 0 0 2
5 3 3 3 0 0 0
6 1 4 3 1 1 1
7 2 5 4 0 0 1
8 2 5 3 0 0 1
9 1 4 3 1 1 1
10 2 5 5 0 1 0
11 2 6 5 0 0 0
12 1 4 4 1 1 0
13 1 4 3 1 0 0
14 1 3 2 1 1 1
15 2 3 2 0 1 0
16 1 1 3 1 1 0
17 1 1 3 1 1 0
18 1 1 1 0 0 2
19 1 1 1 0 0 1
20 0 0 1 1 1 0
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Chapter 6

Adding Flexibility in a Natural Gas

Transportation Network Using

Interruptible Transportation Services

Abstract:
We present a modeling framework for analyzing if the use of interruptible
transportation services can improve capacity utilization in a natural gas
transportation network. The network consists of two decision makers: the
transmission system operator (TSO) and a shipper of natural gas. The TSO
is responsible for the routing of gas in the network and allocates capacity
to the shipper to ensure that the security of supply in the network is within
given bounds. The TSO can offer two different types of transportation ser-
vices: firm and interruptible. Only firm services have a security of supply
measure, while the interruptible services can freely be interrupted when-
ever the availabe capacity in the transportation network is not sufficiently
large. We apply our modeling framework on a case study with realistic data
from the Norwegian Continental Shelf. The results indicates substantially
increased throughput and profits with the introduction of interruptible ser-
vices.

6.1 Introduction

In this paper we discuss whether the introduction of interruptible transportation
services in a natural gas network can increase throughput without deteriorating
the security of supply. In our modeling framework we include both firm and
interruptible transportation services, where firm services are characterized by a
guaranteed level of security of supply while interruptible services are delivered
provided there is available capacity on the given day. We present a general model
framework and a case study based on realistic data from the Norwegian natural
gas transportation system that covers nearly 20% of European gas consumption
(Norwegian Petroleum Directorate 2012).

Interruptible transportation services are well known within the natural gas
supply chain, as they are available in the US and in several European systems
(including the Norwegian). These services allow the TSO to resell capacity that
is booked firm but not nominated, as described in Doane, McAfee, Nayyar &
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Williams (2008). It is usually required that all firm capacity, defined by a prede-
fined static limit, is sold before any capacity can be resold as interruptible. The
intention of the interruptible services is to improve the short term redistribution
of transportation capacity to support an efficient use of the network (Ruff 2012).
Our motivation for introducing interruptible transportation services is different.
We focus on increasing the capacity initially made available by the TSO rather
than redistribution. We are not aware of any natural gas network or examples in
the literature where interruptible services are used for this purpose.

A high level of security of supply is important on the market side, for the
shippers to be able to deliver in long-term contracts. It is also important on the
production side, to ensure that the oil production on the fields with associated
gas will not be decreased. In order to maintain a high level of security of supply, it
is necessary for the system operator to withhold some flexibility in the system at
the time of booking to handle uncertainties in the final operation. This withheld
flexibility can decrease the capacity utilization in the network. Security of supply
can be expressed through different measures. Within the power sector the N-
1 method, requiring feasible operation even if one element in the network goes
down, is a traditional way of providing robustness in case of contingencies (see
for instance Vournas 2001). Bopp, Kannan, Palocsay & Stevens (1996) use a
set of business rules to achieve satisfactory security of supply when optimizing
the planning problem of a local natural gas distribution company. Guldmann
& Wang (1999) include a curtailment cost on not satisfied demand for a similar
problem. In the stochastic programming literature a variety of risk measures are
presented (see for example Rockafellar 2007), but so far these are rarely applied
in natural gas applications. We define the security of supply level as the expected
transportation capacity offered to the shippers in the whole system relative to
the total firm booking. This is the same definition as used by Hellemo, Midthun,
Tomasgard & Werner (2013), but in contrast to them we also report numerical
analysis.

Unplanned events, such as outages and technical failure, cause uncertainty in
the available capacity in the transportation network. Furthermore, the system
operator must take into account system effects that make it impossible to a pri-
ori determine fixed capacities (see Midthun, Bjørndal & Tomasgard 2009). This
corresponds to the arguments by Vazquez, Hallack & Glachant (2012) who point
out that the shipper’s simplified view on the transportation network, only acting
in accordance with entry and exit booking points, requires the TSO to with-
hold some capacity to match the booking obligations with the physical network
capabilities.

The short-term system flexibility comes from the possibility to increase pro-
duction levels in some fields, to reroute the gas, and from the storage capabilities
in the pipelines (linepack). Midthun, Nowak & Tomasgard (2007) and Keyaerts,
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Hallack, Glachant & D’haeseleer (2011) show that linepack also has a commercial
value that introduces a trade-off in relation to security of supply. We focus our
analysis on the effect of interruptible services and have not included linepack and
this trade-off in our analysis.

Modeling the physics of gas transportation in pipeline networks is challenging,
mainly due to nonlinear properties in pressure dynamics in pipelines, compres-
sor efficiency and gas quality management. Martin, Möller & Moritz (2006) and
Tomasgard, Rømo, Fodstad & Midthun (2007) optimizes a steady-state represen-
tation of gas network pressures and flows. Moritz (2007) models transient flows,
while Ulstein, Nygreen & Sagli (2007), Selot, Kuok, Robinson, Mason & Barton
(2008) and Li, Armagan, Tomasgard & Barton (2011) models gas quality issues.
We use a linear steady-state approximation of the pressure dynamics in pipelines.
We assume a homogeneous gas quality, and thereby avoid the nonlinearities from
gas quality management. This assumption is a reasonable approximation in net-
works with small quality variations, for instance downstream of processing, but
it is otherwise a simplification.

Our contribution is both a modeling framework that allows for detailed analysis
of interruptible services to address uncertainty in network capacity availability in
the natural gas transportation network, as well as a case study based on realistic
data and topology from the Norwegian Continental Shelf (NCS). In addition, we
introduce a new production cost function for natural gas fields that takes into
account associated oil production. Our models are based on stochastic program-
ming and do not include strategic behavior of the participants. The validity of
this will be discussed in further detail when we introduce our models.

In Section 6.2 we describe in more detail the decision sequence as well as some
of our assumptions. We then present the modeling framework in Section 6.3,
before we move on to the case study in Section 6.4. Finally, we conclude in
Section 6.5.

6.2 Problem Statement

We establish a decision sequence involving the agents in the supply chain (see
Figure 6.1). At t = 1 the shippers submit their booking requests under the
uncertainty of available firm capacity and at t = 2 the TSO allocates the capacity
between the shippers. The TSO tries to minimize the deviation between requested
booking and allocated capacity while meeting the security of supply requirements.
At t = 3, when the allocated firm booking is known by the shippers, they book
interruptible capacity. The interruptible capacity is unlimited, but the shippers
will recognize the probability of not receiving this capacity. At t = 4 uncertainty
is resolved and the network state and market prices are known. The TSO then
allocates interruptions based on a feasible routing pattern. Finally, at t = 5
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Figure 6.1: Illustration of the decision sequence for a shipper and the TSO. The
squares show the decisions that are made at each point, while the
trapezoids show the uncertain parameters at that stage.

the shippers produce and do short term trades. The decision sequence we have
described is similar to the one used in the current system on the NCS, apart from
the difference in use of interruptible services.

The objective of this work is to evaluate the potential from introducing in-
terruptible transportation services for the network as a whole, while recognizing
that different agents in the system have different incentives. We have made some
important modeling choices: 1) We model all shippers as a single agent, which
gives us an optimistic view of the system performance. It implies that any strate-
gic behavior that could improve a single shipper’s performance, but reduce the
overall supply chain performance, is not captured. The aggregation of all ship-
pers into a single agent also reduces the uncertainty seen by the shippers, since
the modeled shipper knows the total booking in the system. 2) We model book-
ing of firm and interruptible capacity by a sequential procedure, in order to give
realistic incentives for firm services relative to interruptible services. In reality
interruptible capacity is available only if firm capacity is already fully utilized. 3)
We model the TSO and the shipper as independent agents rather than an inte-
grated agent even though we seek a supply chain perspective. This is done to be
able to observe how the two agents’ different objectives and access to information
about different parts of the supply chain affect the overall performance. 4) We
assume that both shipper and TSO base their expectations of network events on
statistical properties from historical observations which are common knowledge
for both.
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There are other modeling techniques that are commonly used to explicitly
represent different agents and their interaction in a single model. Generalized
Nash equilibria, modeled through quasi-variational inequalities, typically used to
describe the relation between agents taking simultaneous decisions, as done in
Midthun, Bjørndal, Tomasgard & Smeers (2007). Bilevel or multilevel modeling
are relevant techniques to capture interaction between agents in a decision se-
quence (see Kalashnikov, Pérez-Valdés, Tomasgard & Kalashnykova 2010, for an
example). A common feature for these techniques is the possibility to model gam-
ing, such as an agent’s ability to make strategic decisions to deliberately affect
other agents’ decisions. Using such techniques to model the interactions between
TSO and shippers and between different shippers both within and across deci-
sion levels would give us a mathematical program with equilibrium constraints
(MPEC) or equilibrium problem with equilibrium constraints (EPEC) that would
be complex to design, solve and analyze (see Hobbs, Metzler & Pang 2000, Ehren-
mann & Neuhoff 2009, for application examples of the two problem classes from
the power industry). It is also not clear if such gaming is present in the trans-
portation market on the NCS. Thus we have decided not to model gaming for
our initial study, but rather leave that for possible future work.

Booking tariffs To keep our model in accordance with the current regime on
the NCS, we use fixed tariffs and the tariffs for interruptible services are lower
than for firm (Gassco 2012). From a shipper’s perspective it is reasonable to
expect interruptible tariffs to be less than firm tariffs, but that might not be the
result when tariffs are based on costs. E.g. if interruptible capacity is seen as
additional capacity ‘on top of’ the firm capacity, the interruptible capacity will
typically be priced by a more expensive part of the compressor cost curve (which
has a growing marginal cost).

6.3 Model Descriptions

This section provides a mathematical formulation of the models. A model system
overview is given in Figure 6.2, and the full notation is provided in Appendix 6.B.
The model system consists of five optimization models, three shipper problems,
SP1-SP3, and two models for the TSO, TSO1-TSO2. Among these, three models
are stochastic problems, SP1, SP2 and TSO1, while two models are deterministic
problems, SP3 and TSO2. Figure 6.2 shows the sequence the models are run in
(from left to right), the decisions that are taken in each model and the informa-
tion flow (division into stages). The text within each box belonging to a model
describes the decisions taken by the model. Results from each problem except
SP3 are used by all the following models, as illustrated by the curved arcs on top.
The three horizontal areas in the illustration, white, light gray, and dark gray,
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Figure 6.2: Illustration of the stage structure of each model and the sequence of
model runs, starting with SP1 and ending with SP3. Each rounded
square represent one model run, while the squares within represent
stages with associated decisions in the model. Each row represents
a level of information, where the events are known in the light gray
area and market information is known in the dark gray area.

indicates the information set that each decision is based on, and corresponds to
the scenario tree illustrated in Figure 6.3. The outcomes in the second stage
(light gray) represent network events, s2 ∈ S2 and the outcomes in the third
stage (dark gray) represent market prices, s3 ∈ S3. These outcomes are assumed
to be independent of each other. A scenario then consists of a combination of an
event and a price outcome. The outcomes have the corresponding probabilities
πs2 and πs3 .

In the first shipper problem, SP1, the producer requests booking based on
event and market outcomes and estimates of future interruptions, production
and sales decisions. At this stage the shipper does not see the possibility to book
interruptible capacity later. Based on the booking request the TSO allocates
firm capacity in TSO1. In the second shipper problem, SP2, interruptible booking
decisions are taken. This problem is similar to SP1, except that firm capacity is
given and interruptible booking capacity is made available. When all booking
is decided and the events in the transportation network have become known the
TSO decides how much interruptible and firm capacity he needs to interrupt in
TSO2. Based on the final available capacity and the realized market prices the
shipper decides on the amounts to produce and sell in SP3.
SP1 and SP2 are three stage quadratic stochastic programs, while SP3 is a

deterministic model that is run for all nodes in the last stage of the scenario tree.
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Figure 6.3: The three-stage scenario tree. In the second stage (the gray nodes)
the uncertainty with regards to network availability is revealed,
whilst the uncertainty with respect to market prices is revealed in
the third stage (the black nodes). The network availability and the
market uncertainty are assumed to be independent of each other, all
nodes in the set S2 is therefore linked to the same set of nodes S3.

The first stage decision in SP1 and SP2 is capacity booking, whilst in the second
stage the shipper’s estimates of the TSO’s interruption decisions are made based
on the event outcomes. The third stage is the actual operation with production
and sales. SP2 and SP3 are variants of SP1, where firm booking is fixed in SP2

while both booking types are fixed in SP3. SP3 is the same problem as the last
stage of SP1 and SP2.

The TSO problems use a network composed of field nodes, g ∈ G, market
nodes, m ∈ M, intermediate nodes, i ∈ I and connecting pipelines. The field
nodes and market nodes constitute the booking nodes, n ∈ N = G ∪M, that are
the network nodes in the shipper’s problems. In accordance with the separate
responsibilities of TSO and shipper, the shipper does not see the pipelines, but
rather a fully connected network.

First Shipper Problem, SP1

In SP1 interruptible booking is set to zero. This means that the shipper does
not foresee the possibility to book interruptible capacity as he makes his initial
booking request. This mimics the market design rule that interruptible capacity
should only be made available if all firm capacity is allocated.

Objective function The objective of a shipper is to maximize his expected
profit, that is the expected income from selling gas in the spot markets less
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the expected production costs and the transportation cost (booking tariffs):

max
∑

s2∈S2

πs2

∑
s3∈S3

πs3

⎛
⎝ ∑

m∈M
(Pm,s3xm,s2,s3)−

∑
g∈G

Fg (yg,s2,s3)

⎞
⎠

−
∑
n∈N

(
TF
n zFn + T I

nz
I
n

)
, (6.1)

where Pm,s3 is the market price in market m in market outcome s3, xm,s2,s3 is the
volume sold in market m in the scenario given by event outcome s2 and market
outcome s3. The production cost is given by the cost function Fg() which is a
function of the production yg,s2,s3 in field g. Lastly, the booking costs are given
by the sum of costs for firm and interruptible booking. The cost of firm booking
is given by the tariff TF

n in node n and the booking level zFn , while the cost of
interruptible booking is similarly given by the tariff T I

n in node n and the booking
level zIn. Booking costs are independent of whether the capacity is interrupted
or not.

Production cost The production cost function consists of two parts, one for
production with associated oil, called ‘must-take’, and one for the swing field
production. The reasoning behind this is that each of the field nodes in our
network represents a set of fields, each with different properties. In the must-take
area, the natural gas is closely linked to the oil production. If the gas production
is decreased, the oil production must also be decreased. Such a decrease will
then lead to a substantial loss for the shipper. For the swing fields, the gas
production will not influence the oil production. We represent the production
costs for these fields with a quadratic cost function based on a modification of
the function provided by Golombek, Gjelsvik & Rosendahl (1995). We omit the
logarithmic part that, in effect, provides maximum production levels. Instead
we have implemented a fixed upper limit for the production in each field node.
The production cost function is represented by (6.2)-(6.5) and is illustrated in
Figure 6.4. The production cost for the must-take production, cMT

g,s2,s3 , is modeled
by a set of Q linear constraints:

cMT
g,s2,s3 ≥ CAMT

g,q + CBMT
g,q yg,s2,s3 g ∈ G, q ∈ Q, s2 ∈ S2, s3 ∈ S3, (6.2)

where CAMT
g,q and CBMT

g,q are cost parameters for field g and linear constraint q. In
addition, there is the quadratic production cost function in the swing fields:

cSWg,s2,s3 = CBSW
g ySWg,s2,s3 + CCSW

g ySW
2

g,s2,s3 g ∈ G, q ∈ Q, s2 ∈ S2, s3 ∈ S3, (6.3)

where CBSW
g is the cost parameter for the linear part of the cost function in field

g while CCSW
g is the cost parameter for the quadratic part of the cost function.
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Figure 6.4: The production cost function used for the aggregated field nodes.
Looking at the left hand side of the figure, the cost of reduced oil
production is decreasing as the production increases, and this causes
the negatively sloped part of the production cost function. The dif-
ferent lines represent the different fields that are aggregated into the
field node. The steeper the line, the higher the oil to natural gas ratio
is. The positively sloped part of the production cost function repre-
sents the gas production that is independent of oil production, where
increasing production level gives increasing cost. The right hand side
of the figure illustrates the resulting production cost function that
we use in our model.

The production related to swing capacity in a field is given by ySWg,s2,s3 which is
the difference between the total production in a node, yg,s2,s3 and the defined
must-take level Y MT

g :

ySWg,s2,s3 ≥ yg,s2,s3 − Y MT
g g ∈ G, s2 ∈ S2, s3 ∈ S3. (6.4)

The cost function F (yg,s2,s3) is then given as:

F (yg,s2,s3) = cMT
g,s2,s3 + cSWg,s2,s3 g ∈ G, s2 ∈ S2, s3 ∈ S3. (6.5)

Production should stay within the production capacity limits:

yg,s2,s3 ≤ Yg,s2 g ∈ G, s2 ∈ S2, s3 ∈ S3. (6.6)

Capacity booking The shipper has to book capacity to inject gas into the net-
work from the field nodes and to extract gas from the network to the market
nodes. Firm capacity is booked in the first stage. When only firm capacity is
available we require that the requested booking for entry capacity in the fields
should equal the requested booking for exit capacity in the markets:∑

g∈G
zFg =

∑
m∈M

zFm. (6.7)
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The TSO will always allocate capacity such that the firm booking is balanced.
When interruptible services are available however, we do not include this con-
straint, since the first-stage booking request from the shipper will then signal
how much total capacity he would like to have. The TSO can then decide what
portion of this is firm capacity. Since there is no requirement for the interruptible
booking to be balanced, the total first stage booking request from the shipper
does not have to be balanced either. The balance in firm booking is necessary
to make it possible for the TSO to evaluate the capacity in each node, which
depends on the flow pattern in the system.

In reality the shipper has historical data and observations on network capac-
ities and events. In our model we need to approximate this in a transportation
capacity, Hn,s2 , that depends on the event outcomes. This is done by a pre-
processing procedure described in Appendix 6.A. The transportation capacity is
static in the sense that it does not take into account how the shipper’s own pro-
duction and delivery decisions affect the flow patterns and thereby the capacity.
The shipper’s estimate for total interruption, an,s2 can then be described by the
difference between the transportation capacity and the booking zFn :

an,s2 ≥ zFn −Hn,s2 n ∈ N , s2 ∈ S2. (6.8)

Mass balances Gas is sold in spot markets with perfect competition. The total
sales by the shipper are then limited by the total production:∑

g∈G
yg,s2,s3 =

∑
m∈M

xm,s2,s3 s2 ∈ S2, s3 ∈ S3, (6.9)

where xm,s2,s3 is the volume sold in market m in event outcome s2 and market
outcome s3. In addition, the sale in market m is limited by the uninterrupted
booking into this node:

xm,s2,s3 ≤zFm − am,s2 m ∈M, s2 ∈ S2, s3 ∈ S3. (6.10)

Finally, we must make sure that the uninterrupted booking is sufficient for the
production levels in the field nodes:

yg,s2,s3 ≤zFg − ag,s2 g ∈ G, s2 ∈ S2, s3 ∈ S3. (6.11)

First TSO Problem, TSO1
The TSO allocates firm capacity to the shipper based on the booking requests
from SP1. The TSO seeks to satisfy the requests, but are limited by the trans-
portation capacities in the network and a requirement on expected security of
supply. TSO1 is a two-stage quadratic stochastic program, where allocations are
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given in the first stage; whilst the routing decisions are made in the second stage
after the network capacity availability is known. The objective of this problem is
to minimize the square deviation from booking requests, such that the allocation
stays close to the requests from the shipper:

min
∑
n∈N

(
z̄Fn − zFn

)2
, (6.12)

where z̄Fn is the booking requests made by the shipper while zFn is the allocated
capacity to the shipper from the TSO. We must make sure that the shipper
capacity allocation is no more than he requested zFn :

zFn ≤ zFn n ∈ N . (6.13)

On expectation, the security of supply should be at least R, where the security
of supply is defined as the total expected delivery rate by the TSO over total
firm booking. This limits the expected interruptions, which are represented by
the difference between the allocated firm bookings to a market node m, zFm and
the sum of flows fj,m,s2 from nodes j to market m:

∑
s2∈S2

πs2

∑
m∈M

⎛
⎝zFm −

∑
j∈I(m)

fj,m,s2

⎞
⎠ ≤ (1−R)

∑
m∈M

zFm. (6.14)

We then add constraints to make sure that the flows are limited by the allocated
booking in the booking nodes (fields g and markets m). The set O(j) gives the
nodes which are connected directly downstream to a pipeline going from node
j, whilst the set I(j) gives the nodes that are connected directly upstream to a
pipeline in node j.

∑
j∈O(g)

fg,j,s2 ≤ zFg g ∈ G, s2 ∈ S2, (6.15)

∑
j∈I(m)

fj,m,s2 ≤ zFm m ∈M, s2 ∈ S2. (6.16)

For the intermediate nodes (that are not booking nodes) we must take care of
the mass balance:∑

i∈I(j)
fi,j,s2 =

∑
k∈O(j)

fj,k,s2 j ∈ J \ N , s2 ∈ S2. (6.17)

197



Chapter 6 Flexibility in a Network with Interruptible Transportation Services

The events are modeled by reduced capacities Ki,j,s2 in pipelines between nodes
i and j. In fields and markets the reduced capacity is given by Kj,s2 :

fj,i,s2 ≤ Kj,i,s2 j ∈ J , i ∈ O(j), s2 ∈ S2, (6.18)∑
j∈O(g)

fg,j,s2 ≤ Kg,s2 g ∈ G, s2 ∈ S2, (6.19)

∑
j∈I(m)

fj,m,s2 ≤ Km,s2 m ∈M, s2 ∈ S2. (6.20)

The dynamic capacity of the network depends on the pressure in each node, and
is described through a Weymouth equation for each pipeline. The Weymouth
equation has the following form:

fj,i,s2 = KW
j,i

√
p2j,s2 − p2i,s2 j ∈ J , i ∈ O(j), s2 ∈ S2, (6.21)

where KW
j,i is the Weymouth constant for the pipeline going from node j to node i.

This constant depends on characteristics of the pipeline such as diameter, length
and roughness (for more details, see for instance Campbell (1992)). The pressure
in node j in event outcome s2 is then given by pj,s2 . Since (6.21) is not linear,
an outer approximation derived by Taylor series expansion around fixed pressure
points PI l and PO l is used (Rømo, Tomasgard, Hellemo, Fodstad, Eidesen &
Pedersen 2009):

fj,i,s2 ≤ KW
j,i

(
PI l

PI 2l − PO2
l

pi,s2 −
PO l

PI 2l − PO2
l

pj,s2

)
l ∈ L, s2 ∈ S2, (6.22)

where the set L gives the fixed points used for the linearization. In our experience
around 20 of these constraints are needed to assure a good fit to the Weymouth
equation. Finally, we must make sure that the pressure in each node j is within
its upper and lower limit (P j and P j):

P j ≤ pj,s2 ≤ P j j ∈ J , s2 ∈ S2. (6.23)

Second Shipper Problem, SP2

In SP2 the objective function is the same as in SP1 (see Equation (6.1)). The main
change is that the allocation of firm capacity has been done by the TSO and is now
input to the shipper’s optimization problem, zFn . In the first stage in this three-
stage stochastic program the shipper decides how much interruptible capacity to
book, zIn. In the second stage the network capacity availability becomes known
and finally, in the third stage, the market prices become known.
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When the network capacity availability becomes known in the second stage,
the TSO decides upon routing and thus on how much of the shipper’s booked
capacity that must be interrupted. The shipper estimates the event dependent
interruption, an,s2 , as the difference between the total booking and the shipper’s
estimate for available capacity in event outcome s2, Hn,s2 :

an,s2 ≥
(
zFn + zIn

)
−Hn,s2 , n ∈ N , s2 ∈ S2. (6.24)

Finally, the shipper assumes that the TSO will allocate capacities such that
the final booking is balanced in the sense that entry (field) capacity equals exit
(market) capacity:

∑
g∈G

(
zFg + zIg − ag,s2

)
=
∑

m∈M

(
zFm + zIm − am,s2

)
s2 ∈ S2. (6.25)

We also need to include the mass balances in this problem, now including both
firm and interruptible booking. The injections and extractions are not allowed to
exceed the allocated capacity in each booking node, that is the booked firm (zFg
and zFm) and interruptible capacity (zIg and zIm) less the estimated interruptions
(ag,s2 and am,s2).

yg,s2,s3 ≤ zFg + zIg − ag,s2 , g ∈ G, s2 ∈ S2, s3 ∈ S3, (6.26)

xS
m,s2,s3 ≤ zFm + zIm − am,s2 , m ∈M, s2 ∈ S2, s3 ∈ S3. (6.27)

Second TSO Problem, TSO2

TSO2 is a quadratic mixed integer linear program run for each of the event out-
comes in S2. When the network capacity availability is known, the TSO decides
how much firm and interruptible capacity that can be delivered. The allocation
of firm capacity has been determined in TSO1, and the interruptible booking by
the shipper was determined in SP2.

The objective is to minimize the square of interruptions weighted by the book-
ing tariffs to make sure firm capacity is given priority:

min
∑
n∈N

(
TF
n aF

2

n,s2 + T I
na

I2

n,s2

)
. (6.28)

The TSO must then make sure that there is a balance between firm booking zFg ,
interruptible booking zIg, interruption of firm and interruptible capacity (aFg,s2 +
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aIg,s2) and the flow fg,j,s2 in each booking node:
∑

j∈O(g)

fg,j,s2 = zFg + zIg − aFg,s2 − aIg,s2 , g ∈ G, (6.29)

∑
j∈I(m)

fj,m,s2 = zFm + zIm − aFm,s2 − aIm,s2 , m ∈M. (6.30)

The TSO must also make sure that the interruption of capacity is not larger than
the allocated booking of firm and interruptible services:

aFn,s2 ≤ zFn , n ∈ N , (6.31)

aIn,s2 ≤ zIn,s2 , n ∈ N . (6.32)

No firm booking should be interrupted unless all interruptible booking in the
same node is interrupted. The two following constraints enforce this by the use
of the binary variable βn,s2 that is 1 if some firm booking is interrupted:

aFn,s2 ≤ zFn βn,s2 , n ∈ N , (6.33)

aIn,s2 ≥ zInβn,s2 , n ∈ N . (6.34)

The flows are limited by the capacities in the network, with constraints equal to
(6.17)-(6.23) of TSO1.

6.4 Numerical Analysis and Discussion

In this section we first present the data and the assumptions for our case study.
We then discuss the numerical results and our main findings.

Input Data and Assumptions
The topology in our case study is based on the topology on the Norwegian Con-
tinental Shelf (NCS), and is illustrated in Figure 6.5. The basis for the topology
is given in Norwegian Petroleum Directorate (2011), while details on production
and transportation capacities and plans are confidential and provided by the Nor-
wegian system operator, Gassco. The fields that we use in our case study are
aggregates of real fields in the same region. These aggregated fields can cover
both must-take fields and swing fields. All fields and markets are booking nodes
in the network, such that they require booking of transportation capacity corre-
sponding to their production and sale. The booking tariffs for firm transportation
capacity correspond to the real tariffs on the NCS, and are available at Gassco
(2012). We have assumed the booking tariff for interruptible services to be half
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Figure 6.5: Topology for the NCS test case. The ovals represent fields, the circles
are intermediate nodes, the rectangles are markets and the arrows are
pipelines.

the price of firm services. The model has been tested with security of supply
requirements for firm services in the range from 0.99 to 1 (where 1 indicates that
all firm capacity must be delivered in all scenarios).

Real production cost data are not easily available, so we have based our es-
timates on different sources. The production costs of must-take production are
estimated based on gas-to-oil ratios in Norwegian Petroleum Directorate (2011),
where a larger oil share gives a larger marginal production cost. The oil price
is taken from the Norwegian national budget for 2012. For the production cost
in the swing fields, we have based our parameters on Golombek, Gjelsvik &
Rosendahl (1998) and Kon-Kraft (2003).

Scenarios We have generated price outcomes for the markets based on real spot
prices from 2010 and 2011 for the market hubs NPB (UK), Zeebrugge (Belgium),
Gas Pool (Germany) and NetConnect (Germany). Since we only have one node
representing the markets in Germany, we have defined the price for the market
node ‘Germany’ as the average of the two German market hubs. The Dunkerque
price is estimated as 10% of the GasPool price and 90% of the Zeebrugge price.
The market prices are represented by 10 outcomes that are generated with the
moment-matching procedure described in Høyland, Kaut & Wallace (2003). Fig-
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Figure 6.6: The 10 spot price outcomes used in our analysis. The figure shows
that the prices are volatile and highly correlated.

ure 6.6 shows the prices for the 10 outcomes.
We have defined 19 events with reduced capacity, each corresponding to a sepa-

rate outcome. In addition, we have a default outcome where the system operates
at full capacity. We do not consider multiple simultaneous events in any of the
outcomes. This means that each event outcome only gives capacity reduction in a
single node. The event outcomes are constructed such that all markets and fields
have capacity reduction in one outcome, while the two processing plants Koll-
snes and Kårstø (in our test case a field and an intermediate node, respectively)
have four events each. The probability and extent of the capacity reductions are
calibrated so that the availability corresponds to the average availability figures
reported by Gassco in 2010 and 2011 (Gassco 2010, 2011). Since our field nodes
represent an aggregate of several smaller fields we have distinguished between
field nodes that represent only a few underlying fields and field nodes that repre-
sent many. The capacity reduction is larger for field nodes with few underlying
fields and smaller but more likely for field nodes with several underlying fields.
Table 6.1 lists the events with the affected node, probability and the capacity
reduction.

In total the 10 market outcomes and 20 event outcomes give a three-stage
scenario tree with 200 scenarios.

Results and Discussion
The model is implemented in Mosel version 3.2.2 and solved by Xpress Optimizer
version 22.01.10 on a 2.80GHz dual core computer with 4 GB RAM. The whole
sequence of shipper and TSO problems were solved within seconds. A benchmark
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Outcome Node Probability Capacity reduction
0 No event 0.631 0 %
1 NBP 0.001 35 %
2 Zeebrugge 0.001 35 %
3 Dunkerque 0.001 35 %
4 Germany 0.001 35 %
5 AreaD 0.007 50 %
6 Nyhamna 0.004 75 %
7 Heimdal 0.007 50 %
8 Oseberg 0.005 70 %
9 AreaA 0.011 30 %

10 AreaB 0.013 25 %
11 Ekofisk 0.003 100 %
12 Kollsnes 0.069 25 %
13 Kollsnes 0.020 50 %
14 Kollsnes 0.010 75 %
15 Kollsnes 0.001 100 %
16 Kårstø 0.076 25 %
17 Kårstø 0.020 50 %
18 Kårstø 0.010 75 %
19 Kårstø 0.001 100 %

Table 6.1: The event outcomes that we use in our analysis. Only one node has
a capacity reduction in each of the outcomes. The numbers are cali-
brated to match the reported availability figures from Gassco.
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is calculated with the same model framework. The difference is that there are
no interruptible services available in the benchmark, which also means that SP2
is superfluous. Furthermore, we require that the booking request for entry and
exit booking in SP1 in the benchmark analysis is balanced. This is due to the
requirement for firm services to be balanced, while the interruptible services can
be unbalanced. In the following we use the label ‘Without’ for the benchmark
solution, while ‘With’ indicates tests with interruptible services. We test the two
model setups for increasing security of supply requirements, and compare the
effects on booking levels, total throughputs, incomes and costs.

Booking levels Our first observation is that the total booking stays constant
independent of the security of supply level when interruptible services are avail-
able. This can be seen in Figure 6.7 where the firm booking decreases, while the
interruptible booking increases with the same amount. This result is intuitive,
since the producer’s preference for transportation capacity is unchanged from SP1

to SP2. The producer will then seek to obtain the same total amount of capacity
by increasing the interruptible booking.

Figure 6.7 also shows our second observation, that allocated firm booking is
slightly reduced when interruptible services are not available. This is the effect
of requiring booking requests to be balanced in SP1, which reduces the booking
request and thereby limits the TSO’s possibility to adapt allocation to the net-
work capacities. When allowed, the shipper consistently books nearly 90 MSm3

more entry capacity than exit capacity, even though it implies paying for some
transportation capacity that necessarily will be interrupted. This comes from
the ability to adapt to events by substituting production with fields that are not
affected by an event. It should be noted that the tariffs are very small, less than
13% of the average spot price, so the option cost of this flexibility is very low.

Total expected throughput The allocated firm capacity is falling with increas-
ing security of supply level, which comes natural since increasing buffers are
needed to withstand the events. Our third observation is that the benchmark has
a falling expected throughput as the security of supply requirement increases,
as can be observed in Figure 6.8. More surprisingly, according to our fourth
observation the expected throughput is increasing with the security of supply re-
quirement when interruptible services are available. Since interruptible services
do not have any security of supply requirement this shift from firm to interrupt-
ible capacity seen in Figure 6.7 increases the flexibility for the TSO and makes it
possible to better adapt the flow to the network capacities with its system effects.
The expected throughput increases by 7% when security of supply requirements
increases from 0.99 to 1 and interruptible services are available.

These two last observations together confirms our hypothesis, that including
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Figure 6.7: Interruptible and allocated firm booking decisions. Since there are
both entry and exit booking, total flow cannot exceed half the total
booking.

interruptible services to the transportation service regime will increase the effi-
ciency by enabling a larger expected throughput in the transportation network
without reducing the security of supply. The expected throughput increases with
13% when introducing interruptible services at the lowest security of supply level
(0.99), and the difference increases to over 250% when the security of supply
requirement is 1.
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Figure 6.8: The total exptected throughput in the system. The dotted line shows
the results for the model without interruptible services, while the full
line shows the results for the model with interruptible services.
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Figure 6.9: The final production cost in the fields in our model runs. The full
line shows the results when interruptible booking is available, while
the dotted line is the result of the model where interruptible booking
is not available.

Income and costs Resulting income shows a pattern similar to the total flow,
with an increase of between 13% (with security of supply level of 0.99) to 274%
(with security of supply level of 1) compared to the benchmark. Differences in
average achieved spot prices are small, which is reasonable since both booking and
interruption are allocated before spot prices become known. The ability to adapt
to the varying spot prices is therefore limited. Our fifth observation on the other
hand, is a dramatic increase in production cost due to decreased oil production for
the benchmark as security of supply increases, as can be seen in Figure 6.9. When
the transportation capacity is reduced, production of natural gas at the field
must be reduced and therefore also the oil production. This leads to the largest
changes in the benchmark since the transportation capacity falls below the must-
take production limits in these fields when the security of supply requirements
is high. Since we do not have real production cost functions available there is
substantial uncertainty with respect to the true monetary cost of this decreased
oil production. The profit margins of oil is however substantially larger than
for gas, so the shape of the production cost functions are representative. We
therefore also argue that the improved ability of stable oil production through
introduction of interruptible services is valid. The non-monotone shape of the
curves in Figure 6.9 is due to our model framework with a sequence of models
with objectives that are not fully aligned, where an early booking or allocation
decision can be non-optimal for the final supply chain performance.

Discussion of TSO behavior In our modeling framework the TSO is a non-
profit agent who minimizes the deviation between the shipper’s booking requests
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and the flow in the network. The shipper on the other hand is profit maximizing.
This corresponds well to the incentives of the agents in the Norwegian system.
These non-aligned objectives can however cause inefficiencies seen from a system
perspective. The TSO do neither have information about spot prices nor produc-
tion costs. The TSO might therefore give priority to a swing field and interrupt
must-take production, or interrupt a high price market rather than a low price
market.1 In the modeled booking regime, which corresponds closely to the real
Norwegian system, there is no way for the shippers to signal priorities between
different booking nodes, which leave a risk for inefficient operation when prices
or costs vary.

To test the significance of the agents’ differing incentives on the supply chain
performance, we ran our case study with an alternative set of TSO models where
the incentives were more in line with the shipper’s incentives. That is, the original
objective functions were replaced with an objective where social surplus in the
network were maximized, and the flows were allowed to fall below the uninter-
rupted capacities. This corresponds to an idealized situation where the TSO has
all price and production cost information. Figure 6.10 compares profits with the
social surplus maximizing TSO to the original formulation. The sixth observation
is that the profits can increase if the TSO maximizes social surplus rather than
taking market signals from the booking requests only. Due to increased flow and
income there is approximately 10 % increase of profit for security of supply re-
quirements less than 0.997 when interruptible services are available. For stricter
security of supply requirements the profit increases are less regular. With in-
terruptible services the model where the TSO maximizes social surplus avoids
withholding must-take production with valuable associated oil, which causes a
major profit increase of 69 % when security of supply is 1.

Implications of using a three-stage model We have considered two types of
uncertainty in our model: events in the network and market prices. The flexibility
offered by the interruptible services can be used to increase the throughput in the
system due to uncertainty regarding events. The interruptible services also allow
the shipper to have unbalanced booking which could be valuable with volatile
market prices. While we have demonstrated that the effect on throughput is
indeed significant, we have not been able to demonstrate any significant value of
including interruptible services when unknown market prices are the only source
of uncertainty. This is however as expected since interruptions are allocated
before market uncertainty is resolved in our model framework. To analyze the
effect of interruptible services on market uncertainty, we would have to increase

1In real life operation the TSO naturally have more insight in the system than what is provided
to him through the bookings, so it is unlikely that swing production would be given priority
over must-take production in actual operation.
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Figure 6.10: Comparison of profit (income less production cost) from model runs
with the original TSO objective functions (‘Original’) and the mod-
ified TSO objective functions that are more aligned with the pro-
ducer’s objective function (‘Aligned’). The left part shows results
with interruptible services and the right part is without interrupt-
ible services available.

the number of stages in our models. This is due to the number of iterations used
on the NCS to allocate firm capacity and the possibility to adapt the capacity
allocation to market prices as the uncertainty is gradually reduced.

6.5 Conclusions

In this paper we have developed a framework for analysis of interruptible trans-
portation services in the natural gas system. We have also developed a new
production cost function where the effects of reduced gas production on oil pro-
duction in the same field are incorporated. We have tested the modeling frame-
work on a case study with realistic input data, and a topology that is similar
to the topology on the Norwegian Continental Shelf. The results from our case
study show that there is a substantial gain in efficiency in the network when
interruptible services are introduced to address network events. Both total flow
and income in the system is drastically increased compared to the benchmark
solution where interruptible services are not available. For the highest level of
security of supply, the increase in flow and income in the system is as large as
250%.
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Appendices

6.A Input Data

In real life, a shipper bases his expectation for network capacity availability on
historical observations and knowledge about the system. To generate the ship-
per’s estimates to network capacity we have used an optimization model where
the objective is to find the best possible utilization of the network in each scenario
(s2, s3) ∈ (S2,S3):

max
∑

m∈M
Pm,s2xm,s2,s3 −

∑
g∈G

cg,s2,s3 . (6.35)

The production cost cg,s2,s3 is represented by the set Q of linear constraints
describing must-take production as in the shipper problems and a constraint
representing the linear production cost of swing production.

cg,s2,s3 ≥ CAMT
g,q + CBMT

g,q yg,s2,s3 g ∈ G, q ∈ Q, (6.36)

cg,s2,s3 ≥ CBSW
g

(
yg,s2,s3 − Y MT

g

)
g ∈ G. (6.37)

The following two constraints make sure the flows correspond to production and
sales decisions:

yg,s2,s3 =
∑

j∈O(g)

fg,j,s2,s3 g ∈ G, (6.38)

xm,s2,s3 =
∑

j∈I(m)

fj,m,s2,s3 m ∈M. (6.39)

The production is limited by the production capacities as in constraint (6.6) in
SP1 and the flows are limited by the network capacities with constraints equal to
(6.17)-(6.23) in TSO1.

The problem utilizes the TSO’s knowledge of the physical network structure
and capacities, and the shipper’s knowledge of production costs and market
prices. The problem has a hybrid objective, where we seek to maximize through-
put in the system, but with a realistic distribution between the fields and the
markets. To achieve this we maximize sales income less production cost as de-
fined in SP12.
2The quadratic part of the production cost is removed to avoid that production is limited by

high production costs.
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For each event outcome s2 ∈ S2 we set the shipper’s estimate for available
capacity based on the market outcome ŝ3 ∈ S3 with the largest total throughput∑

m∈M xm,s2,s3 . This gives the following definition of the estimated capacity
Hn,s2 :

Hg,s2 = yg,s2,ŝ3 , g ∈ G, s2 ∈ S2, ŝ3 = argmax
s3∈S3

∑
m∈M

xm,s2,s3 , (6.40)

Hm,s2 = xm,s2,ŝ3 , m ∈M, s2 ∈ S2, ŝ3 = argmax
s3∈S3

∑
m∈M

xm,s2,s3 . (6.41)

6.B Notation

Name Description Type
g Field index
m Market index
n Node with transportation booking index
j, i Nodes in general index
s, s2, s3 Outcome index
q Linearization of production cost function index
J Nodes set
I(j) Nodes with pipeline going into node j set
O(j) Nodes with pipeline going out from node j set
G Fields, G ⊂ J set
M Markets, M⊂ J set
N Booking nodes, N = G ∪M set
S2 Scenario nodes in second stage, event outcomes set
S3 Scenario nodes in third stage, market price outcomes set
Q Linear pieces in production cost function set
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Name Description Type
πs2 Probability of event outcome constant
πs3 Probability of market outcome constant
R Requirement on security of supply for firm services constant
Yg,s2 Production capacity (uncertain) constant
Y MT
g Must-take production capacity constant

TF
n Firm tariff constant

T I
n Interruptible tariff constant

Hn,s2 Transportation capacity through node n assumed by the
shipper (uncertain)

constant

Pm,s3 Spot price (uncertain) constant
CAMT

g,q Coefficient of constant part of must-take production cost constant
CBMT

g,q Coefficient of linear part of must-take production cost,
< 0

constant

CBSW
g Coefficient of linear part of swing production cost constant

CCSW
g Coefficient of quadratic part of swing production cost constant

KW
i,j Weymouth constant constant

Ki,j,s2 Static pipeline capacity under event constant
Kj,s2 Static node capacity under event constant
P j Maximum pressure in node constant
P j Minimum pressure in node constant
zFn Firm booking variable
zIn Interruptible booking variable
aFn,s2 Interruption of firm capacity variable
aIn,s2 Interruption of interruptible capacity variable
an,s2 Total interruption of booked capacity variable
xm,s2,s3 Spot sale variable
yg,s2,s3 Production variable
cMT
g,s2,s3 Must take production cost variable
cSW
g,s2,s3 Swing production cost variable
fj,jj,s2 Flow variable
pj,s2 Pressure variable
βn,s2 Binary variable that is 1 if firm booking is interrupted variable
cg,s2,s3 Production cost variable

If a variable is overlined in a problem description, it is a constant in that
problem.

212



Bibliography

Bopp, A., Kannan, V., Palocsay, S. & Stevens, S. (1996), ‘An optimization model
for planning natural gas purchases, transportation, storage and deliverability’,
Omega, The International Journal of Management Science 24(5), 511–522.

Campbell, J. (1992), Gas Conditioning and Processing: The Equipment Modules,
John M. Campbell & Company, Norman, Oklahoma, USA.

Doane, M. J., McAfee, R. P., Nayyar, A. & Williams, M. A. (2008), ‘Interpreting
concentration indices in the secondary market for natural gas transportation:
The implication of pipeline residual rights’, Energy Economics 30, 807–817.

Ehrenmann, A. & Neuhoff, K. (2009), ‘A comparison of electricity market designs
in networks’, Operations 57(2), 274–286.

Gassco (2010), ‘Annual report 2010’.

Gassco (2011), ‘Annual report 2011’.

Gassco (2012), ‘Gassco homepage’. Visited 3 November 2012.
URL: www.gassco.no

Golombek, R., Gjelsvik, E. & Rosendahl, K. (1995), ‘Effects of liberalizing the
natural gas markets in Western Europe’, Energy Journal 16, 85–111.

Golombek, R., Gjelsvik, E. & Rosendahl, K. E. (1998), ‘Increased competition
on the supply side of the Western European natural gas market’, The Energy
Journal 19(3), 1–18.

Guldmann, J.-M. & Wang, F. (1999), ‘Optimizing the natural gas supply mix of
local distribution utilities’, European Journal 112, 598–612.

Hellemo, L., Midthun, K., Tomasgard, A. & Werner, A. (2013), Multi-stage
stochastic programming for natural gas infrastructure design with a production
perspective, in H. I. Gassmann & W. T. Ziemba, eds, ‘World Scientific Series in
Finance. Stochastic Programming: Applications in Finance, Energy, Planning
and Logistics’.

Hobbs, B. F., Metzler, C. B. & Pang, J.-S. (2000), ‘Strategic gaming analysis for
electric power systems: An MPEC approach’, IEEE Transactions on Power
Systems 15(2), 638–645.

213



Bibliography

Høyland, K., Kaut, M. & Wallace, S. W. (2003), ‘A heuristic for moment-
matching scenario generation’, Computational Optimization and Applications
24(2-3), 169–185.

Kalashnikov, V. V., Pérez-Valdés, G. A., Tomasgard, A. & Kalashnykova, N. I.
(2010), ‘Natural gas cash-out problem: Bilevel stochastic optimization ap-
proach’, European Journal of Operational Research 206(1), 18–33.

Keyaerts, N., Hallack, M., Glachant, J.-M. & D’haeseleer, W. (2011), ‘Gas market
distorting effects of imbalanced gas balancing rules: Inefficient regulation of
pipeline flexibility’, Energy Policy 39, 865–876.

Kon-Kraft (2003), ‘Norsk petroleumsvirksomhet ved et veiskille - forslag til skat-
temessige endringr for økt verdiskaping og aktivitet’.

Li, X., Armagan, E., Tomasgard, A. & Barton, P. I. (2011), ‘Stochastic pool-
ing problem for natural gas production network design and operation under
uncertainty’, AIChE Journal 57(8), 2120–2135.

Martin, A., Möller, M. & Moritz, S. (2006), ‘Mixed integer models for the sta-
tionary case of gas network optimization’, Mathematical Programming 105(2-
3), 563–582.

Midthun, K. T., Bjørndal, M. & Tomasgard, A. (2009), ‘Modeling optimal eco-
nomic dispatch and flow externalities in natural gas networks’, Energy Journal
30(4), 175–200.

Midthun, K. T., Bjørndal, M., Tomasgard, A. & Smeers, Y. (2007), Capacity
booking in a transportation network with stochastic demand and a secondary
market for transportation capacity, in K. T. Midthun, ed., ‘Optimization mod-
els for liberalized natural gas markets’, PhD thesis, NTNU, Trondheim, Nor-
way.

Midthun, K. T., Nowak, M. P. & Tomasgard, A. (2007), An operational portfolio
model for a natural gas producer, in K. T. Midthun, ed., ‘Optimization models
for liberalized natural gas markets’, PhD thesis, NTNU, Trondheim, Norway.

Moritz, S. (2007), A Mixed Integer Approach for the Transietn Case of Gas
Network Optimization, PhD thesis, Technical University of Darmstadt.

Norwegian Petroleum Directorate (2011), ‘Facts - the Norwegian petroleum sec-
tor’.

Norwegian Petroleum Directorate (2012), ‘Facts - the Norwegian petroleum sec-
tor’.

214



Bibliography

Rømo, F., Tomasgard, A., Hellemo, L., Fodstad, M., Eidesen, B. H. & Pedersen,
B. (2009), ‘Optimizing the Norwegian natural gas production and transport’,
Interfaces 39(1), 46–56.

Rockafellar, R. T. (2007), Tutorials in Operations Research, OR Tools and Ap-
plications: Glimpses of Future Technologies, INFORMS, chapter Coherent Ap-
proaches to Risk in Optimization Under Uncertainty, pp. 38–61.

Ruff, L. E. (2012), ‘Rethinking gas markets - and capacity’, Economics of Energy
& Environment Policy 1(3), 1–13.

Selot, A., Kuok, L. K., Robinson, M., Mason, T. L. & Barton, P. I. (2008), ‘A
short-term operational planning model for natural gas production systems’,
AIChE Journal 54(2), 495–515.

Tomasgard, A., Rømo, F., Fodstad, M. & Midthun, K. (2007), Optimization
models for the natural gas value chain, in G. Hasle, K.-A. Lie & E. Quak,
eds, ‘Geometric Modelling, Numerical Simulation, and Optimization: Applied
Mathematics at SINTEF’, Springer-Verlag Berlin Heidelberg, chapter Opti-
mization Models for the Natural Gas Value Chain.

Ulstein, N. L., Nygreen, B. & Sagli, J. (2007), ‘Tactical planning of offshore
petroleum production’, European Journal of Operational Research 176, 550–
564.

Vazquez, M., Hallack, M. & Glachant, J.-M. (2012), ‘Designing the European gas
market: More liquid & less natural?’, Economics of Energy & Environmental
Policy 1(3), 3.

Vournas, C. (2001), ‘Interruptible load as a competitor to local generation for pre-
serving voltage security’, Proceedings of the IEEE Power Engineering Society
Winter Meeting 1, 236–240.

215





Paper VI

Kristin Tolstad Uggen, Marte Fodstad and Vibeke Stærkebye
Nørstebø:

Using and Extending
Fix-and-Relax to Solve
Maritime Inventory
Routing Problems

Accepted in TOPa, and published online on March 2011.
aCopyright Springer-Verlag



218



Chapter 7

Using and Extending Fix-and-Relax to

Solve Maritime Inventory Routing

Problems

Abstract:
The paper presents a new way of optimising maritime inventory routing
problems (IRP) by using a heuristic approach based on fix-and-relax time
decomposition extended with two new features. The purpose of the exten-
sions is to reduce computation time during the fix-and-relax process and to
improve solution quality after a first solution is found. The feature which
improves solution quality is independent of the method used for calculating
the first solution. In this study, the algorithm and extensions have been
tested on four liquefied natural gas (LNG) cases and the impacts on com-
putational time and objective function value are reported. The results show
that using fix-and-relax reduces computing time considerably while the ob-
jective function value is only slightly worse compared to a general MILP
solver. Furthermore, the results confirm that the extensions work accord-
ing to the intentions when compared to the original fix-and-relax heuristic.
For relatively complex cases, it appears advantageous to use the developed
extensions.

7.1 Introduction

In industrial supply chains, inventory management and routing have traditionally
been managed separately. Combining the management of inventory and routing
leads to an inventory routing problem (IRP). In maritime IRP the transportation
mode is vessels. In such problems, products are produced and stored in invento-
ries at loading ports and are transported by sea to unloading ports where they
are stored prior to consumption. Christiansen & Fagerholt (2009) formulate a
basic maritime IRP model and discuss different model extensions. The tough-
est computational challenges for optimising IRP come from the routing which is
known to be a NP-hard binary linear problem. Because of the complexity of such
problems, almost all solution approaches concerning IRP are heuristics.

The objective of this paper is to present a new heuristic method for solving a
maritime IRP based on fix-and-relax time decomposition, an approach originally
developed by Dillenberger, Escudero, Wollensak & Zhang (1994). To obtain
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better and faster solutions we have extended this approach by reducing size of
sub-problems by simplifying the modelling of the last intervals and adding an
Improvement Phase after a feasible solution is found. We have not found any
literature where the fix-and-relax method is used for a routing problem.

We test the method on a maritime IRP where the product is liquefied natural
gas (LNG). In addition to routing and storage management, the problem ad-
dresses onshore processes, contracts, and markets. One major difference to more
basic IRPs is that in our problem some of the cargo (LNG) is lost during trans-
port. An in-depth description of the model is given in Fodstad, Tolstad Uggen,
Rømo, Lium, Stremersch & Hecq (2010).

The paper is organised as follows: The next section reviews existing research on
IRP, especially maritime IRP, and on the fix-and-relax method. These research
studies provide a theoretical foundation for the extended fix-and-relax approach
described in the subsequent section. Thereafter, a presentation of the LNG case
study and the test setup is given, and results from running the LNG-IRP model
with the various extensions are presented and discussed. The last section con-
cludes the work.

7.2 Theoretical Foundation and Related Research

This section presents a short literature overview regarding the problem class IRP
focusing on maritime transportation and a description of work done on the fix-
and-relax methodology.

Maritime Inventory Routing Problem

Most of the IRP literature considers land-based problems. Since the problem
class addressed in this paper is maritime IRP, we have focused on IRP literature
dealing with the maritime sector. For papers on land-based IRP, see for example
(Golden, Assad & Dahl 1984, Dror, Ball & Golden 1985, Campbell, Clarke, Kley-
wegt & Savelsbergh 1998). In addition Andersson, Hoff, Christiansen, Hasle &
Løkketangen (2010) and Cordeau, Laporte, Savelsbergh & Vigo (2007) describe
both land-based and maritime IRP, point out industrial aspects of the problems
and give an overview of literature. Differences between land-based and maritime
transportation are described in Christiansen, Fagerholt, Nygreen & Ronen (2007).
There are several similarities between IRP and vendor managed inventory (VMI)
problems. Al-Ameri, Shah & Papageorgiou (2008) make a review of literature
concerning VMI, including a shipping-based VMI system.

Christiansen, Fagerholt & Ronen (2004) present a review of literature con-
cerning maritime IRP. The problem is mainly discussed with regards to tactical
and operational problems in industrial shipping. Some examples of applications
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Table 7.1: Notation for basic IRP
Name Description Type
N All ports Set
Nv Ports compatible with vessel v, Nv ⊆ N Set
T All time periods Set
V All vessels Set

τi,j,t,v = {t′ ∈ T | t = t′ + TTi,j,t′,v + 1}, τi,j,t,v ⊂ T Set
xi,j,t,v Travel from port i to port j with vessel v leaving on t Variable
wi,t,v Vessel v waiting by port i in time period t Variable
qi,t,v Amount loaded/unloaded by vessel v in port i in time

period t
Variable

lt,v Storage level of vessel v in the end of time period t Variable
si,t Storage level in port i in the end of time period t Variable
Ci,j,v Cost for vessel v travelling from port i to port j Constant

TTi,j,t,v Travel time from port i to port j with vessel v leaving
on t

Constant

Qi,v Loading/unloading capacity for vessel v in port i Constant
Lv Storage capacity of vessel v Constant
Si Storage capacity in port i Constant
Ii Indicator. 1 for loading ports and -1 for unloading ports Constant
Ri Production/consumption rate in port i Constant

are (Christiansen 1999, Christiansen & Nygreen 1998a,b, Flatberg, Haavardtun,
Kloster & Løkketangen 2000) who formulate and solve a combined inventory
management and ship scheduling problem for a company in the fertilizer indus-
try. Miller (1987) and Dauzère-Pérès, Nordli, Olstad, Haugen, Koester, Myrstad,
Teistklub & Reistad (2007) discuss the problem with sloshing of chemical and
frozen products in tanks, which is a critical aspect in maritime transportation.
Dauzère-Pérès et al. (2007) also present implementation of a decision support
system. Persson & Göthe-Lundgren (2005) and Al-Khayal & Hwang (2007) deal
with multiple products, more exactly bitumen and petrochemical products, re-
spectively. Grønhaug, Christiansen, Desaulniers & Desrosiers (2008) and Grøn-
haug & Christiansen (2009) present models and solution methods to solve an
LNG supply chain problem. A rich model for solving the LNG supply chain
problem can also be found in Fodstad et al. (2010).

A basic maritime IRP consists of operating a given fleet of vessels between
different ports, taking into account travel time and capacities on vessels and
ports. Equations (7.1)-(7.9) present a mathematical formulation of a basic IRP,
with the notation and basic elements given in Table 7.1. The objective function
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(1) is to minimise the variable costs of operating the vessel fleet. Constraints (2)
take care of routing and scheduling of the vessels, including idle periods. The
port calls are assumed to be one day at the end of each voyage. Constraints (3)
make sure loading and unloading only takes place during a port call. The storage
levels for vessels are updated in constraints (4) and storage capacities are taken
care of in constraints (5). Similar constraints for onshore storages are given in
constraints (6) and (7), where fixed production and consumption rates represents
the interface to surrounding other parts of the value chain. Constraints (8) and (9)
require x-variables to be binary and all other variables to be non-negative. Note
that the w-variables will take binary values without a binary requirement because
the other variables in constraints (2) are binary. This formulation resembles the
basic IRP described by Christiansen & Fagerholt (2009), but leaving out start
and end conditions and modelling discrete time steps instead of continuous time

min
∑
v∈V

∑
i∈Nv

∑
j∈Nv

∑
t∈T

Ci,j,vxi,j,v,t (7.1)

∑
j∈Nv

∑
t′∈τi,j,t,v

xj,i,t′,v + wi,t−1,v =
∑
j∈Nv

xi,j,t,v + wi,t,v

∀ v ∈ V, i ∈ Nv, t ∈ T (7.2)
qi,t,v ≤ Qi,v

∑
j∈Nv

xi,j,t+1,v ∀ v ∈ V, i ∈ Nv, t ∈ T (7.3)

lt,v = lt−1,v +
∑

i∈Nv

Iiqi,t,v ∀ v ∈ V, t ∈ T (7.4)

lt,v ≤ Lv ∀ v ∈ V, t ∈ T (7.5)
si,t = si,t−1 −

∑
v∈V

Iiqi,t,v + IiRi ∀ i ∈ N, t ∈ T (7.6)

si,t ≤ Si ∀ i ∈ N (7.7)
xi,j,t,v ∈ {0, 1} ∀ v ∈ V, i ∈ Nv, j ∈ Nv, t ∈ T (7.8)

wi,t,v, qi,t,v, lt,v, si,t ≥ 0 ∀ i ∈ N, t ∈ T, v ∈ V (7.9)

Several approaches have been used for solving IRPs. One approach that is
widely used in the maritime sector is based on the path-flow formulation. Path-
flow models divide the solution process into two phases. In the first phase, feasible
ship schedules are generated. In the second phase, the model selects among
these feasible schedules. Appelgren (1969, 1971) presents the first studies using
this approach in the maritime sector. Christiansen (1999) uses Dantzig-Wolfe
decomposition to obtain a path-flow formulation with column generation, and
branch-and-price in the problem solving. In Christiansen & Nygreen (2005), this
problem is extended to deal with uncertainties in sailing and port time. Persson
& Göthe-Lundgren (2005) include varying production rates at loading ports and
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consider a multi-product case when they apply a path-based formulation on a
maritime IRP. The approach is based on column generation and tree search.
A branch-and-price-and-cut method is used by Grønhaug et al. (2008) on their
path-flow formulation.

Another approach is the arc-flow formulation, where a feasible schedule is ex-
plicitly given through arc constraints in the model. Miller (1987) uses an arc
flow formulation to evaluate changes that are made to an existing solution of
a maritime IRP, generated by a constructive heuristic. In Al-Khayal & Hwang
(2007), the formulation by Christiansen (1999) is extended and comprises mul-
tiple products and ships with multiple compartments. The extended problem
is solved by branch-and-bound methodology. Grønhaug & Christiansen (2009)
compare solution times for an arc-flow and a path-flow formulation of the same
problem.

Many variants of heuristics have been proposed for the maritime IRP, some of
them are briefly described here: Flatberg et al. (2000) decompose the problem
discussed in Christiansen (1999) and propose an algorithm which combines an
iterative heuristic with an exact LP (Linear Programming) solution approach.
The algorithm uses a combinatorial local search heuristic to solve the ship rout-
ing part of the problem. LP is applied to optimise the scheduling problem with
given vessel routes. Dauzère-Pérès et al. (2007) formulate a less complex model
for describing the maritime IRP by including practical knowledge in the mod-
elling. However, only an approximation of the problem can be solved because the
objective function is non-linear. A greedy heuristic and a genetic local search are
applied. Another approach for solving this problem is formulated by Moscato &
Cotta (2003). They develop a genetic algorithm to determine the best order of
visit for the problem.

Fix-and-Relax Heuristic

The fix-and-relax time decomposition heuristic was originally described by Dillen-
berger et al. (1994). Since then, it is applied widely, most notably in production
planning, in particular lot-sizing and scheduling. Examples are Dillenberger et al.
(1994), Stadtler (2003), Kelly & Mann (2004), Beraldi, Ghiani, Grieco & Guer-
riero (2006, 2008), Absi & Kedad-Sidhoum (2007), Federgruen, Meissner & Tzur
(2007), de Araujo, Arenales & Clark (2007, 2008), Akartunali & Miller (2009),
Pochet & Warichet (2008), Mohammadi, Fatemi Ghomi, Karimi & Torabi (2008)
and Ferreira, Morabito & Rangel (2009). Other applications are Ouhimmou,
D’Amours, Beauregard, Ait-Kadi & Singh Chauhan (2008) on tactical supply
chain planning, Alonso-Ayuso, Escudero & Pizarro (2009) and Alonso-Ayuso,
Escudero, Pizarro, Romeijn & Romero Morales (2006) on a multi-period single-
source assignment problem, Escudero & Salmeron (2005) on project scheduling,

223



Chapter 7 Using and Extending Fix-and-Relax to Solve Maritime IRP

Interval 1 Interval 2 Interval 3 Interval n

Integer
variables

LP relaxed 
integer

variables

Figure 7.1: Fix-and-relax - iteration one

Alonso, Escudero & Ortuno (2000) and Marín (2006) on airport traffic manage-
ment and Aytekin (2002) on capital investment planning in the U.S. Navy. In
several examples of fix-and-relax applied to stochastic programming problems,
the structure of a scenario tree is utilised to achieve separable sub-trees as in
Alonso et al. (2000) and Beraldi et al. (2006).

The basic idea of the method as described by Dillenberger et al. (1994) is as
follows: the planning horizon is divided into a finite number of time intervals n, as
illustrated in Figure 7.1. The problem is then decomposed into n sub-problems,
and solved in iterations corresponding to the time intervals.

In the first iteration, the iteration counter v is set to 1. The sub-problem is
solved with the integer variables in the first interval, while the integer variables in
the remaining time intervals are replaced by continuous variables, here referred
to as an LP relaxation of the integer variables. (All variables that are continuous
in the model description are kept continuous throughout the solution process.)

In each of the next iterations, v is increased by 1. The integer variables from
interval v − 1 are fixed to the solution values from the previous iteration. Inte-
grality constraints are reintroduced for the integer variables of interval v while all
other variables are kept non-fixed and continuous (see Figure 7.2, where v = 2).
After solving the new sub-problem, the iteration is completed. The process is
then repeated until interval v = n is completed. After solving iteration n, a
complete solution to the original problem is found. The procedure groups the
intervals in three blocks: the Fix Block, the Integer Block and the Continuous
Block as illustrated in Figure 7.2.

Wolsey (1998) gives a more general presentation of the heuristic under the
name Relax-and-Fix. He splits the integer variables into “important” and “less
important” variables. The important integer variables are solved first while the
less important are LP relaxed. In the next iteration the important integer vari-
ables are fixed and the integrality constraints of the less important variables are
reintroduced. Kelly & Mann (2004) extend this to several groups of variables,
and let the groups represent the different levels in a production process. Beraldi
et al. (2008) use both time and product as basis for the grouping of variables.
Ferreira et al. (2009) show how any index of the integer variables can be used as
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Interval 1 Interval 2 Interval 3 Interval n

Fixed Block: 
Fixed integer

variables

Continuous Block: 
LP relaxed integer 

variables

Integer Block: 
Integer

variables

Figure 7.2: Fix-and-relax - iteration two

criteria for partitioning the variables into groups.
Another generalization of the heuristic is given by Mohammadi et al. (2008).

They replace the Continuous Block with a simplified linear model formulation.
There are several possible ways to specify the fixing principle. With binary

variables, Akartunali & Miller (2009) observed no significant difference between
fixing all binary values from an intermediate solution, fixing only the 1-values
or fixing only the 0-values. Federgruen et al. (2007), amongst others, discuss
whether to fix the continuous variables or not.

Since the overall algorithm is a heuristic with limited ability to see how an early
decision affects the later intervals, it might not be worth solving each sub-problem
to optimality. Both Absi & Kedad-Sidhoum (2007) and Akartunali & Miller
(2009) use time limits and MIP gap limits as stopping criteria in each iteration.
Akartunali & Miller (2009) point out the need for greater time limits for early
iterations due to the change in sub-problem complexity during the algorithm.

The basic fix-and-relax algorithm, as described above, may fail to produce a
feasible solution even if one exists. Several proposals have been made to reduce or
remove this weakness. Dillenberger et al. (1994) fix the second best solution of the
previous iteration if a sub-problem (except the first) turns out infeasible. Stadtler
(2003) and Absi & Kedad-Sidhoum (2007) use overlap between the intervals so
that some variables with integrality requirement in the previous iteration are kept
unfixed. Pochet & Warichet (2008) use another known method, local branching,
where a limited number of binary variables from the previous intervals are allowed
to change value. If a sub-problem is infeasible, Escudero & Salmeron (2005) unfix
the variables of previous intervals and re-optimise until the problem becomes
feasible. Beraldi et al. (2006) point out that this algorithm may cancel out
the whole decomposition, ending up with the original problem. Instead, for their
stochastic lot-sizing problem they show that adding “worst case” scenarios derived
from their scenario tree in a structured way under certain conditions guarantees
feasibility.

Fix-and-relax can be combined with several other methods. For instance,
de Araujo et al. (2007, 2008) and Beraldi et al. (2008) combine fix-and-relax
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Interval 1 Interval 2 Interval 3 Interval n

Fixed Block: 
Fixed integer

variables

Continuous Block: 
LP relaxed integer 

variables

Integer Block: 
Integer

variables

End Block:
- LP relaxation
- Light Model
- Horizon Cut

Figure 7.3: Fix-and-relax with four blocks - iteration two, v = 2

with a rolling horizon approach. As previously mentioned, Pochet & Warichet
(2008) use local branching together with fix-and-relax, both to avoid infeasibility
and to improve the solution within an interval. Akartunali & Miller (2009) try to
find solutions of the original problem using LP-and-fix to get cut-off values that
can be used in the branch-and-bound process of later iterations.

7.3 Extended Fix-and-Relax Approach

We have developed some extensions to the original fix-and-relax heuristic that
are presented here.

Simplified Model in the End Block

The integer variables are the main difficulty for the tractability of the IRP model,
while a significant number of continuous variables add to the computation time.
Our aim is to reduce the effort from repeatedly solving many continuous variables
at the end of the model horizon. We separate a new block from the last part of the
Continuous Block as illustrated in Figure 7.3, and call this the End Block. There
are two ways of treating this End Block: either using a simplified linear model
called the Light Model or completely omitting this part of the model horizon
which implies a Horizon Cut. Both Light Model and Horizon Cut reduce the
number of variables compared to the original fix-and-relax.

A pseudo code for the fix-and-relax procedure including Horizon Cut is given in
Algorithm 7.1. Here P represents the total problem defined over τ = {0, . . . , T}
time periods with integer variables x and continuous variables y. n is the number
of intervals and u is the size of the overlap as a percentage of the interval length.

The Light Model is similar to what is used by Mohammadi et al. (2008), but
we combine this with the Continuous Block instead of replacing the Continuous
Block with the Light Model. The Light Model is built based on problem specific
knowledge and contains continuous variables and constraints that are assumed to
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Algorithm 7.1 FixAndRelax(P (x(τ), y(τ)), n, u)

1: RelaxIntegralityCondition(x(τ))
2: for v = 1, . . . , n do
3: t1 := {Tn (v − 1), . . . , T

n v}
4: AddIntegralityCondition(x(t1))
5: t2 :=

{
0, . . . ,min

[
T ; T

n (v + f)
]}

6: SolveMIP(P (x(t2), y(t2)))
7: t3 := {Tn (v − 1)(1− u

100 ), . . . ,
T
n v(1− u

100 )}
8: FixToLastSolution(x(t3))
9: end for

10: return GetLastSolution(P )

significantly affect decisions in previous periods. Typically these constraints link
the time periods before and after the horizon cut. One example is a multi-time
period bound limiting total deliveries in a year.

Let f be the number of intervals in the Continuous Block which in each iteration
leaves n−f−v intervals in the End Block, where n is the total number of intervals
and v is the iteration counter. The length of the End Block will decrease as
the iterations go by, and setting f = n − 1 would completely remove the End
Block already in the first iteration. Through making f depend on the iteration
number, fv, the partition between the Continuous Block and the End Block can
be tailored to the problem at hand by, for instance, avoiding a partition leaving
a small part of a multi-time period constraint out of the Continuous Block. Our
only requirement is that v + fv should not decrease as v increases.

It is possible to limit the length of the Fix Block in a similar way as we do with
the End Block using Horizon Cut. The computational effect of this is assumed
to be considerably less than using an End Block since the fixed integer decisions
leave a small solution space for this part of the problem. This is confirmed by
tests showing that the last iterations of the fix-and-relax algorithm, where the
length of the Fix Block is large, are solved very fast.

Improvement Phase

Having produced a feasible solution for the original problem by using one of the
fix-and-relax versions described above, another fix-and-relax inspired heuristic
can be used in order to improve this solution. In this Improvement Phase, the
time horizon of the model is again divided into intervals. The total number of
these intervals, m, will usually be smaller than the n intervals in the previous fix-
and-relax run. All integer variables are fixed to the existing solution, denoted the
incumbent. The algorithm loops through the m intervals in consecutive order,
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Interval 1 Interval 2 Interval 3 Interval m

Fixed integer
variables

Fixed integer 
variables

Integer
variables

Figure 7.4: Re-optimising a feasible solution - iteration two

removes the fixing of the integer variables in this interval (see Figure 7.4) and
re-optimises. The continuous variables are kept free through the whole process.
If a better solution is found during re-optimisation this is kept as the incumbent.
Before stepping to the next iteration treating the next interval, the integer solu-
tions are fixed according to the incumbent. The algorithm continues to loop until
one f run through the whole time horizon is completed without improvement in
the objective function value. With time limitation on each iteration and an upper
bound on the number of loops, one can control the maximum time spent on the
Improvement Phase.

A pseudo code for the Improvement Phase of a maximisation problem is given
in Algorithm 7.2. Here P represents the total problem defined over τ = {0, . . . , T}
time periods with integer variables x and continuous variables y. S is the initial
solution to P and m is the number of intervals for the Improvement Phase.

It should be pointed out that this Improvement Phase also can be used on
solutions generated in other ways than one of the described fix-and relax variants.
For instance, a manually found solution can be fed into the model to search for
improvements.

7.4 Test Case Description and Setup

In order to evaluate the impact on computational time and objective function
value, the fix-and-relax heuristic with the extensions described previously has
been applied to an IRP for the liquefied natural gas business (IRP-LNG). This
IRP and the setup for the experiments are described in the following.

The LNG Problem

Natural gas is one of the fastest growing sources of energy in the world. By
liquefying the natural gas into LNG, it can be transported over large distances
by vessels. The capacity for production and transportation of LNG is expected to
increase substantially in the years to come, while recent shifts in world economy
and natural gas sources have given expectations for “a glut of gas (. . . ) with
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Algorithm 7.2 ImprovementPhase(P (x(τ), y(τ)), S,m)

1: obj := GetObjVal(S)
2: prevObj := −∞
3: cnt := 0
4: FixToSolution(x(τ), S)
5: while obj > prevObj and cnt < IterationMax do
6: for v = 1, . . . ,m do
7: t1 := { T

m (v − 1), . . . , T
mv}

8: RelaxFixing(x(t1))
9: SolveMIP(P (x(τ), y(τ)))

10: t2 := { T
m (v − 1), . . . , T

mv}
11: FixToLastSolution(x(t2))
12: end for
13: prevObj := obj
14: obj := GetObjVal(GetLastSolution(P ))
15: cnt := cnt+ 1
16: end while
17: return GetLastSolution(P )

far-reaching implications for gas pricing” (International Energy Agency 2009).
This means it will become increasingly important to be able to operate larger
fleets and more terminals in an efficient manner, and thereby creating the need
for decision support tools. We have developed an optimisation based decision
support tool in close cooperation with our industrial partners GDF SUEZ and
Statoil, and this paper is based on testing with this tool.

The problem used for the numerical tests in this paper is described in Fod-
stad et al. (2010) and is an extension of the IRP model on LNG introduced by
Grønhaug & Christiansen (2009). The core of the model is an IRP with profit
maximization, single commodity, heterogeneous fleet, and multiple loading and
unloading ports. In addition, the model has a rich description of contract re-
quirements and pricing, and includes downstream natural gas markets. Further,
liquefaction and regasification rates are decisions in the model since flexibility in
these rates can be highly valuable in smoothing out the discreteness in the trans-
portation system. A distinct characteristic of LNG is evaporation that causes
losses in the system, which is also reflected in the model.

The LNG system we deal with has mainly three types of sales; sale of LNG,
sale of natural gas (regasified LNG), and natural gas spot sale. (See Fodstad
et al. 2010.) In the case of natural gas sales, LNG is regasified and stored in a
tank before it is sold to the customers or spot markets. The customers typically
have a daily or monthly demand within a certain range. Contract demand must
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Table 7.2: Characteristics of test cases
Case ID Vessel Ports Contracts Spot markets Contract limit tightness

1 2 7 1 6 Very loose
2 8 7 7 4 Tight
3 5 10 7 8 Very tight
4 2 8 2 6 Loose

be fulfilled given the importance of security of supply in the energy business and
the high costs associated with shutting down production in the LNG-business.

In Grønhaug & Christiansen (2009) an arc-flow and a path-flow formulation
of the LNG-IRP problem are tested, and in Grønhaug et al. (2008) the same
instances are solved with a branch-and-price-and-cut approach. The use of the
general MILP solver Xpress is shown to be equally good (Fodstad et al. 2010).
To the best of our knowledge, these are the only attempts to solve this problem,
so we have chosen to use the Xpress solver as the benchmark when evaluating
computational time and objective function value of our fix-and-relax heuristics.

Test Setup
Four test cases have been analyzed, each over a period of half a year (180 days).
All the cases are realistic, inspired by problems from our industrial partners.
Table 7.2 lists the most important parameters of the cases. The number of
vessels and number of ports are crucial for the number of binary variables in the
model, while the number of contracts and spot markets indicates the size of the
continuous part of the model beyond a general IRP.

In addition, we vary the tightness of the restrictions regarding contractual
obligations, where tightness measures the model’s freedom in choosing when and
where to deliver the gas. Very tight restrictions give a smaller solution space in
the continuous dimensions and thereby possibly faster solution of each node in the
branch-and-bound tree but at the expense of frequent cut-offs prior to finding the
first feasible solution. On the contrary loose contract restrictions usually make
it easier to find a first feasible solution, but hard to prove optimality because of
many feasible combinations of the binary variables and a relatively flat objective
function.

The model and heuristics have been implemented in Mosel and solved by Xpress
Optimizer version 2008a (www.fico.com). Computations are performed on a 3.0
GHz computer with 8Gb RAM and Rock Cluster version 5.1 operating system.
Fix-and-relax parameters are varied with respect to the aspects described below
for all four test cases and evaluated with respect to computational time and
objective function value. The total number of test runs per case is 52, which
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Table 7.3: Test setup for interval overlap and MIP gap acceptance
Number of intervals, n Overlap size [%] Intial MIP gap [%]

5,10 10,30,50 10,15,20

means 208 test runs in total.
For benchmark we have used the Xpress Optimizer without any decomposition

tool. The solver is run for 100 hours, unless an optimality gap less than 1% is
reached earlier.

Original Fix-and-Relax

To analyse how to tune the fix-and-relax heuristic described in the literature for
our IRP problem, all combinations of values for number of intervals, overlap, and
initial MIP gap given in Table 7.3 are tested. Five intervals give 36 days per
interval which corresponds approximately to a long roundtrip, while 10 intervals
of 18 days correspond approximately to a short roundtrip. Our implementation
uses a more flexible version of the overlap described by Stadtler (2003) and Absi
& Kedad-Sidhoum (2007), where the size of overlap is defined as a percentage
of the previous interval. The overlap can therefore include any number of days,
and not only entire fix-and-relax intervals. Initial tests indicated that overlap
less than 10% and above 50% were not suitable because of infeasibility or long
computation times. We use the MIP gap as stopping criteria, and since the
problem tends to solve faster in later iterations we reduce the MIP gap limit as
iterations goes by. The MIP gap limit of the first iteration is given in Table 7.3,
while we have used a 1% gap as limit for the last iteration in all tests. For all
intervals in-between, the MIP gap requirement is linearised between these two
values. In addition, a time limit of 3600 seconds for each interval is used. The
number of test runs for the original fix-and-relax then sums up to 18.

Modelling in the End Block

The two alternative ways of simplifying the model in the End Block, Horizon
Cut and Light Model, are analysed with different lengths of the End Block. An
overlap of 10% and an initial MIP gap of 20% are used in these tests, based
on the experiences from the tests described above. We have one interval in the
Integer Block and at least one interval in the Continuous Block, which in the first
iteration leaves at most n − 2 intervals in the End Block. The number of test
runs for End Block modelling then sums up to 22. Table 7.4 lists all the different
End Block lengths tested.
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Table 7.4: Test setup for the End Block model
Number of intervals, n End Block model End Block length

5 Horizon Cut, Light Model 1,2,3
10 Horizon Cut, Light Model 1,2,3,4,5,6,7,8

Table 7.5: Test setup for the Improvement Phase
Number of intervals, n Number of Improvement Phase intervals, m

5 2,3,4
10 2,3,4,5,6,7,8,9

Improvement Phase

The Improvement Phase is tested with solutions from both 5 and 10 intervals
in the original fix-and-relax runs. Similar to the test of End Block modelling,
an overlap of 10% and an initial MIP gap of 20% are used in these tests. We
assume the model to be easier to solve in the Improvement Phase and therefore
use a smaller number of intervals in the Improvement Phase than in the corre-
sponding original fix-and-relax run. The number of test runs for modelling of the
Improvement Phase sums up to 11. All different interval lengths tested are listed
in Table 7.5.

The aim of the Improvement Phase is to improve the objective function value,
without too much additional computation time. Hence, a time limit of 600 sec-
onds for one whole loop that is divided equally at all intervals, m, is considered
sufficient. The results support this since it turns out that the time limit in most
cases is not the critical stop criterion. The MIP gap requirement for all iterations
is set to 0.1%.

7.5 Computational Results and Discussion

In the following, the impacts of the original fix-and-relax heuristic on compu-
tational time and objective function value compared to the benchmark are de-
scribed. These runs also form a starting point for further analysis of the exten-
sions that we have developed to this heuristic, namely End Block modelling and
the Improvement Phase, which are emphasized subsequently.

Based on the test results we give some guidelines on how to use the heuristics
that have been presented. These seek a trade-off between solution time and
quality which typically will be chosen in an interactive analysis and planning
situation.
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Table 7.6: Summary of the results for all test cases
Time Objective Normalised
[sec] function objective

value func. value

C
as

e
1

Benchmark First solution 3 807 1 261 0.82
Last solution 36 431 1 450 0.94
Shortest comp. time 89 1 397 0.91

Fix-and-relax Largest objective 89 1 397 0.91function value
Average values 205 1 364 0.89
Shortest comp. time 15 1 233 0.80

End Block Largest objective 48 1 418 0.92modelling function value
Average values 56 1 360 0.88
Shortest comp. time 93 1 397 0.91

Improvement Largest objective 140 1 440 0.93Phase function value
Average values 329 1 405 0.91

Upper bound Initial 11 1 632 1.06
End 360 000 1 541 1.00

C
as

e
2

Benchmark First solution 929 4 758 0.85
Last solution 305 407 5 195 0.93
Shortest comp. time 1 060 4 402 0.79

Fix-and-relax Largest objective 3 140 4 842 0.86function value
Average values 1 432 4 655 0.83
Shortest comp. time 115 4 562 0.81

End Block Largest objective 203 4 764 0.85modelling function value
Average values 467 4 511 0.80
Shortest comp. time 1 108 4 805 0.86

Improvement Largest objective 4 775 5 119 0.91Phase function value
Average values 2 033 4 923 0.88

Upper bound Initial 154 5 743 1.03
End 360 000 5 604 1.00
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Table 7.6: continued
Time Objective Normalised
[sec] function objective

value func. value

C
as

e
3

Benchmark First solution 72 7 312 0.99
Last solution 76 7 312 0.99
Shortest comp. time 176 7 182 0.97

Fix-and-relax Largest objective 287 7 267 0.98function value
Average values 244 7 211 0.98
Shortest comp. time 83 7 277 0.99

End Block Largest objective 187 7 279 0.99modelling function value
Average values 174 7 234 0.98
Shortest comp. time 189 7 273 0.98

Improvement Largest objective 212 7 312 0.99Phase function value
Average values 279 7 300 0.99

Upper bound Initial 40 7 759 1.05
End 6 002 7 385 1.00

C
as

e
4

Benchmark First solution 8 995 3 019 0.84
Last solution 301 125 3 257 0.90
Shortest comp. time 355 3 145 0.87

Fix-and-relax Largest objective 4 142 3 248 0.89function value
Average values 2 161 3 192 0.88
Shortest comp. time 58 3 154 0.87

End Block Largest objective 865 3 231 0.89modelling function value
Average values 482 3 129 0.87
Shortest comp. time 363 3 154 0.87

Improvement Largest objective 2 373 3 248 0.90Phase function value
Average values 1 255 3 192 0.88

Upper bound Initial 113 3 659 1.01
End 360 000 3 611 1.00
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Figure 7.5: Results for all test cases

Figure 7.5 presents normalised objective function values as a function of time
for all results from the benchmark, all original fix-and-relax, End Block modelling
and use of Improvement Phase. Selected fix-and-relax solutions (10% overlap and
20% initial MIP gap) are framed with circles. Normalisation is done relative to
the final upper bounds given by Xpress during the benchmark runs. Also the
upper bound as a function of time from the branch-and-bound process of Xpress
is plotted. The computational times reported for the Improvement Phase include
the times used by the preceding fix-and-relax process. A summary of these results
can be found in Table 7.6. In the table, the runs are grouped by case and whether
original fix-and-relax, End Block modelling or Improvement Phase have been
used. For each of these three modelling methods, the test run with the shortest
computational time and corresponding objective function value, the test run with
the highest objective function value and corresponding computational time, and
the average computational time and average objective function value over all
test runs are given. All combinations of overlap and initial MIP gap sizes are
included in the original fix-and-relax results. Table 7.7 gives an overview of the
model dimensions.
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Table 7.7: Model dimensions

Case Number of Number of Number of Number of nonzero
variables binary variables restrictions in the matrix

1 18 127 4 372 20 648 76 600
2 45 182 10 002 47 065 267 354
3 64 721 24 210 55 443 314 295
4 30 799 8 720 29 360 141 073

Results from Original Fix-and-Relax

The crosses in Figure 7.5 represent the results from the original fix-and-relax tests.
For cases 1 and 4 the solutions by original fix-and-relax are found 19 and 4 times
faster on average, respectively, than the first solution from the benchmark. For
case 2, these two solutions are found at approximately equal time. In case 3, which
is a very tight case, the first, and best, solution is obtained almost immediately in
the benchmark. The best bound decreases steadily, so this solution proves to be
optimal relatively fast. Hence, for case 3, it does not seem necessary to use any
fix-and-relax-heuristic. The average objective function value obtained by using
the original fix-and-relax-heuristic is between 1 and 10 percentage points lower
than the best objective function value from the benchmark for all cases. Finally,
all heuristic solutions are found within 5 000 seconds.

Further, the results indicate no clear relation between the number of fix-and-
relax intervals and computational time or objective function value. By increasing
the number of intervals, the objective function value and computational time
increase for some cases, while they decrease for others. When increasing the
overlap, the computational time increases by 50% and 100% on average for an
overlap size of 30% and 50%, respectively. The objective function value, however,
increases in some cases and decreases in others although these variations are
relatively small, mostly within 2%. Hence, no clear relation between size of
the overlap and objective function value is evident. The results show that by
increasing the initial MIP gap from 10% to 15%, the computational time decreases
by 10-20%, and the time decreases by up to 35% for a MIP gap of 20% compared
to 10%. However, there are only minor and unstructured changes in the objective
function value, mostly within 1%, when the initial MIP gap is changed. These
results show that a low overlap and a high initial MIP gap are the best choice in
order to achieve reduced computing time and a good objective function value.
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Table 7.8: Average normalised objective function values and computing times
for Horizon Cut and Light Model runs. Infeasible runs excluded in
calculations
Case Method Normalised objective Time [sec]

1 Horizon Cut 0.89 43
1 Light Model 0.88 70
2 Horizon Cut 0.80 437
2 Light Model 0.81 497
3 Horizon Cut 0.98 167
3 Light Model 0.98 195
4 Horizon Cut 0.87 354
4 Light Model 0.86 634

Effects of End Block Modelling

The filled circles in Figure 7.5 represent the results from analyses with End Block
modelling. Simplifying this part reduces computing time by 45, 56, 26, and 35%
on average for cases 1 to 4 respectively, compared to the respective original fix-
and-relax solutions. The first solution in the simplified models is obtained six to
nine times faster than for the original fix-and-relax heuristic for cases 1, 2, and
4, and twice as fast for case 3. The average objective function values for each
case deviate from the original fix-an-relax solutions by −2-2% when applying End
Block modelling. Figure 7.6 shows how the length of the End Block affects the
objective function value and computing time. Horizon Cut (HC) is illustrated
with a solid line, whereas Light Model (LM) is illustrated with a dotted line. The
trend is that a longer End Block and short Continuous Block, in most cases f
equal to two or three intervals, result in the lowest computing time. Using only
one interval in the Continuous Block, however, frequently leads to infeasibility.
The objective function values are relatively unaffected by varying the End Block
length.

Furthermore, Figure 7.7 compares the solution times with Horizon Cut and
Light Model, both normalised relative to the values of Horizon Cut. The figure
shows a shorter computing time for Horizon Cut in most runs. On the contrary,
none of the methods prove favourable over the other on objective function value.
These observations are confirmed by the average normalised objective function
values and solution times given in Table 7.8.
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Effects of the Improvement Phase

The triangles in Figure 7.5 represent the results from the tests with the Im-
provement Phase. These lie above the results from the original fix-and-relax
runs, indicating improved solutions. The computing time with the Improvement
Phase is limited to maximum 600 seconds per loop through the whole model
horizon, and is therefore relatively low. Figure 7.8 plots the normalised objec-
tive function values after the Improvement Phase (y-axis) against the normalised
objective function values prior to the Improvement Phase. Triangles indicate
the normalised objective function values achieved by the benchmark. The figure
shows that the biggest improvements are achieved where the potential relative to
both the upper bound and the benchmark is the biggest. The average objective
function values for all cases by using the Improvement Phase are increased by
approximately 5% for case 1, 8% for case 2, 1% for case 3 and 1% for case 4
compared to their respective initial solutions. However, average computing time
is also increased when applying Improvement Phase, by 221, 92, 19, and 70% for
cases 1 to 4 respectively.

Figure 7.9 shows the improvement in objective function value by applying the
Improvement Phase, as a function of number of intervals of this phase, m. The
results indicate that increasing the number of Improvement Phase intervals has a
relatively small effect on the objective function value. However, in some cases an
increase in the number of intervals results in a decrease in the objective function
value. The computing time is unaffected by varying the number of intervals.
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7.6 Conclusion

We have applied fix-and-relax time decomposition heuristics to solve a maritime
IRP problem and this is a new solution approach for this problem class. The
heuristic was extended with an End Block that simplifies the end of the model
horizon to speed up the solution process. Further, an Improvement Phase was
added to improve the objective function value after an initial feasible solution is
found. This Improvement Phase could also be combined with other construction
heuristics or manual planning. The heuristic with its extensions were tested on
cases from the LNG business, and computational times and objective function
values were reported. The general MILP solver Xpress Optimizer was used as
benchmark. The results from the tests are summarised in Table 7.9. The ta-
ble shows the average values over all cases. The objective function values are
normalised relative to the best bound found by the benchmark.

Applying original fix-and-relax heuristics to the LNG-IRP model reduces com-
putational time, often considerably, compared to the use of Xpress without de-
composition. On average, fix-and-relax reduced the computing time by 71%
compared to the time of the first benchmark solution, and is 160 times faster
compared to the time of the best benchmark solution. The objective function
values are on average 2% higher than the first benchmark solution, but are de-
creased compared to the best benchmark solution by 5% on average. Our results
show that a low overlap and a high initial MIP gap for the fix-and-relax heuris-
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Table 7.9: Average normalised objective function values and computing times
over all cases

Normalised objective Time [sec]
First benchmark solution 0.87 3 451
Last benchmark solution 0.94 160 760

All fix-and-relax 0.89 1 011
Selected fix-and-relax1 0.89 534
End Block modelling 0.88 288
Improvement Phase 0.92 974

tics are the best choices in order to achieve reduced computing time and a good
objective function value.

By including either an End Block model or an Improvement Phase in the fix-
and-relax method, the results can be improved further. An Improvement Phase
is applied in order to improve the objective function value after a feasible solution
is found, while an End Block model aims at reducing computing time compared
to the original fix-and-relax runs.

Applying an End Block model reduces computing time by 46% on average over
all cases compared to the respective selected fix-and-relax solutions with small
impact on objective function value, as shown in Table 7.9. Therefore, using this
extension is recommended. Horizon Cut gives smaller computing time than Light
Model and is therefore recommended. Furthermore, using two or three intervals in
the Continuous Block is recommended, since this results in the lowest computing
time for most cases.

Applying the Improvement Phase improves objective function values on average
by 3% compared to the respective original fix-and-relax results, with an increase
in computing time of 82% on average. However, as shown in Table 7.9, the
computing time is still small compared to the benchmark. Generally, a low
number of Improvement Phase intervals seems to be most suitable.

These results confirm that both the developed extensions, End Block modelling
and Improvement Phase, help to achieve the intended goals, reduced computing
time and improved objective function values, respectively.
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Chapter 8

A Branch-and-Bound Method for

Discretely-Constrained Mathematical

Programs with Equilibrium Constraints

Abstract:
We present a branch-and-bound algorithm for discretely-constrained mathe-
matical programs with equilibrium constraints (DC-MPEC). This is a class
of bilevel programs with an integer program in the upper-level and a com-
plementarity problem in the lower-level. The algorithm builds on the work
by Gabriel, Shim, Conejo, de la Torre & Garcia-Bertrand (2010) and uses
Benders decomposition to form a master problem and a subproblem. The
new dynamic partition scheme that we present ensures that the algorithm
converges to the global optimum. Partitioning is done to overcome the non-
convexity of the Benders subproblem. In addition Lagrangean relaxation
provides bounds that enable fathoming in the branching tree and warm-
starting the Benders algorithm. Numerical tests show significantly reduced
solution times compared to the original algorithm. When the lower level
problem is stochastic our algorithm can easily be further decomposed using
scenario decomposition. This is demonstrated on a realistic case.

8.1 Introduction

In this paper, we focus on bilevel programming problems where the upper-level
deals with discrete decisions and the lower-level is a mixed complementarity prob-
lem (MCP). It is a variant of the traditional mathematical program with equi-
librium constraints (MPEC) where the leader is only allowed to make discrete
decisions. We call the whole formulation DC-MPEC (Gabriel et al. 2010).

Gabriel et al. (2010) propose a heuristic to solve the DC-MPEC problem based
on Benders decomposition. They rephrase the problem as a mixed integer lin-
ear problem (MILP) and decompose the problem by placing all constraints and
objective elements containing lower-level variables in the Benders sub problem.
The master problem domain is a priori heuristically partitioned into subdomains
of x with the aim of finding subdomains where the lower level objective is convex.
Afterwards each subdomain is solved by Benders decomposition method. It is
shown that the heuristic can give a sub-optimal solution unless all subdomains
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are convex.
In our new approach we develop an idea mentioned in Gabriel et al. (2010)

with a dynamic branching procedure that partitions the subdomains as the algo-
rithm proceeds. We branch until the subdomains which have candidates for the
global solution are convex and thereby guarantee to find the optimal solution. As
opposed to the branching on single variables as employed in many branch-and-
bound approaches, we use intersection of Benders cuts to partition the upper-level
decision domain. The branching procedure is supported by lower bounding based
on Lagrangean relaxation, which makes it possible to cut off parts of the master
problem domain and thereby increase the efficiency of the algorithm compared to
the static version. Using LR to accelerate the branch-and-bound procedure was
introduced in both Geoffrion (1974) for MILPs and Falk (1969) for non-convex
programs.

Several papers contribute to improving the convergence properties of Benders
decomposition, for a nice review see Saharidis & Ierapetritou (2010). One com-
mon approach is to add cuts to the relaxed master problem, as for instance
Saharidis, Boile & Theofanis (2011) do. Similarly we utilize the solution value
from the Lagrangean relaxation as a bound in the Benders decomposition some-
what inspired by cross decomposition (van Roy 1983, 1986). To the best of our
knowledge this is a new way of utilizing Lagrangean relaxation results in bilevel
programming: using it both in the lower bounding in the branch-and- bound
procedure and to accelerate the Benders decomposition used to find the upper
bound.

We also show how the addition of strong duality constraints, enabled by the
Benders decomposition, increases the robustness of the transformation from DC-
MPEC to MILP. When the lower-level is a two-stage stochastic MCP, we show
how the lower bounding method can be adapted using scenario decomposition
(Carøe & Schultz 1999) to achieve further decomposition, and test this on a
natural gas application.

Our computational results show that using the dynamic partitioning algorithm
supported by the strong duality constraints considerably reduces the partitioning
work needed compared to the static version of the algorithm.

Even the continuous linear bilevel programming problem has been shown to be
NP-hard (Hansen, Jaumard & Savard 1992) and the discrete nature of upper-level
variables and their related constraints would make the DC-MPEC problem even
more intractable. A substantial number of contributions exist for the different
problem classes within bilevel programming, and we will point out the ones closest
related to our DC-MPEC problem. For a broader overview see for instance Dempe
(2002) or Colson, Marcotte & Savard (2007) on bilevel programming and Luo,
Pang & Ralph (1996), Outrata, Kocvara & Zowe (1998) or Fukushima & Lin
(2004) on MPEC.
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Gabriel & Leuthold (2010) formulate a Stackelberg game within the electric
power market as a DC-MPEC and provide exact solutions with standard branch-
and-bound after reformulating to a MILP. On the contrary most solution pro-
cedures for DC-MPEC are heuristics. Meng, Huang & Cheu (2009) and Meng
& Wang (2011) use genetic algorithms supplemented with suitable procedures
for solving lower level parametric VIs for facility location and service network
design applications, respectively. Another DC-MPEC application is presented by
Wang & Lo (2008) who transforms their problem into a mixed integer nonlinear
program solved with an application specific heuristic.

Mesbah, Sarvi, Ouveysi & Currie (2011) use generalized Benders decomposition
to solve a bilevel problem for transportation network design. Their upper level has
binary variables and a non-linear objective function. The lower level consists of
three parts, two optimization problems and an equilibrium problem. Lagrangean
relaxation is used to solve the optimization lower-level problems.

Saharidis & Ierapetritou (2009) propose Benders decomposition for problems
closely related to our DC-MPEC, but with lower level limited to LPs. They
decompose the problem into a master problem containing all integer variables and
pure integer constraints and a bilevel subproblem. The subproblem is transformed
into a single level problem by using the KKT conditions and provides a feasibility
cut or optimality cut for the master problem in each iteration. The integrality
conditions are handled by adding integer exclusion cuts to the master problem.
This work differs from ours in different ways of decomposing the problem and
different ways of treating the integrality requirements.

Wen & Yang (1990) also solve a DC-MPEC with the lower level limited to LPs.
They do not use the common reformulation to MILP based on KKT conditions,
but develop valid bounds adapted to the bilevel structure and apply these in
branch-and-bound. A similar strategy is used by Moore & Bard (1990) for bilevel
problem with integrality constraints in both upper and lower level, and they also
point out why standard bounding and fathoming rules for branch-and-bound in
integer programming do not apply for their problem.

The rest of this paper is organized as follows: First we present the basic ideas of
the algorithm, with lower bounding, upper bounding and dynamic partitioning.
Then follows a pseudocode overview of the total algorithm and proofs for the
validity of bounds and overall convergence. The section ends with a description
on how to adapt the lower bounding method to stochastic programs. Next follows
numerical results on general problems with randomly generated data and on a
natural gas supply chain problem before we conclude.
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8.2 Dynamic Algorithm

The overall discretely-constrained mathematical program with equilibrium con-
straints (DC-MPEC) is given as follows:

min
x,y

c�x+ d�y

s.t. Qx ≤ q

Ax+By ≥ a

y ∈ S(x)

(8.1)

where x ∈ Znx and y ∈ Rny are integer upper-level variables and continuous
lower-level variables, respectively. The constraints Qx ≤ q contain the bounds
on the x’s and other linear constraints with only x variables; Ax + By ≥ a are
the joint linear constraints upon x and y . The solution set of the lower-level
MCP is given by

S(x) =

⎧⎪⎨
⎪⎩(y, z, w)

∣∣∣∣∣∣∣
0 ≤ y ⊥ Ey + e−M�z −D�w ≥ 0

0 ≤ z ⊥My +Nx− k ≥ 0

Dy + Fx = g

⎫⎪⎬
⎪⎭ (8.2)

where z ∈ Rnz , z ≥ 0 and w ∈ Rnw . z and w are lower-level variables that typi-
cally correspond to dual variables of a underlying optimization problem. It is as-
sumed that the dimension of each data element (i.e. c, d,Q, q, A,B, a,E, e,M,N,
k,D, F, g) agrees with its associated variables. E is a symmetric and positive
semi-definite matrix of the convex quadratic function 1

2y
�Ey + e�y so that the

KKT conditions are necessary and sufficient optimality conditions. Note that
the lower-level problem also covers linear problems (LP) and quadratic convex
problems (QP) since the KKT optimality conditions of these problem classes are
MCP problems. We assume that a solution to Problem (8.1) exists.

As previously shown by amongst others Fortuny-Amat & McCarl (1981) a
MPEC can be rephrased to a MILP through replacing the lower-level comple-
mentarity conditions by disjunctive constraints, binary variables and a large con-
stant C. This reformulation implies an optimistic view on the lower-level in the
sense that if multiple equilibria exist in lower-level the most favorable according
to the upper-level objective is chosen. We denote the problem resulting from this
reformulation (MILP).

We decompose (MILP) with Benders decomposition into a master problem:
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(B−MILP)

min
x

zB−MILP = c�x+ α(x)

s.t. Qx ≤ q

Q̆x ≤ q̆

(8.3)

and a subproblem:

α(x) = min
y,z,w,b̄,b̃

d�y

s.t. a ≤ Ax+By

0 ≤ y ≤ C(1− b̄)

0 ≤ Ey + e−M�z −D�w ≤ Cb̄

0 ≤ z ≤ C(1− b̃)

0 ≤My + (Nx− k) ≤ Cb̃

Dy + Fx = g

b̄, b̃ : binary
y, z ≥ 0

(8.4)

Only x variables are placed in the master problem and the other variables are
in the subproblem. Because of the disjunctive variables b̄ and b̃ the function α(x)
is piecewise linear but not in general convex in x (Gabriel et al. 2010). The non-
convexity means Benders decomposition method is not guaranteed to converge to
an optimal solution for (MILP) (Benders 1962). The main idea of the dynamic
partitioning algorithm is to partition the domain of X = {x ∈ Znx |Qx ≤ q} into
subdomains where α(x) is convex, as illustrated in Figure 8.1. The partitioning
is controlled by upper and lower bounds that will converge as the non-convexities
are removed in exchange for an increasing number of subdomains. Q̆x ≤ q̆ is a
set of linear partitioning constraints defining a subdomain. An overview of the
problems used in this paper and their relations is given in Figure 8.2.

Lower Bounding
Traditionally the LP relaxation is used for bounding in branch-and-bound, but
the MILP reformulation with binary variables and large constants gives weak LP
bounds. Instead we apply the Lagrangean relaxation algorithm (LR) as lower
bound of (MILP) relaxing Qx ≤ q with μ as the Lagrangean multiplier. The
mathematical formulation of the Lagrangean subproblem (MILP(μ)) is given as

253



Chapter 8 A Branch-and-Bound Method for Discretely-Constrained MPEC
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Figure 8.1: Illustration of how partitioning transforms a domain with a non-
convex function into two subdomains with convex functions
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Problem (8.5) and its dual problem is defined as zLD = maxμ{φ(μ)|μ ≥ 0}.
(MILP(μ)) is a relaxation of (MILP) as proved in Geoffrion (1974).

(MILP(μ))

φ(μ) = min
x,y,z,w,b̄,b̃

zMILP(μ) = c�x+ d�y + μ�(Qx− q)

s.t. Q̆x ≤ q̆

a ≤ Ax+By

0 ≤ y ≤ C(1− b̄)

0 ≤ Ey + e−M�z −D�w ≤ Cb̄

0 ≤ z ≤ C(1− b̃)

0 ≤My + (Nx− k) ≤ Cb̃

Dy + Fx = g

x : integer

b̄, b̃ : binary
y, z ≥ 0

(8.5)

MILP(μ)) is a mixed integer linear program that usually will be solved repeat-
edly to make the Lagrangean process converge. This means (MILP(μ)) needs
to be significantly simpler than (MILP) to solve to make the lower bounding
worthwhile. Generally that means there should be a substantial number of con-
straints Qx ≤ q or these constraints should have a complicating structure (see
Conejo, Castillo, Minguez & García-Bertrand 2006) as in the example of stochas-
tic programming in Section Application to a Natural Gas Supply Chain on page
276.

In our implementation of LR, the Lagrangean multipliers (μ) are updated by a
cutting plane method (Conejo et al. 2006). The Lagrangean iterations are stopped
whenever the gap between the cutting plane problem (relaxed Lagrangean dual
problem) and the Lagrangean subproblem (MILP(μ)) are sufficiently small. Also
a limit on the number of iterations is implemented to avoid any cycling. A
duality gap can occur because the Lagrangean subproblem has integral variables,
as shown in Geoffrion (1974). This represents a non-convexity domain for α(x)
that will cause further partitioning.

Upper Bounding
We apply Benders decomposition method (BD) as described in Conejo et al.
(2006) to measure the upper bound (UB) of (MILP). The function α(x) in the
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master problem (8.3) is relaxed, and through the solution procedure rebuilt by
iteratively solving the relaxed master problem (MP) and sub problem (SP) below.

(MP)

min
x

c�x+ α

s.t. Qx ≤ q

Q̆x ≤ q̆

α ≥ α(x(k)) + λ�
(
x− x(k)

)
α ≥ αdown

k = 1, . . . , v − 1

(8.6)

(SP)

α(x) = min
y,z,w,b̄,b̃

d�y

s.t. a ≤ Ax+By

0 ≤ y ≤ C(1− b̄)

0 ≤ Ey + e−M�z −D�w ≤ Cb̄

0 ≤ z ≤ C(1− b̃)

0 ≤My + (Nx− k) ≤ Cb̃

Dy + Fx = g

b̄, b̃ : binary
y, z ≥ 0

x(v) : (λ : free)

(8.7)

In each Benders iteration, k, the solution of (SP) for a given x(k) gives a new Ben-
ders cut α ≥ α

(
x(k)
)
+λ� (x− x(k)

)
that is added to (MP) to approximate α(x).

Let zdown
(
x(v)
)
= c�x(v)+α

(
x(v)
)

and zup
(
x(v)
)
= c�x(v)+ d�y(v). Figure 8.3

illustrates a non-convex α(x) function and a master problem approximation based
on a single Benders cut (broken line).

• If α(x) is convex for a given subdomain, Benders cuts create a lower enve-
lope of α(x). In each iteration v, (MP) and (SP) provide lower and upper
bound on zB−MILP, respectively, zdown

(
x(v)
)
≤ zB−MILP ≤ zup

(
x(v)
)

and
these bounds iteratively converge (Conejo et al. 2006).

• If α(x) is non-convex for a given subdomain, the Benders cuts may overes-
timate α(x) and eliminate a true optimum in the subdomain. This implies
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Figure 8.3: Illustration of non-convex α(x) and a single Benders cut (broken line)

that either zdown
(
x(v)
)

and zup
(
x(v)
)

converge to a value greater than the
true optimum or zdown

(
x(v)
)
> zup

(
x(v)
)

which stops the iterations. These
situations are illustrated in Figure 8.3 for x = 2 and x = 5, respectively.

In either case zup
(
x(v)
)

gives a valid upper bound, which is justified by the
proof in the Appendix. Because of assumption (A2) that follows on page 264, we
do not consider feasibility cuts.

Accelerating the Benders Decomposition by Including the Lower Bound

We could utilize the solution from (MILP(μ)) to warm-start the Benders iter-
ations seeking to reduce the number of Benders iterations. The solution of x
from (MILP(μ)) are set as the inital solution of (MP) and the objective value
of (MILP(μ)) forms a lower bound for (MP), expressed by the optimality cut
c�x + α ≥ LB. The optimality cut removes solutions inferior to the incum-
bent in the current iteration of the Benders decomposition, thereby reducing the
search space and potentially producing faster convergence of the algorithm. Ta-
ble 8.1 compares the number of iterations and computation time of BD for two
cases: without and with the warm-start (ws). Ten test problems were solved. All
data were generated from the intervals [0, 100] with uniform distributions. The
upper-level decision variables were all binary; the lower-level problems are built
by deriving the KKT conditions of LP problems. Matlab (ver. 7.0) and Xpress-
MP (ver. 2006) were used to implement both BD and LR algorithms. LB and
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Table 8.1: Numerical results: Speeding up UB measure by warm-staring with
LB solution. The left part gives the dimensions of (MP) and (SP),
where dim(b) = dim(b̄) + dim(b̃). C is the value of the disjunctive
constant. The right part gives the number of iterations and solution
time in seconds for computing UB without and with warm-start (ws).

MP SP UB without ws UB with ws
x y z b

C
Iter Time Iter Time

20 100 100 200 1E5 14 18 6 7
20 100 100 200 1E5 14 17 6 7
20 100 100 200 1E5 14 18 5 6
20 100 100 200 1E5 10 12 4 5
20 100 100 200 1E5 10 12 4 5
20 1 000 1 000 2 000 1E6 130 938 74 470
20 1 000 1 000 2 000 1E6 77 508 46 307
20 1 000 1 000 2 000 1E6 14 87 3 18
20 1 000 1 000 2 000 1E6 23 144 3 19
20 1 000 1 000 2 000 1E6 118 854 37 251

UB converged to the same value for all instances. As can be seen from the last
two columns, the warm-start greatly reduced the number of iterations as well as
the computation time.

Strong Duality Constraint

The complementarity constraints in the lower-level problem were linearized with
disjunctive binary variables and big constant C in Gabriel et al. (2010), Gabriel &
Leuthold (2010), Labbé, Marcotte & Savard (1998), Hu, Mitchell, Pang, Bennett
& Kunapuli (2008), Mitsos (2010), Saharidis & Ierapetritou (2009) and DeNegre
& Ralphs (2009), where their common question was the value of C for which the
feasible region formed by complementarity constraints is not altered. Hu et al.
(2008) proposed a solution method which does not require knowing the big con-
stants, but the method is limited to linear programs with linear complementarity
constraints (LPCC). Gabriel et al. (2010) shows that C can be chosen by a sen-
sitivity analysis or when the matrix M has a specific property the constants can
be chosen analytically.

For lower-level problems with E = 0 (defined in Problem (8.2)), which for in-
stance correspond to the KKT conditions of an LP, we impose the strong duality
constraint

(
e� − w�D

)
y = z�(k − Nx) to (B-MILP). The constraint was in-

duced from the two complementarity constraints y�
(
e−M�z −D�w

)
= 0 and
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z�(My + Nx − k) = 0. A similar strong duality constraint cannot be imposed
when E �= 0 since that would give a non-linear constraint. This constraint is also
not applicable if the lower-level problem does not contain the pair of complemen-
tarity constraints, which may be the situation if the problem has equilibria that
are not derived from an underlying optimization problem.

Tables 8.2 and 8.3 contain results from testing the use of the strong duality
constraint. We compare the valid range of C in (B-MILP) with strong duality
constraint and (MILP) without this constraint. The valid range is the range where
the optimal objective value of the original bilevel problem is reproduced. GAMS
(ver. 23.0) and Xpress-MP (ver. 2006) were used to compute the solutions by
enumeration. The bar graphs in the tables represent the effective range of C for
each test problem. The strong duality constraint played a major role in making
(B-MILP) almost insensitive to the choice of C.

The single-level approach in Gabriel & Leuthold (2010) and Audet, Savard
& Zghal (2007), which corresponds to (MILP) may not use the strong duality
constraint since it would make the problem non-linear and non-convex because x
variables in the constraint cannot be fixed. Hence the working range of C for the
single level approach would be narrow compared to the decomposed problem.

Branch-and-Bound
Each node in the branch-and-bound tree represents a subdomain for the upper-
level variables x. The literature shows several ways to do branching of the sub-
domains, for instance in Bard & Moore (1990), Hansen et al. (1992) and Gabriel
et al. (2010). We have chosen to follow Gabriel et al. (2010). Two sample points
si (for i = 1, 2) are picked and Benders cuts, α(x) ≥ α (si) + λ�

i (x− si), are
calculated for each point. λi is the dual variable vector to the linear constraint
x = si of (SP). Two planes are obtained by changing the inequality symbols of
the Benders cuts to equality, that is, α(x) = α (si)+λ�

i (x− si), and where these
planes intersect, α (s1) + λ�

1 (x− s1) = α (s2) + λ�
2 (x− s2), the domain is parti-

tioned. Since α(x) can be non-convex, the two Benders cuts might not partition
the domain into two non-empty subdomains. In that case new sample points are
chosen a limited number of times, and if proper branching is still not achieved an
arbitrary partition of the subdomain into two non-empty subdomains is chosen.

We use the following branching and fathoming rules:

• Branch if |(UB − LB)/LB| > TOL and LB < Incumbent

• Pruning by optimality if |(UB − LB)/LB| ≤ TOL

• Pruning by bound if LB ≥ Incumbent

Here Incumbent is the value of the best solution found so far and TOL is a
user-specific tolerance.
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Table 8.2: The working range for C increases when strong duality constaints are
added. For each instance the objective value, shape of the α(x)-
function and working range within [1E4,1E10] for (B-MILP) with
strong duality constraints and (MILP) is given. The integer upper-
level variable is limited to [−10, 10], all model parameters are in [0, 10]
and dim(x) = 1, dim(y) = 10, dim(z) = 5, dim(b̄) + dim(b̃) = 15

ObjVal Formulation α(x)
C (1E+n for n given below)

3 4 5 6 7 8 9 10

-37.00
B-MILP non-convex
MILP -

-0.33
B-MILP non-convex
MILP -

-33.75
B-MILP non-convex
MILP -

3.00
B-MILP non-convex
MILP -

-54.17
B-MILP non-convex
MILP -

2.52
B-MILP non-convex
MILP -

-1.33
B-MILP non-convex
MILP -

-0.67
B-MILP non-convex
MILP -

-6.53
B-MILP non-convex
MILP -

-5.58
B-MILP non-convex
MILP -

-0.88
B-MILP non-convex
MILP -

-7.76
B-MILP non-convex
MILP -

-19.52
B-MILP non-convex
MILP -

0.00
B-MILP non-convex
MILP -

-10.96
B-MILP non-convex
MILP -
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Table 8.3: The working range for C increases when strong duality constaints are
added. For each instance the objective value, shape of the α(x)-
function and working range within [1E4,1E10] for (B-MILP) with
strong duality constraints and (MILP) is given. The integer upper-
level variables are limited to [−10, 10], all model parameters are in
[0, 100] and dim(x) = 2, (y) = 400, dim(z) = 200, dim(b̄) + dim(b̃) =
600

ObjVal Formulation α(x)
C (1E+n for n given below)

4 5 6 7 8 9 10

302.72
B-MILP non-convex
MILP -

517.00
B-MILP convex
MILP -

2440.00
B-MILP non-convex
MILP -

454.54
B-MILP convex
MILP -

882.32
B-MILP non-convex
MILP -

172.21
B-MILP convex
MILP -

216.35
B-MILP non-convex
MILP -

181.90
B-MILP convex
MILP -

145.35
B-MILP convex
MILP -

1423.00
B-MILP non-convex
MILP -
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Pseudocode for the Algorithm

Algorithm 8.1 is a pseudocode that describes the overall algorithm. The main
workload is the branch-and-bound process, where N refers to the index of current
node, L is the list of active nodes in the partitioning tree and D(N) refers to the
subdomain defined by node N . Three subroutines are used for solving the sub-
problems, making bounding decisions and branching and these are described in
Subroutines 8.1-8.3. SelectNextNode(L) is a subroutine that selects next node
from L. In our tests SelectNextNode(L) has applied the depth-first principle.

Algorithm 8.1 Main

1: L := {0}
2: D(0) := X
3: Incumbent :=∞
4: while L �= ∅ do
5: N := SelectNextNode(L)
6: L := L \ {N}
7: (Decision, Incumbent) := SolveAndBound(N,D(N), Incumbent)
8: if Decision = BRANCHING then
9: (N+1, N+2, D(N+1), D(N+2)) := DecomposeDomain(N,D(N))

10: L := L ∪ {N+1, N+2}
11: end if
12: end while
13: return (Incumbent, (x∗, y∗, z∗, b̄∗, b̃∗))

Subroutine 8.1 ComputeBounds(N,D(N))

1: Compute LB with Lagrangean relaxation algorithm by solving MILP(μ)
2: Compute UB with the Benders decomposition algorithm by iteratively solv-

ing (MP) and (SP). Include the strong duality constraint
(
e� − w�D

)
y =

z�(k −Nx) to (MP) if valid for the problem. Warm-start with the optimal
solution from Step 1 as the initial starting point and lower bound for (MP)
if it exists

3: return (UB,LB)

Convergence of the Dynamic Algorithm

To prove that the algorithm in the previous section converges, we make the
following assumptions:
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Subroutine 8.2 SolveAndBound(N,D(N), Incumbent)

1: (UB,LB) := ComputeBounds(N,D(N))
2: if UB < Incumbent then
3: Incumbent := UB
4: Record Incumbent and the optimal solution (x∗, y∗, z∗, b̄∗, b̃∗) of BD.
5: end if
6: if

∣∣UB−LB
LB

∣∣ > TOL and LB < Incumbent then
7: Decision := BRANCHING
8: else
9: Decision := FATHOMING

10: end if
11: return (Decision, Incumbent)

Subroutine 8.3 DecomposeDomain(N,D(N))

1: Count := 0
2: Branched := false
3: while not Branched and Count < CountLimit do
4: Get two sample points s1 and s2 from D(N) and compute their as-

sociated
(
λ�
i , b̄

�
i , b̃

�
i

)
values (i = 1, 2). The two sample points can

be chosen randomly within D(N) for instance by solving the problems
{x|minx c0x s.t.x ∈ D(N)} and {x|maxx c0x s.t.x ∈ D(N)}, where c0 is a
random cost vector

5: Compute their intersection hyperplane as α(s1) + λ�
1 (x − s1) = α(s2) +

λ�
2 (x− s2)

6: D(N+1) := D(N) ∩
{
x|α(s1) + λ�

1 (x− s1) ≤ α(s2) + λ�
2 (x− s2)

}
and

D(N+2) := D(N)∩
{
x|α(s1) + λ�

1 (x− s1) ≥ α(s2) + λ�
2 (x− s2) + TOL

}
7: if D(N+1) �= ∅ and D(N+2) �= ∅ then
8: Branched := true
9: else

10: Count+ = 1
11: end if
12: end while
13: if Branched = false then
14: Select arbitrary intersecting hyperplane within D(N) and define D(N+1)

and D(N+2) accordingly
15: end if
16: return (N+1, N+2, D(N+1), D(N+2))
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Assumption 1 (A1) The feasible region of (MP), X = {x ∈ Znx |Qx ≤ q}, is a
bounded, non-empty set.

Assumption 2 (A2) The feasible region of (SP) for a given x, ΩSP(x) �= ∅ when
x ∈ X.

Theorem 1. Suppose that assumptions (A1) and (A2) hold and we are able to
solve all sub problems within tolerance TOL. Then, the above dynamic DC-MPEC
algorithm converges to a global optimum of problem (MILP), within the accuracy
TOL, in a finite number of iterations.

Proof. This theorem is proved in two steps. First, we prove that we cannot
prune the subdomain containing the optimal solution. Next, we prove that the
algorithm in a finite number of iterations will be able to partition in such a way
that the optimal solution is in a subdomain with convex α(x).

1. We prune by bound when the solution of the Lagrangean subproblem
zMILP(μ) ≤ Incumbent. Geoffrion (1974) proves in Theorem 1a) that the
Lagrangean subproblem is a valid lower bound for (MILP) which means no
optimal solution can be lost by pruning.

2. Since we have a limit on the number of Lagrange iterations, the computation
of lower bound from (MILP(μ)) ends in a finite number of iterations. The
computation of the upper bound zB−MILP using Benders decomposition
also terminates in a finite number of steps according to Benders (1962).
By assumption (A1) there are a finite number of points in the domain X
and each branching is forced to leave at least one point in each subdomain,
which means branch-and-bound can reach subdomains containing single
points within a finite number of partitions. By definition α(x) is convex in
subdomains containing a single point.

From the following three observations, we know that the algorithm will find
the global optimal solution: (i) the subdomain containing the global optimal
solution cannot be pruned by 1.; (ii) we can find the subdomain containing the
global optimal solution where α(x) is convex by 2.; and (iii) according to Benders
(1962), Benders decomposition algorithm provides the global solution for a convex
α(x).

Scenario Decomposition

In the setting where the lower-level is a two-stage stochastic complementarity
program the structure of the problem can be utilized when solving the Lagrangean
subproblem (MILP(μ)) using scenario decomposition (Carøe & Schultz 1999).
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The uncertainty is described by a set of scenarios j with the probability pj ,
j = 1, . . . , J , where

∑J
j=1 pj = 1. For a problem with a two-stage stochastic

program in the lower-level, Problem (8.1) can be written as:

min
x,y

J∑
j=1

pj

(
c�xj + ď�y̌j + d̂�j ŷj

)

s.t. Qxj ≤ q for j = 1, . . . , J

Q̆xj ≤ q̆ for j = 1, . . . , J

Ajxj + B̌j y̌j + B̂j ŷj ≥ aj for j = 1, . . . , J

xj = xj−1 for j = 2, . . . , J

(y̌1, . . . , y̌J , ŷ1, . . . , ŷJ) ∈ S(x1, . . . , xJ)

(8.8)

where xj ∈ Znx , y̌j ∈ Rny̌ and ŷj ∈ Rnŷ for j = 1, . . . , J and

S(x1, . . . , xJ) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(y̌1, . . . , y̌J ,

ŷ1, . . . , ŷJ ,

ž1, . . . , žJ ,

ẑ1, . . . , ẑJ ,

ŵ1, . . . , ŵJ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤ Ěy̌j + ě−M�žj −
J∑

j=1

M̌�ẑj ⊥ y̌j ≥ 0

0 ≤ pjÊj ŷj + pj êj − M̂�
j ẑj −D�

j ŵj ⊥ ŷj ≥ 0

0 ≤ k −Nxj −M�y̌j ⊥ ž ≥ 0

0 ≤M�y̌j − M̂�
j ŷj − k̂j + N̂jxj ⊥ ẑj ≥ 0

Dŷj + Fxj = g

for j = 1, . . . , J

y̌j = y̌j−1

žj = žj−1

for j = 2, . . . , J

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.9)

Here y̌j and žj are the first-stage decisions and ŷj , ẑj and ŵj are the second-
stage decisions of the lower-level for scenario j. The two last equation sets of
S(x1, . . . , xJ) are non-anticipativity constraints (Rockafellar & Wets 1976) in-
cluded to make sure the first-stage decisions are equal in all scenarios.

We transform the complementarity conditions of Problem (8.9) into disjunc-
tive constraints as described earlier, transforming the problem into a MILP. The
underlying stochastic program gives the resulting MILP matrix a structure of
nearly separable blocks for each scenario. To achieve separability in the scenar-
ios the non-anticipativity constraints are dualized using Lagrangean relaxation.
Since one set of optimality conditions contain a sum over all scenarios also these
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constraints need to be dualized to achieve separability. Note that also the upper-
level variables and some disjunctive binary variables act as first-stage variables
in this setting.

Scenario decomposition corresponds to Lagrangean relaxation of an integer
program. As stated in Theorem 1 in Geoffrion (1974) this gives a lower bound on
the original problem which makes it valid for our lower bounding purpose, but
does not guarantee a tight bound.

8.3 Results

The dynamic algorithm has been tested both on randomly generated test data
for the general model formulation and on three cases for an application of the
DC-MPEC problem from the Norwegian natural gas supply chain. For all tests
the tolerance was set to TOL = 10−5.

Results on Randomly Generated Data

In this section, we present our computational results with the dynamic DC-
MPEC algorithm based on randomly generated data. Each lower-level problem is
created by deriving the KKT conditions from a LP or convex QP problem. 59 LP-
based problems are generated by random data from the interval [-500,500] with a
uniform distribution. Similarly, data for 40 QP-based problems are sampled from
a uniform distribution [-100,100]. The test problems are grouped according to the
dimension of the variable vectors and underlying problem type, as summarized
in Table 8.4. Sensitivity analysis has been conducted to find the working range
for the disjunctive constant C, and the values reported in Table 8.4 is within
this range and correponds to the results reported in the following tables. Data
for Groups 1 to 4 is provided in the online appendix for Gabriel et al. (2010),
while the rest are new test problems. All tests were conducted on a computer
with 2.34 GHz processor and 23.55 GB memory. The algorithm was implemented
with MATLAB (ver. 7.0) and GAMS (ver. 23.6) interfacing where GAMS used
Xpress-MP for its MILP solver. Test runs using more than 10 hours were stopped,
giving rise to “n/a” in the result tables.

Table 8.5 lists the number of subdomains and the number of sampling and
branching attempts for the alternative algorithms. Results are given for the
original static algorithm (“Stat”) as in Gabriel et al. (2010) and the dynamic
algorithm with and without warm-starting the Benders algorithm with the so-
lution from Lagrangean relaxation (“Dyn ws” and “Dyn”, respectively). For the
dynamic algorithm the number of subdomains corresponds to leaf nodes in the
branch-and-bound tree, while in the static algorithm subdomains are identified
by comparing (λ�, b̄�, b̃�) as described in Gabriel et al. (2010). We observe that
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Table 8.4: Random generated test problem groups. MP and SP give the di-
mension of the variable vector. The value of the disjunctive constant
used for the tests are given by C. Whether the lower level problem is
derived from a LP or QP is indicated by the problem type.

Gr
MP SP

C
Probl

x type y z b type
1 2 int 5 2 7 1.E+03 LP
2 5 int 5 2 7 1.E+03 LP
3 10 bin 10 5 15 300 LP
4 10 bin 15 10 25 1.E+06 LP
5 2 int 400 200 600 1.E+06 LP
6 20 bin 100 100 200 1.E+05 LP
7 2 int 100 50 150 1.E+06 QP

the dynamic algorithm reduces the number of subdomains and samplings com-
pared to the static algorithm. In Table 8.6 the solution times for the same test
problems and algorithms are given. “Bounding time” covers the Lagrangean and
Benders algorithms (Subroutines 8.1-8.2), “Sampling time” sampling and branch-
ing the x-domain (Subroutine 8.3), and “Total time” is the sum of the two. The
dynamic algorithm shows a significant reduction in solution time compared to
the static algorithm, mainly caused by a major reduction in “Sampling time”.
This corresponds well to the reduction in number of subdomains and sampling,
and shows that the gain from fewer subdomains because of dynamic branching is
larger than the added work on computing bounds. We observe that including the
warm-start of the Benders algorithm makes the dynamic algorithm able to solve
the problem in the root node for all test problems, also those with non-convex
α(x), which indicates that Lagrangean relaxation gives a very strong lower bound
for the problem. We have not been able to prove that this result is guaranteed for
the problem class in general. The tables also show that the dynamic algorithm
with warm-start solves all test problems, while the dynamic algorithm without
warm-start leaves two problems unsolved and the static leaves five unsolved due
to long solution times.
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Table 8.5: Number of subdomains and samplings for random generated test
problem solved by static algorithm and dynamic algorithm without
and with warm-start (ws). # subdomains referes to the finest parti-
tioning of the x-domain, which corresponds to the leaf nodes of the
branch-and-bound tree for the dynamic algorithm. For the static algo-
rithm the subdomains are identified through sampling and comparing
(λ�, b̄�, b̃�) as described in Gabriel et al. (2010). The true number
of subdomains are identified by enumeration, where a subdomain is
defined as a set of integer x points where (λ�, b̄�, b̃�) is the same.
Mean and median values cover all test problems that were solved by
all three algorithms.

Gr ID
# subdomains # samplings
True Stat Dyn Dyn ws Stat Dyn Dyn ws

mean 19.5 19.7 3.9 1 40.6 58.5 0
median 14 4 1 1 4.5 2.5 0
1 1 4 1 1 1 2 0 0
1 2 4 1 1 1 2 0 0
1 3 6 5 2 1 10 4 0
1 4 5 4 1 1 2 2 0
2 1 4 1 1 1 2 8 0
2 2 4 1 1 1 2 0 0
2 3 6 1 1 1 2 0 0
2 4 7 198 1 1 382 0 0
3 1 6 1 3 1 2 24 0
3 2 16 47 11 1 123 139 0
3 3 10 61 4 1 195 37 0
3 4 20 29 1 1 71 3 0
3 5 20 50 1 1 115 14 0
3 6 7 17 17 1 40 446 0
3 7 14 1 3 1 2 100 0
3 8 8 16 1 1 31 17 0
3 9 22 26 1 1 74 7 0
3 10 9 1 1 1 2 0 0
3 11 9 4 3 1 4 100 0
3 12 10 1 2 1 2 22 0
3 13 16 11 3 1 27 92 0
3 14 14 77 2 1 174 136 0
3 15 14 1 1 1 2 5 0
3 16 33 65 5 1 188 62 0
3 17 32 63 1 1 168 2 0
3 18 20 22 11 1 26 247 0
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Table 8.5: continued

Gr ID
# subdomains # samplings
True Stat Dyn Dyn ws Stat Dyn Dyn ws

4 1 38 4 13 1 15 149 0
4 2 41 1 35 1 1 708 0
4 3 27 1 29 1 1 831 0
4 4 12 99 35 1 223 395 0
4 5 52 2 1 1 1 6 0
4 6 6 12 13 1 48 502 0
4 7 13 20 52 1 39 552 0
4 8 60 105 3 1 259 70 0
4 9 7 1 2 1 2 58 0
4 10 33 41 5 1 97 33 0
4 11 24 14 5 1 12 138 0
4 12 15 24 3 1 47 0 0
4 13 28 79 5 1 206 36 0
5 1 16 19 2 1 37 2 0
5 2 6 12 2 1 23 2 0
5 3 6 1 1 1 2 6 0
5 4 11 2 1 1 3 0 0
5 5 42 33 2 1 78 2 0
5 6 92 22 1 1 43 0 0
5 7 21 9 1 1 23 0 0
5 8 42 26 1 1 51 0 0
5 9 21 3 1 1 5 0 0
5 10 23 24 1 1 49 0 0
6 1 n/a 1 1 1 2 0 0
6 2 n/a 3 1 1 5 5 0
6 3 n/a 2 1 1 3 0 0
6 4 n/a 1 1 1 2 0 0
6 5 n/a 1 1 1 2 0 0
6 6 n/a 1 1 1 2 0 0
6 7 n/a 1 1 1 2 0 0
6 8 n/a 1 1 1 2 0 0
6 9 n/a 2 1 1 3 0 0
6 10 n/a n/a n/a 1 n/a n/a 0
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Table 8.5: continued

Gr ID
# subdomains # samplings
True Stat Dyn Dyn ws Stat Dyn Dyn ws

7 1 n/a 3 1 1 5 0 0
7 2 n/a 5 1 1 9 2 0
7 3 n/a 1 3 1 4 59 0
7 4 n/a 2 5 1 3 62 0
7 5 n/a 10 5 1 19 41 0
7 6 n/a 7 1 1 19 0 0
7 7 n/a 1 1 1 2 0 0
7 8 n/a 1 3 1 2 34 0
7 9 n/a 1 1 1 2 0 0
7 10 n/a 1 1 1 2 2 0
7 11 n/a 2 2 1 3 6 0
7 12 n/a 1 1 1 2 0 0
7 13 n/a 2 2 1 4 20 0
7 14 n/a 1 1 1 2 0 0
7 15 n/a 1 1 1 2 0 0
7 16 n/a 3 1 1 3 0 0
7 17 n/a 2 1 1 3 0 0
7 18 n/a 1 1 1 2 0 0
7 19 n/a 26 1 1 34 0 0
7 20 n/a 37 3 1 55 17 0
7 21 n/a 5 1 1 7 2 0
7 22 n/a 40 2 1 121 44 0
7 23 n/a 12 3 1 87 58 0
7 24 n/a 1 1 1 2 0 0
7 25 n/a 1 1 1 2 0 0
7 26 n/a 1 1 1 2 0 0
7 27 n/a 10 4 1 27 45 0
7 28 n/a 68 1 1 313 0 0
7 29 n/a 53 1 1 111 4 0
7 30 n/a 53 1 1 116 0 0
7 31 n/a 72 2 1 147 36 0
7 32 n/a 12 4 1 30 47 0
7 33 n/a 65 2 1 152 50 0
7 34 n/a 5 4 1 10 9 0
7 35 n/a 75 1 1 156 0 0
7 36 n/a 1 1 1 2 0 0
7 37 n/a n/a n/a 1 n/a n/a 0
7 38 n/a n/a 1 1 n/a 0 0
7 39 n/a n/a 1 1 n/a 0 0
7 40 n/a n/a 1 1 n/a 0 0
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Chapter 8 A Branch-and-Bound Method for Discretely-Constrained MPEC

Application to a Natural Gas Supply Chain
Background

The presented algorithm is tested on a stochastic two-stage problem from the
Norwegian natural gas supply chain. For this problem we use the scenario decom-
position described earlier. Because of high investment costs, thorough planning
is required for field and infrastructure developments in the natural gas industry.
This planning typically has a bilevel structure where the investment level should
be coordinated within the network, taking into account the competitive behav-
ior of multiple producers in the operational level. Further, the investments are
binary decisions taken under both long-term and operational uncertainty.

Model Description

The model presented here is a MPEC that can be written in this form:

min
x,y

c�x+ d�y

s.t. Qx ≤ q

y ∈ S(x)

(8.10)

where x ∈ Znx , y ∈ Rny , and

S(x) =

⎧⎪⎨
⎪⎩y

∣∣∣∣∣∣∣
0 ≤ z ⊥My +Nx− k ≥ 0

0 ≤ y ⊥ Ey + e−M�z ≥ 0

Ax+By ≥ a

⎫⎪⎬
⎪⎭ (8.11)

The upper-level takes the perspective of a central planner making binary deci-
sions on which fields and pipelines to invest in and when to invest. These decisions
are represented by x. The investments have investment costs, c, and there can
be dependencies between the possible investments given by Qx ≤ q. The central
planner maximizes the long term profits generated in the supply chain taking
into account the short term operations, y.

For the lower-level problem we use a multi-period version of the model by
Midthun, Bjørndal, Tomasgard & Smeers (2007) with some extension to facili-
tate a connection to the upper-level decisions. Midthun et al. (2007) describes
a stochastic mixed complementarity problem where several producers make pro-
duction decisions, trade in a transportation market, deliver natural gas in long
term contracts and sell natural gas on the spot market. The producers maxi-
mize their profit consisting of natural gas sales income, transportation costs and
production cost. The natural gas spot market has exogenously given stochastic
prices and delivery obligations in contracts are stochastic. The independent sys-
tem operator (ISO) routes the gas and makes transportation capacity available
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Figure 8.4: Overview over natural gas value chain model

in the transportation market according to the physical capacities of the network.
The market for transportation capacity is modeled endogenously in two stages.
In the primary market large prequalified producers book capacity at a fixed price
before the uncertainty is resolved. In the secondary market the ISO offers spare
capacity, the large producers trade and the optimality conditions of a competitive
fringe give a demand curve that clears the market. One producer will not know
the other producers’ primary booking in the second stage, an assumption that
makes it possible to formulate the whole operational level as a Generalized Nash
equilibrium. Figure 8.4 gives an overview of this model.

Midthun et al. (2007) shows that a competitive transportation market where
decisions partly are taken under uncertainty results in some inefficiency compared
to centralized coordination maximizing the social surplus of the supply chain.
These losses are caused by excess transportation booking that carries forward to
excess production and sale. The invesment decisions by a centralized upper level
planner in our model will typically search for network structures that counteract
these losses by providing a flexible network design.

Numerical Results

Three small instances of this problem are solved by the dynamic DC-MPEC
algorithm. Two datasets (Datasets 1 and 2) are entirely synthetic, while the last
(Dataset 3) has production capacities from an extract of the existing fields. Each
dataset have several instances with different number of scenarios.

For the natural gas application, the main coordination of the dynamic DC-
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MPEC algorithm is implemented in Matlab. Scenario decomposition was used for
lower bounding, implemented with Mosel/Xpress to solve subproblems. To speed
up the upper bounding the mixed complementarity problem from the lower-level
was solved by GAMS/PATH and provided an initial solution for the binary vari-
ables of the Benders subproblem solved with GAMS/Xpress. As benchmark the
whole bilevel problem is formulated as a single MILP and solved with Mosel/X-
press.

Table 8.7 presents the datasets and results from the tests. The disjunctive
constant C was 105 for Dataset 1 and 106 for Dataset 2 and 3. Dataset 1 and 2
were tested on a HP dl160 G3 with 2x3.0GHz Intel E5472 Xeon processors and
16Gb RAM and Dataset 3 was tested on a Pentium 4 with 3.6GHz processor and
3.0Gb RAM.
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8.4 Conclusions

The benchmark was faster in the small instances, but our algorithm was able
to solve substantially larger instances for Dataset 1 and 3. It is not surprising to
find the benchmark faster on small instances, since our research code combining
several software has a significant overhead in data transfer. We observe that in all
tests where the real optimal value was known from the benchmark, the dynamic
DC-MPEC algorithm provided an optimal solution, as expected based on the
theory.

We have experienced challenges related to numerical stability in the testing of
our algorithm. In several occasions the solver provided a solution to a MILP prob-
lem, but when asking the solver to fix the binary variables according to the solu-
tion and resolve, the solver claimed the resulting LP to be infeasible. To overcome
this situation the tests on Dataset 2 and 3 were run without the presolve function
activated in the Xpress solver (www.gams.com/dd/docs/solvers/xpress.pdf) for
upper bounding, and on Dataset 3 we also had to use different values for MIP
tolerance on different instances. Naturally, deactivating presolve gives a disad-
vantage to the dynamic DC-MPEC algorithm when it comes to solution time.

8.4 Conclusions

We have presented a dynamic DC-MPEC algorithm to solve discretely con-
strained mathematical programs with equilibrium constraints (DC-MPEC) which
is a class of bilevel program with integer program in the upper-level and mixed
complementary problem in the lower-level. We develop a new branch-and-bound
method for DC-MPEC problems applying Benders decomposition and Lagrangean
relaxation methods. We provide convergence theory for the new method showing
that it will find the global optimum and implement the new dynamic DC-MPEC
algorithm on a set of test problems for both convex and non-convex domains.
The numerical results show that the dynamic DC-MPEC algorithm outperforms
the static counterpart presented by Gabriel et al. (2010) due to reduced sampling
and branching efforts. The dynamic algorithm is further improved by warm-
starting the Benders algorithm with the solution found by Lagrangean relaxation.
We enhance the new method with the scenario decomposition method (Carøe &
Schultz 1999) for two-stage stochastic DC-MPEC problems with discrete prob-
ability space. Then we compare the stochastic DC-MPEC algorithm with the
single level approach by Fortuny-Amat & McCarl (1981) for a application for the
Norwegian natural gas value chain. These numerical results present the effective-
ness of our branch-and-bound algorithm and demonstrate the potential of the
algorithm for a decision support tool for upper-level planners whose decisions are
discrete.
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Appendix

8.A Theorem

Theorem 2. The solution of (SP) from the Benders decomposition algorithm
provides an upper bound on zMILP = d�x+ d�y for any given partition, and the
optimal solution zMILP = d�x∗ + d�y∗ for any partition where α(x) is convex.

Proof. By the assumption (A2) any x(v) which is a feasible in (MP) is also feasible
in (MILP). For a given x(v) the feasible region of (SP) is identical to the feasible
region for the variables y, z, b̄ and b̃ of (MILP), which makes a solution of (SP)
feasible in (MILP). And since the function zup

(
x(v)
)

is identical to the objective
function of (MILP), it is an upper bound of (MILP). Benders (1962) proves that
Benders decomposition algorithm converges to the optimal solution in the case
of a convex α(x).
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