
A. N
icholasson, L. N

or, B. U
glem

AutoPacker

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Ba
ch

el
or

’s
pr

oj
ec

t

Aron Mar Nicholasson
Liban Bashir Nor
Bendik Nogva Uglem

AutoPacker

Automated software packaging and deployment
solution

Bachelor’s project in Bachelor i ingeniørfag - Data

Supervisor: Girts Strazdins

May 2020

Aron Mar Nicholasson
Liban Bashir Nor
Bendik Nogva Uglem

AutoPacker

Automated software packaging and deployment
solution

Bachelor’s project in Bachelor i ingeniørfag - Data
Supervisor: Girts Strazdins
May 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

i

Obligatorisk egenerklæring/gruppeerklæring

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige hjelpemidler, ret-

ningslinjer for bruk av disse og regler om kildebruk. Erklæringen skal bevisstgjøre studentene

på deres ansvar og hvilke konsekvenser fusk kan medføre. Manglende erklæring fritar ikke stu-

dentene fra sitt ansvar.

ii

Preface

Before you lies the thesis "AutoPacker - Automated software packaging and deployment

solution.", which contains the results of our research and development. The thesis has been

written by three computer engineering students at NTNU Ålesund to fulfil the requirements for

the bachelor degree.

AutoPacker is a self-defined project where the concept has been worked on since the second

year with the help of Girts Strazdins. It started with a desire to create an application to

automatically build independent applications using virtualization technology, to be an idea for

a platform that builds and deploys software to a centralized hub which gets used for testing,

server deployment and storage.

We hope you find the thesis interesting.

Aron Mar Nicholasson

Liban Bashir Nor

Bendik Nogva Uglem

Ålesund, May 20, 2020

iii

Acknowledgement

We want to thank Girts Strazdins for his help in establishing the idea for the project, as well as

being an outstanding supervisor and acting project owner.

We also want to give a special thanks to Avento and Kenneth Gjersdal for their cooperation and

mentorship.

iv

Abstract

When a teacher has to upload a project to a server for a specific lecture, it might involve tedious

and repetitive configurations and even software updates due to changes and updates in software

that does not comply with the program the teacher wants to host. New students may also find it

hard to start working with server configuration, and more experienced students may find simple

configuration tedious in length.

Current solutions that solve these problems are platform or provider dependent and very

complicated to use by providing an ocean of possibilities and tools for the user. This can be

especially hard for new learners that do not have time or money for these solutions.

We want AutoPacker to be a simple, but productive and transparent platform that is cloud

service and hosting independent and offers a way to manage projects, servers, deployment and

storage, and being a platform for people to share projects and ideas.

AutoPacker is built using microservice architecture and consists of one web application and

4 APIs. AutoPacker can deploy to any server, which means students and teachers can use servers

provided by the school. AutoPacker supports simple uploads like Java (both project and Jar),

Spring-Boot, static sites, Angular and React projects. It also has a modular configuration builder

that makes it easy to implement further support later on. In AutoPacker, universities can create

organizations that can store lecture projects, bachelor projects and other types of projects.

Contents

Declaration . i

Preface . ii

Acknowledgement . iii

Abstract . iv

Acronyms . 2

1 Introductions 10

1.1 Background . 10

1.2 Problem Formulation . 10

1.3 Scope . 11

1.4 Objectives . 11

1.5 Structure of the Report . 12

2 Theoretical basis 13

2.1 Agile Development . 13

2.1.1 Scrum . 13

2.2 Security . 13

2.2.1 Why encrypt? . 13

2.2.2 Why hash? . 14

2.2.3 Our needs . 14

2.2.4 Types of encryption and hashing . 15

2.2.5 JWT . 16

2.2.6 The chosen cryptography mechanisms . 16

2.2.7 Possible exploits . 16

v

CONTENTS vi

Cross-Site Script . 16

SQL Injection . 17

Zip Slip Vulnerability . 17

2.3 Privacy . 18

2.3.1 General Data Protection Regulation (GDPR) 18

2.3.2 Right To Privacy . 18

2.4 Communcation and RESTful . 19

2.4.1 What is RESTful . 19

2.4.2 Why RESTful over conventional method . 20

2.4.3 Usage of the HTTP methods . 21

2.5 Docker Concepts . 22

2.5.1 Containers . 22

2.5.2 Docker Images . 23

2.5.3 Docker Volume and Bind Mount . 24

Volume . 24

Bind Mount . 24

2.5.4 Docker Registry . 25

2.5.5 Docker Network . 25

2.5.6 Swarm . 26

Service . 27

Secret . 29

Stacks . 29

2.6 Spring Boot Patterns & Principles . 29

2.6.1 Beans . 29

2.6.2 Inversion of Control (IoC) . 29

2.6.3 IoC Container . 30

2.7 Server Administration . 30

2.7.1 Continuous Integration (CI) . 30

2.7.2 Continuous Deployment (CD) . 30

2.7.3 Blue Green Deployment . 30

CONTENTS vii

2.8 Database Concepts . 31

2.8.1 Relational Databases . 31

2.8.2 Entities and domains . 31

2.8.3 Repositories . 31

3 Method 32

3.1 Project Organization . 32

3.1.1 Scrum . 32

3.2 Work Organization . 32

3.3 Security Flaw . 34

3.4 Programming languages . 34

3.4.1 Java . 34

3.4.2 JavaScript . 34

3.5 Command languages . 35

3.5.1 Bash . 35

3.6 Package Manager . 35

3.6.1 Yarn . 35

3.7 Frameworks . 36

3.7.1 Spring Boot . 36

3.7.2 React . 36

3.7.3 React Hooks . 36

3.7.4 Redux . 37

3.7.5 React-router . 37

3.7.6 Ant Design . 38

3.8 Data . 39

3.8.1 JSON . 39

3.8.2 YAML . 39

3.8.3 MySQL . 39

3.8.4 MongoDB . 40

3.9 Project Management . 40

CONTENTS viii

3.9.1 Management Tools . 40

Confluence . 40

Jira . 40

Teamwork . 40

Draw.io . 40

Visual Paradigm Online . 41

3.9.2 Development Tools . 41

Docker . 41

GitLab . 43

Postman . 43

Wireshark . 43

IntelliJ . 43

Visual Code . 43

Git . 44

Database Management Tools . 44

SSH Client . 44

3.10 Existing Solutions Comparisons . 44

3.10.1 Azure Comparison . 44

3.10.2 Heroku . 45

3.10.3 GidPod . 45

3.11 Documentation . 46

4 Result 47

4.1 Architecture . 48

4.1.1 Deployment Diagram . 48

4.1.2 Use Case Diagram . 49

4.2 Database overview . 50

4.2.1 Authentication Server Database . 50

4.2.2 Server Manager Database . 51

4.2.3 General Database . 52

CONTENTS ix

4.2.4 File Delivery Database . 53

4.3 Technology Stack survey . 53

4.3.1 Go-to programming-/scripting language for different projects 54

4.3.2 Frontend . 55

4.3.3 Backend . 56

4.3.4 Database . 56

4.3.5 Server . 57

4.3.6 Extra thoughts/comment . 57

4.4 Gitlab CI/CD . 58

4.5 Backend Services . 61

4.5.1 File Delivery API . 61

Authorization . 61

File Explorer . 61

Docker-compose template builder . 63

General builder functionality . 64

Parameters . 65

Placeholders and their replacement . 65

4.5.2 Validation . 66

4.5.3 MongoDB . 66

4.5.4 Server Manager . 67

Server Initialization Script . 67

Connecting and transmitting data . 67

Project Deployment . 68

4.5.5 Authentication Server . 69

JWT vs 0Auth2 . 69

Registration . 69

Authentication . 70

Authorization . 70

4.6 General API . 71

4.7 Web Application . 71

CONTENTS x

4.7.1 Routing . 71

4.7.2 Application State Management . 73

4.7.3 React Hooks . 74

4.7.4 Custom Alert . 76

4.7.5 Search Logic . 77

4.7.6 Graphical Interface . 78

4.7.6.1 Homepage . 79

4.7.6.2 Registration Success . 80

4.7.6.3 Projects . 82

4.7.6.4 New Project . 83

4.7.6.5 Project Overview . 85

4.7.6.6 Module Selection . 86

4.7.6.7 Single-Module . 87

4.7.6.7.1 Setup . 87

4.7.6.7.2 Upload . 88

4.7.6.7.3 Building . 88

4.7.6.7.4 Complete . 89

4.7.6.8 Multi-Module . 89

4.7.6.8.1 Summary . 90

4.7.6.8.2 Type . 91

4.7.6.8.3 Setup (database) . 92

4.7.6.8.4 File Upload (database) . 92

4.7.6.8.5 Summary (with modules) . 93

4.7.6.9 Own Setup . 94

4.7.6.10 Project Overview (populated) . 95

4.7.6.11 Project Settings . 97

4.7.6.12 Servers . 98

4.7.6.13 Server Creation . 99

4.7.6.14 Server Overview . 100

4.7.6.15 Organizations . 102

CONTENTS xi

4.7.6.16 Organization Projects . 103

4.7.6.17 Organization Project Requests . 104

4.7.6.17.1 Decline Request . 105

4.7.6.17.2 Edit Request . 105

4.7.6.17.3 Accept Request . 106

4.7.6.18 Organization Members . 106

4.7.6.19 Organization Applicants . 107

4.7.6.20 Organization - Submit Project . 108

4.7.6.21 Organization Submissions . 109

4.7.6.22 Search Result . 110

4.7.6.23 User Profile . 112

4.7.6.24 User Project . 112

4.7.6.25 Organization Profile . 113

4.7.6.26 Organization Membership . 113

4.7.6.27 User Settings . 114

4.8 Docker architecture . 115

4.8.1 Docker compose (staging) . 115

4.8.2 Docker Swarm (production) . 117

4.9 Testing . 118

4.9.1 Usability Testing . 118

4.9.2 Mentor and Supervisor test . 118

4.9.3 Test Results . 118

5 Discussion 120

5.1 Results VS Expectation . 120

5.2 Project Organization . 121

5.3 RESTful Services . 121

5.3.1 File Delivery API . 121

5.4 Security . 122

5.5 Web Application . 122

CONTENTS 1

5.5.1 Design & Interface . 123

5.5.2 Code Quality & Structure . 123

5.6 Production . 124

5.7 Limitations . 124

5.8 Future Work . 124

6 Conclusions 126

Bibliography 128

Appendices 134

A Preliminary Report . 134

B API Specifications . 154

C Gantt diagram . 163

D Web Application Source Code . 164

E File Delivery API Source Code . 164

F General API Source Code . 164

G Server Manager Source Code . 164

H Authentication Server Source Code . 164

I Dynamic use of docker compose . 164

J Wireframes . 168

K Jira Sprint Reports . 172

L Retrospective Meeting Notes . 186

M Meeting Notes . 191

N Weekly Logs . 198

O Note from tester . 216

CONTENTS 2

Terminology

Docker Docker is a tool for managing containers (explained in detail in section 2.5 and 3.9.2).

Docker Image A docker image is an executable package of different software, library, tools and

settings.

Docker Container A docker container is a process instanced from a docker image.

Front-end The part of a computer system or application that the user interacts directly with.

Back-end The part of a computer system or application that is not directly available t the user.

Sprint A sprint is a time-box iteration of a continuous cycle of development.

Agile A working method focused on working in iterations.

Scrum is an agile process framework where a team plans, adapts, changes, develops and de-

ploys in iterations.

Cipher Is a general term for algorithms in cryptography.

Salt Random value added into a hashing function to secure the hash.

Crack Hacking with malicious intent.

User story Is an informal, natural description of a feature in a system described from the eyes

of an end-user.

Unix An operating system. Most popular variants are MacOS and Linux.

Wizard Is a setup assistance interface to help the user achieve his goal.

Abbreviations

API Application Programming Interface

ACK acknowledge message

CONTENTS 3

REST REpresentational State Transfer

URL Uniform Resource Locator

URI Uniform Resource Identifier

SSH Secure Shell

CI Continuous Integration

CD Continuous Deployment

JWT JSON Web Token

UI User Interface

UML Unified Modeling Language

HTML Hyper Text Markup Language

SQL Structured Query Language

CSS Cascading Style Sheet

JSON JavaScript Object Notation

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

SSL Secure Sockets Layer

IDE Integrated Development Environment

JPA Java Persistence API

JDBC Java Database Connectivity

VM Virtual Machine

GDPR General Data Protection Regulation

CONTENTS 4

IoC Inversion of Control

DI Dependency Injection

YAML YAML Ain’t Markup Language

GUI Graphical User Interface

XML Extensible Markup Language

JDK Java Development Kit

DTR Docker Trusted Registry

TCP Transmission Control Protocol

SSL Secure Sockets Layer

TLS Transport Layer Security

RSA Rivest–Shamir–Adleman

DES Data Encryption Standard

3DES Triple DES

TDEA Triple Data Encryption Algorithm

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

List of Figures

2.1 Figure showing an example of ubuntu:15.04 image layers[19]. 23

2.2 Figure showing how docker containers can persist and manage generated

data[27]. 24

2.3 Figure showing a general docker network architecture[42]. 25

2.4 Figure showing a docker swarm overlay network architecture[42]. 26

2.5 Figure showing a docker swarm with nodes[18]. 27

2.6 Figure showing a service object[25]. 28

2.7 Figure showing the process of assigning a service to a manager and tasks

being given to worker nodes[25]. 28

3.1 Figure showing the pre planned thought of our infrastructure. 33

3.2 Figure showing our pre planned work on what modules we needed for our

bachelor project. 33

3.3 Figure showing swot analysis on ant design and material UI. 38

3.4 Figure showing the difference of virtualization between Docker and virtual

machines[10]. 42

4.1 Deployment diagram of the system of micro-services. 48

4.2 A use case describing what interactions different roles can expect. 49

4.3 Figure showing the authentication server database. 50

5

LIST OF FIGURES 6

4.4 Figure showing the server manager database. 51

4.5 Figure showing the general service database. 52

4.6 Figure showing the file delivery service database. 53

4.7 Figure showing the most used programming and scripting languages. 54

4.8 Figure showing the most popular tools and frameworks for developing fron-

tend applications. 55

4.9 Figure showing the most popular tools and frameworks for developing back-

end services. 56

4.10 Figure showing the most popular databases. 56

4.11 Figure showing the most popular servers. 57

4.12 A sequence diagram of creating a module after a project has been added. . . 62

4.13 Folder structure of the API, where the focus is on the separation of users,

projects and modules. 63

4.14 The base docker-compose template where only variables on the highest scope

is defined. 63

4.15 Docker-compose template of the Java 8 service. 64

4.16 Main template builder code snippet from BuilderService class. 65

4.17 Code snippet showing an example of using JSch. 67

4.18 Sequence diagram for deploying a project on to a server. 68

4.19 Sequence diagram for registration. 69

4.20 Sequence diagram for authentication. 70

4.21 Figure showing the custom route for a profile dashboard component. 72

4.22 Figure showing the module upload part of the application with component

hierarchy and switching. 73

4.23 Figure showing application state management with regular React Redux. . . 75

4.24 Figure showing application state management with hooks. 75

LIST OF FIGURES 7

4.25 Figure showing a use example for the alert component. 76

4.26 Figure showing the implementation of the debounce hook. 77

4.27 Figure showing an example using the debounce hook. 77

4.28 Figure showing the wireframe for project overview. 78

4.29 Figure showing our temporary homepage. 79

4.30 Figure showing the registration form. 80

4.31 Figure showing the profile panel after the user is successfully registered. . . 80

4.32 Figure showing the verification email. 81

4.33 Figure showing profile dashboard when authenticated and verified. 82

4.34 Figure showing page for creating the projects. 83

4.35 Figure showing the profile panel after project creation. 84

4.36 Figure showing a project overview page. 85

4.37 Figure showing the module type selection page. 86

4.38 Figure showing the setup part of a single-module upload. 87

4.39 Figure showing the upload part of a single-module upload. 88

4.40 Figure showing the complete part of a single-module upload. 89

4.41 Figure showing the summary part of a multi-module upload. 90

4.42 Figure showing the type selection part of a multi-module upload. 91

4.43 Figure showing the setup step for a database module in multi-module upload. 92

4.44 Figure showing the summary part with modules data in multi-module up-

loading. 93

4.45 Figure showing the own setup option. 94

4.46 Figure showing a project overview with added module. 95

4.47 Figure showing a modal containing module details. 96

4.48 Figure showing a modal for deleting a module. 96

LIST OF FIGURES 8

4.49 Figure showing the project settings page. 97

4.50 Figure showing all the users’ servers. 98

4.51 Figure showing the form for adding a server. 99

4.52 Figure showing an overview of a server without projects assigned to it. . . . 100

4.53 Figure showing the modal for adding projects. 101

4.54 Figure showing an overview of a server with projects assigned to it. 101

4.55 Figure showing a list of organizations the user is affiliated with. 102

4.56 Figure showing a list of projects affiliated with the organization. 103

4.57 Figure showing the dropdown menu from hovering over username. 104

4.58 Figure showing a list of project requests made to the organization. 104

4.59 Figure showing the modal for declining a request. 105

4.60 Figure showing the modal for editing a request. 105

4.61 Figure showing the modal for accepting a request. 106

4.62 Figure showing a list of all the members of an organization. 106

4.63 Figure showing a list of all the applicants for the organization. 107

4.64 Figure showing the page used to submit a project request. 108

4.65 Figure showing a list of submissions made by the user. 109

4.66 Figure showing the modal for editing an existing submission. 110

4.67 Figure showing the search results page. 111

4.68 Figure showing the search results containing users. 111

4.69 Figure showing the search results containing organizations. 112

4.70 Figure showing a public user profile. 112

4.71 Figure showing a public project overview for a user project. 112

4.72 Figure showing a public organization profile. 113

4.73 Figure showing the form to submit a membership application. 114

LIST OF FIGURES 9

4.74 Figure showing the user settings page. 114

4.75 Figure showing our staging environment using docker. 115

4.76 Figure showing a concept for a production environment using docker. . . . 117

1 Figure showing the wireframe for the homepage. 168

2 Figure showing the wireframe for the dashboard panel containing user projects.169

3 Figure showing the wireframe for creating a new project. 169

4 Figure showing the wireframe for an empty project. 170

5 Figure showing the wireframe for a project containing modules. 170

6 Figure showing the wireframe for creating a new module for a project. . . . 171

7 Figure showing the wireframe for listing all projects in an organization. . . . 171

Chapter 1

Introduction

1.1 Background

The reason why we chose this custom task is based on our own experience and that we see a

benefit to this solution that can help students in particular, but also individuals who are devel-

oping as a hobby. We want to create a solution that automates the process by going from source

code to a platform-independent solution that can run both locally and on a remote server that

is automatically configured and runs the application in a virtualized environment. In this way,

it can be used for testing, sharing and operation of older and newer projects.

1.2 Problem Formulation

When one is trying to develop, test and run a software application on different systems, it takes

much time to configure the application environment so it can run without problems (as differ-

ent operating systems require different configuration). Usually one performs these steps several

times in which it becomes tedious.

This project solution will help automate this task and also make the application

platform-independent by using virtualization tools and automatic server and local

environment configuration.

10

CHAPTER 1. INTRODUCTIONS 11

1.3 Scope

The scope of this bachelor project is to be able to create a platform that can perform simple

automatic server configuration, software building/bundling and project deployment. The plat-

form architecture will be modular and scalable using microservice architecture.

The platform can provide a foundation for future tool support by having an easy to extend and

generic file builder for uploading modules to projects.

The project is well maintained and documented so that others will be able to contribute in the

future.

The platform can provide a platform for users to create, share and deploy projects as well as

explore other users projects, join organizations and were both students and lecturers can store

submissions, lectures and bachelor projects.

1.4 Objectives

The objectives for this bachelor thesis are:

• To research different ways to implement automatic environment and application setup.

• To create a standalone system that can automatically configure a virtualized environment

for a remote server or local computer.

• To achieve good test result.

• To make a solution that can be used for software based bachelor projects.

• To make a solution that can be used by NTNU for bachelor hosting, distribution and op-

erations.

• To create an independent platform that can be used by all individuals.

• To create a solution that can be used my multiple organizations (preferably schools and

universities).

CHAPTER 1. INTRODUCTIONS 12

1.5 Structure of the Report

The rest of the report is structured as follows.

Chapter 2 - Theoretical basis: Chapter two gives an introduction to the theoretical background

for the concepts and tools needed to prepare the reader for the following chapters.

Chapter 3 - Materials & Methods: Contains a description of the methodology and materials

that were considered throughout the project.

Chapter 4 - Result: Contains a description of the finished product. What results we achieved

and what decisions were made.

Chapter 5 - Discussion: Contains a reflection on the work that has been done, choices that

has been made and what could have been done differently.

Chapter 6 - Conclusions: This chapter presents the overall conclusion.

Chapter 2

Theoretical basis

2.1 Agile Development

Agile development is a work process that focuses on delivery in iterations, rather than delivering

it all at once. With agile development, the goal is to create a minimum viable product first, then

keep building upon that product through sprints. The team keeps a backlog of what features is

needed in order to create the minimum viable product. In each sprint, the team chooses issues

from the backlog and add it to their sprint. This process is repeated typically biweekly until the

product is finished[57].

2.1.1 Scrum

Scrum is a variant of Agile development but with a greater focus on team communications and

meetings. At the beginning of every day, the team has daily stand-up meetings where they in-

form about what they have done, what were difficult, and what to work with next [57].

2.2 Security

2.2.1 Why encrypt?

In a perfect world without people with malicious intent, there would be no need for encryption.

Human readable data gets sent between two parties, and there would be no need to worry. In

13

CHAPTER 2. THEORETICAL BASIS 14

the real world, however, the case is different. The data could contain private information or

other information that the sender does not want others to know. It can be anything from once

real name to once credit card information. Information like this is almost always sent when

performing online purchases. This makes it extremely important that the information is trans-

mitted securely to the receiver. Encryption is a security layer that prevents the data from being

compromised between point A and B.

2.2.2 Why hash?

Hashing is a one-way function that changes the original value to a value that is not understood

by anyone who reads it. In the case of a security breach, this technique prevents the intruder

from getting the raw information quickly. Common ways to find the original value is using dic-

tionary attacks, where one hashes the words in a dictionary, or brute force, where one hashes

any combination of symbols. The hashes generated from these attacks are then compared with

the target hash to find the original value. Therefore it is essential not to use hashing as the pri-

mary security and use it with a combination of other security mechanisms. Hashing delays the

end part of an attack, so one has time to react and fix the issues, and alternatively, disclose it to

the affected parties.

2.2.3 Our needs

In our systems, we are going to transmit a lot of data between our users, frontend and backend.

All data is going to be sent using the protocols TCP and HTTP. HTTP itself is an unsafe protocol

because all the packets sent through the protocol is visible for whoever got the packets.

Since we will store the user password in a database, we do not want this sensitive information

in plain text in case someone manages to hack into the system. The hashing function does not

need to be quick, but it does require good strength. Any hashing function used for passwords

with a commonly used bit length of 256 is proper. It should also add salt when hashing the

password.

CHAPTER 2. THEORETICAL BASIS 15

2.2.4 Types of encryption and hashing

• RSA - An asymmetrical encryption method that uses public/private key pairs to encrypt

and decrypt messages. RSA’s security is based on factorization of very large numbers with

large prime numbers, making it difficult to compute[40][55].

• DES - A symmetrical encryption introduced in year 1974[14]. The bit size of the cipher

is 64 and 8 of them is used for parity checks and the remaining 56 bits are the key size.

Because of its bit size, this is not a secure algorithm. DES encryption can be cracked in

less than a day.

• Double DES and TDEA - These encryptions are an improvement of DES. Since the biggest

flaw of its predecessor was its cipher block length, double DES and TDEA encryption in-

creases it. The difference between double DES and TDEA is that double DES uses the DES

encryption twice and TDEA (or 3DES) uses it 3 times, giving the final key length of 112

and 168 bits. According to National Institute of Standards and Technology, double DES

and TDEA using two keys has been deprecated, where the ladder being disallowed from

2018[9].

• bcrypt - Bcrypt is a hashing function that uses Blowfish, an older method, as base. The

appeal of bcrypt is that it has built-in salt that prevents it from dictionary attacks. The

hashing function has an iteration variable which defines how many times the hashing will

be ran. This makes cracking the hash slower and makes bcrypt remain secure for years[1].

• SHA-2 - This hashing function is considered a secure function today. It was designed by

the National Security Agency as an improvement of SHA-1. The difference between SHA-2

and SHA-1, its predecessor, is not just an increase in bit length, but also the fundamentals

of the hashing function. SHA-2 refers to a set of hashing that uses the same mechanism

and has different bit lengths. They can also be named SHA-256, SHA-512 and ect., where

the numeric part of the name is the size. Since it is quick to generate the hashes, it can also

be cracked faster. This makes it a disadvantage when using SHA to encrypt passwords[4].

CHAPTER 2. THEORETICAL BASIS 16

2.2.5 JWT

JWT is an access token used for authorization and is commonly used in APIs. In addition to

authorization, it can also transport additional data between client and server. One can sign

tokens to validate the integrity of the token. The token is signed using a secret key and can

either utilize symmetric or asymmetric cryptography methods.

2.2.6 The chosen cryptography mechanisms

The traffic between the client and server will use SSL TLS with RSA for the handshake. During

the handshake, both parties agree on a session key for the symmetrical encryption and they

both store this key. The reason symmetrical encryption is used over the public cryptography

RSA after the handshake is because it is faster.

We will secure our JWT tokens with HMAC512. HMAC512 is a combination of two

mechanisms, SHA-512 and HMAC. Essentially, HMAC is a signature that is used with hashes to

verify that the data inside has not been modified. This cryptography is the most commonly

used to generate JWT tokens[41]. One flaw of the cryptography method is that it uses a

symmetrical key. Anyone who has that key, e.g. cracks it from a token, can generate valid

tokens with a modified token payload. The risk of impersonation is high at this point. To

reduce this risk, it is crucial to use strong keys and optionally regenerate new keys often.

Passwords that are stored in our system will be hashed using bcrypt. It is slow, meaning it is

more resistant to brute-force attacks. This is the preferred hashing function for password

because of the security, especially more preferred than SHA and similar functions.

2.2.7 Possible exploits

Cross-Site Script

Cross-site scripting (XSS) happens when a hacker manages to inject a script into a web application[7].

The script is only executed when someone visits the site on their machines. User actions, data

and input can be captured by the hacker, and the hacker can abuse it. To guard against such

attacks, one can sanitize the user input or encode it.

CHAPTER 2. THEORETICAL BASIS 17

SQL Injection

SQL Injection, or SQLi for short, is a vulnerability where one can manipulate SQL queries in a

way it is not intended[5]. A hacker supplies a SQL query instead of a proper value through the

application to the SQL server. The query that the developers wrote is closed using SQL syn-

tax, and the malicious query is followed by it. Basically, the hacker is granted full access to the

database and can retrieve sensitive information, change or delete data from the database. Many

modern solutions have implemented a countermeasure against this called prepared statements.

It is also possible to sanitize the values.

Zip Slip Vulnerability

Zip Slip is a type of path traversal attack[8]. This attack occurs when the target machine unpacks

a zip, and a file during that process escapes the originally intended file system location. This

file may override system files or configuration. It can be executed either by remote command

or by the system itself as a part of its regular system routine. Zip slip attack works by adding

a reference to a parent directory multiple in the file name. Regular files, for example named

’run.sh’, can be named ’../../../run.sh’ to start the exploitation. This is a risk when the system

tries to treat files when a module is uploaded with a zip. To prevent this kind of attacks, file

names must be sanitized.

CHAPTER 2. THEORETICAL BASIS 18

2.3 Privacy

2.3.1 General Data Protection Regulation (GDPR)

The General Data Protection Regulation (GDPR) is a regulation in EU law made in 2016 and

enforced in Norway in 2018. The regulation surrounds the protection of natural persons con-

cerning the processing of personal data and on the free movement of such data [33].

Due to the exponential digitalization and rapid development of technology, the world needed a

regulation that protects users privacy.

"The principles of data protection should apply to any information concerning an identified or

identifiable natural person." - REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT

AND OF THE COUNCIL

The regulation enforces businesses/processors to take the right decisions regarding data

protection. As mentioned in Article 28 g): "at the choice of the controller, deletes or returns all

the personal data to the controller at the end of the provision of services relating to processing".

This means a user/consumer can ask to get all information saved about him or delete all that

data as long as the union or member state does not require storage of the personal data [33].

In our application, the only mandatory personal information we need is the email address.

This is used to verify the users’ identity.

2.3.2 Right To Privacy

The right to privacy is about the right to private personal life and the right to decide on once

own personal data[15]. We find this very important, and we want the user to be able to know

at all times what data we have stored, and also be able to delete the data if needed. We will not

push this application to production unless we have these options ready for the user.

CHAPTER 2. THEORETICAL BASIS 19

2.4 Communcation and RESTful

2.4.1 What is RESTful

REST is a design pattern that web services follow to communicate with each other[3]. A RESTful

API or service refers to services that use the REST conversions. In order to achieve a RESTful

state, these guidelines must be met:

• Client-Server Model - The app using the RESTful API does not need to worry about how

the data is stored, what technology it is using or how it is implemented. The only require-

ment is that the HTTP response schema format corresponds[11].

• Stateless - The API does not save nor require any previous calls to interpret the calls. The

client must provide the minimum necessary data when performing calls. Any session data

is only kept on the client-side.

• Caching - Caching reduces the load on the server by saving the data static. The API then

does not need to reproduce the data which is going to use more hardware resources.

• Uniform interface - Uniform interface is a design that constrains the API, so each opera-

tion is understandable and consistent[44]. There are four principles for a uniform inter-

face:

1. Each resource has it’s own URI

2. Actions on Resources Through Representations

3. Messages are self explanatory

4. HATEOAS, or Hypermedia as the Engine of Application State

• Layered system - A layered system is a system where the services deployed on different

servers have different purposes. One server can store data, and the other is the REST API.

CHAPTER 2. THEORETICAL BASIS 20

2.4.2 Why RESTful over conventional method

When using REST, one has separate back-end and front-end. This leads to lower coupling and

higher cohesion. Front-end can focus on how to parse the data and display them while the

back-end focuses on creating/updating/deleting the data and structuring the response. It cre-

ates abstraction where the front-end does not need to know how the data is processed. The

abstraction, combined with the REST standards makes the API usable with services with mod-

ern languages and frameworks.

A resource is an object that has data in it. An example is an employee that has, along with other

data, a name, phone number, age and address. Each resource has its own URI. Let us take

employees as an example. If one want to perform actions, one can do GET

api.example.com/employees. Usually, each resource has its own controller. Any

operations done on the resource is handled by the corresponding controller. Again, making it

low coupling and high cohesion.

The URLs are verbose. It makes it easier to understand what the endpoint is for. Objects can

have objects inside them. An example of that is an employee that has a development project

ongoing. Both the employee and the projects are objects. Example:

api.example.com/employees/2/projects/1/ tells that the action will be performed

on the second employee’s first development project. The action depends on what HTTP

method one uses.

All the separation, abstraction, cohesion and coupling makes the development process on the

API simple and faster. This is very effective when the API needs to be upscaled with new

features.

CHAPTER 2. THEORETICAL BASIS 21

2.4.3 Usage of the HTTP methods

REST APIs follows CRUD, a set of functions to store data with persistence[6]. CRUD stands for

create, remove, update and delete. Here are the HTTP methods implementation of CRUD stan-

dard:

1. GET - GET is the most commonly used HTTP methods on APIs. The method retrieves

data from a specific resource[53]. I.e, if you wish to get all employees, you can send a GET

request to the URI .../employees. Narrowing down the result is possible, either by us-

ing a filter algorithm (.../employees?age=22) to get data from multiple employees

or using the employees’ numerical identifier (.../employees/3) from one employee.

2. POST - To submit new data to a resource, you use a POST request. Most of the data is sub-

mitted in the request body. The file format of the body is JSON, XML or form data. JSON

is the most common. The data is sent using POST directly on a resource (.../employ-

ees). POST can also be used to update existing data.

3. DELETE - The DELETE method removes one or multiple data records from a resource.

4. PUT - PUT is often used to update an existing data record. I.e. one employee has moved

and therefore needs to update his address in the API’s database. POST and PUT are similar,

where the only distinction is that PUT is idempotent.

5. Other - We have other methods, but they are not used frequently. These are PATCH, HEAD,

OPTION.

CHAPTER 2. THEORETICAL BASIS 22

2.5 Docker Concepts

Virtualization has become a must know field for many information technology fields and is

used daily in areas like server consolidation, information security and cloud computing. This is

largely due to an increase in hardware performance, and the goal to fully maximize the potential

of the hardware[37].

Virtualization has paved the path for several technologies. A relatively new technology that

utilizes virtualization to manage and maintain software applications is containerization tools

like Docker (More on Docker as a tool in section 3.9.2).

2.5.1 Containers

Containerization has become a major trend in software development and operations. It involves

encapsulating or packaging up a software application and all its tools, libraries, configuration

files and dependencies to run uniformly and consistently on any infrastructure[32].

This eliminates OS and machine dependent errors and bugs as the application is abstracted

away from the host operating system, and therefore becomes portable and platform

independent.

CHAPTER 2. THEORETICAL BASIS 23

2.5.2 Docker Images

A Docker image is a read-only template with instructions for creating a docker container. These

instructions are executed in order when initializing a container from the image. One can also

have images based on other images to get customized behaviour[22].

Figure 2.1: Figure showing an example of ubuntu:15.04 image layers[19].

The image is built up from a series of layers, as shown in figure 3.13. Each layer is only a set of

differences from the layer before it. As git repositories have version control on software

projects, layers have control of the different versions of the image.

When instantiating a new container, a new layer will be added on the top of the stack of layers.

This layer contains all the changes made to the running container, such as new changes,

modifications and deletions[19].

CHAPTER 2. THEORETICAL BASIS 24

2.5.3 Docker Volume and Bind Mount

Docker provides two different mechanisms for persisting data generated and used by Docker

containers.[49] This is useful when one has changes one wants to keep even when removing the

container.

Figure 2.2: Figure showing how docker containers can persist and manage generated data[27].

Volume

Volumes are the preferred mechanism for persisting data. This is the best option when if one is

trying to persist in complex data like databases containing tables and rows. As shown in figure

2.2, these volumes exist outside the container in the host filesystem within a Docker area, which

makes it easy to transfer the volume to another host if needed.

The volume is not dependent on a container. So if we were to delete the container that used

this volume or even created the volume, the volume would still exist in the file system. One can

attach another container to it if needed[27].

Bind Mount

A bind mount usually gets used to mount a file or directory on the host machine into a container.

As one can see in figure 2.2 a bind mount happens on the file system outside of the docker area.

It is therefore dependent on the host machine’s filesystem having a specific directory structure

available.

CHAPTER 2. THEORETICAL BASIS 25

An example use of a bind mount is when one has a website one wishes to host. Then one can

mount the website directory into an Nginx container. When a change occurs on the directory or

file on the host machine, the website will automatically get updated inside the container[17].

2.5.4 Docker Registry

A Docker registry is a stateless, highly scalable server-side application that stores and lets one

distribute Docker images. Docker has its official registry called docker hub, but one can create

own docker registries, local and on cloud solutions, but then one should use the Docker Trusted

Registry (DTR) due to security[23].

A docker registry works similarly to a git repository. It contains all the images (and their layers)

that have been pushed to the registry. By comparing it to a git repository, the image itself is the

source code while the layers are the commits. For every change pushed to the image a new

layer is added on top of the stack. These images can then be pulled and used by others.

2.5.5 Docker Network

Docker networks is a powerful tool within docker that gets used to connect containers and ser-

vices, or even connect them to non-Docker workloads. Docker provides several network drivers

by default[20].

Figure 2.3: Figure showing a general docker network architecture[42].

CHAPTER 2. THEORETICAL BASIS 26

The basic idea is that we use networks to connect containers or separate containers that do not

have anything to do with each other. In figure 2.3, we can see a general network architecture.

We have two networks within the docker engine and three containers, two of them in separate

networks and one connected to both networks. The container connected to both networks can

communicate with the two other containers, but the containers only connected to one network

can not talk to the container in the other network[20]. An example of this is when one wants to

separate a web application, API and database. Then one can set the web application container

in an own network, API in both networks, and database in the other network. This way, the API

can connect to both containers, but the web application has no way of connecting to the

database container.

Figure 2.4: Figure showing a docker swarm overlay network architecture[42].

In docker swarm, we have a network driver called "overlay". This driver lets multiple docker

hosts connect to the same network to enable communication between containers on different

nodes[20].

Docker transparently handles routing of each packet to and from the correct docker daemon

host and the correct destination container. By default, all the traffic between nodes connected

to an overlay network gets encrypted using the AES algorithm. The different manager nodes in

the swarm rotate the key used to encrypt the data every 12 hours[21].

2.5.6 Swarm

Docker swarm is a feature introduces in Docker engine 1.12. This is a feature that lets one create

a cluster of one or more servers/virtual machines running the Docker daemon in swarm mode.

There are two types of nodes. As shown in figure 2.5, we have Manager nodes and Worker nodes.

CHAPTER 2. THEORETICAL BASIS 27

In a swarm, we also use the overlay network driver to make the different containers talk to each

other despite being on different host machines, as shown in figure 2.15[18].

Figure 2.5: Figure showing a docker swarm with nodes[18].

Managers use a Raft implementation to maintain the state of the entire swarm and all the

services (explained in section 2.5.6) running in the swarm. In a test environment, one usually

has one manager to distribute services and tasks to worker nodes, while in production, one has

multiple manager nodes for fault-tolerance purposes[18].

Worker nodes sole purpose is to execute containers. One usually has multiple worker nodes

containing replicas for the different containers making up the application to achieve a form of

redundancy. This also makes it a lot easier to have a green-blue deployment.

Service

We can think of a docker service to represent a specification to acquire a desired state. In figure

2.6, we see that we have a service specification that instructs the creation of 3 Nginx replicas.

When we create a service object, we specify what port the containers defined in the tasks should

run on. We can also specify which overlay network the service should get assigned[25].

https://raft.github.io/raft.pdf

CHAPTER 2. THEORETICAL BASIS 28

Figure 2.6: Figure showing a service object[25].

The service is then given to a manager node which will create tasks from the service object, and

then instruct a worker to run that task, as shown in figure 2.7.

Figure 2.7: Figure showing the process of assigning a service to a manager and tasks being given
to worker nodes[25].

.

CHAPTER 2. THEORETICAL BASIS 29

Secret

Secrets are blobs of data which is used to store private information like a password, SSH private

key, certificates or other data that should not be transmitted or stored unencrypted. Docker

sends the secret to a swarm manager over a mutual TLS connection. The secret then gets stored

in the Raft log, which is encrypted and replicated across the other managers[24].

Stacks

Stacks are the swarm alternative to docker-compose. By running "docker stack deploy" on any

docker-compose file of version 3.0 or above one will create the necessary services and tasks

specified in the docker-compose file. Even though stack gets used on a compose file does not

mean one can use docker-compose and stack deploy interchangeably as they interpret the file

differently, and docker-compose does not work with docker swarm. One usually test the config-

uration locally with "docker-compose up" first, if that works one can run "docker stack deploy"

on a swarm manager node to orchestrate the services. Docker will automatically ignore the

fields that are specific for docker-compose[26].

2.6 Spring Boot Patterns & Principles

2.6.1 Beans

A bean is an object containing metadata managed by the spring boot IoC container. This meta-

data contains the instructions on how to create the bean, its scope and lifecycle, the references

to other beans (also called dependencies)[30].

2.6.2 Inversion of Control (IoC)

Inversion of Control, also known as dependency injection is a principle in software engineering

that inverts the flow of control as compared to traditional control flow. It is a process where the

objects define their dependencies through arguments set on the object instance after it is con-

structed or returned from a factory method. The IoC container then injects those dependencies

when it creates the bean[28].

CHAPTER 2. THEORETICAL BASIS 30

2.6.3 IoC Container

The Spring IoC container is the interface which is responsible for instantiating, configuring and

assembling the beans. The container gets these instructions from the beans metadata[29].

2.7 Server Administration

2.7.1 Continuous Integration (CI)

Continuous integration is a practice for automating the integration of code changes in a soft-

ware project. CI removes unnecessary time used on integration[52].

2.7.2 Continuous Deployment (CD)

Continuous deployment is a process for deploying changes that use automated testing to vali-

date the changes made to the codebase, and deploys the solution to usually a staging environ-

ment first and then manually deployed to the production environment from which the users

can see and interact with the changes. By having automated testing, rolling deployments, and

proper monitoring, the maintainers will have a more stable and faster workflow as well as the

user will have a lot less downtime. By containerizing the project, we also make sure that the

application will work on any environment it gets deployed to[48].

2.7.3 Blue Green Deployment

Blue-green deployment is a model for releasing updates with zero downtime. This is done by

redirecting the traffic from the old version of the service one wants to update to a replica that

contains the newer version one wants to use. In the end, one transfers all the traffic to the new

version and removes the old version. Docker swarm has a "build-in" feature that makes this

type of deployment model easy to execute[38].

CHAPTER 2. THEORETICAL BASIS 31

2.8 Database Concepts

2.8.1 Relational Databases

Relational databases are based on a relational model, which is an intuitive way of representing

data in tables. The rows represent the actual data stored in the table, while the columns repre-

sent the attributes for the given entity. Each row has an attribute called a primary key which is a

unique value used to identify the row/entry[46].

2.8.2 Entities and domains

In our spring boot services, we have two ways of identifying "objects" in our application. These

are entities and domains. An entity represents an object which is stored in the database. So the

entity is really the table, while entity objects are the rows within that table. The second term

we use is domains. These are regular Java Classes that we use in the API for object oriented

programming.

2.8.3 Repositories

In spring boot, we use repositories as an interface to communicate with the databases. These

works differently depending on what type of interface one is using. In most of our APIs, we

used JPA with JpaRepository, which automatically generated queries from methods containing

a specific syntax within a class defined as a repository with @Repository.

Chapter 3

Materials and methods

3.1 Project Organization

3.1.1 Scrum

Our group agreed to use scrum as the working process due to the focus of meetings and team

communication. This meant that everyone involved could be kept up to date, and it gives the

flexibility in our project that we desired. We can adjust the workload that best suits us, compared

to the waterfall method where its more difficult to move back to change something.

3.2 Work Organization

Before we started implementing the services, we planned how our infrastructure should look.

So we created a simple diagram for visualizing how the different parts work together and the

system as a whole. This diagram gets shown in figure 3.1.

32

CHAPTER 3. METHOD 33

Figure 3.1: Figure showing the pre planned thought of our infrastructure.

From this, we built a module diagram that displayed all the parts we had planned for the

bachelor. It included the services we needed to create as well as other parts like the different

type of configuration files we needed and the administration part, as shown in figure 3.2. We

also used this diagram to separate the workload. Each member got assigned specific modules

to focus on, and then we assigned some modules to multiple team members.

Figure 3.2: Figure showing our pre planned work on what modules we needed for our bachelor
project.

CHAPTER 3. METHOD 34

3.3 Security Flaw

Because our users can upload any code, we have introduced a significant security flaw in our

system. Since everyone can use our application and upload whatever they want, people can

upload malicious software. We are aware of this and have some ideas on how to prevent it.

The first idea is only to support open source projects so that others can see the code before

downloading the code. The second option is to have moderators in organizations that have

access to the code that is being uploaded to the organization and can then verify if the code

is malicious or not. Another option is to have a closed platform (not what we want), that only

people with an invitation key can use. This option might be a solution if this platform were to

be organization dependent.

3.4 Programming languages

3.4.1 Java

We decided to use Java since we are all familiar with it and it is the standard programming lan-

guage used at NTNU Ålesund. The main reason why we chose it, is because other students

might want to continue working on this project as their bachelor project, or that other students

and NTNU employees might want to develop further and maintain the software. Therefore Java

is the obvious choice for us as it is easier for others to take over or collaborate on the project

when we are finished. In figure 4.7, one can see a diagram showing the most used programming

language which ensures us that the choice of Java was correct.

3.4.2 JavaScript

JavaScript has quickly become the most popular and used programming (scripting) language

for web development because of its simpleness and the development of the most popular web

development framework of today: React, Vue and Angular.

CHAPTER 3. METHOD 35

3.5 Command languages

3.5.1 Bash

Bash is a unix shell and command language, it look similar to a text editor, but it allows the user

to perform actions from the users input. Bash can also read and execute files, these are called

shell scripts, which makes it easier for developers to perform predefined actions on behalf of the

user. We have to use Bash in order to execute Docker commands. [https://en.wikipedia.

org/wiki/Bash_%28Unix_shell%29]

3.6 Package Manager

3.6.1 Yarn

Yarn is one of the most used package managers for JavaScript alongside npm. We chose to use

Yarn over npm due to its speed. Yarn caches every package it downloads, so it never needs to

download it again. It also parallelizes operations to maximize resource utilization, so install

times are faster than using npm[13].

https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29

CHAPTER 3. METHOD 36

3.7 Frameworks

3.7.1 Spring Boot

Spring boot is an open-source framework and also the most popular framework for Java. Spring

boot makes it easy to create Spring-based applications that can "just run". The main reason why

we choose Spring as our framework is that we have previous experience with the framework. It is

also the most popular framework for Java other than Java EE. Spring-boot uses an IoC Container

for managing beans lifecycle and has a term called automagic which is used for all the automatic

configuration that happens under the hood.

3.7.2 React

React is a open source web framework maintained by Facebook and a community of develop-

ers. It’s one of the three most used frameworks creating single-page applications (React, Angular

and Vue). React is only concerned with rendering data to the DOM, and so creating React appli-

cations usually requires the use of additional libraries. The most famous are named below[60].

We choose to use React due to its huge community and the endless amount of resources on-

line. We also have some familiarity with the framework which makes it easier to start with then

picking something that no one is familiar with.

3.7.3 React Hooks

React hooks got introduced in React 16.8, and as explained on the official react documentation:

"Hooks provide a more direct API to the React concepts you already know: props, state, context,

refs, and lifecycle"[34].

React hooks has quickly become the most used API for managing the concepts mentioned

above and is a valuable asset. React hooks can only get used with functional components and

not the usual class components. By no means does it replace class components, but for many,

they are much more comfortable to use.

CHAPTER 3. METHOD 37

From experience, we know that react state can be challenging to grasp for newcomers.

Especially if one has to pass state to child components or access the react lifecycle. So by using

React hooks, we can remove a complex layer of management, and develop faster than before.

We will use React hooks both for state management, accessing lifecycle, redux, routing and

custom logic.

3.7.4 Redux

Redux is one of the must-haves when creating a application with React. Redux is an open-source

JavaScript library for managing application state. When using redux with react you usually use

react redux, which is the official react binding for redux. It lets your react components read data

from a redux store, and dispatch actions to the store to update data[51].

3.7.5 React-router

React router is also one of the must-haves when creating a react based application. As react

renders data to the DOM and redux takes care of application state management. React router

takes care of the navigational parts of the application by providing a collection of navigational

components.

CHAPTER 3. METHOD 38

3.7.6 Ant Design

Ant Design is one of the most used component libraries for React. With its growing commu-

nity and interest, its become the second most popular component library right after Material

UI. This UI library (created by the Chinese conglomerate Alibaba) includes a vast collection of

modern easy-to-use react components, which is one of the main reasons we chose it.

Figure 3.3: Figure showing swot analysis on ant design and material UI.

In figure 3.3, we have done a SWOT analysis for both Ant Design and Material UI, and then we

compared them to find which did the best. The SWOT analysis is taken basis from own

experience with Material UI and research for Ant Design. Both of them have quite similar

strengths. They are easy-to-use; they deliver high-quality components and have excellent

documentation. The main advantage of Ant Design is that they deliver several more

components than Material UI, which was quite essential for us due to the fact we have limited

time to implement an extensive application. We wanted to spend as little time possible on

custom styling and finding dependencies for other components. There were multiple threats

we had to consider. No one had any experience with Ant Design. The components they provide

can be challenging to customize, and some might be immutable. We could also have a problem

with implementing a component that does not meet the Ant Design guidelines.

CHAPTER 3. METHOD 39

3.8 Data

3.8.1 JSON

JSON is used to store data and uses markup structure. What makes JSON one of the most pop-

ular data storage language is because it is easy to use and is human readable and has a logical

structure[58]. This is a format we have worked with a lot.

The markup uses key and value pairs to store data, where each key has none or many values.

These values can be numbers, strings, boolean, objects, null and arrays. There are some

limitations few of them being that one cannot store functions and dates[12]. There are

workarounds for both, e.g., one can store dates as a string or number (as JSON do not support

date data types) and create an interpreter on your application.

3.8.2 YAML

Similar to JSON, YAML is human readable. However, it is designed to be more understand-

able than JSON and XML[43]. YAML is mostly used as a configuration file and we will use it for

Docker. It is simple to deserialize and process data to any programming language since it uses a

key/value structure. Like UNIX configuration files, YAML also has one key/value pair each line,

but has a possibility to extend to new lines using carrot symbol ">". One beneficial feature is

that one can explicitly define what data type a value has inside YAML. The markup language the

same data types as JSON with the addition of time and dates[56].

3.8.3 MySQL

MySQL is a database system by Oracle to store data. It is the most popular open-source SQL

database system[47]. Each set or collection of data is stored inside tables where each data entry

follows the standard structure of the table. MySQL uses SQL as language and is reliable, quick

and flexible[54]. All members are most familiar with this database.

CHAPTER 3. METHOD 40

3.8.4 MongoDB

Unlike MySQL, MongoDB is a NoSQL database. It means that it does not adhere to the tradi-

tional relational database principles and does not operate with the query language found in SQL

databases. MongoDB appeals to applications that require flexibility and storage of huge sets of

data. Furthermore, the data is stored as JSON/BSON and uses key-value mapping to identify

each record, which is called documents in MongoDB[2].

3.9 Project Management

3.9.1 Management Tools

Confluence

We use Confluence to document the work process and manage documents. Retrospective notes,

meeting notes, requirements specifications, diagrams, wireframes, conventions and other types

of documents.

Jira

To keep track of the work process and issue tracking, we used Jira. This tool is closely related to

Confluence and makes it easier to work in sprints as well as having an apparent backlog of work

that needs to be done.

Teamwork

We used Teamwork to create and manage our Gantt diagram, as it provided a powerful easy-to-

use Gantt diagram design tool with collaboration support and task management system.

Draw.io

Draw.io is a free online diagram tool for creating all sorts of diagrams.

https://www.teamwork.com/
https://app.diagrams.net/

CHAPTER 3. METHOD 41

Visual Paradigm Online

Visual Paradigm Online is an online subscription-based tool that provides a large number of

components, examples and templates for creating different types of diagrams.

3.9.2 Development Tools

Docker

Docker is a tool designed to create, deploy, share and run applications by using containers. Con-

tainers are processes instantiated by images (a package containing everything needed to run the

application. libraries, tools, configuration settings and software) that runs in a virtualized envi-

ronment configured by the Docker engine[59].

In a way, Docker is similar to virtual machines. However, instead of creating a whole virtual

operating system, Docker uses the same kernel that the host machine is running and will only

install the necessary libraries, tools and software needed for the application to run. Doing this,

Docker abstracts the application’s needs for software, tools and libraries installed on the host

machine and only needs the ones specified in the container. This way a Docker container can

run on any OS that has Docker support which makes testing, sharing and deployment much

easier as a Docker container is consistent over every platform (as long as it has the Linux

kernel. So for windows and macOS, Docker runs in a Linux VM)[45].

https://online.visual-paradigm.com/

CHAPTER 3. METHOD 42

Figure 3.4: Figure showing the difference of virtualization between Docker and virtual
machines[10].

The most popular alternatives to Docker is Vagrant and Virtual Box. Virtual box is used to

create virtual machines, and as described in the figure above, a Docker container is much more

lightweight and portable as it relies only on a Linux kernel. Vagrant is used to create and

configure lightweight, reproducible and portable development environments. In some way,

they try and solve the same issue as Docker by removing the application’s needs for the host

machine installed software and libraries. The main difference is that Vagrant provisions any

machine (typically a virtual machine) with the tools needed, and Docker containerizes

applications[31].

In our case, we could have used both Docker and Vagrant for local development for those

running Windows 10 Home. However, for Windows 10 Pro Docker provides an easy-to-use

installer that sets up the environment and makes Docker easy to access. So all in all, for local

development there are alternatives, but Docker have some solutions. Furthermore, for our

Linux server, we can install Docker and run our application as containers without a problem.

CHAPTER 3. METHOD 43

GitLab

GitLab is one of the most popular web-based DevOps lifecycle tools. GitLab provides a Git-

repository manager, issue-tracking system, kanban-boards, auto-deployment and a compre-

hensive CI/CD pipeline system. GitLab offers a ton of tools included, so one does not have

to use multiple third-party tools to manage their application lifecycle. GitLab also offers free

private organization creation which is the main reason why we went with GitLab versus GitHub.

The second reason is that we are familiar with the GitLab pipeline tool from the course ID304112

System Administration[35].

Postman

We used Postman to test and develop our RESTful APIs. Postman delivers a sophisticated col-

laboration platform with many features which made development and testing of our APIs a lot

easier and quicker.

Wireshark

Wireshark is a widely known and used network protocol analyzer, which we used to see what

was happening on our network while using the application. Wireshark was used to see if correct

messages got sent and received as well as to debug and fix errors[61].

IntelliJ

IntelliJ IDEA is a industry leading IDE (mostly for java) for software development developed by

JetBrains.

Visual Code

Visual Studio Code is a lightweight, customizable code editor developed by Microsoft. We choose

to use VS Code for developing the React web application due to its many extensions, customiz-

ability, efficiency and easy to use interface.

CHAPTER 3. METHOD 44

Git

Git is a distributed system for versioning source code. We choose to use Git as all the bachelor

members have experience with this tool. We also used GitKraken, Sourcetree and Git CLI for

interacting with the Git system. Every bachelor member was free to choose their favourite tool

for versioning the bachelor project.

Database Management Tools

• DBeaver - DBeaver is a database administration tool to create, manage and modify exist-

ing databases and connects. Can also be used to generate ER-diagrams.

• PhpMyAdmin - PhpMyAdmin is a database administration tool for MySql and MariaDB.

SSH Client

We used the native ssh command in the terminal to connect to remote servers. This is the sim-

plest and easiest way to connect to both our own servers and the servers used to test our appli-

cation.

3.10 Existing Solutions Comparisons

3.10.1 Azure Comparison

Microsoft Azure delivers a massive library of tools to manage IaaS, PaaS and SaaS. While Au-

toPacker’s primary function is to help build and configure projects as well as assisting with

server and environment configuration and deployment, Azure is used for production-grade and

production-ready applications. AutoPacker is by no means a platform for hosting production-

grade software solutions. While Azure delivers their own servers for the user to use, AutoPacker

gives the user the freedom to choose whatever he wants to use.

Azure also has a service called "App Service" that lets you build, deploy and scale web apps on

a fully managed platform which is a bit same as AutoPacker and uses containers as well to run

the code. As mentioned above, the difference is that AutoPacker is a platform-independent tool

https://dbeaver.io/
https://www.phpmyadmin.net/

CHAPTER 3. METHOD 45

with universities and students in mind that provides a transparent and helpful way to build,

deploy and manage projects and servers.

3.10.2 Heroku

Then we have services like Heroku, which is a PaaS that lets users build, run and operate ap-

plications entirely in the cloud. One of Heroku’s slogan is "Focus on your apps. invest in apps,

not ops." Heroku will handle the operation side of deployment, while you, the user only needs

to worry about developing your application[39]. Heroku delivers their servers with, of course, a

payment option depending on size, power and other specifications. AutoPacker as said earlier,

does not care about who provides the server, its capacity and other technical details. It is a tool

for the user to reach the means to an end.

3.10.3 GidPod

Then we have GitPod, which is a SaaS online code editor that launches ready-to-code dev envi-

ronments for GitHub and GitLab projects[36]. It lets one write, test and run code straight in the

browser with automatic update and deployment to a hosted (testing) page using SSL for secure

communication. GitPods editor is based on the online IDE Theia made by Eclipse. While GitPod

is an excellent tool for development, making changes to a project quickly. AutoPacker is more of

a platform to store and manage projects, as well as helping with building/packaging of projects

and configuration of servers and environments.

CHAPTER 3. METHOD 46

3.11 Documentation

Everything that is documentation related will be stored in our Confluence area, which is neatly

sorted into folder structure that makes it easy to navigate for information.

Supervisor / men-

tor meeting notes

For each meeting with the supervisor and/or mentor, a meeting

record must be written that summarizes the objectives of the meet-

ing, what was reviewed and what was concluded.

Log report We can retrieve Jira’s log report after each sprint documenting what

we have done, how long it took and who did what.

Weekly report Each week, a weekly report is written that summarizes what has

been done so that both team members, supervisors and mentors

are updated before meetings.

Routines In cases where it is necessary to have a routine, it must be docu-

mented jointly so that everyone does the same without any incon-

sistencies.

Decisions For each important decision that contributes to the modification

of the task, that decision must be documented with: what is the

reason, how do we solve it and possible conclusion.

Requirements

specification

The requirements specification should define what user functions

and general requirements the system should have. We use "user

stories" to define user functions

UML Documents If there is a need for UML charts and wireframes this should also be

stored and described in our Confluence area.

Retrospective

meeting notes

At the end of each sprint, the team will have a retrospective meeting

where we go through the sprint internally. What has been done,

what can be changed, how was the work process, what should we

do next.

Milestone report Every time we reach a milestone, we have to write a separate report

that summarizes the functionality that is available and some kind

of “release” summary

47

CHAPTER 4. RESULT 48

Chapter 4

Result

4.1 Architecture

4.1.1 Deployment Diagram

Figure 4.1: Deployment diagram of the system of micro-services.

CHAPTER 4. RESULT 49

The whole system got split up in 5 services, one web application and the rest are APIs. The

APIs only communicates with the web app and never with each other. Most of the services are

in docker containers and can run on any platform with docker installed. The exception is the

File Delivery API, which needs to run outside docker on a Ubuntu environment with Java 11

installed.

4.1.2 Use Case Diagram

Figure 4.2: A use case describing what interactions different roles can expect.

Our system consists of different roles. When you first enter the website, you become a guest

and have the possibility to create an account, login or browse public projects.

Registered user is the default role and here you can create your own projects, apply to

organization and manage your servers. You become a project owner once you create a project

and when you create an organization, you become a organization owner.

CHAPTER 4. RESULT 50

4.2 Database overview

Since we are using a microservice architecture, every service has its own database. We make this

work by using the users’ username as a unique identifier as it is needed in most services as well.

In the subsections, we will go through our databases, how they look, how they work and reflect

on what could have been better.

4.2.1 Authentication Server Database

Figure 4.3: Figure showing the authentication server database.

CHAPTER 4. RESULT 51

The authentication server has a database with five tables. The token tables have a one-to-one

relationship as the user can only have one valid token of each type. At the time of writing, the

user can only have one role. This role has one or many authorities that defines what the user

has access to do. A future feature would be to implement a following/follower type system, were

users can follow one another. This can be implemented by extending this database.

4.2.2 Server Manager Database

Figure 4.4: Figure showing the server manager database.

The only data the server manager stores are the information regarding servers, and the refer-

ences to the projects that the server can deploy that are located in the file delivery database.

Therefore the API only has one table, server, that holds all the information needed.

CHAPTER 4. RESULT 52

4.2.3 General Database

Figure 4.5: Figure showing the general service database.

The General APIs database holds the data for both the organization related information, but

also the language and version support. The language and version data are easily managed by

having a one-to-many relation so that a language can have many versions. The organization

part, however, is a little bit more complicated. At first look, it might seem like much redundancy

as both the authentication server holds information about the user, his role and authorities.

Furthermore, File Delivery API holds information regarding projects. The reason for this is that

the organization system is more of a concept, and the organization might want to store more

information about the user and the projects that our system does. The organization might also

have their own specific roles and authorities, and therefore these tables exist here as well. An

organization can as well have membership applications and project requests made from users

that want to be or are members of the organization.

CHAPTER 4. RESULT 53

4.2.4 File Delivery Database

Figure 4.6: Figure showing the file delivery service database.

The file delivery APIs database holds the information for projects and their modules, but also

the configuration files (docker-compose blocks and dockerfiles) needed to build and run up-

loaded projects. A project can have one or more modules, while the modules can have only one

project (a module is unique to a project). The dockerfiles and compose-blocks tables hold the

references to the actual files that live in the file system of our server. It is important to note that

those tables are only there to index these files, so the API does not need to look through all the

files on the hard disk to find it.

4.3 Technology Stack survey

We wanted to get an overview of what programming-/scripting languages students, hobby coders

and professionals use for daily projects, student projects and hobby projects. To achieve this, we

decided to create a technology survey with google forms to establish an overview. We sent the

survey to 1st, second and 3rd-year computer engineering students at NTNU Ålesund as well as

students at other universities and people in the industry. In total we got 33 responses where 16

(49%) of them were computer engineering students, 2 (6%) were other types of students, and

15 (45%) of them were either hobby programmers or employees in the industry. The reason

CHAPTER 4. RESULT 54

we wanted a wide range of different people, their profession and interest, is because we want

the target audience for our application to be mainly students and hobby programmers, but also

people in the industry that needs a fast deployment and testing solution. By including people

from the industry, we also get data on what programming languages get used and what is pop-

ular, which might be interesting for the students to learn. So by gaining this knowledge, we can

narrow down the initial support in our application to meet the specification we get from this

survey. In the next sections, we will go through the results for each question.

4.3.1 Go-to programming-/scripting language for different projects

Figure 4.7: Figure showing the most used programming and scripting languages.

These results were expected as the most used programming language in courses, is Java. The top

languages after Java are JavaScript, Python and C#. So when we were working on implementing

upload and deployment support for different tools and languages, this is the order we used to

prioritize.

CHAPTER 4. RESULT 55

4.3.2 Frontend

Figure 4.8: Figure showing the most popular tools and frameworks for developing frontend ap-
plications.

This question was a multiple choice question with the option of specifying other languages and

tools as well. In this diagram we can see that of all the 33 respondents we had, 23 of them use

regular HTML, CSS and JavaScript for developing frontend applications, which is not a shocker

since these get used in conjunction with most frameworks out there. Of the significant frame-

works, ReactJS is the most popular choice. For package managers, NPM is most widely used.

In section 3.6, we explain the difference between Yarn and NPM and the reason why we choose

Yarn over NPM.

CHAPTER 4. RESULT 56

4.3.3 Backend

Figure 4.9: Figure showing the most popular tools and frameworks for developing backend ser-
vices.

This question was a multiple choice question with the same option as before to specify other

languages and tools. The most popular choice here is NodeJS, followed by .NET and Java, and

then Spring boot. Due to the fact we are using Spring Boot, we focused on support for that and

Java first, then NodeJS followed by .NET.

4.3.4 Database

Figure 4.10: Figure showing the most popular databases.

CHAPTER 4. RESULT 57

This question was also a multiple choice question with the option to specify other database

types. In this diagram, we can see that PostgreSQL is the most popular, followed by MySQL,

MongoDB, and then MariaDB (skipping the "does not use database" responses). Since we are

using MySQL, we choose to create support for that first, then PostgreSQL followed by MongoDB.

4.3.5 Server

Figure 4.11: Figure showing the most popular servers.

This question is a single choice question and might have been unclear. The question was what

server they use and if there are any specific versions which one. One answered Apache and

another one "do not know" so we are ignoring those choices. So then we get that 83% uses

Linux and 17% uses Windows. (excluding "do not know", "Apache" and "both Windows and

Linux".

4.3.6 Extra thoughts/comment

Our last question was if they have any extra thoughts/comments regarding the application. Here

we got four responses, and these have gotten taken into consideration.

CHAPTER 4. RESULT 58

4.4 Gitlab CI/CD

We used GitLab’s’ continuous integration (CI) & Continuous Delivery (CD) pipelines to build,

test and deploy our code on given conditions. We choose to use Gitlabs’ CI/CD pipelines as we

have some experience with it. There is a ton of other alternatives here, but since our bachelor

project was more of a concept we were developing, Gitlabs’ solution was more than enough.

All of the services used the GitLab pipeline to continuously build, test and deploy when

commits where made, and changes were merged. As we did not need any advanced

integrations and customized handling for the different services, most of our pipelines were the

same for all our services. Below is a listing showing an example of a gitlab-ci.yml file

configuration.

1 default:

2 image: docker

3

4 services:

5 - docker:dind

6

7 stages:

8 - package

9 - build

10 - test

11 - deploy

12

13 variables:

14 IMAGE_TAG: autopacker/service:latest

15

16 package:

17 image: maven :3.6.3 -jdk -11

18 stage: package

19 script:

20 - mvn package -DskipTests

21 artifacts:

22 paths:

CHAPTER 4. RESULT 59

23 - target /*.jar

24

25 build:

26 image: docker

27 stage: build

28 script:

29 - cp target /*.jar .

30 - docker build -t $IMAGE_TAG .

31 - docker push $IMAGE_TAG

32 before_script:

33 - echo "$DOCKER_TOKEN" | docker login --username $DOCKER_USERNAME --

password -stdin

34 when: on_success

35

36 testing:

37 image: tmaier/docker -compose

38 stage: test

39 script:

40 - docker -compose -f docker -compose.yml -f docker -compose.test.yml up -

d

41 - docker -compose down

42 when: on_success

43

44 deploy_staging:

45 stage: deploy

46 environment:

47 name: stage

48 script:

49 - ssh {USER}@{IP_ADDRESS} ’cd /home/dev/service/

50 && docker -compose down

51 && docker -compose pull

52 && docker -compose -f docker -compose.yml -f docker -compose.stage.yml

up -d’

53 when: manual

54 only:

55 - develop

CHAPTER 4. RESULT 60

56 - master

57 before_script:

58 # install ssh -agent

59 - ’which ssh -agent || (apk add --update --no -cache openssh -client)’

60 # run ssh -agent

61 - ’eval $(ssh -agent -s)’

62 # add ssh key stored in SSH_PRIVATE_KEY variable to the agent store

63 - echo "$SSH_PRIVATE_KEY" > /tmp/gitlab_ci_ssh

64 - chmod 600 /tmp/gitlab_ci_ssh

65 - ssh -add /tmp/gitlab_ci_ssh

66 # disable host key checking (NOTE: makes you susceptible to man -in-the

-middle attacks)

67 # WARNING: use only in docker container , if you use it with shell you

will overwrite your user ’s ssh config

68 - mkdir -p ~/. ssh

69 - echo -e "Host *\n\tStrictHostKeyChecking no\n\n" > ~/. ssh/config

Listing 4.1: Example of a gitlap-ci file

In the top part of the listing (line: 7), we can see the four different stages in our pipeline.

• package - In this stage, we run mvn package to build and package the application into a

jar file. This jar file is then set as an artefact with a path so it can be used in other stages.

• build - In this stage, we use the jar file created from the previous stage with the Dockerfile

for that particular service (more on dockerfiles in the next section) to build a docker image

and push the image to docker hub. The before_script: segment is run before the script and

authenticates us to docker hub with a user we have created for this purpose, and its login

token.

• test - This stage is currently unfinished. The reason with this stage is to run tests we have

created and to see if the containers are successfully created and can communicate with

each other.

• deploy - This is a manual step only available for commits pushed to either develop or mas-

ter branch. In this stage, we deploy our update to the staging server (environment: stage).

CHAPTER 4. RESULT 61

We use an ssh-agent with a given ssh private key to connect to our staging server and pull

the latest docker images from our docker hub organization and replace the containers that

were running for that service with updated containers running the latest version.

In the first pipeline we created we used a Gitlab runner. This is an excellent solution if one runs

one pipeline on one server. When one use Gitlab runner, one needs to install some software on

the platform the runner is going to run on. In our case, it was the testing server. Then one can

create an own user for the GitLab runner. In the gitlab-ci file, one specifies what it should to

when it is executed. So if we were to push an update to our application, the Gitlab pipeline

would execute, and the GitLab runner would automatically run and execute its tasks on the

server it has been assigned. In our case, as we have multiple pipelines and will have multiple

servers to deploy to, this was not the best way. So instead we choose to run everything we could

in the pipeline and use ssh-agent to connect to the servers with ssh private key and then run

the scripts defined in the gitlab-ci.yml configuration file.

4.5 Backend Services

4.5.1 File Delivery API

Authorization

Roles and permissions were not implemented. Instead, the project owner is the only one who

has rights to do changes in a project and all its contents. If the project is public, everyone can

view them, if not, no one else can view them except the project creator.

File Explorer

We realised that adding a file explorer feature may be too much work and we had work that had

much higher priority. At the start, we did implement a “workspace”, i.e. dedicate a folder for

each user containing their projects and modules. These folders are mapped directly to the URL.

That made it easy to separate projects from each other and made it easier to add future imple-

CHAPTER 4. RESULT 62

mentations.

Figure 4.12: A sequence diagram of creating a module after a project has been added.

CHAPTER 4. RESULT 63

Figure 4.13: Folder structure of the API, where the focus is on the separation of users, projects
and modules.

Docker-compose template builder

The builder uses two types of file for docker-compose to create a docker-compose file for a

project:

1. The main docker-compose file. This defines the first scopes variables, ex. version: 3.3.0

and services:

Figure 4.14: The base docker-compose template where only variables on the highest scope is
defined.

CHAPTER 4. RESULT 64

2. The server docker-compose block. This is the template for each service, and the set of

variables depends on what service is being dealt with. For example, a java service has

different variables than a MySQL database service.

Figure 4.15: Docker-compose template of the Java 8 service.

Before we explain the main function for this job, we must know how the building works.

General builder functionality

The general gist of the docker-compose compilation is that each module in a project has a con-

figuration type, i.e. Java, MySQL, React set when the module is uploaded. The configuration type

is linked to the corresponding docker-compose template block with their unassigned variables.

The uploader of the module has already defined these variables and is stored. When someone

requests the docker-compose.yml for a project, using the function, merge the compose tem-

plate block with their variables. Lastly, the template block with the variables are put under the

service section of the main docker-compose file.

Here we have a code example of the main function of layering the docker-compose files.

CHAPTER 4. RESULT 65

Figure 4.16: Main template builder code snippet from BuilderService class.

Parameters

The function takes in the compose template block as a string, usually read from a file. Variables

for the template are sent as a map, where the key of the map is the placeholder value of the

template. The last boolean parameter is used to check if all the variables inside the template

have been assigned.

Placeholders and their replacement

In the beginning, we create a regular expression to find and target the placeholder values that

will be replaced. For this part, the symbols of the placeholders are ignored. For each of the

https://regex101.com/r/6pY3Sv/1

CHAPTER 4. RESULT 66

placeholder, it finds the key that has the same name as the placeholder and replaces it with the

value from the map. The function ignores if the variable map keys are capitalized or not.

4.5.2 Validation

Before the built template is sent, depending on the validate boolean, it checks if there are re-

maining placeholders that aren’t replaced. If there are placeholders that still remains, it throws

an exception. The reason behind this check is that it is common for the system to leave few

placeholders, especially when the system tries only to compile all the compose block templates,

and not put in all variables yet.

4.5.3 MongoDB

In addition to a MySQL database, we have MongoDB. The purpose of MongoDB is to store the

variables that will be combined with the docker-compose templates. It is combined to a full

docker-compose.yml when a client wants to deploy the project. Examples of variables are in

4.15.

Each compose blocks has its own configuration type. The configuration type is linked to a set

of variables. The variables may be similar to other variables inside other configuration type and

is not a guarantee. For example, a spring-boot configuration may require a port and a reference

to an SSL certificate, and a MySQL configuration may require port and database credentials. It

is possible to store the variables inside a MySQL table where each configuration type has its

table with variables. However, one must declare the table structure before one can insert the

variable values. In MongoDB, one only need to add the document in the collection (where a

document is the same as a MySQL row and collection as a MySQL table,) and the column

structure of the collection will automatically be made. If documents with new columns are

added, the collection will also automatically expand. This made it easier to work with

MongoDB compared to MySQL since much work is automated by default.

For now, the variable values for a template is set by whoever uploaded the module. It makes the

implementation of the MongoDB less intuitive. The original intent was that every user who

CHAPTER 4. RESULT 67

wanted to deploy an existing module/project could define the values of the variables. Although

we did not make it like that, the current implementation is set up so that the feature can be

extended that way.

4.5.4 Server Manager

Server Manager is the service that handles all server related features. From adding servers, in-

stalling essentials and adding/deploying projects to a server.

Server Initialization Script

For a server to be able to run user projects, they need to have both docker and docker-compose

installed. For this, we created a preparation script for Ubuntu servers that installs the essential

tools as well as enabling all incoming and outgoing connections. We did this to make sure that

all ports and transmissions were able to open. As a future feature, we would like to implement

a management tool for managing the server ports and other server configuration from this ser-

vice.

Connecting and transmitting data

For connecting to remote servers and exchanging data between the connections, we used a li-

brary called JSch (Java Secure Channel). Using this library, we could transfer files and execute

commands on a remote server through an SSH connection.

Figure 4.17: Code snippet showing an example of using JSch.

http://www.jcraft.com/jsch/

CHAPTER 4. RESULT 68

Project Deployment

In figure 4.18, we can see a sequence diagram showing the sequence in which the actions gets

executed when deploying a project on to a server. After the user has selected what project to

deploy the server manager will connect the target server which will then request the docker-

compose.yml file for building and starting the project from the File Delivery API. Then the server

manager will execute a series of commands that will, in the end, run the project on that target

server using the fetched docker-compose.yml file.

Figure 4.18: Sequence diagram for deploying a project on to a server.

CHAPTER 4. RESULT 69

4.5.5 Authentication Server

Authentication Server is responsible for handling all user-specific features and authentication.

It takes care of registration, authentication, password changes and resets as well as JWT token

management.

JWT vs 0Auth2

We started out developing a working authentication service using JWT but had planned to change

and use 0Auth2 with JWT. By using the 0Auth2 protocol, we could have integrated Feide with our

service. 0Auth2 is something we have planned on implementing if we are to continue develop-

ment on the platform.

Registration

In figure 4.19, we see the sequence of actions when registering a new user. When the user has

submitted the registration form, the data gets sent to the Authentication Server were it gets vali-

dated. If the form is valid, the service will persist the user to the database and issue a JWT, which

gets returned to the user.

Figure 4.19: Sequence diagram for registration.

CHAPTER 4. RESULT 70

Authentication

In figure 4.20, we see the sequence of actions when the user is authenticating himself. The cre-

dentials get sent to the Authentication Server, which will check if they return a user. If the cre-

dentials are valid, the service will issue a JWT, which gets returned to the user. If the credentials

are invalid, the service will respond with HTTP status 401 Unauthorized.

Figure 4.20: Sequence diagram for authentication.

Authorization

There are parts of the other microservices that has restrictions. We do not want everyone to

access every possible actions. There are multiple levels of security and these are: authentication,

user affiliation rights and user roles.

To perform any modification on a project or a module, it’s required that the user is

authenticated and be the one who created it. Other people can use it granted the project is set

to public. To access those project, you do not need to be logged in. Users with the role "Admin"

can modify any project despite not having any development ties to the project or module.

All of the endpoints for deployment of project to a server can only serve users that has been

authenticated. Users can create, manage and delete servers they have provided.

CHAPTER 4. RESULT 71

4.6 General API

General API started as a general-purpose API, where we implemented features that were sup-

posed to be general. It first handled all the supported language and versions related features,

but now holds all the logic for organization related functionalities.

4.7 Web Application

Our web application is a standalone React application that communicates with our RESTful ser-

vices through HTTP(S). We use React Router for routing, React Redux for managing application

state and Ant Design as our component library so we can easily access high quality modern react

components to use in our application.

We ended up with an extensive modern web application that both looks good, meets our

minimum product requirements and is built to be scalable and contains some logic that is ready

to use if we were to extend the system with the features.

We have a test-version up and running at http://stage.autopacker.no. Do not use personal

password as the site is currently only running HTTP.

4.7.1 Routing

We use React Router to manage the routing in our application. The routes are defined and struc-

tured in the App.js file, which is the entry point for the application. The current management of

routes is messy and not that efficient. A better way would be to group and nest routes that have

something in common. This way, we can create a more dynamic, efficient and more readable

structure. We could also then define different "404 Page Not Found" warnings or redirects for

the different scenarios.

Another great feature which we had planned to implement, but did not have the time to, is lazy

loading. Our application is built up of many different pages and routes, and some of them

might never be used in one user session. Therefore it would be logical to implement lazy

loading on almost all of our pages to increase efficiency and remove unnecessary redundancy.

http://stage.autopacker.no
https://reacttraining.com/react-router/web/guides/quick-start

CHAPTER 4. RESULT 72

This is easily done by using Suspense, but as stated we did not prioritize as it is a "nice to have"

sort of feature.

We also created two custom routes for our application. In our application, we have a lot of

similar pages which contains the same logic as the navigation bar and side panels. By creating

custom routes, we can pre-specify these components to render for specific routes and remove

redundancy. We could also add custom logic which is executed when the route is mounted as

seen in figure 4.21.

Figure 4.21: Figure showing the custom route for a profile dashboard component.

Here the route will as a regular route retrieve values used to set properties, but it will also check

if the user is authenticated (This only checks if the token !== null). If the token does not exist

the route will render the <Logout /> component which will execute the logout logic and

redirect the user to the homepage. If the token does exist the route will render the

<ProfileDashboardLayout /> with its children, which is the layout showing the navigation bar

and side panel shown in figure 4.33.

https://reactjs.org/docs/concurrent-mode-suspense.html

CHAPTER 4. RESULT 73

4.7.2 Application State Management

We have three different main ways of managing state in our web application. The most used

is, of course, the component that the state regards will hold the state itself, and in some cases

might pass the state update method as properties to a child component.

The second most used is the use of Redux for application state management. By using Redux,

we can store the state we want to be accessed globally in a Redux store which is manipulated by

dispatching actions. Example of fetching a value from Redux state as well as dispatching an

action is shown in figure 4.24.

In some cases, we have a parent component (more like a container) that holds n number of

components that alternates between being used and not. An example of this is when a user is

uploading one or more modules, as shown in figure 4.38. In this case, we might save the

majority of states in the parent component and pass them as properties to be used and

updated by the child components. Some of the child components may have their own state as

well, which we might want to store as a JSON object in parent state, unavailable to the rest

when the component gets swapped out.

Figure 4.22: Figure showing the module upload part of the application with component hierar-
chy and switching.

CHAPTER 4. RESULT 74

Figure 4.22 visually shows this. The white website is the parent container which holds the

parent state as well as some of the "children’s" states. The green area is the currently selected

and visible component that is rendered, while the blue areas are components managed by the

parent, but not in use. In some cases, the child of a parent might have a child component of its

own. This is shown by the purple areas within the blue areas. In some cases, even this child of a

child component might want to update a state that the parent holds. For this, we have the blue

parent hold the state which is needed by the white area parent, and the purple child can update

the state of the blue parent, and when the blue parent is switched out of the green area, the

blue parent will then store the state needed in a JSON object state in the white parent.

4.7.3 React Hooks

We mentioned React hooks a bit in section 3.7.3. We did have prior knowledge with the use of

React hooks for state management and accessing React lifecycle. Using hooks, we were able

to develop components a lot quicker than usual. We could have a more complex hierarchy of

parent and children components passing state and update methods as props, without any com-

plex logic. We were also able to use hooks with React Redux, which made fetching application

state and dispatching actions to update state a lot easier[16]. The examples shown in the figures

below are code written only to display the difference between using hooks or not with React

Redux.

CHAPTER 4. RESULT 75

Figure 4.23: Figure showing application state management with regular React Redux.

In figure 4.23, we can see an implementation of retrieving a value from the Redux store and

dispatching actions using the old way.

Figure 4.24: Figure showing application state management with hooks.

In figure 4.24, we can see the code is shorter and easier to understand. This shows an

implementation for retrieving a value from the Redux store and dispatching actions using

hooks.

CHAPTER 4. RESULT 76

4.7.4 Custom Alert

In AutoPacker, the user has multiple choices and options available. For the user to understand

when an action has fired, something is loading or finished executing; we need some form of

feedback. To achieve this, we decided to use Ant Designs alert component globally in a fixed

position on the website with global application state management (more in detail in section

4.13). This way, any point in the application can dispatch an action which will then create an

alert and display it at the fixed location. This alert can take in different types of properties: error,

warning, success, different text, closable or not.

Figure 4.25: Figure showing a use example for the alert component.

Figure 4.25 shows an example use of the alert, which displays a verification notification to the

user. An extension to this custom component is the possibility to add a timer to it as well. For

now, the alert is closable or not. By adding a timer property later, we can automatically close

the alert after the set time. This way, the user does not have to close all the alerts manually.

We did choose to prioritize functionality over feedback, so for the time being, some of the alert

messages may contain vague replies. This is something that should get fixed before deploying

the project unto a production environment

CHAPTER 4. RESULT 77

4.7.5 Search Logic

In our application, we want the user to be able to search for whatever is available in the

application: projects, users, organizations, available emails and username. Therefore, we

heavily rely on an effective way of performing search requests, especially when we have

multiple users searching simultaneously.

For this, we were heavily inspired by how GitHub implemented the email and username typing

validation delay when registering. Then we found an article that both implemented a custom

hook to achieve this as well as an example to use it[50].

Figure 4.26: Figure showing the implementation of the debounce hook.

So what this does is that it takes in two arguments, value and delay. Whenever the value or

delay gets modified, we return the value after the timeout set by the delay has expired.

Figure 4.27: Figure showing an example using the debounce hook.

So in figure 4.27, we pass in the search value to the hook. Whenever the user types, the value

gets changed, and the hook gets fired. The hook then returns the value when the timeout

expires and the logic inside the if statement gets executed.

CHAPTER 4. RESULT 78

4.7.6 Graphical Interface

In this subsection, we will go through our web applications graphical interface, what function-

ality is available, what functionality might be available in the future and our different thoughts

on the solution. Before we started creating the web application, we created some wireframes to

get an idea of how the layout and UI should be. After creating the wireframes and implementing

some pages, we stopped creating wireframes as we could see how the pages should look like in

advance to be consistent with the existing ones. In figure 4.28, we can see the wireframe for the

project overview, which resulted in the UI shown in figure 4.46. The rest of the wireframes are

available in appendix J.

Figure 4.28: Figure showing the wireframe for project overview.

CHAPTER 4. RESULT 79

4.7.6.1 Homepage

Figure 4.29: Figure showing our temporary homepage.

The first thing the user will meet when entering our website is our homepage. We did not put

that much effort into this part of the application as its purpose is only to give an introduction.

The most important feature on this page is the registration form.

CHAPTER 4. RESULT 80

Figure 4.30: Figure showing the registration form.

In this form, the username and email are validated and checked for availability using the

search logic explained in section 4.7.5. The user also has to meet a minimum password

strength required to be able to register and use our service.

4.7.6.2 Registration Success

Figure 4.31: Figure showing the profile panel after the user is successfully registered.

CHAPTER 4. RESULT 81

If the registration is successful, then the user will be redirected to the page displayed in figure

4.31. The user will also get a notification to check his/her email and verify the account. The user

must verify the account before being able to use any of the features the application provides.

Without verifying the account, the only difference between a guest and the user would be that

the unverified user can preview the profile dashboard environment.

Figure 4.32: Figure showing the verification email.

CHAPTER 4. RESULT 82

4.7.6.3 Projects

Figure 4.33: Figure showing profile dashboard when authenticated and verified.

In figure 4.33, we have our current "dashboard" which the user is presented with when authen-

ticated. In this example, we have three projects that have been created by the user. The user

can use the search input field to find specific projects. From this page, the user can create new

projects.

CHAPTER 4. RESULT 83

4.7.6.4 New Project

Figure 4.34: Figure showing page for creating the projects.

Here the user can input details about the project he wants to create. A project must have a name

and can have a description, website (for example GitHub repo or the server hosting it) and tags.

For now, we currently only support the creation of public projects since we are using the docker

hub registry for storing docker images. If the project gets created successfully, the user gets

redirected to the page listing all the users’ projects with an alert message displaying a success

message (more on the alert in section 4.7.4). If the user is unable to create the project, he will

get an error message.

CHAPTER 4. RESULT 84

Figure 4.35: Figure showing the profile panel after project creation.

CHAPTER 4. RESULT 85

4.7.6.5 Project Overview

Figure 4.36: Figure showing a project overview page.

Figure 4.36 shows the project overview displayed when a user clicks on one of his projects. In

this page, the user can view more information, manage his project settings and add modules to

the project to be deployed to a server which we will see later.

CHAPTER 4. RESULT 86

4.7.6.6 Module Selection

Figure 4.37: Figure showing the module type selection page.

If the user clicks the "Add Module(s)" button displayed in figure 4.36, he will get three options.

These different options have different "wizards" to help the user create a single module, multi-

ple modules or even upload a pre-configured setup script. At the moment of writing, we have

currently only implemented support for single module upload and only the visual parts for the

"multi-module" and "own setup" (as we will see in the sections below). An alternative is to use

the single-module upload option multiple times to have multiple modules in the project. This

alternative works for application and service-specific programs, but not for databases. We will

go through the step by step process for uploading a module in "single-module" first, followed

by "multi-module" and lastly "own-setup".

CHAPTER 4. RESULT 87

4.7.6.7 Single-Module

4.7.6.7.1 Setup

Figure 4.38: Figure showing the setup part of a single-module upload.

In the figure above we can see the setup part for a single-module upload. This part gets used to

define the needed information to know what tools and versions are necessary so our services

can create a functioning build for that module. Currently, we only have support for simple

uploads that only need language, version, and the port.

CHAPTER 4. RESULT 88

4.7.6.7.2 Upload

Figure 4.39: Figure showing the upload part of a single-module upload.

In the figure above we can see the upload part for a single-module upload. In this step, the idea

was that the user could choose how to upload the module. We currently only have support to

upload an executable and .zip, so GitHub does not work at the moment. Here the user has to

upload an executable or a zip to be able to proceed.

4.7.6.7.3 Building

When the user clicks the upload button, he will go to the building step. The only thing showing

in this step is a loading screen. Here the data (both specification and program/code) is sent to

the file delivery API for handling. When this process finishes the user will receive either HTTP

200 OK or HTTP 400 BAD REQUEST. This status code gets sent to the next step, which is

"complete".

CHAPTER 4. RESULT 89

4.7.6.7.4 Complete

Figure 4.40: Figure showing the complete part of a single-module upload.

This step will extract the status code sent in the previous step and will render some information

accordingly. In this example, we see that the module upload was a success and therefore, will

get a success message.

4.7.6.8 Multi-Module

Multi-module uploading is currently only in the concept stage. We started out thinking that this

feature would be the only possible way of having a multi-module project up and running on

a server. Instead, we created such a scalable way of adding modules in the backend services

that one can also add multiple modules using the single-module upload multiple times. So the

meaning of this feature has now become to make it faster to implement multiple modules, as

well as more clear what a person is adding by having the summary section. We might merge the

single- and multi-module upload wizards into one after the deadline.

CHAPTER 4. RESULT 90

4.7.6.8.1 Summary

Figure 4.41: Figure showing the summary part of a multi-module upload.

Figure 4.41 shows the first page the user will see when trying to perform a multi-module

upload. This step is there to give the user a summary of what he is uploading. This is useful

when the user is uploading multiple modules and might be concerned with what data, port

and settings have gotten set.

CHAPTER 4. RESULT 91

4.7.6.8.2 Type

Figure 4.42: Figure showing the type selection part of a multi-module upload.

After clicking "Add Module" in the previous step, the user can now choose what type of module

he wants to upload. The application module will show the same steps that the single-module

upload does in figure 4.38 and figure 4.39. The database selection currently only has the

interface developed and not backend support (yet).

CHAPTER 4. RESULT 92

4.7.6.8.3 Setup (database)

Figure 4.43: Figure showing the setup step for a database module in multi-module upload.

In figure 4.43 we can see the setup form for a database application. It looks quite similar to the

setup form shown in figure 4.38. We have some common parts and some unique parts, and by

using react components, we can split things up in parts and reuse parts as much as needed.

This way, we have the upper parts containing the name and description as a general part which

gets always included. So the unique part here is the database name, username and password.

The user also needs to specify the database, version and port to run on.

4.7.6.8.4 File Upload (database)

The file upload part for a database module is also the same as the one shown in figure 4.39. The

only difference is that the user is not required to upload a file. In some cases, one might have a

service which generates the tables and data needed on runtime. Then one does not need a .sql

CHAPTER 4. RESULT 93

file to initialize it. So in the file upload step for a database module, there will be a help text for

the user explaining this in detail.

4.7.6.8.5 Summary (with modules)

Figure 4.44: Figure showing the summary part with modules data in multi-module uploading.

When the user finishes specifying the necessary details for a module, he will return to the

summary step at the start, which will show a list of all added modules. In figure 4.44, the user

has added two modules, one database and one application. So the idea here is that when the

user has added two or more modules, the "submit modules" button will become enabled and

the user can upload the modules and add them to the project.

CHAPTER 4. RESULT 94

4.7.6.9 Own Setup

Figure 4.45: Figure showing the own setup option.

The third and last module upload option is the "own setup" option shown in figure 4.45. In

some cases, the user might have a full docker-compose setup already configured and only want

to deploy a project to a server quickly. If so, then this option is the best. It can also be a better

option if the configuration is quite complex, and we do not offer support for that complexity in

the setup wizards.

CHAPTER 4. RESULT 95

4.7.6.10 Project Overview (populated)

Figure 4.46: Figure showing a project overview with added module.

In figure 4.46, we can see that the module we entered in section 4.7.6.7 has been added as a

module to the project. There are two specific actions we can perform on that module from this

page. We can select it to get more details about that specific module (figure 4.47), or click the

trash icon to delete the module from the project (figure 4.48).

CHAPTER 4. RESULT 96

Figure 4.47: Figure showing a modal containing module details.

Figure 4.48: Figure showing a modal for deleting a module.

CHAPTER 4. RESULT 97

4.7.6.11 Project Settings

Figure 4.49: Figure showing the project settings page.

If the user clicks the settings option in figure 4.36 he will see the settings page shown in figure

4.49. The only option available is to delete the project. If the user clicks on the "delete project"

button a modal to delete the project will come up. The user then has to write "delete" in the

input field to approve the deletion.

CHAPTER 4. RESULT 98

4.7.6.12 Servers

Figure 4.50: Figure showing all the users’ servers.

In our application, the user can have several servers added. These servers get used for deploying

the users’ projects on to them. Currently, our application can add servers, execute an initializa-

tion/preparation script on the server on demand, and deploy any projects that our application

supports. In figure 4.50 we have different icons, colours and actions for the different states a

server can have. This is just a concept for some functionality we can add later. For now, every

server created will have a stock icon, and no actions are available for managing server state.

CHAPTER 4. RESULT 99

4.7.6.13 Server Creation

Figure 4.51: Figure showing the form for adding a server.

Like creating a project, a user can easily add a server. In figure 4.51, we can see the form for

adding a server. The username and password that the user enters are needed for our application

to connect to the server. When the user has finished entering all the details and clicks "add

server", the user will get a success alert displaying a success if the creation succeeds. If not, the

user will get an error message (similar to the one displayed in figure 4.35).

CHAPTER 4. RESULT 100

4.7.6.14 Server Overview

Figure 4.52: Figure showing an overview of a server without projects assigned to it.

From here, the user can get more details about the server they have. Furthermore, it is from

here they can assign which projects they want to deploy to that server. By clicking the "add

project" button, a modal will open displaying all the projects the user owns (figure 4.53), and

from here, the user can select the projects he wants to assign to the server. By clicking the "install

essentials" button the application will perform a request to the server manager API which will

try and connect to the server and execute an installation script (more details on the script in

section 4.5.4).

CHAPTER 4. RESULT 101

Figure 4.53: Figure showing the modal for adding projects.

When the user has successfully added projects to the server, the server overview will be

populated by those projects, as shown in figure 4.54.

Figure 4.54: Figure showing an overview of a server with projects assigned to it.

One can delete a server by clicking the settings button in the top right corner, going to the

general option and hitting the delete button. This will open a delete modal (same as for project

deletion in figure 4.48), and when the user enters delete and clicks "yes" the server will be

CHAPTER 4. RESULT 102

deleted. If the user has deployed a project unto a server, this program will still run even if the

server gets "deleted" from the application. If the user wants to delete a specific project from the

server, he can click the trashcan icon on the project followed by "yes". This will remove the

project and delete the docker-compose file that was created on the server. For the time being,

we have no way to stop or remove the running docker container on the server after

deployment, even if the user removes the project from the server.

4.7.6.15 Organizations

For the sections regarding organization-specific features, everything is viewed from an organi-

zation admin perspective. This will make every organization option visible in the sidebar.

Figure 4.55: Figure showing a list of organizations the user is affiliated with.

In our application, we also have a subsystem that allows users to be part of organizations. For

the time being, there is no available option to create an organization other than that we (the

developers) create it. This is because the organization part is more of a prototype that we can

further extend. The things we have implemented though does work as intended. For the time

being, we have implemented an organization that can be used by NTNU to hold students,

bachelor project references and software used in lectures.

CHAPTER 4. RESULT 103

4.7.6.16 Organization Projects

Figure 4.56: Figure showing a list of projects affiliated with the organization.

The first thing the user will see when accessing the organization from the users’ profile panel is

the organization panel. This panel has another sidebar as well as organization-specific options

as seen in figure 4.56. For the time being, we do not have a "dashboard feed" so the natural

"dashboard" at the moment is a list of all the projects associated with the organization. To go

back to the profile dashboard instead of viewing the organization related features the user can

hover over the username in the top right corner of the screen and click on one of the options

shown in figure 4.57.

CHAPTER 4. RESULT 104

Figure 4.57: Figure showing the dropdown menu from hovering over username.

4.7.6.17 Organization Project Requests

Figure 4.58: Figure showing a list of project requests made to the organization.

To be able to have a project displayed as one of the organizations’ projects, one has to submit

a project request (more on this in section 4.7.6.20). In figure 4.58 we can see a list of project

requests. This page is only available to organization admins. From here, the admin has three

choices.

CHAPTER 4. RESULT 105

4.7.6.17.1 Decline Request

If the admin were to click the "decline request" button, the module in figure 4.59 would show

up. Here the admin can add a comment which will be sent with the email informing the

requester that the organization has declined the request.

Figure 4.59: Figure showing the modal for declining a request.

4.7.6.17.2 Edit Request

If the admin wishes to edit the request, he can click the "edit" button which will open up the

module in figure 4.60. The only thing the admin can edit at the moment is the tags (add and

remove). If the admin were to alter the request, he should notify the user in the comment field

when accepting the request.

Figure 4.60: Figure showing the modal for editing a request.

CHAPTER 4. RESULT 106

4.7.6.17.3 Accept Request

If the admin is ready to accept the request, he can click the "accept request" button and the

modal shown in figure 4.61 would show up. Here he can also add a comment which will be sent

with the email to inform the user that the organization has accepted the project request.

Figure 4.61: Figure showing the modal for accepting a request.

4.7.6.18 Organization Members

Figure 4.62: Figure showing a list of all the members of an organization.

CHAPTER 4. RESULT 107

As a member of an organization, one can see all the other members and their role, as shown in

figure 4.62. This list can be sorted alphabetically (ascending and descending) by username and

role.

4.7.6.19 Organization Applicants

Figure 4.63: Figure showing a list of all the applicants for the organization.

To become a member of an organization, one has to submit a membership application (how

you do so is described in section 4.7.6.25). In figure 4.63, we can see a list of membership ap-

plications (this page is only accessible for organization administrators. Here the administrator

can either accept or decline the applicant (the modals’ that will come up when clicking decline

or accept are similar to the ones in figure 4.59 and 4.61). In both cases, the applicant will be

informed by an email.

CHAPTER 4. RESULT 108

4.7.6.20 Organization - Submit Project

Figure 4.64: Figure showing the page used to submit a project request.

As mentioned in section 4.7.6.17, the user has to submit a project request to have his project

displayed on the organization project hub. The page containing the form to submit a project is

displayed in figure 4.64.

CHAPTER 4. RESULT 109

4.7.6.21 Organization Submissions

Figure 4.65: Figure showing a list of submissions made by the user.

After the user has made one or more submissions, they will appear when clicking the submis-

sions option in the sidebar. Doing this will render a list containing all of the users’ submission,

as shown in figure 4.65. From here the user can either delete a submission or edit an existing

submission. The delete button will open a delete verification modal where the user has to ac-

cept to delete the project. If the user were to click the Edit button the modal shown in figure 4.66

would show up. Here the user can edit everything except what project he wants to submit. Be-

cause if the user wanted to change the project as well, he can delete this submission and create

a new one.

CHAPTER 4. RESULT 110

Figure 4.66: Figure showing the modal for editing an existing submission.

4.7.6.22 Search Result

In addition to having all these personal related features, we have also implemented the possi-

bility to see other users’ profiles, project as well as finding public organizations. To do this, one

has to search for something in the input field in the top navigation bar. The search field can be

left empty to search for everything, or one can search for something containing search input.

CHAPTER 4. RESULT 111

Figure 4.67: Figure showing the search results page.

In figure 4.67, one can see the results we get when entering an empty search. This will list all

the available public projects, users and organizations. By changing the selected tab, one can

see the different results.

Figure 4.68: Figure showing the search results containing users.

CHAPTER 4. RESULT 112

Figure 4.69: Figure showing the search results containing organizations.

4.7.6.23 User Profile

Figure 4.70: Figure showing a public user profile.

If the user were to click on one of the users shown in figure 4.68, one would see a profile page

that looks like the one in figure 4.70. We do not store any information relevant to the public

in our application. However, a possible future feature would be to allow the user to add a bio,

add their real name if they want, personal website, email and address. These implementations

would be all up to the user to use.

4.7.6.24 User Project

Figure 4.71: Figure showing a public project overview for a user project.

CHAPTER 4. RESULT 113

If the user clicks on one of the projects on a user profile, one would see a project overview like

the one in figure 4.71. The project overview includes some public information about the project

as well as the modules.

4.7.6.25 Organization Profile

Figure 4.72: Figure showing a public organization profile.

Public organizations also have a profile page which can be accessed by clicking on an organiza-

tion shown in figure 4.69.

4.7.6.26 Organization Membership

If the user is authenticated, the "request membership" button on the organization profile will

be visible. By clicking this button, one will be presented with the page shown in figure 4.73. The

username is automatically set to be the same as the one the user is authenticated with. When

one presses the submit button, the application will send the data to the organization for

handling. When the application has been processed, the user will get notified on the results in

the form of an email.

CHAPTER 4. RESULT 114

Figure 4.73: Figure showing the form to submit a membership application.

4.7.6.27 User Settings

The user also has access to some user settings, as shown in figure 4.74. Currently, the only setting

available is the option to change password. The user settings are accessible by hovering over the

username in the top right corner, as shown in figure 4.57, and clicking the settings option.

Figure 4.74: Figure showing the user settings page.

CHAPTER 4. RESULT 115

4.8 Docker architecture

Through the whole working process, we have used Docker in our development environment.

By utilizing Docker, it is much easier to maintain the tools needed for development. It is easier

to work with, more comfortable to change/update and because we use it in our development,

staging and production environment. It is much easier to set things up and make it work on all

our platforms (personal computer(s) and servers).

4.8.1 Docker compose (staging)

Figure 4.75: Figure showing our staging environment using docker.

The figure above shows our staging setup using docker-compose. For each of our services, we

have multiple docker-compose configurations that build our local development environment,

testing environment and staging environment.

As every service has its own docker-compose files, they will all be separated into their own

docker networks with their own internals. So when one runs "docker-compose up" on one of

the docker-compose configurations for one of the services, the docker engine will create a des-

CHAPTER 4. RESULT 116

ignated docker network for that service and create the containers needed and attach them to

that network.

So in the case of the Authentication Server, there are two containers within the same net-

work. Only the Authentication Service container itself can be accessed outside the network,

while the MySQL container gets only exposed within that network. So all the containers that

are marked with "exposed to others" or "exposed" are available to the host machine, which also

makes them available at host ports.

This is not good for the file delivery API databases that are connected to the bridge network

and accessible for the host. The reason they are is that the file delivery API has to run on the host

and not inside a docker container due to an issue we had when trying to connect to docker hub

that is inside a docker container within a docker container.

The nice thing with having these separated networks for the other services however, is that

the inside of the network can be equal to another, but they will not affect one another. For

example, we have a MySQL container running on port 3306 in almost all of the networks, but

because they are only exposed to the network and not outside, we can do this.

CHAPTER 4. RESULT 117

4.8.2 Docker Swarm (production)

Figure 4.76: Figure showing a concept for a production environment using docker.

The figure shows a concept for a production environment where we use docker swarm to man-

age our services. This scenario could be something we would pursue in the early stages of pro-

duction. In this example, we have a server/node for every service (demonstration purposes)

that are attached to a shared overlay network that lets the services talk to each other as if they

were on the same server. If the system were to scale to many users and more activity, we would

have to increase the number of replicas for each service and maybe add more nodes. This for

load balancing, redundancy in case of failure (both server and service failure) and blue-green

deployment.

For something early production-ready (as it is just a concept), this setup would be good

enough with fewer nodes containing all the services. Due to our services having different needs,

we can also have different nodes with different specifications. In figure 4.76, we can see that

there is a storage node for the file delivery API. This node could have had a lot more storage,

CHAPTER 4. RESULT 118

while the others have less, but more CPU or memory, for example.

4.9 Testing

4.9.1 Usability Testing

On May 15th and 16th, we performed usability tests on three participants. One second-year stu-

dent, one third-year student and a graduate from 2019. These participants had no prior knowl-

edge of the application other than an introduction to the purpose of the application. The par-

ticipants got told to have a project they wanted to test ready. If they had no projects to use, we

provided them with one or more, but to achieve the most realistic results we wanted the partic-

ipants to use projects we have not tested. Each participant also got an AutoDeploy server if they

were unable to provide a server themselves.

The test got performed using Discord with screen sharing and voice chat. The participant per-

forming the test got told to think out loud when navigating through the application. The pur-

pose of this was to gain insight into the applications user-interface friendliness, and user thought

process. If the participant came to a dead-end, the observer would then give hints to the user so

he could proceed with the test.

4.9.2 Mentor and Supervisor test

We also ran a test with our supervisor Girts Strazdins on May 14th. Girts have been updated

quite frequently with the changes done to the application, and therefore the test with him was

more to receive critic and feedback seen from a neutral professor/user.

4.9.3 Test Results

Summarizing our test sessions, we found out that the AutoPacker platform might take some

time to figure out. It is a platform that takes much navigation to achieve what the user wants

to achieve. There should be a more red thread between what the user has done and what to do

CHAPTER 4. RESULT 119

next. Some ideas given were to create a "tutorial", or add more tooltips, hints and feedback on

actions.

Some actions should be disabled/enabled depending on a given condition, like initializing

server only has to be done once, but the button can still be clicked. The usability test also un-

covered bugs we were not aware of that were quite critical.

All in all, we got a lot of feedback on visual changes that would make the platform more ac-

cessible to understand, easier to navigate between and easier to use. We also got great feedback

on how the concept is a great idea, and that they might even use the system for personal projects

due to its simpleness of deployment if the platform supported more features, more configura-

tion and became more secure. The project had a lot of potential. Given below is a quote from a

note that one of our testers wrote:

"For min egen del så er dette noe jeg kan bruke på mine freelance prosjekt, men

for at det skal gå så må der legges til mer options og sikkerheten må bli mye bedre.

Foreløpelig passer nettsiden best til studierelaterte prosjekt, ikke kommersielle pros-

jekt."

The full note is available in appendix O.

Chapter 5

Discussion

5.1 Results VS Expectation

If we look at what we have accomplished in the short amount of time we had, we must say we

are happy with the results. There are some parts of the system that is either missing or not

finished, but on the other side, we were able to implement functionality that we originally had

planned for as a future extension. For example, we wanted to implement solutions for checking

out a GitHub repo, a following/follower system, forking functionality and supporting multiple

languages, frameworks and databases. Due to the lack of time, we were unfortunately not able

to implement this. On the other side, we have a concept for organization management and a

flexible module builder which can be used to extend language and framework support further

later on.

Our system architecture is also entirely modular as we are using micro-services, which makes it

easy to implement additional features, split up the complexity and separate workload more

efficiently.

We only support public projects as we are using docker hub as registry for storing our images.

In the future we would setup our own server with our own registry for storing all images. This

way we can make projects private.

We prioritized functionality over security due to the fact that this bachelor project is more of a

concept/prototype developed to achieve a specific goal. If we had set the goal to make a

120

CHAPTER 5. DISCUSSION 121

production ready secure application we would have had to let go of a lot of the functionality we

currently have due to time restrictions.

5.2 Project Organization

Initially, we had a proper plan for how we should work. What days we were working together,

what time we were meeting up and when to have meetings. We could have been better at

having stand-up meetings, but other than that we were early to plan our roadmap.

In March, corona started to affect the regular school days, and on March 12th all students were

told to leave campus, and the school has been closed since. Luckily as our project is

software-based, we were not profoundly affected. The biggest issue we faced with the corona

shutdown was that we had to find an everyday work schedule. We started having virtual chat

sessions at specific times were we were all working and being available to the rest when we

were working on more essential parts, and merging things. All members were able to meet on

all meetings with both supervisor and mentor.

5.3 RESTful Services

5.3.1 File Delivery API

It was not easy to develop this API because many techniques had to be applied in order for the

service to work. Some of the new implementations make other parts of the system somewhat

non-functional. We did, however, manage to fix them without it taking a significant toll on our

time. The good thing about this is that most of the problems came because of something we did

not know and gave us the opportunity to learn more, which is essential.

Much time went into creating the processing of the uploaded module. There were many

scenarios to account for. The docker-compose builder works with simple docker services but

requires a change when extending docker services by, for example adding volumes, networks,

etc. However, this implementation serves us well for now.

CHAPTER 5. DISCUSSION 122

One major issue was trying to dockerize this API. The File Delivery API itself needs to run

docker commands in order to dockerize the modules. This is a problem because one is not

supposed to run docker commands inside a docker container since it is inconvenient and

recommended not to do so. Since having the API package the modules into images was deemed

more important than dockerizing the actual API, we decided not to dockerize the API after all.

There is a lot of I/O operations happening on the API. It is vital that race conditions are

prevented. Having a folder for each user for their projects and modules greatly reduces this

risk. Most likely, a user will not be able to upload two or more modules at the same time. If that

happens, both requests must have the same project and module name for it to be an issue. In

case that is not enough, we have implemented a simple flag semaphore with the MySQL

database, checking first if a module has been added with the same name, project and user. It is

very little probable that a race condition occurs with this implementation.

If we were going to improve this API, we would start with supporting generating more complex

docker-compose files. Then the pool of projects that can be made with the API dramatically

increases. After finishing that, it would be wise to go through the API and strengthen the

stability of the module uploading, and if possible, dockerize the API too.

5.4 Security

We should ask the user for permission when connecting to the users’ servers and doing things.

If we were to lose control of our system, our if somebody were to get control of our system, they

could access all of our users’ servers and use them for malicious intent. Therefore we should

have consent from the user and show them a notice on what will happen if they use the server

deployment functions on the website.

5.5 Web Application

As mentioned in section 5.1 we did overall end up with a solution we are quite happy with,

even though some parts are missing. In the beginning, we did not think we would be able to

CHAPTER 5. DISCUSSION 123

create such a polished and nice looking web interface. The reason we were able to develop so

many high-quality web components and interface pieces is due to the scalability, reusability and

simplicity of React and the high-quality react component library, Ant Design.

5.5.1 Design & Interface

We agreed on the start not to spend to much time on visuals and design, which is the main

reason why we choose to use a component library like Ant Design. This way, we spent less time

dealing with styling and more time on implementing features.

Even though we had already agreed to have the layout we have implemented early on, we were

heavily inspired by the Ant Design Pro panel layout. Most of the parts in our interface is built

using existing or customized Ant Design components. Most of the components do have more

than enough properties to alter the behaviour, but many did not have the features we wanted.

In this case, much time went into finding a hacky way of combining ant design components

with custom components and logic which was quite hard in some cases, as Ant Design

components are hard coded and can be challenging to alter. In these scenarios, we might have

been better off designing the components from scratch or using a CSS framework like Tailwind

CSS or Bootstrap.

A poor design choice is the use of constant inline JSX styling to style components or override

existing styles. The main idea was to use this to prototype designs but quickly turned in to

becoming the primary way to style components. In future modifications and maintenance, we

would like to use Styled Components to style our components.

5.5.2 Code Quality & Structure

In some places, the code can be quite messy as we did try and implement as many features pos-

sible in the time we had. Unfortunately, this affected the quality and structure. In most places,

the code is well written, but the structure could have been better. Some files contain code that

does not make sense to have there, and some files contain old logic for dealing with a problem.

The overall file system structure could also need reformatting before making the project open

https://tailwindcss.com/
https://tailwindcss.com/
https://getbootstrap.com/
https://styled-components.com/

CHAPTER 5. DISCUSSION 124

source to make it easier to navigate through the application. After the web application passed

100 files and 60 folders, things started to become challenging to find and navigate through.

5.6 Production

There are several steps and demands that need to be met before even considering deploying the

application to a real production environment. First of all, we need to configure HTTPS between

all services and the web application. We also need a better way of handling secrets and keys

vital to different services. We need restrictions for who can upload what, and a type of project

validation so that a person does not upload malware that other than downloads.

5.7 Limitations

When a user wants to upload a module, the user is not presented with many options regard-

ing supported frameworks, script and programming languages. There may be a case where the

user wants to upload a connected multi-service project, for example, a frontend, backend and

some form of a database. If the technology of the frontend is unsupported, the project will not

work as intended, and in the worst scenario, the project is not working at all. We have collected

survey data on the most popular languages among our participants. The data showed us what

languages we should prioritize implementing support for, reducing the issue stated previously.

Deploying these projects to a server will, for the most part, work. Our preparation script for the

server is primitive and could cause problems if certain conditions are not met. The target

server must use a 64-bit Ubuntu distribution and have a package named ufw installed

managing the firewall. If any of the port is occupied, the deployment could fail, and no error

message will show up.

5.8 Future Work

Supporting too few languages could be problematic if more people use the solution. However,

this will not become a significant task as the system is developed such that adding new config-

https://en.wikipedia.org/wiki/Uncomplicated_Firewall

CHAPTER 5. DISCUSSION 125

urations is quick and straightforward.

Extending the system with simple configurations will not be an issue, but having a more

complex configuration may break the system if implemented at the current state. Because of

the continuous surfacing of unexpected bugs, much time was lost. This led us to implement

the fixes as simple as possible because it was faster. This left some part of our system

inefficient, and the stability reduced. In the future, increasing stability is crucial, so

maintaining the system gets more manageable, and the users stumble upon fewer problems.

Since we keep all the files in the File Delivery API, half the work was done to implement the file

exploration. We did have an overview on how to add the exploration. Implementation of this

feature was already in progress. Later into development, the realization came that it would take

time we did not have. The implementation under development on the back-end was scraped,

but it is still possible to extend it again in the future.

A helpful feature would be to create a dynamic Dockerfile builder similar to the compose

template builder. It can be used to create a more flexible and complex build of a module

upload. Users will have more control over the build by being able to change more of the

configuration. This results in a much more reliable upload that is tailored to the environment

requirements of the users.

Putting the underlying parts of the system away, a significant future improvement is updating

the visuals of the frontend application. Our user testing has given us pointers on how that can

be done. Implementing UX/UI concepts besides the test results lower the learning curve and

gives the user a more pleasant experience using AutoPacker.

Chapter 6

Conclusions

The purpose of this project was to develop a solution that would make it easier to build,

distribute and deploy different types of projects using today’s virtualization technology.

We did meet our minimum product requirement. The application supports simple server

provisioning, project creation, uploading of a JAR executable and ZIP containing either a Java,

Spring-boot, React, Angular or a straightforward HTML, CSS and JavaScript project. A server

can hold and deploy multiple projects. We also have a subsystem concept for organizations,

which the user can join, submit projects and if the user is an admin, he can manage

organizational data. We were able to build a foundation for our docker image/compose builder

as well as a working wizard for configuring modules and so much more.

This solution is primarily targeted towards a lectures where the students can with little to no

hassle run a project distributed by the lecturer. Time used to setup the project is reduced,

dedicating more time to the actual lecture. The solution can also be used outside lectures

where students can deliver their assignments and allow the lecturer to deploy and grade the

assignment quicker. Other developers can upload their projects if they want to easier build and

distribute them.

There are not many configurations that’s available to the users and could be a problem when a

user uploads multiple modules where half of the technologies are supported. We have taken

into account the survey to find out the most used technologies and implemented those

126

CHAPTER 6. CONCLUSIONS 127

configurations. It is not possible to collaborate with people on projects, and only the project

owner can manage it. If a user wants to deploy projects to a server, it needs to be clean, i.e. not

have docker installed.

Workload compared to the time available and the occurrence of unexpected bugs has led us to

implement and fix bugs fast. Some corners had to be cut in order to complete tasks. As a result

of that, some code is inefficient. Improving stability is the next step of AutoPacker alongside

adding more configurations for the users. For the sake of the user, applying more UX/UI

concepts to reduce the learning curve. We are happy with the results, even though we were not

able to finish all the functionality we had hoped to implement.

Bibliography

[1] URL https://en.wikipedia.org/wiki/Bcrypt.

[2] What is mongodb? introduction, architecture, features & example. URL https://www.

guru99.com/what-is-mongodb.html.

[3] What is rest. URL https://restfulapi.net/.

[4] Sha-2. URL https://en.wikipedia.org/wiki/SHA-2.

[5] Sql injection. URL https://portswigger.net/web-security/sql-injection.

[6] Create, read, update and delete. URL https://en.wikipedia.org/wiki/Create,

_read,_update_and_delete.

[7] Cross-site scripting. URL https://portswigger.net/web-security/

cross-site-scripting.

[8] Zip slip vulnerability. URL https://snyk.io/research/zip-slip-vulnerability.

[9] Elaine Barker and Allen Roginsky. Transitioning the use of cryptographic algorithms and

key lengths. Technical report, National Institute of Standards and Technology, 2018.

[10] Igor Beliaiev. Containers vs. virtual machines, 2017-06-27. URL https://www.

softserveinc.com/en-us/blog/security-containers-vs-virtual-machines.

[11] Bivás Biswas. How not to blow your rest interview. URL https://medium.com/

future-vision/the-principles-of-rest-6b00deac91b3.

128

https://en.wikipedia.org/wiki/Bcrypt
https://www.guru99.com/what-is-mongodb.html
https://www.guru99.com/what-is-mongodb.html
https://restfulapi.net/
https://en.wikipedia.org/wiki/SHA-2
https://portswigger.net/web-security/sql-injection
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://portswigger.net/web-security/cross-site-scripting
https://portswigger.net/web-security/cross-site-scripting
https://snyk.io/research/zip-slip-vulnerability
https://www.softserveinc.com/en-us/blog/security-containers-vs-virtual-machines
https://www.softserveinc.com/en-us/blog/security-containers-vs-virtual-machines
https://medium.com/future-vision/the-principles-of-rest-6b00deac91b3
https://medium.com/future-vision/the-principles-of-rest-6b00deac91b3

BIBLIOGRAPHY 129

[12] SQLizer Blog. Json store data, 2017.05.04. URL https://blog.sqlizer.io/posts/

json-store-data/.

[13] Jamie Kyle Christoph Nakazawa, Sebastian McKenzie. Yarn: A new package manager for

javascript, 2016.10.11.

[14] Don Coppersmith. The data encryption standard (des) and its strength against attacks.

IBM journal of research and development, 38(3):243–250, 1994.

[15] Datatilsynet. What is privacy?, 2019-07-17. URL https://www.datatilsynet.no/

rettigheter-og-plikter/hva-er-personvern/.

[16] React Redux Official Docs. Hooks, 2020-02-03. URL https://react-redux.js.org/api/

hooks.

[17] Docker Official Documentation. Use bind mounts, n.d. URL https://docs.docker.com/

storage/bind-mounts/.

[18] Docker Official Documentation. How nodes work, n.d. URL https://docs.docker.com/

engine/swarm/how-swarm-mode-works/nodes/.

[19] Docker Official Documentation. About storage drivers, n.d. URL https://docs.docker.

com/storage/storagedriver/.

[20] Docker Official Documentation. Networking overview, n.d. URL https://docs.docker.

com/network/.

[21] Docker Official Documentation. Use overlay networks, n.d. URL https://docs.docker.

com/network/overlay/.

[22] Docker Official Documentation. Docker overview, n.d. URL https://docs.docker.com/

get-started/overview/.

[23] Docker Official Documentation. Docker registry, n.d. URL https://docs.docker.com/

registry/.

https://blog.sqlizer.io/posts/json-store-data/
https://blog.sqlizer.io/posts/json-store-data/
https://www.datatilsynet.no/rettigheter-og-plikter/hva-er-personvern/
https://www.datatilsynet.no/rettigheter-og-plikter/hva-er-personvern/
https://react-redux.js.org/api/hooks
https://react-redux.js.org/api/hooks
https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/storage/storagedriver/
https://docs.docker.com/network/
https://docs.docker.com/network/
https://docs.docker.com/network/overlay/
https://docs.docker.com/network/overlay/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/registry/
https://docs.docker.com/registry/

BIBLIOGRAPHY 130

[24] Docker Official Documentation. Manage sensitive data with docker secrets, n.d. URL

https://docs.docker.com/engine/swarm/secrets/.

[25] Docker Official Documentation. How services work, n.d. URL https://docs.docker.

com/engine/swarm/how-swarm-mode-works/services/.

[26] Docker Official Documentation. Deploy a stack to a swarm, n.d. URL https://docs.

docker.com/engine/swarm/stack-deploy/.

[27] Docker Official Documentation. Use volumes, n.d. URL https://docs.docker.com/

storage/volumes/.

[28] Spring Boot Documentation. Introduction to the spring ioc container and beans, n.d. URL

https://docs.spring.io/spring/docs/current/spring-framework-reference/

core.html#beans.

[29] Spring Boot Documentation. Container overview, n.d. URL https://docs.spring.io/

spring/docs/current/spring-framework-reference/core.html#beans.

[30] Spring Boot Documentation. Bean overview, n.d. URL https://docs.

spring.io/spring/docs/current/spring-framework-reference/core.html#

beans-definition.

[31] Adam DuVander. Docker vs vagrant: What you need to know, 2016-04-12. URL https:

//www.ctl.io/developers/blog/post/docker-vs-vagrant.

[32] IBM Cloud Education. Containerization, 2019-05-15. URL https://www.ibm.com/cloud/

learn/containerization.

[33] EUR-Lex. General data protection regulation, 2016-05-04. URL https://eur-lex.

europa.eu/eli/reg/2016/679/oj.

[34] Facebook. Introducing hooks, n.d. URL https://reactjs.org/docs/hooks-intro.

html.

[35] GitLab. Devops tools landscape, n.d. URL https://about.gitlab.com/devops-tools/.

https://docs.docker.com/engine/swarm/secrets/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/stack-deploy/
https://docs.docker.com/engine/swarm/stack-deploy/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-definition
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-definition
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-definition
https://www.ctl.io/developers/blog/post/docker-vs-vagrant
https://www.ctl.io/developers/blog/post/docker-vs-vagrant
https://www.ibm.com/cloud/learn/containerization
https://www.ibm.com/cloud/learn/containerization
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://about.gitlab.com/devops-tools/

BIBLIOGRAPHY 131

[36] GitPod. Homepage, n.d. URL https://www.gitpod.io/.

[37] Charles Graziano. A performance analysis of xen and kvm hypervisors for hostig the xen

worlds project, 2013-01-29. URL https://lib.dr.iastate.edu/cgi/viewcontent.

cgi?referer=https://en.wikipedia.org/&httpsredir=1&article=3243&context=

etd.

[38] Red Hat. What is blue green deployment?, n.d. URL https://www.redhat.com/en/

topics/devops/what-is-blue-green-deployment.

[39] Heroku. Homepage, n.d. URL https://www.heroku.com/.

[40] David Ireland. Rsa algorithm. DI Management, 2011.

[41] Michael Jones, Brain Campbell, and Chuck Mortimore. Json web token (jwt) profile for

oauth 2.0 client authentication and authorization grants. May-2015.[Online]. Available:

https://tools. ietf. org/html/rfc7523, 2015.

[42] Sahiti Kappagantula. Docker networking – explore how containers communicate with each

other, 2019-11-27. URL https://www.edureka.co/blog/docker-networking/.

[43] Xah Lee. What is yaml, 2013-06-04. URL http://xahlee.info/comp/what_is_YAML.

html.

[44] Guy Levin. Restful api basic guidelines. URL https://blog.restcase.com/

restful-api-basic-guidelines/.

[45] opensource.com. What is docker?, n.d. URL https://opensource.com/resources/

what-docker.

[46] Oracle. What a relational database is, n.d. URL https://www.oracle.com/database/

what-is-a-relational-database/.

[47] Oracle. What is mysql, n.d. URL https://dev.mysql.com/doc/refman/8.0/en/

what-is-mysql.html.

https://www.gitpod.io/
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?referer=https://en.wikipedia.org/&httpsredir=1&article=3243&context=etd
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?referer=https://en.wikipedia.org/&httpsredir=1&article=3243&context=etd
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?referer=https://en.wikipedia.org/&httpsredir=1&article=3243&context=etd
https://www.redhat.com/en/topics/devops/what-is-blue-green-deployment
https://www.redhat.com/en/topics/devops/what-is-blue-green-deployment
https://www.heroku.com/
https://www.edureka.co/blog/docker-networking/
http://xahlee.info/comp/what_is_YAML.html
http://xahlee.info/comp/what_is_YAML.html
https://blog.restcase.com/restful-api-basic-guidelines/
https://blog.restcase.com/restful-api-basic-guidelines/
https://opensource.com/resources/what-docker
https://opensource.com/resources/what-docker
https://www.oracle.com/database/what-is-a-relational-database/
https://www.oracle.com/database/what-is-a-relational-database/
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html

BIBLIOGRAPHY 132

[48] Sten Pittet. What is continuous deployment?, n.d. URL https://www.atlassian.com/

continuous-delivery/continuous-deployment.

[49] Rajesh Radhakrishnan. Docker architecture and components, 2018-08-04. URL https:

//vmarena.com/docker-architecture-and-components/.

[50] Gabe Ragland. Debouncing with react hooks, 2019-12-19. URL https://dev.to/gabe_

ragland/debouncing-with-react-hooks-jci.

[51] Redux. Usage with react, n.d. URL https://redux.js.org/basics/usage-with-react.

[52] Max Rehkopf. What is continuous integration, n.d. URL https://www.atlassian.com/

continuous-delivery/continuous-integration.

[53] Cody Reichert. 7 http methods every web developer should know

and how to test them. URL https://assertible.com/blog/

7-http-methods-every-web-developer-should-know-and-how-to-test-them.

[54] SiteGround. Mysql tutorial, n.d. URL https://www.siteground.com/tutorials/

php-mysql/mysql/.

[55] Belinda Smith. Prime numbers keep your encrypted messages

safe. URL https://www.abc.net.au/news/science/2018-01-20/

how-prime-numbers-rsa-encryption-works/9338876.

[56] Symfony. Yaml format, n.d. URL https://symfony.com/doc/current/components/

yaml/yaml_format.html.

[57] Visual-Paradigm. What is agilde development, n.d. URL https://www.

visual-paradigm.com/scrum/what-is-agile-software-development/.

[58] w3schools. What is json, n.d. URL https://www.w3schools.com/whatis/whatis_json.

asp.

[59] Wikipedia. Docker (software), 2020-04-23. URL https://en.wikipedia.org/wiki/

Docker_(software).

https://www.atlassian.com/continuous-delivery/continuous-deployment
https://www.atlassian.com/continuous-delivery/continuous-deployment
https://vmarena.com/docker-architecture-and-components/
https://vmarena.com/docker-architecture-and-components/
https://dev.to/gabe_ragland/debouncing-with-react-hooks-jci
https://dev.to/gabe_ragland/debouncing-with-react-hooks-jci
https://redux.js.org/basics/usage-with-react
https://www.atlassian.com/continuous-delivery/continuous-integration
https://www.atlassian.com/continuous-delivery/continuous-integration
https://assertible.com/blog/7-http-methods-every-web-developer-should-know-and-how-to-test-them
https://assertible.com/blog/7-http-methods-every-web-developer-should-know-and-how-to-test-them
https://www.siteground.com/tutorials/php-mysql/mysql/
https://www.siteground.com/tutorials/php-mysql/mysql/
https://www.abc.net.au/news/science/2018-01-20/how-prime-numbers-rsa-encryption-works/9338876
https://www.abc.net.au/news/science/2018-01-20/how-prime-numbers-rsa-encryption-works/9338876
https://symfony.com/doc/current/components/yaml/yaml_format.html
https://symfony.com/doc/current/components/yaml/yaml_format.html
https://www.visual-paradigm.com/scrum/what-is-agile-software-development/
https://www.visual-paradigm.com/scrum/what-is-agile-software-development/
https://www.w3schools.com/whatis/whatis_json.asp
https://www.w3schools.com/whatis/whatis_json.asp
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Docker_(software)

BIBLIOGRAPHY 133

[60] Wikipedia. React (web framework), 2020-05-11. URL https://en.wikipedia.org/wiki/

React_(web_framework).

[61] Wireshark. About wireshark, n.d. URL https://www.wireshark.org/.

https://en.wikipedia.org/wiki/React_(web_framework)
https://en.wikipedia.org/wiki/React_(web_framework)
https://www.wireshark.org/

Appendices

A Preliminary Report

134

FORPROSJEKT - RAPPORT
FOR BACHELOROPPGAVE

Postadresse Besøksadresse Telefon Telefax Bankkonto

Høgskolen i Ålesund Larsgårdsvegen 2 70 16 12 00 70 16 13 00 7694 05 00636
N-6025 Ålesund Internett Epostadresse Foretaksregisteret

Norway www.hials.no postmottak@hials.no NO 971 572 140

TITTEL:

AutoPacker

KANDIDATENE:

Aron Mar Nicholasson, Liban B. Nor & Bendik Uglem Nogva

DATO: EMNEKODE: EMNE: DOKUMENT TILGANG:

08.01.2020 IE303612 Bacheloroppgave - Åpen

STUDIUM: ANT SIDER/VEDLEGG: BIBL. NR:

INGENIØRFAG - DATA 19/2 - Ikke i bruk -

OPPDRAGSGIVER(E)/VEILEDER(E):

Avento (mentor), Girts Strazdins (hovedveileder), Mikael Tollefsen (biveileder)

OPPGAVE/SAMMENDRAG:

Oppgaven er egendefinert og går ut på å gjøre det lettere å publisere, administrere og

distribuere et programvareprosjekt. Ved hjelp av en web applikasjon kan man lage

offentlige eller private “prosjekt”. Her kan man laste opp enten kildekode fra lokal PC

eller URL for GitHub og GitLab. Når dette er valgt kan man generere et kjørbart

“docker” image og/eller en docker compose fil. Disse kan lastes ned og kjøres lokalt

eller ved å deploye til en bruker valgt server og kjøres der. Denne tjenesten skal også

kunne holde på organisasjoner som igjen holder på flere slike “prosjekt”. På denne

måten kan NTNU ha en organisasjon som bevarer på alle programvare relaterte

bachelorene gjort.

Denne oppgaven er en eksamensbesvarelse utført av studenter ved NTNU i Ålesund.

NTNU I ÅLESUND SIDE 2

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

 2

INNHOLD

INNHOLD ..2

1 INNLEDNING ..3

2 TERMINOLOGI ..4

 BEGREPER ..4
 FORKORTELSER ..4

3 AVTALER ...5

 ARBEIDSSTED ..5
 GRUPPENORMER – SAMARBEIDSREGLER – HOLDNINGER ...5

4 PROSJEKTBESKRIVELSE ...6

 PROBLEMSTILLING - MÅLSETTING ...6
 KRAV TIL LØSNING ELLER PROSJEKTRESULTAT – SPESIFIKASJON ..7

Funksjonelle krav ... 7
Ikke-funksjonelle krav ... 11

 PLANLAGT FRAMGANGSMÅTE(R) FOR UTVIKLINGSARBEIDET – METODE(R)... 12
 INFORMASJONSINNSAMLING – UTFØRT OG PLANLAGT .. 13
 VURDERING – ANALYSE AV RISIKO ... 14
 FRAMDRIFTSPLAN – STYRING AV PROSJEKTET .. 15

4.6.1 Hovedplan ... 15
4.6.2 Styringshjelpemidler .. 15
4.6.3 Utviklingshjelpemidler ... 15
4.6.4 Intern kontroll – evaluering .. 16

 BESLUTNINGER – BESLUTNINGSPROSESS ... 16

5 DOKUMENTASJON .. 17

 RAPPORTER OG TEKNISKE DOKUMENTER... 17

6 PLANLAGTE MØTER OG RAPPORTER .. 18

 MØTER .. 18
6.1.1 Prosjektmøter .. 18

7 PLANLAGT AVVIKSBEHANDLING ... 18

8 UTSTYRSBEHOV/FORUTSETNINGER FOR GJENNOMFØRING .. 19

VEDLEGG ... 19

NTNU I ÅLESUND SIDE 3

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

3

1 INNLEDNING

Bakgrunnen for at vi valgte denne egendefinerte oppgaven er på grunnlag av egen

erfaring og at vi ser at dette er en løsning som kan hjelpe spesielt studenter, men

også enkeltpersoner som har utvikling som en hobby. Vi ønsker å lage en løsning

som automatiserer prosessen ved å gå fra kildekode til en plattform uavhengig

løsning som kan kjøres både lokalt på egen maskin og på en spesifisert ekstern

server som er automatisk konfigurert og kjører applikasjonen i et virtualisert miljø.

På denne måten kan det brukes for testing, utprøving og drift av tidligere og nyere

prosjekter.

Oppdragsgiver – Oppgaven er egendefinert, men vi har valgt å involvere Avento

som mentor grunnet deres kompetanse innenfor den teknologien og plattformen vi

skal ta i bruk.

NTNU I ÅLESUND SIDE 4

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

4

2 TERMINOLOGI

 Begreper

Docker Docker er et verktøy for å lettere lage, distribuere og kjøre

applikasjoner ved hjelp av docker containers.

Docker Image Et docker image er en kjørbar pakke av forskjellig software,

bibliotek, verktøy og innstillinger.

Docker Container En docker container er en prosess instansiert fra et docker

image.

Frontend Den delen av et datasystem eller applikasjon som brukeren

samhandler direkte med.

Backend Den delen av et datasystem eller applikasjon som ikke er direkte

tilgjengelig av brukeren.

Sprint En sprint er en tidsbokset iterasjon av en kontinuerlig

utviklingssyklus1

Agile/smidig En arbeidsmetode med fokus på iterasjoner av arbeidet.

Scrum En smidig arbeidsmetode hvor man i syklus planlegger, tilpasser,

endrer og utvikler i iterasjoner.

Chiffer Fellesbetegnelse på krypterings algoritmer

User stories User stories er beskrivelse av features.

 Forkortelser

API Application Programming Interface

SSH Secure Shell

CI Continuous Integration

CD Continuous Deployment

JWT JSON Web Token

PUKA Plattform Uavhengig Kjørbar Applikasjon

1 https://yodiz.com/help/what-is-sprint/

NTNU I ÅLESUND SIDE 5

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

5

3 AVTALER

 Arbeidssted

Vi kommer hovedsakelig til å oppholde oss på lab rommet L167 siden det rommet

er reservert for studenter som skriver bachelor oppgave. Vi har også mulighet for

å jobbe på Avento sine lokaler ved behov. Denne muligheten kommer vi i

hovedsak til å utnytte i sammenheng med retrospektivt møte etter møte med

mentor.

 Gruppenormer – samarbeidsregler – holdninger

Det viktigste for å oppnå en god arbeidsprosess er kommunikasjon. Uten

kommunikasjon er det lite fremgang og mye som kan slå feil. I hovedsak kommer

vi til å jobbe sammen på skolen i hverdager. Dette for å engasjere diskusjon,

kompetansedeling og forskjellige syn som kan bidra til mer effektive løsninger,

nye ideer og bedre sosialt samvær.

Alle i gruppen skal være dedikert til oppgaven, det skal legges inn en innsats til å

fullføre prosjektet. Dette kan lett gjøres ved at gruppen er streng angående

tilstedeværelse, og at man skal være aktiv i prosjektarbeid og møter av alle slag.

Vi har ingen form for prosjektledelse struktur og dermed ingen hierarki på

ansvarsfordelinger. Dermed vil fordeling av oppgaver og hvem som har ansvar for

hva diskuteres frem til og delegeres i interne gruppemøte.

Dersom det skulle oppstå konflikter i gruppen skal det tas opp i et internt møte.

Dersom det ikke blir løst internt vil vi ta kontakt med veileder for retningslinjer og

eventuelt innkalling til møte.

NTNU I ÅLESUND SIDE 6

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

6

4 PROSJEKTBESKRIVELSE

 Problemstilling - målsetting

Problemstilling:

Hvordan gjøre det lettere for studenter/enkeltindivid å gjøre kildekode om til en

plattform uavhengig kjørbar applikasjon, og som gjør distribusjon, testing og drift

av denne applikasjonen lettere.

I vårt prosjekt har vi satt følgende mål:

Effektmål Løsningen skal eliminere mest mulig steg fra kildekode lastet

opp, til en plattform uavhengig kjørbar applikasjon (PUKA),

der man ikke trenger stor teknisk kunnskap.

Resultatmål Utvikle en selvstendig sikker applikasjon som spesielt

studenter som skriver bachelor kan ta i bruk, og som har

støtte for de mest vanlige kodeprosjektene innen midten av

mai.

Prosessmål Gruppen skal følge den framgangsmåten beskrevet, helst med

så få komplikasjoner som mulig. Og dersom det skulle oppstå

noe, klare å komme seg inn på riktig bane kjappest mulig.

NTNU I ÅLESUND SIDE 7

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

7

 Krav til løsning eller prosjektresultat – spesifikasjon

Funksjonelle krav

Tittel Bruker

funksjonalitet

Prioritet Notater

1 Besøke

nettområde

Som en bruker vil

jeg se

informasjon/hjemm

estedet når jeg først

besøker

nettområdet som

“gjest”.

KRITISK

2 Konsoll side Som en bruker vil

jeg ha tilgang til en

konsoll side, hvor

jeg kan søke, se og

laste opp/ned

forskjellige

prosjekter

KRITISK

Profil “dashboard” siden

ser litt ut som et admin

dashboard.

3 Opprette

prosjekt

Som en bruker vil

jeg kunne opprette

en hoved mappe

som inneholder alle

modulene

prosjektet er bygd

opp av

KRITISK

Bruker kan gjennom profil

“dashboard” velge “nytt

prosjekt” som han/hun

kan opprette. I prosjektet

kan man ha en eller flere

tjenester.

4 Modul

Implementasjo

n

Som bruker vil jeg

kunne tilknytte

moduler til et

eksisterende

prosjekt.

KRITISK

Disse modulene kan for

eksempel være:

nettapplikasjon, API,

mobilapp, database osv.

5 Valg av

avhengigheter

/ moduler

Som en bruker vil

jeg finne og velge

de nødvendige

avhengigheter

prosjektet behøver

for å kunne kjøre

KRITISK

Brukeren kan (med hjelp

av installeringsveiviser for

å finne og velge

avhengighetene som

trengs for å bygge

prosjektet. Dette kan også

NTNU I ÅLESUND SIDE 8

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

8

gjøres ved at brukeren

legger ved en “docker

compose file”

6 Slette prosjekt Som en bruker kan

jeg slette prosjekter

jeg har opprettet

KRITISK

Se at brukeren har

rettighetene til å slette

prosjekt, Hvis det er et

delt prosjekt og brukeren

har rettighet til å slette

prosjekt som er opprettet

av andre.

7 Søke etter

prosjekt

Som en bruker vil

jeg kunne søke

etter eksisterende

prosjekter med gitt

navn og tags

KRITISK

Brukeren burde kunne

finne prosjekt ved å søke

etter dem, enten etter

navn eller tag

8 Nedlastning Som bruker vil jeg

kunne laste ned

prosjekter fra

nettapplikasjonen

KRITISK

9 Autentisering Som en bruker vil

jeg få tilgang til

applikasjonen etter

autentisering

KRITISK

Lages med Spring Boot

(Spring Security)

10 Registrering Som en bruker kan

jeg registrere meg

selv slik at jeg kan

bruke tjenesten

KRITISK

Brukeren burde kunne

registrere seg med minst

mulig informasjon (email,

brukernavn og passord)

11 Utlogging Som en bruker kan

jeg logge ut av

applikasjonen

KRITISK

12 Email

Verifisering

Som en bruker kan

jeg verifisere

brukerkontoen min

via en email sendt

til meg

VIKTIG

Implementerer en

EmailService

13 Endre passord Som en bruker vil

jeg, kunne endre

mitt passord

VIKTIG

Må legges til

autentiseringsserver

tjenesten

NTNU I ÅLESUND SIDE 9

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

9

14 Glemt passord Som en bruker vil

jeg kunne

tilbakestille

passordet mitt.

VIKTIG

Må legges til

autentiseringsserver

tjenesten

15 NTNU (Feide)

integrasjon

Som en bruker vil

jeg kunne verifisere

brukerkontoen min

ved å logge inn via

Feide

VIKTIG

Vi skal se nærmere på

hvordan vi kan utføre

Feide integrasjonen.

16 Brukerinnstillin

ger

Som en bruker kan

jeg endre

brukerinnstillinger

TRIVIELL

17 Tilknytninger Som en bruker kan

jeg tilknytte meg til

en organisasjon

TRIVIELL

Eksempel på dette kan

være NTNU, UIO osv.

18 Sikkerhet Som en bruker vil

jeg vite at det jeg

laster ned er trygt

KRITISK Dette kan utføres ved at

enkelte brukere “signerer”

prosjektene, eller ved

hjelp av crawlers for å

unngå skadelig

programvarer lastes ned.

19 Predefinert

konfigurasjon

Som en bruker vil

jeg kunne

predefinere

konfigurasjonen når

jeg laster opp

prosjekt.

KRITISK Hvis brukeren allerede

har en konfigurasjon

som trengs, trenger vi

ikke å generere den. En

brukerdefinert kan være

mer spesifikk og innstilt

på prosjektet sitt

20 Kjøre lokalt Som en bruker vil

jeg kunne kjøre

prosjekt lokalt på

maskinen min

VIKTIG

Vi behøver en desktop

brukergrensesnitt for å

håndtere docker

containers. I første

omgang kan brukeren

bare bruke installert

docker og bruke de

NTNU I ÅLESUND SIDE 10

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

10

samme scripts som

eksterne “modulen” av

prosjektet.

21 Server

konfigurasjon

Som en bruker vil

jeg kunne beskrive

nok server

informasjon slik at

applikasjonen kan

konfigurere

serveren for meg

KRITISK Brukeren oppgir SSH,

brukernavn, passord slik

at vi kan tilkoble en server

via SSH. Deretter kan vi

bruke verktøy slik som

Ansible til å konfigurere

serveren.

22 Kjøre eksternt Som bruker vil jeg

kunne kjøre et

prosjekt på en gitt

server (se story

ovenfor)

KRITISK Dette er på en måte det

samme som ovenfor. Når

serveren er konfigurert,

skal prosjektet deretter

kjøres

23 Offentlige

prosjekt

Som en bruke vil

jeg kunne opprette

prosjekt som er

tilgjengelig for alle

KRITISK For å dele prosjekt med

andre brukere, så må

prosjektet være åpen

kildekode.

24 Private

prosjekt

Som en bruker vil

jeg kunne opprette

prosjekt som er kun

tilgjengelig for meg

VIKTIG

NTNU I ÅLESUND SIDE 11

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

11

Ikke-funksjonelle krav

Tittel Forklaring

1 Lett forståelig

brukergrensesnit

• Lett å forstå, brukeren trenger ingen kjennskap

til applikasjon for å kunne bruke den

2 Responsivt

brukergrensesnitt

• Brukergrensesnittet responderer på inputs, vindu

størrelse og enhet.

• Brukeren får indikator når applikasjon holder på

å kjøre. (ventetid)

3 Kompatibel med

ulike nettlesere.

• Nettapplikasjonen kan kjøre på alle typer

nettlesere

4 Sikkerhet • Forsikre brukeren at passord og brukernavn er

sendt og lagret sikkert/kryptert

o Alt av kommunikasjon vil bruke HTTPS

kommunikasjon

o Alt av passord vil bli lagt til SALT når det

lagres i database.

o Implementer chiffers (SHA256)

5 Kvalitetssikring • Kildekode skal være lett å forstå

• For å sikre at systemet fungerer som den er

beskrevet, benytter vi oss av flere teknikker for

testing

o Black box

o White box

o Acceptance testing

NTNU I ÅLESUND SIDE 12

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

12

 Planlagt framgangsmåte(r) for utviklingsarbeidet –

metode(r)

Gruppen har blitt enig om å bruke scrum som arbeidsprosess “rammeverk” for

smidig utvikling i dette bachelorprosjektet. Vi har planlagt å ha sprints som

spenner seg over to uker. Siden vi har møte med veileder/mentor hver annen uke

så passer det bra med to ukers sprints. Vi kommer også til å kjøre et internt

standup møte helst før hver lab økt. Her kommer vi litt til å se an behovet.

Dersom alle er oppdatert på arbeidet til hverandre er det ikke nødvendig å ha det

hver gang.

Hovedgrunnen til at vi valgte å bruke scrum som arbeidsprosess “rammeverk” er

på grunn av at den gir oss mye fleksibilitet i prosjektet vårt. Vi kan sette opp

arbeidsfremgangen vår slik at den passer oss, veileder og vår mentor. Og dersom

det skjer en endring kan vi kjapt tilpasse prosjektet.

Det som kan være den største svakheten med å bruke denne arbeidsprosessen er

at siden prosjektet er egendefinert, så kan det være vanskelig å se for seg

hvordan det faktisk ferdige produktet skal se ut. Dette kan føre til en dårligere

langtidsplan som kan føre til at vi ender opp med å bruke mye tid på å tilpasse

prosjektet senere. Et annet problem kan være å fordele arbeidsoppgaver. Noen

implementasjoner er avhengig av at andre implementasjoner har tatt sted og

noen ikke. Det kan dermed være vanskelig å delegere arbeidsoppgaver mellom

oss som er “uavhengig” eller som vi vet vi rekker å fullføre slik at en annen kan ta

i bruk løsningen.

Å bruke scrum krever innsats fra alle involverte, og det krever god planlegging.

For å dermed unngå å havne i fellene over så er det kjempe viktig at vi har en god

taktikk for hvordan vi skal arbeide og en god plan som vi klarer å holde oss til. Vi

tenker at ukentlige møter, retrospektivt møte, og scrum møter er nok til at vi

klarer å holde oss på stø kurs.

NTNU I ÅLESUND SIDE 13

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

13

 Informasjonsinnsamling – utført og planlagt

Det finnes ingen løsning som gjør nøyaktig det vi har planlagt, men det finnes

mange tjenester som forenkler prosessen av å administrere docker containers.

Her har du for eksempel Docker desktop og portainer.io. Så har man også

løsninger som gjør om en kommando linje om til docker-compose yml som for

eksempel Composerize.

Vi kommer til å bruke flere tjenester for å sikre oss informasjon som er nødvendig

for at vi finner løsninger og forbedringer til vårt prosjekt. Blant disse er:

o StackExchange (I hovedsak StackOverflow) - StackExchange er nok en av

de største Q&A samfunnene tilgjengelig og er en “go-to” for programvare

utviklere. StackOverflow har en gigantisk database med spørsmål og svar,

og i de tilfellene hvor man ikke finner noe svar til sitt problem kan man

stille spørsmål og få veldig gode svar

o Docker documentation - Dokumentasjonen viser hvordan man skal benytte

seg av Docker.

o Spring Boot Reference – Dokumentasjon som viser hva løsninger Spring

Boot har å tilby, samt hvordan vi kan oppnå ønskede resultater

o Spring Security Reference – Informasjon om hvordan man skal

implementere sikkerhet i våre Spring Boot applikasjoner.

o NTNU Open - NTNU Open er en oppbevaringsbase som holder på

masteroppgaver, bacheloroppgaver, forsknings artikler, tidsskrifter og mye

annet vi kan lese og ta inspirasjon fra til vår bachelor skriving.

o Ei Engineering Village - Engineering Village er en plattform som inneholder

journaler, tekniske rapporter, vitenskapelige artikler og dokument og er en

ressurs som kan brukes for kvalitetssikre kilder.

o ScienceDirect - ScienceDirect er også en plattform som inneholder

journaler, vitenskapelige artikler og elektroniske bøker. Alt som kan finnes

her er autentisk og dermed trenger man ikke å bruke masse tid på å

verifisere kildene.

o Baeldung - baeldung.com er en go-to nettside for java utviklere som

ønsker seg å lære mer om java økosystemet, spring microservices, spring

security og mye mer i form av guides og courses.

o React Docs - Dokumentasjon over hva react har å tilby og hvordan man

kan implementere de inn i prosjekt (med eksempler).

o Redux Docs (with React) – Dokumentasjon som viser hvordan man kan

bruke redux med React.

NTNU I ÅLESUND SIDE 14

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

14

o Docker Mastery (Udemy course) - Docker Mastery er et ~20t kurs som er

tilgjengelig på Udemy, som er den mest kjente plattformen for å finne

betalte kurs av instruktører (gjerne sertifiserte).

o Google Scholar – Google Scholar er en søkemotor som er ment for å finne

akademisk litteratur.

I noen av de overnevnte kildene er det viktig at man som enkeltperson kvalitet

sikrer det innholdet man finner og eventuelt velger å ta i bruk. Man må finne om

dette er noe man kan implementere, ta utgangspunkt i eller forbedre slik at det

passer inn i prosjektet. Man må også tenke over hvilken virkning det har, om det

påfører risiko eller det har konsekvenser.

 Vurdering – analyse av risiko

Vi har ikke god nok teknisk forståelse på hvordan alle elementer av systemet skal

fungere sammen. Der vi har estimert en viss tid til en funksjonalitet, er det mulig

at mer tid må brukes for implementasjon. Da må vi enten velge å bruke mer tid

eller å forkaste funksjonen og jobbe med annet som er viktigere.

Systemet består av mange elementer og det kan være for mye arbeid som må

gjøres innen tidsfristen. Mye tid må dedikeres til prosjektet dersom vi skal oppnå

alle målene.

Backend funksjonalitet er prioritert høyere enn frontend og har vi færre

arbeidsoppgaver. Frontend er helt avhengig av servere og er ubrukelig uten.

Risikomatrisen er vedlagt som vedlegg 1.

NTNU I ÅLESUND SIDE 15

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

15

 Framdriftsplan – styring av prosjektet

4.6.1 Hovedplan

Vi bruker scrum som smidig arbeidsmetodikk prosessrammeverk som går ut på å

jobbe i iterasjoner hvor vi hele tiden vil tilpasse oss. Dermed er det litt vanskelig å

spå lenger enn noen uker/måned i forkant. Vi kommer til å ha kontinuerlig

planlegging og tilpasning av prosjektet. Som det er sagt så har vi laget et gantt

diagram som viser et utgangspunkt for hvordan vi kan jobbe med de forskjellige

delene av applikasjonen gjennom dette semesteret. En PDF-utskrift ligger vedlagt.

4.6.2 Styringshjelpemidler

Confluence Vi bruker Confluence for å dokumentere arbeidsprosessen og holde

styring av dokumenter/referat/retrospektiv, møtenotater,

kravspesifikasjoner og andre typer dokumenter.

Jira For å ha oversikt over arbeidsprosessen og issue-tracking kommer vi

til å bruke Jira. Dette verktøyet er tett knyttet til Confluence og gjør

det lettere å jobbe i sprints samt ha en oversiktlig backlog med arbeid

som må gjøres.

4.6.3 Utviklingshjelpemidler

GitLab GitLab er en web basert plattform som forsørger hosting av

programvare med Git til versjon styring.

Postman Postman er en samarbeids plattform for testing og utvikling av API.

Her kan vi dele collections av rest kall som blir brukt med tjenestene

våre.

IntelliJ For å utvikle og kjøre Java applikasjoner og programmer så bruker vi

IntelliJ.

Visual Code Er en code editor optimalisert for web og cloud applikasjoner

GitKraken /

Sourcetree /

Git CLI

Vi kommer til å bruke Git clienter som GitKraken, Sourcetree og Git

CLI for å versjonsstyre prosjektene våre.

NTNU I ÅLESUND SIDE 16

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

16

4.6.4 Intern kontroll – evaluering

Oppfølging av framdrift vil bli gjort annenhver uke med veileder og etter behov

med mentor (Må avtales). Her vil vi gå gjennom hva som har blitt gjort, hva som

er blitt endret og om det har oppstått noen problemer. Vi vil også holde et internt

retrospektivt møte etter hver endt sprint.

Det som kjennetegner at et mål er blitt nådd er når vi har gjort alle oppgavene

relatert til implementasjonen, at både veileder og mentor er enig med

implementasjonen og at den går igjennom både automatiske tester og bruker

tester uten problem.

 Beslutninger – beslutningsprosess

Vi har som mål å fullføre hovedsynet for prosjektet allerede nå i forprosjekts

arbeidet slik at vi forhåpentligvis klarer å unngå store endringer i oppgaven

senere. Endring av oppgavetekst og applikasjon tar lang tid og vi prøver dermed å

ta alle slike avgjørelser nå i starten.

Dersom det oppstår en situasjon hvor vi må ta en viktig beslutning så kommer vi

til å samle hele gruppen, samt veileder og mentor (dersom det er nødvendig). Så

diskuterer vi frem til en felles beslutning og deretter dokumenterer den endringen

i Confluence (hvor vi holder på alt av dokumentasjon).

NTNU I ÅLESUND SIDE 17

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

17

5 DOKUMENTASJON

 Rapporter og tekniske dokumenter

Alt som er dokumentasjons relatert, vil bli lagret i vårt Confluence område, som er

ryddig sortert i mappestruktur som gjør det lett å navigere etter informasjon.

Veileder/mentor

møtereferat

For hvert møte med veileder og/eller mentor skal det

skrives et møtereferat som oppsummerer målene med

møtet, hva som ble gjennomgått og hva som ble

konkludert.

Loggrapport Vi kan hente ut loggrapport fra Jira etter hver sprint som

dokumenterer hva vi har gjort, hvor lang tid det tok og

hvem som har gjort hva.

Ukentlig rapport Hver uke skal det skrives en ukes rapport som

oppsummerer hva som er blitt gjort slik at både

gruppemedlemmer, veiledere og mentor er oppdatert.

Rutiner I de tilfellene det er nødvendig å ha rutine så skal det

dokumenteres i felleskap slik at alle gjør det samme uten

uoverensstemmelser.

Beslutninger For hver viktig beslutning som er med på å modifisere

oppgaven skal den beslutningen dokumenteres med: hva

er grunnen, hvordan løser vi det og eventuelt konklusjon

Kravspesifikasjon Kravspesifikasjonen skal definere hvilke

brukerfunksjoner og generelle krav systemet skal ha. Vi

bruker “user stories” til å definere brukerfunksjoner

UML dokument Dersom det er behov for UML diagrammer og wireframes

skal dette også lagres og beskrives i vårt Confluence

område.

Retrospektivt møtereferat I slutten av hver sprint skal det holdet et retrospektivt

møte hvor vi internt går gjennom sprinten som var, hva

som er gjort, hva kan endres, hvordan var

arbeidsprosessen, hva skal vi gjøre videre og i slutten

skrive et møtereferat.

Milepæls rapport Hver gang vi oppnår en milepæl skal vi skrive en egen

rapport som ramser opp den funksjonaliteten som er

tilgjengelig og en slags “release” oppsummering

NTNU I ÅLESUND SIDE 18

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

18

6 PLANLAGTE MØTER OG RAPPORTER

 Møter

6.1.1 Prosjektmøter

Vi har planlagt faste møter annenhver uke med veiledere og et møte i måneden

med Avento (dersom de har mulighet) hvor vi vil gå gjennom sprinten som var

(hva som er gjort, endret), og hva vi skal gjøre videre.

Kort fortalt er hensikten å gi alle inkludert en oversikt over tilstanden til

prosjektet. Hva som er blitt gjort, hva som er endret, hva kunne gjøres bedre,

hvordan vi skal gå videre.

7 PLANLAGT AVVIKSBEHANDLING

Ut ifra størrelsen/risikograden for avviket har vi flere valg å ta:

- Dersom en kommer over avviket og har mulighet til å fikse det uten å konsultere

de andre kan man gjøre en oppdatering som fikser avviket.

- Dersom avviket er stort nok til at vi må gjøre endringer i selve

oppgavebeskrivelsen, og utviklingsprosessen må vi først identifisere hva eller hvor

avviket ligger og hva det påvirker. Så må vi konsultere hverandre å finne den

beste løsningen. Dersom vi klarer å komme frem til en løsning vi er sikre på vi

kan implementere vil vi gjøre de nødvendige endringene for å få det fikset. Etter

dette vil vi føre inn denne endringen inn i en ukentlig rapport som oppdaterer

både mentor og veileder på det som skjedde. Dersom vi føler at vi ikke klarer å

finne en god løsning på problemet vil vi ta kontakt med veileder og/eller mentor

og prøve å komme frem til en løsning sammen. Når vi kommer frem til en løsning

vil vi dokumentere det på samme vis som nevnt over.

Ansvaret vil bli delt ut ifra hvilke tiltak som blir tatt. Dersom en utvikler velger å

fikse problemet, kjøre en oppdatering og jobbe videre, så vil han ta ansvar for

avviket. Dersom problemet kommer frem i gruppen og gruppen jobber sammen for å

finne en løsning, så vil gruppen i sin helhet ta ansvaret.

NTNU I ÅLESUND SIDE 19

FORPROSJEKTRAPPORT – BACHELOROPPGAVE

19

8 UTSTYRSBEHOV/FORUTSETNINGER FOR

GJENNOMFØRING

Vi kommer til å bruke AutoDeploy for å administrere test servere i starten, men så

gå over til noe litt mer reliable med backup, disaster recovery og redundancy

senere. Her kan vi for eksempel bruke Azure.

VEDLEGG

Vedlegg 1 PDF-utskrift av Gantt diagrammet

Vedlegg 2 Excel fil som inneholder risikoanalyse

BIBLIOGRAPHY 154

B API Specifications

The API specifications given below are of PDF format and only shows the overview of our API

documentation. The actual interactable Open API specification with swagger for each service

can be found at these addresses:

Authentication Server: http://stage.autopacker.no:9000

Server Manager: http://stage.autopacker.no:9001

General API: http://stage.autopacker.no:9002

File Delivery API: http://stage.autopacker.no:9003

http://stage.autopacker.no:9000
http://stage.autopacker.no:9001
http://stage.autopacker.no:9002
http://stage.autopacker.no:9003

File ▼ Edit ▼ Insert ▼ Generate Server ▼ Generate Client ▼

Authentication Server
Spring Boot API that delivers authentication server functionality to the users of AutoPacker.

Servers

http://dev.libane.tk:8080 Authorize

members Operations available to all our members.

POSTPOST /auth /login Authenticate an existing user

GETGET /auth /resendVerificationToken Resend a verification token

GETGET /auth /registrationConfirmation Verifies the user if token is valid

GETGET /auth /resetPasswordRequest Performs a request to reset a users' password

POSTPOST /auth /resetPasswordChange Reset a users' password

POSTPOST /auth /changePassword Change an authenticated users' password

guests Operations available to all our members, but also our guests.

POSTPOST /auth /register Register a new user

GETGET /auth /usernameAvailability /{username} Verifies if the username is available, used in registration

GETGET /auth /emailAvailability /{email} Verifies if the email is available, used in registration

 1.0.0-oas3 OAS3

GETGET /auth /users

GETGET /auth
/search

Returns a list of all the users using AutoPacker that contains the search string. Used
when searching for users.

Schemas

User

Role

Authority

Token

File ▼ Edit ▼ Insert ▼ Generate Server ▼ Generate Client ▼

Server Manager
Spring Boot API that delivers server management functionality to the users of AutoPacker.

Servers

http://dev.libane.tk:8081 Authorize

members Operations available to all our members.

GETGET /server /deployProject /{username} /{serverId} /{projectName}

POSTPOST /server /new-server Add a new server associated with the user making the request

GETGET /server /init /{serverId} Runs a initialization script on the given server

DELETEDELETE /server /delete /{serverId} Deletes the given server if the user authorized owns the server

GETGET /server /server-overview /{serverId}

GETGET /server

GETGET /server /{search}

POSTPOST /server /add-project

POSTPOST /server /remove-project

Schemas

 1.0.0 OAS3

Server

File ▼ Edit ▼ Insert ▼ Generate Server ▼ Generate Client ▼

General API
Spring Boot API that delivers some general functionality to the users of AutoPacker.

Servers

http://dev.libane.tk:8082 Authorize

admins Operations available only to admins.

POSTPOST /languages /new Add a new supported language to the application

organization admins Operations available only to organization admins

POSTPOST /organization /acceptMemberRequest Accepts a given applicant to become a member of the organization

POSTPOST /organization /declineMemberRequest Declines a membership application to an organization

POSTPOST /organization /acceptProjectRequest Accepts a project request and adds that project to the organization

POSTPOST /organization /declineProjectRequest Declines a project request for an organization

GETGET /organization /{organization} /member-
applications

Returns all the member applications made to the
organization

GETGET /organization /{organization} /project-
applications

Returns all the project requests made to the
organization

GETGET /organization /{organization} /delete-project-applications
/{projectId}

Deletes a specified project
request

organization members Operations available to all our organization admins, but also our
members.

POSTPOST /organization /requestMembership Request a membership with an organization

 1.0.0 OAS3

POSTPOST /organization /submitProject Submit a project to a given organization

POSTPOST /organization /updateProjectSubmission Updates an existing project submission

GETGET /organization /{organization} /members Returns a list of all the members and their roles in an organization

GETGET /organization /{username} /isMember Returns all the organizations the user is part of

GETGET /organization /{username} /isMember /search Returns all the organizations the user is part of

GETGET /organization /{organization} /projects Returns all the projects of the organization

GETGET /organization /{organization}
/projects /search

Returns all the projects that are affiliated with the organization that
match the search criteria

GETGET /organization /{organization} /project-applications
/{username}

Returns all the project requests that a user has
made

members Operations available to all of the members in our application, part of an organization or
not.

GETGET /languages /all

guests Operations available to all our members, but also our guests.

GETGET /organization Returns a list of all the public organizations

GETGET /organization /{organization} Returns information about an organization

Schemas

Member

MemberApplication

Organization

Project

ProjectApplication

Role

Authority

Language

Version

/swagger.json Explore

Project & Module
/swagger.json

This is a collection of endpoints for managing projects and modules.

Servers

http://158.38.101.87:8090 Authorize

default

POSTPOST /projects Add Empty Project

GETGET /projects /all Get All Projects

GETGET /projects /{username} Get All Projects From User

GETGET /projects /{username} /{project} Get Single Project

DELETEDELETE /projects /{username} /{project} Delete Project

DELETEDELETE /projects /{username} /{project} /{module} Delete Module

POSTPOST /projects /{username} /{project} /{module} /add Add Module To Project

GETGET /projects /{username} /{project} /docker-compose.yml Get docker-compose for project

Schemas

 1.0.0-stage-oas3 OAS3

Project

Module

config-params

docker-compose

Project create format

body

BIBLIOGRAPHY 163

C Gantt diagram

BIBLIOGRAPHY 164

D Web Application Source Code

E File Delivery API Source Code

F General API Source Code

G Server Manager Source Code

H Authentication Server Source Code

I Dynamic use of docker compose

In this document, we describe the general use on how to create a dynamic docker-compose.yml

file with a preset template and dynamic values. This is the general idea we built upon when

creating our docker-compose builder in our backend services.

Dynamic use of docker-compose blocks
In this file, we explain the concept of how to run a common jar file as a standalone docker container. To achieve this we need this structure:

User-project/

 .env | "Contains the values specifying the module specification"

 docker-compose.block.yml "The docker-compose block that has been picked out by an algorithm"

 Dockerfile "The dockerfile used to build a docker image out of the program the user want to upload"

 .jar | "The program in case the image hasn't been built by docker yet"

Now that we have the structure of the folder in which we're going to work in we can go through step by step how to make this .jar program run. (example
explains scenario of using .jar)

Step 1: Build the image

When the user have uploaded a application as a single module we first need to find out (from the users criteria) a dockerfile that matches his/hers criteria.
In our example the uploaded application is a .jar file using java-8, so our dockerfile that we hopefully picked out would look like this:

Dockerfile

FROM openjdk:8
ARG JAR_FILE=./*.jar
COPY ${JAR_FILE} app.jar
ENTRYPOINT ["java", "-jar", "/app.jar"]

So our application/docker process builder (which builds the image automatically) then builds the docker image: (if of course we have the file structure
above)

Step 2: Finding the correct docker-compose block

When image building is completed we need to find out what type of docker-compose block we need for our project. This search and find process must be
handled by a type of searching algorithm. In this case we don't need a advanced docker-compose setup. We only need a docker image and what port to
use for port-forwarding. So in our scenario a simple docker-compose block is enough:

docker-compose.simple.yml

docker-compose block for a simple setup that only needs an image and port
version: "3"

services:
 client_app:
 container_name: ${CLIENT_APP}
 image: autopacker/${CLIENT_APP}
 ports:
 - ${PORT}:${PORT}

Step 3: Using the correct values with the docker-compose block

As you can see in the code block our docker-compose block needs variables to function. That's where the .env file comes in to place. The .env file can
store n number(s) of environment variables that can be "echoed" into the file and used in the docker-compose blocks. So for our scenario our .env file
would have looked like this:

.env

CLIENT_APP=project_name
PORT=3000

(When we get to the point we want to run this compose file it will automatically use the .env file so we don't have to specify it.)

Step 4: Validate the configuration

Now we want to validate that our docker-compose block is correct. We can achieve this by running:

validate

docker-compose -f docker-compose.simple.yml config

So in our case we would have gotten this result:

You'll get an error if something goes wrong.

Step 5: Run the application

When everything above is correct we can finally execute the given application with:

The End.

BIBLIOGRAPHY 167

BIBLIOGRAPHY 168

J Wireframes

Figure 1: Figure showing the wireframe for the homepage.

BIBLIOGRAPHY 169

Figure 2: Figure showing the wireframe for the dashboard panel containing user projects.

Figure 3: Figure showing the wireframe for creating a new project.

BIBLIOGRAPHY 170

Figure 4: Figure showing the wireframe for an empty project.

Figure 5: Figure showing the wireframe for a project containing modules.

BIBLIOGRAPHY 171

Figure 6: Figure showing the wireframe for creating a new module for a project.

Figure 7: Figure showing the wireframe for listing all projects in an organization.

BIBLIOGRAPHY 172

K Jira Sprint Reports

Sprint Report
Main

Switch report

Main Sprint 1

Closed Sprint, started by Aron Nicholasson, ended by Aron Nicholasson 22/Jan/20 4:02 PM - 05/Feb/20 9:33 AM

View linked pages

Status Report

Completed Issues
View in Issue navigator

Key Summary Issue
Type

Priority Status Story Points (35)

AUT-12 Finish pre-project report Task Critical DONE -

AUT-13 Finish Gantt diagram (version 1) Task Critical DONE -

AUT-16 As a developer I want to authenticate myself so I can start
implementing security in other parts of the system

Story Critical DONE 7

AUT-17 Create contribution guide Task Major DONE -

AUT-18 Update use-case diagram to meet new minimum-value
product specifications

Task Critical DONE -

AUT-20 Create weekly report for week 4 Task Critical DONE -

AUT-21 Create weekly report for week 5 Task Critical DONE -

AUT-22 Create developer guidelines for formatting and codestyle Task Critical DONE -

AUT-24 As a user I want to be able to contact support or technical
when i have questions about or wishes for the application

Story Major DONE 6

AUT-26 As a developer, I want users to be able upload any files so
it can be downloaded in the future

Story Critical DONE 6

AUT-28 As a developer, I want to be able to download files so it
can be used later to download docker/script files

Story Critical DONE 5

AUT-29 As a developer, I want users to have a workspace so they
can store all their projects and modules

Story Critical DONE 5

AUT-30 As a developer, I want to view the file meta data of each Story Critical DONE 3

Jan 22
Feb 5

Feb 5
0

10

20

30

40

user workspace

AUT-32 As a developer, I want to delete any files on the server so
it's no longer available

Story Critical DONE 3

AUT-35 Create presentation for IF300114 Ingeniørfaglig
systemteknikk og systemutvikling

Task Major DONE -

Sprint Report
Main

Switch report

Main Sprint 2

Closed Sprint, started by Aron Nicholasson, ended by Aron Nicholasson 05/Feb/20 12:17 PM - 20/Feb/20 3:11 PM

View linked pages

Status Report

Completed Issues
View in Issue navigator

Key Summary Issue
Type

Priority Status Story Points (72)

AUT-14 As a developer I want to store file system references in a
database because it makes it easier to find files

Story Critical DONE 5

AUT-23 As a guest I want to be welcomed in a homepage so I can
read information about the service

Story Major DONE 8

AUT-34 As a developer I want a resource template with
authorization which i can use to create new resource
services

Story Major DONE 5

AUT-37 As a user, I don't want others to be able to modify/delete
my projects I've made because I've made it

Story Critical DONE 4

AUT-38 As a user, I want to decide if I want to make my project(s)
private so only I have private access to it

Story Critical DONE 3

AUT-39 As a user, I can create modules in my project(s) so I can
extend my system

Story Critical DONE 5

AUT-40 As a user, I can prove that I am the legitimate owner by
clicking on a verification link

Story Minor DONE 5

AUT-41 As a user, I want to recieve a new verification link when
the other has expired

Story Minor DONE 4

AUT-42 As a user I want to be able to reset my password when
forgotten

Story Major DONE 6

AUT-43 As a user I want to be able to change my password when
needed

Story Minor DONE 4

Feb 5
Feb 19

Feb 20
0

20

40

60

80

AUT-46 As a developer, I want a weekly report for week 6 that
specifies what have been done

Story Major DONE 1

AUT-47 As a developer, I want a weekly report for week 7 that
specifies what have been done

Story Major DONE 1

AUT-48 As a user, I want to be able to specify server credentials
for the API to connect to

Story Major DONE 5

AUT-49 As a user, I want to see a profile dashboard when I have
authenticated myself

Story Major DONE 6

AUT-50 As a guest, I want to be able to register an account so I
can use more of the system

Story Critical DONE 5

AUT-53 As a user, I can authorize myself in the service Story Major DONE 5

Issues Not Completed
View in Issue navigator

Key Summary Issue
Type

Priority Status Story Points (4)

AUT-52 As a student, I want to sketch out a material and methods
section (list of used technologies/theoretical concepts)

Story Critical 4

Sprint Report
Main

Switch report

Main Sprint 3

Closed Sprint, started by Aron Nicholasson, ended by Aron Nicholasson 21/Feb/20 12:07 PM - 06/Mar/20 10:12 AM

View linked pages

Status Report
* Issue added to sprint after start time

Completed Issues
View in Issue navigator

Key Summary Issue
Type

Priority Status Story Points (76)

AUT-15 As a user I can view my projects, so I know which
projects I have

Story Blocker DONE 6

AUT-52 As a student, I want to sketch out a material and
methods section (list of used technologies/theoretical
concepts)

Story Critical DONE 4

AUT-55 As a developer, I want the server manager to execute
configuration scripts on given server

Story Critical DONE 5

AUT-56 As a developer, I want wireframes for the profile-
dashboard

Story Major DONE 7

AUT-58 As a user, I want to be able to create an empty "project"
that contains meta-data

Story Blocker DONE 4

AUT-59 As a developer, I want a weekly report for week 8 that
specifies what have been done

Story Major DONE 1

AUT-64 As a user, I want to be able to create and upload a
simple java project

Story Critical DONE 3

AUT-68 As a user, I want to be able to specify which java version
the project uses

Story Critical DONE 2

AUT-73 As a developer, I want the API to be managed by a
DevOps pipeline

Story Minor DONE 4

AUT-75 As a user, I want to be able to upload "modules" to a Story Critical DONE 9

Feb 21
Mar 6
Mar 6

0

20

40

60

80

100

specified project

AUT-78 * As a user, I want to get an overview of the project i
select

Story Blocker DONE 7

AUT-79 * Cant forward properties to a functional component
which is a child of a child

Bug Blocker DONE -

AUT-80 * As a developer, I want the pipeline to be more robust,
effective and less resource consuming

Story Major DONE 5

AUT-81 * As a user, I want to see a list of all my managed servers Story Major DONE 4

AUT-82 * As a user, I want to see server specific information when
i click on it

Story Major DONE 4

AUT-85 * As a developer, I want to store information about user
defined servers

Story Major DONE 7

AUT-86 * As a user, I want to be able to add a server to my
"account"

Story Major DONE 4

AUT-87 * Change port from 8080 to 8081 Bug Major DONE -

Issues Not Completed
View in Issue navigator

Key Summary Issue
Type

Priority Status Story Points (37)

AUT-54 As a developer, I can provision server with the
necessary tools and configurations

Story Critical BACKLOG 4

AUT-57 As a user, I want to be presented with a modern
informative homepage that is userfriendly

Story Major BACKLOG 9

AUT-60 As a developer, I want a weekly report for week 9 that
specifies what have been done

Story Major 1

AUT-61 As a student, I want to sketch out chapter 4: results in
the bachelor thesis

Story Major BACKLOG 4

AUT-65 As a developer, I want a docker-compose template for
a project with one api and one database

Story Major BACKLOG 3

AUT-66 As a developer, I want a docker-compose template for
database

Story Major BACKLOG 4

AUT-69 As a user, I want to be able to specify which mysql
version to use

Story Major BACKLOG 2

AUT-70 As a user, I want to be able to specify which postgresql
version to use

Story Major BACKLOG 2

AUT-71 As a developer, I want to be able to store which docker
images(s) and versions the application supports

Story Critical 4

AUT-72 As a user, I want to be able to see what tools and
versions that are available

Story Critical 4

Sprint Report
Main

Switch report

Main Sprint 4

Closed Sprint, started by Aron Nicholasson, ended by Aron Nicholasson 06/Mar/20 10:52 AM - 20/Mar/20 12:40 PM

View linked pages

Status Report
* Issue added to sprint after start time

Completed Issues
View in Issue navigator

Key Summary Issue
Type

Priority Status Story Points (98)

AUT-60 As a developer, I want a weekly report for week 9 that
specifies what have been done

Story Major DONE 1

AUT-61 As a student, I want to sketch out chapter 4: results in
the bachelor thesis

Story Major DONE 4

AUT-71 As a developer, I want to be able to store which docker
images(s) and versions the application supports

Story Critical DONE 4

AUT-72 As a user, I want to be able to see what tools and
versions that are available

Story Critical DONE 4

AUT-83 As a user, I want to be able to add project to server Story Major DONE 4

AUT-84 As a user, I want a deploy option so I can deploy a
project assigned to a server

Story Major DONE 6

AUT-89 As a user, I want feedback that describes if server is
successfully created and configured or not

Story Major DONE 3

AUT-90 As a user, I want to add a module to an existing project Story Major DONE 5

AUT-91 As a user, I want to be able to create a new project Story Major DONE 4

AUT-92 As a developer, I want a weekly report for week 10 that
specifies what have been done

Story Major DONE 1

AUT-93 As a developer, I want a weekly report for week 11 that
specifies what have been done

Story Major DONE 1

Mar 6
Mar 20
Mar 20

0

20

40

60

80

AUT-94 Create an API documentation and add JavaDoc to each
class and methods needed

Story Major DONE 4

AUT-96 Add documentation to each component and methods
needed

Story Major DONE 6

AUT-97 Create an API documentation and add JavaDoc to each
class and methods needed

Story Major DONE 5

AUT-98 Create an API documentation and add JavaDoc to each
class and methods needed

Story Major DONE 4

AUT-100 * As a developer, I want the API to receive more
information about projects and modules

Story Major DONE 6

AUT-102 * As a developer, I want to store dockerfile location
reference in database for quick finding

Story Major DONE 4

AUT-103 * As a developer, I want to store docker-compose blocks
location reference in database for quick finding

Story Major DONE 4

AUT-104 * As a developer, I want a isVerified field in user so i can
see if user is verified or not

Story Major DONE 5

AUT-105 * As a user, I want to be able to see system before
verifying myself

Story Major DONE 7

AUT-106 * As a developer, I want the database to automatically
be imported when testing locally and with Docker

Story Major DONE 5

AUT-107 * As a user, I want feedback on input when signing up Story Major DONE 6

AUT-108 * As a developer, I want the system to be managed by a
gitlab-ci pipeline

Story Major DONE 5

AUT-109 * The API tries to run select queries (from DBInit) before
the database has been created in the main class

Bug Major DONE -

Issues Not Completed
View in Issue navigator

Key Summary Issue
Type

Priority Status Story Points (10)

AUT-88 As a user, I want a newly "connected" server to
be provisioned on creation

Story Blocker IN PROGRESS 6

AUT-95 Create an API documentation Story Major IN PROGRESS 4

AUT-101 * Invalid Cookie Bug Trivial IN PROGRESS -

Issues Removed From Sprint
View in Issue navigator

Key Summary Issue
Type

Priority Status Story Points (4)

AUT-99 * As a developer, I want the File Delivery API to be run on
Windows and UNIX systems without needing system
specific implementations

Story Major DONE 4

Sprint Report
Main

Switch report

Main Sprint 5

Closed Sprint, started by Aron Nicholasson, ended by Aron Nicholasson 20/Mar/20 1:56 PM - 03/Apr/20 12:02 PM

View linked pages

Status Report
* Issue added to sprint after start time

Completed Issues
View in Issue navigator

Key Summary Issue
Type

Priority Status Story Points (154 → 165)

AUT-19 * As a user I can view settings section, so I can
know which settings are active for my profile

Story Critical DONE - → 7

AUT-54 As a developer, I can provision server with the
necessary tools and configurations

Story Critical DONE 8

AUT-88 As a user, I want a newly "connected" server to
be provisioned on creation

Story Blocker DONE 6

AUT-110 As an admin, I want to be able to upload
templates for dockerfile and docker-compose

Story Blocker DONE 5

AUT-111 As a developer, I want to be able to view
another users' profile

Story Major DONE 8

AUT-112 As a developer, I want an endpoint that can
generate a simple docker-compose file with
my variables

Story Blocker DONE 7

AUT-116 As a user, I want generated docker-compose
files to be stored for later downloads

Story Major DONE 4

AUT-117 As a user, I can search for public projects Story Major DONE 4

AUT-118 Logout functionality not working Bug Blocker DONE -

AUT-119 As a user, I can logout of the application Story Blocker DONE 5

AUT-120 As a developer, I want user project module to
be built into a docker image using a dockerfile

Story Blocker DONE 4

Mar 20
Apr 3
Apr 3

0

50

100

150

and upload it to docker hub

AUT-121 As a user, I can delete one of my owned
projects

Story Major DONE 5

AUT-127 As a user, I can view another users' projects on
his/hers profile

Story Major DONE 6

AUT-128 As a user, I can filter search result by users Story Major DONE 6

AUT-129 As a user, I can filter search results by project
name

Story Major DONE 6

AUT-130 As a user, I can filter search results by
pagination

Story Major DONE 7 → 5

AUT-132 * As a developer, I want to upload more than 1
file as a module

Story Major DONE - → 6

AUT-133 * As a developer, I want split up the controller
class for project and module into two

Story Minor DONE 2

AUT-134 * As a user, I want to view an organization page Story Major DONE 6

AUT-135 * As a user and admin, I want to be able to see
all members in an organization

Story Major DONE 4

AUT-136 * As a user, I want to see all the projects that are
associated with an organization

Story Major DONE 4

AUT-137 * As a user, I want to make a request of
becoming a member of a given organization

Story Major DONE 6

AUT-138 * As a organization member, I want to be able to
submit a project to the organization

Story Major DONE 6

AUT-139 * As a organization member, I want to be able to
see all of my submissions

Story Major DONE 5

AUT-140 * As a organization admin, I want to be able to
see all applicants

Story Major DONE 6

AUT-141 * As a organization admin, I want to be able to
see all project submissions

Story Major DONE 9

AUT-142 * As a developer, I want the API to support
functionality for organizations

Story Major DONE 10

AUT-143 * As a developer, I want the API to contain a
organization database

Story Major DONE 7

AUT-144 * As a developer, I want the application to
handle global organizational state

Story Major DONE 8

Issues Not Completed
View in Issue navigator

Key Summary Issue
Type

Priority Status Story Points (47 → 51)

AUT-57 As a user, I want to be presented with a
modern informative homepage that is
userfriendly

Story Major BACKLOG 10

AUT-95 Create an API documentation Story Major IN PROGRESS 4 → 8

AUT-101 Invalid Cookie Bug Trivial IN PROGRESS -

AUT-113 As a developer, I want docker-compose
variables from users to be saved in
mongoDB

Story Critical BACKLOG 7

AUT-131 As a developer, I want the server manager
to connect to remote server, fetch a
docker-compose file and run docker-
compose up

Story Blocker IN PROGRESS 8

AUT-145 * Create a Confluence document describing
how upload, building and download of
projects happens

Story Critical BACKLOG 6

AUT-146 * As a developer, I want to store references
of dockerfile and docker-compose in
database

Story Major BACKLOG 4

AUT-147 * As a developer, I want to use
autopacker.no email for DockerHub on all
APIs

Story Major BACKLOG 8

Sprint Report
Main

Switch report

Main Sprint 6

Closed Sprint, started by Bendik Nogva, ended by Aron Nicholasson 03/Apr/20 1:24 PM - 17/Apr/20 4:41 PM

View linked pages

Status Report
* Issue added to sprint after start time

Completed Issues
View in Issue navigator

Key Summary Issue
Type

Priority Status Story Points (103)

AUT-65 As a developer, I want a docker-compose template
for a project with one api and one database

Story Major DONE 5

AUT-66 As a developer, I want a docker-compose template
for database

Story Major DONE 4

AUT-69 As a user, I want to be able to specify which mysql
version to use

Story Major DONE 2

AUT-70 As a user, I want to be able to specify which
postgresql version to use

Story Major DONE 2

AUT-95 Create an API documentation Story Major DONE 8

AUT-113 As a developer, I want docker-compose variables
from users to be saved in mongoDB

Story Critical DONE 7

AUT-114 As a user, I can view a project settings section, so I
can modify my project

Story Major DONE 5

AUT-122 As a user, I can delete one of my servers Story Major DONE 5

AUT-131 As a developer, I want the server manager to connect
to remote server, fetch a docker-compose file and run
docker-compose up

Story Blocker DONE 8

AUT-146 As a developer, I want to store references of
dockerfile and docker-compose in database

Story Major DONE 4

AUT-147 As a developer, I want to use autopacker.no email for Story Major DONE 8

Apr 3
Apr 17
Apr 17

0

25

50

75

100

125

DockerHub on all APIs

AUT-148 As a user, I want to be able to specify database
related information when uploading a database
module

Story Major DONE 8

AUT-149 As a user, I want the option to use a multi module
upload

Story Major DONE 10

AUT-150 As a user, I want to be able to upload a finished
configured system

Story Major DONE 7

AUT-151 Issue when uploading modules to Windows type file-
systems (No write permissions)

Bug Blocker DONE -

AUT-152 As a user, I want to see the side menu changes when I
click on menu options

Story Major DONE 6

AUT-153 As a developer, I want the system to be on the azure
cloud instead of autopacker (more reliable)

Story Major DONE 8

AUT-154 As a developer, I want a google style configuration
XML file for intellij

Story Major DONE 6

AUT-155 * Authorization happens unintentionally on all
endpoints despite some endpoints not requiring it at
all

Bug Critical DONE -

Issues Not Completed
View in Issue navigator

Key Summary Issue
Type

Priority Status Story Points (6)

AUT-145 Create a Confluence document describing how
upload, building and download of projects
happens

Story Critical IN PROGRESS 6

BIBLIOGRAPHY 186

L Retrospective Meeting Notes

Sprint 3

Dato 06.mar.2020

Deltakere Aron Nicholasson Bendik Nogva Liban Nor

Tilbakeblikk

Hva fikk vi bra til?

Mye produksjon av koding
God kommunikasjon
Produsert mye GUI
Mye gjort klart for integrasjon
Automatisert flere repositories (CD)
Lært mye docker relatert

Hva burde vi ha gjort bedre?

Planlagt sprinten bedre
Sett for oss hvordan det faktisk ville fungere å laste opp en .jar
til å ha den kjørende som en docker container på en valgt
server
Ha et mer teknisk grunnlag før vi starter på sprinten
Dokumentert bedre (bachelor og in-code document)

Sprint 4
Dato 20.mar.2020

Deltakere Liban Nor Aron Nicholasson Bendik Nogva

Tilbakeblikk

Hva fikk vi til bra?

Vi fikk gjort unna mye selv om vi hadde eksamen i denne
sprinten
Har komt godt igang med koding og begynt på bachelor.
Flink med manuelle tester
Godt fungerende CI/CD system
Gode commit navn
God dokumentasjon

Hva burde vi ha gjort bedre?

Kommunikasjon (burde legge faste tidspunkt)
Brukt mer tid på å se hva som må til for å oppnå et minimum-
value product

Retrospective - Sprint 5

Dato 03.apr.2020

Deltakere Aron Nicholasson Liban Nor Bendik Nogva

Retrospectives

What did we do well?

Produced a lot of new functionality
Squashed many existing bugs
Improved existing functionality
Good documentation
We worked well due to the fact that we are in the middle of
a pandemic (Corona pandemic)
Established great goals for the future of the project

What could have been done better?

Estimated user points better
Tried and keep the planned course better (We were
supposed to complete upload of modules, but this hasn't
been done, but we added a lot of other functionalities
instead)
Remember to have stand-up meetings?

Retrospective - Sprint 6

Dato 17.apr.2020

Deltakere Aron Nicholasson Liban Nor Bendik Nogva

Tilbakeblikk

Hva fikk vi bra til?

Vi har så og si klart å lage vårt minimum-value-product.
Vi har fått til mye på kort tid.
Vi har klart å kommunisert og fikset det som er nødvendig å
fikse.
Alle har vært flink å møte opp i møter og felles samtaler
(gjelder egentlig alle sprinter).
Vi fikk integrert hele systemet sammen, testet den og funnet ut
hva som må fikses.
Vi var gode til å definere hvor mange story points vi kom til å
gjøre ferdig i sprinten.
Vi har fikset mye og lagt til mye på kort tid.
Overraskende stabil applikasjon. Det meste fungerer uten å
kræsje.

Hva burde vi ha gjort bedre?

Vi burde ha testet systemet mer før vi hadde møte med
produkteier (16.04.2020).
Hatt flere daily stand-up meetings gjennom internett (minst 1m
avstand).
Burde begynt å fokusert mer på selve bachelor rapporten.
Er dårlig me automatiske tester (tar mye tid å gjennomføre
manuelle tester).
Det ble litt lite stand-up meetings.

BIBLIOGRAPHY 191

M Meeting Notes

2020-01-10 Første møte

Dato

10.jan.2020 kl 08:30 - 09:30

Deltakere

Aron Nicholasson
Liban Nor
Bendik Nogva
Girts Strazdins (Veileder)

Mål

Se på den egendefinerte oppgaven og se på forbedringer, punkter for å realisere og generelt gå gjennom bachelor relaterte punkter

Notater

Beskrive den painfulle versjonen for at en bruker skal kunne gjøre det som vi har tenkt (idag må man)

Brukeren må selv skrive "docker run" i terminalen plassering av hvor docker image ligger

Fancy pancy versjon:

Bruker laster ned en slags desktop client som gjør det mulig å starte, stoppe, installere, lettere og mer oversiktlig (JAR)

Punkter tatt opp på møte

Ha en sentral server der alle docker containers kjøres. Dette kan være vanskeligere å gjøre pga. mindre kontroll og mye konfigurasjon som må til.
(Alternativ (port forwarding))
For hver instanse av et prosjekt en bruker ønsker å kjøre så vil det opprettes en AutoDeploy server ut ifra en template som kjører prosjektet
brukeren ønsker. (ressurskrevende alternativ)
Beste alternativet er at brukeren laster ned og kjører prosjekt lokalt på sin egen maskin. Dette kan gjøres på flere måter, men trenger god
dokumentasjon uansett
Kan bruke docker compose til å beskrive og konfigurere systemet. Når brukeren skal laste opp et program kan han enten inkludere en docker
compose fil eller så kan han gå igjennom en wizard som hjelper han å sette opp en docker compose fil
Ingen tilpasset søkefilter, men kan filtreres etter år og tags
Notere problemer som brukere kan ha når brukeren konfigurerer/deployer applikasjonen sin
Skrive en minimum value product beskrivelse sett fra brukerens perspektiv (Viktig)
Skrive en egen kravspesifikasjon for hver fase med user stories (Viktig å sende til Mentor og veiledere) (viktig å inkludere prioritet)
Alt unntant forprosjektrapport skal være på engelsk
Skisser primitiv UML diagrammer, eks: use case, deployment
Siden vi kjører microservice architecture har vi en database per tjeneste som trenger
EmailService: bruke dependancy? eller ikke.
Kjører alle test servere via autodeploy, product servere kjører vi kanskje gjennom en mer reliable tjeneste som for eksempel Azure
Det er lettere å kjøre docker containers på en server vi konfigurerer og administrerer for brukeren da dette gir kjappere resultat og mindre
anstrengelse fra brukeren sin side.
Dersom vi har en microservice tjeneste som direkte må jobbe med docker kan den kjøres som en docker container
En løsning er også å lage et java program (JAR) som kjører på brukerens lokale maskin og handler (og installerer) docker relaterte stuff som
fjerner brukerens behov for å styre med det.
Girts nevnte at webappen kan ha inkludert wizard slik at bruker definerer hvilke dependancies, ports, mapper.
Bachelor programvarer blir lagret sentralt, selve oppgavene får tags, slik det blir enklere å filtrere og finne bacheloroppgaver
Vi lagrer alle prosjekt som brukeren laster opp (tilgjengelig for alle)
Hvem er kunden? -vi ta utgangspunkt at vi er kundene.
Beskrive problem, hva vi skal automatisere.
sluttprodukt: det viktigste er at appen fungerer, ikke fokusere på fancy versjon.
Trenger bruker for opplastninger, private/public.

Sprints:

- sentralisert som produkt,

- iterasjon 0, hvor vanskelig er det å kjøre et produkt,

- hver sprint gir mer funksjonalitet

- første fase, droppe innlogging,

- vi har for mange features, men etter hver sprint skal vi implementere nye,

2020-01-16 Første møte med Avento

Date

16.jan.2020 kl: 08.30

Attendees

Aron Nicholasson
Liban Nor
Bendik Nogva
Girts Strazdins

Goals

Introduksjon til selve bachelor oppgaven (hva, hvem, hvorfor)
Oppsummering fra møte med Girts (10/01)
Feedback på tankegang
Er oppgaven realistisk? Er det et bruksområde her?

Eventuelle endringer som gjør det mer realistisk at dette er en god oppgave, at det finnes et bruksområde
Bli enig om et minimum-value product
Bli enig om et mer fullstendig produkt (syn)

Notater

(Skal endres)

Se på identity server istedenfor egen auth server pga sikkerhetshull
Bruk ikke så mye tid på det som ikke er nødvendig å ha med i produktet. Trengs det email service på starten?
Man kan ha et lokalt register på systemet og gjøre et lookup mot skolens database for dobbeltsjekking av student
Kan ha egen konfigurasjons-format for å definere hva slags elementer som skal være med i et prosjekt (yaml eller json)
En mulig løsning er å bruke BitBucket Validator, og scripts for bygging og deploy av program.
Predefinerte konfigurasjoner
Vår applikasjon vil fungere slik som en slags appstore/windows store.
Vi burde fokusere på å lage et produkt som er tilrettelagt for NTNU.
Et pluss om hele systemet fungerer seamless med NTNU, ved bruk av FEIDE
Dersom minimum kravet er å kunne laste opp/ned docker, kan man lage en desktop app som kontrollerer prosjektene
Om man kan laste ned docker og skriptet, kan man selv laste ned begge og kjøre dem på egen server dersom man allerede kan om servere
Mulig å kontakte de som laget autodeploy og be de lage en predefinert ubunto image med det vi trenger. For å unngå brukeren logger inn med
passord/brukernavn.
Vi kan dele opp systemet i forskjellige moduler (f.eks. ha en modul for å laste opp til AutoDeploy) slik at neste bachelor folk kan videreutvikle den
Transparency på prosjekt for trust (hvordan kan du stole på studenter?)
Brukere kan spesifisere sine server detaljer slik av vår applikasjon kan konfigurere for dem
Vi må tenke på sikkerhet av det som blir laster opp til webapp. og nedlastet iom. programvarer kan være malicious, derfor behøver vi en måte å
verifisere at programvaren er OK.

1.
2.
3.
4.

2020-02-20 "Oppsummering" fra møte med mentor og girts
(delt møte)

Dato

20.feb.2020 Kl 14.00

Deltakere

Aron Nicholasson
Liban Nor
Bendik Nogva
Girts Strazdins

Mål

Tenker å gå gjennom de undernevnte punktene:

Hva som er blitt gjort
Autentiserings server
Filsystem service
Server Manager

Hva kan gjøres annerledes
Cookie service for håndtering av token (backend)

Hvilke valg som er tatt
Spring boot for autentisering

Teknologi brukt (videre valg)
Docker (docker-compose)
Spring-boot
Dropper Ansible, går for Java

Hva vi tenker å fokusere på fremmover
Web applikasjon
Integrasjon mellom webapp og APIer
Server konfigurasjon
Docker compose "blocks" builder

Beskrive vårt konsept av docker-compose "module builder" (Forvente at prosjekt består av flere moduler)

Input for UI design av systemet

Diskusjon

Kan ha åpen Authorization token uten problem, så lenge alt går gjennom HTTPS og ikke har XSS exploits
Kan starte med å ha offentlige images på Docker istedenfor privat på starten (lettere og mindre tidsbruk)
Saniter alle verdier til backend, aldri stol på informasjon fra frontend
KISS - Chris Brown

2020-02-05 3. møte med Girts

Dato

05.feb.2020 kl. 09.00 - 10.30

Deltakere

Aron Nicholasson
Bendik Nogva
Liban Nor
Girts Strazdins

Oppsummering

Analyse delen av rapporten (hvorfor vi valgte den og den teknologien)
Prøve å strippe bort alle dem fancy non-prioritized features og få noe som funker
Story points på alt unntatt bugs (bugs har 0 poeng pga sprint rapport "hopp")
Legge inn liste av den analyse delen under material og metode
Se på word template av bachelor for å ta utgangspunkt i rekkefølge og dokumentstruktur

2020-03-19 BB Colab møte med veileder og mentor

Dato

19.mar.2020

Deltakere

Aron Nicholasson
Liban Nor
Bendik Nogva
Girts Strazdins

Mål for møte med begge parter

Ta opp det som er blitt gjort fra forrige møte (Se på ukentlig rapport)
Ta opp beslutningane og valgene som vi har tatt (MongoDB, mikroservice arkitektur, verifikasjons funksjonalitet osv.)
Ta imot feedback

Mål for internt møte med veileder

Gjennomgå situasjonen vi er ovenfor nå (starten av korona pandemien)
Gå gjennom om han eventuelt har tanker om det målet vi satt men ikke rakk (gått to sprinter, og var forventet 1)
Legge en plan for korsn me ska jobbe som gruppe (og veileder) fremmover
Planlegge neste sprint (Blir vell å jobbe med det som me jobber med no)

Diskusjon

2020-04-03 BB Colab meeting with supervisor and mentor

Date

03.apr.2020

Participants

Aron Nicholasson
Bendik Nogva
Liban Nor
Girts Strazdins

Goals

Establish a common project overview with supervisor and mentor for what has been done, what is missing and what goals/wishes we have for the
project
Gain feedback for the progress that has been done

Discussion

Talked about how we can perform a type of "logout" functionality and JWT handling methods in general
Talked about how the application has developed, what is missing, what is good. Does it give a good user experience
We went through a possibility of using cross platform "path" handling for file delivery API

BIBLIOGRAPHY 198

N Weekly Logs

Uke 2
Uke 2

Document Status COMPLETED

Vi har hatt vårt første måte med veileder (møtefererat her:)2020-01-10 Første møte
Vi har blitt enige om hvilke teknologier vi skal bruke for å utvikle applikasjonen vår
Vi har blitt enige om hvilke verktøy vi skal bruke for å dokumentere arbeidsprosessen våres
Vi har satt opp discord server (kommunikasjon), confluence space (dokumentering) og Jira (issue-tracking og loggføring). Vi har også laget
GitLab gruppe og lagt til alle involverte i prosjektet.
Vi har begynt såvidt på forprosjektrapporten, men begynner å få en anelse over hva som må gjøres
Vi har også (sammens med veileder) fått oversikt hvordan vi kan dele prosjektet opp i tre faser. Fra et minstekrav til et "fancy" produkt
Vi har også planlagt vårt første møte med mentor (Avento)

Uke 3
Uke 3

Document Status COMPLETED

Vi har i hovedsak jobbed med forprosjektsrapport og diverse dokumentasjon.
Vi har laget ferdig et use-case diagram for et fase 1 minimum value prouct.
Vi Har gjennomført vårt første møte med Avento, vår mentor (Møtereferat her:)2020-01-16 Første møte med Avento
Vi har gjennom møtet med Avento endret vårt syn for et minimum value product og har dermed gått vekk ifra 3 fase planleggingen vår til en mer
to delt fase.
Vi har blitt enig om hvordan vi kan modulere systemet og hvem som kan (initially) ha ansvar for hvilken del. Slik at vi kan jobbe mer uavhengig
når man ikke har mulighet for å møte opp på skolen.
Vi har laget et Postman team slik at gruppen kan gjøre samme REST API tester

Uke 4
Uke 4

Document Status COMPLETE

Vi har hatt vårt andre møte med Girts Strazdins. Her gikk vi gjennom det som ble tatt opp på møte med Avento og hvordan vi burde legge opp
arkitektur, bruke docker og autentiserings server.
Vi har også startet vår første sprint
Vi har laget v.1.0 Gantt diagram som viser hva vi skal jobbe med når i dette semesteret
Vi har laget ferdig en simpel in-memory autentiserings tjeneste som kan lett tas i bruk til utvikling og testing
Vi har begynt på selve hjemmesiden til applikasjonen
Vi har begynt å laget et basic brukergrensesnitt til desktop applikasjonen
Vi har implementer opp- og nedlasting av filer på filsystem APIen (FS API)
Vi har gjort slik at alle brukere som laster opp filer til FS API får en egen mappe der alt de laster opp ligger

Uke 5
Uke 5

Document Status COMPLETE

Vi har oppdatert use-case diagrammet for å møte den nye minimum-product requirement
Vi har migrert autentiserings serveren til å bruke h2 database og fikset registrerings funksjonalitet
Vi har så og si gjort de fleste tasks i sprinten
Vi har så og si fullført fil system service
Vi har lagt til en simpel database til filsystem APIen og implementert den
Vi har laget ferdig powerpoint til fremføringen som var på onsdag (29.01)
Vi har fullført forprosjektsrapporten
Vi har skrevet ferdig coding convention
Vi har skrevet ferdig contribution guide
Vi har funnet ut at noe har skjedd med confluence som har gjort slik at vi har mistet noen av dokumentene våres og må mest sannsynlig skrive
det på nytt

Uke 6
Uke 6

Document Status COMPLETE

Har fikset utsending av registrerings verifiserings token etter at registrering er fullført, denne token på trykkes på for å verifisere sin oppretta konto
Har fikset utsending av passord reset token dersom noen har glemt passordet sitt.
Har også fikset reset passord funksjonalitet etter man har trykt reset token
Har bygget en basic pipeline for authenticationserver inntil videre

(OBS! Alt nevnt ovenfor er bare API relatert, har ikke blitt lagt til i frontend enda)
Har laget en simpel innloggings side i web applikasjonen
Har laget et registrerings form på hjemmesiden i "banneren"
Filesystem APIen kan laste opp moduler
Filsystem databasen inneholder generell informasjon om prosjekt

Uke 7
Uke 7

Document Status COMPLETE

Har implementert autentisering i web applikasjonen ved hjelp av redux for state management
Har fikset CORS konfigurasjon for autentiserings APIen slik at den kan akksesseres og har exposet Authorization headeren inntil videre slik at
frontend kan plukke ut token og legge den i en cookie (Her skal det nok endres etterhvert)
Har oppdatert gitlab-ci til å være mer generisk og kan brukes til å lett aksessere prod server når den tiden kommer.
Har laget en docker-compose fil for å boote opp autentiseringsserver med database
Har lastet opp autentiserings server til staging server og fikset CI/CD
Brukere kan sette sine prosjekter til offentlig eller privat
Har laget en autoriserings mal for Spring Boot applikasjoner
Har lagt til auth malen i filsystem APIen og implementert autorisering på fleste endpoints
Har lagt til administrator rettigheter på alle sikre endpoints på filesystem APIen

Uke 8
Uke 8

Document Status COMPLETE

Tried to change the gitlab-ci file to use the dev user instead of root, but autodeploys' template have a "bug" or something that restricts ssh
authentication just for the root user without password. And since this is just a test server, we decided to keep it at root user.
Dockerize the filesystem API with docker compose
Almost finish materials and methods section on Bachelor document
Create a Linux bash script that configures remote servers be able to run projects with docker
Har laget en profile-dashboard custom route og ryddet litt i web applikasjonen
Har lagt til passord endring "on-demand" som krever at bruker er autentisert
Implementert metoder på desktop applikasjonen for å overføre og kjøre scripts på en remote maskin.

Uke 9
Uke 9

Document Status COMPLETED

Finished sketching out the material and methods section on the bachelor thesis
Server manager can now execute configuration scripts on a given server
A user can now view a project overview
A user can now get a list of all the projects he/she has
We have finished creating wireframes for the profile dashboard
A user can specify language and version when uploading a module
Created a more robust and resource friently automated pipeline for authentication server
Finished setting up "add module" implementation so its ready for integration
Added application profiles to authentication server
Fix issue on File Delivery API where you couldn't have universal file structure across operating systems
Add endpoint on File Delivery API where admins can delete and view all projects

Uke 10
Uke 10

Document Status COMPLETE

A user can see a list of all of her/his servers
A user can view a server overview when clicking on one of his/hers managed servers
A user can create an empty "project" that contains project meta-data
A user can add a server to his/hers account
A user can upload modules to a specific project (Only web-client has been implemented)
We have created a API for handling server related information and tasks
We have created a gitlab-ci pipeline for ServerManager API
We have created Dockerfiles for Java8 and Java11
We have implemented roles and authorities in the authentication server
We have fixed some database related issues and added new tables (roles and authority) as well as initial script in authentication server
Added custom axiosRequest that sends with credentials on every request
Implemented environment variables in web application
Added dockerfile and other necessary configuration for dockerizing the web application
Added listing of all projects and servers as well as searching functionality in the web application
Added gitlab-ci automatic pipeline to the web appication
Added search project and get user project support in file delivery api
Change how File Delivery API generates a path for modules
Add basic swagger documentation on File Delivery API

Uke 11
Uke 11

Document Status COMPLETE

Implemented a solution for adding projects to a specified server in the web application
Added the possibility to create a new project
Added Documentation to web application
Added JavaDoc and Open API 3 documentation to Authentication server
Added JavaDoc and Open API 3 documentation to Server Manager
Added JavaDoc and Open API 3 documentation to File Delivery API
Updated Server Manager to accept a string containing project Ids to add to the server. With this we can define n numbers of projects to add to the
specified server
Added "show all projects" in File Delivery API
Added "delete all projects" in File Delivery API
Updated entities in File Delivery API to meet the new requirements
We can now use only 1 config for all systems instead of different dirs for different OSs in the File Delivery API

Uke 12
Uke 12

Document Status COMPLETE

All projects are packaged into an image and uploaded to DockerHub
Users can upload a dockerfile template
Users can upload a docker-compose template
Users can generated a docker-compose file from a template
Generated docker-compose files can be stored and downloaded later
Added logout option in the web application
Added unverified support and alert reminder for verification
Added validation and feedback on register form
Finished project creation
Added verification page
Finished authenticated verification checking
Fixed resending of verification mail, and added visual feedback regarding verification
Added page for displaying search results (projects & users)
Added backend support for storing and retrieving supported languages and versions
Added gitlab-ci pipeline for General API
Added OpenAPI specification
Added isVerified field to the user in auth service. (This way a user can be authenticated while not verified, but can't use any features until user is
verified)
Added necessary support for verification related tasks in authentication server
Added logic to search for existing users in authentication server
Fixed security configuration to accept member, and admin, and not unverified users actions in server-manager
When a new server is created, the server runs a preperation script for docker on it

Uke 13
Uke 13

Document Status COMPLETE

Splitted up the single controller in file system API into two for accessibility
Added more documentation on file system API
Implemented uploading of directories or multiple files as module instead of one standalone file
Add a few docker-compse and dockerfiles as template for builder
Added page for displaying public profiles
Added project overview when looking at public projects
Added pagination to search results to navigate between results
Added a account settings page and implemented functionality for changing user password.
Added dynamic navigation bar, so it changes from when user is authenticated or not
Added organization panel for interacting with the organization.
Added project settings menu. Here the user can delete their project
Added option to submit a project submission to an organization
Added public organization profile page
Updated gitlab-ci pipeline for Server Manager
Updated password change logic in authentication server
Did some small chores in authentication server code
Added organizational database structure and relationship in general api service and their corresponding endpoints

Uke 14
Uke 14

Document Status COMPLETE

Added Authorization filter to General API for authorizing organizational requests
Added backend logic to handle member and project requests as well as giving an organization member the option to view, edit and delete their
own requests
Added upload of multiple files to module
Implemented logic to upload, build and fetch option for docker-compose files.
Created the first docker-compose blocks and dockerfile templates to use for building applications
Added database for storing dockerfile and docker-compose blocks referances.
Did some other chore type of work on the File Delivery API
Added dynamic fetching of organization data in web application
Created a global navigation bar that is used on all interfaces.
Added logic for managing own project requests, as well as editing them, deleting and creating more.
Added interface for managing application submissions and project requests
Added Redux State management for handling sidebar selection state.

Uke 15
Uke 15

Document Status COMPLETE

Web Application

Added option for an organization admin to edit some parts of a project submission
Added concept page for uploading a finished docker-compose.yml file for full system uploads
Added utility functions for fetching active browser windows width and height
Added concept interface and implementation for handling database module uploads
Added concept multi module upload support for "application" modules
Performed a massive cleanup of redundant logic, redundant imports and unnecessary files, functions and others.
Fixed server and project overview search interfaces in web application

File Delivery API

Added testing templates for docker-compose and dockerfile build
Fixed dockerhub repo connection issues and add use template database reference in DockerService
Fixed missing files after uploading files without directories as module
Added endpoints for searching and fetching public user projects
Added MongoDB to store configuration and build module information on module upload
Fixed internal error when processing empty cookies

Server Manager

Updated docker-compose files for building project

General API

Added option to comment on project request handling for admins
Added endpoint for searching all public organizations

Uke 16
Uke 16

Document Status COMPLETE

Web Application

Updated how single module upload works and changed the predefined axios request to send Header with token instead of Cookie
Fixed some visual anomalies
Added option to delete modules and deploy projects
Added server deletion option
Fixed an issue with logout

File Delivery API

Fix an issue where the API does not properly check when deleting projects/modules
Updated Authorization Filter
Replaced AuthenticationUser class with UsernamePasswordAuthenticationToken
Removed mongodb autoconfiguration to prevent startup exception
Implemented restriction for project names so that they can only containt alphanumeric values and dashes.
Fixed compose-block building for config param values that are not capitalized
Implemented restriction for module names so that they can only containt alphanumeric values and dashes.
Implemented logic for deleting module mongodb data for every module inside a project when the project is deleted.

Server Manager

Updated Authorization filter
Updated the linux server preperation script
Implemented logic for uploading a project to a server
Changed how docker containers are created on the server

Authentication Server

Updated authorization filter

General API

Updated Authorization filter
Replaced AuthenticationUser class with UsernamePasswordAuthenticationToken

Uke 17
Uke 17

Document Status COMPLETE

Web Application

Performed another massive cleanup, fixed bugs and made the user experience better

File Delivery API

Updated the docker-compose builder to have a unique container name for each compose-block

Server Manager

Added option for removing projects from a server, delete a deployed docker-compose.yml file and option to deploy multiple projects to same
server

Authentication Server

Performed some bug fixes and cleanup

General API

Performed some bug fixes and cleanup

Uke N (Siste logg og inneholder resterende frem til 10.05)
Uke N

Document Status COMPLETE

Web Application

Added option to upload a zip
Edited the gitlab-ci pipeline
Added more language and version options
Added button to initialize the selected server with the installation script

File Delivery API

Fixed validation not working when building templates with validation
Added dockerfiles and corresponding compose-blocks for react, angular, static sites, spring boot and java projects.
Added logic for unzipping a zip when uploaded as a module
Replaced IOUtils copy method when uploading module
Fixed template unique entry check alway sfailing
Did a cleanup of the service as a whole

Server Manager

Added own endpoint for initializing the server. So now the user has to explicitly tell the service to initialize the server instead of initializing on
server creation

BIBLIOGRAPHY 216

O Note from tester

"AutoPackager er en fin løsning på hvordan man kan simplifisere deployment og

pakking av prosjekter til server. Førsteinntrykket mitt når jeg kom inn på nettsiden

var at den såg veldig fin og ryddig ut. Etter jeg opprettet konto ble jeg tatt videre til

mine prosjekter. Jeg hadde litt problemer med det å finne frem til ting, men syntes det

gikk raskt å lære seg hvor du fant de ulike funksjonene. Der var en del bugs som gjorde

at noen ting ble litt merkelig, men antar at dette blir fikset etterhvert. For min egen

del så er dette noe jeg kan bruke på mine freelance prosjekt, men for at det skal gå

så må der legges til mer options og sikkerheten må bli mye bedre. Foreløpelig passer

nettsiden best til studierelaterte prosjekt, ikke kommersielle prosjekt."

A. N
icholasson, L. N

or, B. U
glem

AutoPacker

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f I
CT

 a
nd

 N
at

ur
al

 S
ci

en
ce

s

Ba
ch

el
or

’s
pr

oj
ec

t

Aron Mar Nicholasson
Liban Bashir Nor
Bendik Nogva Uglem

AutoPacker

Automated software packaging and deployment
solution

Bachelor’s project in Bachelor i ingeniørfag - Data

Supervisor: Girts Strazdins

May 2020

	Declaration
	Preface
	Acknowledgement
	Abstract
	Acronyms
	Introductions
	Background
	Problem Formulation
	Scope
	Objectives
	Structure of the Report

	Theoretical basis
	Agile Development
	Scrum

	Security
	Why encrypt?
	Why hash?
	Our needs
	Types of encryption and hashing
	JWT
	The chosen cryptography mechanisms
	Possible exploits
	Cross-Site Script
	SQL Injection
	Zip Slip Vulnerability

	Privacy
	General Data Protection Regulation (GDPR)
	Right To Privacy

	Communcation and RESTful
	What is RESTful
	Why RESTful over conventional method
	Usage of the HTTP methods

	Docker Concepts
	Containers
	Docker Images
	Docker Volume and Bind Mount
	Volume
	Bind Mount

	Docker Registry
	Docker Network
	Swarm
	Service
	Secret
	Stacks

	Spring Boot Patterns & Principles
	Beans
	Inversion of Control (IoC)
	IoC Container

	Server Administration
	Continuous Integration (CI)
	Continuous Deployment (CD)
	Blue Green Deployment

	Database Concepts
	Relational Databases
	Entities and domains
	Repositories

	Method
	Project Organization
	Scrum

	Work Organization
	Security Flaw
	Programming languages
	Java
	JavaScript

	Command languages
	Bash

	Package Manager
	Yarn

	Frameworks
	Spring Boot
	React
	React Hooks
	Redux
	React-router
	Ant Design

	Data
	JSON
	YAML
	MySQL
	MongoDB

	Project Management
	Management Tools
	Confluence
	Jira
	Teamwork
	Draw.io
	Visual Paradigm Online

	Development Tools
	Docker
	GitLab
	Postman
	Wireshark
	IntelliJ
	Visual Code
	Git
	Database Management Tools
	SSH Client

	Existing Solutions Comparisons
	Azure Comparison
	Heroku
	GidPod

	Documentation

	Result
	Architecture
	Deployment Diagram
	Use Case Diagram

	Database overview
	Authentication Server Database
	Server Manager Database
	General Database
	File Delivery Database

	Technology Stack survey
	Go-to programming-/scripting language for different projects
	Frontend
	Backend
	Database
	Server
	Extra thoughts/comment

	Gitlab CI/CD
	Backend Services
	File Delivery API
	Authorization
	File Explorer
	Docker-compose template builder
	General builder functionality
	Parameters
	Placeholders and their replacement

	Validation
	MongoDB
	Server Manager
	Server Initialization Script
	Connecting and transmitting data
	Project Deployment

	Authentication Server
	JWT vs 0Auth2
	Registration
	Authentication
	Authorization

	General API
	Web Application
	Routing
	Application State Management
	React Hooks
	Custom Alert
	Search Logic
	Graphical Interface
	Homepage
	Registration Success
	Projects
	New Project
	Project Overview
	Module Selection
	Single-Module
	Setup
	Upload
	Building
	Complete

	Multi-Module
	Summary
	Type
	Setup (database)
	File Upload (database)
	Summary (with modules)

	Own Setup
	Project Overview (populated)
	Project Settings
	Servers
	Server Creation
	Server Overview
	Organizations
	Organization Projects
	Organization Project Requests
	Decline Request
	Edit Request
	Accept Request

	Organization Members
	Organization Applicants
	Organization - Submit Project
	Organization Submissions
	Search Result
	User Profile
	User Project
	Organization Profile
	Organization Membership
	User Settings

	Docker architecture
	Docker compose (staging)
	Docker Swarm (production)

	Testing
	Usability Testing
	Mentor and Supervisor test
	Test Results

	Discussion
	Results VS Expectation
	Project Organization
	RESTful Services
	File Delivery API

	Security
	Web Application
	Design & Interface
	Code Quality & Structure

	Production
	Limitations
	Future Work

	Conclusions
	Bibliography
	Appendices
	Preliminary Report
	API Specifications
	Gantt diagram
	Web Application Source Code
	File Delivery API Source Code
	General API Source Code
	Server Manager Source Code
	Authentication Server Source Code
	Dynamic use of docker compose
	Wireframes
	Jira Sprint Reports
	Retrospective Meeting Notes
	Meeting Notes
	Weekly Logs
	Note from tester

