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Problem Description

Present a model of the European power market with emphasis on prices, generation
dispatch, consumption and transmission.
Focus areas:

e Study the power market today and in future scenarios

e Study the role of different technologies in the power market

Study the robustness of the system by including stochastic variables
o Consider different market power representations

e Collect data to the model and implement it.

Since the model and data set are large, we will consider decomposition techniques
and other ways to reduce the solution time.
The master’s thesis contracts are attached after the appendices.
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Abstract

We develop and present a stochastic power market model to study the short-
term spot market in Northern Europe. The model is formulated as a Mixed Lin-
ear Complementarity Problem using Conjectural Variations for the market power
representation. The power producers and the transmission system operator simul-
taneously solve a profit maximization problem to reach a Nash-Equilibrium.

The model results show dispatch, transmission and prices in 2010 and 2020 for
different stochastic wind forecasts. We see a clear distinction between technologies
used for base load and for balancing the market. Prices in Norway and Denmark
will increase towards 2020 and decrease in Germany and the Netherlands. We
study how our market power representation can be adjusted to be as realistic as
possible, the effect of wind uncertainty, how robust the power system is with respect
to volatile prices and the effect of the carbon price and bio power feed-in tariffs.
Because of the uncertain wind there is an increase in natural gas dispatch compared
to a deterministic case.

The model is also decomposed with Dantzig-Wolfe decomposition technique.
Unfortunately the decomposed model is not able to solve as big problems as the
non-decomposed model. However we show significant algorithmic improvements
and are able to reduce the number of iterations on a small problem from 183 to 17.
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Sammendrag

Vi utvikler og presenter en stokastisk modell av elektrisitetsmarkedet for & kunne
studere spot-markedet i Nord-Europa. Modellen er formulert som en likevektsmo-
dell med bruk av Conjectural Variations for & representere markedsmakt. Kraftpro-
dusentene og systemoperatgren lgser sine profittmaksimeringsproblemer samtidig
for & na en Nash-likevekt.

Resultatet fra modellen viser kraftproduksjon, kraftoverfgring og priser for 2010
og 2020 for forskjellige stokastiske vindvarsler. Vi ser en klar forskjell mellom pro-
duksjonsteknologier brukt som grunnlast og for & balansere markedet. Strgmprisene
vil trolig ga noe opp i Norge og Danmark mot 2020, mens de vil ga ned i Nederland
og Tyskland. Vi studerer hvordan vi kan justere den modellerte markedsmakten
slik at resultatene gjenspeiler virkeligheten i sa stor grad som mulig, hvilken effekt
usikkerheten i vindproduksjonen har og hvor robust kraftmarkedet er i forhold til
prisvolatilitet og til slutt effekten av endrede karbonpriser og av bioenergi. Usik-
kerheten i vindkraften fgrer til at det blir brukt mer gasskraft enn det ville gjort
med deterministisk vindkraft.

Vi dekomponerer modellen ved hjelp av Dantzig-Wolfe dekomponeringsmetode.
Dessverre klarer vi ikke fa algoritmen til & kjgre like store og storre datasett enn det
den udekomponerte modellen klarer. Men vi viser signifikante forbedringer i algo-
ritmen nar det gjelder antall iterasjoner og kjgretid. Vi reduserer antall iterasjoner
fra 183 til 17 for et gitt eksempel.
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Chapter 1

Introduction

In the last decade there has been a widespread deployment of renewable energy
sources in the European electricity market. This development has been promoted
by EU Directives on the promotion of electricity from renewable energy sources,
last through Directive 2009/28/EC, setting binding national targets to fulfill the
EU’s 720-20-207-goals of a 20 % renewables share in electricity production in 2020.
Wind power will play a major role in fulfilling the goal, with wind contributing 19
% and 21 % to the electricity production in Germany and Great Britain in 2020.
Germany is well underway in reaching the goal, with wind power responsible for
7.8 % of the electricity generation in 2011!. This poses challenges to the electricity
system due to the intermittent and uncertain nature of wind power, and there have
been several instances where consumers have been paid to consume electricity in
the northern parts of Germany (Bloomberg, 2010).

At the same time, the EU has worked on opening and integrating the internal
electricity markets, which previously had been characterized by isolated vertical
utilities owning both generation and distribution. The liberalization is still ongoing,
but the Commission is disappointed with the progress (Commission, 2011b). The
concentration among electricity generators is high, with an average HHI? of 4,177
in the EU (Commission, 2011a).

This master’s thesis is motivated by the mentioned growth of renewables and
the possibility of exertion of market power in the electricity market, and we will
therefore propose a power market model that can analyze the power market subject
to stochastic generation technologies and producers with market power.

1.1 Main Contributions

Our master’s thesis has three main contributions.

IStatistics from http://www.wind-energie.de/infocenter/statistiken
2The HHI Index is an indicator of the concentration in a market, a figure above 1,800 is
considered to be a concentrated market, see Section 2.4


http://www.wind-energie.de/infocenter/statistiken
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1.1.1 Presentation of a New Stochastic Power Market Model

We present a stochastic equilibrium electricity market model. As we will see, the
proposed model is unique in its combinations of modeling aspects. The model
consists of one or more power producers and a transmission system operator that
all maximize their individual profit. The producers can be active in one or more
nodes; the nodes are connected by a transmission network. Several different power
generation technologies can be included, and the output may be modeled as either
deterministic or stochastic. Other important aspects in the model are ramping
costs and restrictions, seasonal pump storage, and a market power representation
that can represent situations from perfect competition to Cournot competition.
The model can be formulated both as a Mixed Complementarity Problem (MCP)
and a Variational Inequality (VI) problem.

1.1.2 Application of the Model on the Northern European
Electricity Market

We apply the model on the Northern European power market today and in 2020.
The 2020 case corresponds to industry estimates and the National Renewable Ac-
tion Plans that outline the 20-20-20 goals for each EU country. The model is run
with stochastic wind, and we generate wind scenarios based on historical data from
Denmark. The model is applied on various cases to show the effect of market power,
stochastic wind, and the robustness of the power system to different wind forecasts.
Changes in the prices, dispatch, consumption and transmission are highlighted.

1.1.3 Solution Procedure with Dantzig-Wolfe Decomposition

We decompose the problem to try to reduce the solution time, since computation
times grow quickly when trying to solve the model with a large data set. The model
is decomposed with Dantzig-Wolfe decomposition because of the structure of the
problem. The problem is divided into a master problem and several subproblems
which are iteratively solved. The decomposition is done on the non-anticipativity
constraints, that binds the scenarios into a scenario tree. Thus each subproblem
solves one scenario. We show the implementation of this method and its applica-
bility on smaller problems. A great amount of effort has been spent to increase the
rate of convergence and speed of the algorithm.

1.2 Thesis Overview

The master’s thesis is a further development of the work presented in our project
report in our Specialization Project (TI@4500, fall 2011). The report focused
mainly on developing a deterministic power market model, but a stochastic model
was also presented as a proof of concept. The stochastic model used a scenario
tree formulation, while we in this thesis improve the formulation, present a non-
anticipativity formulation and a decomposition approach. In addition we use a
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scenario generation method to get a realistic wind forecasts, instead of entirely
fictional scenarios in the project.

The remainder of the master’s thesis is organized as follows. Chapter 2 contains
the necessary background information for this thesis. At first, in Section 2.1 there
is a short literature review of current modeling trends and how our model fits in
with the existing literature, before the characteristics of the electricity market is
explained in Section 2.2. Section 2.3 presents relevant theory of equilibrium model-
ing. Since these topics are the same, some parts are reused from the project report.
Section 2.4 discusses how market power can be modeled and Section 2.5 stochastic
programming. In Section 2.6 there is a brief overview on wind forecasting. At last
in the background chapter, in Section 2.7, we present theory on decomposition and
how it is applied on equilibrium problems.

In Chapter 3 the stochastic model is presented. The formulation is based on
the deterministic model from the project, but is now stochastic and uses non-
anticipativity constraints. Next the decomposed model is presented in Chapter
4. Chapter 5 presents the data set that is used to run the model and Chapter 6
provides some implementation details. Chapter 7 provides the results of our case
studies, and Chapter 8 presents the results of the decomposed model. A general
discussion about the model is done in Chapter 9, before the conclusion in Chapter
10.

An overview of all the different formulations of our model can be seen in Figure
1.1.

Stochastic Power
Market Model

v

Non-anticipativity
formulation

Scenario Tree
formulation

Dantzig-Wolfe
Decomposition

v

Without artificial With aritificial
variables variables

Figure 1.1: Overview of the presented models
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Chapter 2

Background Information

This chapter presents an overview of relevant literature and theories on modeling
electricity markets, with a special focus on equilibrium programming.

2.1 Current modeling trends

Ventosa et al. (2005) provides an overview of recent trends in electricity market
modeling. They note that the models can be divided into three types:

e Optimization for one firm
e Market equilibrium considering all firms
e Simulation models

Single firm optimization models are used when a high representation of detail is
necessary, such as the unit commitment problem, when a power plant should start
and stop. The firm maximizes the profit and the price is either exogenous or
dependent on the firm’s production as in Varian (1992). In Gross and Finlay (1996)
the exogenous price is deterministic and the simple comparison of each generator’s
marginal cost and the price determine the production. The model can also include
an uncertain price as in Rajaraman et al. (2002).

For long-term planning or market power analysis, equilibrium models have been
widely used, but also simulation models since they allow for a greater complexity.
Equilibrium problems includes both models based on Cournot competition (in-
cludes conjectural variations approach) and supply function equilibrium approach
(SFE) which are based on the concept of Nash-equilibrium. Hobbs (2001) is a
good example of the former, where two Cournot models of imperfect competition
among electricity producers are formulated as mixed linear complementarity prob-
lems. The SFE approach was introduced by Klemperer and Meyer (1989) and is
much harder to compute. It turns out that the mathematical structure of Cournot
models is a set of algebraic equations while the mathematical structure of SFE is
a set of differential equations (Ventosa et al., 2005).

5
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Equilibrium models are based on a formal definition of equilibrium, which is
mathematically expressed by equations. If the set of equations is too large and
complex, simulation models can be used instead. Simulation models additionally
enable the possibility of including almost any kind of strategic behavior, but this
requires that the assumptions in the simulation are theoretically justified. In Otero-
Novas et al. (2000) a simulation model is presented, where each firm maximizes its
profit subject to technical constraints on thermal and hydro generating units. There
is a dynamic procedure where each firm updates its strategy in an iterative process.
The next paragraphs show a few interesting modeling aspects.

One pan-European electricity model is the large scale general non-linear model
ELMOD developed by Leuthold et al. (2010). The model encompasses over 2,000
nodes and 3,000 power lines in Europe. The model maximizes social welfare, subject
to technical constraints. The model has a wide area of applications, among others,
Weigt et al. (2010) used ELMOD to study the alternative to building HVDC (High
Voltage DC) cables from the North Sea coast to the demand centers in the south
instead of traditional AC lines. They found the plan to be superior and suggested it
would be more politically feasible. There are some drawbacks to the model though,
all participants act perfectly competitive, and the uncertainty of wind and solar
energy is disregarded. This has become more important in recent years, due to the
EU renewables targets. A proof of concept for stochasticity of wind was done by
Huppmann and Kunz (2011), where they showed that stochasticity of wind could
impact the generation dispatch in the morning hours.

Vespucci et al. (2012) formulated a stochastic linear programming model to
investigate the integration of wind and pump storage® in Italy. The focus was on the
stochasticity of wind, and did not venture into grid related issues. They concluded
that a stochastic formulation yielded higher profits compared to naively assuming
the expected value, and that quantile regression described the wind uncertainty
best.

Schill and Kemfert (2009) introduced the model ElStorM, which formulates a
Cournot competition model with strategic pump storage. The model was applied
to different cases in Germany, and found that strategic operators would under-
utilize the storage facilities. The model did not take transmission, renewables or
uncertainty into account, as the purpose of the study was to identify the effects of
market power on pump storage utilization.

When reviewing the literature, we haven’t located any models that capture
both stochasticity of wind, pump storage, and different market power behavior of
the participants. This report will therefore formulate such a model to study the
consequences of changes in the power market. We will also apply a Dantzig-Wolfe
decomposition scheme based on Fuller and Chung (2005), where each subproblem
represents a scenario. This multi-stage DWD approach hasn’t been shown in the
literature on equilibrium models yet.

1Pump storage: Stores energy in the form of water. During time of low power prices, water
is pumped into reservoirs, and is later used for power generation when the price is higher. See
Section 3.2.5
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2.2 Electricity Markets Fundamentals

This section intends to describe some aspects of the electricity market in Northern
Europe. The section does not intend to give a complete picture, see Wangensteen
(2007) or Kirschen and Strbac (2004) for further details. These books are also the
main sources for this chapter when there are no references. The presented aspects
are followed up in the model formulation.

2.2.1 Characteristics of Electricity Markets

Electricity markets have some important characteristics that differ from other com-
modity markets. First of all, generation and consumption are instant and need to
be continuously in balance. It is necessary to transmit and sell the electricity im-
mediately after production. Secondly, electricity cannot normally be stored in an
economic manner. The only realistic exception is pump storage plants, where water
is pumped into reservoirs for later power generation to exploit price differences.

The transmission of electricity is also subject to the physical laws of Ohm and
Kirchoff. Ohm’s law causes losses in the grid, while Kirchoff’s laws govern the
flow and is the source of some counterintuitive results; such that an increase in
competition in one node can result in higher prices elsewhere and a lower total
consumer surplus (Berry et al., 1999b).

The consumption of electricity also varies through the day (day/night), week
(weekday /weekend) and season. Other important characteristics are that electricity
cannot be traced back to the producer that actually generated the unit, and it is a
homogeneous commodity that is essential to society. Every household and company
is connected and relies on a stable connection.

These characteristics, coupled with the fact that the short run demand elasticity
is very low and few users are subject to real time pricing, means that electricity
markets are vulnerable to market power exploitation.

2.2.2 Roles and Participants

There are many actors involved in producing, trading on different levels and con-
suming. Each actor can have one or more roles. The composition of roles differs a
bit between countries but is mainly:

e Producers. Produce power and sell it on the market.

¢ Grid Companies. Responsible for operation and maintenance of the electricity
network.

o Retailers. Sells electricity to end-users. They are often generating companies
or traders.

o End-users/ Final customer. Includes both industrial players and households.
Their consumption is affected by the price.

7
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e Regulator. Represents the political authorities, and ensures that laws and
regulations are followed. They also make sure that public interests are taken
into account.

o Power Exchange (PX). Also called the market operator. Receives bids for
sales and offers of generation and matches these to settle quantities and prices.
Controls the short-term physical spot market.

o Transmission System Operator (TSO). The TSO is responsible for the se-
curity of supply; hour-by-hour balance and for keeping sufficient capacity
margins in the generating system. They also make sure the frequency and
voltage is within an acceptable range.

o Balance responsible entities. Works out a balanced schedule each hour and
keeps the real-time balance close to that schedule. Penalties are imposed if
there are deviations from the schedule.

e Traders and brokers. Traders buy and sell on the electricity market. Includes
most generating companies. Both physical and financial trade.

> Producer >> Grid >> Retailer >> End-User >
Company

Figure 2.1: Key roles in a simplified electricity value chain

2.2.3 Market Design

Market design concerns the rules and practical arrangements regarding how the
different participants operate. It includes for instance grid access, power trade and
price settlement which are briefly explained in this section.

One possibility is to have a single buyer (SB). The buyer buys electricity from
the generators and sells to the end-users. This gives a monopoly position to the
single buyer and is therefore not preferred and not used in Northern Europe. In an
efficient market all players need full access to the market. The players need both
legal access and practical arrangements concerning metering and billing. This is
the basis for the Third Party Access (TPA) principle. There are two types of TPA:
r'TPA (regulated) assumes there is a regulatory authority and that grid access is
based on regulated prices. The nTPA (negotiated) assumes negotiated prices.

Electricity might be traded both on long-term and short-term contracts (Huis-
man et al., 2007). The long-term market consists of forward contracts for different
delivery periods (e.g. from a few weeks to a year). Short-term contracts are traded
on either the day-ahead or intra-day market. The day-ahead market is the elec-
tricity market for the following day. Electricity producers offer electricity on this
market based on their ability to produce electricity for a specific period on the
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following day with separate prices each specific period. Intra-day markets involve
trade of electricity delivered the same day, and often within 30 minutes.

The prices in the day-ahead market are settled in a price clearing process. There
are mainly two categories; periodic clearing and continuous auction. In a periodic
clearing, the clearing process is done in one operation. All the players bid and the
power exchange (PX) collects the information through one or a few set of bids.
The process is repeated with regular intervals, for instance once a day. The PX
decides the quantity and price based on the intersection between the supply and
demand curves. All players receive the same price, which should be equal to the
short-term marginal cost in a competitive market. Periodic clearing is used by for
e.g. Nord Pool, and other PXs in Europe. In a continuous auction the clearing
process is done continuously. Bids, both sales and purchases are displayed on a
market place. Buyers and sellers can pick the offers they like. The price for each
transaction is stated in the bid (pay-as-bid price).

There are many power exchanges in Europe that handle trade between different
actors; some are listed in Table 2.1.

Power Exchange Coverage

Nord Pool Spot  Norway, Sweden, Denmark, Finland, Estonia

EPEX Spot France, Germany, Austria, Switzerland
APX-ENDEX Netherlands, United Kingdom
Belpex Belgium

Table 2.1: Some important electricity spot markets (Rademaekers et al., 2008).

In recent years, there has been introduced a market coupling between some of
the markets in Europe. This means that a buy order on one exchange may be
fulfilled by a sell order on another exchange, subject to the capacity constraints
between them. The Nordic region is coupled with the Central Western European
region through the joint venture European Market Coupling Company (EMCC,
2011).

2.2.4 Takeaways

From this description, it is apparent that electricity supply and demand must be
continuously in balance. For short-term modeling, it is also important to have
hourly resolution to capture the variation in demand. Due to the liquid spot
markets and the recent market coupling, the whole market can be modeled as a
network with transmission constraints. The free market ensures that everyone is
subject to the same market price. Consideration must be made to what level of
physical detail is necessary on the transmission network, and what market form
that should be modeled. The most relevant actors for a model are the Transmission
System Operator that controls the flow on the power lines, the individual producers,
and the end customer.
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2.3 Equilibrium Modeling

This section explains the concept of equilibrium modeling and application on
Cournot competition. An equilibrium problem can be used to find out how differ-
ent actors behave strategically in a market. The basic idea is to simultaneously
solve different actors’ optimization problems within a system, and hopefully reach
an equilibrium point that is unique and globally optimal. The concept of a market
equilibrium is fundamental to economics, and Arrow and Debreu (1954) first proved
the existence of an equilibrium in a competitive economy. Later work by among
others Frank Jr. and Quandt (1963) and Szidarovszky and Yakowitz (1977) proved
the existence of an equilibrium for the Cournot problem (Cournot, 1838). The ex-
istence of an equilibrium is a prerequisite for equilibrium programming. Important
aspects to investigate are equilibrium problem classes, Cournot competition, KKT
conditions, optimality conditions, and variational inequalities.

2.3.1 Electricity Market Modeling

There are many ways of modeling the electricity market. It is quite common to
assume a perfect competitive market and maximize the social welfare, which is
the sum of the producers’ profit and the consumer surplus. Another option is to
assume the market operates with imperfect competition and that firms are able
to influence the electricity price. From microeconomics we know that the well
known Cournot and Stackelberg models can be used in an oligopoly with market
power. In the Stackelberg model one of the companies, the Stackelberg leader, sets
its output before all other firms, and all the other players maximize their profit
given the Stackelberg leader’s decision. The Stackelberg leader has a first mover
advantage (Pindyck and Rubinfeld, 2009)2. The Cournot model can be used if we
assume there is no Stackelberg leader and all players decide their production level
simultaneously. Both Cournot and Stackelberg competition can be formulated as
equilibrium problems.

2.3.2 Equilibrium Problem Classes

There are different classes of equilibrium problems that are divided into one level
or bilevel problems. Bilevel problems are described in Luo et al. (1996). In such
problems the decisions are decided on two levels. The bilevel problems are further
divided into mathematical programs with equilibrium constraints (MPEC) and
equilibrium programs with equilibrium constraints (EPEC). In an MPEC the con-
straints itself are the result of an equilibrium problem and the objective function is
a single firm’s optimization problem. The Stackelberg game can be formulated as
an MPEC, where one firm is dominant and the other firms makes decisions based
on the Stackelberg leader’s decision. An example of an EPEC is a multi-leader

2By announcing the capacity first creates a fait accompli. No matter what your competitors
do, your output will be large. Your competitors must take your output as given and set a low
level of output for itself, to not drive down the price so both they and the Stackelberg leader lose
money.

10
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follower game, where each leader is solving an MPEC. The objective function gives
the solution to another equilibrium problem. According to Midthun (2007), the
solution cannot be guaranteed to be unique.

One-level problems are described in Gabriel et al. (2012). They are also called
Mixed Complementarity Problems (MCP), and can be classified according to whether
or not they include equality constrains, and whether or not the constraints are
linear (see Table 2.2). MCPs can have both equality and nonlinear constraints,
while the Mixed Linear Complementarity Problems (MLCP) must have linear con-
straints. Nonlinear Complementarity Problems (NCP) have only inequality con-
straints, while in an Linear Complementarity Problem (LCP) the constraints must
be linear. One application of MCPs is in solving Cournot problems which is demon-
strated in the next sections.

Non-linear Linear

With equality constraints MCP MLCP
Only inequality constraints NCP LCP

Table 2.2: One-level equilibrium problems

2.3.3 Cournot Competition

Cournot competition is within the economic field of game theory. Game theory was
formally described in von Neumann and Morgenstern (1944), and has later been
developed and made applicable for different disciplines. Game theory is especially
useful in describing behavior in markets with many players, where they act strate-
gically. Each player makes decisions based on all the other players’ decisions. For
instance all players must decide how much they are going to produce in the next
time period. The Cournot model is described in Pindyck and Rubinfeld (2009).
There must be a fixed number of players, and they are not allowed to cooperate.
The firms have market power, which means that the production level affects the
price. All the players choose the quantities simultaneously of a homogeneous prod-
uct. In addition all the players are behaving economically rationally and try to
maximize their own profit.

The essence of the model is that the players treat the output level of their
competitors as fixed when calculating their own production level. The following
is a small example for two producers. Producer p € {1,2} has the profit function
mp in a duopoly. P(z) is the price, MC' the marginal cost that is equal for both
players, and INT and SLP that are the intercept and slope of the inverse demand
function.

mp = P(ar) X 2p — MC X 2, (2.1)

The inverse demand function is given by

P(zr) = INT — SLP x 21 (2.2)

11
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rr = pr (2.3)

To find player p’s best choice of production, we set the derivative equal to 0:

dr,  dP(xr)
R P —MC = 24
iz, ir, X zp + P(x7) C=0 (2.4)

We also have

dP _ dP(SL‘T) % d,’ET

— = —_— 2.5
dz, dxr dz, (25)

dP(SET)
———= =-SLP 2.6
oy (2.6)

In Cournot problems, ?T: =1 Vp and we have:
?:INT—SLPxxT—SLPxxp—MC’:O (2.7)
Lp

Solving for actor 1 by substituting zp we derive the best response function for
producer 1, depending on the output decision of producer 2.

_INT-MC
=N SLP 2

By substituting player 2’s best response function into player 1’s, we obtain a
equilibrium with the following prices and quantities:

(2.8)

INT — MC
ST 29
p— w (2.10)

By symmetry xo = x1. Notice that price will be higher than the marginal cost,
as we have imperfect competition. According to Pindyck and Rubinfeld (2009)
a Nash-Equilibrium is a state in which each firm is doing the best it can given
what its competitors are doing. With these outputs, none of the players have an
incentive to deviate from the decided quantity and a Nash-Cournot equilibrium
has been reached. In order for the solution to be unique, the demand and marginal
cost functions have to be twice differentiable and the functions need to be concave
(Szidarovszky and Yakowitz, 1977).

In this case it was a small problem and it was easy to solve the two optimization
problems simultaneously. Both players established a best response function to the
other player’s decision (Pindyck and Rubinfeld, 2009), resulting in a small set of
equations. Symmetry can be used on larger problems with more players if they
are identical with the same cost characteristics. In reality they are different and
there are other constraints, such as production and transfer limits, that make the

12
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problem too complex to solve directly. In practice a smarter method must be
used, such as the MCP formulation (Gabriel et al., 2012), that rely on the KKT
conditions of the different players.

2.3.4 Karush-Kuhn-Tucker Conditions

The Karush-Kuhn-Tucker (KKT) conditions can be derived using the Lagrangian
function (Lundgren et al., 2010), and uses the concept complementarity. Comple-
mentarity is described in the literature and Gabriel et al. (2012) gives an excellent
description in the context of equilibrium modeling. The general form of complemen-
tarity is to find a vector z that satisfies the complementarity condition f(z)?z = 0.
Then for each element i of the vector, either x; or f(xz;) must equal zero. This is
written mathematically with the perpendicular operator (L). = and f(x) are said
to be complementary when = L f(z).
The following optimization problem is defined.

Min,
st gi(z

fz
)=0,(A) Vo iel
h;()

)

0,

0,(u;) vV jed (211)
0

Y

The KKT conditions, written with the complementarity notation, are then:

— Z )\ngi(x)T + Z ,uthj (JJ)T =

p; — free

The partial derivative of the objective function is a non-negative linear combi-
nation of the constraint gradients, and defines dual feasibility together with A; > 0.
The equations g;(z) > and h;(x) = 0 define primal feasibility and states that in
order for a point to be a candidate for a local minimum solution, it must be fea-
sible. The perpendicular operator defines the complementarity and states which
constraints are active in the solution point. If the dual variable of an inequality
constraint is greater than zero, the constraint is active.

According to Lundgren et al. (2010), KKT conditions are necessary if some
regularity conditions, also called Constraint Qualification (CQ) conditions are sat-
isfied. We will not go into details about CQs but refer to Bazaraa et al. (2005)
where several CQs are discussed. In order for the KKT conditions to also be suffi-
cient for optimality, the problem must satisfy the KKT conditions and be convex.
The solution will then be both a local and a global optimum.

The KKT conditions to a problem are therefore sufficient for optimality for
a minimization problem if the objective function f(z) is convex and the feasible

13
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solution space is convex. It is proven that function f(z) is convex if and only if
its Hessian matrix is positive semi definite. In order to have a unique solution, the
problem must be strictly convex, which means that the Hessian must be positive
definite (Lundgren et al., 2010).

2.3.5 Solving a Nash-Cournot Equilibrium Problem as an
MCP

A Cournot problem cannot be solved isolated for each player, since the problem
for one player depends on all the other players. This means that all the problems
must be solved simultaneously. Since the KKT conditions for all the players must
be satisfied in an equilibrium solution, the problem can be solved by aggregating
the KKT conditions and linking them with a market-clearing condition, yielding an
MCP. In other words a Cournot problem can be formulated and solved as an MCP,
by deriving the KKT conditions of all the different actors’ optimization problems
(Gabriel et al., 2012). This approach is used by e.g. Hobbs (2001), Gabriel et al.
(2005) and Egging et al. (2010). An advantage of the MCP formulation is that
you can easily manipulate both the primal (physical) and the dual (price) variables
(Gabriel et al., 2012).

Optimization program of Optimization program of
producer 1 producer P

Minimize: TT"(x") Minimize: TTP(xP)

s.t.
g(x') =0
h(x") =0

Market clearing

Figure 2.2: Model structure of an equilibrium problem

Summarized, the steps in solving a Nash-Cournot Equilibrium Problem are:

1. State each player’s optimization problem
2. Check that the KKT conditions are necessary and sufficient
3. Find the KKT-conditions for each player

4. Merge the KKT-conditions to a large complementarity system

14
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5. Add the market-clearing condition and other relevant constraints

6. Solve the aggregated system in one operation

2.3.6 Variational Inequalities

Variational inequalities (VI) is a mathematical framework for studying both opti-
mization and equilibrium problems. Facchinei and Pang (2003) provides a compre-
hensive coverage of Variational Inequality theory and applications. If not otherwise
noted, the theory presented in this section is from that book.

The Variational Inequality problem VI(F, K) is to find a vector z* in an Eu-
clidean subspace K with a mapping F' : K — R” such that

F(z*) - (x—2)" >0, VrekK (2.13)

This can be interpreted geometrically that F'(z*) needs to form an acute angle
with any vector originating from the solution point x* to any point in the feasible
area K, see Figure 2.3%. Formally we say that —F(z*) must belong to the normal
cone to K at z*.

/
/
/

/
,” Normal cone
4

—F(x)

Figure 2.3: Graphical interpretation of a VI

The connection with complementarity problems arises when the feasible set K
is a cone. The problem CP(F, K) is to find a vector x € R™ that satisfies

K>zl F(x)e K*

where K* is the dual cone to K, which means that any vector in K* forms a
non-obtuse angle with any vector in K.

3As a reminder the dot product of two vectors is ||z|| x ||y|| x cos@
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A vector x solves the VI(F,K) if and only if x solves CP(F, K). This can
be seen by inserting x = 0 and x = 2z* into the definition of the VI (equation
2.13), which together produce the result that x*F(z*) = 0, the complementarity
condition. By definition, a vector x that solves VI(F, K) fulfills x € K. It is then
only necessary to show that F(z*) € K* is satisfied. Since z*F(z*) = 0 we know
that 2 F (z*) > 0. This means that the vector F'(z*) forms a non-obtuse angle with
x, and since z is in K, we have the definition of the dual cone and F(z*) € K* is
fulfilled. The converse can also be trivially seen.

There are more of these special relationships, and of particular interest is the
fact that an Affine VI (AVI(F, K)) is equivalent to an MLCP. A VI is called affine
if F' is affine and K is a polyhedral set. Any solution to an AVI, with an augmented
mapping F, must also be a solution to the MLCP. In fact, the equivalent MLCP
is known as the KKT system of the VI.

Let K = {x € R": g(z) > 0, h(z) = 0}. AVI(F, K) only has a solution if there
exists vectors A and p such that

0= F(x) — \Vg(z)T + uVh(z)T

0<ALlg(x)>0
h(z)=0
u — free
The corresponding augmented mapping F would be
. F(z) = AVg(2)T + pVh(z)"

F(z, A p) = 9(x)
h(x)

It is trivial to see that if we let F'(x) be the derivative of the objective function,
we have the familiar KKT system as presented in Section 2.3.4.

For a multiple player Nash-Equilibrium problem, the individual KKT-systems
can be aggregated together with a market clearing condition in the constraint set,
to form an aggregate VI.
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2.4 Market Power Representation

Market power is the ability of either seller or buyer to affect the price of a good
(Pindyck and Rubinfeld, 2009). In a Cournot model, as shown in Section 2.3.3,
firms use their market power to reduce output and raise prices to maximize their
own profit. In a real market a firm can have less market power than a Cournot
player, but still more market power than a price taker. Two common measures to
assess the competition in a market are the Herfindahl-Hirschman Index (HHI) and
the Lerner index (Wang et al., 2004).

The HHI is an indicator of the concentration in a market (Hirschman, 1964).
The index is the sum of the squared market shares of each firm, and a figure above
1,800 is considered to be a concentrated market. As an example, the concentra-
tion among electricity producers in the EU is high, with an average HHI of 4,177
(Commission, 2011a). The indicator is commonly used by competition authorities
when assessing mergers (Wang et al., 2004).

The Lerner index (Lerner, 1934) which measures the price-cost margins is an-
other index used to evaluate market power. While the HHI focus on the market,
the Lerner index focus on each firm’s market power. The index describes the re-
lationship between price elasticity and a profit maximizing firm’s price margin. It
can never be greater than one, which is the monopoly.

P Ey

P is the price, MC is the firms’ marginal cost and E,; is the demand elasticity.
As an example, Wolak (2003) used the index to analyze the liberalization of the
Californian power market, which experienced significantly higher prices and outages
in 2000 and 2001.

L:P—MC: 1

2.4.1 Market Power Modeling

Market power has been modeled in different ways. Both equilibrium, linear and
quadratic problems can capture aspects of market power. Including a mark-up
is probably the simplest way to implement market power (Smeers, 2008). The
mark-up is defined as the difference between the cost of a good and its market
price. The easiest form of mark-up usage is to start with a perfect competition
model and add a value to the pure competition price. Smeers (2008) argues that
an exogenous mark-up is equally arbitrary as for instance conjectural variation
explained in Section 2.4.2. Mark-ups are easy to implement in models, to interpret
and to compare with observations. Steen and Salvanes (1999) is one example of
mark-up usage. A parameter A is used to adjust the market power, and the model
is illustrated with an analysis of the salmon market. Mark-ups have been used
for linear and quadratic programs, because they sufficiently capture market power
aspects and are less complex than equilibrium problemsin many cases. Equilibrium
problems have the advantage that they can model market power as it is described
in microeconomics, such as Cournot competition. They also enable a practical way
to model different market power configurations between perfect competition and
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Cournot competition (Chyong and Hobbs, 2011). We therefore only discuss market
power in equilibrium problems in the rest of this section.

According to de Haro et al. (2007), commonly used approaches to include market
power in equlibrium models are:

e Supply function equilibrium (SFE, e.g. Anderson and Xu (2005))
o Cournot-based or Stackelberg-based equilibrium (e.g. Hobbs (2001))

o Conjectural variations-based equilibrium® (CVE)

Willems et al. (2009) compares Cournot and SFE, and suggests that Cournot,
and therefore also CVE models are better fit for short-term analysis, since it is
easier to include network and generation constraints. Cournot models are on the
other hand highly sensitive to the demand elasticity, but using a contract factor for
the amount of electricity sold in the forward market can make the outcome more
realistic. SFE does not have this problem, but are confined to small problems (a
few nodes), as it is difficult to calculate an equilibrium, and there may not even
exist one (Berry et al., 1999a). SFE needs each firm’s optimal supply function
for a good to be matched to the aggregated supply and demand functions. It is
computationally complex, and therefore not efficient in most cases and will not be
further discussed. The CVE based equilibrium includes the Cournot model and is
discussed in the next section.

2.4.2 Conjectural Variations Approach

The term conjectural variations refers to the assumption a firm makes about the re-
action of other firms to its own decision (Figuiéres et al., 2004). Cournot, Bertrand
and Stackelberg models can be interpreted as conjectural variations models (Carl-
ton and Perloff, 2005). In the Cournot model, a firm assumes that the other firms
will not be affected by its own output decision.

In Egging et al. (2010) a mixed conjectural variation approach is applied. A
similar concept is also presented in Carlton and Perloff (2005). A market power

d !
factor M P, = 43, salesy

dsalesy
sales, is introduced to be able to adjust the market power. This method is deduced

in the illustrative example in Section 2.4.3. Note that values between one and zero
are a heuristic way of dealing with market power, where the extent of market power
lies between perfect competition and Cournot competition (Egging et al., 2010).
Firms can also have different levels of market power, called hybrid markets (Egging
et al., 2010). Often some producers are dominant, while a competitive fringe acts
as price takers.

Garcia-Alcalde (2002) proposes another conjectural variations approach, which
is further developed by de Haro et al. (2007). A firm must consider the competitors

, the change in total sales when producer p changes his

4Conjectural Variations Approach is also known as Cournot conjecture approach, conjectural
supply function approach, conjectural demand elasticity approach and price response approach.
For more details on the differences please see Diaz et al. (2010) that conclude that the methods
are equivalent
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reactions when deciding the production, given by the competitors’ individual supply
and residual demand curves for a good. Each firm’s marginal revenue depends on
the firm’s demand elasticity®, and changing the elasticity results in different levels
of market power. A method to estimate the elasticity based on the marginal cost is
proposed. de Haro et al. (2007) provides an even more advanced method, advanced
implicit estimation, where the firms’ elasticities are found iteratively by comparing
the model to real data. The method seems to give good results applied on real
data.

Both methods increase the difference between producer p’s marginal revenue
(MR,) and the price, as seen in equation (2.14) and (2.15). P is the price, E,
(negative) is the demand elasticity and sales, is the producer’s sales. In the equi-
librium, the marginal revenue equals the marginal cost, and the price is therefore
higher than the marginal cost.

Marginal revenue with demand elasticity

1
MR,=P(1+2)<P (2.14)
p

Marginal revenue with a market power factor

dP

MR, =P+ ————
P +d2p5alesp

x M P, x sales, < P (2.15)

To cover all aspects of market power is a difficult task. Thus all methods trying
to represent market power has weaknesses. Pure Cournot equilibrium models are
criticized to barely provide credible prices (Garcia-Alcalde, 2002), being too high
compared to the real market. In hybrid markets there are also examples where
Cournot players are better off as price takers (Ulph and Folie, 1980). Cournot
players assume the competitive fringe keeps their production unchanged and try
to limit the production to increase the price. Ulph and Folie (1980) show that a
problem arises when the fringe isn’t meeting the Cournot players conjecture and
start to produce more.

Smeers (2008) claims that conjectural variations has no foundation in eco-
nomics, that it is just a computational trick to calibrate the model. From an
economic perspective, the conjecture, such as the MP factor, should represent a
firm’s belief regarding how its competitors will react if it changes its output. Lindh
(1992) notes that this is not really the case in practice, but that the conjectural
variation can be interpreted as a measure of the deviation against Cournot, or
expectation of dynamic effects that are not modeled. The choice of market power
representation is therefore a trade-off between a model with complete economical
foundation and a model with credible results by using conjectural variations to
calibrate the model. For more details about conjectural variations see Figuieres
et al. (2004)

SMRP =P(1+ E%g), Ep = ﬁ, MRy is the marginal revenue, p is producer, P is price,

E, is the producer’s demand elasticity (user-supplied parameter) and MC is the marginal cost of
the most expensive generation technology producing.
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2.4.3 Illustrative Example of Conjectural Variations Approach

To illustrate how market power is implemented in the model we look at the two
cases, first a price taker and then a player exploiting his market power. We use the
example in Section 2.3.3 as a starting point. P(xr) is price, M C' is marginal cost,
x,, is sales for producer p, and INT and SLP define the interception and slope of
the inverse demand curve. In contrast to the Cournot competition example there
are other players in this market. Equation 2.4 and 2.5 are combined to form the
profit maximization equation:

dr, dP  dor
Wy _ 287 dar P(ar) — MC = 2.1
dv, oy dm, X xp + P(ar) C=0 (2.16)

If producer one is a price taker he can’t influence the price, dl;(iT) = 0, which
means that the price equals marginal cost.

P =INT — SLP x z7 = MC (2.17)

If producer one exerts market power, %ﬁ?) # 0. We introduce the M P, factor
for each producer p, and defines it as the partial derivative of the total sales with
respect to the producer’s own sales (Egging et al., 2010). The M P, factor describes
how much the total sales increase if the player’s sales is increasing. For a Cournot
player M P, = 1, because a Cournot player assumes the production of the other
players are fixed when deciding the production.

(2.18)

This gives us

dP dP  dxrp
—=—X—"=—-SLP X MP; 2.1
dl?l me * dl‘l S % ! ( 9)

d
d—zl = —SLP x MP; x 2, + Plar) — MC =0 (2.20)
1

% = —SLP x MP, x #1 + (INT — SLP x z7) — MC =0 (2.21)
X1

Player one’s best response function

B INT — MC _ T — X1
 SLPx (MP;+1) MP;+1

1 (2.22)

Producer one uses this equation to find his optimal price and production output.
If player p is a Cournot player then M P, = 1, and if the player is a price taker
then M P, = 0. The producers best response function in the Cournot example
(equation 2.8) can easily be obtained from equation 2.22 by setting M P, = 1. If
M P, is between 0 and 1, then the player has some degree of market power. Table
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2.3 outlines the different choices for the market power parameter. In special cases,
the market power factor can also be greater than 1 (Carlton and Perloff, 2005).
If two firms are colluding, the firm expects that the total output will change with
more than one unit when he changes his production. If there are only two firms
selling in the market, and M P, = 2 they will produce the cartel output.

MP factor Economical interpretation Comment

MP=0 Perfect competition Could model with one agent

0< MP <1 No direct interpretation Enables calibration of the model
MP=1 Cournot competition Often barely credible prices

Table 2.3: Interpretation of various MP factors

21



Chapter 2. Background Information

2.5 Stochastic Programming

Stochastic programming is about making decisions under uncertainty (Birge and
Louveaux, 1997), and was first introduced in Dantzig (1955). For a detailed pre-
sentation of stochastic programming we refer to Ruszczynski and Shapiro (2003)
and Kall and Mayer (2010).

The aim of stochastic programming is to find optimal decisions given uncertain
information. Stochastic means that some parameters are uncertain and program-
ming refers to the fact that various parts of the problem can be modeled as linear or
nonlinear programs. Typically you face uncertain parameters, such as wind power
production or demand, that can be reasonably described by stochastic processes
in discrete time. When time passes, information about the uncertain parameters
are revealed. Decisions are always made based on the information available at the
time and on probabilistic information about the future (Eichhorn et al., 2010).
The most basic form is the two-stage recourse problem, where you first take an
initial decision that is best considering the probabilities of the future outcomes,
before you are able to take a recourse decision when the information is revealed
in the second time period. The general form is the multi-stage recourse problem,
where the information is revealed in several stages. Higle (2005) provides a good
introduction that is used as the basis for the next sections.

2.5.1 Scenario Trees

The two- and multi-stage problems can be described by a scenario tree, or event
tree. The tree is a discrete description of the stochastic world, which often is an
approximation of the real world, since it is not possible to represent the infinite
possibilities of nature. An example of a tree is illustrated in Figure 2.4.

The structure in a scenario tree is based on stages, where new information is
revealed in each stage. A stage may be comprised of one or more time periods, so
that the uncertain parameters can be revealed for several time periods at once. In
Figure 2.4 the scenario tree branches in each second time period, and each stage is
therefore two time periods. An example would be that you learn how much wind
power that will be produced in the next two hours, and the decision would be
to decide on the hydro production to meet the demand. In each branching point
the probability for each branch is defined. Only in the beginning of each stage a
decision is made about the production output (Wallace, 2002). If there are many
time periods in each stage, the decisions for all the time periods in the stage are
decided simultaneously.

The nodes in the scenario tree are also called event nodes, and technically there
would be one event node per stage as there is only one information event per stage.
But, it is easier to grasp the underlying time structure when each node represents
a time period, since the length of a stage can vary. All the nodes, except the
leaf nodes, are connected to one or more child nodes and one parent node, and
each path through the scenario tree defines one scenario. These concepts can be
used to describe the scenario tree, either directly or through the non-anticipativity
formulation. As we’ll see later in Section 2.7, the non-anticipativity formulation
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Stage 1 Stage 2 Stage 3

o) o)
@——»O Scenario 1
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‘@—»O Scenario 2

\ @—»O Scenario 3
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o o)
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of 1 f—2—1{3}—4]

Time period

Figure 2.4: Scenario tree with three stages, decisions are made in nodes marked D.

enables a special problem structure which can be decomposed by scenarios.

2.5.2 Scenario Tree Formulation

The scenario tree formulation explicitly represents the information process as de-
scribed above. The model can be formulated using the parent-child connections
between the nodes, which separate the model into the time structure, and the prob-
ability of each node in the stage. Each parent node can have one or more child
nodes and the probabilities can differ between the nodes. This can be exploited to
make any scenario tree structure.

2.5.3 Non-Anticipativity Formulation

The alternative formulation method, the non-anticipativity formulation includes
one formulated problem for all possible scenarios. The tree is flattened so that
each scenario has its own separate variables in each stage. Nodes that have the
same parent in the scenario tree are called sibling nodes. Non-anticipativity con-
straints are then added to the problem to ensure that the structure and information
processes are correct. The non-anticipativity constraints ensure that the decisions
in all sibling nodes are equal.

For each scenario s € S, let C represent the objective function coefficients for
each scenario, and let X, denote the feasible set for each s. The probability for
each scenario is PROB;. B, is the set of sibling nodes that correspond to the node

23



Chapter 2. Background Information

Stage 3
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Figure 2.5: Non-anticipativity formulation. All paths through the scenario tree are
explicit. The ellipsoids represent the non-anticipativity constraints.

in the scenario tree. zprrsr, is defined as the first scenario in the scenario tree
node. A multi-stage problem could be formulated as:

Min ZPROBS x Cy X T4
st zseX, VselS

TFIRST, —Tn =0 Vs€ B, neN

The last constraint is the non-anticipativity constraint. This constraint can also
be modeled in other equivalent ways, such as comparing x; to x3, 3 to x3 etc. In
a multi-stage problem, there will be one set of non-anticipativity constraints per
sibling group (By,).

2.5.4 Scenario Reduction

To be able to solve a stochastic model in a reasonable time, it is often necessary to
reduce the number of scenarios. Several methods exist to reduce an initial scenario
tree to a smaller, while preserving the underlying probability structure. Dupacova
et al. (2000) gives an overview and Eichhorn et al. (2010) is one implementation
that is the basis for SCENRED2 in GAMS. The method in Eichhorn et al. (2010)
uses the probability metric based approximations principle. The idea is to remove
scenarios that are close or have very small probabilities. The method can also
construct a scenario tree based on a finite number of individual scenarios that can
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be based on historical data, and the output is a usable scenario tree, see Gabriel
et al. (2009) as an example.
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2.6 Wind Forecasting

The topic of wind forecasting has become more important in recent years due
to the increased wind generation capacity. Naturally wind forecasting methods
have become an important field of study, with Giebel et al. (2011) providing a
comprehensive overview of the current developments in short term wind prediction.
This chapter will provide a brief overview of the principles behind wind forecasting,
and how the forecast errors can be used to develop scenario trees for the forecast.

2.6.1 Methods

The simplest forecasting method is the persistence method, where you assume
that the wind speed will stay at the current level. This method is typically very
accurate for forecast horizons® up to six hours. After approximately 15 hours the
climatological mean for the relevant region starts to be a better predictor (Lange
and Focken, 2006). Nielsen et al. (1998) combined these two forecast methods into
a new reference which other forecast methods are compared to.

Numerical Weather Prediction (NWP) is a method to forecast the wind speed
that uses the physical laws of nature. This is done by extrapolating from a known
state of the atmosphere, and calculating an average value of the wind speed inside
a grid. A global model with a spatial resolution down to 25 km? is first used to find
the global atmospheric developments, before a local model with spatial resolution
down to 2.5 km? refines the predictions. NWP models are typically run on large
clusters owned by national weather services due to the size and complexity of the
models (Lange and Focken, 2006).

To forecast the wind power, most models take forecasts from NWP models as
input. Most research goes into short term models (6 - 72 hours), as this is relevant
for most day-ahead electricity markets. There are two types of approaches, physical
or statistical models. Physical models try to find the local wind profile for the wind
farm by first finding the wind speed at the hub height, and then taking into account
the terrain characteristics at the site and other local properties. The local wind
field is then converted to power output using the manufacturers’ turbine curve
or statistical data describing the relationship between measured wind speed and
power output at the site (Monteiro et al., 2009).

Statistical models typically combine input from NWP models with real time
measurements at the site, and transform the input directly into a wind power
forecast. The statistical model can take many forms, from black box models such
as neural networks to analytical models based on kernel regression. Generally the
models have an autoregressive part to capture the persistence of the wind, while a
meteorological part takes into account the NWP forecast (Monteiro et al., 2009).

The physical approach produces good results up to 72 hours, but is outper-
formed by persistence at short horizons. Statistical models are better at short time
scales, and both methods can be successfully combined for an even better forecast
(Monteiro et al., 2009).

S A forecast horizon is defined as how far in advance you predict the value. E.g. if you predict
the wind speed at 18:00 at noon, the forecast horizon is 6 hours
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2.6.2 Characteristics of the Wind Uncertainty

The errors in a wind speed forecast are normally distributed, but this does not
apply to the errors in the wind power forecast. This is due to the non-linear
relationship between the wind speed and the power output, known as the wind
turbine power curve. The theoretical wind power output is proportional to the
cube of the wind speed, but in practice you also have the cut-in and cut-out speeds
where the turbine goes in and out of production. Figure 2.6 is an illustration of
how the power output varies with the wind speed for a turbine (Lange and Focken,
2006).

Rated output Cut-out speed

Power Qutput (MW)

Y

Cut-i d
ut-in spee Wind speed (m/s)

Figure 2.6: Illustration of a wind turbine power curve

In general the forecast error is smaller when the forecasted wind speed is either
very low or very high (Lange and Focken, 2006). Statistical analysis done by
Bludszuweit et al. (2008) show a conditional beta distribution of the forecast error,
dependent on the forecast value and provide a good approximation.

The magnitude of the forecast error is also dependent on the area of the forecast
region, and up to a point, the number of wind farm sites in the region (Lange and
Focken, 2006). A common measurement of the forecast error is the Mean Absolute
Error (MAE) defined as the difference between the measured production and the
forecasted production. Porter and Rogers (2010) include an overview of the MAE
for several power market regions in North America with day-ahead forecasts ranging
between 3.3 to 11.5 %. The MAE depends on the characteristics of the region, so
it is not possible to directly compare two different forecast methods used in two
different regions.

2.6.3 Use of Forecasts in Stochastic Programming Models

The models mentioned above can not only be used to generate point forecasts, but
also forecasts with confidence intervals or quartiles. The forecasts with uncertainty
are valuable, but it is necessary to know something about the development of the
uncertainty through the forecast to be able to use it in stochastic programming
models.
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Pinson et al. (2009) presented a general method to generate scenarios based on
any type of probabilistic forecast where you know the inverse cumulative distribu-
tion function of the range of possible forecast values in a period. A set of prediction
errors are generated by using the covariance of the historic errors. These are then
transformed to a uniform distribution between 0 and 1 that is used as a random
seed in the inverse cumulative distribution function of the probabilistic forecast.

If no information regarding the uncertainty of the forecast is available, Jaramillo
et al. (2009) proposed a similar approach, but using the beta distribution as an
approximation of the probabilistic forecast.

Both methods produce a range of independent scenarios that can be transformed
into a scenario tree with a program such as SCENRED?2.
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2.7 Decomposition

Decomposition is a method to divide a problem into several smaller problems and
solve them iteratively until a solution is found. It emerged because of the need
to solve larger problems, since it can be faster and smaller problems require less
memory (Fuller and Chung, 2008). Equilibrium programming in itself can be com-
putationally demanding, especially stochastic formulations. Even though we have
several orders of magnitude faster computers today than before, computation time
is still a limiting factor in many situations. Additionally it may be easier to manage
more complex models, since a team can have responsibility for a separate submodel
(Fuller and Chung, 2005). Decomposition also enables parallel processing that can
significantly speed up solution times, for instance by using a cluster. Another ad-
vantage of decomposition is to iteratively improve the solution. In other words, if
an approximation is sufficient, a "good enough” solution can be provided long be-
fore the model converges. In the rest of this section we will present some algorithms
that can be used in equilibrium programming.

2.7.1 Dantzig-Wolfe Decomposition Technique

The Dantzig-Wolfe decomposition technique was presented by Dantzig and Wolfe
(1960). The principle behind the algorithm is to separate the problem such that
you get subproblems that are easier to solve. Many practical problems lead to very
large models in terms of the number of constraints and variables. Dantzig-Wolfe
decomposition takes advantage of a block angular structure of the constraint set,
as seen in Figure 2.7. The complicating constraints that link the subproblems to-
gether are separated out in the master problem. The subproblems are then solved
as sequence of smaller and easier problems, and the master problem chooses among
the solutions and passes info regarding the complicating constraints to the subprob-
lems. This enables the subproblems to produce better solutions. The method is
illustrated in Figure 2.8, the algorithm is solved iteratively until the model con-
verges. Conejo et al. (2006) provides an excellent introduction to Dantzig-Wolfe
decomposition and Lundgren et al. (2010) shows the algorithm applied on primal
problems.

2.7.2 Benders Decomposition Technique

Benders (1962) introduced the aptly named Benders decomposition (BD). While
DWD separates out complicating constraints, BD moves complicating variables to
decompose the problem by blocks. The block structure of such a problem is illus-
trated in Figure 2.9. These complicating variables can for instance be investment
decisions, whether to open a factory or not and the non-complicating variables
has to do with the production. If the complicating variables are fixed to given
values (determined by a master problem), the rest of the problem decomposes by
blocks, and can easily be solved separately. Based on the duals in the subprob-
lems, a cutting plane is found and added to the master problem. Again, Conejo
et al. (2006) provides a good and more detailed introduction to BD. It is generally
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Matrix A '
MatrixB' 0 0
= -
J

Figure 2.7: Block structure with complicating constraints (matrix A)

Solve Master Problem

Dual
variables

Solution
proposals

I Solve Subproblem l

Figure 2.8: Illustration of Dantzig-Wolfe decomposition

most efficient if there are few complicating variables relative to the problem size.
Figure 2.10 shows the relationship between the master and subproblem. The mas-
ter problem determines the complicating variables and sends fixed variables to the
subproblems in each iteration. Based on these variables the subproblems calculate
new cuts.

Matrix A 0 0
T —
0 o |marxD
0 0 Matrix C

Figure 2.9: Block structure with complicating variables (matrix D)
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Solve Master Problem
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variables

| Solve Subproblem I

Figure 2.10: Illustration of Benders Decomposition

Cuts

2.7.3 Lagrangian Relaxation Technique

Lagrangian relaxation (LR) is well described in Lundgren et al. (2010). The idea
is to relax some constraints in the original formulation and consider them implicit
through the objective function. Any infeasibility with respect to the relaxed con-
straints are penalized by the use of dual multipliers in the objective function. In
contrast to BD and DWD, LR is therefore not separated into master and subprob-
lems, but can be separated in different problems that can be solved separately. In
order to use LR the problem structure must be similar to the block structure in
Figure 2.7.

2.7.4 Relationship Among Benders, Dantzig-Wolfe and La-
grangian Relaxation

As shown in Lim (2010) there are relationships among Benders, Dantzig-Wolfe De-
composition and even Lagrangian relaxation. When solving a linear programming
problem the techniques can be interpreted as equivalent procedures applied to dif-
ferent representations of the problem: Primal linear, dual linear and Lagrangian
dual formulation. DWD applied on a primal problem is equivalent to using BD
to solve the dual problem and implement a cutting plane method to solve its La-
grangian dual problem. The relationship is shown in Figure 2.11. This property is
used by Gabriel and Fuller (2010) and Egging (2010) and others to develop Benders
decomposition for MCP, based on DWD.

2.7.5 Other Decomposition Techniques
There are also other decomposition techniques. Worth mentioning is Simplicial
decomposition, Cobweb decomposition and Partitionable decomposition (Celebi,

2011).

31



Chapter 2. Background Information
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Figure 2.11: Relationship among DWD, BD and LR. From Lim (2010)

2.7.6 Dantzig-Wolfe Decomposition Techniques Applied on
Equilibrium Problems

There has been some research into decomposition techniques applied to equilibrium
problems. Dantzig-Wolfe decomposition was employed by Chung et al. (2006) for a
class of equilibrium problems, and later expanded in the work of Fuller and Chung
(2005) to be applicable to general VI-problems. Gabriel and Fuller (2010) further
refined the algorithm to a Benders Decomposition algorithm, and applied it on a
stochastic problem. Lagrangian methods have been used by among others He et al.
(1999), and Auslender and Teboulle (2000).

The non-anticipativity constraints in the problem formulation in our thesis are
well suited for DWD, such that the problem separates into one subproblem per
scenario. Therefore we will only describe DWD further.

Overview

This section is based on Fuller and Chung (2005) and describes DWD applied on
variational inequalities. The variational inequality, VI(F, K), with mapping F and
feasible region K, is solved by separating the problem into a master problem and
several subproblems. The same method can be applied on MCP problems. In
general, there can be one subproblem per commodity, country, scenario or similar.
The subproblems are relaxations of VI(F, K), where the complicating constraints
are removed, while the master problem solves a restricted version of the VI. The
master problem is restricted to convex combinations of the proposals from the
subproblems and contains the complicating constraints. The dual variables of the
complicating constraints are passed back to the subproblems in each iteration.
The mapping in the subproblems is modified to include the dual variables. In
each iteration the solutions from the subproblems are added to the set of solutions
which the master problem uses to construct convex solutions. Figure 2.12 illustrates
the relationship between the master problem and subproblem. The algorithm is
repeated iteratively until a stopping criterion is satisfied.

The original VI(F, K) consists of the mapping F(z), variables z € R", and the
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Finds a convex combination of the proposals

‘ V| Master Problem |
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Figure 2.12: DWD on an Equilibrium Problem

feasible area K = {g(z) > 0,h(z) > 0}, where g(z) are the easy constraints and
h(z) the complicating constraints. Both functions are concave and continuously
differentiable. The VI is then to find z* € K such that:

F(z*)(z—25)T >0, forall z € K.

The method takes advantage of the fact that the VI can be expressed in terms
of the KKT-system, as seen in Section 2.3.6. § is then the dual variables to h(z).

Subproblem

The complicating constraints h(z) are removed in the subproblem, so that the
reduced feasible area is K’ = g(z) > 0. The mapping F' is modified to take into
account the information from the most recent master problem solution, namely
the dual variables =1 and the gradients of h(z) evaluated at the master problem
solution z¥~1. The subproblem VT is then:

Sub-VI*(F — Vh(zk7*gF=1 K')): find 2& € K’ such that

(F — Vh(A B 1) (2 — 25)T > 0 for all z € K’

Master Problem

The master problem finds a convex combination of all the subproblem proposals.
ZF is the set of subproblem proposals [zé . zg], while \ € R’j_ is the weight of the
proposals. The master problem variable z’]f/[ can then be stated in terms of A as ZF\.
The feasible region is therefore A¥ = {h(Z*)\) > 0,e*\T = 1}, where e¥ € RF is the
unit vector. The mapping F is modifed to be in terms of A\, H*(\) = FT(Z*)\)Z*.
The master problem VI is then:

Master-VIF(H*, A*): find \¥ € A* such that
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HFT(ARY(A = AF) > 0 for all AF € AF.

Convergence Gap

The algorithm needs a stopping criterion. The suggested convergence gap in Fuller
and Chung (2005) is:

CG* = (F(zf;) — VAT (25) BT (25! — 2fy)

The algorithm stops when the CG is sufficiently small (|CG| < €) The conver-
gence gap doesn’t necessarily approach 0 monotonically. If VI(F, K) is a linear
program, the convergence gap equals the difference between the lower bound and
upper bound provided by the subproblem and the master problem. Else, if the
program is not linear, the convergence gap can be interpreted as the closeness to
equilibrium.

Algorithm

The following algorithm is used to solve the decomposed problem:

e Solve the first subproblem

e Solve the first master problem
e Set the iteration counter = 1
e Loop:

— Solve subproblem based on duals from the last master problem
— Calculate the convergence gap, CG
— If |CG| > e: Solve master problem, increment iteration counter

— Else STOP

Feasibility of the Master Problem

It may be necessary to include artificial variables that ensure feasibility of the
complicating constraints, if the subproblem produces proposals that are infeasible
in the master problem. Instead of h(z) > 0, the master problem has h(z) +a > 0,
where a > 0. The mapping is augmented to include costs on the artificial variables,
so the artificial variables will be driven out of the problem. The cost of the artificial
variables are determined by a penalty factor. It is essential that the penalty factor
is big enough, but a too high value will result in scaling and numerical problems
(Chung and Fuller, 2010). The penalty values are also bounds of the complicating
constraints dual variables (Chung and Fuller, 2010).
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Convergence and Uniqueness of the Solution

According to Fuller and Chung (2005) the algorithm will converge under the fol-
lowing assumptions.

e K is bounded
o Each component of h(z) and g(z) is concave and continuously differentiable

e F'is continuous

Subproblem and master problem are feasible at each iteration

o F satisfies property A
Property A is satisfied under either of the following constraints:
o F(z) is strictly monotone

e F(z) = [G(q),Ve(z)]", where z = [¢,2]" and G(g) is strictly monotone and
¢(x) is a convex function.

If CG* > 0, and property A is satisfied then the master solution solves VI(F, K).

The solution to VI(F, K) is unique if the mapping F is strictly monotone. If the
mapping can be divided into G(¢) and ¢(x), as in property A, and G(q) is strictly
monotone, the solution is unique in ¢ and the scalar value ¢(x). If additionally ¢(x)
is strictly convex, the solution is unique in both ¢ and x.
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Stochastic Power Market
Model

Our Stochastic Power Market Model is presented in this chapter. The purpose of
the model is to study the short-term intra-day spot market in Northern Europe,
and this sets the scope for what is included in the model. The model is divided into
three parts; each producer’s profit maximization problem, the transmission system
operator’s (T'SO) profit maximization problem and the market-clearing conditions
that link the problems together.

Each country or area is represented with a node in a network. In each node
there can be both consumers and producers. The consumers are represented by a
linear inverse demand function in each node. The producers generate electricity
and can sell electricity in the node for the market price in that node. They may
also sell their power in other nodes, but they must then pay a transmission fee to
the TSO. The market price is determined based on available supply and demand
in each node, as a power exchange. The producers can have different production
technologies, and they can have pump storage.

The TSO ensures that the flow on each power line adheres to the transmission
capacity. If the power line is fully utilized by the producers, the TSO receives a
congestion rent.

A producer’s optimization problem does not only depend on his own decision,
but also on the other producers and the TSO. A market clearing condition on the
line capacity is used to link the problems together, by combining the producers’
flow into one common flow on each power line.

3.1 Definitions

This section contains notations, sets, indices, parameters and variables used in the
model. All variables are non-negative unless noted otherwise.
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3.1.1 Notations

There are a few notations used to make the equations more readable. Both indexes
and sets are defined in the model. These are matched such that time period i
belongs to the set of time periods I. To simplify the notation, the sets are not
shown explicitly, as seen in equation (3.1).

g salesn,p%szg salesp pi s (3.1)
i

el

Each sum symbol can also sum over more than one set.

Z Anptis = Z Z dn,p,t,i,s (32)
n,p n p
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3.1.2 Sets, Indices, Parameters and Variables

For consistency, all parameters and sets are in capital letters, variables and indices
are in lower case, and dual variables are in greek letters.

Sets and Indices

1 Set of time periods @

L Set of power lines [

LY Set of power lines going into n

L Set of power lines going out of n

N Set of nodes n

P Set of producers p

S Set of scenarios s

T Set of generation technologies ¢

Parameters

AFC, Second order term of the regulated fee on power line [

AMCy, ¢ Second order term of marginal generation cost for producer p in
node n for technology ¢

AVptis Availability factor for node n for technology ¢ in time period i for
scenario s

FC, Regulated fee on power line [

FIRST; The first scenario in the same event node as scenario s in time
period 7

GCAP, ,; Maximum generation capacity in node n for producer p and tech-
nology t

INT, ; Intercept of the inverse demand curve in node n in time period 4

LAST; ; The last scenario in the same event node as scenario s in time
period 7

MCy First order term of the marginal generation cost for technology ¢

MP,, Market power in node n for producer p

PROB; Probability of scenario s

RCY Ramping cost of technology ¢

RU; Maximum ramping up for technology ¢ between two time periods

SLP, ; Negative slope of the inverse demand curve in node n in time
period %

TCAP, Maximum transmission capacity on power line [
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Primal Variables

flow, ;s (free)
+
fl,p,i,s

fljw’,s

Pricen i s

dn,p,t,i,s
qzn,p,t,i,s
qPn,p,i,s

salesy p.i,s

Total transmission flow on line [ in period i and scenario s
Negative transmission flow on line [ by producer p in time pe-
riod ¢ and scenario s

Positive transmission flow on line [ by producer p in time period
1 and scenario s

Price in node n in time period i and scenario s

Production in node n of technology ¢ by producer p in time
period ¢ and scenario s

Increase in production between time period ¢ and i — 1 of tech-
nology t, producer p in node n and scenario s

Power stored in pump power plants in node n, by producer p
in time period ¢ and scenario s

Amount sold in node n, by producer p in time period 7 and
scenario s

Dual Variables

Qn pt,i,s

ﬁn,p,t,i,s

Onp.tis (free)

6ljti,s

Glji,(e

Vn,p.i,s (free)

(bn,p,t,i,s
n,p,i,8

Tii,s (free)

Dual to the production limit constraint

Dual to the ramping constraint

Dual to the non-anticipativity constraint

Dual to the total positive transmission capacity constraint
Dual to the total negative transmission capacity constraint
Dual to the node balance constraint

Dual to the ramping limitation constraint

Dual to the installed pump power constraint

Dual to the market clearing condition. Transmission fee on
power line [ in period ¢ and scenario s
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3.2 Producer’s Optimization Problem

3.2.1 Producer’s Objective Function

The objective of the producer is to maximize his profit by deciding production g,
sales sales and pump storage ¢p in each node, and flows f* on each power line.
Equation (3.3) represents all the components of the profit for producer p.

Tp = Z PROB; x (Sales revenue, ,

+Pump storage revenue,, ,

—Production cost,, s (3.3)
—Pump storage cost,,
—Transmission cost,, g

—Ramping cost,, ,)

The sales revenue for producer p is the aggregated sales in all nodes and time
periods times the price in the respective node, period and scenario.

Sales revenue, ; = Z (pricen ;s % salesp pis) (3.4)
n,i
The market price is represented by a linear inverse demand curve for each node
n and time period 4, where INT,, ; and SLP, ; are the interception and negative
slope respectively. The net sales to consumers are equal to the gross sales in the
node less the amount bought by pump storage, since the demand curve represents
the demand of regular customers.

pricey ;s = INT, ; — SLP, ; X Z(salesn7p7i,s — Dnpi,s) (3.5)
P
The pump storage revenue is the water value of hydropower (M Chygro) cor-
rected for the efficiency, E'F, of the pump storage plant times the stored power
GDn,p.i,s, aggregated for all nodes n and time periods i.

Pump storage revenue, ; = Z MChydro X EF X qDn p.i.s (3.6)
n,i

There are four cost elements. The production cost for producer p is the quantity
generated by each technology ¢ in time period %, scenario s and node n, gy p.¢,i.s
times the marginal cost of the specific technology, aggregated for all nodes technolo-
gies and time periods. A second degree term, AMC,, ,; is included for a slightly
increasing marginal cost. This makes the function strictly convex, which will make

the production unique in the optimal solution.

Production costp s = Z(MCt + AMC pt X Gupitivs) X Quoptis (3.7)

n,t,i
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The pump storage cost is the cost to buy the electricity ¢p that is stored in a
time period. This is equal to the price in that node.

Pump storage cost,, ; = me’cen,m X qPn,p.is (3.8)

n,i

The next cost element is the transmission cost. The transmission fee 7;; s is
paid for each MWh transferred on the transmission line [. The transmission fee
is defined as the cost paid for transporting power in the defined positive direction
on the line. fﬁpyi’s and fljp,i,s define producer p’s positive and negative flow on
power line [ in time period ¢ and scenario s. A regulated fee of F'C; and the second
order term AFC; may also be included. The second order term has no physical
interpretation, but can be included to get unique flows.

Transmission cost, s = Z [(TMS + FC, + AFC; x fﬁ'p i S) X fl+p is
Li (3.9)
+ (—Tm,s +FC + AFCy x fl,_p7i78) X fz,_m,s}

The last cost element is the ramping cost. If producer p increases production in
a node with technology ¢ he incurs a ramping cost RC; depending on the technology
t. The ramping variable gi,, ; ; ;,s shows how much the production with technology
t in node n in time period 7 and scenario s has increased from the previous time
period.

Ramping cost,, , = Z(RC} X Qlnptis) (3.10)

n,t,.

3.2.2 Node Balance

Each producer has to maintain a balance in each node in the transmission network.
The sum of all flows in and out of the node, production and sales must be equal
to zero in each node. This fulfills Kirchoff’s current law (Section 2.2.1) and allows
the producer to generate and sell in different nodes. In each node n and in all
time periods 7 and scenarios s the producer p can generate power with technology
t, Gn,p,t,i,s, if he has one or more power plants in that node. He may store power,
GDPn,p.i,s, if he has a pump storage plant in that node. In all nodes he can sell
power, salesy pi s, Dy either producing in that node, or importing power on the
power lines. Sales include electricity sold to households and industry, but also
electricity sold to pump storage plants. LT and L. define the set of all the power
lines [ that go in or out of the respective node n. The flows are directional and
in pairs so a producer p’s positive flow in line [ in time period 7 is flfp,i,s and the
negative flow on that line is fljp%s. The producer can transport and sell power in
all nodes as long as there is available transmission capacity between the production
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and sales node. Figure 3.1 illustrates the node balance in one node.

Z Qn,p,ti,s + Z (fl-j_p,i,s - fl,_pﬂ’,s)
t

leLy
€ N (3.11)
- Salesn,p,i,s - Z (fl’p’i7s - fl,p,i,s) =0 Vv n,p,t, s
leL,
Positive —— Consumers
. 4
Negative - - - - el
Production sales

~

Figure 3.1: Illustration of the node balance

Since ¢p is not explicitly in the node balances, the formulation requires that
the data set is well formed. It is possible to get pumping when there are no sales
in the node if INT,, ; < MChyaro x EF. For any reasonable data sets, this will
not be a problem.

The node balance formulation is flexible and can easily be changed to as many
or as few nodes as required by increasing or reducing the set of nodes N and
necessary parameters. Nodes can also act as transfer nodes without any production
or demand, or be isolated without any exchange with other nodes.

3.2.3 Generation Capacities

The produced power ¢np¢:s in each time period ¢ in scenario s is limited by

the available generation capacity GCAP, ,; for each producer p in node n with
technology ¢. The technology, time and node specific availability factor AV}, ;; s is
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most important for the wind and solar power plants, where the weather conditions
determine the maximum output on a continuous basis. But it can also be used to
reflect maintenance or outages for conventional technologies.

qn,p,t,i,s - Avn,t,i,s X GCAPn,p,t S 0 Vv n,p, taiv S (312)

3.2.4 Production Ramping

In each time period each producer can change the production according to demand.
There are physical constraints on how fast different technologies can increase the
electricity output, and that increase can incur a cost. The ramping constraint
(3.14) limits the producer from increasing the production too rapidly. The ramping
limit is decided by a technology specific ramping factor RU; in percent of the total
production capacity GCAP, ,; in the node. As in Traber and Kemfert (2009),
we don’t include shut down costs in our model, because the cost of ramping up is
significantly higher.

The increase in production for technology ¢ in node n and time period 7 and
scenario s, qin p.+,is, is the difference between the producer p’s current and previous
period’s production (3.13). giy p¢,,s is defined as non-negative, and will therefore
be zero when the production ramps down.

An.,p,ti,s — Qn,p,ti—1,s S qin,p t,i,s v n,p, tv (Z > 1)7 s (313)

sbyls IL203)

RU, x GCAP, 1 — Qinptis >0 V n,pt s (3.14)

3.2.5 Pump Storage Plants

Some hydropower plants have the ability to pump water back into a reservoir, to
take advantage of arbitrage opportunities. When the power price is low, you can
buy power and pump water back into the reservoir for later use. When the price
is high, you can use the stored water to produce power and sell it in the market.

The pump storage capacity in the model is defined as a percentage, I N, 5, of
the hydro generation capacity for producer p and node n. The maximum power
bought is then limited by (3.15). The model does not track the reservoir level for
the pump storage, which means that the pump storage plants in the model must
be connected to a large or seasonal reservoir.

qPn,pyi,s — INnp X GCAP, p hydro <0 YV n,p,i,s (3.15)

Since the model does not consider pump storage as a separate technology from
hydro, we have assumed that the market price when the power eventually is sold,
is equal to the water value. This will underestimate the earning potential as the
market price could be higher, but it is not an unreasonable assumption if the node
is dominated by hydropower.
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3.2.6 Non-Anticipativity

The non-anticipativity constraint makes sure the production in the same event
node is equal in all scenarios. The FIRST, ; and LAST ; parameters defines what
scenarios are the first and last scenario within an event node. E.g. if we have 4
scenarios we would compare we would compare scenario 1 with 2, 1 with 3 and 1
with 4 in the first period.

Gn.p,ti,s = Qnp,t,i, FIRST,, =0 ¥V n,p,t,i,s (3.16)

It is sufficient to only enforce non-anticipativity on ¢ if the data set results in
a unique solution, as the node balance connects ¢ with the other variables. If not,
the other primal variables must also have non-anticipativity enforced.

3.2.7 Market Power

Each producer may exert market power in one or several nodes. The market power
factor allows us to differentiate between different producers’ market power, and is
described in Chapter 2.3. In the model the market power factor for producer p in
node n, M P, , is the partial derivative of the total sales in the specific node n in
a time period ¢ and scenario s with respect to producer p’s sale in that node and
time period.

0y, sales i

MP,, = Dsal :
salesy pi.s

(3.17)

The market power factor emerges in the derivation of the KKT conditions.

3.3 TSO’s Optimization Problem

The transmission system operator (TSO) is modeled after the congestion manage-
ment based on area pricing principle (Wangensteen, 2007), where the TSO receives
a congestion rent equal to the price difference between two areas if the power line
is at full capacity. In the model the TSO maximizes the transmission tariff 7;; s
times the flow per time period and line. His only decision variables are the flows,
flow; ; s, which he must keep within the transmission capacity constraints (3.19)
and (3.20). The former constraint is binding for a positive flow, the latter for a
negative flow.

Hrso = Y (PROB, x 734 X flow,; ) (3.18)
l,i,s

flow ;s —TCAP, <0 V Ul ji,s (3.19)

—flow ;s —TCAP, <0 V 1,5 (3.20)

45



Chapter 3. Stochastic Power Market Model

The TSO may have costs that are covered by the regulated fee, F'C;. These
costs are paid by the producers to the TSO, and are therefore canceled out in the
TSO’s profit function. The model ignores losses and the effects of Kirchoft’s voltage
law. Additionally there may be restrictions on how fast the flow on a power line
may change, due to physical characteristics and overall system security concerns
(ENTSO-E, 2010), but this has not been included in the model.

3.4 Market-Clearing Condition

The market-clearing conditions bind the producers’ optimization problems and the
TSO’s optimization problem together. The conditions make sure the aggregated
flow on one line are equal to the TSO’s flows; flow; ; s. 71, s are the dual variables,
and are the congestion charges for transporting one unit on line / in time period %
and scenario s. The congestion charge is the value producers would value to send
one more unit on each specific power line. Since the transmission fee is included
in the producers’ optimization problems, this makes sure that the producers that
value the flow the most gets the capacity.

Market-clearing condition (7;; s — free)

Z( Fois = Tipis) — flowis =0 ¥ Lis (3.21)

p

3.5 Optimality and Feasibility

As explained in Chapter 2.3, the KKT conditions are sufficient for the problem
to be optimal if the problem is convex and necessary if a constraint qualifications
(CQ) hold. All the constraints in our problem are linear or affine, and the feasible
area is therefore convex. To have a convex problem the objective function of the
producers and the T'SO must also be convex for a minimization problem. The
TSO’s problem is linear, which means that it is also convex. The objective functions
of the producers are convex if SLP,, ;, AMC,, ,+ and AFC; are non-negative.

CQs guarantee that every KKT point provides an optimal solution. The CQs
from Bazaraa et al. (2005) hold for our model. All constraints are affine inequalities
or linear equalities and thus the feasible region is a convex polyhedral. With a fea-
sible region defined by linear constraints, KKT are necessary for optimal solutions,
independent of the objective function.

The problem will not necessarily have a unique solution, it depends on the
data set. AMCy, p+, M P, ,, and AFC; must be non-negative and results in unique
production, sales and individual flow. As a consequence, the change in production
and the aggregated flow will also be unique. The pump storage volume is not
necessarily unique, if there are several producers in a node and the price is equal
the revenue they gain by pumping they are indifferent about who should pump.
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3.6 Solving the Problem

The presented maximization problems must be solved simultaneously since all the
problems influence on all the other problems’ solution. To be able to solve all
the problems, each maximization problem is first converted into a minimization
problem with only less-than or equality constraints and then converted to an MCP
as described in Chapter 2.3. The KKT conditions for all the producers’ problems
are aggregated together with the TSO’s KKT conditions and the market-clearing
condition. The full mathematical formulation can be found in appendix A. As we
know from Section 2.3.6, the problem can also be formulated as a VI-problem. The
formulation with the mapping and the constraint set of the VI-problem can be
found in appendix C.

3.7 Model with Scenario Tree Formulation

The model formulation can also be expressed in terms of a scenario tree formulation
instead of the non-anticipativity constraints. In the non-anticipativity formulation
the variables are defined for all scenarios s and time periods ¢, while in the scenario
tree formulation variables are defined for the scenario tree nodes e. The full scenario
tree formulation can be found in appendix B.
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3.8 Karush Kuhn Tucher Conditions of the Stochas-
tic Power Market Model

The KKT conditions are derived from the stochastic non-anticipativity problem
formulation. nT and n~ refer to the node where power line [ starts and stops.

Producer

0 < @nptis LPROBg x (MCy +2 x AMCy, 4 X Qn,p,t,i,s)
—Vn,p,i,s + Qn p.ti,s + ﬁn,p,t,i,s\i>1 - Bn,p7t,i+1,s|i<\1\ (3 22)
+5n,p,t,i,s|stIRSTs,i - Z 5n,p,t7i,3:F1RSTM >0
s|s<LAST ;

0 < salesy, p,i,s LPROB, X <INT7M + SLP,; x Z(Salesn,p,i,s - qpmpﬂvvs))
p
+PROB; x MP, , x SLP, ; X salesy p ;s

+’Yn,p,i,s >0
(3.23)
0 < qpnp,is LPROBg x (_Mchydro X EF)

+PROB; x (INTn),» + SLP, ; x Z(salesn,p,m - qpn7p7i,s)>

P
TVnp,tis >0
(3.24)
0<f .. LPROB, x (n,i,s L FC, +2 x AFC, x flfp’i’s) 525
—Vnt,pi,s + Tn—,p,i,s >0
0< f~ . LPROB, x (—TiS+FC Y2 AFC X [~ )
fl,p,z,s l,i, l l fl,p,z,s (326)
+’Yn+7p7i,s — Tn—,p,i,s >0
0< qin,p,t,i,s 1L PROB,; x RCy — /Bn,p,t,i,s + ¢n,p,t,i,s >0 (327)
ZQn7p7t,i,s + Z (fl—,’—p,i,s - fl,_p,i,s)
t leLy
—salesn pi,s — Z (flJ,rp,i,s - fl,_p,i,s) =0 (3.28)
leLy

(Yn.p.is — free)
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0<anptis L AViis X GOAP, 1t — Qnptiis > 0 (3.29)
0 < Bnpitis L Qinpitis = nopitis + Gnpti—1,s > 0 (3.30)

0< Pnptis L RU X GCAP, pt — Qinptis >0 (3.31)
0 < pnps LIN,, X GCAP, p hydro — @Pn,p,i,s > 0 (3.32)

qn,p,t,i, FIRST; ; — 4n,p,t,i,s = 0

3.33
(On,p.t,i,s — free) (3:33)
Transmission System Operator
0 < flowy;s L —PROB, X 75+ €, —€,,>0 (3.34)
0<¢, LTCAP — flow ;s >0 (3.35)
0<¢,,LTCAP + flow,;s >0 (3.36)

Market-Clearing

flowlvi-ﬁ - Z(flfp,i,s - fljp,i,s) >0
P (3.37)

(11,15 — free)
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Chapter 4

Decomposed Stochastic
Power Market Model

This section presents our Dantzig-Wolfe decomposition of the Stochastic Power
Market Model done on the non-anticipativity constraints, based on the theory
presented in Section 2.7. The algorithm is presented and solved as an MCP, as this
is how the model is implemented. First the algorithm will be explained, then the
master problem and subproblem formulations.

4.1 Algorithm

Figure 4.1 shows the main algorithm in solving the decomposed problem. The
algorithm starts by generating the first set of proposals by the subproblems. The
subproblems are linked to the master problem through a variable, d,, .+, in each
iteration. 0y, 5+, are the dual variables to the non-anticipativity constraints. In the
first iteration 0, ¢ = 0. The result of each subproblem is saved in a vector that
contains the generated proposals. The master problem proposes a set of weights,
Ak,s, for each subproblem solution that provide the current best solution. 0y p ¢
are recorded and sent to the next subproblem. This completes the first iteration.

In the next iteration, the subproblems use the new information from the dual
variables 0, p¢; to generate new proposals. The convergence gap is then checked
to see if the algorithm has completed. If not, the master problem generates a new
set of weightings A s and updated dual variables §. This procedure loops until the
convergence gap is reached.

The algorithm uses one weight for each subproblem solution, instead of one
weight for the set of subproblem proposals in an iteration. This is important be-
cause the extra flexibility in combining proposals from different subproblems dif-
ferently can speed up the convergence and reduce the number of iterations (Chung
et al., 2006). The cost of using more weights is an increase in the number of vari-
ables and therefore also the size of the master problem (Chung and Fuller, 2010).
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Start <

Y \ 4

Subproblem 1

One for each scenario

Subproblem S

One for each scenario

Find production, sales etc Find production, sales etc

L]

Store Proposal Send §

—

Master
Problem
Find A, feas®, 6§

No

Feasible?

No

ICGl<e

Finished

Figure 4.1: Problem specific DWD algorithm

4.2 The Master Problem

The master problem receives solutions from the subproblems, and finds the best
solution by taking a convex combination of all the proposed solutions for a scenario.
The master problem then passes on the dual variables of the non-anticipativity con-
straints, so the subproblem can propose better solutions. The subproblems propose
solutions that are infeasible in the master problem, since the non-anticipativity
constraints are relaxed. The artificial variables ( feas;f’p’t’iﬁs /feas, , .. ) are in-
troduced in the non-anticipativity constraints in the master problem, to ensure
that the master problem is feasible. An associated penalty parameter penalizes
solutions with artificial variables so they eventually are removed from the master
problem solution.
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4.2.1 Definitions

The solution of the variables from the subproblems are denoted in capital letters
(e.g. Q, SALES).

Sets

K Set of proposals k from the subproblems
Parameters

Frisk Positive flow in proposal k

Fi sk Negative flow in proposal k

FLOWy; sk Total flow in proposal k
PENALTY,, p 1., Penalty for infeasibility in the non-anticipativity constraints
Qnp.tisk Production in proposal k

QI ptisk Production increase in proposal k

QP ps.k Pump stored power in proposal k
SALES, pi sk Sales in proposal k

TAU; ; s 1 Transmission fee in proposal k&

389y

Primal variables

feas:;p,t,i Positive artificial variable in the non-anticipativity con-
straints

feas;m,i Negative artificial variable in the non-anticipativity con-
straints

Ak,s Weight on proposal k for scenario s

Dual variables

Appitis Dual variable to the non-anticipativity constraint in the mas-
ter problem

Os Dual to the convexity criterion

4.2.2 Formulation

The master problem consists of the stationarity conditions for A; s and the feasibility-
variables, together with the non-anticipativity constraints and the convexity.
Stationarity for Lambda

The stationarity constraint for A; s has been divided into different parts for clarity.

The aggregate sum is perpendicular (L) to Axs > 0 Vs. Some of the terms related
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to the flows cancel out when the master problem is derived. The redundant terms
are found in Appendix D.
Production

0<AksL Y (PROB, x (MC,

n,p,t,t
(4.1a)
+2 x AMCn,p,t X Z (/\k,s X Qn,p,t,i,s,k)) X Qn,p,t,i,s,k)
k

Sales
+ > (PROB, x (~INT; , + SLP;n X > Aps X (SALES,, i sk — QPrpiss))
n,p,i p.k
XSALES, pisk)
+> (PROBy x MP,,, x SLP; 5 x> (Aps X SALES,, i o)
n,p,i k

XSALESn7p7Z‘,S7]§)
(4.1b)

Pump storage

+ Y (PROB; x (—~MChyqro x EF

n,p,t

(INTzn SL-Pzn X ZAks SALESnpzsk QPn,p,i,s,k:))) (410)
p,k

XQPn,p,i,s,k)

Positive flow

+> (PROB, x (FC, +2 x AFC; x Z s X Bl o) X Fihiak)  (a14)
l,p,i

Negative flow

+> (PROB, x (FC; +2 x AFC; x Z Vs X Fi o) X Flpiak)  (4.1)
l,p,i

Production increase

+ )" (PROB, x RCy X QL p1.i.s.1) (4.16)
n,p,t,t

Non-anticipativity constraint

+ Z (_Qn,p,t,i,FIRSTS,i,k + Qn,p,t,i,s,k) X An.,p,t,i,s (41g)

n,p,t,t

Convexity criterion

+0, >0 (4.1h)
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Stationarity for Feasibility

0< feasy ;s L PROBy x PENALT Y, s — Dnptis >0 (4.2)
0< feas, sy L PROBy x PENALTY, v + Anptis > 0 (4.3)

Convexity Criterion

1= Mes=0 Log— free (4.4)
k

Non-Anticipativity

Z )\k,s (Qn,p,t,i,FIRSTS,,-,,k - Qn,p,t,i,s,k)
k (4.5)

+ - _
+f€a5n,p,t,i,s — feas =0 L A,p+is— free

n,p,t,1,8

4.3 The Subproblem

There is one subproblem for each scenario s, since we decompose on the non-
anticipativity constraints. Consequently, the variables in the subproblems only
depend on the time period ¢, and not the scenario s. The master problem makes
sure that the variables in the subproblem fulfill the non-anticipativity constraints
by passing along the dual variables A.

4.3.1 Formulation

The subproblem formulation is the same as the Stochastic Power Market Model
in Chapter 3, except that the non-anticipativity constraints are removed. The
formulation can be found in Appendix E.

The KKT conditions are as before, except that the production stationarity
condition is changed to accommodate the dual variables to the non-anticipativity
constraints from the master problem, Ay, p ¢+ s. App.ti,s from the master problem
are passed to the subproblem as dy, ;¢ . If scenario s is defined as the first scenario
(s = FIRST, ;) then:

5n,p,t,i = - ZFIRSTS,KSgLASTS,i An,p,t,i,s

If scenario s is not the first scenario, then:

6n,p,t,i = An,p,t,i,s

The modified KKT condition for ¢ is given by:

0<gnpti LPROBs x (MCy+2Xx AMCyp, pt X Gnp.t,i)

—Yn,p,i + Qn op,t,i + Bn,p,t,i\i>1 - Bn,p,t,i+1\i<|[| + 5n,p,t,i >0
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4.4 Convergence and Uniqueness

The convergence criterion explained in Section 2.7.6 are satisfied, and the algorithm
will converge. The convergence gap can be found in appendix F.

The uniqueness of the solution is dependent on the data set. If MP, AMC,
and AFC are non-negative for all relevant producers and power lines, the relevant
mappings are strictly monotone and strictly convex and the solution is unique in
production, sales and the producers flow. By definition ¢i, flow and 7 are also
unique. ¢p is not necessarily unique since the mapping is not strictly convex.

4.5 Alternative Model Versions

We implemented two slightly different models. The first model, as presented above,
produces solutions that start out being infeasible in the original problem. How-
ever, we know that the penalty parameter bounds the dual variable A of the non-
anticipativity constraint. This property can be used to control the algorithm and
avoid large fluctuations in the subproblems and too big changes between the pro-
posals.

The second model always produces feasible solutions, since it doesn’t include
the artificial variables (feas, . /feas, . .). An initial feasible solution must
be constructed in the first iteration. One approach we use is to take the average
solution from a run of the first subproblem iteration. The dual variables are not
bounded in this version, and the approach may use several iterations before the
master problem decides to use the new proposals.

4.6 Techniques to Improve the Computational Per-
formance

We experienced early that the algorithm worked fine for smaller problems but
had problems with bigger data sets. This led us to consider different methods to
improve the convergence and solution time, outlined in Table 4.1.

In the second model version we have to generate a feasible starting solution,
but this can also be done in the first version. This can provide a better starting
point for the algorithm. The generated starting point is based on the average of
the productions in the first subproblems.

A second technique was to fix some technologies either to full capacity or to zero.
Due to the characteristics of our problem, we can be quite certain that technologies
with low marginal cost, such as solar, wind and run-of-river power generation, will
be fully utilized and can be considered fixed. Similarly, if a producer doesn’t use a
technology in the first iteration, we force the capacity to zero until the algorithm
reaches feasibility or after a certain number of iterations. We did this because at
the start of the algorithm there may be large swings in the production that cause
technologies that otherwise wouldn’t be included to be profitable. The swings slow
down the convergence of the algorithm.
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Method Description
Feasible start solution Provide a starting point
Fixing technologies Fixing technologies that can reasonably

be assumed to be zero or at full capacity

Proposal removal Remove proposals not used in the last
k iterations

Non-anticipativity slack Accept solutions that are slightly infea-
sible

Penalty adjustments Various methods to control the
penalty

Step length reduction Limit the step length by modifying § in

the subproblem

Table 4.1: Overview over techniques to improve the solution time

The master problem is increasing in size each iteration, which makes the prob-
lem larger and more complex. Eventually we experienced that GAMS did not solve
the master problem, it was reported being infeasible. Considering that the master
problem solutions found in the former iterations are feasible in the current mas-
ter problem, this is not correct. To alleviate this and make the master problem
smaller, we check when a proposal was last included in the master problem solution
and remove it if it hasn’t been used recently. This reduces the size of the master
problem and the model is generated faster in GAMS and solved faster.

A small slack value is included in each non-anticipativity constraint, since it is
sufficient that two variables are considered equal if the difference is marginal. The
detail level is defined by the upper and lower limit of the slack variables, which is
0.01 in this thesis. As a result, the algorithm doesn’t need to adjust nearly equal
variables and therefore solves faster.

The convergence is also highly sensitive on the penalty value. Little research
has been done to find good values for the penalty. Watson et al. (2008) explores
different techniques within progressive hedging and suggests different strategies
to adjust the penalty values on a normal constrained optimization problem. The
article suggests that adjusted penalty values give much better results than fixed
values.

Similarly we try to limit the fluctuations in the model by reducing § in the
subproblems. By reducing this value, the step length in each iteration is smaller.
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Chapter 5

Data set

To study the European power market today and in 2020, we have chosen to include
Norway, Sweden, Denmark, Germany, the Netherlands and Great Britain with each
country as their own node. These countries were chosen based on the strategic
connections between the countries and the interesting generation mix. Norway
and Sweden have a lot of hydropower, while Denmark and Germany have a lot of
wind power. The Netherlands has less wind power, but is strategically important
because of the market’s closeness to Germany and sub-sea cables to Great Britain
and Norway. Great Britain does not have so much wind power yet, but has future
plans of considerable wind power production.

The model has a short-term perspective with a time horizon of 24 hours with
one hour resolution. This allows us to study the intra-day spot market and how
the price and dispatch changes with variable wind production.

The underlying data set that is used for the different case studies is presented in
the following sections. We will refer to the "today” situation as 2010 in the results,
since the latest comprehensive generation capacity data set we were able to obtain
was from year-end 2010.

5.1 Generation Capacity

The generation capacity data was obtained from a combination of EURELEC-
TRIC! and NREAPs?. Eurelectric was used for the generation data in 2010 and
the conventional generation in 2020. The 20-20-20 goals for the generation capacity
of bio, solar and wind power in 2020 were obtained from the NREAPs. Technolo-
gies with negligible capacity in a country were removed. The run-of-river capacity
was assumed to be 20 % of the total hydro capacity in Great Britain, Norway and
Sweden. Generation capacity was split on each producer using the market share

IThe Union of the Electric Industry: http://eurelectric.org
?National Renewable Energy Action Plans: http://ec.europa.eu/energy/renewables/
transparency_platform/action_plan_en.htm
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Chapter 5. Data set

numbers from the ADAM project®. Since the market share data did not include
renewables, this was allocated to the fringe. The market share data results in a
fringe with a leading market share in each country, which is not really consistent
with the economic definition. But since the formulation will treat them as price
takers if the market power factor, M P, is set to zero, there would be no difference
from a case where we divided the fringe into many smaller actors. The aggregate
per-country capacities are presented in Figure 5.1 and 5.2.
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Figure 5.1: Generation capacity in Germany and Great Britain

In the model, the available capacity is corrected for plant maintenance and out-
ages. Using data from Eurelectric, we set the factor to 0.85 for thermal generation
technologies. For hydropower we set the value to 1, since the actual production
will depend on the water value. In run-of-river power plants the factor represents
the amount of flow in the river, we set it to 0.5. For solar the factor represents the
weather conditions. The solar production profile is based on a German autumn
day* from the EEX transparency platform, with a peak of 0.53 at 13:00.

Pump storage is disregarded outside of Scandinavia, as the plants usually op-
erate in the balancing market due to their very small reservoirs (a couple of hours)
(EEX, 2011) and our model formulation does not support any limits on how much
you can pump in aggregate. In Norway we include the 320 MW Saurdal Pump
Storage Plant for Statkraft. The efficiency factor for the pump storage plants, EF
is set to 75%, which is in the range of what a modern pump storage plant achieves
(Leuthold et al., 2010).

3Project supporting the EU’s climate policy: http://www.adamproject.eu/
4Solar production based on the production the 28th of October 2011
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Figure 5.2: Generation capacity in Denmark, the Netherlands, Norway and Sweden.

5.2 Electricity Demand

We calculated the inverse demand curve for each hour by collecting demand and
prices from a weekday in October 2011 (27th), since it was difficult to obtain
historic data for the Netherlands and Great Britan. Table 5.1 contains the source
of the price and demand data. We estimated the load curve for the Netherlands
based on the consumption in Great Britain, due to lack of data’.

Country  Price Demand

DE EEX.com EEX.com

DK Nordpoolspot.com  Nordpoolspot.com

GB APX-ENDEX.com BMReports.com

NL APX-ENDEX.com Scaled to GB load curve
NO Nordpoolspot.com  Nordpoolspot.com

SE Nordpoolspot.com  Nordpoolspot.com

Table 5.1: Sources for price and demand data

The data set is illustrated in Figure 5.3 and 5.4. For the 2020 case, Eurelectric
projections were used to scale the demand as seen in Table 5.2. The demand
increases by 5-16 % in all countries, except in Germany that decreases by 5 %.

5The Dutch load curve is the same as the British load curve, but is scaled based on maximum
demand that specific day in the two countries.
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Country Demand Change

DE -5 %
DK 9%
GB 12 %
NL 16 %
SE 5%
NO 12 %

Table 5.2: Change in demand from 2010 to 2020

Lijesen (2007) gives an overview of different elasticity estimates, and finds that
the real time elasticity in the Netherlands is -0.0043 for spot market customers, or
-0.029 if all customers are assumed to behave as the spot market customers. This
is very inelastic, which means that big changes in the price would not affect the
demand that much. Producers with even just a little market power could easily
exploit this to gain a windfall profit, but this would not be sustainable in the
long term. Regulators would intervene, and customers would switch to alternative
sources or install their own diesel generators. We have therefore decided on an
elasticity of -0.20 and assumed that the customers have adjusted to the new market
condition. This is comparable to the elasticities used in Leuthold et al. (2010) and
Green (2007) of -0.25 and -0.15, and several studies cited in Lijesen (2007).
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Figure 5.3: Reference consumption 2010
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Figure 5.4: Reference prices

5.3 Transmission Capacities and Costs

Transmission capacities are modeled based on the maximum net transfer capac-
ity values and data on the subsea cables (ENTSO-E, 2011). The capacities are
illustrated in Figure 5.5.

For the situation in 2020, we referred to the ENTSO-E Ten Year Development
Plan®. The projects are outlined in Table 5.3, we additionally redefined a planned
cable from Belgium to Great Britain to start from the Netherlands.

Line Capacity (MW)  Project

NO-SE 1,200 South West Link

NO-DK 700 Skagerak 4

DK-DE 500 Midterm increase

DE-NL 1,500 New double circuit 400 kV line
NO-NL 700 NorNed 2

NL-GB 1,000 Nemo project

NO-DE 1,400 Nord.Link

NO-GB 1,400 New link to GB

Table 5.3: New transmission lines in 2020

The fixed costs, F'C; are set to zero, but we include the increasing AF'C; cost
term to get unique flows. The value is set so that a producer pays 1 EUR/MWh if
he uses the full capacity of a power line.

6 Available at https://www.entsoe.eu/index .php?id=232
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Figure 5.5: Transmission topology in MW

5.4 Marginal and Ramping Costs

Marginal and ramping costs were calculated using data on typical efficiencies, ramp-
ing fuel requirements and start-up depreciation from Traber and Kemfert (2009).
Using updated fuel prices and a carbon price of 10 EUR/ton we calculated the
costs in Table 5.4. We set the marginal costs equal to zero for run of river, solar
and wind power production, since the extra production does not cost the producer
anything.

The marginal cost of bio power production is more uncertain, as there are
many different types of plants, both in size, feedstock, and technology. We chose
60 EUR/MWh as the marginal cost, which is just above the lowest level of the
German feed-in tariff” for bio power at 58.9 EUR/MWh (BMU, 2012). Similarly,
the ramping cost was set at 80 EUR/MWh, which is comparable to coal power
plants.

For hydropower we set the marginal cost equal to the water value, which is
the value of one extra unit of water in the reservoir. It would be possible to
have a separate model to calculate the water values and feed this into the model,
but this is beyond the scope of this thesis. Trotscher and Korpas (2008) notes
that in principle the water value should be constant throughout the year, but
deviations from the expected reservoir levels cause the water value to fluctuate. The

7A feed-in tariff is a fixed price that a power producer is paid for the electricity to cover the
higher costs associated with renewable energy sources
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production in Norway is dominated by regulated hydropower, and it can therefore
be expected that the average price corresponds to the water value. The average spot
price in Nordpool’s NO1 price area in 2011 and until May 2012 was 46.4 and 35.3
EUR/MWHh respectively, therefore it seems reasonable to choose 40 EUR/MWh as
the water value in our data set.

Technology Marginal Cost Ramping Cost Ramping limit

(EUR/MWhL)  (EUR/MWh) (1/h)
Solar 0 0 100 %
Wind 0 0 100 %
Bio 60 80 50 %
Hydro 40 0 100 %
RoR 0 0 100 %
Oil 148 66 50 %
Gas 48 40 50 %
Coal 36 82 20 %
Lignite 30 66 20 %
Nuclear 7 37 20 %

Table 5.4: Marginal and ramping costs, and ramping limits

Individual ramping rates for a power plant may be very high, Wangensteen
(2007) reports that individual thermal plants may ramp 5-10% of the nominal
capacity per minute. De Jonghe et al. (2011) mentions that this may be true for
a single power plant, but that for an aggregate system you would never see such
behavior. Minimum run times and load factors indicate that the system as a whole
is not able to ramp as fast. Together with data from Maddaloni et al. (2009) and
Traber and Kemfert (2009) we have used the ramping rates in Table 5.4.

For the prices in 2020, we assume that the real prices stay the same. It can be
expected that the average efficiency of each technology increases, but it would also
not be surprising if the fuel costs increase above the general inflation due to strong
demand from emerging markets. The carbon price is also assumed to stay constant
in real terms, although that may change depending on the economic situation in
Europe and the speed of deployment of renewables. This would especially have an
effect if the price rises above 33 EUR/ton, which would make natural gas production
cheaper than coal in our data set.

The marginal generation costs also have a second order term, AMC), ,+. We
included the slightly increasing cost term AMC to get unique solutions. These
are set per producer, node and technology, and correspond to 5 % increase in the
marginal cost if the production is at full capacity.
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5.5 Market Power

The market power factors used are given in Table 5.5. We defined the fringe to
have a very small level of market power to get unique sales, the impact on the
resulting prices is negligible. The factor is based on the discussion in Section 7.2
of the results.

MP factor Description

0.001 The producer has no market power and belongs to the fringe
0.4 The producer has some degree of market power

Table 5.5: Market power factors

5.6 Wind Power

We use the same wind forecast for every node in our model. Nordpool offers data
on production and forecasts of wind power production in Denmark, but this was
not available for the other countries. We lose some dynamics in the system because
of this, since different areas may experience different wind levels and have different
levels of forecast uncertainty. The forecast for Denmark is issued at 17:00 for the 24
hours the following day. The forecast does not contain any information regarding
the uncertainty, but we use the scenario generation method of Jaramillo et al.
(2009) where this information is not needed.

We used data for 2011 and until May 4th 2012, in total 485 data points for each
hourly forecast error. Data for 2010 was also available, but it was unreliable and
contained errors. We normalized the data to the maximum of the actual production
since Denmark has had a relatively stable wind generation capacity in recent years.
A histogram of the production and error of the forecast is presented in Figure 5.6
and 5.7. The wind production is skewed with a mean availability factor of 0.277 and
a median of 0.207. The lower and upper quartiles are 0.084 and 0.423 respectively.
The error has a slightly positive bias in our sample with a mean of 0.0045, while
the median is 0.001.

The data also shows a slightly increasing forecast error through the forecast
horizon. This is illustrated by the mean absolute error (MAE) in Figure 5.8.

We generated four different forecasts, with the first three corresponding to the
lower, median and upper quartile of the historic data, called the Low, Median and
High forecast. The Dip forecast corresponds to an actual wind power profile in
Denmark from January 2012, which has a large input of wind at night, followed by
a decrease. The forecasts are illustrated in Figure 5.9.

We generated 5,000 scenarios for each of the four wind forecasts. Figure 5.10
illustrates the wind development for 25 scenarios of the Median forecast.

To be able to solve the model in a reasonable time, we use the scenario reduction
tool SCENRED2 in GAMS to reduce the initial set of 5,000 scenarios to a scenario
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Figure 5.6: Histogram of the wind power production in Denmark
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Figure 5.7: Histogram of the wind forecast error in Denmark

tree with 25 scenarios and approximately 350 nodes. A typical model then solves
in 3-4 hours. An example of the branching tree for the Median wind forecast can
be seen in Figure 5.11 and the wind development in Figure 5.12. The reduced
constructed scenario tree has a lower MAE than the originally generated scenarios.
Considering that our wind data is for Denmark, and the MAE goes down when
you aggregate over a large area, we don’t consider this a problem, but the impact
will be considered in the results (Section 7.3).

67



Chapter 5. Data set

o
0
S

5 ©

£

L

2

z g

3 O

Q o

<

c —

®

()

=

0.030

I [ I [
10 15 20

Forecast horizon (h)
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Figure 5.9: Mean value of the wind forecasts

5.6.1 Issues with the Scenario Generation Algorithm

There were some issues with our scenario generation implementation. An anal-
ysis of the forecast error in the scenarios showed that the MAE was approximately
one third of what was found in the historic data set. The mean of the scenarios
was also lower/higher than the supplied forecast, depending on the forecast of the
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Figure 5.10: 25 typical scenarios generated in R for the Median forecast
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Figure 5.11: Branching tree of the constructed scenario tree for the Median forecast

availability factor being lower/higher than 0.5. This arises from the fact that the
implemented method uses the Beta-distribution to represent the behavior of the
wind power production. By multiplying the covariance matrix of the historic er-
rors, that is the basis for the forecast errors, we were able to get scenarios that were
more in line with the behavior in the source data. For our purposes the generated
scenarios will be adequate, and the method produces scenarios that take into ac-
count that the error in the forecast in the next period depends on the value in the
previous period, instead of being random.
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Figure 5.12: Wind development in the constructed scenario tree for the Median
forecast

For our Median wind forecast, we had to multiply the covariance matrix of the
forecast errors with 6 to get approximately the same error distribution as seen in
Figure 5.13. The match with the MAE distribution differs slightly through the
forecast horizon, but is between 0.01 and -0.005.
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Figure 5.13: Error distribution in the historic source data and generated scenarios
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5.7 Assessment of the Data Quality

We believe that we have compiled a realistic and representative data set, but there
are of course a few weaknesses that are worth pointing out. The generation ca-
pacity data is most vulnerable to the market share numbers and to the projections
in 2020. Since the big producers have no wind, solar or bio-powered generation in
the data set, they have less market share and power than they should. The trans-
mission capacity figures are good, but of course the 2020 data are projections. We
don’t consider the projections to be a problem for the generation and transmission
capacity, as they are a case study of the situation in 2020.

Our demand data has two weaknesses. First, it is only based on one day, and
secondly because of the elasticity assumption. Nothing indicates that the day was
an outlier, but the point elasticity will be on the price/demand intersection since
we have a linear specification of the inverse demand curve. The marginal costs
are dependent on the efficiency assumptions we have used, while the ramping costs
also have the issues of start-up fuel requirements and increased depreciation of
the equipment. In reality, different plants have different characteristics, while we
model them as just one type. For our study purposes, we believe our numbers are
of sufficient quality to give representative results.

The 2020 projections of the prices are more uncertain however, and one big
source of uncertainty is the carbon price. Currently there is a debate if the EU
should tighten the emission cap in the EU Emission Trading Scheme, or institute a
price floor as Great Britain is planning to do from 2013 (Clark, 2012). Since carbon
allowances in the scheme can be saved for future years ("banked”), we believe that
the price is heavily dependent on the rate of economic recovery in the EU after the
ongoing sovereign debt crisis. This concern was shared by professional analysts in
a recent article in the Financial Times (Clark and Blas, 2012). The fuel prices are
of course uncertain as well, but they are more dependent on the world economy,
not just the EU. The carbon price will not only affect the electricity price, but also
the relative dispatch between coal and natural gas. We will therefore perform a
sensitivity analysis on the carbon price.

It is impossible to model all the possible outcomes of how the wind may develop
through the forecast period, but our four wind forecasts should be able to highlight
some important differences between the cases.
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Chapter 6

Implementation

6.1 Software

GAMS is a high level modeling system, which makes it easy to formulate MCP
models that are sent to a solver for solution. GAMS IDE 23.8.2 was used to write
the code, and PATH 4.7.02 as the solver. PATH is based on a generalization of
Newton’s method and a linearization based on Lemke’s method (Ferris and Munson,
2000). Some important experiences with GAMS and the PATH solver are described
in Appendix G.

Integration between GAMS and Excel is very helpful in two ways; input and
output. The input data is imported from Excel sheets, which makes it easy to
switch between different data sets. The solution can easily be exported to pivot
tables in Excel for analysis. For details about interaction with Excel see Appendix
G.

The scenario generation algorithm of Jaramillo et al. (2009) was implemented
in R, a language and environment for statistical computing.

6.2 Hardware
The program was run on a desktop with the following specifications:
o CPU: Intel Core i5 3570K (3.4 GHz quad-core)

e Memory: 8 GB

By monitoring the solver process in Resource Monitor, it was apparent that the
CPU was the limiting factor, as the solver is not multi-threaded. GAMS do have
facilities handing of problems to solvers in parallel, that could have been used on
the decomposed problem, but this was not used.
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6.3 Solution Time

The solution time of the non-anticipativity formulation (NA) and scenario tree
formulations (T) are shown Table 6.1. Both models are solved as MCPs. The
time includes the time needed for reading and processing data, generating mod-
els, communication with the solvers, and the solver time. The non-anticipativity
formulation takes considerable more time to solve compared to the scenario tree
formulation. This is not directly linked to the number of variables, as the tree
formulation is able to solve larger problems. This may be indicate that the non-
anticipativity constraints are difficult to solve, since the rest of the formulation is
largely the same. The VI formulation also uses PATH as the solver, after it has
been automatically reformulated with JAMS in GAMS. Additionally the mappings
must be adjusted, since GAMS doesn’t consider equations that are zero to exist.
Both the reformulation and adjusted mappings increase the number of constraints,
and the solution time goes up. As a consequence, the MCP-tree formulation was
used to produce the results in Chapter 7.

Model Scenarios Time periods Variables Solution time
MCP-T 8 12 39,198 0:01:02
MCP-NA 8 12 86,595 8:15:47
MCP-T 10 24 139,176 0:25:31
MCP-NA 10 24 215,019 >72:00:00
MCP-T 25 24 305,806 2:49:50
MCP-NA 25 24 541,864 >72:00:00

Table 6.1: Solution time for different model versions and problem sizes
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Results

This chapter contains the results of some case studies done with our model. We
start by presenting some overall model results for the power market in 2010 and
2020 with emphasis on the role of different generation technologies. Then we will
investigate the effect of market power, before we study the impact of different levels
of wind forecast uncertainty. Then we study the robustness of the power market by
comparing the effect of different wind power forecasts on prices, generation dispatch
and consumption. At last we will perform a sensitivity analysis with focus on how
different carbon prices and feed-in tariffs for bio power generation affect the results.

7.1 Power Market in 2010 and 2020

The result of a run of the model on the base case in 2010 with the Median wind
forecast produces the generation dispatch in Figure 7.1. As expected, nuclear,
lignite, run-of-river and coal generation is responsible for the base load. Hydro
generation takes some of the demand increase during the day, but it is mostly
natural gas generation that ramps up. At the end of the day, coal generation is
ramping down. This is a result of producers not having to take into account the
subsequent ramping cost the following day. Bio-fueled generation is not used at
all, which is not realistic given the feed-in tariff in Germany. Oil generation is also
absent from the generation dispatch. In 2020 (Figure 7.2) the situation is mostly
the same, but with significantly higher wind and solar production that offset some
of the reduction in nuclear capacity.

The system price! decreases from 51.58 EUR/MWh in 2010 to 49.54 EU-
R/MWh in 2020. In Figure 7.3 we can see that this is attributed to a dip in
the price during the day, even though the prices increase during the night. The
benefit is mostly seen in Germany and the Netherlands, where the prices decrease
by 3.8 and 5.1 EUR/MWh respectively as seen in Table 7.1. In Denmark and
Norway we see a modest increase in the prices, and overall there is a convergence
of the prices in 2020.

IThe aggregate volume-weighted price for all nodes
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Figure 7.1: Aggregate generation dispatch in 2010
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Figure 7.2: Aggregate generation dispatch in 2020

The price dip can be explained by the increased solar production in Germany.
In the results, Germany has a generation surplus during the modeled day in 2020
in contrast to 2010, and is exporting power to its neighboring countries as seen in
Figure 7.4. Before the lines from Scandinavia to Germany was exporting at full
capacity, while in 2020 Germany is the one exporting. Germany also has a price
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Figure 7.3: Hourly system price
Node 2010 2020 Difference
(EUR/MWhL) (EUR/MWh) (EUR/MWh)
DE 55.74 51.91 —3.82
DK 44.99 46.48 1.48
GB 49.84 49.91 0.07
NL 56.03 50.91 —5.12
NO 41.75 43.65 1.90
SE 44.34 44.30 —0.04
SYS 51.58 49.54 —2.04

Table 7.1: Area prices in 2010 and 2020

increase during the night in 2020, which causes an increase in the system price. A
reasonable assumption would be to think this was caused by the increased intercon-
nection at night, but Germany is exporting less power at night in 2020 compared
to 2010. One reason is that Germany has lost 20 GW of baseload capacity, and
this is further lowered since Eon does not utilize 2.3 GW of their spare coal-fired
capacity. As a result, the market price in Germany during the night is around 41
EUR/MWHh. Although this is lower than the marginal cost of natural gas produc-
tion, the fringe chooses to operate 2 GW of natural gas production where the loss
during the night is offset by the saved ramping cost.
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Figure 7.4: Comparison of the transmission in 2010 and 2020 at 13:00

In the overall transmission utilization rates in Table 7.2, it can be seen that
the utilization goes down on most of the lines in 2020 compared to 2010. This is
most instances due to the increased capacity on the lines, and the spare capacity is
one of the reasons why the area prices, in Table 7.1, converged more. Of the new
power lines, the line from Norway to Great Britain is the one that is used the most,
although the average price difference is larger between Norway and Germany.

Transmission line 2010 2020

DE-NL 36 % 48 %
DK-DE 92% 63%
NL-GB 3% 60 %
NO-DE N/A 73%
NO-DK 88 % 69%
NO-GB N/A 90 %
NO-NL 92% 72%
NO-SE 5% 41%
SE-DE 94% 68 %
SE-DK 68% 56 %

Table 7.2: Transmission utilization rates Median forecast

The consumption in the results increased in 2020 due to the higher demand for
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electricity, with a total of 4.1 %. Compared to the reference Eurelectric projec-
tions that we used for the demand, consumers in Germany and the Netherlands
has a relative increase of their consumption by 0.9 and 1.7 percentage points. This
increase comes during the day and the evening. Consumers in Denmark and Nor-
way decrease their consumption by 0.7 and 1.1 percentage points relative to the
projections. Great Britain and Sweden show insignificant differences.

7.2 Effect of Market Power

A central part of our model is the ability to represent market power based on the
conjectural variations approach. To determine a proper level of the M P parameter,
we ran the model for six different market power factors from 0 to 1 for the biggest
players, while the competitive fringe has no market power. This was done using
our data set for 2010 with the Median wind forecast without any uncertainty.
The most important question to answer is if the producers’ profit are increasing
with MP or not. An analysis of the profits in Figure 7.5 shows that Eon is most
profitable when the market power factor is 0.4, while it is 0.6 for RWE. The other
producers have increasing profit with a higher MP factor. Eon and RWE try to
lower their production, but the decrease is replaced by generation from the fringe.
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Figure 7.5: Profit of the producers with varying market power factor

The prices are generally lower in our model runs compared to the reference
prices, except for Norway and Sweden where the prices are a bit higher. This may
be due to the fact that we run the model with 2010 generation capacity data, but
we compare with prices collected in 2011. Our costs assumptions also affect the
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results. Figure 7.6 shows the prices in Germany and the Netherlands for selected
MP levels, the prices for MP levels 0 and 0.2 are much lower than the reference,
particularly during the night. Looking at the sales in Figure 7.7 reveals the same
trend, the sales for the MP levels 0 and 0.2 is too high during the night relative to
the reference sales, while 0.4 and above are more in line with the reference.
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Figure 7.6: Price in Germany and the Netherlands with varying market power

The profit results indicate that it is only Eon and RWE that are large enough
to impact the prices on their own, the definition of market power. But, running
the model with only Eon and RWE exerting market power results in too low prices
and too high sales compared to figures above. Since the electricity market is quite
inelastic, it makes sense to put some weight on matching the modeled sales with
the reference. This illustrates some of the problems with the conjectural variations
approach, and is a result of too much generation capacity controlled by producers
without market power. Based on the fact that Eon has the highest profit with a
0.4 market power factor, and that especially the sales are too high with an MP
level of 0 or 0.2, we choose to model all the explicitly included producers with 0.4
as the MP factor.

As a result, the system price increases by 6.81 EUR/MWh from 44.75 EU-
R/MWh to 51.56 EUR/MWh between the perfectly competitive case and the model
with the chosen MP factors. The price increase is largest in Germany where the
price increases from 45.59 EUR/MWh to 55.71 EUR/MWh. There are many large
producers in Germany, and they are able to increase the price especially during
the night. Norway sees almost no increase in the price, going from 41.17 to 41.76
EUR/MWHh, due to a large fringe with spare hydropower capacity.
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Figure 7.7: Aggregate sales in the model with varying market power

7.3 Effect of Wind Uncertainty

To study the effect of including stochastic wind in the model, we checked the 2020
case with the High wind level. We generated forecasts that had different levels of
mean average error (MAE), as seen in Table 7.3.

Covariance matrix MAE (%)
Unmodified 3.0-5.3
Double 5.5-7.8
Triple 7.8-13.3
Quadruple 7.4-18.6

Table 7.3: MAE of modified scenarios

The first aspect to study is how do the expected prices compare to the equiv-
alent deterministic prices? The system price turned out to be lower in all the
cases, although not by much. The expected price in the Unmodified case was 6
cents lower per MWh compared to the equivalent deterministic result (47.53 vs.
47.59 EUR/MWHh), while in the Triple case was 13 cents lower (47.45 vs. 47.58
EUR/MWHh). The area prices, in Table 7.4 showed slightly larger deviations, with
Denmark and Great Britain as outliers. The prices in Denmark increase with the
stochastic wind, while they get lower in Great Britain. The price changes in in-
dividual countries may be due to a shift in where the production is generated,
Denmark has an average of 2.5 % and 8.7 % increase in domestic coal production
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in the Unmodified and Quadruple case accordingly, which would raise the marginal
costs due to the quadratic cost term and may drive the price upwards. The shift
in Great Britain seems to stem from lower prices at night, with resulting higher
consumption, that bring down the area price.

Country  Unmodified Double Triple Quadruple
(EUR/MWh) (EUR/MWhL) (EUR/MWhL) (EUR/MWh)
DE 0.01 0.00 —0.02 0.12
DK 0.23 0.33 0.43 0.70
GB —0.15 —0.19 —0.34 —0.35
NL —0.09 —-0.12 —0.22 —0.11
NO —0.02 0.03 0.07 0.05
SE —0.02 0.04 0.08 0.06

Table 7.4: Change in area prices compared to equivalent deterministic problem

The slightly increased system prices indicates that the production has increased
slightly to be able to handle the uncertain wind. Looking closer at the production
reveals that the producers are dispatching more natural gas on average at the
expense of coal and hydropower production. In the Unmodified case natural gas
dispatch increases by 1.7 %, while coal and hydro go down with 0.4 % and 0.2
% respectively. The changes are larger in the Quadruple case, where natural gas
production increases by 4.15 %, while coal and hydro production both decrease by
0.9 %. The hourly absolute change for the Quadruple case can be seen in Figure
7.8.

7.4 Robustness of the Power Market

We ran the model with the four different wind forecasts from the data set to check
the robustness of the power market. The first three forecasts correspond to the
quartiles of the historic data set. The fourth forecast was chosen to see how the
system handles a large influx of wind at night, before it falls during daytime. We’ll
first present the results on the Median case, before we compare with the others. We
consider the robustness to be the system’s ability to remain unaffected when the
wind power is uncertain, and will therefore study the price volatility in a case and
the difference between the price between the different forecasts. The production
variability is also interesting, since it shows what technologies are responsible for
balancing the uncertain wind.

7.4.1 Median

Figure 7.9 shows the price volatility, as the standard deviation of the price, for the
Median case in 2010. The result shows that Norway, and to some degree Great
Britain has almost zero variability in the price. Germany, Denmark, Sweden and
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Figure 7.8: Change in the dispatch for the Quadruple case compared to the deter-
ministic equivalent.

the Netherlands show a higher degree of variability. In 2020 the picture changes
(Figure 7.9), the variability almost vanishes at night and the middle of the day,
but with large peaks around the morning and the early evening hours. This can
partly be caused by the additional transmission lines with lower utilization rates
in 2020 that increase the flexibility of the system. The additional solar power
during the middle of the day also frees up capacity. That the peaks are higher are
understandable from the fact that the growth in wind power capacity has exceeded
other technologies, and hence the aggregate uncertainty is higher.

Coal, natural gas and hydro generation are responsible for balancing the stochas-
tic wind in 2010, as seen in Figure 7.11. The balancing done by hydropower is
predominantly in Norway, while German producers operate most of the balancing
done by coal power generation. Producers in both Germany and Great Britain con-
tribute to the balancing with their natural gas production. In 2020 the situation
changes, coal generation is not used as much as a balancing source, as it is operat-
ing close to capacity. Increased interconnection with the continent allows Norway
and Sweden to increase their balancing contribution from hydropower during the
night and the middle of the day. Natural gas production ramps up in the morning
with producers in Germany, Great Britain and the Netherlands contributing an
almost equal share to the balancing of the stochastic wind.

7.4.2 Low, High and Dip

The price volatility for the other forecasts does not show any conclusive differences.
Low and High show the same overall development as the Median forecast in 2020
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Figure 7.10: Volatility of the price in 2020 Median

in Figure 7.10, except that Germany, Great Britain, and the Netherlands has an
extra spike during the night with the High forecast. It is therefore more interesting
to see how stable the prices are, Figure 7.13 shows the hourly system price for
the different wind forecasts in 2020. The price resulting from the Low forecast
resembles the price in the Median forecast, but with higher peaks in the morning
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Figure 7.12: Standard deviation of the production in 2020 Median

and evening. The price resulting from the High forecast deviates somewhat from
the Median forecast during the night, but is otherwise similar. The Dip forecast
shows quite diverging prices compared to the other forecasts. The price is much
lower during the night, but higher during the middle of the day. The lower price at
night is due to to the large amount of wind production, and Statkraft operate their
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pump storage plant in Norway. But, because of the high wind feed-in at night,
there is not as much base load capacity running and the prices stay high during
the middle of the day.
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Figure 7.13: Hourly system price for different wind forecasts in 2020

A look at the production variability reveals that coal producers are contributing
to the balancing of the stochastic wind in the High forecast, in contrast to the
Median and Low forecasts. In the Dip case even lignite producers step in to counter
the wind variability. The producers are able to do this because they operate with
spare capacity.

Overall the 24-hour aggregate consumption in 2020 does not vary much among
the scenarios. The aggregate sales in the Low and High forecast are within one
percentage point of the sales in the Median forecast. The sales in the Dip forecast
is higher, at up to two percentage points. But, looking at the sales on a hourly
basis reveals that there are big differences. The Low forecast sales is relatively
stable, but the High forecast shows consumption differences of around 4 % at 04:00
in Germany, Great Britain and the Netherlands. This difference is even more
pronounced in the Dip forecast, with a total increase of 11.6 % at 03:00. It can be
questioned whether this consumption increase is possible in response to a high wind
feed-in, and whether it rather should be lower. This is affected by our elasticity
assumption, and could indicate that the elasticity is too high for this hour of the
day. A more inelastic demand curve would lead to lower prices for the same change
in sales.
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7.5 Sensitivity Analysis

We performed sensitivity analysis on the model to see how the results change with
varying assumptions. In the assessment of the data set in Section 5.7 we mentioned
that we considered the carbon price assumption to be a source of uncertainty. Bio
power was also absent from our results, so we will check what effect this had on the
dispatch and prices. Other dimensions that could be interesting to study but are
not included in this thesis are the demand elasticity, the water value, and different
cases of generation and transmission capacity.

7.5.1 Carbon Price

To check the carbon price sensitivity, we run the model with a real carbon price
of 20 and 30 EUR/ton, compared to the 10 EUR/ton carbon price in the above
results. The adjusted marginal and ramping costs for the fossil fuels are in Table
7.5 and 7.6.

Carbon price scenario

Technology 10 EUR/ton 20 EUR/ton 30 EUR/ton
(EUR/MWhL) (EUR/MWh) (EUR/MWh)

Lignite 30 40 51
Coal 36 45 53
Gas 48 51 55
Oil 148 155 162

Table 7.5: M C} in the carbon price sensitivity analysis

Carbon price scenario

Technology 10 EUR/ton 20 EUR/ton 30 EUR/ton
(EUR/MWhL) (EUR/MWhL) (EUR/MWh)

Lignite 66 90 115
Coal 82 103 124
Gas 40 42 44
Oil 66 69 72

Table 7.6: RC} in the carbon price sensitivity analysis

The production for the affected technologies are presented in Figure 7.14. In
general, coal production decreases, while natural gas and hydropower increase.
German production is the most affected by the increased carbon price, where the
coal generation is more than halved between the 10 and 30 EUR/ton scenario.
The dirtier lignite-fired generation is not reduced until the carbon price reaches 30
EUR/ton, as it is still considerable cheaper than regular coal.
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Figure 7.14: Generation of selected technologies against the carbon price in 2020

The increased cost of fossil-fueled generation leads to an increased price in the
system, the area and system prices can be seen in Figure 7.15. Generally, a 10
EUR/ton increase in the carbon price leads to a 3.5 EUR/MWh increase in the
electricity price. The highest increases are seen on the continent, while Norway
and Sweden experience more modest increases. The utilization of the hydropower
plants increase from 53 % to 58 % in Sweden, and 68 to 78 % in Norway, with
the highest increase seen when going to 20 EUR/ton as the transmission lines from
Scandinavia are reaching capacity. These utilization rates are very high, and would
indicate that the water value has increased, leading to higher prices in Norway and
Sweden.

There are no significant differences in the price volatility that are worth men-
tioning, but the production variability changes. Natural gas generation becomes
important to balance the stochastic wind at night, at the expense of hydropower.
Particularly in Germany there are some interesting changes, the 30 EUR/ton sce-
nario is illustrated in Figure 7.16. Coal-fired generation loses importance as a
contributor to the balancing, with lignite power replacing regular coal in the 30
EUR/scenario. This can be explained by the fact that the marginal costs are al-
most the same, but the ramping cost of lignite-fired generation is cheaper. In the
30 EUR/ton scenario, German producers also use bio power production to balance
the uncertain wind.
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Figure 7.16: Production variability in Germany for the 30 EUR/ton carbon price
scenario

In conclusion, a higher carbon price will lead to higher prices, generally 3.5
EUR/MWh per 10 EUR/ton increase in the carbon price. As a result, the water
value may increase as well. Coal production is hit first, before the dirtier, but
cheaper, lignite production is phased out. The robustness measured as the price

89



Chapter 7. Results

volatility does not show any significant change, but the Natural Gas generation
does become more important for balancing the stochastic wind.

7.5.2 Bio Power

It is not realistic that our results showed no dispatch of bio power, but the market
price did not get high enough for the production to be profitable. In reality, bio
power is supported by various subsidies. Feed-in tariffs are used in Germany, while
Great Britain and Sweden use a quota system with renewable energy certificates?.
These two schemes lead to different incentives. A German producer will not care
about the market price, but rather produce as much as he can during the whole day.
A British or Swedish producer will take into account the market price and produce
when the market price plus the certificate price is above the marginal cost. In 2012,
Germany also introduced a new optional premium tariff® to align the incentives of
the renewable producers with the rest of the market (BMU, 2011).

Our formulation does not explicitly include modeling of support schemes, but
the feed-in tariff can be represented by setting the marginal cost to zero, and the
premium tariff by subtracting the premium from the marginal cost. To check the
generation from bio when all the generation is subject to a feed-in tariff support
scheme, we set the marginal cost equal to 0 and the availability factor equal to 2/3,
which was the availability factor of German bio power plants in 2010.

As a result, Coal-fired generation goes down by 6 % in 2010 and 2020, natural
gas generation is reduced by 11 % in 2010 and 29 % in 2020. Hydro generation is
also affected, with a decrease of 11 % in 2010 and 15 % in 2020. Overall the system
price decreases by approximately 1.5 EUR/MWh with the inclusion of bio power.
The price volatility is slightly lower, and the overall production variability shows
the same behavior as the case without dispatch of bio power.

2See http://res-legal.eu for a comprehensive overview of European renewable electricity
support schemes
3A premium tariff a fixed price premium in addition to the market price
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Chapter 8

Efficiency of the
Decomposed Model

The decomposed model will give the same results as the non-decomposed stochastic
model when solving the same data sets. In this section we will therefore focus on
the properties and efficiency of the solution algorithm. We use a reduced data set
consisting of Norway and Germany with a 1,400 MW cable between them. The
scenario tree has three hours and four scenarios (branches in each time period).
This results in a subproblem with 771 variables and a master problem that starts
with 3,396 variables. The corresponding non-decomposed model has 3,091 variables
and solves in 1.5 seconds.

8.1 Convergence

To measure the convergence of the algorithm, we used several measures as outlined
in Table 8.1, and ran the algorithm with a fixed penalty of 20.

The convergence gap is the most used measure in the literature, and is included
in appendix F. As we know from Section 2.7.6, the convergence gap represents
the closeness to equilibrium. The convergence gap compared to the total profit
of the producers, Error = %ﬁloﬁt’ is used to determine when the solution has
converged. As can be seen in Figure 8.1 and 8.2, both measures decrease with the
iterations, but not monotonically. In our test case we use Error < 107% as the
stopping criterion.

The next measure is how much the production variables ¢ change from one
iteration to the next in the master problem, and is shown in Figure 8.2. The change
from one iteration to the next is quite small, which indicates slow convergence of
the algorithm.

The last two measures depend on a known optimal solution, and are there-
fore only possible to use on small problems which can be solved with the non-
decomposed model. The first is the sum of the deviations absolute values, while
the other is the maximum deviation from the optimal solution. As we see in Figure
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Method Description
Convergence gap As described in the literature
Error CG divided by the total profit

Total deviation last iteration  Sum of the absolute value deviations of
the production ¢ from the last iteration

Total deviation optimal Sum of the absolute value deviations of
the production ¢ from the optimal so-
lution

Max deviation optimal Maximum deviation of the production

q from the optimal solution

Table 8.1: Different methods to measure the convergence

8.1, the solution starts out being quite good, but it is not until the end that the
solution get significantly better.
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Figure 8.1: Convergence gap and deviation of the production from optimal solution
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8.2 Choosing the Penalty Values

As described in Section 4.2, artificial variables are included to ensure feasibility in
the non-anticipativity constraints in the first iterations. Since the penalty value is
a bound on the associated dual variable, it must be high enough to ensure that the
problem can become feasible. In Figure 8.3 the model is run with different penalty
values. It is apparent that the higher the penalty, the faster the problem becomes
feasible, as the inclusion of artifical variables is penalized more. If the penalty is
too low, e.g. 0.1, the problem never becomes feasible because the added value from
violating the non-anticipativity constraints is higher than the penalty.

The next question is what other effects the penalty values have. Figure 8.4
shows the convergence gap for different penalty values, and it is clear that the
speed of convergence is highly sensitive to the penalty value. A too low value will
never become feasible, while a too high value takes a very long time to converge.
It is quite clear that the best fixed penalty is 1 in this example.

Until now we have assumed that the penalty value must be fixed. This must
not necessarily be the case. The penalty values can be adjusted with the iterations
and be different for each variable. A reasonable method we propose is to start
with a small initial value on all penalties, and increase the penalty value in each
iteration until the corresponding artificial variable is zero. If the corresponding
artificial variables is zero, the penalty value can be decreased, but it increases if
the artificial variable is introduced again. A run with a start penalty of 1, increase
of 20 % and decrease of 10 % is shown in Figure 8.4. The number of iterations is
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Figure 8.3: Sum of artificial variables in each iteration for different penalty values

in this case drastically reduced to 17.

It is also possible to run the model version without the artificial variables, if a
feasible starting point is provided. Figure 8.4 also shows the convergence gap for
this version, and although it convergences, it is significantly slower than the other
methods.

8.3 Solution Time Improvement

As we outlined in Section 4.6 there are also other methods to improve the perfor-
mance. The most important improvements are the removal of unused proposals
in the master problem and fixing technologies. The step length reduction in each
iteration also showed improved results.

Table 8.2 shows the results of proposal removal and fixing technologies on the
model with artificial variables. A fixed penalty of 1 is considered the benchmark.
Fixing variables for technologies, that can reasonably be assumed to be zero or
at full capacity, reduces the number of iterations slightly while the solution time
reduction is more significant.

The removal of unused proposals that haven’t been used in the last 10 iterations
significantly speeds up the process. The total iteration number until convergence
is nearly the same, but the solution time is much faster. This can be explained by
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Figure 8.4: Comparison of convergence gap for different penalty values

Technique Optimal Time
(iterations)  (min:sec)
Fixed penalty: 1 43 1:22
Fixed variables 40 1:05
Removal of unused proposals 43 0:55
Fixed variables and removal of unused proposals 40 1:03

Table 8.2: Effect of various techniques on the solution time

the fact that the size of the master problem is reduced and is easier to solve. The
number of iterations is not affected in this case, but can increase if the algorithm
has to regenerate removed proposals. The effects seen in this small case may be

greater in a bigger problem.

The step length reduction was applied on the model version without artificial

variables. This method reduces the dual variables of the NA-constraints, A, sent
from the master problem to the subproblems. As a result, there are less fluctuations
which reduces the number of iterations. By dividing d by two, we reduced the
number of iterations from 185 to 115 and the solution time from 9:15 to 5:29

minutes.
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8.4 Complexity of the Master Problem

Figure 8.5 shows the number of variables in the master problem for the first hundred
iterations of a problem which solves after approximately 100 iterations. The graph
shows two cases, with and without removal of unused proposals after ten iterations.
In the first case, the problem size is continously increasing as four stationarity
constraints for A ; are added for each iteration. In the second case the master
problem seems to converge to a certain size, as previous proposals are removed
at the same rate new ones are added. The density! of the problem is presented
in Figure 8.6 and the problem with proposal removal is less dense, which might
indicate that the problem is less complex and easier for PATH to solve.
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Figure 8.5: Variables in the master problem

This is important for two reasons. First of all, the solver PATH is unable to
solve too large master problems. By removing proposals that are not used, it is
possible to run the algorithm on bigger problems.

Secondly, GAMS must generate each iteration’s master problem. This can take
a significant amount of time on a large problem. Thus the effect of the proposal
removal is greater than it would be if another program was used. GAMS is not
optimized for data processing or model generation and processes the code line by
line and executes the instructions. Since these overhead parts are repeated it is
important that it is as efficient as possible. In other programming languages, like
C++, the code is compiled and can handle repetitive steps faster and you may
implement a procedure that enlarges the current model each iteration, instead of
generating it again from scratch.

IPercentage share of non-zero elements
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Figure 8.6: Density of the master problem

8.5 Starting Point for the Regular Model

One possible usage of the decomposed model is to produce a starting point for
the non-decomposed model to reduce the overall solution time. We constructed a
test data set with 86,995 variables in the non-decomposed model, consisting of the
normal 2010 data set, but with a scenario tree with 4 stages, 12 time periods and
8 scenarios.

We used the model without artificial variables, because we think it provides a
better start solution since it is feasible in the original problem. The decomposed
model was only able to run five iterations before the master problem became in-
feasible. The solution changed only marginally from iteration 1 to 5, so the result
is very similar to only one iteration being run.

The solution time can be seen in Table 8.3. The time with the constructed
starting point includes the time to run the algorithm. Equilibrium problems are
sensitive to their starting point and as we can see, a good starting point can sig-
nificantly reduce the solution time.

Solution strategy Solution time (hours:min)
No initial solution 8:15
Constructed starting point 3:19

Table 8.3: Solution time comparison for constructed starting point
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Chapter 9

Discussion

This chapter will discuss the limitations and possibilities in the presented power
market model and the decomposition scheme.

9.1 Comparison of Formulations

In this thesis we have presented two stochastic power market model versions;
The scenario tree formulation and the non-anticipativity formulation. The non-
anticipativity formulation is also presented as a VI-model and a decomposed MCP
model. All these models give the same result and most of the equations are the
same. However there are differences on how fast the PATH solver solves the dif-
ferent formulation variants as seen in Table 6.1. We experienced that the scenario
tree formulation was the fastest to solve, probably because it has fewer variables
and the problem size is smaller. The VI formulation included in Appendix C is
very similar to the MCP formulation except that it does not explicitly include any
dual variables in the mapping (corresponding to the stationarity constraint in the
MCP problem). The constraints can therefore easily be changed in the formulation
without affecting the mapping. On the other hand changing the constraints in an
MCP formulation affect the stationarity constraints and it is therefore more time
consuming. We therefore recommend using VI-formulation to develop the code and
convert it to MCP formulation when the model is used on bigger problems.

9.2 Model Limitations

Our power market model has some limitations that are worth mentioning.

The market is represented by a intra-day spot market for electricity. This is
sufficient to gain an overall understanding of the market, but a better representation
would be to model the day-ahead market along with the balancing market. A bilevel
multi-stage model (see Section 2.3.2) can potentially be used to formulate such a
problem. The upper level problem can be the day-ahead market, where the price
is settled in a price clearing process, while the lower level problem represents the
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balancing market. A disadvantage of a bilevel problem is that it is computationally
demanding.

The transmission network is highly simplified, in that we only require that there
must be a node balance and that the electricity transmitted on a line is within an
upper limit. In reality there are losses in the power grid, and electric power flows
are governed by Kirchoff’s voltage law that restricts the transmission possibilities.
Additionally, cables are in real life subject to ramping conditions that are not
included in the model. Since we were interested in running the model on a country
level, it did not seem as necessary to include these additional characteristics.

The ramping restrictions are applied in aggregate on a producer’s generation
capacity for a technology, although they are applicable to a single plant. This was
necessary because the binary variables that would be required for unit commitment
models are not possible in an MCP formulation.

Pump storage is only applicable to seasonal storage plants with a high capacity,
since we don’t have any restrictions on how much you can pump. Since there are
several GW of pump storage plants operating in the balancing market in Great
Britain and Germany, our formulation is less flexible.

Our linear demand and market power specification is also sensitive to the price-
demand elasticity and the conjecture about the market power factor, and care must
be taken when choosing the value of these two factors, as they interact with each
other.

However, as we demonstrate in our results chapter, the model gives valuable
insight in the dynamics of generation, electricity flows and prices in the modeled
countries under various market developments.

9.3 Validity of the Results

Our data set contains some assumptions that may affect the validity of the results.

Our marginal costs are similar for each technology, in reality they are more
granular and dependent on the age and type of power plant. For instance, a simple
natural gas turbine has a much lower efficiency compared to a combined cycle
natural gas plant.

The water value is in reality specific to each individual reservoir, as the reservoirs
have different capacities. A reservoir close to capacity may produce at full power,
or else the water will be wasted. Additionally, a wrong water value may cause the
model to produce too little or too much compared to the actual reservoir levels.

We have also assumed that the internal power grid in each country is able to
handle the full capacity at the interconnections and within the country. This is not
exactly right. For instance are Norway, Denmark and Sweden comprised of several
price areas due to internal congestion. Additionally, the transmission capacities
in the data set are based on the maximum net transfer capacity, but the capacity
often differs depending on the direction of the power flow. This overestimates the
flexibility in the system.

The model is run with only demand and price data for an autumn weekday,
and as we know the consumption changes with the season. Run-of-river and solar
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power plants also have different capacities depending on the day and season. It
would be important to take into account these aspects if the model is used for
investment decisions.

Our wind data, based on historic data from Denmark, was used as the wind
profiles of the other countries as well. We lose some dynamics because of this, since
the wind profiles would be different for each node. This was mainly done because
of time and data availability constraints.

9.4 Dantzig-Wolfe Decomposition

9.4.1 Infeasible Master Problem

The DWD algorithm applied on smaller problems works fine, but is unsolvable with
bigger data sets. The master problem becomes too big and the solver has problems
to find an optimal solution. The solution from the former iteration should always
be a feasible solution in the master problem of the current iteration, but even so we
sometimes end up with infeasible master problems in GAMS. One of the issues we
have looked at is numerical problems and insufficient scaling. GAMS automatically
scales the variables and the equations by default, but according to McCarl (2011)
this is not always sufficient for complex problems. Thus manually scaling must
be used based on an understanding of the model structure. According to McCarl
(2011), all values in the constraint matrix should ideally be in the range between
0.1 and 100. We have not been able to achieve this for our problem.

As far as we know from the literature, nobody has applied DWD on bigger
equilibrium problems than this thesis. Fuller and Chung (2005), Chung et al.
(2006), Fuller and Chung (2008) and Chung and Fuller (2010) only demonstrate
the algorithm on a tiny data set with approximately 100 primal variables, and the
solution times are negligible. But Cabero et al. (2010) and Gabriel and Fuller (2010)
apply the related Benders decomposition technique, based on Fuller and Chung
(2005), on full equilibrium problems with 77,842 and 560,000 variables respectively.
These are that are too big to be solved by PATH, but the decomposition technique
solves the problems. In addition to the number of variables, the complexity of the
problem is also important to assess. Because our problem is a multi-stage rather
than a two-stage problem, the problem is considered much harder to solve than
for instance the model in Gabriel and Fuller (2010). The complexity affects the
solution time, and probably also the limit of how big problems GAMS can solve.

Our model didn’t solve for larger problems where potentially the decomposed
algorithm solved faster than the non-decomposed model, because of solver prob-
lems. Still we see some aspects that tell us something about what kind of problems
that gain on decomposition methods.

Our strategy was to relax the non-anticipativity constraints to decompose along
the scenarios. With one scenario per subproblem, a large problem could easily be
solved in parallel in a cluster environment. But, there are many NA-constrains,
approximately the same number as there are production variables. As a result, the
master problem is quite big. A key factor to providing an efficient algorithm must
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be to limit the size of the master problem. If we return to the non-decomposed
problem, we recognize several other ways to split the structure into subproblems.
It can be split by producers and the market clearing condition is part of the master
problem, or it can be split by country. The lines’ transmission fees would be
determined by the master problem. This would hypothetically reduce the size of
the master problem, but would also limit the number of subproblems that can
be run in parallel. In the latter strategy a BD approach could have been used.
It is also important to note that the subproblems are solved multiple times and
therefore should be relatively easy to solve, it might be that one subproblem for
each country is too comprehensive.

9.4.2 Algorithm Improvements

The proposals from the subproblems in the first iteration give quite good results,
and the constructed initial proposal even better. In the literature (e.g. Tebboth
(2001)) there is a frequently reported problem that the DWD has a "tail” of nearly
optimal solutions. Since the solution after the first iteration is quite good, we may
be in the tail where the convergence rate is slow.

In this master’s thesis we have shown that the model is sensitive to the penalty
value. Little research on this value exists, none within equilibrium problems. Wat-
son et al. (2008) claims to be the first to discuss penalty on non-anticipativity
constraints. We suggest more research should be done on this topic in order to be
able to apply decomposition efficiently. We propose that a variable penalty, both
increasing and decreasing, can be used in order to reduce fluctuations and solution
time. In our thesis we also successfully used step length reduction, which reduces
the transferred dual variable from the master to the subproblem, that could be
further assessed.

In our procedure we fix production variables that have a small marginal value,
to reduce the number of variables in the problem. Even more variables have the
potential of being fixed during the solution time. If production variables stay
constant for a certain number of iterations it might be sufficient to fix the variable.

The algorithm can also be improved by approximating the master problem.
Both Celebi (2011) and Chung and Fuller (2010) suggest such approaches and
show promising results compared to solving the original master problem.

9.4.3 Potential Gain from Parallelization

In the literature parallelization is often discussed when decomposition techniques
on equilibrium problems are presented, e.g. in Fuller and Chung (2005), Celebi
(2011), Gabriel and Fuller (2010), but seldom implemented. Parallelization would
probably speed up the solution time for the subproblems, but in our problem it
is the master problem that uses most of the solution time and causes problems in
PATH. Parallel processing will not resolve the master problem infeasibility issues,
and we have therefore not focused on parallelization in this thesis.
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9.5 Further Work

As we have seen, our proposed model has both weaknesses and potential for further
development. We focus on stochastic production technologies, but the demand
can also be considered uncertain and modeled with the same principle. Properly
representing different support schemes should also be considered, as particularly
the bio power generation is very sensitive to this assumption. The representation
of pump storage plants can also be improved by including a reservoir for the small
plants operating in the balancing market.

The presented model can be used to analyze new cases. A particular interesting
subject to investigate would be the effect of stochastic solar power. Recently solar
production in Germany met half of the demand at noon (Kirschbaum, 2012), having
a significant impact on the market. Solar power’s uncertainty could be analyzed
with the same techniques as we have used on wind power.

Further research should be made on finding out what causes the master problem
to become unsolvable and if it is possible to overcome the numerical problems.
When it comes to the algorithm we suggest more research into the adjustment of
the penalty value with Watson et al. (2008) as a starting point, and approximating
the master problem (see Celebi (2011) and Chung and Fuller (2010)).
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Chapter 10

Conclusion

In this master’s thesis we propose a multi-period stochastic short-term power mar-
ket equilibrium model which can be used to analyze the power market today and in
the future. The model is formulated as a Mixed Linear Complementarity Problem,
where all the producers and the transmission system operator simultaneously solve
their optimization problems and reach a Nash-Equilibrium. The problem formu-
lation enables a practical way to model different market power configurations by
using the conjectural variations approach. The model is unique in its combination
of market power representation, grid representation, ramping costs and possibil-
ity of stochastic generation technologies. We have formulated two variants of the
stochastic model, the first uses non-anticipativity constraints to represent the sce-
nario tree, while the second uses an explicit scenario tree formulation. The models
are implemented in GAMS and solved with the PATH solver both as an MCP and
VI problem.

We apply the model on the Northern European power market in 2010 and 2020,
modeling the intra-day spot market over 24 hours with one hour granularity. The
2020 case corresponds to industry projections and the fulfillment of the EU’s 20-20-
20 goals. In the results we see a clear distinction between two types of technologies,
those included in the base load and those responsible for balancing the uncertain
wind. Hydropower and natural gas-fired generation are used to balance the variable
wind power in 2010 and 2020, while coal-fired generation contributes in 2010. The
price in Germany and the Netherlands will probably decrease towards 2020 due to
the higher share of renewables, while Norway and Denmark are projected to face
higher prices than in 2010 as the transmission system is built out and the market
becomes more integrated.

We also study the effect on profit, prices and sales for different market power
factors. The profit is not always higher with an increasing market power factor
in a hybrid market, and through analysis we conclude that M P = 0.4 is the best
value for the explicitly included producers.

Next, we investigate the effect of including the wind uncertainty. The prices
are slightly lower than the equivalent deterministic case, but more importantly
there is an increase of natural gas dispatch to handle the uncertain wind. The
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wind uncertainty also affects the robustness of the power market. Measured as
the price volatility the robustness is good in Norway and Great Britain in 2010,
while the volatility is higher in Germany, Denmark, Sweden and the Netherlands.
In 2020 the prices fluctuate mostly in the morning and evening, but not as much
during the rest of the day and night when the system takes advantage of increased
transmission capacity.

Our sensitivity analysis shows that a higher carbon price will result in a higher
production by hydro and natural gas-fired power plants. As a consequence, the
system price increases by approximately 3.5 EUR/MWh per 10 EUR/ton increase
in the carbon price. Modeling biomass-based power generation with a feed-in tariff
assumption significantly reduces the production of natural gas and hydropower, and
to some degree coal, compared to our regular model results that had no dispatch
of biomass-based generation.

A Dantzig-Wolfe decomposition approach for solving the model is also pre-
sented, where we decompose on the non-anticipativity constraints. We have shown
that the method and the algorithm work conceptually. Unfortunately we are not
able to solve as large problems as the non-decomposed model, and a smaller data set
is used to demonstrate the algorithm. Using this smaller data set, we demonstrate
significant algorithmic improvements.

By properly adjusting the penalty on the artificial variables we are able to
drastically reduce the number of iterations, from 183 iterations when no artificial
variables are included in the model, to 43. We also show the impact of a method
where the penalty values are adjusted in each iteration according to the correspond-
ing artificial variables. The number of iterations is then further reduced to 17. By
removing subproblem proposals that haven’t been used for several iterations, we
are able to reduce the size of the master problem, and as a consequence the solution
time decreases.

Although the presented model does not include all aspects of the power market,
we have demonstrated that it can be used to give valuable insight into the devel-
opment of the power market. Further work can still be done, particularly further
research of the Dantzig-Wolfe algorithm.
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Appendix A

Complete Formulation

Sets, Indices, Parameters and Variables are found in Section 3.1.2
A.1 Producers
Producer p’s profit

Min PROB; x |
— Z(INTn,i,s —SLP, ;s % Z(salesnypyiﬁs — (Dnpi,s)) X salesp pis

n,i,s 14

+ Z (MCt + AMCn,p,t X qn,p,t,i,s) X Qn,p,t,i,s
n,t,i,s

+ Z(Tl,i,s + FCl + AFCI X flfp,i,s) X fﬁp,i,s
l,i,s

+ Z(_Tl,i,s + FC[ + AFCl X fljp,i,s) X fljp,i,s
l,i,s

+ > (=MChyaro X EF) X qppp.i.s)
n,i,s

+ D UNTis = SLPois X (80l pivs = WPrpis)) X dPnpis
n,i,s p

+ Z Rct X qin,p,t,i,s]
n,t,t,s
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Appendix A. Complete Formulation

Mass balance (7Y, p,i,s — free)

+ —
- Z An.p,ti,s — Z (fl,p,i,s - fl,p,i,s)
t

leLyt

+ Salesn,p,i,s + Z (fl:i_p7i7s - fl,_p,’i,s) =0 Vv n,p, ia S
leL,

Production capacity (o p.t,i,s > 0)

Qnpitis — AViis x GCAP, ,: <0 V n,p,t,i,s
Ramping (B p.t.4,s > 0)

Gnpitis = Qupiti—1,s — Qnptis <0 V n,pti#1s
Ramping limit (¢y, p 1.5 > 0)
Qinptis— RBU x GCAP, », <0 YV mn,p,ti,s

Installed pump storage capacity (¢ p,i,s > 0)

4Pn.p,i,s — I Nnp X GCAP, p hydro <0 YV n,p,4,s

Non-anticipativity (0, p.¢4,s — free)

Unptis = Qnop,t,i, FIRST(s,i) =0 YV n,p,t,i,s # FIRST;

A.2 Transmission System Operator
System operator’s profit

Min — Ipso = — » (PROB, x 1,5 % flowy ;. s)
li,s
Positive transmission capacity (¢, , > 0)
flow ;s —TCAP, <0 V Uli,s

Negative transmission capacity (¢;; , > 0)

—flow; ;s —TCAP, <0 VY [i,s

A.3 Market-Clearing Conditions

Market-clearing condition (7;,; s — free)

Z(fl—;,i,s - fl,_p,i,s) - flowl,i,s < 0 Vv l, i, S

P
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Appendix B

Power Market Model with
Scenario Tree Formulation

This appendix includes the full mathematical formulation and the KKT condi-
tions for the power market model with scenario tree formulation. The parent-child
connections between the event nodes can be defined by a set AN,, which is the
ancestor node of scenario tree node e. Each parent node can have one or many
child nodes. This can be exploited to make any scenario tree structure. All scenario
tree nodes are linked to exactly one time period by the set T'P.. The set defines
the time period i of event node e. There is a probability for each scenario node
to occur. The probability for node e, PROB,, can be changed according to the
scenario structure.

B.1 Definitions

B.1.1 Sets and Indices

Sets and Indices

E Set of event nodes e
AN, Ancestor node of event node e
TP, Time period i of event node e
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Appendix B. Power Market Model with Scenario Tree Formulation

B.2 Stochastic Formulation

B.2.1 Producers

Expected profit

Min — I, = Z PROB, x

— Y UNT,rp, = SLPyrp, % (D salesn pe — qPnp.e)) X salesy pe

p

+ 2:(-Z'J\]T'n,TPC — SLP, rp, X (Z salesn pe — qpn,p,e)) X qPn,p,e

n p

- Z(Mchydro x BF x qp7l7177€)

+ Z(MCt + AMC":Pyt X Qn,p,t,e) X Qn,p,t.e

n,t
+ Z(Tl,s X (fl—j_p,e - fl,_p,e))
l

+ Z(Rct X qin,p,t,e) V p

n,t

Node balance for each player (v, — free)

Z Qn.pte T Z (fl-,i_p,e - flzm@)
t

leLyt

—salesy pe — Z (fl*,'p,e ~fipe) =0 V npe
leLy

Production limitation (ay, pte > 0)

Gnpte— AVie x GCAP,,, <0 V n,p,te
Ramping (B p.te > 0)

Inpte— Qnpt, AN, — Qinpte <0 YV n,pte
Ramping limit (¢, p ¢ > 0)

Ginpte — RU x GCAP, ,; <0 V n,p,te
Installed pump power (¢, p > 0)

@Pnpe — INpp X GCAP, p hydro <0 YV n,p,e
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Appendix B. Power Market Model with Scenario Tree Formulation

B.2.2 Transmission System Operator

Expected profit

Min — g0 = — ZPROBC X Tp.e X flowy . (B.7)

le

Transmission limitation positive (¢, > 0)

flow,. —TCAP, <0 VYV le (B.)

Transmission limitation negative(e; , > 0)

—TCAP, — flow,. <0 V le (B.9)

B.2.3 Market-Clearing Condition

(11,5 — free)

Z( fe = fpe) = flowe =0 Y Le (B.10)

p

B.3 KKT conditions

The KKT conditions are derived from the stochastic problem formulation.

B.3.1 Producers

O S Qn,p,t,e J— PROB(’ X MCt + ’Yn,p,e + an,p,t,e + Bn,p,t,e - Bn,p,t,ANe Z 0 (Bll)

0 < salesy, p,. LPROB, X

- Z INT, ; + Z SLP, ; x Z(salesn’p’e — @Pnpe)

| i€Pi. 1€EP; ¢ P
+PROBe x |MP,, x Y SLP,; x salesnpe| — Ynpe =0
L iePi,e
(B.12)
0< fit e L PROBe X 71 s+ Yot ps = Vo pie = 0 (B.13)
0 S fl,_p,e il 7PROBC X Tle — Tnt,p.e + Tn—,p,e > 0 (B14)
0 S qinﬁpﬁt,e 1 PROBe X RCt - ﬂn,p,t,e + ¢n,p,t,e 2 0 (B15)
0 < gpnpe L —PROB. X MChyaro X EF 4+ pe >0 (B.16)
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Appendix B. Power Market Model with Scenario Tree Formulation

Z Qn,pte T Z (fltn,e - flTp,e)
t

leLy

—salesp p.e — Z (fljrpﬁ — fljp,e) =0

leL,

(Vn,p,e — free)

0 < Qe L AV HE X GCAP 1 = Gnpite > 0

0< BnpteL dinpte—anpte+tnptan, >0
0< ¢nptel RU XGCAP, p+ — Ginpte >0
0<vYnpe L INyy x GCAP, p nydro — qPnpe > 0
B.3.2 Transmission System Operator

—PROB, X )¢ + eﬁe —¢_.=0

le

(flowy,e — free)

0< el‘fe L TCAP, — flow; . >0
0< €le L TCAP, + flow; >0

B.3.3 Market-Clearing

flow; ¢ — Z(fl—j_p,e - fl,_p,e) =0

P
(11, — free)
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Appendix C

VI-formulation

The VI-formulation is presented below. It uses the same variables and parameters

as the MCP-formulation.

C.1 Mapping

The mapping for the VI is given by the derivative of the objective function for each
decision variable and the mapping between 7 and the market clearing condition.

C.1.1 Producer

F(Qn,p,t,i,s) = PROBg X MC’t + 2 X AMCn,p,t X Qn,p,tyi,s

(C.1)

F(salesp 1) =PROB x (~INT, ; + SLP,; x » (salesppis — qPn.p.i.s)

P
+MP,,, x SLP, ; X salesp p,is)

F(gpn p,i,s) = PROBs x (—MChydro X EF

+(INTrL,i - SLPn,i X Z(salesn,p,i,s - qpn,p,i,s)))
p

F(f%,:s) = PROB X (14 + FC +2 x AFCy x fi1 . )

F(fljp,i,s) = PROBS X (_Tl,i,s + FC[ +2x AFCl X fljp,i,s)

F(qin,p,t,i,s) = PROB; X ROf
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Appendix C. VI-formulation

C.1.2 Transmission System Operator
F(flowy;s) = —PROBg X 714

C.1.3 Market clearing

F(ri0) = flowis =3 (s = Fipis)

P

C.2 Constraint Set

The constraint set K consists off all the original constraints in the MCP-formulation.

Mass balance

= nptis = Y i Fipis)
t

leLy

+ Sales%l’ﬂ}s + Z (fl-,i_p,i,s - fl,_p,i,s) =0V n, D, i’ s

leL,
Production capacity
An.,p,ti,s — A‘/t,i,s X GOAPn)p)t S 0 Vv n,p,t,i, S

Ramping

Unptis — Qnpiti—1,s — Lnpitis <0 V. n,ptii#ls

Ramping limit
qin,p,t,i,s - RUt X GCAPn,p,t S 0 Vv n,p, t7i> S

Installed pump storage capacity

qpn,p,i,s - INn,p X GCAPn,p,hydro S 0 V n,p, i7 S

Non-anticipativity
Unptiis = Qnop,t,i, FIRST,; =0 YV n,p,t,i,8
Positive transmission capacity
flow; s —TCAP, <0 V [l i,s
Negative transmission capacity

—flow; ;s —TCAP, <0 VY l[i,s
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Appendix D

Extended Master Problem
Terms

Because of the identity of the market clearing condition, some of the terms in
lambda’s stationarity condition cancel out. These terms can be found in the this
appendix.

Positive flow

+Z(PROBS X Z(Ak,s X TAU; s 1
l,p,i k

+FCI+2x AFCy x Y (As x Fib o 0) < FL )
k

Negative flow

+ (PROB, x > (ks x (~T AU o 1)

b * (D.2)
+FC +2x AFC; x> (Aks X F i o)) X Fipi o)
k

Total flow

+> (=PROB, x Y (Aks x TAU ;o) x FLOWyi 5.k) (D.3)
l,i k

125



Appendix D. Extended Master Problem Terms

126



Appendix E

DWD Subproblem

E.1 Producer

0 S qn7p7t,i J~1:)ROBS X (Mct + 2 x AMCTL,P,t X an),tﬂl)
—Yn,pi T Qnptit ﬁn,p,t,i|i>1 - ﬂ71,p,t,i+1|i<\f| + 6”7P7t1i >0
0 < salesy pi LPROB, x (~INT, ; + SLP,; x Y _(salesy pi — qpn.p.i)

P
+MP,,, x SLP, ; x salesy p i)+ Ynpi >0

0< qPn,p,i 1 PROB; % (—MChydm x BEF
+(INTy; — SLP,; x Y (salesn pi — qpnp.i))) + Ynpiai > 0

p

0< flerz 1PROB, x (Tl,i + FCy+2 x AFC) x flfpj)

—Ynt,pi + TYn—,p,i >0

0< fljm LPROB;s x (=7 + FCy+2 x AFC) x fljm)
+’7n+,p,i — Yn—,p,i >0

0 S qin,p,t,i 1 PROBG X RCt - Bn,p,t,i + (ybn,p,t,i >0

Z qn,p,t,i + Z (fl-j_pyi - fl,_p,i)
t

leL}

—salesy, pi — Z (f;,rp,i - fl,_p,i) =0

leL,

(VYn,p,i — free)
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Appendix E. DWD Subproblem

0<anptiL AVii x GCAP, p+ — qnpti >0 (E.8)
0 < Brpiti L Qinp,tsi — Gnoptyi + Gnpti—1 >0 (E.9)
0< nptil RU XGCAP, i — Qinpti >0 (E.10)
0 <np L INyyx GCAP, b hydro — qPnp,i > 0 (E.11)

E.2 Transmission System Operator

0 < flow;; L —PROBs x 1 ; + 6?,_2‘ —¢,2>0 (E.12)
0 <€, LTCAP, — flow; >0 (E.13)
0<¢,L TCAP, + flow;; >0 (E.14)

E.3 Market-Clearing

flOwl,i - Z(fl-j_p’i - fl,_p,i) =0
P (E.15)

(11, — free)
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Appendix F

Convergence Gap

The convergence gap, based on the description in Section 2.7.6, for the current
iteration is:

CGy =

Production

> (PROB, x (MCy+2 X AMCy,ps X > (Aks X Qupitivsk) + Onpitins) X
k

n,ptis

(Qn,p,t,i,s,k - Z(Ak,s X Qn,p,t,i,s,k)))

k
(F.1)

Sales

+ Z (PROBs X (_INTi,’rL + SLPL'JL X Z()\k,s X (SALESTL,p,i,s,k - QPrL,p,i,s,k)))

n,p,i,s p,k
X(SALESn,p,i,s,k - Z(Ak‘,s X SALES?L,p,i,s,k‘)))
k
+ Y (PROB, X MPypy x SLP; 5y x Y (Aks X SALESy i o k)
n,p,t,s k
X(SALES, pisk — Y _(Aks X SALESy pi o))
k
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Appendix F. Convergence Gap

Pump storage

+ Y (PROB; x (~MChyaro x EF

n,p,i,s
+INTi,n - SLP1,n X Z()\ke X (SALESn,p,i,s,k’ - QPn,p,i,s,k)))
p,k
X (QPn,p,i,s,k - Z(Ak,s X Qpn,p,i,s,k)))

k

Production increase

>

n,p,t,1,8

PROB; x RC; x <Q1n,p,t,1;,s,k =) (ks X an,p,t,,-,,s,wﬂ

k

Positive flow

»Dsty8,k

+ > (PROB, x (FCi+2x AFCy x Y (Aps X FF 1 1))
k

l,p,i,s

X(F s = DM X Fh 5 )
k

Negative flow

+ Z (PROB, x (FC; +2 x AFC) x Z(/\,m X Foon)
l,p,i,s k

X (Fppissie = DM X Fppi 1))

k
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Appendix G

GAMS in Practice

The following appendix contains experiences from using GAMS.

G.1 Import from Excel

When solving large realistic cases, the amount of data is significant and a model
is often run with different data sets to compare. To explicitly write the data sets
into GAMS is time consuming and not practical. Data handling is often performed
in Excel when gathering data and direct import from Excel sheets was needed.
GDXXRW described in McCarl! was used to read excel spreadsheets using GDX
(GAMS data exchange) files.

This is an example of how INT,, ;, the intercept of the inverse demand curve,
is imported from Excel. The parameter is declared, and loaded. The intercept is
in the file dataset.xlsx in sheet int, in row and column A1:H300.

Parameter INT(i,n);

$onecho > import.txt

par=INT rng=int!A1:H300 cdim=1 rdim=1

* More parameters could be added on new lines

$offecho

$call GDXXRW dataset.xlsx Qimport.txt

$gdxin dataset.gdx

$load INT

G.2 Export to Excel

It is essential to be able to easily handle and compare results. GDXXRW could
be used to perform a data dump, but we wanted to get all the data directly into
pivot tables in Excel. Pivot tables enable easy analysis of the results, and we could

Thttp://www.gams.com/mccarl/mccarlhtml/
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directly see the results in various graphs after each model run. To enable this
Rutherford’s pivot data exporter? was used.

G.3 Pitfalls

GAMS has some pitfalls, and to the modelers frustration some of these problems
only apply in difficult (singular or near singular) cases. This means that you can
develop and test a small problem, and when you are scaling the problem or have
tighter restrictions, problems occur. The problem is how you should order an
equation, since a — b = 0 is not the same as b — a = 0 in all cases in GAMS.

The following example is from the manual.

min, (z — 1)2, where z € [0, 2]
The first order optimality conditions are
0<z<2L1l2z-1)

This equation has the solution z = 1. If this in written as d_f.. 0 =e= 2*(x-1),
the solver is handed the problem

0<z<2Ll-2z-1)

This problem has solutions of z = 0, 1,2 which is obviously wrong. Most of the
time this difference is irrelevant because the equation is internally substituted into
another equation in the problem. But when the problem is more difficult to solve a
perturbation is applied, and if the equation is in the wrong order, the perturbation
is in the wrong direction, and the problem gets even harder to solve.

In some cases we suspected that the PATH solver didn’t find a solution if the
node balance was in the wrong order. A trick we used to get it right was to treat
the equality constraint as if it was a less than or equal constraint when deriving
the KKT conditions. Then we modified it so it became a greater than or equal
constraint in the KKT conditions before switching back to a equality constraint.

G.4 Solution Time Improvement

Option files® can be used to decrease the solution time. Try to find the right options
with a small model before trying to solve larger models. Pay attention to the solver
each time it restarts. In each restart the solver tries new options. By noticing the
best options for the specific problem the solution time will be significant smaller
for larger problems. Smaller stochastic problems were sometimes solved twice as
fast with the right option file.

’http://www.mpsge.org/pivotdata.htm

30ur option file: crash__method=none, crash_perturb=0, lemke_start_ type=slack,
nms__initial reference_factor=10, nms_memory_size=2, nms_ mstep_ frequency=1, proxi-
mal_perturbation=0
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Another smart trick is to give the solver some start values. Especially if the
same model is run with slightly different values, for example different water values.
Since the solver among other techniques uses Newton’s method, the start values
makes a huge impact. A value with all the values are created and loaded with the
following commands:

option savepoint = 1;

Execute_loadpoint 'Model-name_p’

A normal way of improving the solution time is to remove and fix variables, but
we experienced that fixing variables didn’t result in a much smaller solution time.
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