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Abstract

In this thesis we combine multivariate time series modelling with real options the-
ory to value a combined cycle gas turbine. We propose a novel price model with
co-integrated power, gas and carbon prices, with multivariate stochastic volatility
and MNIG distributed errors. The estimated model is found to outperform com-
peting specifications in terms of higher likelihood and lower information criteria.
We implement a Least Squares Monte Carlo (LSM) simulation to value the plant,
incorporating ramp times, startup costs and variable plant efficiency. We take
into account that day-ahead prices are settled the day before prices take effect,
which is often overlooked in related literature. We find that ignoring this leads
to suboptimal choices and a lower value estimate. An analysis of the regressions
in the LSM algorithm reveals that the choice of basis functions has a significant
effect on the estimated value of the plant. Particularly, for a low-efficiency plant,
a regression on the spark spread underestimates the value by 20% compared to
a regression on both the electricity price and the fuel cost components. This
implies that in spread option valuations where the LSM is applicable, simulating
all asset or commodity prices may be advantageous over simulating the spread
alone.



Sammendrag

I denne masteroppgaven kombinerer vi multivariat tidsrekkemodellering med real-
opsjonsteori for å estimere verdien av et kombinert gasskraftverk. Vi foresl̊ar en
modell for strøm-, gass- og karbonpriser som hensyntar sesongvariasjoner, koin-
tegrasjon, stokastisk volatilitet og ikke-Gaussisk oppførsel. Parameterestimering
og testing viser at en CCC-GARCH-modell med MNIG-fordelte residualer fanger
opp prisdynamikken vesentlig bedre enn de alternativene vi tar for oss. Videre
bruker vi Least Squares Monte Carlo-simulering (LSM), og verdsetter kraftverket
under fysiske beskrankninger som inkluderer variabel effektivitet, startkostnad-
er og ledetid i produksjonsendring. Vi tar ogs̊a hensyn til at prisene i et day
ahead-marked er kjent dagen før de blir gjeldende, et faktum som ofte oversees i
litteraturen, og viser at å ignorere dette fører til suboptimal produksjonsstyring
og underestimering av kraftverksverdien. En analyse av regresjonsform i LSM-
algoritmen avdekker at å simulere alle r̊avareprisene i stedet for en spread alene
gir et mer realistisk verdiestimat. Spesifikt viser vi at en univariat regresjon es-
timerer verdien 1% for lavt i et scenario med høy effektivitet, og 20% for lavt
ved lav effektivitet. Dette resultatet kan generaliseres til verdsetting av andre
spreadopsjoner hvor LSM-algoritmen kan brukes.
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Table 1: Commonly used abbreviations

ADF Augmented Dickey-Fuller, a statistical test
AIC The Akaike Information Criterion
BEKK Baba, Engle, Kraft and Kroner, a class of volatility models
BIC The Bayesian Information Criterion
c Carbon, EUA or CO2 quota
CCC Constant Conditional Correlation, a volatility model
CCGT Combined Cycle Gas Turbine
CO2 Carbon Dioxide, a greenhouse gas
CSSt Clean spark spread on day t, the profit contribution of the plant
DCC Dynamic Conditional Correlation, a class of volatility models
el Electricity or power
EM Expectation Maximization, a parameter estimation algorithm
EUA EU Allowance, a permission to emit CO2

EU ETS European Union Emission Trading Scheme
g Natural gas
GARCH Generalized autoregressive conditional heteroskedasticity,

a term for time varying volatility models
HRSG Heat recovery steam generator, a component in a CCGT
HQ Hannan-Quinn, an information criterion
KPSS Kwiatkowski-Phillips-Schmidt-Shin, a statistical test
ICE Intercontinental Exchange, a commodity exchange in the UK
LR Likelihood Ratio, a test statistic
LSM Least Squares Monte Carlo, a valuation algorithm
MNIG Multivariate normal-inverse Gaussian, a probability distribution
MWh Megawatt hour, an energy unit
NBP National Balancing Point, a virtual gas hub in the UK
NPV Net Present Value, a financial value estimate
OLS Ordinary least squares, a type of regression
SC Schwarz Criterion, an information criterion
VAR Vector autoregressive, a time series model
VECM Vector error-correction model, a time series model
QML Quasi-maximum likelihood, a parameter estimation framework
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Table 2: Commonly used symbols

χ Steepness parameter in the MNIG distribution
α Speed of error correction
αGARCH ARCH-coefficient in conditional volatility
b Coefficient in LSM regression
β Co-integrating vector
βGARCH GARCH-coefficient in conditional volatility
cvar Variable cost in the power plant, EUR/MWh
d Dimensionality of model/number of variables
δ Scale parameter in MNIG distribution
E Overall efficiency of CCGT
εt Unspecified residual, used for illustration purposes
∆cF Change in fuel cost
γ Skewness vector in MNIG distribution
Γ Covariance structure matrix in MNIG distribution
Ht Conditional covariance matrix
h Univariate conditional volatility in CCC model
IC Carbon intensity of gas, in tonnes/MWh
κ Coefficients in seasonal component regression
L Heat rate for a specific plant
LM,t Market heat rate
L∗
M,t Market heat rate accounting for plant-specific variable cost

m Scenario index in LSM algorithm
µt Short-hand for co-integrated mean equation
µ Location vector in MNIG distribution
Pi Matrix of coefficients for endogenous lags in VECM model
pt Price at time t, in Euros, of electricity, gas or carbon
Π Matrix of coefficients in error correction term in VECM model
Φ A constant in the VECM model
Ψ Coefficients for weekdays

qel,gasij,t Optimal consumption of gas or production of electricity in a state transition
R Coefficient matrix in CCC model
rij,t Profit accrued by going from production state i to j
ρ Risk-free discount rate
s(t) Seasonal component in commodity prices
t Time index (occasionaly appears in the name of the Student’s t distribution)
Θ Dummy variable matrix for weekdays
θ Adjustment to γ to get risk neutral MNIG distribution
Υ Vector of residuals in Xt

Vi,t Value of the CCGT being in state i at time t
ω Constant in conditional volatility
Xt Vector containing the natural logarithms of the commodity prices
X̄t Vector of de-seasonalized log prices
Zt Vector of i.i.d. errors
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1 INTRODUCTION

1 Introduction

Large investments are needed in European power generation capacity in the com-
ing decades. Around 60% of the generation capacity was built more than 20
years ago, and 40% more than 30 years ago. The European Union emission trad-
ing scheme (EU ETS), designed to meet greenhouse gas reduction targets, further
makes low-efficiency fossil fuel plants less profitable. Aging coal and low-efficiency
gas power plants are likely to be replaced by modern combined cycle gas turbines,
CCGTs. A CCGT can achieve efficiencies of around 60%, and is flexible enough
to shut down in low demand periods, making it an ideal intermediate and base
load power plant. Since 1990, most of the capacity additions in the UK has been
gas-fired power plants, and CCGT capacity increased 28% from 2005 to 2010.

For a power plant operator, a credible valuation of generation assets is needed
to make investment decisions. Increasing amounts of efficient coal and gas fired
power plants, combined with feed in tariffs for renewable energy, has changed
much of the business case for gas fired power plants. Traditionally, operators of
such plants would hedge revenue with futures contract and run base load, while
today the investment value is more dependent on a plant’s ability to alter its
output when prices change rapidly (see e.g. Timera Energy (2011)). This in-
creases the complexity of the valuation. One needs to take into account both
the variability of cash flows and the operational constraints of the specific power
plant. In addition, a realistic assumption on price information arrival is neces-
sary to not underestimate the plant’s flexibility in production planning. In the
literature, there is a vast amount of research on both price models and opera-
tional constraints, but there is little research on how the discrepancy between the
arrival time of prices and the arrival time of price information affects the value
of a power plant.

Power generators receive cash flows from the spread between electricity prices
and the cost of fuel, which under the EU ETS also includes the cost of CO2

allowances. Power, gas and carbon prices display both non-Gaussian behaviour
and heteroscedastic volatility. The prices are bound by a co-integrating rela-
tionship, as the supply and demand of each commodity to varying degrees are
affected by the prices of the other two. In this thesis we value a CCGT in the
UK, proposing an accurate price model while taking operational constraints and
information timing into account. We provide an extensive analysis of price dy-
namics, and incorporate the aforementioned price attributes in a vector error
correction model (VECM) with CCC-GARCH volatility and MNIG distributed
residuals. Our specification outperforms all the alternatives considered in terms
of likelihood and information criteria. Taking a real options approach, we apply
a Least Squares Monte Carlo (LSM) simulation to value a plant, whose actions
are restricted by physical operational constraints. Assuming the power plant op-
erates in the day-ahead market, we also take into account that information about
the prices for a specific day arrives the day before the prices take effect. This
gives the power plant operator more time to plan the next day’s output than if
one assumes that price information arrives the moment prices take effect.

Although the CCGT valuation problem has been studied in various forms,
the authors have seen no related research with the same level of detail on both

1



1 INTRODUCTION

the price dynamics and the observation of operational constraints. With our
flexible valuation model, we analyze whether perfect foresight in prices is a valid
assumption1. We find that the answer is strongly dependent on the efficiency of
the plant, and that only high-efficiency plants justify this assumption. Traditional
simulation-based valuation techniques normally make a myopic assumption with
regards to price foresight, meaning that it is assumed that prices are only known
from the instant they take effect. This is a too strict assumption when prices are
determined on a day-ahead basis. We show that the implementation of a realistic
assumption on the arrival of price information increases the value of the plant
compared to the alternative.

Further, we find that the choice of regression form in the LSM algorithm im-
pacts the value estimate to a high degree. Specifically, we show that multivariate
regressions using price information on all three commodity prices outperform uni-
variate regressions on the clean spark spread alone. We therefore conclude that
simulating all commodity prices, taking their fundamental price relationship into
account, gives a more realistic value estimate than simulating the spread by it-
self. This result can be generalized to other multi-asset valuation settings where
LSM simulation is applicable, for example American style crack-spread options
commonly used in oil price hedging.

1.1 Price model literature

A vast amount of literature focuses on modelling electricity and gas prices. To
a varying degree, both commodities display stochastic volatility, regime changes
and spikes, depending on data frequency and the market under analysis. Volatility
clustering has been modeled by e.g. Escribano et al (2011) and Mu (2007), who
both find strong evidence of stochastic volatility in electricity and natural gas
prices, respectively. Geman and Roncoroni (2006) and de Jong (2006) model
power price volatility by focusing on sudden price spikes, and suggest two different
models: the former involving jumps such that if the price is above a threshold price
it jumps back down to normal levels, and the latter a regime-switching model.
Different GARCH models augmented with jumps are also frequently proposed for
gas prices, see e.g. Bermejo-Aparicio et al. (2010) or Chan (2009). Most of the
literature focuses on univariate modelling or consider the different commodities
exogenous to each other - assumptions that we find to be over-simplified in this
thesis. Johansen (1991) introduced the concept of vector error correction models
(VECM), and Bunn and Fezzi (2009) employ the Johansen framework to estimate
a structural VECM for power, gas and carbon prices. They show that carbon
prices are affected by gas prices, and that both power and gas prices are influenced
by shocks to the carbon price.

While Bunn and Fezzi assume a multivariate Gaussian distribution for the
errors, a lot of recent literature has been concerned with the non-Gaussian be-
havior of both equities and commodities. Benth and S̆altytė-Benth (2004) employ
the normal-inverse Gaussian distribution as the noise term in oil and natural gas
spot prices, and Andresen et al. (2010) fit the distribution’s multivariate form to

1Perfect foresight means that the decision maker has perfect knowledge of all future prices,
giving him the opportunity to make the optimal decision at all times.

2



1 INTRODUCTION

forward price returns at Nord Pool. Both papers find that the fit is superior to
the Gaussian counterparts.

Daskalakis et al. (2009) study the prices of carbon allowances on different
exchanges and conclude that a Geometrical Browinian Motion process augmented
by jumps exhibits higher likelihood than other processes examined in the analysis.
They also show that the different markets for carbon allowances do not provide
arbitrage opportunities. Urig-Homburg and Wagner (2009) find that carbon spot
and futures prices are linked by the cost-of-carry approach, and that due to cheap
storability, the convenience yields in carbon prices are close to or equal to zero.
Their results indicate that the price discovery of carbon allowances is led by
the futures market. Bataller et al. (2007) study several variables considered to
influence the price of carbon prices, including weather data. They find that the
most important factors in determining prices are the prices of emission intensive
sources, such as coal, crude oil and gas. Weather data showed little significance
except in the cases of extreme temperatures. For an extensive literature review
on the subject of carbon prices, see Chevallier (2011).

1.2 Valuation literature

The literature on power plant valuation can broadly be categorized in two sets,
according to methodology. The papers in the first category use real options
theory, while papers in the second category rely on operations research tech-
niques, stochastic or deterministic, to estimate a plant’s value. In the first cate-
gory, Abadie and Chamorro (2008) assume gas prices follow a geometric mean-
reverting process with normally distributed errors, while electricity prices are
assumed deterministic. They derive closed form solutions for the option value
of investing in a CCGT, and a CCGT that can switch to coal as its input fuel.
Näsäkkäläand Fleten (2005) extend the spark spread model to have two stochas-
tic, correlated factors, incorporating both uncertainty in equilibrium level and
short term variations. They derive expressions for investment thresholds, in terms
of spark spread levels, and for upgrading a base load plant to a peak load plant.
In Fleten and Näsäkkälä (2010) they use the same methodology and data, but
analyze the effect of an abandonment option, the effect of carbon prices and a
plant’s upper and lower value bound. Cassano and Sick (2009) use the Least
Squares Monte Carlo (LSM) algorithm, which is a dynamic programming sim-
ulation approach where continuation value is approximated by a least squares
regression. They estimate a regime switching model for the market heat rate
(the ratio of power prices to fuel prices), and use the Margrabe approach to valu-
ing a spread option. The LSM regressions are on a fourth degree power function,
and they find that the market heat rate has good explanatory power for the
plant value. Deng and Oren (2003) use the LSM algorithm on a gas power plant,
with special emphasis on correct modelling of operational constraints. Deng and
Xia (2006) extend the LSM approach to value a tolling agreement in which the
buyer has the right to either operate a power plant or to receive its output un-
der certain restrictions. The power and gas prices are assumed to be correlated
mean-reverting processes augmented with jumps, and they find that the plant
value increases with jumps in the power price. Los, de Jong and van Dijken

3



1 INTRODUCTION

(2009) argue that correlated price processes is not sufficient to model power and
gas prices’ fundamental relationship over a longer period. Thus, for a power plant
valuation, a co-integrating relationship should be estimated and be a part of the
valuation.

In the second category, Tseng and Barz (2002) employ a Monte Carlo simula-
tion to a multi-stage stochastic optimization model. They incorporate operational
constraints such as minimum on and off times and start-up costs. They conclude
that overlooking these constraints under-estimates the risks in the cash flows, but
they do not incorporate ramp times. Zhu (2004) presents the valuation problem
as a self-scheduling problem, and solves first a deterministic case via network op-
timization. He then generates price scenarios, and solves the deterministic model
in each case. A regression based method is then proposed to combine the solutions
to an optimal operations strategy under price uncertainty. Bjerksund, Stensland
and Vagstad (2008) compare valuation techniques for gas storages. They apply
a simple decision rule to a complex price process and a simple price process to
a more complex dynamic programming approach, and compare both of these to
a perfect foresight scenario. When benchmarked against the perfect foresight
scenario they conclude that the model with the more advanced price process per-
forms best, and that it is therefore more important to focus on the price process
than the optimisation technique.

The papers of Deng and Oren (2003), Tseng and Barz (2002) and Zhu (2004)
are especially concerned with modelling operational constraints, but neither of
them incorporate a difference in time between the arrivals of price information
and the arrival of prices, implicitly assuming zero foresight in prices.

This thesis uses some of the methods and results from the first category of
papers, but extends the methodology to combine the LSM approach with daily
granularity with deterministic dynamic programming within 24 hour periods.
Our valuation setting is very similar to what Bjerksund, Stensland and Vagstad
(2008) discuss, but we argue that it is possible, and even necessary, to combine an
accurate optimization with an advanced price process to obtain a realistic value
estimate.

The rest of the thesis is organized as follows: In Section 2, we describe the
development of de-regulated electricity and gas markets, as well as the EU emis-
sion allowance markets. We also present some basic facts about combined cycle
gas turbines. We analyze the price data and present the vector error-correction
model in Section 3. In Section 4 we describe the valuation model, as well as some
improvements that can be made when using daily decision points. The results
of the valuation, along with a sensitivity analysis and discussion, is presented in
Section 5, before we conclude in Section 6.
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2 INSTITUTIONAL BACKGROUND

2 Institutional background

In this section, we will introduce the relevant markets in which a power plant
operates, with a special consideration of the UK market. We first introduce the
markets for power, natural gas and carbon allowances, and then give a short
introduction to combined cycle gas turbines.

2.1 Market for electric power

The UK was the first country in Europe to liberalize the power market in 1989 un-
der the Electricity Act. The Electricity Act was followed up with the privatization
of the power sector in 1990. The Transmission System Operator (TSO), who dis-
tributes the physical power and maintains infrastructure, is still a state-controlled
entity as its function is crucial for the safety of electricity supply. The national
generator and retail company, Central Electric Generating Board (CEGB), was
privatized and split into three independent power-producing entities. The reason
for privatization was to allow for competition to create a more efficient market
both for consumers and suppliers of power. After the privatization, a wealth of
generating and retail electricity companies have been founded, leading to a more
complete and efficient market.

In the liberalized power markets of the EU and the Nordics, the price is deter-
mined by the principles of supply and demand; meaning that participants in an
auction agree on prices for a certain power measured in MW, or energy measured
in MWh. The non-storability of electricity prevents any stocking, creating the
need for a market that can regulate the supply on short time horizons. The power
generators use different technologies to produce power, with different marginal
cost of operations and production rates. For example, a run-of-the-river hydro
power plant has low operating costs and will produce almost all the time; it serves
as a base load plant. The marginal cost of coal fired plants is higher than for
hydro power plants, and in general gas fired plants’ costs are higher still. The
generators will produce power only when their marginal costs are covered by the
electricity price. As a result of the different marginal prices, a merit order curve
can be created, where generators are ranked by their marginal prices and produc-
tion capacity (Pöyry, 2010). See Figure 1 for an example. Because demand for
power is almost inelastic, the production patterns differ for generators placed on
different points on the merit order curve. A generator with low marginal cost will
usually have a continuous production, while generators with high marginal cost,
like gas-fired power plants, will have to shut down production when prices drop.
An inexpected supply increase on the lower end of the curve will give a drop in
prices. The entire merit order curve will then shift to the right, and the supply
curve will cross the demand curve at lower prices. Before the privatization of the
power market, CEGB used the merit order to set the price of electricity. Today,
the price is settled in the market, but the merit order concept is still the driving
force of electricity prices.

Power is traded on different markets, whos main difference is the time horizon
of the participants. The spot market is a physical market where day-ahead and
intraday contracts are traded for the next day. The futures and forwards market
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Figure 1: Illustration of the merit order curve (Pöyry, 2010).

serve longer-term hedging purposes and offer monthly, quarterly, semi-annual and
annual contracts. The Over-the-Counter market consists of private and bilateral
trades outside the power exchange.

In this thesis we will assume that the power plant is engaged in the day-
ahead market only. The day-ahead market is settled at midday using auctions
in which the price for the next day is settled by comparing total demand and
supply. The settlement price for each auction is defined as the marginal price
that balances the auction. This is the price that will be paid or received by all
participants in the auction regardless of their initial bid, as long as the bid is above
the settlement price for buyers, and below for sellers. The day-ahead structure
implies an important difference between the trading date and the delivery date.
The quoted date is the date of the transaction, whereas the delivery date is the
date during which the seller of a contract generates the stipulated amount of
power.

2.2 Market for natural gas

The UK market for natural gas was gradually liberalized during the period from
1986 through 1996, beginning with the privatization of British Gas in 1986. The
1995 Gas Act demanded that ownership of production and transmission of natural
gas should be split up as the transmission function is a natural monopoly while
production and sales would benefit from competition. British Gas was split into
a producing entinty, Centrica plc, that was privatized, and a state-controlled
transsmission entity, BG plc. In 1996, the market for natural gas was opened for
all participants, meaning that spot and futures contracts could be traded freely
on commodity exchanges. In the UK as in all liberalized gas markets, natural gas
is traded on the basis of either virtual or physical trading points, called market
hubs, where gas contracts are standardized to secure liquidity. Physical trading
hubs, like for example Zeebrügge in Belgium, are usually situated at entry points
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of gas pipelines or large storage facilities, and any commodity contract has a
designated point of delivery. Virtual trading hubs however, like the National
Balancing Point (NBP) in the UK, have no specific point of delivery; the gas is
considered delivered when it is injected into the pipeline grid. NBP is the largest
and most liquid gas trading hub in Europe. Other leading European trading
hubs include TTF in Holland, Zeebrügge in Belgium and Netconnect Germany
(NCG), formerly known as E.ON Gastransport (EGT). The electricity and gas
markets are closely connected in the UK. The power sector accounts for 34% of
the natural gas demand (DECC, 2011a), and gas-fired power plants provide 44%
of the country’s electricity production (DECC, 2011b). The relation implies both
that the electricity price might be a driver for the natural gas price, and vice
versa.

The standard natural gas contract in UK is traded on a day-ahead basis,
using contracts that are quite similar to the day-ahead contracts for electricity.
As the day-ahead contracts are only traded Monday to Friday, deliveries for
Saturdays, Sundays and Mondays will all be settled on Fridays (the same is valid
for holidays). The day-ahead contracts are essentially futures with a one-day
maturity, but are usually referred to as spot contracts. The contracts are settled
via midday auctions. Longer-term futures for monthly, quarterly, semiannual and
annual delivery are also frequently traded, as well as options on these. In addition,
there exist contracts for within-day delivery and other structures, but the trading
volumes in these contracts are only a fraction of the day-ahead market’s volume.

2.3 Market for carbon allowances

To comply with its obligations under the Kyoto protocol, the European Union
(EU) introduced the EU emissions trading scheme (EU ETS) in 2005. The EU
ETS is a cap-and-trade scheme, placing a fixed cap on the annual CO2 emissions
from the sectors that fall within the ETS. The cap is to be reduced each year
to conform with the Kyoto targets. One certificate, or EU allowance (EUA),
allows the holder of the certificate to emit 1 ton of CO2. At the end of each
year, companies must document their CO2 emissions and submit the according
number of EUAs to their national government. If they are left with a surplus of
EUAs these can be sold on one of the markets for carbon emissions trading. If
the company has a shortfall of EUAs, they must either buy the permissions on
the market or pay a fine of EUR 100/ton CO2 (which is not favourable compared
to a market price that has ranged between 6–32 EUR/ton CO2). Another way
to comply with the EU ETS is to buy certified emission reductions (CERs), wich
are certificates that document a UN-approved reduction of greenhouse gases in a
non-industrialized country.

The EUAs are organised in different commitment periods, where the first pe-
riod, from January 1st, 2005 to December 31st, 2007, was described as a test phase.
The second commitment period covers 2008-2012. Intra-phase banking and bor-
rowing is allowed, meaning that an EUA bought in one year can be banked and
used in the next year, or one can use it to cover an overemission during the
previous year, but no banking or borrowing was allowed between the first and
the second commitment period. As the Kyoto Protocol took effect in 2008, any
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banking from previous periods would put the EU in risk of incompliance with
Kyoto targets (Houser et al., 2008). Another reason for the banking ban may be
that the market imperfections from the test phase should not be transferred to
the second phase through banking (Chevallier and Alberola, 2009). The bank-
ing ban put severe pressure on spot prices for EUAs from 2006 to 2008, as it
gradually became clear that the cap on emissions was set too high, resulting in
an oversupply of certificates in that period. As a result, the prices of certificates
expiring before 2008 declined to zero, while those expiring after 2008 remained in
the range of 15-30 EUR/ton CO2. From 2008 onwards, banking and borrowing
is also allowed between commitment periods, eliminating the problem of prices
going to zero. The fact that EUAs has no cost of storage other than the cost of
capital creates an equilibrium between futures and spot prices based on the cost-
of-carry approach (Urig-Homburg and Wagner, 2009) with a convenience yield
close to zero.

EUAs are traded on several different commodity exchanges, the biggest of
which is ICE in the UK, with a market share of around 91%. Other significant
exchanges include Green Exchange, Nordpool, EEX and Bluenext. The members
of the EU ETS include the 27 EU countries, as well as Iceland, Norway and
Lichtenstein. The largest sectors include power production and industrials. The
aviation sector is included as of January 1st, 2012. In the first two phases, emission
allowances was distributed to companies according to their historical emissions,
while from the third phase, starting in 2013, the distribution will mainly be done
by auction.

2.4 Combined Cycle Gas Turbines

A gas-fired power plant converts natural gas to electricity by using the gas’ com-
bustion energy to heat and expand air. Air is compressed, mixed with natural
gas, and burnt in a combustion chamber. The hot exhaust gas is then expanded
through a gas turbine, making the turbine shaft rotate while the gas pressure de-
creases. The shaft often drives the compressor as well as an electricity-producing
generator. Several configurations of multi-stage compression and expansion are
available and in use in the industry. Modern gas turbines often have inter-cooling
and re-compression between compressor and turbine stages to enhance efficiency,
and a typical, modern gas turbine has an overall efficiency of 35–40%. However,
the gases leaving the turbine often has considerable heat energy which can be
used to power yet another power production cycle. A heat recovery steam gen-
erator (HRSG), or boiler, uses the hot exhaust gas to boil water. The steam is
then expanded on a steam turbine. The two power cycles together are called a
combined cycle power plant, or a combined cycle gas turbine (CCGT). Utiliz-
ing the spare heat in the gas turbine exhaust thereby improves the overall plant
efficiency E, which is in the range of 55-60% for modern CCGTs. A simplified
illustration of a CCGT is shown in Figure 2.

For a CCGT, the heat rate L is defined to be the units of gas required to
produce one unit of power. Its relation to the overall plant efficiency is L =
1
E

, and it varies with the temperature in the plant’s boiler. Thermodynamic
equations including gas flow rate, compressor and turbine pressure ratios, ambient
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Figure 2: Schematic illustration of a combined cycle gas turbine. The HRSG utilizes
spare heat in the exhaust gas to power a second power cycle, increasing overall efficiency.

temperature and heat exchanger temperatures are needed for exact calculations,
but in general the plant will have a constant heat rate once it reaches stable
operating conditions at its design capacity. At outputs of higher or lower power
than the design capacity, and during ramp-up and ramp-down, the efficiency will
be slightly impaired.

The plant’s revenue stems from selling power in the market, while the direct
costs are purchases of natural gas and carbon allowances. We denote the carbon
intensity of the gas IC , measured in tons of CO2 per MWh of gas. We refer
to the plant’s direct contribution margin as the clean spark spread, CSSt =
pElt −LtpGt − ICLtpCt , where pt is the price of the plant’s input or output and Lt is
the plant’s heat rate at time t. There are several markets in which the power plant
can trade natural gas, electricity and CO2 quotas. In this thesis, we will assume
that the plant purchases natural gas and sells electric power in the day ahead
market (spot market), and that it is bound by the European emission trading
scheme for CO2 quotas. As the CSS will vary for every power plant, the market
heat rate, LM is a more useful measure of the capacity utilization in the market.
LM is the ratio of power to gas prices, LM = pel/pg, or for markets under an
ETS; LM = pel/(pg + ICp

c). If the marginal power producer is a gas-fired power
plant, the market heat rate gives an indication of the marginal plant’s efficiency
EM = 1

LM
. A positive change of the market heat rate indicates that demand is

shifted to the right in Figure 1, or that supply is shifted to the left. Authors
including Cassano and Sick (2009) have used the market heat rate to value a
gas-fired power plant.

When the clean spark spread becomes negative, meaning that the market
heat rate falls below the heat rate of the power plant, it is no longer profitable
to produce power and the plant should ideally be switched off. However, once
the plant is switched off it will start to cool down. Switching the plant on again
requires a certain amount of gas to reheat the boiler, which takes a certain amount
of time (see Figure 3). The decision maker must include this consideration when
deciding to switch off; for example, if he expects the CSS to become positive
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again shortly, it might be more profitable to produce with a loss for a short
period than to cease production and incur natural gas and carbon costs when
restarting. Another consideration is that CCGTs can not ramp production up or
down instantaneously. It will normally have a minimum output and a maximum
output, and ramping up or down within these limits will take some time. As
discussed previously, this will affect the heat rate and thereby the plant’s CSS.

1

2

3

4

5

6

1

3
2

6
3

9
4

1
2
5

1
5
6

1
8
7

2
1
8

2
4
9

2
8
0

3
1
1

3
4
2

3
7
3

0.8

1.8

2.8

3.8

4.8

5.8

1
3
2
6
3
9
4

1
2
5

1
5
6

1
8
7

2
1
8

2
4
9

2
8
0

3
1
1

3
4
2

3
7
3

0

1

2

3

4

5

6

1

3
2

6
3

9
4

1
2
5

1
5
6

1
8
7

2
1
8

2
4
9

2
8
0

3
1
1

3
4
2

3
7
3

T [◦C] qg [MWh] t [h]

T [◦C]T [◦C]t [h]

Boiler
temperature

Heating gas
required

Heating time
required

Figure 3: Simplified illustrations of what happens after a plant is switched off. Left:
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3 Data analysis and price modelling

This section describes the data series used in the analyses and discusses their
most important properties with respect to price modelling. The prices we study
are the UK prices for electricity, natural gas and carbon allowances. A common
trait shown by all three data series is a gradual development from high volatility
and fat tailed returns distributions, to lower volatility and fewer spikes in the
later years of the data set. The shift is especially pronounced when comparing
the periods before and after 2009. We expect this shift to be a result of tighter
integration of power and gas markets, a more efficient market and, for carbon,
a result of the learning curve for market participants engaging in the relatively
new carbon market.

Electric power and natural gas prices are thought to be bound by a strong
relationship, because both a large part of UK’s electricity production uses gas as
its primary energy input, and a large part of the natural gas consumption is con-
sumed by power plants. In econometric terms, this would lead to an assumption
that the prices of the two commodities are cointegrated. With regards to carbon
allowances, the price of carbon affects the profitability of all fossil fuel power
plants, as well as any industrial plant that uses natural gas. The drivers that
affect the need for power and gas will also affect the need for carbon allowances.
We therefore see a potential for all of the three commodities to be co-integrated,
a hypothesis that we will devote part of this section to investigate.

In this section, we choose an appropriate price model, test its validity and
estimate its parameters. We develop a co-integrated model for the power, gas
and carbon prices with heteroscedastic volatility. We discuss several potential
models for volatility and residuals before concluding that a VECM model with
CCC-GARCH volatility and MNIG distributed error terms exhibits a superior fit
to competing models. We assume that the price model is on the form ln[P(t)] =
s(t)+µt+Υt, where P(t) is the column vector of prices at time t, s(t) is a function
of time that captures seasonality effects, µt is a deterministic mean equation and
Υt is a stochastic residual vector. Before analysing the data, we show a plot of
the complete data set and the descriptive statistics of the series, in Figure 4 and
Table 3 respectively.

Table 3: Descriptive statistics for power, gas and carbon prices. The data sets run
from October 15th, 2001 for electricity and gas and from April 22nd, 2005 for carbon.

All three sets end April 24th, 2012.

Power Gas Carbon
Mean 48.907 16.400 17.130
Median 44.405 14.784 16.020
Standard Deviation 23.648 7.848 5.075
Skewness 1.822 1.935 0.187
Excess Kurtosis 5.082 9.778 -0.446
Minimum 13.952 0.703 6.080
Maximum 228.095 96.724 32.250
Count 3163 3163 2135
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Figure 4: Plot of the complete data set for power, gas and carbon, 2002-2012. The
carbon series begins in 2005. Prices in EUR/MWh for electricity and natural gas, and

EUR/ton CO2 for carbon.

3.1 Power price data

The data set on power prices consists of day-ahead prices for the UK Power
Exchange. The data series runs from October 15th 2001 to April 24th 2012, a
total of 10.5 years. Weekend prices are available from June 2002 onwards. The
power prices are originally quoted in GBP/MWh, but all power and gas prices
in this thesis will be presented in EUR/MWh as this is easily comparable to
other European markets. The CO2 prices are also quoted in EUR. To remove
seasonal patterns in the power price, the logarithm of the prices is regressed on
a set of sine-cosine combinations (as used by, e.g. Heydari and Siddiqui (2010)
and Lucia and Schwartz (2002)) with periods of 1 year, half a year and three
months, as well as a trend term. Sine and cosine combinations captured more
of the variation in both power and gas prices than monthly or weekly dummies.
Eq. (1) shows the full regression, while Table 4 displays the significant coefficients
from its estimation.

ln pelt = κel0 + κel1 t+ κ2 sin(
2πt

365
) + κ3 cos(

2πt

365
) + κ4 sin(

2πt

183
) + κ5 cos(

2πt

183
)

+κ6 sin(
2πt

91
) + κ7 cos(

2πt

91
) + εelt

(1)

Figure 5 shows the log power price series xelt = ln pelt as well as the fitted price
and resulting residuals. A deterministic trend is included in the regression to
improve the fit of the sine/cosine terms, but we do not assume a deterministic
trend in the series. A stochastic trend, implying that the series are integrated
rather than trend stationary, is a more probable model for financial prices. We
will explore this further in Section 3.5.
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Table 4: Estimated coefficients in Eq. 1, describing the deterministic, seasonal compo-
nent of the power prices.

Variable Coefficient Std.Error t-value t-prob Part.R2

Constant 3.388 0.013 260.0 0.000 0.956
Time 2.08e-4 0.000 35.6 0.000 0.287
cos365 0.073 0.009 8.1 0.000 0.020
sin365 0.055 0.009 6.1 0.000 0.012
cos183 -0.025 0.009 -2.7 0.007 0.002
sin183 0.041 0.009 4.5 0.000 0.007

Figure 5: Top: Logarithm of power prices and its estimated seasonal pattern. Bottom:
Residuals after removing seasonal effects
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Day-of-the-week effects are also present, but the coefficients change signifi-
cantly throughout the data set (see Figure 6), rendering an estimation of dummy
variables for the whole data set rather useless. There may be several explana-
tions to the declining day-of-the-week effects, but we expect that the increase of
natural gas power in the UK fuel mix at the cost of less flexible power sources like
nuclear and coal (see Figure 7) is a large part of the explanation, as natural gas
power plants to a higher degree can adjust production to market demand. The
deregulation and integration of both UK and neighbouring electricity markets, as
well as increased transmission capacity to other countries, might also be part of
the explanation.
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Figure 6: Estimated day-of-the-week effect in electricity log returns over six different
two-year periods. The effect is clearly diminishing throughout the 10 years of data.
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Figure 7: Natural gas as a percentage of the fuel mix used in electricity production in
the UK (DECC, 2011b).

A visual inspection of the prices and the fitted price of Figure 5 reveals that
prices are expected to be at their highest during December and at their lowest

14



3 DATA ANALYSIS AND PRICE MODELLING

in April. We leave the estimation of weekday-effects for Section 3.5, where they
will be estimated for all three variables simultaneously. Inspecting the residuals,
we see that their volatility does not seem constant. Spikes in the price series are
also visible, but diminish throughout the period.

3.2 Gas price data

Day-ahead prices for the UK National Balancing Point (NBP) have been used
in the modelling of gas prices. As for the power price series, the data series
runs from October 15th, 2001 to April 24th, 2012, a total of 10.5 years. The
prices are originally quoted in GBP/therm, but are presented in EUR/MWh.
Performing the same regression as in Eq. (1) with the log prices of natural gas as
the endogenous variable, reveals a pattern similar to that of power prices. The
regression results are summarized in Table 5. The main difference is that the
lowest price for the year is expected in July rather than in April. The same
diminishing spike behavior can be observed in Figure 8.

Figure 8: Top: Log gas prices and its estimated seasonal pattern. Bottom: Residuals
after removing seasonal effects

Table 5: Estimated coefficients in Eq. 1 performed on the log gas prices.

Variable Coefficient Std.Error t-value t-prob Part.R2

Constant 2.270 0.013 170.0 0.000 0.902
Time 2.16e-4 0.000 36.2 0.000 0.294
cos365 0.031 0.009 3.3 0.001 0.003
sin365 0.173 0.009 18.6 0.000 0.099
cos183 -0.047 0.009 -5.1 0.000 0.008
sin183 0.048 0.009 5.2 0.000 0.008
cos91 -0.025 0.009 -2.7 0.007 0.002
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3.3 Carbon price data

In modeling carbon price data, we use first position futures prices from ICE.
We use futures prices that are valid in the second phase of the EU ETS, thereby
avoiding the problem of spot prices declining to zero during 2007 (see Section 2.3).
The series of log carbon prices is shown in Figure 9. The data set runs from April
22nd, 2005 to April 24th, 2012, a total of seven years, and is quoted in EUR/ton
CO2.

For the sake of completeness, we also run the least squares regression in Eq. (1)
for carbon prices. This results in significant coefficients on annual and semi-
annual sine functions, as well as a negative trend. However, due to the low cost
of carry of carbon certificates (Urig-Homburg and Wagner, 2009) and the ability
of banking and borrowing certificates from adjacent periods, there is no economic
reason that seasonal patterns should exist. Neither do we see a reason for a
negative trend in the price of a commodity that, by its cap-and-trade construction,
has a declining supply through time. The significant coefficients can be explained
by carbon certificates being a very young commodity. As market participants have
learned and adjusted during the first few years, prices have risen from levels of
EUR 6/ton to EUR 30/ton, and fallen back to EUR 7/ton. With only seven years
of data, each of these movements can give a seasonal pattern a high significance.
As the market for EUAs is open also to pure financial participants, any emerging
seasonal pattern should be neutralized by arbitrageurs. We therefore choose
to model the carbon price without trend or seasonal patterns, as the seasonal
patterns probably result from a spurious regression.

Figure 9: Top: Log carbon prices and its estimated seasonal pattern. Bottom: Resid-
uals after removing seasonal effects
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3.4 Stationarity

After removing the seasonal effects s(t), but not the deterministic time trends
or the constants, we are left with the de-seasonalized series X̄t = Xt − s(t).
We now investigate whether the three de-seasonalized time series contain unit
roots, i.e., whether they are I(1). A time series being I(1) means that they
have a stochastic trend that may or may not have a zero mean. We perform the
augmented Dickey-Fuller (ADF) unit root test (Said and Dickey, 1984) as well as
the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationarity test (Kwiatkowski et
al., 1992). The null hypothesis in the ADF test is that the series is I(1), meaning
that they have one unit root φ = 1, and in the KPSS test that the series is
stationary.

The result of the tests, for both the log price series and the log return series,
are shown in Table 6. As expected, the series for power, gas and carbon all
seem to be I(1). The ADF t-statistic for gas prices is significant on the 5% level,
indicating stationarity, but stationarity is strongly rejected by the KPSS statistic.
Non-stationarity in gas spot prices is consistent with research by e.g. Modjtahedi
and Movassagh (2005).

Table 6: Stationarity tests for power, gas and carbon prices and returns. * and ** mean
rejection of null hypotheses on the 5% and 1% level, respectively. The null hypothesis
of the ADF test is an I(1) series, and the null of the KPSS test is an I(0) series, so we

conclude that all three series are I(1).

Variable Sample size φ ADF statistic KPSS statistic
x̄el 3163 0.987 -2.688 36.723**
x̄g 3163 0.988 -2.889* 32.785**
x̄c 2135 0.998 -1.146 37.736**
∆x̄el 3162 -1.925 -13.798** 0.005
∆x̄g 3162 -1.410 -14.030** 0.006
∆x̄c 2134 0.072 -42.978** 0.133

Residuals of VECM model, Eq. 2a
υel 2135 -0.329 -13.456** 0.329
υg 2135 -0.417 -13.791** 0.172
υc 2135 -0.086 -12.791** 0.064

Significance levels
10% -2.57 0.347
5% -2.86 0.463
1% -3.43 0.739

3.5 Co-integration modelling

In Figure 10, we show the log price series after correcting the power and gas
series for seasonality. It is clear that power and gas prices follow each other’s
movements quite closely, while carbon carbon prices exhibit the same behaviour
more weakly. When two or more integrated variables share a common stochastic
drift, they are said to be co-integrated (Engle and Granger, 1987). In this section
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we test formally for co-integration, choose the specifications of the co-integration
model and estimate its parameters.

Figure 10: The logarithms of electricity, natural gas and carbon prices after correcting
for seasonal effects.

Within the Johansen framework (Johansen, 1991), a VAR(k) model may be
tested for co-integration with the trace test. The model contains k lags, chosen
by minimizing an information criterion, and can be rewritten as follows:

X̄t =Φ +
k∑
i=1

ΛiX̄t−i + Υt (2a)

∆X̄t =Φ + (Λ1 + . . .+ Λk)X̄t−1 − (Λ2 + . . .+ Λk)∆X̄t−1 (2b)

− (Λ3 + . . .Λk)∆X̄t−2 − . . .−Λk−1∆X̄t−k+1 (2c)

=Φ + ΠX̄t−1 +
k−1∑
i=1

Pi∆X̄t−i + Υt (2d)

where X̄t is the vector of de-seasonalized log prices, Φ ∈ R is a constant,
{Λi,Π,Pi} ∈ Rd×d are matrices of coefficients, and Υt ∈ Rd is the vector of
residuals. When all d variables are I(1), ∆X̄t is stationary, and the linear combi-
nation(s) ΠX̄t−1 must also be stationary. The trace test is a test on the rank of
the matrix Π with the null hypothesis that the rank r ≤ r0. If 0 < r < d, then
X̄t is said to have r co-integrating relations. When modelling the logarithms of
electricity, natural gas and carbon prices, we get d = 3 and X̄t = [x̄elt , x̄t

g, x̄ct ]
ᵀ.

Both the Akaike Information Criterion and Akaike’s Final Prediction Error rec-
ommend k = 8 endogenous lags (note that we only use the data from April 22nd,
2005, as this is where the carbon series starts).

From the trace test reported in Table 7, it is clear that we reject the hypoth-
esis of the rank being zero, but we cannot reject it being less than, or equal to,
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Table 7: Johansen’s trace test. The rank under H0 is r0, and LR refers to the likelihood
ratio. We reject the hypothesis that the rank is equal to zero. We can not reject that

it is less than, or equal to, one.

r0 LR p-value
0 59.74 0.00
1 15.92 0.18
2 1.71 0.82

one. We conclude that there exists one co-integrating vector between the loga-
rithms of electricity, natural gas and carbon prices. The long term matrix Π can
be decomposed into Π = αβᵀ, such that the term αβᵀX̄t−1 can be interpreted
as the correction caused by deviations from the co-integrating relationship. The
co-integrating vector is βᵀ and the coefficients in α are the speeds of correction
for each variable. For this reason, Eq. (2d) is known as a Vector Error Correc-
tion Model (VECM). In our setting, the constant term Φ should be a part of
the long term relationship between the variables. The long term relation βᵀX̄
has an equilibrium level Φ 6= 0 that the prices revert towards. Although there
does not exist an exact mathematical relationship between the average CSS and
eΦ, the two values are closely connected. For example, when the fuel costs are
constant, E[CSS] = ϑ0 + ϑ1e

Φ. The economic interpretation of the vector β is
the price elasticities of Pt. We estimate α under the assumption that Φ 6= 0. As
discussed in Section 3.1, the weekday effects have changed considerably between
2005 and 2012. To model this phenomenon while keeping the model as parsi-
monious as possible, we include different dummy variables for weekdays before
and after January 1st, 2009. This should filter out the effects of less liberalized
and interconnected markets, as well as the lower percentage of natural gas in the
electricity mix, in the years before 2009. The VECM is therefore:

∆X̄t = α(βᵀX̄t−1 − Φ) +
l∑

i=1

Pi∆X̄t−i + ΨΘt + Υt (3)

where l is not necessarily equal to k, but chosen to minimize an informa-
tion criterion while removing significant autocorrelation in the residuals Υt. The
dummy variables for weekdays are contained in the vector Θt, and their associ-
ated coefficients in the matrix Ψ. Guided by the Hannan Quinn criterion, we
choose l = 2 and estimate Eq. (3). The estimation was performed in the JMuLTi
software (Lütkepohl and Krätzig, 2004). The coefficients α,β and P that are
significant at the 5% level are shown in Table 8, while insignificant parameters
have been set to zero. The full list of parameters, weekday coefficients and cor-
responding t-values can be found in Appendix A.
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Table 8: Significant coefficients in the VECM of Eq. (3). The model has significant
coefficients in the two first lags, and one co-integrating vector β.

Coefficient ∆x̄elt ∆x̄gt ∆x̄ct
αᵀ -0.089 0.035 0.000
β 1.000 -0.805 -0.307
Φ 0.842 0.842 0.842
∆x̄elt−1 -0.200 0.000 0.000
∆x̄gt−1 0.085 -0.054 0.000
∆x̄ct−1 0.000 0.249 0.072
∆x̄elt−2 -0.131 0.000 0.000
∆x̄gt−2 0.000 -0.086 0.000
∆x̄ct−2 0.000 0.000 0.000

In Table 8, rows 4, 5 and 6 constitute P1 and rows 7, 8 and 9 constitute
P2. Each column correponds to the effect on a different variable. We see that
the coefficients have reasonable signs, e.g., the correction to ∆x̄elt is negative if
x̄elt−1 − 0.805x̄gt−1 − 0.307x̄ct−1 − 0.842 > 0. It is also evident from the table that
carbon prices are not affected by deviations from the long term equilibrium (its
α coefficient is zero), even though it has a significant effect on both electricity
and gas prices (its β coefficient is not zero). This is in line with the results of
Bunn and Fezzi (2009).

3.6 Residual analysis

Examining the autocorrelation function of the residuals Υt, shown in Figure 11,
we see that there is very little autocorrelation left.

However, a multivariate ARCH-LM test (Engle, 1982) with one lag on the
residuals has a test statistic of 112.66. This means that the null hypothesis
of no multivariate ARCH effects is rejected, even at the 1% level. We get the
same result when performing univariate ARCH-LM tests on each residual υt. We
therefore need to model the heteroscedasticity, and look for candidates that can
incorporate multivariate effects.

3.6.1 Stochastic volatility modelling

To model the ARCH effects, we estimate five different multivariate GARCH(1,1)
models and select one by three different information criteria. All models as-
sume that Υt = H

1/2
t Zt where Ht ∈ Rd×d is a conditional covariance matrix,

and Zt ∈ Rd is a vector of i.i.d. errors. The estimation is performed in a Quasi
Maximum Likelihood (QML) setting, where we assume a multivariate Gaussian
error distribution for Zt. Bollerslev and Wooldridge (1992) show that QML es-
timates are consistent, even if the assumption of normality in the i.i.d. errors
is violated. As we shall see below, a better fit is indeed obtained with a more
flexible distribution, known as the multivariate normal-inverse Gaussian (MNIG)
distribution.

The two first multivariate GARCH models are the Scalar BEKK(1,1) and
Diagonal BEKK(1,1) models (Baba, Engle, Kraft and Kroner, 1991), in which

20



3 DATA ANALYSIS AND PRICE MODELLING

Figure 11: The autocorrelation functions of the residuals of the VECM model. The
graph shows the first 42 lags of power, gas and carbon prices from the top to the bottom

respectively.

the conditional covariance matrix is assumed to follow the process:

Ht = CᵀC + AᵀΥt−1Υ
ᵀ
t−1A + BᵀHt−1B (4)

In the Scalar BEKK model, A and B are scalars, while in the Diagonal BEKK,
they are diagonal matrices of coefficients. For more details on these models, see
(Baba, Engle, Kraft and Kroner, 1991).

The third and fourth models are the Dynamic Conditional Correlation model
specifications of Engle (2002) and Tse and Tsui (2002), respectively, while the
fifth model is the Constant Conditional Correlation model. The last three mod-
els assume that the conditional covariance Ht = DtRtDt, where the elements
in Dt = diag(h

1/2
11 , h

1/2
22 , · · · , h

1/2
dd ) are univariate GARCH models, and Rt is a

conditional correlation matrix. While model three and four assume two different,
lag-dependent specifications for the matrix Rt, model five restrics Rt to be con-
stant. We estimate the models in OxMetrics, but only on a subset of the data,
from January 1st, 2009 and onwards. This is because of the structural changes in
the markets in 2007 and 2008, as described in Sections 3.1 and 3.2. We believe
an estimation on this subset is more likely to reflect the future volatility behav-
ior than the entire data set. The logarithm of the QML, number of parameters,
Schwarz Criterion, Hannan-Quinn criterion and Akaike Information Criterion of
the models are reported in Table 9.
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Table 9: Log Quasi Maximum Likelihood and information criteria for the MGARCH
model candidates. The model with best fit is highlighted in bold figures.

Model log(QML) Parameters SC HQ AIC
Scalar BEKK 6129.18 9 -12.099 -12.127 -12.143
Diagonal BEKK 6148.47 13 -12.110 -12.149 -12.174
DCC, Engle 6163.87 6 -12.189 -12.207 -12.218
DCC, Tse and Tsui 6163.96 6 -12.189 -12.207 -12.218
CCC 6160.30 4 -12.195 -12.207 -12.215

Considering the results in Table 9, it is not quite clear which model to adopt.
The smallest information criterion is highlighted, and it seems that the DCC or
the CCC models provide the best fit. By principle of parsimony, we proceed with
the CCC model, thereby assuming the following:

Υt = H
1/2
t Zt (5a)

Ht = DtRDt, Dt = diag(h
1/2
11 , h

1/2
22 , · · · , h

1/2
dd ) (5b)

hii,t = ωi + αi,garchυ
2
i,t + βi,garchhii,t−1, i ∈ {1, . . . , d} (5c)

Zt ∼ i.i.d(0, I) (5d)

Note that adopting the CCC model is not the same as assuming that the
observed correlation is constant - it only means that we restrict the coefficients in
the matrix R to be constants. As the univariate volatility terms hii vary individ-
ually, a simulation of the residuals do indeed produce time varying correlation.
The estimated parameters in the CCC model are shown in Table 10.

Table 10: Estimated parameters of the CCC-GARCH model in equations (5a)-(5d).

Coefficient Value p-value
Power ω1 1.46e-4 0.011

α1,garch 0.126 0
β1,garch 0.795 0

Gas ω2 8.42e-5 0.008
α2,garch 0.180 0
β2,garch 0.789 0

Carbon ω3 3.68e-6 0.201
α3,garch 0.082 0
β3,garch 0.919 0

R matrix R2,1 0.280 0
R3,1 -0.045 0.137
R3,2 -0.128 0

The standardized residuals Z, are shown in Figure 12. Normality tests confirm
what is obvious from this figure: the null hypothesis of a Gaussian error distribu-
tion is rejected at any reasonable significance level. The univariate Jarque-Bera
statistics are 2609, 3146 and 271 for power, gas and carbon respectively, while the
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Figure 12: Standardized residuals Z from the Constant Conditional Correlation model
from 2009-2012. High kurtosis indicates a non-normal distribution.

vector normality test statistic is 943. We therefore need to look for other distri-
bution candidates to model the standardized residuals, and we consider here the
multivariate normal-inverse Gaussian distribution (MNIG) and the multivariate
skewed t distribution, which both have been used to model semi heavy-tailed dis-
tributions in financial applications before (see for example Aas, Haff and Dimakos
(2006), Benth and Henriksen (2011) and Andresen et al. (2010)).

3.6.2 The Multivariate Normal-Inverse Gaussian distribution

The univariate NIG distribution, and indications of its multivariate form, was
described by Barndorff-Nielsen (1977). Let Z be MNIG distributed with param-
eter vectors {µ,γ} ∈ Rd, a dispersion matrix Γ ∈ Rd×d and scalar parameters χ
and δ, such that Zt ∼MNIG(µ, δ,Γ, χ,γ). Note that not all parameter symbols
are consistent with what is common in the literature, for examle χ is commonly
denoted α, but we reserve α for its use in the co-integration model to avoid
confusion. The probability density function fZ(Z) may then be written as:

fZ(Z) =
δ

2
d−1
2

(
χ

πq(Z)
)
d+1
2 ep(Z)K d+1

2
(χq(Z)) (6a)

q(Z) =
√
δ2 + (Z− µ)ᵀΓ−1(Z− µ) (6b)

p(Z) = δ
√
χ2 − γᵀΓγ + γ(Z− µ) (6c)

where Ki(·) is the modified Bessel function of second kind with index i. The
vector µ is a location parameter, δ is a scale parameter, χ indicates the steep-
ness of the distribution and the vector γ indicates the skewness in d dimensions.
Even though it is possible to estimate the parameters via maximum likelihood
estimation when d = 3, the likelihood surface becomes very flat. The number
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of parameters makes the Expectation Maximization algorithm (Dempster et al.,
1977) a more tractable method. Øigard and Hanssen (2002) derive the EM algo-
rithm for the MNIG distribution, and Aas, Haff and Dimakos (2006) modify it
to fit the restrictions that E(Z) = 0 and cov(Z) = I.

An EM algorithm is guaranteed to converge, and when implementing it in
Matlab, we find that it converges quickly. With a convergence criterion that the
maximum change in any parameter is less than 10−6 in two consecutive iterations,
it only takes about 50 iterations to find stable parameter estimates with around
three years of daily observations. The EM algorithm for the MNIG distribution
and the parameter estimates are shown in Appendix B.1.

3.6.3 The multivariate skewed t distribution

There are several version and parametrizations of the skewed t distribution. It is
in the family of generalized hyperbolic distributions, and the parametrization we
use is described by e.g. McNeil et al. (2005). It has parameters to incorporate
both skewness in all dimensions and tail heaviness. We give the probability
density function and its estimation procedure in Appendix B.2, where we also
derive the equations necessary for estimating the parameters of its standardized
version.

3.6.4 Selecting the distribution

We fit the standardized MNIG and the standardized skewed t distributions to the
standardized residuals, and compute their log-likelihoods. We do the same for
the multivariate Gaussian and Student’s t distributions for comparison. Whether
we select by the highest log-likelihood or the lowest information criterion, we
come to the conclusion that the MNIG distribution provides the best fit and
and the skewed t the second best fit. Note that the multivariate Student’s t
is a restricted version of the multivariate skewed t distribution, with skewness
vector equal to zero, and the multivariate Gaussian is a special case of the MNIG
distribution. Based on the results, we assume that the standardized residuals Z
are MNIG distributed for the rest of this thesis. The log-likelihood, number of
parameters, Akaike’s information criterion and the Bayesian information criterion
are summarized in Table 11.

Table 11: Results of fitting standardized multivariate distributions to standardized
residuals. The best fit according to each test is outlined with bold figures.

Distribution Log-Likelihood Parameters AIC BIC
MNIG -4326 17 8686 8782
Skewed t -8624 16 17280 17370
Student t -8803 1 17608 17613
Gaussian -9044 0 18088 18088

24



3 DATA ANALYSIS AND PRICE MODELLING

3.7 Risk-free approximation

When discounting the cash flows of our LSM simulation, we can either discount
the real cash flows using a risk-adjusted discount rate, or we can adjust the
cashflows to a risk-neutral measure and discount these using the risk-free rate.
As the volatility of each day’s cash flows depends on the level of the spark spread,
the risk-adjusted discount rate will differ for each point in the LSM simulation.
The calculation of such a discount rate is cumbersome and in the LSM literature
most authors use a risk-neutral measure of the simulated cash flows.

To perform a risk-neutral valuation, we implicitly assume that the market
is complete and that the cash flows of our power plant can be replicated. This
may be a bold assumption, but with the existence of a well-developed spot and
futures market for both electricity, gas and carbon, the variance of power plant
cash flows can to a large extent be hedged, resulting in a low-volatility cash flow
that, assuming no-arbitrage conditions, resembles a risk-free return.

For our price model to be utile in a risk-free valuation setting, we must sim-
ulate the prices so that their expected return equals the risk-free interest rate
ρ. Benth and Henriksen (2011) show that for a number d of MNIG-distributed
variables to all have an expected return of ρ, the only adjustment needed is to
add a vector θ to the existing vector γ of Eq. (6c), thereby changing the skewness
of the distribution. The vector θ is calculated by numerically solving a system
of d equations. In our model, however, the prices are in addition affected by
the CCC-GARCH structure and the vector error-correction. With these models
added to the residuals, providing an analytical solution to a risk-free distribution
is beyond the scope of this thesis. Rather, we exchange γ for γ+θ in our MNIG
model and use a heuristic to find a θ that ensures that E[ln(pt+∆t/pt)] = ρ∆t.
The optimization is computationally heavy. A large amount of simulations per
iteration is needed due to the fat tails of the distributions. The surface of the
problem is neither convex nor concave, with many local optima. Assuming a con-
tinuously compounded risk-free rate of ρ = 2.5%, we find the best approximation
to be θ = [−0.0010 0.0019 0.0002]ᵀ. The average return of 13 runs with 800
simulations per run is [0.0245 0.0254 0.0254]ᵀ with sample standard deviations
for the 13 runs of [0.0055 0.0056 0.0075]ᵀ for power, gas and carbon, respectively.
The returns are taken on a one-year simulation of prices after allowing for 20 days
of initial simulations.

To sum up, the price model has the following form:

Xt = X̄t−1 + s(t) + ∆X̄t + Υt (7a)

∆X̄t = α(βᵀX̄t−1 − Φ) +
2∑
i=1

Pi∆X̄t−i + ΨΘt + H
1/2
t Zt (7b)

Ht = DtRDt, Dt = diag(h
1/2
11 , h

1/2
22 , . . . , h

1/2
dd ) (7c)

hii,t = ωi + αi,garchυ
2
i,t + βi,garchhii,t−1, i ∈ {1, . . . , d} (7d)

Zt ∼MNIG(µ, δ,Γ, χ,γ + θ) (7e)

In this chapter we have shown a step-by-step approach to building a cred-
ible price model for the three commodities power, gas and carbon allowances.
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The model is composed of a seasonal component, a VECM model on the de-
seasonalized price series and a CCC-GARCH model with MNIG-distributed resid-
uals. The whole model is in essence only driven by three factors, the residuals Zt

of the MNIG distribution. We might have added other price drivers such as e.g.
weather and temperature variables, but as such variables are hard to simulate
without an extensive weather model, they have been omitted. During the rest of
this thesis, the price model will be used in simulations of prices to estimate the
value of a power plant trading in the three commodities.
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4 Valuing the combined cycle gas turbine

In this section we describe the simulation-based technique we use to value the
CCGT. We use the Least Squares Monte Carlo (LSM) algorithm, proposed by
Longstaff and Schwartz (2001). The LSM algorithm is a simulation based dy-
namic programming technique where the continuation value of an asset is approx-
imated with a least squares regression. During backward induction, the values
in the next time period are regressed on a set of problem specific variables in
the current time period. This regression approximates the continuation value,
implying that we do not assume perfect foresight. As start-up costs and ramp
times are present, the cash flows earned in each period depends on the choice of
production in the period(s) before. This makes our problem a path-dependent
problem, for which the LSM algorithm has proved effectful in related research
(see, e.g., Cassano and Sick (2009) or Boogert and de Jong (2008)). The algo-
rithm is also flexible enough to incorporate the operational constraints. We define
the state of the power plant as its power output for producing states, and the
boiler temperature for non-producing states.

A power plant may pursue different production strategies in terms of hedging
and marketing of electricity. For example, a large plant with little operational
flexibility may purchase gas and sell power on monthly forward contracts, to de-
crease exposure to spot price volatility. A smaller, highly flexible plant, could
rather trade in the hourly market and ramp down when the CSS becomes neg-
ative. In this thesis we assume a plant trading in the day-ahead market when
modelling the value of the power plant, but the valuation approach may easiliy
be generalized to any time granularity.

The auctions for gas and power day-ahead prices are settled at noon on day
t, meaning that at noon on any day, we know the price valid from midnight and
the next 24 hours, pt+1. From the day before we also know pt, the price valid for
the rest of the day. As new information arrives at noon, we define this to be the
moment where the power plant makes the decision on how much to produce for
the next 24 hours. Carbon allowances are not structured as day-ahead contracts,
but for simplicity we shall assume that the power plant operator also buys carbon
allowances at noon.

t [h]

t

24 12 24 12

t+ 1

pt pt+1

6

Arrival of price infor-
mation on pt+1

6

pt+1 valid from
midnight

Figure 13: Illustration of decision timing. Price information for the next day arrives at
noon. The prices are valid from midnight to midnight.
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When planning the production for the next 24-hour period, the power plant
operator needs to take the following elements into consideration:

• The power plant state at the arrival of new information (state i)

• The prices of power, gas and carbon for the rest of the day, Pt

• The prices of power, gas and carbon for the next day, Pt+1

• His expectations about the optimal state in which to end period t (state j)

All of these elements will affect the decision of whether and when to produce
power. Operational constraints also affect the decision: Assume, for example,
that the power plant at time t is idle when information about tomorrow’s prices
arrives. Based on the new information, the highest expected continuation value
is achieved by being in the maximum production state at time t+ 1. The prices
of electricity, gas and carbon will affect the optimal production profile. When
in the idle state, the plant has to consume gas to pre-heat the machinery before
reaching the minimum production state. Next, it has to ramp up from minimum
to maximum production. If the price of gas is high on day one and lower on day
two, it may be optimal to postpone the heating until the next day. However, the
CSSt+1 might also be so high that it is worthwile to pre-heat during day one so
that maximum production is achieved for every hour of day two.

While the value of being in state j at time t + 1 is unknown, the optimal
production between time t and t + 1, going from state i to j, is a deterministic
problem. Because we know pt and pt+1, it can easily be solved via dynamic pro-
gramming. The value Vi,t of the power plant at time t being in state i, conditioned
on choosing the optimal next state j, is expressed via the Bellmann equation:

Vi,t = arg max
j

{
ri,j,t + e−ρ∆tE[Vj,t+1]

}
(8)

where ri,j,t is the profit from choosing the optimal production profile, and ρ is
the risk-free interest rate. We implement the LSM algorithm with a daily granu-
larity, where the expected value of being in state j at time t+ 1 is approximated
with an OLS regression, and the optimal production planning between state i and
j is decided via deterministic dynamic programming. We first go through the de-
terministic production planning and then the LSM algorithm. Finally we propose
an approach to reduce computational time drastically. This is accomplished by
proving that the optimal production profile only depends on three ratios of prices,
such that we can pre-solve the dynamic program once for all ratios.

4.1 Deterministic production planning

The function to maximize in the deterministic dynamic program is the profit ri,j,t
in Eq. (8):

ri,j,t = qeli,j,t(p
el
t −cvar)+qeli,j,t+1(pelt+1−cvar)−q

g
i,j,t(p

g
t +p

c
t ·IC)−qgi,j,t+1(pgt+1+pct+1 ·IC)

(9)
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where qelijt, q
el
ijt+1, qgijt and qgijt+1 are the optimal production volumes of power

and consumption of gas for the periods before and after midnight. We define pelt ,
pgt and pct to be the corresponding prices of power, gas and carbon, cvar to be the
variable cost per MWh of power, and IC to be the carbon intensity of natural gas
as defined in Section 2.4.

The intraday production profile is optimized with an hourly granularity, tak-
ing the operational constraints of the power plant into consideration. First, we
discretize the state space of the power plant such that all transitions between
states take 1 hour. The characteristics of each state are the boiler temperature
for non-producing states, and the generator output for producing states. When
the total number of states is S, the matrix L ∈ Rd×d defines feasible transitions
such that:

lij =

{
0 , if the transition from i to j is feasible
−1 , otherwise

(10)

The dynamic program we need to solve is

V̄h(i, p
el
h , p

g
h, p

c
h) = arg max

j

{
rh(i, j, p

el
h , p

g
h, p

c
h) + V̄h+1(j) + lijB

}
(11)

where V̄h is the value of being in state i at hour h, rh is the revenue from
staying one hour in state i and B is a penalty imposed for infeasible transitions.
We also define rh = q̄elh (i, j)pelh − q̄

g
h(i, j)(p

g
h+ ICp

c
h) such that q̄h(i, j) is the hourly

production of electricity or consumption of gas when going from state i to j.
These are predefined for each state transition. This problem is deterministic,
because ph = pt for h ∈ [1, . . . , 12] and ph = pt+1 for h ∈ [13, . . . , 24], or in other
words, both prices and production/consumption for all transitions are known
with certainty.

Note that the ri,j,t that we use in the LSM algorithm and Eq. (8) is just
the sum of the hourly profits, ri,j,t =

∑24
h=1 rh, conditioned on a sequence of

optimal state transitions. We obtain this sequence, and the resulting daily profit,
through traditional dynamic programming. In the LSM algorithm this intraday
production scheduling is calculated between a known initial state and end-state,
and we therefore impose the penalty B for not ending up in the desired state, as
a boundary condition.

4.2 The LSM valuation algorithm

Starting at time T −1 and working backwards, the LSM algorithm solves Eq. (8).
We need boundary conditions for time t = T and t = 1 to start and terminate the
algorithm, and we therefore define Vi,T = rii,t for all states i, and that the plant
is idle in t = 1. The LSM algorithm gives, for each scenario m ∈ [1, . . . ,M ], time
period t ∈ [1, . . . , T ] and state j ∈ [1, . . . , S], an expected continuation value of
ending time period t in state j. The expected continuation value is based on a
least squares regression where the actual values in t+ 1 are regressed on different
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variables in t, for example the clean spark spread.

V̂j,t+1,m =
l∑

k=1

bkfk(·) (12)

where bk are the coefficient estimates in the regression. The basic functions
fk(·) can have several forms. Longstaff and Schwartz (2001) suggest power func-
tions, Laguerre polynomials and several other functions of the relevant variables,
including their cross products. In our setting, the variables are the prices of the
commodities and the state of the power plant. The inclusion of the power plant
state in the regression can be avoided by structuring the problem as a three-
dimensional grid (time × scenarios × states). The expected value is calculated
for each state, and will then only depend on the prices. See Boogert and de Jong
(2008) for more details on reducing the dimensionality of the regressions.

At time T − 1 we compute the expected values V̂j,T,m for all states j and in
each scenario m. For this, we use the boundary condition and a regression. We
proceed to pick the next state j that maximizes {ri,j,t + e−ρtV̂j,T,m} where the
profit ri,j,t is calculated as described in Section 4.1. The actual values Vi,T−1,m

resulting from this decision are computed, and these steps are repeated backwards
in time until t = 1. The Monte Carlo simulated value of the power plant is defined
as 1

M

∑M
m=1 V1,1,m.

4.3 Improving the computational speed

Solving a deterministic dynamic program for every 24 hour period in all scenarios
and for all feasible state transitions is computationally heavy. We rather exploit
the fact that the only input we need for solving the valuation problem with a
daily granularity is the amount of electricity produced (qeli,j,t and qeli,j,t+1) and gas
consumed (qgi,j,t and qgi,j,t+1) during the 24-hour period. The actual production
profile, meaning the specific choice in each hour, is irrelevant for the daily profit
calculation. We also use the result that the optimal intraday production profiles
only depend on three ratios of prices rather than the actual prices2, namely:

L∗
M,t =

pelt − cvar

pgt + IC · pct
(13)

L∗
M,t+1 =

pelt+1 − cvar

pgt+1 + IC · pct+1

(14)

∆cF,t =
pgt+1 + IC · pct+1

pgt + IC · pct
(15)

where L∗
M,t is the market heat rate when taking the specific plant’s variable

cost into consideration, and ∆cF,t is the relative change in fuel costs from time

2Much of the related literature make a myopic assumption, ignoring that the price is known
before it takes effect. When making this assumption, the optimal production profile only
depends on the market heat rate L∗

M,t. To see this, assume that price information arrives at
midnight and that the 24-hour period has only one price. In this setting, L∗

M,t = L∗
M,t+1 and

∆cF,t = 1.

30



4 VALUING THE COMBINED CYCLE GAS TURBINE

t to t + 1. A proof of this is given in Appendix D. We can therefore solve the
deterministic production planning program in Section 4.1 for a range of L∗

M,t’s,
L∗
M,t+1’s and ∆cF,t’s that span their minimum and maximum values, and store the

optimal production and consumption values for all start states i and end states
j. These values, qeli,j,t and qgi,j,t, are the sum of the q̄h(i, j) conditioned on optimal
transition choices. Thus, instead of calculating the optimal production profile for
each day and each scenario in the LSM algorithm, we calculate the ratios L∗

M,t,
L∗
M,t+1 and ∆cF,t from the prices at any given time, and extract the relevant q’s.

L∗
M,t L∗

M,t+1

Figure 14: Example of 24 hour profits incurred from optimal intraday production pro-
file. Shown here for ∆cF,t = 1 (fuel cost at t+ 1 equal to fuel cost at t) and fuel costs

pg1 + IC · pc1 = 20 .

Because we must make finite matrices of pre-stored qs, we may make a small
rounding error when computing the (L∗

M,t, L
∗
M,t+1,∆cF,t) in simulation and round-

ing the numbers down to the nearest pre-defined ratio. However, at the threshold
between two (or more) production profiles, the profit will be the same regardless
of profile. Figure 15 shows the total production of power and consumption of gas.
We see that the total production of power and gas may change dramatically for a
small increment in e.g. L∗

M,t, while the accrued profit (Figure 14) is a continuous
function.
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L∗
M,t L∗

M,t+1

L∗
M,t L∗

M,t+1

Figure 15: Optimal production of electricity and consumption of gas from deterministic
dynamic program. Top: 24-hour production of electricity, qel4,5(L∗

M,t, L
∗
M,t+1) for ∆cF,t =

1. Bottom: 24-hour consumption of gas, qg4,5(L∗
M,t, L

∗
M,t+1) for ∆cF,t = 1.
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5 Results and discussion

5.1 Power plant specifications

We will here value the cash flows of a power plant with realistic specifications,
using the methods described in Sections 3 and 4. With the possible plant states
defined by its power output and temperature, we discretize the state space to five
states; three of which are non-producing and two of which are producing states.
We refer to the idle states as the Cold state (idle for a long time), the Warm state
(intermediate state in cooling down) and the hot state (recently switched off).
The Max state produces at maximum capacity, while the Min state produces at
minimum capacity. For an illustration of how we discretize the state-space, see
Figure 16. The CCGT has the following operational characteristics3:

• Minimum output of 150 MW at 55% efficiency

• Maximum output of 300 MW at 50% efficiency

• Gas used for pre-heating from the cold state: 200 MWh

• Gas used for pre-heating heating from the warm state: 100 MWh

• Gas used for pre-heating heating from the hot state: 50 MWh

• State transition times, as summarized in Figure (17)
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Figure 16: The plant cools continuously down from producing temperature to ambient
temperature. In the valuation model, we discretize the states as shown in this graph.

In the intraday production optimization we discretize the transitions further
into S = 23 states to ensure that all transitions take exactly 1 hour. This im-
plies that between, for example, the warm state and the hot state, we create 11
intermediate states. Cooling down from hot to warm, which takes 12 hours, will

3Kindly provided by Centrica, plc.
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Figure 17: State transition times in the discrete state-space.

be modelled as doing 12 downward jumps from 20 to 19, 19 to 18, et cetera. The
opposite transition, from warm to hot, takes only two hours and is therefore be
modeled as taking two jumps of six states each.

Transition between maximum production and minimum production, i.e. ramp-
ing up or down, are modelled with qelij = (qelii + qeljj)/2 for i, j ∈ {Min,Max}. We
assume the lowest plant efficiency while ramping.

We further assume that the plant’s production does not influence market
prices of neither electricity, gas nor EUAs, and that the plant is only active in
the spot market. We use risk-neutral valuation, and assume a risk-free rate of
2.5% p.a.

5.2 Price Simulation

To simulate prices from Eq. (7), we start with drawing the random numbers
Zt from the risk-neutral MNIG distribution. We use the fact that the MNIG
distribution is a normal mean-variance mixture with an inverse-Gaussian mixing
distribution (see Appendix B), and sample Y ∈ R3 from N3(0, I) and W ∈ R
from IG(δ,

√
χ2 − (γ∗)ᵀΓ(γ∗), such that

Zt = µ+WΓγ∗ +
√
WΓ1/2Y ∼MNIG(µ, δ,Γ, χ,γ∗) (16)

with γ∗ = (γ+θ) as the risk-neutral adjustment. At each time t we calculate
the three univariate GARCH volatilities hii,t and the conditional covariance ma-
trix Ht. Then the co-integrated mean equation is computed, and finally we add
the seasonal component s(t). Figure 19 shows the distribution of one-year price
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simulations, while Table 12 shows the descriptive statistics of the simulated prices
along with the descriptive statistics for power, gas and carbon prices during the
period used for estimation of the price model.

Table 12: Descriptive statistics for power, gas and carbon prices from 2009-2012 against
the descriptive statistics of 1000 one-year simulations. Means and medians are higher
as the start prices of the simulations are higher than the mean in the 2009-2012 period.

Actual prices Simulated prices
Power Gas Carbon Power Gas Carbon

Mean 49.13 17.60 12.96 56.96 19.79 13.28
Median 50.27 18.44 13.62 55.24 19.47 13.01
Standard Deviation 9.18 5.67 2.66 11.51 4.58 2.29
Skewness 0.62 -0.19 -0.94 0.49 0.23 0.26
Excess kurtosis 1.93 -0.95 -0.01 0.10 -0.40 -0.23
Minimum 30.81 4.24 6.08 37.59 11.64 9.47
Maximum 103.66 40.15 16.88 90.33 30.80 18.82
Count 1,008 1,008 1,008 365,000 365,000 365,000

We have tested the model specification with information criteria, but to fur-
ther test its robustness we perform a backtest on the actual data. At each time
step, we use the realized prices up untill time t to forecast 10,000 prices for t+ 1.
We save the 2.5 and 97.5 percentiles of the 10,000 forecasts, and thereby cal-
culate a 95% confidence interval for tomorrow’s price forecast. The real prices
and confidence intervals are shown in Figure 18, from January 1st and the next
400 observations. For 1,000 consecutive observations, the confidence intervals are
breached less than 5% for the three commodity price forecasts, with an average of
4.6%. As a comparison, we perform the same analysis with a multivariate Gaus-
sian distribution for the i.i.d. errors. The number of breaches averages 5.42%
across the three series, with a maximum of 6.25% for the natural gas prices. This
demonstrates the model’s ability to capture the observed price dynamics, and to
a certain degree forecast prices.

5.3 Valuation results

5.3.1 Convergence of values

In this section we present the most important results of our analyses. We first
find how many scenarios we must simulate before the value converges in the LSM
algorithm. Figure 20 shows that at least 1500 simulations are necessary to provide
an accurate estimate of the plant value. Using 6000 simulations of 365 days, we
create a reference case that serves as a benchmark for our further analyses. The
reference case has an average present value of 29.66 million euros per year, with
a standard deviation of 36.5%. For the rest of this section, every presented
simulation is performed using 1500 simulations, unless otherwise is stated. One
such simulation takes around 17.5 minutes to run in MATLAB R2011a on a 2.66
GHz Intel Core2 Duo computer running Windows XP.
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Figure 18: 400 consecutive forecasts from the price model. Actual prices in red, with
95% confidence interval for the forecast in black. Top: Power prices. Middle: Gas

prices. Bottom: Carbon prices.
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Figure 20: Convergence of LSM simulation. The value estimate converges at around
1500 simulations.

5.3.2 Comparison to a perfect foresight scenario

In the rest of this section, we will frequently compare the obtained value of a
simulation with the value obtained assuming perfect foresight. We will refer to
the ratio of estimated plant value to the value obtained through perfect foresight
as the relative value. The perfect foresight simulation is based on the same price
series as the tested simulations, but instead of estimating the continuation value
of each state using least squares regression, the continuation value of the next
state is known with certainty. The reference case obtains a relative value of
99.83% of the perfect foresight value, indicating that few errors are made in the
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5 RESULTS AND DISCUSSION

state transition choices. The reason that this high relative value can be reached
is because the efficiency of our reference case CCGT is so high that it is seldom
optimal to operate at any other level than maximum production. In the reference
case, the plant is switched off only 1.3 times per year, on average.

Figure 21 shows one run of price simulations with the corresponding power
production. The depicted scenario is among the more volatile ones, and is pre-
sented in order to show the effects of the market heat rate falling below the
specific minimum heat rate of our power plant. As the market heat rate is usu-
ally above the heat rate of our power plant, most simulations find it optimal to
keep production at the maximum level during the whole simulation period.

Figure 21: Results from an LSM simulation of 365 days. Top: Prices, converted to the
market heat rate LM . Bottom: The corresponding optimal production of electricity.

5.3.3 Impact of regression form

When choosing the optimal state transition, the LSM algorithm estimates the
continuation value for each state by using an OLS regression. The endogenous
variable is the set of simulated continuation values at time t + 1, while the re-
gressors can be any set of variables based on the information available at time t.
The choice of regressors and their functional form is therefore crucial to the value
estimate, as it directly affects the state transition choices. While much of the
related literature favours the spark spread or market heat rate as the regressor,
we argue that using both power, gas and carbon prices provides a more realistic
value estimate. As all three prices would be available to a plant manager, this
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additional information should be used in the decision rule. Below we show that
the multivariate regression indeed outperforms the univariate counterparts when
benchmarked against a perfect foresight scenario.

Longstaff and Schwartz (2001) suggest several different polynomials as the
basic functions in the LSM regressions. We consider here the power function
and Laguerre polynomial of different orders, as they are popular specifications in
the LSM literature. The purpose of this analysis is to examine whether our co-
integrated model where all three prices are available is advantageous to a model
that simulates the spark spread directly. We compare the power function and
the Laguerre polynomial of the spark spread, to a multivariate regression where
both electricity prices and fuel cost (the sum of gas and carbon costs) enter as
regressors. The latter regression has the form:

V̂j,t+1,m = b0 + b1p
el
tm + b2(pgtm + IC · pctm) + b3(peltm)2

+b4(pgtm + IC · pctm)2 + b5p
el
tm(pgt + IC · pctm)

(17)

Figures 22, 23 and 24 show the fit obtained by power functions, Laguerre
polynomials and two-variable regressions, respectively.

Laguerre, order 6, 
t=250, state=2 

Figure 22: Actual (blue) and fitted (red) continuation values, based on a 6th order
power function regression.

To test the impact of the regression form, we run the valuation algorithm
with 1st to 5th order power functions and Laguerre polynomials, and compare the
resulting relative value to the relative value obtained with Eq. (17). The results
are shown in Figure 25.
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Power function, order 6, 
t=250, state=2 

Figure 23: Actual (blue) and fitted (red) continuation values, based on a regression on
a Laguerre polynomial of order 6

Figure 24: Actual (blue) and fitted (green surface) continuation values, based on the
two-dimensional regression in Eq. (17)
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Figure 25: At the reference case efficiency, the univariate regressions estimate a relative
value that is 1% lower than the multivariate regression. At an efficiency of 41% this
effect is even more pronounced: The univariate regressions estimate the relative value

to be 81.5%, while the multivariate regressions estimate 98.4%.

From Figure 25 it seems clear that using univariate regressions consistently
underestimates plant value. This effect increases as the plant’s efficiency is low-
ered. We also estimate the value assuming 41% efficiency. Clearly, additional
information is contained in the full set of prices that consitutes a spread, com-
pared to the spread itself. As the three prices are available to a decision maker,
we argue that the multivariate regression provides a more accurate and realistic
estimate of the power plant value than univariate power functions and Laguerre
polynomials. This further implies that simulating the clean spark spread or mar-
ket heat rate alone, as a stationary process, may underestimate the value of the
CCGT. This result can be generalized to LSM valuation of other derivatives on
several assets, such as crack spread options, rainbow options or basket options.
For the rest of the thesis, we use Eq. (17) in the LSM algorithm unless otherwise
is stated.

5.3.4 Is perfect foresight a valid assumption?

Perfect foresight is a commonly used comparison to evaluate an optimization
technique, and it is occasionally assumed when valuing some producer with un-
certain cash flows. Our results show that under the price conditions we consider,
the perfect foresight assumption is a good assumption for base load power plants
where turning the plant off is seldom or never optimal. When the plant’s effi-
ciency is close to the marginal producer’s efficiency (whos contribution margin
is barely positive), this assumption is rejected because the number of risky deci-
sions on whether to switch on or off the plant increases. Figure 26 shows how the
number of turn-offs per year and the relative value with different efficiencies for
the CCGT. It seems clear that the estimation error is higher when the number of
switch-offs is highest, and we see that at 41% efficiency, which is not uncommon

41



5 RESULTS AND DISCUSSION

for single-cycle gas turbines, the perfect foresight assumption over-estimates the
value by 2%. We argue that the perfect foresight assumption is neither wrong nor
right, but its validity depends on the efficiency of the plant compared to current
market conditions.
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Figure 26: Simulation results using different levels of power plant efficiency. Relative
values are shown on the left axis and average number of switch-offs per year on the
right. The X-axis efficiency denotes the maximum plant efficiency, with the minimum

efficiency being 5 percentage points lower in all scenarios.

 -

 2

 4

 6

 8

 10

 12

 14

 16

 18

94.0%

95.0%

96.0%

97.0%

98.0%

99.0%

100.0%

 0.40  0.45  0.50  0.55  0.60  0.65  0.70  0.75  0.80  0.84

Relative value

# of switch-offs

Relative value # of switch-offs 
 

Reference  
case 

Φ

Figure 27: Simulation results with varying Φ. Φ is the equilibrium in the VECM model,
and a lower Φ indicates a lower average CSS. Relative value is shown on the left axis and
average number of switch-offs per year on the right. The parameter Φ is the constant
in the price equilibrium, and is therefore related to the expected clean spark spread.

5.3.5 Future developments in the spark spread

As around 60% of today’s European power generation was built more than 20
years ago, it is natural to assume that these will be replaced by newer, more
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efficient plants in the future. One result of this may be that the marginal pro-
ducer has a higher efficiency, thereby lowering the CSS and the market heat rate,
given that the marginal producer is still a gas-fired power plant. Our reference
case CCGT has a high efficiency, but as the average efficiency of the thermal
power generation park increases, it will shift our plant further to the right end of
the merit order curve. To analyse the implications of such a development, and
to test our model’s strength in an environment with when the CSS falls below
zero more often, we analyse how the plant value and the relative value is affected
by the parameter Φ in the price model. This parameter is the constant in the
co-integrating vector, and represents an equilibrium level of the log prices. Re-
call that the average spark spread is closely related to the value of eΦ and that
E[CSS] = ϑ0 + ϑ1e

Φ when fuel cost is constant. Figure 27 shows how the num-
ber of swhitch-offs and the relative value varies with Φ. Notice its similarity with
Figure 26. The effect of a lower Φ is much the same as assuming a lower efficiency
of the plant. The result of either is that the plant efficiency moves closer to the
average market efficiency, lowering the plant’s achieved spark spread.

To test the effect of a changing Φ on the plant value, the regression V0 =
%1 + %2e

Φ + %2e
2Φ expresses the estimated present value as a function of Φ. The

regression has an R2 of 99.94% for Φ ∈ [0, 0.84], meaning that the value of a
power plant to a large degree can be expressed from an expectation of Φ. A
value estimate based on this regression along with our simulated value estimate
is shown in Figure 28.
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Figure 28: The value of the plant can be estimated with small errors using a polynomial
on eΦ. The grey line shows the value obtained by the LSM simulations. The dotted
line shows the estimate based on the regression. The grey fan indicates the standard

deviation of the LSM simulations. R2 = 99.7%.

5.3.6 The effect of a myopic assumption on price information

Our model takes into account the knowledge of prices 12 hours in advance of
their arrival. Making a myopic assumption means that one assumes that price
information arrives at the same time as prices take effect. We will refer to our
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assumption of 12 hour knowledge of tomorrow’s price as a day-ahead assumption.
To measure the effect of the myopic assumption, we compare our valuation results
to a simulation based on a myopic assumption. Whenever new prices arrive, the
plant manager decides whether to switch states or not. If he decides to switch, the
order to switch is given immediately, meaning that the ramp-up or ramp-down
is always started in the first hour of the day. The resulting relative values are
shown in Figure 29.
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Figure 29: Value estimates using the myopic assumption vs. the day-ahead assumption
for different plant efficiencies. Modelling the power plant on a myopic assumption leads

to an undervaluation that increases with decreasing efficiencies.

The graph shows that ignoring the flexibility in intraday production schedul-
ing, and assuming a simple model with ony daily decision points, under-estimates
the plant value. At high efficiencies and present price conditions, the effect is very
small because the plant would always be running. However, at an efficiency 10
percentage points lower than the reference case, the simplified model underesti-
mates the value by 1.5%, and at 20 percentage points lower efficiency it under-
estimates by 3.5%. As the option to alter production at any hour is present at
a real power plant, we conclude that over-simplifying the optimization algorithm
can impair the accuracy of the value estimate quite significantly.

As a final analysis, we simulate the combined effect of both a myopic as-
sumption and a 4th degree Laguerre polynomial on the CSS, at the reference case
efficiency. The two effects alone yield relative values of 98.7% and 99.6%, respec-
tively. The simulation of both effects simultaneously yields a relative value of
84.8%. The interesting part here is that the combination provides an underesti-
mation of a larger magnitude than the product of their respective relative values
would indicate. See Figure 30. The simulation yielded identical results for 1500,
2000 and 4000 simulations, implying that the low relative value is not due to a
higher number of simulations needed for values to converge.

Concluding this section, we find that making the wrong assumptions when
valuing an asset whose cash flows originate from a price spread can have a large
impact on the estimated value. Our procedure outperforms competing ones by up
to 19% of the value obtained with perfect foresight, without imposing unrealistic
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assumption about the information availible to the plant operator.

Relative value 
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Figure 30: Relative value of the reference case, the zero foresight case, the univariate
regression case and the combination of both zero foresight and univariate regression.
Notice that the combination of the two yields a much lower relative value than the

product of their stand-alone relative values.
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6 Conclusion

Combining recent advances in both price modelling, volatility modelling and dy-
namic programming, we present a complete model for the valuation of a CCGT
power plant with special emphasis on realistic modelling of both prices and the
plant’s operational constraints. We show that power, gas and carbon prices are
co-integrated with heteroskedastic volatility, and that a CCC-GARCH model
with MNIG distributed residuals captures the price variations in a better way
than competing models. The valuation is performed using an LSM simulation
where operational constraints are observed. We enhance computational efficiency
by showing that the optimal intraday production profile only depends on three
ratios of prices, and can be stored as deterministic values rather than being cal-
culated for every scenario.

The modelled 300 MW power plant specified by Centrica plc. is a credible
example of a real-life power plant. Our simulations average a first-year discounted
cash flow of 29.7 million EUR. The results indicate that the LSM simulation is
99.83% of the perfect foresight value for high efficiencies, while for efficiencies of
30-35%, the relative value falls to around 95%. The relative value tends to fall as
the number of switch-offs rises, as there are more occasions in which estimation
errors result in a suboptimal choice. According to our simulations, there also
exists additional information in the complete set of commodity prices compared
to the clean spark spread. A regression on all prices provides a better fit of the
continuation values in the LSM simulation than a regression on the spark spread
only. This result generalizes to LSM valuations of other spread options such
as the crack spread, and multi-asset derivativese such as rainbow options and
basket options. Finally, we analyze the implication of a myopic assumption on
day-ahead prices. We find that the common, but unrealistic myopic assumption
foresight underestimates the value of a power plant. The underestimation is more
pronounced in situations of low efficiency and thus multiple switch-offs.
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B PROBABILITY DISTRIBUTIONS FOR THE STANDARDIZED ERRORS

A Estimation results from the VECM model

The VECM model is

∆X̄t = α(βᵀX̄t−1 − Φ) +

q∑
i=1

Pi∆X̄t−i + ΨΘt + Υt (18)

where X̄t ∈ Rd is the vector of de-seasonalized log prices, Φ is a scalar, Λi,
Π, Pi ∈ Rd×d are matrices of coefficients, and Υt ∈ Rd is the vector of residuals.
There is a clear economic intepretation of the term (βᵀX̄t−1 − Φ): it is the long-
term equilibrium between the three de-seasonalized log prices. The estimation
results are shown in Table 13.

B Probability distributions for the standardized

errors

B.1 Estimation of the MNIG distribution

The MNIG distribution can be represented as a normal mean-variance mixture,
with the inverse Gaussian (IG) distribution as the mixing distribution, such that
when Y ∼ Nd(0, I) and W ∼ IG(δ,

√
χ2 − γᵀΓγ), then Zt = µ + WΓγ +√

WΓ1/2Y is MNIG-distributed Zt ∼MNIG(µ, δ,Γ, χ,γ). The probability den-
sity function is given below in Eq. (19a).

fZ(Z) =
δ

2
d−1
2

(
χ

πq(Z)
)
d+1
2 ep(Z)K d+1

2
(χq(Z)) (19a)

q(Z) =
√
δ2 + (Z− µ)ᵀΓ−1(Z− µ) (19b)

p(Z) = δ
√
χ2 − γᵀΓγ + γ(Z− µ) (19c)

where Ki(·) is defined as in Section 3.6.2. Its expectation and covariance are
given in Eqs. (20a) and (20b).

E[Z] = µ+
δΓγ√

χ2 − γᵀΓγ
(20a)

cov[Z] =
δ [Γ + (χ2 − γᵀΓγ)−1ΓγγᵀΓᵀ]√

χ2 − γᵀΓγ
(20b)

When dimensionality is low, parameter estimation is feasible with traditional
maximum likelihood estimation. However, even with d = 3 dimensions, the EM
algorithm (Dempster et al., 1977) is faster and seems, to the authors, less depen-
dent on starting values. With three dimensions, we must estimate 17 parameters,
and the flat likelihood surface increases the chance of ending up in a local opti-
mum instead of the global optimum.

The EM algorithm for the MNIG distribution was derived by Øigard and
Hanssen (2002), and Aas, Haff and Dimakos (2006) modified the algorithm to
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B PROBABILITY DISTRIBUTIONS FOR THE STANDARDIZED ERRORS

Table 13: Estimation results of the VECM model. The values in each column is the
effect on the log-return of each variable (see the top row). T-values are shown in
parantheses. Wednesday dummy coefficients have been set to zero, and β for log power

has been set to one.

Coefficient ∆x̄Elt ∆x̄Gt ∆x̄Ct
αᵀ -0.089 0.035 0.002

(-7.618) (3.076) (0.453)
βᵀ 1 -0.805 -0.307

(N/A) (17.589) (-4.168)
φ -0.842 -0.842 -0.842

(-3.709) (-3.709) (-3.709)
∆x̄elt−1 -0.2 -0.017 -0.009

(-8.636) (-0.754) (-1.274)
∆x̄gt−1 0.085 -0.054 -0.008

(3.488) (-2.321) (-1.196)
∆x̄ct−1 0.133 0.249 0.072

(1.787) (3.477) (3.327)
∆x̄elt−2 -0.131 0.021 -0.009

(-5.940) (1.005) (-1.339)
∆x̄gt−2 0.008 -0.086 0

(0.339) (-3.713) (-0.061)
∆x̄ct−2 0.069 0.049 0.015

(0.931) (0.682) (0.693)
Mon Pre 2009 0.074 0.058 0.003

(10.805) (8.777) (1.480)
Tue Pre 2009 0.014 0.011 -0.001

(2.102) (1.779) (-0.422)
Wed Pre 2009 0 0 0

(N/A) (N/A) (N/A)
Thu Pre 2009 -0.017 -0.009 0

(-2.724) (-1.529) (0.093)
Fri Pre 2009 -0.054 -0.008 0

(-8.454) (-1.251) (0.021)
Weekend Pre 2009 -0.033 -0.034 -0.001

(-5.087) (-5.435) (-0.288)
Mon After 2009 -0.009 0.014 -0.003

(-1.243) (2.004) (-1.311)
Tue After 2009 0.002 -0.001 0.001

(0.270) (-0.193) (0.677)
Wed After 2009 0 0 0

(N/A) (N/A) (N/A)
Thu After 2009 -0.002 -0.002 0

(-0.247) (-0.356) (0.011)
Fri After 2009 -0.01 -0.004 -0.001

(-1.390) (-0.594) (-0.367)
Weekend After 2009 0.024 -0.018 0

(3.641) (-2.783) (-0.080)
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B PROBABILITY DISTRIBUTIONS FOR THE STANDARDIZED ERRORS

fit the restrictions that the expected value is the zero vector and that the co-
variance matrix is the identity matrix. We follow the recommendation of Aas et
al., and estimate three univariate NIG distributions to each of the data sets, to
use as input for the starting values. A univariate NIG distribution has parame-
ters (µi, δi, χi, γi), and we estimate these parameters by the method of moments
(Eriksson et al., 2004). We then set as starting values:

µ0 = [µ1µ2 . . . µi]
ᵀ (21)

δ0 =
1

d

d∑
i=1

δi (22)

γ0 = [γ1γ2 . . . γd]
ᵀ (23)

Γ0 = Id (24)

χ0 =
1

d

d∑
i=1

√
χ2
i − γ2

i − γ
ᵀ
0Γγ0 (25)

(26)

The EM algorithm consists of two steps; the expectation step and the maxi-
mization step. In the first step, we compute the expected values of the inverse-
Gaussian distributed variable W and its inverse:

ζt = E[Wt|Zt = zt] =
q(zt)

χ

K d−1
2

(χq(zt))

K d+1
2

(χq(zt))
(27)

φt = E[W−1
t |Zt = zt] =

χ

q(zt)

K d+3
2

(χq(zt))

K d+1
2

(χq(zt))
(28)

(29)

In the second step, we use these expected values to update parameter esti-
mates. For ease of notation, we compute the temporary variables λ =

∑T
t=1 ζt/T ,

ξ =
∑T

t=1 φt/T and υ = T (
∑T

t=1(φt/− 1/λ))−1, where T is the number of obser-
vations. We then proceed by updating the parameter estimates according to the
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B PROBABILITY DISTRIBUTIONS FOR THE STANDARDIZED ERRORS

following equations:

δ =
√
υ (30a)

η =
δ

λ
(30b)

γ = arg min
γ

[
T∑
t=1

(φtZ
ᵀ
tΓ

−1Zt) (30c)

−2
T∑
t=1

((1− λφt)Zᵀ
tγ) + T (−λ+ λ2ξ)γᵀΓγ

]
(30d)

Γ̄ = η

[
I

δ
+

1

γᵀγ

(
η

2γᵀγ

(√
1 +

4γᵀγ

δγ
− 1

)
− 1

δ

)
γγᵀ

]
(30e)

Γ =
Γ̄∣∣Γ̄∣∣ 1d (30f)

χ =
√
η2 + γᵀΓγ (30g)

µ = −λΓγ (30h)

(30i)

where Eqs. (30e) and (30h) are the result of solving E[Z] = 0 and cov[Z] = I.
The EM algorithm was written in Matlab. After the two steps, we save the
parameter estimates, and repeat the expectation and maximization. When the
largest difference in any parameter estimate is smaller than some limit in two
consecutive iterations, we say stop and save the parameter estimates. These are
given in Table 14.

Table 14: MNIG parameter estimates from the EM algortihm, using a tolerance limit
of 1e-6

µᵀ -0.1333 0.0127 0.1409
δ 1.1323
Γ 0.9962 0.0013 0.0142

0.0013 1.0095 -0.0014
0.0142 -0.0014 0.9946

χ 1.1287
γᵀ 0.1334 -0.0127 -0.1411

B.2 The skewed t distribution and its estimation proce-
dure

There are several skewed t distributions, and several parametrizations one can
use. We use the parametrization given by Hu and Kercheval (2008). Let Z be
skewed t distributed with (d× 1) parameter vectors µ and γ, a (d× d) matrix Σ
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B PROBABILITY DISTRIBUTIONS FOR THE STANDARDIZED ERRORS

and a scalar parameter ν, such that Zt ∼ SkewedTd(µ,γ,Σ, ν). The probability
density function fZ(Z) may then be written as:

fZ(Z) = c
K ν+d

2

(√
(ν + ρ(z))(γᵀΣ−1γ)

)
e(z−µ)ᵀΣ−1γ(√

(ν + ρ(z))(γᵀΣ−1γ)
)− ν+d

2
(1 + ρ(z)

ν
)
ν+d
2

(31a)

c =
21− ν+d

2

Γ(ν
2
)(πν)

d
2 |Σ|

1
2

(31b)

ρ(x) = (x− µ)ᵀΣ−1(x− µ) (31c)

where Ki(·) is defined as in Section 3.6.2. The parameter ν is the degrees of
freedom in the distribution, while the vector γ represents the skewness in each of
the d dimensions. The expectation and covariance are defined if ν > 2 and ν > 4
respectively, and are given by Eqs. (32a) and (32b).

E(Z) = µ+ γ
ν

ν − 2
(32a)

cov(Z) =
ν

ν − 2
Σ + γγᵀ 2ν2

(ν − 2)2(ν − 4)
(32b)

The EM algorithm for the skewed t is very similar to the one for the MNIG
distribution in Appendix B.1, as they are both generalized hyperbolic distribu-
tions. The skewed t distribution can also be written as a normal mean-variance
mixture, but with the inverse gamma distribution as the mixing distribution. The
setup of the algorithm is very similar to the one in Appendix B.1, and we will
therefore only give the necessary equations to estimate the parameters. To ini-
tialize the algorithm, we set µ0 = Z̄ and Σ0 = I, γ0 equal to the sample skewness
and ν = 20. In each iteration we compute the auxilliary variables

ρt = (zt − µ)ᵀΣ−1(zt − µ) (33a)

θt =

(
ρt + ν

γᵀΣ−1γ

)− 1
2 K ν+d+2

2

(√
(ρt + ν)(γᵀΣ−1γ)

)
K ν+d

2

(√
(ρt + ν)(γᵀΣ−1γ)

) (33b)

ηt =

(
ρt + ν

γᵀΣ−1γ

) 1
2 K ν+d−2

2

(√
(ρt + ν)(γᵀΣ−1γ)

)
K ν+d

2

(√
(ρt + ν)(γᵀΣ−1γ)

) (33c)

ξt =
1

2
log

(
ρt + ν

γᵀΣ−1γ

)
+

∂K
− ν+d

2 +α

(√
(ρt+ν)(γᵀΣ−1γ)

)
∂α

|α=0

K ν+d
2

(√
(ρt + ν)(γᵀΣ−1γ)

) (33d)

The partial derivative of the bessel function (Ki(·)) is cumbersome to both
derive and compute, and we therefore use the numerical approximation:

∂K− ν+d
2

+α(·)
∂α

|α=0 =
K− ν+d

2
+h(·)−K− ν+d

2
−h(·)

2h
(34)
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We also compute the means of the auxiliary variables θ̄, η̄ and ξ̄. We then
proceed to update the parameter estimates, according to the following equations:

γ =
T−1

∑T
t=1 θt(Z̄ − Zt)
θ̄η̄ − 1

(35)

ν solves the equation

−ψ(
ν

2
) + log(

ν

2
) + 1− ξ̄ − θ̄ = 0 (36)

where ψ(·) is the polygamma function, and

µ = −γ ν

ν − 2

Σ =

(
ν − 2

ν

)(
I− γγᵀ 2ν2

(ν − 2)2(ν − 4)

) (37)

where we have used Eqs. (32a) and (32b) to impose zero expectation and
identity covariance. When the maximum change in any parameter between two
iterations is smaller than some convergence limit, we terminate the algorithm and
keep the parameters. These are given in Table 15.

Table 15: Skewed t parameter estimates from the EM algortihm, using a tolerance limit
of 1e-6

µᵀ -0.1621 0.1717 0.1326
γᵀ 0.1073 -0.1137 -0.0878
Σ 0.6440 0.0192 0.0148

0.0192 0.6418 -0.0157
0.0148 -0.0157 0.6500

ν 5.9192

C The deterministic production scheduling

C.1 Further description of the intraday optimization

This appendix goes a little more in detail on the generation of the intraday
production profiles presented in Section 4.3. We define the S × S matrices Q̄g

and Q̄el such that q̄gij is the gas burnt during the hour in which the power plant

goes from state i to state j, and q̄elij is the electricity produced from i to j. If
both i and j are states in which the power plant is turned off, there will be no
electricity production, and thus q̄elij = 0. We define the numbering of states such
that if j < i, then the power plant is in a cool-down phase in which no gas is
burnt. If i > j, then the transition implies that the plant is warming up, and
q̄gij > 0. Further, the S × S profit matrices R̄h contain the elements r̄ijh that
defines the intraday profit of going from state i to state j during hour h. The
prices pelh and pgh are defined as the price valid for the hour h. These will only
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C THE DETERMINISTIC PRODUCTION SCHEDULING

change at midnight, meaning that ph = pt for h ∈ [1, 12] and ph = pt+1 for
h ∈ [13, 24]. The profit matrix for hour h is defined as follows:

R̄h = (pelh − cvar)Q̄el − (pgh + pch · IC)Q̄g +BL (38)

Where B is a penalty imposed on infeasible transitions, and is set to a value
so high that infeasible transitions are never optimal. Using the R matrix, we
can now calculate the continuation values for each hour of the day. Through
traditional dynamic programming, we get the optimal profit from starting in
state i and ending in state j 24 hours later. The total production of power and
consumption of gas are stored for all feasible values of LM,t, LM,t+1 and ∆cF,t for
both the period before and after midnight, and for all possible start states and
end states (i, j). Using these databases, we can accurately compute the profits of
going from i to j without performing the intraday dynamic programming for all
days.

The S×25 matrix Vsend denotes the values of being in state i in the beginning
of hour h, when the last state is set to be send. The matrix contains 25 columns,
as the last column denotes the value of being in state i at the end of the 24-hour
period. For a given end state send the elements vhi,send of Vsend are determined
by computing backwards from h = 25 to h = 1:

v25,i,send =

{
0, if i = send
−B, otherwise

(39)

vhi,send = arg max
j

(rhij +B(lij − 1) + vh+1,j) ∀i ∈ (1, S), h ∈ (1, 24) (40)

Where B is considered a penalty imposed on infeasible or undesired states
or transitions. B must be set so high that performing an infeasible or undesired
transition in Eq. 40 will never be optimal. The dynamic program consisting of
Eqs. 38 - 40 is repeated for all feasible end states. When the matrices Vsend are
completed for all end states, the total profit for the 24-hour period when going
from state sstart to send is v1,sstart,send , which can be used in the LSM algorithm.
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D PROOF OF DIMENSIONALITY REDUCTION

D Proof of dimensionality reduction

When the power plant operator is choosing the optimal production profile, he is
in maximizing the profit realized during the next 24-hour period. Let us define
the hourly productions of electricity and consumptions of gas as the vectors N el

and N g, having elements nelh and ngh, h ∈ {1, . . . , 24}. The prices of electricity,
gas and carbon are pelt , pgt and pct . The profit arising from one day of production
is

rt =
12∑
h=1

nelh (pelt − cvar) +
24∑

h=13

nelh (pelt+1 − cvar)−

12∑
h=1

ngh(p
g
t + IC · pct)−

24∑
h=13

ngh(p
g
t+1 + IC · pct+1)

(41)

When choosing between two (or more) different production profiles N el1, N g1

and N el2, N g2, the profile giving the highest total profit is chosen. For simplicity,
we will denote the net revenue pelt − cvar as pt and the fuel cost pgt + IC · pct as cF,t.
Production profile 1 is chosen if and only if

12∑
h=1

nel1h pt +
24∑

h=13

nel1h pt+1 −
12∑
h=1

ng1h cF,t −
24∑

h=13

ng1h cF,t+1

≥
12∑
h=1

nel2h pt +
24∑

h=13

nel2h pt+1 −
12∑
h=1

ng2h cF,t −
24∑

h=13

ng2h cF,t+1

(42)

To show that the choice between the two distinct profiles are independent of
the prices and only depends on the relative prices, LM,t = pt

cF,t
, LM,t+1 = pt+1

cF,t+1

and ∆cF,t =
cF,t+1

cF,t
, we divide by cF,t and substitute for LM,t, LM,t+1 and ∆cF,t:

L∗
M,t

12∑
h=1

nel1h + L∗
M,t+1∆cF,t

24∑
h=13

nel1h −
12∑
h=1

ng1h −∆cF,t

24∑
h=13

ng1h

≥ L∗
M,t

12∑
h=1

nel2h + L∗
M,t+1∆cF,t

24∑
h=13

nel2h −
12∑
h=1

ng2h −∆cF,t

24∑
h=13

ng2h

(43)

As the choice between two sets of production profiles here only depends on
the relations LM,t, LM,t+1 and ∆cF,t, we can generate a set of universal rules
for the choice of profile regardless of the actual price levels of the underlying
commodities.
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