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Abstract

This thesis presents a humanitarian logistics decision model to be used in the event of
a disaster. The operations under consideration span from opening of local distribution
facilities and initial allocation of supplies, to last mile distribution of aid. An introduction of
the field of disaster management is given, which forms the basis for the following description
of the disaster response problem faced by the decision maker.

Two mathematical models are developed aiming to enable efficient decision making. The
mathematical models solve the disaster response problem and seek to maximize the utility
of distribution of aid amongst beneficiaries. Utility is expressed in terms of amount of
satisfied demand and cost-effectiveness.

The main mathematical model is formulated as a multi-stage mixed-integer stochastic model
to account for the difficulty in predicting the outcome of a disaster. The model will be
applied to earthquakes in particular for reasons of concreteness. Accessibility of new in-
formation implicates initiation of distinct operations in the humanitarian supply chain, be
it facility location and supply allocation, or last mile distribution planning and execution.
The realized level of demand, in addition to the transportation resources available to the
decision maker for execution of last mile aid distribution, are parameters treated as random
due to uncertainty. Complete information regarding these variables is revealed in stage two.
As a direct consequence of treating demand as an uncertain parameter, marginal utility will
also be subject to stochasticity. Also, the state of the distribution network is treated as a
random parameter due to uncertainty arising from the vulnerability of the local infrastruc-
ture. Reception of complete information concerning the state of the infrastructure indicates
transition from stage 2 to stage 3.

The mathematical models are applied to an illustrative example to demonstrate their appli-
cation as decision-making tools in practice. An assessment of the applicability and validity
of the stochastic program is made, based on several test instances generated by the authors.
Results show that instances of considerable size are challenging to solve due to the com-
plexity of the stochastic programming model. Still, optimal solutions may be found within
a reasonable time frame. Moreover, findings prove the value of the stochastic programming
model to be significant as compared with an deterministic expected value approach.
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Sammendrag

Denne masteroppgaven presenterer en beslutningsmodell innen fagfeltet humanitær logis-
tikk, til bruk i en katastrofesituasjon. Beslutningene omfatter åpning av lokale distribusjons-
fasiliteter, initiell allokering av forsyninger og distribusjon av disse. Som relevant bakgrunn
for problemstillingen vil en introduksjon av fagfeltet katastrofeledelse bli presentert, før
problemet beslutningstageren står overfor blir beskrevet.

To matematiske modeller er utviklet. De har til hensikt å tilrettelegge for effektiv beslut-
ningstagning. Modellene løser problemet knyttet til katastrofehåndtering ved å maksimere
nytten av effektiv distribusjon av nødhjelp. Nytte er definert som tilfredsstillelse av etter-
spørsel og kostnadseffektivitet.

Den mest omfattende modellen er formulert som en fler-stegs stokastisk modell med enkelte
heltallsrestriksjoner. Denne tar høyde for utfordringene knyttet til uforutsigbarhet i om-
fanget av katastrofer generelt, og er i oppgaven applikert på jordskjelv spesielt. Tilgjen-
geliggjøring av ny informasjon markerer initialiseringen av nye handlinger i den humanitære
verdikjeden, i form av plassering av fasiliteter, nødhjepsallokering, og planlegging og gjen-
nomføring av distribusjonen. Reell etterspørsel og beslutningstakerens tilgjengelige trans-
portressurser er to av faktorene som er gjenstand for usikkerhet. Fullstendig informasjon
om disse, blir realisert i steg to. En direkte konsekvens av å betrakte etterspørsel som
en usikker parameter, er at marginalnytten også er stokastisk. Tilstanden til distribusjon-
snettverket er den siste usikre parameteren som betraktes, på grunn av sårbarhet i den
lokale infrastrukturen. Tilgjengeliggjøring av informasjon angående nettverkets tilstand
markerer begynnelsen til det tredje steget.

De matematiske modellene er anvendt på et illustrativt eksempel for å demonstrere deres
gyldighet som beslutningsstøtteverktøy i praksis. En vurdering av gyldigheten til den
stokastiske modellen blir deretter gjennomført basert på instanser generert av forfatterne.
Resultatet viser at omfattende instanser er utfordrende på grunn av kompleksiteten til den
stokastiske modellen, men at optimale løsninger oppnås innen rimelig løsningstid. Funn
angir dessuten verdien til den stokastiske løsningen til å være signifikant bedre enn en
tilsvarende deterministis løsning basert på forventningsverdier.
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1 INTRODUCTION

1 Introduction

Natural disasters such as droughts, earthquakes, hurricanes and floods have proven a global
challenge in their unpredictable nature and potential scale of impact represented by fatalities
and social, environmental and economic costs. The Haiti earthquake of 2010 efficiently
demonstrated the potential severity of events following a natural disaster. It killed 222 570
people and affected a total of 3.9 million others. The disaster caused an estimated US$ 8.0
billion worth of damages, and led to the collapse of around 70 per cent of buildings and
homes [Guha-Sapir et al., 2011]. In 2011, 302 natural disasters at large claimed over 29 780
lives worldwide, affected nearly 206 million others and caused record economic damages of
US$ 366 billion [Guha-Sapir, 2012]. These figures substantiate the vitality of providing aid
of the appropriate kind and amount to those affected in the most efficient and effective way
possible, in order to prevent loss and suffering [Christopher and Tatham, 2011].

The Center for Research on the Epidemiology of Disasters (CRED) defines a disaster
as:

[A] situation or event which overwhelms local capacity, necessitating a request
to a national or international level for external assistance; an unforeseen and
often sudden event that causes great damage, destruction and human suffering.
[Guha-Sapir et al., 2011, page 7]

The number, magnitude and economical impact of disasters are on the increase along with
the overall size of the global population. Hence, scholars agree that advance in the man-
agement of disaster operations is imperative, and will contribute to an improvement in
readiness, increase response speed, ease recovery and provide institutional learning over
time [Altay and Green III, 2006, Christopher and Tatham, 2011, de la Torre et al., 2011,
Thomas and Kopczak, 2005].

A term commonly applied to describe the process of distributing required aid and supplies in
disaster relief situations, is humanitarian logistics. Thomas and Kopczak [2005] introduced
the following widely adopted definition of the term:

[T]he process of planning, implementing and controlling the efficient, cost-
effective flow and storage of goods and materials, as well as related informa-
tion, from the point of origin to the point of consumption for the purpose of
alleviating the suffering of vulnerable people. [p.2]

A range of aspects common to the variety of disasters, impedes the execution of efficient
humanitarian logistics. Uncertainty and unpredictability characterizes the surroundings of
disasters, and the logistical activities are to be performed in rapidly changing environments.
Knowledge of timing and location of events is substantially difficult, if not impossible, to
predict with any significant degree of certainty [Christopher and Tatham, 2011]. The same
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1 INTRODUCTION

applies to the total magnitude of events immediately following a disaster. This translates
into a number of different aspects: Uncertainty regarding the nature of demand, capacity
of facilities to be used in the distribution process, the transportation capacity, and amount
of supply available for the decision maker, along with several other factors. Adding to this
is the implicit urgency of need. Not only is the decision maker in charge of the distribution
process required to make decisions based on limited and unreliable information, he must
also make these at the earliest possible point in time following a disaster in order to prevent
lives from being lost [Altay and Green III, 2006, de la Torre et al., 2011].

Accompanying decision making based on insufficient data, is the risk of making irreversible
critical decisions [Altay and Green III, 2006]. Yet another complicating factor is the po-
tentially severe damages done to the infrastructure both in relation to communication
and transportation network in the area surrounding the point of impact [Christopher and
Tatham, 2011]. This efficiently impedes the generation of reliable distribution routes from
source of supply to location of need. As a result of this, estimates suggest that logistics in
terms of movement of goods and people accounts for the largest amount of expenditures
in any disaster relief operation [Clark and Culkin, 2007, Christopher and Tatham, 2011,
Thomas and Kopczak, 2005].

Against a backdrop of uncertainty, the scope of this thesis is to present a decision making
tool for use in catastrophic events which incorporates stochastic aspects. The purpose
of considering elements of randomness is to enable viable decisions when information is
limited, in order to reduce the risk of generating infeasible plans. A multi-stage stochastic
model consisting of three stages is proposed in order to capture uncertainty in demand,
capacity of the vehicle fleet and the state of the infrastructure. Maximizing the utility
provided to the affected society constitutes the objective of the model. It is to be applied
on a multi-commodity network flow problem with multiple modes of transportation. The
initial stage concerns facility location decisions, whereas the last two stages involve last
mile distribution decisions.

Decisions regarding location of local distribution centers in the affected area, along with the
amount of supplies to provide these with, are made in the initial stage of the distribution
process. A tentative last mile distribution plan is generated in the second stage determining
the number of vehicles to use, and the load to assign to these vehicles. The decision are made
according to realized demand and capacity, whereas information regarding the state of the
local infrastructure is yet to be realized. The actual routes of the vehicles, are drawn up in
the third and final stage based on realization of the infrastructure and the predetermined
load of the selected vehicles. These decisions are made while seeking adherence to the
initially developed plan to the extent possible. Although readily applicable to a wider
range of disasters owing the the generality of the model, this thesis will primarily deal with
humanitarian response in relation to earthquakes for reasons of concreteness.

The thesis is organized as follows. Section 2 gives a general presentation of the field of
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1 INTRODUCTION

humanitarian logistics as an activity contained by disaster management. This entails an
introduction of the humanitarian supply chain and its unique features as compared to
its commercial counterpart. Also the distribution partners involved in the distribution
process and the initial assessments necessary to map out the scope of the situation are
described.

Section 3 states the disaster response problem at hand in terms of important attributes to
the problem. Aspects of uncertainty, the criticality of considering fairness in distribution
and the objective of distribution are discussed in greater detail. Following is a review of
literature relevant to the disaster response problem in order to illustrate the differentiat-
ing value of the model proposed in this thesis, given in Section 4. Section 5 presents the
underlying deterministic model, which forms the basis for the stochastic framework repre-
senting the center of interest in the remainder of this thesis. Underlying assumptions and
limitations of the model is stated, along with the complete mathematical formulation and
an accompanying exposition of its constituent elements.

Motivation for deployment of multi-stage stochastic programming and a description of the
implications of its use is provided in Section 6, leading up to the core of the thesis: a for-
mal introduction of the multi-stage stochastic model in Section 7. As for the deterministic
model, preliminary assumptions and limitations are listed followed by the mathematical
formulation of the model and consecutive interpretation. Issues related to the implemen-
tation of both mathematical models in commercial software are given in Section 8, with
emphasis on the process of instance generation aiming to develop realistic test data. Sec-
tion 9 provides the reader with a synthetic, yet comprehensible, numerical example in order
to illustrate the characteristics, application and output of the models. Finally, an evalua-
tion and validation of the stochastic programming model is given in Section 10 in terms of
computational efficiency and applicative value as compared to its deterministic counterpart.
The thesis is rounded off with conclusions of the findings and directions for future work in
Section 11.

3



2 DISASTER MANAGEMENT

2 Disaster Management

This section provides a description of disaster management in general and the field of
humanitarian logistics. A review of the main phases and associated activities involved in
disaster management will be given, in addition to a clarification of central terminology to
be used hereinafter.

In advance of, during, and in the aftermath of a disaster, efforts are exerted to minimize
potential impact on the community in terms of harm to life, property and the environment
at large. Disaster management is a generic and universal term often used to capture a large
set of actions taken in handling catastrophes. Key activities performed include the attempt
to decrease exposure to the consequences of disasters, developing measures to address initial
impact as well as post-disaster response and recovery needs [Coppola, 2007].

2.1 The Four Phases of Disaster Management

Figure 1: The four phases of disaster management

Disaster management is widely recognized to consist of four distinct phases; mitigation,
preparedness, response and recovery [FEMA, 2012], [Sangiamkul and van Hillegersberg,
2011, Rawls and Turnquist, 2012, Altay and Green III, 2006]. Their occurrence depends
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2 DISASTER MANAGEMENT
Relevant Features of Humanitarian Logistics

on the point in time when activities are performed relative to the point of impact of the
disaster in question, as illustrated in Figure 1.

During mitigation, measures are taken to prevent the onset of a disaster, or reduce its
impact should one occur. The objective is to protect people and structures, and reduce
the costs of response and recovery. Mitigation involves identification of potential events
and associated likelihood of occurrence and consequences, combined with development of a
strategy aiming to eliminate risks or reduce losses. Building of wind shelters and tsunami
resistant shelters are examples of mitigation measures taken in the US.

Preparedness seeks to build an emergency management function to enable rapid response
for disasters that cannot be eliminated. Development of emergency operation plans to
identified hazards, recruitment and training of staff, identification of resources and supplies
and designation of facilities, are amongst the activities carried out in this phase.

As opposed to mitigation and preparedness, response is executed in the time period subse-
quent to disaster impact. The central function during this phase is execution of prepared-
ness plans by conducting operations seeking to save lives and reduce damage. Among the
actions taken are emergency assistance and restoration of critical infrastructure. Different
assessments of the situation at hand are also an important aspect of the response.

During the recovery phase, actions are taken to stabilize and restore the community in order
to enable return to self-reliance. In addition, protection against future hazards is considered.
Also this phase takes place in the aftermath of the immediate impact of the disaster,
and can have both short and long term perspectives. Recovery includes activities such as
restoration of infrastructure, provision of loans and grants to individuals and businesses,
crisis counseling and provision of legal services.

The scope of this thesis is confined to immediate post-disaster response, where uncertainty
concerning the accuracy of information upon which a distribution regime is built influences
the outcome. The remainder of this thesis thus focuses solely on the humanitarian response
phase.

2.2 Relevant Features of Humanitarian Logistics

Movement of goods and people accounts for up to 80 % of the costs in any disaster relief
operation, making it the most expensive part of the operation [Clark and Culkin, 2007,
Sangiamkul and van Hillegersberg, 2011]. Creation of an effective disaster supply chain is
in consequence an essential function of disaster management in order to enable delivery of
necessary goods to disaster relief organizations in a timely manner. Sheu [2007] states that
the first three days following any disaster are the most critical, an argument emphasizing
the vitality of effectiveness in distribution of aid.

5



2 DISASTER MANAGEMENT
Relevant Features of Humanitarian Logistics

The function performing humanitarian response is often referred to as humanitarian logis-
tics. This term is widely used, and covers operations ranging from supply chain strategies
and processes to technologies which will maintain the flow of goods and materials required
by the humanitarian agencies [Baldini et al., 2011]. At its simplest, the operations in-
volve procurement, dispatch of aid for shipment to the beneficiary region, storage in either
national or regional warehouses, and eventually transport to the extended and final distri-
bution points where the aid is handed to the beneficiaries [Maspero and Ittmann, 2008].
Sangiamkul and van Hillegersberg [2011] argue that logistic activities are executed in each
of the four phases in disaster management, however with differing volume, urgency and
variety of supplies.

2.2.1 The Humanitarian Supply Chain

To better understand the decisions and priorities made in operations related to humanitar-
ian logistics, we need to assess central characteristics of the humanitarian supply chain as
compared to its commercial counterpart. On a strategic level, Beamon [2004] differentiates
between the two supply chains in terms of their goals and performance measures. When
the humanitarian supply chain seeks to minimize the loss of lives and alleviate suffering,
the commercial supply chain mainly wishes to maximize profit. Apte [2010] states that
money is not a panacea in humanitarian logistics. Rather, lack of preparation in terms of
disrupted infrastructure and prepositioning of goods, amplified with poor last mile distribu-
tion, prove to result in huge quantities of available aid never reaching the disaster victims.
With regards to performance measures, it is recognized that the traditional cost minimizing
measures are not central in humanitarian supply chains. There exists other measures such
as time required to respond to a disaster, or the ability to meet the needs of the disaster
which describe the performance more appropriately. Vitoriano et al. [2010] add to these
fairness of the distribution, reliability and security of the operation routes.

When considering tactical and operational facets of humanitarian supply chains, Blecken
[2010] emphasizes four important aspects: 1) uncertainty in critical factors; 2) under-
investment in research and infrastructure; 3) poor local transportation and communication
infrastructure; and 4) lack of professional staff and training of logistics personnel. These
aspects will be discussed in further detail in the following.

In situations of humanitarian response, crucial attributes to the problem are uncertain.
This uncertainty is reflected in the number of people affected and corresponding demand,
the amount of available information, and the lack of information related to personnel, equip-
ment and the state of the infrastructure. The first two aspects may stem from inconsistent
communication between the receiver of relief and the corresponding providers of informa-
tion, i.e. between the affected population and rescuers, locals or reporters. As opposed
to business logistics in which the demand information is provided actively and directly by
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customer themselves, the sources of on-the-spot relief demand information can be limited
and almost unidentifiable in the immediate aftermath of a disaster [Balcik and Beamon,
2008]. Knowledge of aggregated demand is in addition a prerequisite in emergency logis-
tics, as opposed to the disaggregated demand information which is conventionally treated
in business logistics. To a certain extent, such relief demand information is rather fuzzy and
hard to predict. This is due to lack of referable historical time series data, which further
substantiates the need for real-time relief demand forecasting [Sheu, 2007].

The way humanitarian supply chains are funded with consistent under-investment in re-
search and infrastructure, constitutes yet another differentiating aspect of the humanitarian
supply chain [Blecken, 2010]. This in turn limits the potential to improve their efficiency
and responsiveness. Stocks pre-positioned in preparedness for emergency relief response are
typically not sufficient to cover the totality of demand. In an emergency situation, unmet
demand can result in loss of life. The overriding objective in the event of a disaster is thus
to mitigate the effect of the emergency by keeping the level of unmet demand at a minimum
[Shen et al., 2009b].

Blecken [2010] gives special mention to the poor local transportation and communication
infrastructure that tend to characterize the humanitarian supply chain, even in advance
of a disaster. After a disaster has struck, severe damage to roads and infrastructure at
large frequently occurs. Such an outcome inhibits efficient distribution of required aid and
triggers the need for alternative modes of transportation. In terms of issues related to
import of humanitarian aid, the Logistics Cluster [2012a] emphasizes the obstacles caused
by national customs regulations. All goods entering or exiting a country have to undergo
certain government control procedures and formalities, and complicated customs procedures
can potentially cause delays resulting in congestion at port of entry. This in turn affects the
flow of goods by 1) increasing the turn-around time for feeder vessels and railway wagons;
2) causing complex and non-transparent administrative requirements, often pertaining to
documentation and 3) entailing high costs for processing trade information.

In terms of human resources, a lack of professional staff, training of logistics personnel and
standardized work processes impose challenges both in planning and execution of distribu-
tion. These challenges are reinforced by high staff turnover among field logistics personnel,
with an annual rate of up to 80% [Thomas and Kopczak, 2005]. Maspero and Ittmann
[2008] suggest that the cause is due to an absence of clear career paths, adequate training
and transfer of experience and knowledge, which is aggravated by a high pressure work
environment.

2.2.2 Central Distributors

There are several contributors across the different tiers in the humanitarian supply chain.
The Federal Emergency Management Agency (FEMA) [2008] and the International Feder-
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ation of Red Cross and Red Crescent Societies (IFRC) [2012a] give descriptions of central
actors, out of which mainly three are relevant for the remaining parts of this thesis. They
comprise the International Central Depots (ICDs), the Local Distribution Centers (LDCs)
and the different Points of Distribution (PODs). The relationship between these actors is
depicted in Figure 2. An individual presentation of the three will be given in the follow-
ing.

Figure 2: The relationship between relevant distributors at different levels in the humani-
tarian supply chain

The ICDs serve as the initial source of supply. They deliver stock, warehousing and fleet
services, as well as general logistics support to operations. The IFRC has established
regional logistics units in Dubai, Kuala Lumpur and Panama which keep pre-positioned
commodities in stock [IFRC, 2012a]. Standard non-food and shelter items such as blankets,
hygiene parcels, kitchen sets, jerry cans, buckets, mosquito nets, plastic sheeting, shelter
kits and tents are among the supplies held at the ICDs. The key objective of each unit
is to be able to deliver specified relief items globally to 5,000 families within 48 hours of
a request, and to a further 15,000 families within two weeks. The three units contain
stockpiles sufficient to meet the needs of 300,000 people [IFRC, 2012b]. The structure and
mandate of the regional units are identical. However, there are differences in the regions
in terms of exposure to disasters and scale of needs. Each regional unit is responsible for a
designated area in accordance with Figure 3. The Panama ICD covers America, the Dubai
ICD serves Europe, Africa and the Middle East, whereas the Kuala Lumpur ICD supplies
Asia and the Pacific [IFRC, 2012b].

The LDCs are classified as one of two types; temporary or permanent. The permanently
established LDCs serve as year-round emergency supply storages, and are prepared to
handle minor seasonal natural disasters such as floods and hurricanes on their own. LDCs
of this type also serve as distribution centers should major catastrophes occur, but will
under these circumstances require additional supply from an ICD. The fact that they hold a
certain level of stock at all times, enables them to provide initial help faster. The stationary

8



2 DISASTER MANAGEMENT
Relevant Features of Humanitarian Logistics

Figure 3: Location of International Central Depots providing initial supplies

LDCs are thus subject to accompanying holding and operating costs [Zhu et al., 2008]. The
temporary LDCs on the other hand, are non-stationary and non-operational in times of
no crisis. They are commonly located at airports, train stations, harbors or other sites
adequate for handling large inflows and outflows of goods and personnel, and can serve as
drop points. LDCs of this type are provisional and do not have an explicit holding cost due
to the temporary nature of the supply [Zhu et al., 2008].

There is an impending risk that possible sites for LDCs are destroyed during the disaster.
Ascertaining feasible destinations for LDCs prior to the crisis is thus a crucial element in
ensuring efficient allocation of aid [FEMA, 2008].

The Federal Emergency Management Agency (FEMA) [2008] describes a POD as a cen-
tralized location at which the public can collect life sustaining commodities. Shelf stable
food, bottled water and limited amounts of ice, tarps, and blankets exemplify commodities
of this nature. The actual amount and type of commodities sent to the different PODs are
determined at the LDCs, as is the type and location of PODs to activate. The LDCs are
also in charge of operation and eventually demobilization of the PODs [FEMA, 2008].

2.2.3 Initial Post-Disaster Assessments

In the event of large-scale disasters, international aid agencies, national authorities and
occasionally the United Nations have to coordinate their emergency response to ensure effi-
cient help. There exists a range of institutions seeking to assist in this process by providing
scientific information detailing the extent of the disaster. The European Mediterranean
Seismological Centre (EMSC), which supplies rapid earthquake information services, rep-
resents an organisation of this sort. When an earthquake hits a certain area, seismological
networks of seismic stations around the globe collect real time parametric data. These data
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are automatically associated, merged and processed at the EMSC in order to publish an
up-to-date catalogue of seismicity in terms of location and magnitude of earthquakes. The
information is published online at EMSC’s website. For potentially destructive earthquakes,
this information is also disseminated via SMS, email or fax to registered end-users within
20-30 minutes after the earthquake’s occurrence [Mazet-Roux et al., 2010]. If an aid agency
decides to act, secondary information will be gathered. As opposed to first-hand informa-
tion, secondary information refers to sporadic information which has been collected from
affected people or other organisations. It can either relate to an earlier relevant situation
or to the current one. Gathering information from affected areas has become easier due to
organisations such as Ushahidi. This agency provides an emergency platform that handles
SMS, MMS and emails sent to a specific known number from locals on-site. The platform
both translates messages into English and sorts information regarding type and location
of need. Besides websites such as Ushahidi; Twitter, Facebook, Google Maps and other
technology features make it easier to visualize the consequences of the earthquake [Bulkley,
2010, Jæger, 2012a].

Generally, a local agent on-site will send in a team of experts to complete initial assessments
regarding the extent of the disaster and people affected. The aim of the initial assessments is
to better understand the situation in order to identify potential problems, and corresponding
sources and consequences of these problems, which can complicate the response process.
Upon major disaster, a rapid assessment should be conducted [IFRC, 2008]. Its purpose
is to gather information concerning the needs of the affected population, existing capacity,
possible areas of intervention and resource requirements. A rapid assessment normally
takes a week or less. High-priority information can however be gathered between 2 and
72 hours after the disaster has struck. Several assumptions need to be made in order to
be able to conduct the assessment owing to lack of information, limited time, security and
safety limits. A rapid assessment should be followed by a detailed assessment to enable
recommendations to be made; to support decisions concerning start-up of operations in
new areas; or to monitor the situation in case of gradual change in state of affairs. Detailed
assessments generally take about one month, depending on the complexity of issues and
available resources [IFRC, 2008]. There are situations in which additional assessments are
unnecessary due to inaccessibility of the affected area, adequacy of existing information or
because assessments have already been carried out by other agencies. Cooperate between
agencies involved in disaster operations is fortunately common.
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3 Problem Description

This section will focus on the response phase of humanitarian logistics, as described in the
preceding sections. The problem to be addressed will be stated in a general manner, and
the timing and extent of decisions relevant to the decision maker will be described. Aspects
concerning facility location and last mile distribution of aid to beneficiaries will be presented,
and relevant elements of uncertainty with the prospect of complicating the distribution
process will be accounted for. As will the vitality of considering fairness in distribution.
Finally, the primary goal of disaster response operations will be explicated.

3.1 The Disaster Response Problem

This thesis considers the planning problem for a humanitarian supply chain in the event
of an earthquake, the Disaster Response Problem (DRP). The main task is to establish
at which drop-points supplies should arrive and be managed for further distribution, and
the international depots from which these supplies should originate. The planning problem
includes creation of a distribution plan for the available vehicle types and commodities,
from point of supply to point of consumption via local distribution centers, in order to
meet the immediate needs of the affected population. The problem is complicated by
limited information and uncertain systems, resulting in distribution planning activities of
high complexity. Figure 4 seeks to illustrate the course of events in disaster response as
presented in this thesis, both in terms of the actions taken and the information received
throughout the operation.

Shortly after an earthquake has occurred, aid agencies and/or the government will decide
whether or not it is necessary to initiate emergency response. If so, local agents will
start gathering information about the consequences of the disaster. The only accurate and
reliable available information is the magnitude and the location of the earthquake. To
manage the emergency response and distribution of goods efficiently and effectively, new or
updated information has to be gathered continuously.

The local agent sends a team of experts into the area of relevance to complete an initial
assessment of the extent of the disaster and the needs of the people affected. The assessment
will serve as a basis for an appeal that lists specific items and quantities needed to provide
immediate relief to the affected populations [IFRC, 2008].

Based on identification of the location of the demand points, the team of experts informs the
local agent where to inaugurate PODs. The location of the PODs, together with knowledge
of the state of the infrastructure prior to the earthquake, serve as the basis for determination
of the LDCs to open and operate.
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Based on historical data and the estimated impact caused by earthquakes of different mag-
nitudes, the decision maker will develop a series of possible outcomes of the earthquake
[Rawls and Turnquist, 2010, Barbarosoğlu and Arda, 2004]. Estimated demand for equip-
ment, medical supplies/teams, food and non-food items at each PODs are listed based on
the initial assessment and previous experience. In addition to the location of the LDCs,
this list is information communicated to the ICDs. If conduction of the assessment is too
time consuming due to inability of inspection or other obstacles impeding obtainment of
information, a needs analysis based on similar cases will form the basis for the initial distri-
bution from the ICDs. It should however be noted, that communicated information to the
ICDs is only an estimate, and demand may be higher or lower for each commodity type at
each POD. Goods are expected to be delivered to the LDCs as soon as the list of items are
communicated, and less than 72 hours after the earthquake has hit [FEMA, 2008]. During
these hours of waiting, calls are made to traditional government donors and the public to
secure commitments of cash and in-kind donations.

If the local agent managing the LDCs stands in need of supplies from the ICDs, an account
of the distribution plan and the associated costs will be required. Generally, aid agencies
will not dispatch supplies if disposable funds are insufficient to cover the costs of final
distribution to demand points [Jæger, 2012a]. As goods are sent from the ICDs, medical
teams, vehicles and volunteers are engaged to the operating LDCs. Seeing as how the
number of vehicles and volunteers to arrive on time is uncertain, the knowledge of exact
transportation capacity at each LDC is not realized until packing of the vehicles that has
actually arrived, is started.

Approximately between 48 and 72 hours after the disaster has struck, supplies enabling the
local agent to provide drivers and others managing the LDC with an initial distribution
plan, would normally have arrived at the LDCs. The vehicles are packed and dispatched
according to this plan. In some cases, the vehicles will be prevented from completing their
initial routes due to infrastructure damage. For those to which this applies, the local agent
will be consulted and an alternative route will be generated based on updated information
about the network. As time passes, accrued amounts of information about the state of
the infrastructure will become available via satellite pictures and first-hand experience
provided by drivers and local reports. Some vehicles will reach their planned destination
PODs, whilst others may have to change destination along the way because of obstacles.
Either way, their duties are considered completed when the commodities they carry are
delivered.

3.2 Sources of Uncertainty Relating to Disaster Response

In this section, elements of uncertainty relevant in the planning of distribution of aid in
event of disasters caused by earthquakes will be discussed. We will focus on the random
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elements of greatest importance when planning distribution of humanitarian aid.

Delay in supply to the LDCs is a major problem caused by restricting toll barriers, absence
of emergency exception laws and local governments’ unwillingness to receive help [de la
Torre et al., 2011]. However, these aspects go beyond the scope of this thesis, and these
political and legal issues will not be treated further because of their unpredictable and nation
dependent nature making them difficult to generalize. Also the amount of donations made
by the public, aid agencies and governments are hard to prognosticate in the immediate
aftermath of the catastrophe.

There are several other factors however, which influence the development of the local agent’s
strategies and restrict the number of alternatives. Firstly, demand is uncertain. The dis-
tricts in need may be situated in remote areas, and the disaster site might be in a state
of chaos making an complete overview impossible to achieve [Thomas and Kopczak, 2005].
Secondly, the size of the vehicle fleet and the available medical personnel are highly uncer-
tain factors in humanitarian logistics. The consequences of not reaching a POD are severe,
and uncertainty in the state of the infrastructure is the third main element of uncertainty
considered in this study. To the extent that this study concerns uncertainty, its focus lays
mainly on these three aspects and the consequences that they entail.

Unpredictable demand patterns increase the complexity of the distribution plan [Balcik
et al., 2008]. Demand can fluctuate unexpectedly due to a number of reasons. These rea-
sons include after-shock damages, people returning to greater self-sufficiency, beneficiaries
moving between different areas in hopes of find greater relief, or unexpected challenges such
as outbreak of disease epidemics [de la Torre et al., 2011].

Volunteer organizations state that they generally do not possess their own vehicle fleet. The
implication of this fact is that multiple independent local drivers and vehicles need to be
hired and managed internally [de la Torre et al., 2011]. This in turn, complicates prediction
of the size of the vehicle fleet, its total capacity, the experience and knowledge held by local
drivers and the employable technology in the vehicles. In case of insufficiency of available
vehicles, agencies may be required to import the amount needed. The ease of importing
vehicles for a short time period and the ability to transport these to the requiring LDCs,
influence the final vehicle capacity. An additional limitation arise from regular cost-benefit
analysis. Engaging an excessive number of vehicles, especially high technology vehicles,
will be very expensive and a waste of resources. The engaged amount should thus, to the
extent possible, correlate with the amount needed in order to perform distribution [Jæger,
2012a].

Within the first 72 hours after impact, the vehicle fleet and the number of drivers available at
the LDCs will be more or less confirmed, and an initial distribution plan will be determined.
At this point in time we assume that the team of experts have more precise information
concerning the level and nature of demand at each POD, which will naturally affect the
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distribution plan.

The initial distribution plan is subject to alternation because of the potentially severe
damage typically caused to the local distribution network by an earthquake. Roads, bridges
and airports are often destroyed. The accessibility of the different recipients may be reduced
accordingly depending on their location relative to the earthquake’s epicenter, and the
quality of the infrastructure connecting the LDCs and the PODs. The attributes of a
vehicle may in addition restrict it from using certain paths in the infrastructure. The cause
of failures in parts of the infrastructure may be due to factors such as natural gas explosions,
consequent fires, building, bridge or road collapse or road blockage [Günneç and Salman,
2007]. As a result, operable infrastructure needs to be estimated based on the decision
maker’s judgment and experience, and the distribution plan and emergency strategy based
on this input may in effect not be applicable.

3.3 Considering Fairness in Distribution of Aid

Clark and Culkin [2007] propose three principles said to define humanitarianism: humanity,
impartiality and neutrality. In short, these state that suffering should be alleviated wherever
it is found, giving priority to the most urgent needs without discrimination.

The concept of fairness is vital to consider when distributing emergency supplies. The
Sphere Handbook [The Sphere Project, 2011] is part of an initiative to determine and
promote standards by which the global community responds to the plight of helping peo-
ple affected by disasters. The Sphere Handbook argue that agencies should provide aid
impartially and in accordance with need:

Access to health services should be based on the principles of equity and im-
partiality, ensuring equal access according to need without any discrimination.
Equity should be ensured so that similar food rations are provided to similarly
affected populations and population sub-groups. [The Sphere Project, 2011, p.
182]

Generally, the needs of the most vulnerable sub-groups of the population, such as wounded,
children, pregnants and women, is prioritized [Jæger, 2012a]. Consequently, the marginal
utility of the delivered items reduces in line with reception of aid by the most indigent at
each POD. Even though need for relief may still exist in an area, helping people of higher
levels of distress in other regions before continuing to deliver to the initial region might
be of greater utility. The requirement of prioritizing is caused by shortage in supply or
capacity, or damages in the distribution network.
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3.4 The Problem in a Nutshell

After an earthquake has struck, rapid response is of pronounced importance. As soon as
the local agent receives any information, decisions regarding which LDCs to open, type and
quantity of resources to order, and way of procurement and storage of the supplies have
to be made. Acquirement of the appropriate means of transportation and personnel in
addition to generation of efficient distribution plans, are crucial in order to keep fatalities
to a minimum. The decision support tool presented in this thesis treats these challenges and
serves as a support platform for decision making. When utilizing such a support platform, it
is highly relevant that the decisions subject to implementation as suggested by the decision
support tool, comply with the local agent’s intuition and judgment. This will serve to
ensure both efficient and logical decision making. The decision support tool has to provide
sound solutions for the entirety of decisions made, both during the planning process as well
as during implementation.
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Figure 4: Timeline indicating flow of information and content of actions taken during
emergency response
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4 Literature Review

The number of studies conducted in the area of humanitarian logistics since its onset in
the 1990s, has seen an increase in line with the number and impact of disasters [Hen-
tenryck et al., 2010]. Different scholars have covered a variety of different classic models
such as vehicle routing, network flow, facility location, location routing and supply chain
management, in order to best describe the mechanisms of the humanitarian supply chain.
The different aspects related to the humanitarian supply chain are reflected in the level of
complexity of the models.

In the following we will present approaches taken by different researchers while considering
characteristics relevant to this study. The features that distinguish our model from these
will firstly be specified. This section serves as a foundation for comparison with the different
models of other scholars presented in the following sections. An overview of characteristics
in the models proposed by the researchers mentioned, is given in Table 1, in comparison
with the model to be presented.

4.1 Characteristics of the Proposed Model

This report considers a three-stage stochastic programming model for distribution of hu-
manitarian aid in the context of the disaster response problem. The first stage seeks to
choose the most expedient allocation of commodities between a set of different local distri-
bution centers sourcing from an international central depot, enabling efficient distribution
in the stages to follow. Demand, vehicle capacity at the LDCs, and the state of the dis-
tribution network are subject to uncertainty in the initial stage. Last mile distribution of
goods from the initialized local distribution centers to the final recipients is handled in the
second stage, with infrastructure treated as the component of uncertainty. The third and
final stage seeks to take corrective measures as to the routes of the vehicles after they have
departed from their respective LDCs, based on realization of the state of the infrastructure.
This model assumes pre-positioned international distribution centers, and is able to handle
multiple commodity types and several modes of transportation. Considering the objec-
tive, the model seeks to maximize the beneficiaries’ total utility in terms of the amount
of demand satisfied at the expense of the remaining beneficiaries, thus achieving fairness
of distribution. To the best of our knowledge, this is the first study to investigate such a
problem.

4.2 Segmentation of the Humanitarian Supply Chain

Various approaches are taken by different scholars in terms of their choice of focal point
within the humanitarian supply chain. The relationship between central depots (ICDs)
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providing initial supplies to local distribution centers (LDCs), is among the most common
choices of tier [Balcik and Beamon, 2008, Campbell and Jones, 2011, Yi and Özdamar,
2007]. These models are mainly restricted to determining the number and location of
LDCs to initialize, in addition to the amount of supply to be stocked at the distribution
centers chosen. Last mile distribution considering the final stage of humanitarian logistics
is another widely applied practice [Balcik et al., 2008, Barbarosoğlu and Arda, 2004, Hsueh
et al., 2008, Nolz et al., 2010, Özdamar et al., 2004, Shen et al., 2009b,a, Vitoriano et al.,
2009, 2010]. These models aim to develop vehicle schedules in order to allocate supplies
between the affected population from the available pre-established distribution centers.
Several scholars have also chosen to consider a wider part of the supply chain, integrating
decisions concerning both pre-positioning of emergency supplies and last mile distribution
of these supplies [Clark and Culkin, 2007, Günneç and Salman, 2007, Hentenryck et al.,
2010, Mete and Zabinsky, 2010, Rawls and Turnquist, 2010, 2012, Salmerón and Apte,
2009, Tzeng et al., 2007, Yi and Özdamar, 2007, Zhu et al., 2008].

In addition to different selections of tiers to consider within the humanitarian supply chain,
researchers also differs in terms of their choice of phase in disaster management, as described
in Section 2.1. However, they show a distinct tendency to favor the phases covering the
period just prior to or in the immediate wake of a disaster, or a combination of the two.
Last mile distribution decision are obviously taken solely in the response phase, whereas
facility location and pre-positioning decisions can be made both in preparation for, or in
response to disaster events.

Campbell and Jones [2011] adopt a classic news vendor approach in order to consider
prepositioning of supplies in preparation for a disaster. Rawls and Turnquist [2010] on
the other hand, have developed an emergency response planning tool that determines the
location and quantities of various types of emergency supplies to be pre-positioned, under
uncertainty about if, or where, a natural disaster will occur. Their proposed model combines
facility location, decisions concerning stocking levels of supplies, and distribution of those
supplies to multiple demand locations after an event. They thus cover both the preparedness
and response phase. As a continuation of their model, Rawls and Turnquist [2012] focus
on the same two phases in constructing a dynamic allocation model to optimize pre-event
planning for meeting short-term demands for supplies under uncertainty about location and
quantity of demands which have to be met.

4.3 Choices of Fundamental Model Formulations

Last mile distribution of humanitarian aid is mainly formulated as vehicle routing prob-
lems (VRP) [Balcik et al., 2008, Günneç and Salman, 2007] or different variants of the
network flow problem (NFP) [Barbarosoğlu and Arda, 2004, Vitoriano et al., 2009, 2010].
Özdamar et al. [2004] however, present a hybrid problem integrating the multi-period multi-
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commodity NFP with the VRP. Single commodity allocation problems (SCAP), resource
allocation problems (denoted by RAP in this study), covering tour problems (CTP), facility
location problems (FLP) and facility routing problems (FRP) have also been the subject
of interest for a number of scholars. The latter problem integrates the discrete FLP and
the VRP, and is addressed by Günneç and Salman [2007], Rawls and Turnquist [2010,
2012], Salmerón and Apte [2009] and Yi and Özdamar [2007] by means of network flow
models.

Yi and Özdamar [2007] adopt a mixed integer multi-commodity network flow model which
optimizes the locations and capacities of facilities, as well as vehicle routes and schedules.
In addition to detailed vehicle routes and load instructions, the model provides optimal
allocation of medical personnel. Balcik and Beamon [2008] handle facility location decisions
exclusively, by employing a variant of the maximal covering location model. The model
sets out to determine the number and locations of distribution centers, and the amount
of relief supplies to be stocked at each distribution center in order to meet the needs of
the people affected by a disaster. Balcik et al. [2008] consider a vehicle-based last mile
distribution system, in which a local distribution center stores and distributes emergency
relief supplies to a number of demand locations. The main decisions are allocation of relief
supplies among the demand locations, and determination of delivery schedules by means of
a VRP throughout the planning horizon. They propose a mixed integer programming model
that determines delivery schedules for vehicles, and equitably allocates resources based on
supply, vehicle capacity and delivery time restrictions. Transportation cost is minimized
while the benefit to aid recipients is maximized.

Hentenryck et al. [2010] propose models for the SCAP that divide the distribution process
into two phases. First, initial supply amounts are allocated in the network, followed by
delivery to final recipients. They address the difficulty of treating both the storage problem
and the routing problem simultaneously by proposing a three-stage algorithm. They de-
compose the decisions related to storage, customer allocation and routing, and apply mixed
integer programming, constraint programming and large neighborhood search respectively.
Zhu et al. [2008] attack a similar problem, the RAP, by means of a multi-commodity and
multi-modal transportation network flow model. The model sets out to decide the type
and amount of commodities to be maintained in local reserve depots in order to cope with
slight disasters, while cooperating with local government for serious disasters. As opposed
to the two latter researchers mentioned, Nolz et al. [2010] dwell on a CTP arising in a
post-disaster situation. As a solution to this problem, a hybrid method based on generic
algorithms, variable neighborhood search and path relinking aiming to distribute supply of
aliment, shelter and medicine among the population affected by the disaster is developed.
The outcome is a set of vehicle routes which satisfies criteria set by the authors.
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4.4 Treatment of Uncertain Information

Several researchers recognize the need to consider the impact of random events accompa-
nying natural disasters. Balcik et al. [2008] use a rolling-horizon framework to capture
the inherent supply and demand uncertainties. To reflect vehicle-road compatibility, they
associate the travel costs on arcs with vehicle types. Using this approach, if a road is
damaged or cannot be used by a specific vehicle, the cost of traveling along that arc is
assigned a large number. This preprocessing phase enables decision makers to consider
the transportation infrastructure, and eliminates infeasible or undesirable routes. When
making inventory decisions, Campbell and Jones [2011] account for risk of deterioration
or inaccessibility of pre-allocated supplies and supply points after a disaster has struck by
introducing a probability value associated with each potential supply point.

Vitoriano et al. [2009] and Vitoriano et al. [2010] on the other hand, have chosen to model
uncertainty concerning the extent of detrimental effects caused to infrastructure via reliabil-
ity analysis. Reliability is defined as the probability of executing an activity with success.
This interpretation of reliability is translated to the proposed goal programming models
by means of a measure stating the probability of being able to cross all arcs included in
the applied solution. The aspect of security is considered in a similar manner by assign-
ing each arc with a probability of vehicle ransack at crossing. This probability is used to
calculate a global measure stating the probability of not being ransacked throughout the
entire distribution process. These two attributes are included in separate goal constraints
in which deviation from a given target is calculated, deviations which are to be minimized
in the objective function. The humanitarian aid distribution system suggested by Vitoriano
et al. [2009] additionally allows for choice of a second approach in which maximum ransack
probability of arcs is minimized, and minimum reliability of arcs is maximized.

Another approach taken to cope with aspects of uncertainty caused by disasters, is multi-
stage stochastic programming (MSP). The authors included in this literature review solely
employ two-stage stochastic programming models. Barbarosoğlu and Arda [2004] con-
sider uncertainty in demand when planning the transportation of humanitarian aid during
emergency response. In the first stage, goods are pre-positioned by allowing movement of
goods between existing supply depots. In the second stage, a transportation plan is drawn
up based on existing supply and the realization of uncertain demand and arc capacities.
Hentenryck et al. [2010] and Rawls and Turnquist [2010] model immediate post-disaster
response under uncertainty in physical damage caused by the disaster. They both include
pre-disaster first stage decisions of locating and stocking warehouses which can be dam-
aged by the disaster. In the second stage, routes are constructed after obtaining informa-
tion about demand and remaining supply. Demand, transportation network and surviving
stock of various commodities after an event are all subject to uncertainty. In a similar
manner, Rawls and Turnquist [2012] treat demand and infrastructure as stochastic ele-
ments, yet omitting potential deterioration of pre-positioned supply. Günneç and Salman
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[2007] also propose a two-stage multi-criteria stochastic programming model. The facilities
to be opened are chosen in the first stage, together with their capacities and the storage
quantities of each commodity. In the second stage, the distribution of the commodities is
optimized. This model accounts for failure in parts of the infrastructure in the event of an
earthquake. The infrastructure is represented by links that may be non-operational after
the disaster, with an estimated probability of failure. The demand nodes are also subject
to deterioration, which in effect produces stochastic demand.

4.5 Objective Function Terms

Günneç and Salman [2007], Vitoriano et al. [2009], Hentenryck et al. [2010], Salmerón and
Apte [2009] and Vitoriano et al. [2010] have all chosen multi-criteria optimization models
to capture and balance the often conflicting objectives faced by the decision maker, as men-
tioned in Section 2.2.1. Vitoriano et al. [2009, 2010] propose goal programming models for
designing vehicle routes in aid distribution problems. Main criteria involved in a disaster
response operation such as time, cost, reliability, security and equity, are taken into account.
The models consist of two network flow models, one for vehicle flow and another for load
flow, as well as the relation between the two. Clark and Culkin [2007] wish to give greater
priority to minimization of unsatisfied demand than to minimization of costs, in accordance
with the performance measures essential to the humanitarian supply chain as stated in Sec-
tion 2.2.1. In order to honor this priority policy, they introduce weightings of the objectives
which should reflect the importance of the component in question. Single-objective models
have also been utilized. Minimization of costs [Barbarosoğlu and Arda, 2004, Rawls and
Turnquist, 2010, Balcik et al., 2008, Campbell and Jones, 2011] and unsatisfied demand
[Balcik and Beamon, 2008, Özdamar et al., 2004] are the general approaches.

4.6 Consideration of Fairness

The notion of fairness within humanitarian logistics is subject to several different descrip-
tions. In their review of literature presenting operations research models in transportation
of relief goods, de la Torre et al. [2011] describes egalitarian policies as maximization of
equality measures such as delivery quantity and speed. By adopting this definition of fair-
ness, the models developed by Campbell and Jones [2011], Nolz et al. [2010], Hentenryck
et al. [2010] and Mete and Zabinsky [2010] can be considered egalitarian in terms of deliv-
ery speed, in their minimization of time to deliver goods to beneficiaries. Similarly, we can
argue that the model presented by Tzeng et al. [2007] is egalitarian in delivery quantity by
their introduction of an objective function maximizing satisfaction of fairness and minimiz-
ing unfair distribution. Clark and Culkin [2007] address the aspect of fairness by enforcing
a distribution policy whereby a minimum amount of a certain item has to be delivered to
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each demand point. Vitoriano et al. [2009] and Vitoriano et al. [2010] seek to obtain equity
of distribution by adding a goal constraint which minimizes the maximum deviation of the
load supplied proportional to the demand. The desired effect is to achieve delivery of aid
to the less propitious areas in terms of their location, which otherwise would be surpassed.
Balcik et al. [2008] also recognizes the need for incorporation of equity in relief aid distri-
bution among affected areas while minimizing suffering. Obtainment of equity is achieved
by requiring that their model serve an “equal allocation principle”. This principle states
that supplies should be allocated proportionally among the demand locations based on de-
mand amounts and population vulnerabilities, and balance the unsatisfied and late-satisfied
demand among demand locations over time.

4.7 The Use of Algorithms and Heuristics

Of the scholars treated in this review, several utilize algorithms in the problem solving
process due to the computational complexity of problems describing disaster situations.
By developing heuristic algorithms, they are able to solve large-scale instances of their
defined problems. As large, complex real-world problems may prevent an optimizer from
finding an optimal, or even feasible, solution using reasonable effort, the utilization of
heuristics ensure that at least a feasible solution is produced within minimal time and
storage requirements. Zhu et al. [2008] design an LP-relaxation algorithm by introducing an
LP-rounding technique as a means to handle the potential large amount of integer variables
which their resource allocation model (RAM) produces. Firstly, the LP-relaxation of the
RAM is obtained by relaxing all variables’ integer constraints. Secondly, the LP-relaxation
is solved. Finally, an integer solution is obtained according to the fractional optimal solution
of the LP-relaxation.

Hsueh et al. [2008] have developed a two-phase heuristic comprised of route construction
and improvement of routes to tackle the dynamic vehicle routing problem for relief logistics
which they present. Hentenryck et al. [2010], on the other hand, propose a multi-stage
hybrid-optimization decomposition for SCAPs. The procedure involves a combination of
a MIP model for stochastic commodity storage, a hybrid constraint programming/MIP
model for multi-trip vehicle routing, and a large neighborhood search model for minimizing
the latest delivery time in multiple vehicle routing. The use of these different technologies
enables an exploitation of the structure of each individual optimization subproblem, and
high quality solutions to real-world benchmarks. Özdamar et al. [2004] introduce an iter-
ative solution approach based on Lagrangian relaxation, to be able deal with significantly
large scale emergencies. Their proposed model is decomposed into two multi-commodity
network flow models for commodity- and vehicle-flow respectively. These sub-models are
coupled by means of relaxed arc capacity constraints using Lagrangian relaxation. Also
Yi and Özdamar [2007] seek to make their location-distribution model for coordinating
logistics support and evacuation operations in disaster response activities applicable to
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larger problem instances, which they achieve by post processing. The post processing is
enabled through a routing algorithm that is pseudo-polynomial in the number of vehicles
utilized, followed by the solution of a linear system of equations defined in a very restricted
domain.

4.8 Distribution Systems in the Supply Chain

Of the various attributes ascribed to the distribution system of the humanitarian supply
chain, the number of depots and characteristics of the vehicle fleet used in the distribution
process have proven to be of the most relevance when comparing the literature considered
in this review to the model presented in this study. Nolz et al. [2010] have chosen to
present a multi-objective covering tour problem arising in a post-natural disaster situation,
in which a single depot is available for utilization for the decision maker. The vehicle
fleet considered is homogeneous in the sense that it consists of vehicles of equal capacity.
Also Günneç and Salman [2007] fail to include multiple modes of transportation. In an
attempt of achieving pre-positioning of emergency supplies, Rawls and Turnquist [2010,
2012] consider several potential storage facilities, but omit considering characteristics of a
vehicle fleet. In the two-stage stochastic model specified for biological terrorism emergency
scenarios proposed by Shen et al. [2009a], the problem is modeled by a single depot in which
the decision maker utilizes a heterogeneous vehicle fleet. The most widely applied approach
considering the literature treated in this review however, is modeling with multiple depots
and a heterogeneous vehicle fleet. This is demonstrated by the model given by Mete and
Zabinsky [2010] for the storage and distribution problem of medical supplies for disasters
in general.
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Table 1: An overview of relevant characteristics in models addressing the disaster response
problem

Problem Uncertainty
type treatment

VRP NFP FRP RAP/ CTP FLP Stoch. Stoch. Stoch. Two- Multi- No stoch.
SCAP (sup/)dem network cap. stage stage elements

This report x x x x x x

Balcik and Beamon [2008] x x x x
Balcik et al. [2008] x x
Barbarosoğlu and Arda [2004] x x x x
Campbell and Jones [2011] x x
Clark and Culkin [2007] x x x
Günneç and Salman [2007] x x x x x
Hentenryck et al. [2010] x x x x x
Hsueh et al. [2008] x x
Mete and Zabinsky [2010] x x x x x
Nolz et al. [2010] x x
Özdamar et al. [2004] x x x
Rawls and Turnquist [2010] x x x x x
Rawls and Turnquist [2012] x x x x x
Salmerón and Apte [2009] x x x x x
Shen et al. [2009b] x x x x
Shen et al. [2009a] x x x x
Tzeng et al. [2007] x x
Vitoriano et al. [2009] x x
Vitoriano et al. [2010] x x
Yi and Özdamar [2007] x x x
Zhu et al. [2008] x x x x

Objective Depot Vehicle Uses
function fleet algorithms

Min Max sat. Single Multiple Single Multiple Hetero. Homo.
cost demand obj. obj. depot depots vehicles vehicles

This report x∗ x x x x

Balcik and Beamon [2008] x x x +
Balcik et al. [2008] x x x x x
Barbarosoğlu and Arda [2004] x x x
Campbell and Jones [2011] x x x x
Clark and Culkin [2007] x x x∗ x x
Günneç and Salman [2007] x x x∗∗ x x
Hentenryck et al. [2010] x x x∗∗ x x Y
Hsueh et al. [2008] x∗∗ x x Y
Mete and Zabinsky [2010] x x x∗∗ x x
Nolz et al. [2010] x∗∗ x x Y
Özdamar et al. [2004] x x x x Y
Rawls and Turnquist [2010] x x x x Y
Rawls and Turnquist [2012] x x x x
Salmerón and Apte [2009] x x∗∗ x x
Shen et al. [2009b] x x∗∗ x x Y
Shen et al. [2009a] x x∗∗ x x Y
Tzeng et al. [2007] x x x∗∗ x x
Vitoriano et al. [2009] x x∗∗ x x
Vitoriano et al. [2010] x x∗∗ x x
Yi and Özdamar [2007] x x x x Y
Zhu et al. [2008] x x x x Y

* Minimization of cost is not the main goal of the model and is in effect given a near negligible weight
** Not all of the attributes taken into consideration by the model are listed
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5 Presentation of the Deterministic Model

When omitting aspects of uncertainty, the problem described in Section 3 translates into
a deterministic programming problem. We start by explaining the handling of nonlinear
elements, followed by statement of the underlying assumptions and limitation used in the
construction of the deterministic model. Finally, a formal presentation of the complete
deterministic model will be given.

5.1 Handling Elements of Nonlinearity

Nonlinear problems represent an important group of optimization problems [Lundgren et al.,
2010]. The different model formulations applied, vary according to the way the nonlinear
relations are expressed. Mathematical nonlinear problems with integrality constraints on
given variables are especially difficult to solve, and Lundgren et al. [2010] argues that few
commercial softwares have solution processes which is efficient in solving these type of
problems.

Figure 5: The nonlinear utility function and its marginal utility function

Taylor series expansion and quadratic, as well as linear, approximations are common meth-
ods used to avoid nonlinear functions. In order to tackle the challenging aspect of fairness
described in Section 3.3, this problem will be subject to nonlinear maximization of utility,
as depicted in Figure 5.
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With reference to this illustration, the most obvious approximation approach to utilize for
the mathematical models developed in this thesis, is that of linear approximations.

Figure 6: An illustration of the objective function and appurtenant approximations

The two lines substituting for the original utility function are indicated in Figure 6. This
specific example considers four utility intervals, where the utility is close to zero as the
total demand of 80 is fulfilled. There is no more demand to be met exceeding this upper
limit. The effect of introducing nonlinear utility is that the marginal utility of delivering
unit number 1, is higher than that of delivering item number 20.

5.2 Limitations and Assumptions under Perfect Information

The Achilles’ heel of a mathematical model is represented by its input data. A realistic
model will not be able to provide the user with useful information unless the input data are
precise and realistic. Deterministic models suffer from the assumption of perfect informa-
tion. According to Wallace [2003], a decision maker who works under this assumption, acts
as an economic man. The economic man has knowledge of the significance of an optimal
solution, which he aims to achieve, but limited information obstructs him from being sure
that he is taking the right decisions.

The overall goal of the problem raised in this thesis formed by the society in general and by
the decision makers, is to maximize total utility. Formulated as a facility routing problem,
this model includes multi-commodity network flow with capacitated arcs, nonlinear utilities
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and multi-modal vehicle fleet. The model presented in this section considers a single possible
earthquake scenario exclusively, and returns the optimal solution values of the decision
variables describing the facility routing problem. These values are generated based on
perfect information about the effects of the earthquake, and are applied immediately after
impact. This mathematical model is formulated as a deterministic linear program.

In the following, the limitations and assumptions applicable to the deterministic model are
listed:

1. Emergency supplies including rescue teams, medical personnel, food, water, machin-
ery, medicines and necessity items, are modeled as commodities. Restricted amounts
of initial supply is assumed to be located at the ICDs. ICDs are modeled as source
nodes experiencing outflow exclusively, whereas the LDCs are modeled as transship-
ment nodes. Neither of these are exposed to demand. Flow of commodities between
LDCs is allowed. All listed LDCs are able to operate and are subject to initializa-
tion. Commodities are assumed to be held in stock at the LDCs for a limited time
period only, and holding costs are thus ignored. The LDCs portray the locations at
which supplies are received for further distribution to final demand destinations. Also
planning of the distribution process and loading of the vehicles assigned to perform
last mile distribution, is executed at the LDCs. The PODs are able to serve as both
transshipment nodes and termination nodes, and experience a given level of demand.

2. The ICDs are assumed to be situated far away from the affected area, making air-
crafts the most appropriate means of transportation for initial supply. Ship freight
is considered too time-consuming to be used for providing immediate help [Jæger,
2012b]. The paths connecting the ICDs and LDCs thus constitute of incapacitated
arcs which will handle a fleet of vehicles in a single mode. Roads, walking paths and
air routes connecting the LDCs and the PODs on the other hand, are represented
by capacitated arcs able to handle a multi-modal vehicle fleet in order to conform
with real life network properties. The arc capacities are assumed known immediately
after the earthquake has hit. Time and cost spent to traverse an arc using a certain
vehicle type, depend on the length and quality of the arc. All commodities must pass
through an LDC, and direct shipment from ICDs to PODs is disallowed.

3. The different modes of transportation at the decision maker’s disposal are modeled
by means of a corresponding range of vehicle types. In order to prevent vehicles from
traversing certain arcs with which they are incompatible, a set is defined for each
vehicle type containing the arcs it is allowed to traverse. Restricting arc capacities
can also prevent vehicles from traversing certain arcs.

4. Efficient distribution is to be ensured by the objective function which by implication
minimizes costs. However, satisfying demand is of much higher importance in the
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event of a disaster, and the utility related to each monetary unit saved is less than
that of demand satisfaction, regardless of the distance from the earthquake and the
number of items delivered thus far.

5. According to Tzeng et al. [2007], fairness in humanitarian logistics entails exerting
effort to ensure that the required relief materials are distributed to all demand points.
This model assumes different utility factors to reward fulfillment of demand depending
on the number of commodities delivered. This implies that the marginal utility factor
for each node and each commodity will vary in line with the number of commodities
received by the POD in question. Ability to prioritize the most vulnerable part of the
affected population as discussed in Section 3.3, is thus enabled. The model uses utility
intervals to create such an effect. To avoid nonlinearities in the model formulation, a
method which approximates the utility of demand fulfillment is adopted.

6. The budget can be restrictive or non-restrictive depending on the input value provided
by the user of the model. To ensure efficiency of flow, an economical term will be
added to the objective function.

7. Cultural and political issues are not considered when formulating the model. Neither
are tax issues. As a result of this, delay in supply will not be necessary to take into
account.

8. Variables representing commodities and satisfied demand are modeled as continuous
variables in order to reduce the complexity of the model.

9. All parameters are known to the decision maker, and all decisions are made simulta-
neously.

5.3 Deterministic Model Formulation

This section provides a formal presentation of the deterministic model. The sets, indices,
parameters and variables that form the foundation upon which the mathematical formu-
lation is built, will be stated. Thereafter follows a detailed description of the model in
terms of its constituting constraints. All sets are denoted by calligraphic upper-case letters,
indices and variables by standard lower-case letters, and constants by standard upper-case
letters.

Sets

B - set of commodity types
K - set of utility intervals
N - set of nodes
V - set of vehicle types
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Indices of Main Sets

b - commodity type b ∈ B
i, j, j′ - node i, j, j′ ∈ N
k - utility interval k ∈ K
v - vehicle type v ∈ V

Derived Sets

A - subset of arcs which vehicles traveling between ICDs and LDCs are
allowed to traverse

Av - subset of arcs which vehicle type v traveling between LDCs and
PODs are allowed to traverse

I - set of ICDs I ⊂ N
L - set of LDCs L ⊂ N
P - set of PODs P ⊂ N
Vj - subset of vehicle types allowed to travel into node j Vj ⊆ V

Indices of Derived Sets

(i, j) - arc (i, j) ∈ A ∪Av

Parameters

CI - unit capacity of vehicles traveling between ICDs and LDCs
CL
v - unit capacity of vehicle type v

CA
ij - unit capacity of arc (i, j)

CC
j - capacity at LDC j

Djb - demand of commodity type b at POD j
EC

b - cost associated with shipping one unit of commodity type b
EI

ij - cost associated with traveling from ICD i to LDC j

EL
ijv - cost associated with traveling from node i to node j for vehicle type v

EO
i - cost associated with opening LDC i

F I
i - total available number of vehicles at ICD i

FL
iv - total available number of vehicles of vehicle type v at LDC i

HB - available budget
HT - upper convoy time limit
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MD
jbk - utility factor for satisfied demand at POD j of commodity type b in utility interval

k
MB - utility factor for residual budget
QC

b - unit size of commodity type b
QV

v - unit size of vehicle type v
Sib - supply of commodity type b at ICD i
T I
ij - time spent traveling from ICD i to LDC j

TL
ijv - time spent traveling from node i to node j for vehicle type v

Ujbk - size of utility interval k for commodity type b at POD j

Variables

li =

{
1, if LDC i is opened
0, otherwise

xIij - number of vehicles to travel from ICD i to LDC j

yIijb - amount of commodity type b sent from ICD i to LDC j

zIij =

{
1, if a vehicle traverses arc (i, j)

0, otherwise
djbk - amount of satisfied demand of commodity type b at POD j in utility interval k
xLijv - number of vehicles of type v to travel from node i to node j

yLijbv - amount of commodity type b sent from node i to node j with vehicle type v

zLijv =

{
1, if vehicle type v traverses arc (i, j)

0, otherwise
w - level of residual budget

Objective Function

max
∑
j∈P

∑
b∈B

∑
k∈K

MD
jbkdjbk +MBw (5.1)

The aim of the model is to maximize the utility provided by means of humanitarian aid
distribution to the population affected by an disaster. Utility is measured in terms of
weighted level of demand fulfillment and economic efficiency. The first term of the utility
function represents the total number of units of commodities delivered across all demand
points, adjusted by a factor reflecting the urgency of need. The last term gives the level of
residual budget, scaled in order to correspond to the first term.
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Facility Location Constraints

Supply Constraints: ∑
j∈L

yIijb ≤ Sib i ∈ I, b ∈ B (5.2)

In the initial step of the distribution process, we wish to ensure that the amount of com-
modities dispatched from the origin of supply, the ICDs, does not exceed the disposable
level of stock at the given ICD. This condition is confirmed by adding the foregoing Supply
Constraints (5.2).

Vehicle Flow Constraints: ∑
j∈L

xIij ≤ F I
i i ∈ I (5.3)

xIij − F I
i z

I
ij ≤ 0 (i, j) ∈ A (5.4)∑

b∈B
Qby

I
ijb − CIxIij ≤ 0 (i, j) ∈ A (5.5)

zIij − xIij ≤ 0 (i, j) ∈ A (5.6)

The Vehicle Flow Constraints (5.3) - (5.6) apply to the single mode of transportation pro-
viding distribution between ICDs and LDCs. Constraints (5.3) limit the outbound number
of vehicles at the ICDs according to the size of the available vehicle fleet. Constraints (5.4)
equivalently limit the number of vehicles traversing an arc between an ICD and an LDC.
Constraints (5.5) ensure vehicle capacity compliance, whereas Constraints (5.6) assure co-
herence between the integer variable defining quantity of vehicles traversing an arc and the
corresponding binary variable.

Transshipment Constraints

LDC Capacity Constraints:∑
i∈I

∑
b∈B

Qby
I
ijb − CC

j lj ≤ 0 j ∈ L (5.7)

The transshipment centers, LDCs, are assumed to operate under capacity limitations, and
the purpose of the LDC Capacity Constraints (5.7) are to keep total inbound flow from
ICDs to the LDC in question within its capacity range. As the model enables a choice of
which LDCs to open depending on the initialization cost, these constraints also provide
prevention of inflow to inoperative LDCs.
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Transshipment Commodity Flow Balance Constraints:∑
j∈N\I

∑
v∈Vj

yLijbv −
∑
j∈I

yIjib −
∑

j∈N\I

∑
v∈Vi

yLjibv ≤ 0 i ∈ L, b ∈ B (5.8)

The Commodity Flow Balance Constraints (5.8) seek to balance inbound versus outbound
flow of commodities at the LDCs, in order to ensure conservation of the available quantity of
commodities in the network. We consequently avoid appearance of exaggerated commodity
flow at transshipment, whilst allowing for transshipment through the LDCs.

Last Mile Distribution Constraints

Demand Satisfaction Constraints:∑
v∈Vj

∑
(i,j)∈Av

yLijbv −
∑
v∈V

∑
(j,i)∈Av

yLjibv −
∑
k∈K

djbk = 0 j ∈ P, b ∈ B (5.9)

∑
k∈K

djbk ≤ Djb j ∈ P, b ∈ B (5.10)

djbk ≤ Ujbk j ∈ P, b ∈ B, k ∈ K (5.11)

The set of Demand Satisfaction Constraints (5.9) define the level of demand fulfillment for
each demand point, POD, as the difference between ingoing and outgoing quantity of com-
modities. The second set of constraints, Constraints (5.10), restrains demand satisfaction
from exceeding the actual demand, thus eliminating wasteful use of resources. The last set
of constraints, Constraints (5.11), register the level of demand satisfaction achieved within
each utility interval. Each interval corresponds to a specific level of urgency of reception
of a given commodity. Combined with the first term of the Objective Function (5.1), Con-
straints (5.11) ensure that distribution between the accessible demand points is performed
according to urgency of need.

Vehicle Flow Constraints:∑
(i,j)∈Av

xLijv −
∑

(j,i)∈Av

xLjiv − FL
ivli ≤ 0 i ∈ L, v ∈ V (5.12)

xLijv − (
∑
j′∈L

FL
j′v)z

L
ijv ≤ 0 v ∈ V, (i, j) ∈ Av (5.13)

∑
b∈B

Qby
L
ijbv − CL

v x
L
ijv ≤ 0 v ∈ V, (i, j) ∈ Av (5.14)

zLijv − xLijv ≤ 0 v ∈ V, (i, j) ∈ Av (5.15)∑
(j,i)∈Av

xLjiv −
∑

(i,j)∈Av

xLijv ≤ 0 j ∈ P, v ∈ Vj (5.16)
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The vehicle fleet executing last mile distribution is assumed to consist of vehicles of diffent
types in terms of capacity, size and arcs valid for access in the distribution network. The
Vehicle Flow Constraints (5.12) - (5.16) consequently apply to the available range of vehicle
types. Constraints (5.12) keep the number of vehicles departing from an LDC within the
available amount, adjusted by the number of vehicles entering the given LDC from other
LDCs and PODs. In an equivalent manner, Constraints (5.13) ensure that the number of
vehicles traversing an LDC’s outgoing arcs is within the total vehicle quantity limit. The
capacity limitations of the different vehicle types are met via Constraints (5.14), whilst
Constraints (5.15) assure coherence between the integer variable defining quantity of vehi-
cles traversing an arc and the corresponding binary variable. The final set of vehicle flow
constraints, Constraints (5.16), balances in and outflow of vehicles at the PODs. Their
purpose is to impede an increase in the number of vehicles leaving a POD as compared
to the number entering the POD, in order to prevent artificial enlargement of the vehicle
flow.

Arc Capacity Constraints:∑
v∈Vj

QV
v x

L
ijv ≤ CA

ij i, j ∈ N\I (5.17)

As stated in Assumption 2, the arcs connecting the LDCs and PODs are subject to capacity
limitations. These limits apply to the grand total of vehicles, across all types, traversing an
arc during the full length of the distribution process. The Arc Capacity Constraints (5.17)
will hinder vehicle flow beyond the capacity of an arc with regard to this fact.

Commodity Flow Constraints:∑
v∈V

∑
(i,j)∈Av :i∈L

yLijbv −
∑
j∈P

∑
k∈K

djbk = 0 b ∈ B (5.18)

∑
(j,i)∈Av

yLjibv −
∑

(i,j)∈Av

yLijbv ≤ 0 j ∈ P, b ∈ B, v ∈ Vj (5.19)

The complete amount of commodities initially planned for dispatch from the LDCs should
contribute in satisfying final demand, as ensured by Constraints (5.18). The Commodity
Flow Balance Constraints (5.19) correspond to Vehicle Flow Constraints (5.16), now with
the intention of balancing in- and outflow of commodities at the PODs.

Efficiency Constraints

Budget Constraints:∑
(i,j)∈A

∑
b∈B

EC
b y

I
ijb +

∑
(i,j)∈A

EI
ijx

I
ij +

∑
v∈V

∑
(i,j)∈Av

EL
ijvx

L
ijv +

∑
i∈L

EO
i li + w = HB (5.20)
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The Budget Constraints ensure that total cost of distribution does not surpass available
budget, and calculate residual budget, if any. Total distribution cost include 1) cost per
unit of commodities sent from ICDs to LDCs; 2) cost per vehicle traveling between ICDs
and LDCs, and LDCs and PODs, with arc-specific cost values; and 3) cost of opening the
LDCs chosen.

Convoy Travel Time Constraints:∑
(i,j)∈A

T I
ijz

I
ij +

∑
v∈V

∑
(i,j)∈Av

TL
ijvz

L
ijv ≤ HT (5.21)

Constraints (5.21) account for the time spent serving the different PODs. If this constraint
is binding, it has the effect of making the vehicles move in convoy.

Non-negativity Constraints

li ∈ {0, 1} i ∈ L (5.22)
xIij ≥ 0 integer, (i, j) ∈ A (5.23)

yIijb ≥ 0 (i, j) ∈ A, b ∈ B (5.24)

zIij ∈ {0, 1} (i, j) ∈ A (5.25)
djbk ≥ 0 j ∈ P, b ∈ B, k ∈ K (5.26)
xLijv ≥ 0 integer, v ∈ V, (i, j) ∈ Av (5.27)

yLijbv ≥ 0 b ∈ B, v ∈ V, (i, j) ∈ Av (5.28)

zLijv ∈ {0, 1} v ∈ V, (i, j) ∈ Av (5.29)
w ≥ 0 (5.30)

Constraints (5.22) - (5.30) enforce non-negative values for the variables used to represent
the range of decisions made in the distribution process.
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6 An Introduction to Multistage Stochastic Programming

This section deals with aspects of multi-stage stochastic programming (MSP) relevant for
the SP model to be proposed. The aim of MSP is to determine optimal decisions in
problems involving uncertain data. Stochastic, as opposed to deterministic, programming
entails inclusion of data subject to random variation [Birge and Louveaux, 2011]. In the
context of SP, Wallace [2003] replaces the economic man described in Section 5.2, with the
the administrative man. The administrative man makes decisions under limited knowledge,
and seeks solutions according to the knowledge he holds at the time of decision which
are only just sufficient. The nature of these solutions however, might change over time
as relevant information becomes available. The local agent described in Section 3.2 is
restrained by limited information, but seeks to produce optimal distribution plans. He thus
fits the given description of the administrative man.

Following is a description and comparison of approaches used to handle elements of un-
certainty in different mathematical problems. A brief introduction of multi-stage recourse
problems in general is given in Section 6.2, followed by a preliminary account of criteria
applied in valuation and validation of stochastic solutions in Section 6.3.

For a thorough introduction to stochastic programming in general, we refere to Birge and
Louveaux [2011] and Higle [2005]. The reader is assumed to be familiar with basic concepts
of optimization and mathematical programming.

6.1 Handling Uncertainties Inherent in Real-Life Events

Most problems describing real-life decision-making processes to a greater or lesser extent
consist of uncertain parameters. Prices, demand, costs, weather, technology or, as in this
case, extent of damages exemplify aspects of this kind. Consideration of uncertainty is
essential in development of models which are able to produce reliable and sound decisions
applicable to the total range of possible real-life outcomes.

By applying a deterministic problem formulation, elements of uncertainty are neglected as
perfect information is assumed. Methods such as sensitivity analysis or scenario analysis
are often used to ensure validity of solutions [Midthun, 2011]. Sensitivity analysis seeks to
evaluate the effect variation of parameters of interest has on the optimal solution. Scenario
analysis is another approach often used in situations where we are able to identify a finite
number of possible realizations of the uncertain parameters. Based on this range of real-
izations, we are able to define a number of scenarios. In turn, for each of these different
scenarios separately, a deterministic problem will be formulated and solved. An optimal
solution will be located based on analysis of the resulting array of scenario solutions.

Midthun [2011] argues that stochastic programming (SP) is the appropriate tool for making
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decisions under uncertainty. Wallace [2003] states that SP can in some cases prove a by far
superior approach, when compared with its deterministic counterpart. Shapiro and Philpott
[2007] claim that SP models will take advantage of the fact that probability distributions
governing the data are known or can be estimated. The models aim to establish decisions
that will perform well for the totality of future outcomes under consideration. Hence, the
decision maker’s goal is to determine a policy which is feasible for all or almost all the
possible realizations of the uncertain parameter, and to optimize the expectation of some
function of the decisions and the random variables [Shapiro and Philpott, 2007].

With these arguments at hand, uncertain parameters relating to the DRP described in
Section 3, will be dealt with by means of stochastic programming. The remainder of this
section is therefore devoted to aspects relating to SP.

6.2 Characteristics of Multi-Stage Recourse Problems

Real-life problems normally include parameters which are of unknown values at a given
point in time, but which will be revealed as the situation progresses. Recourse models
utilize the flexibility of being able to postpone certain decisions until information regarding
relevant uncertain parameters is realized [Sen and Higle, 1999]. Each decision is defined in
terms of the point in time at which it is to be made, and in accordance with elimination of
uncertainty regarding decisive parameters [Wallace, 2003]. Decisions which can be delayed,
so-called recourse actions, provide an opportunity to adjust to the realized information.
This will compensate for some bad effects that might have been experienced because of
earlier decisions. Such adaption is referred to as recourse. Recourse models are therefore
always presented as models constituting of two or more stages, allowing for exploitation
of the continuous revelation of relevant information throughout the length of the planning
process [Higle, 2005].

In two-stage recourse problems, all parameters are revealed prior to the second stage deci-
sions being determined. However, if obtainment of new information takes place at several
future points in time, a multi-stage recourse model will serve to describe reality more ac-
curately. Multi-stage models provides the advantage of being able to consider an extended
planning horizon whilst avoiding poor initial decisions. An important byproduct in such
a planning process is the generation of recourse plans for each of the different scenarios
describing possible future outcomes.

A key feature of multi-stage problems is the evolution of the random phenomena over time
[Sen and Higle, 1999]. As an implication, the decision problem faced at a certain stage can
vary dramatically depending on the outcomes realized in the previous period. In addition,
decisions made at one stage will have an impact on the range of options available in future
periods. The variables generally depend on the values of random parameters of previous
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stages. For ease of understanding and convenience, this dependency is depicted in Figure 7
by means of two interchangeable scenario trees.

Figure 7: Scenario trees illustrating the totality of future scenarios, in addition to the course
of decisions and the interdependencies between decision made at different stage

The figure shows a structured distributional representation of the stochastic elements in
a problem. In general, the nodes of the scenario tree represent possible stages at which
decisions can be made and uncertainty is resolved, throughout the course of events. New
information is revealed where at least two branches lead out from a single node. Scenarios
are defined as specific paths leading from the root node to a leaf node. The total number
of scenarios thus equals the number of leaf nodes. Transition from one stage to the next
takes place as new information is obtained. Both trees shown in Figure 7 consist of seven
distinct scenarios, s, and three separate stages, t.

The left part of Figure 7 is a simple scenario tree. The root node corresponds to the initial
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stage where limited information exists regarding the true nature of random variables. The
dashed lines separate the stages, whereas the ellipsoids encircle nodes belonging to the same
stage, Et. The notation a(n) is used in succeeding chapters to denote the predecessor node,
also denoted by parent node, of node n.

The right part of Figure 7 illustrates each possible scenario separately. The nodes of the
right tree have the same functions as in the left part, and the ellipsoids represent nodes
that share the same stochastic elements. The same decisions are thus to be made across
all nodes contained within an ellipsoid. The ellipsoids represent the non-anticipativity
constraints.

In addition to illustrating the course of events, the two different trees represent two different
approaches taken when formulating SP models. The first scenario tree translates into a node
formulation, whereas the second tree denotes a scenario formulation. The increased number
of nodes of the latter tree implies that a more complicated computational process will be
needed in order to solve a model based on scenario formulation, as opposed to the node
formulation of the left tree. This fact serves as grounds for choosing node formulation in
the MSP model proposed.

6.3 Valuation of the Stochastic Solution in Multi-Stage Problems

When making decisions, aspects of randomness and uncertainty may be vital to consider in
order to produce resilient decisions applicable to the range of scenarios which might occur.
Omitting elements of uncertainty in stochastic environments might result in suboptimal, or
even infeasible, solutions. A commonly applied approach is substituting ucertain parameters
by approximations or expected values in deterministic models. However, Kall and Wallace
[1994] argue that turning to stochastic programming when working with decisions affected
by uncertainty is crucial.

Stochastic programming models generally involve an increase in the level of complexity as
compared with their deterministic counterparts, making them both harder and more time-
consuming to solve for realistically sized problems [Maggioni et al., 2012]. Being able to
determine values stating the benefit of a more realistic SP model over a more simplistic
deterministic model can thus produce evident indications as to whether or not introducing
a SP model will be worthwhile, or if a deterministic model will suffice [Maggioni et al.,
2012]. In order to assess the value of stochastic solutions, several scholars tend to employ
the concept of measures calculated based on different levels of available information [Birge
and Louveaux, 2011, Escudero et al., 2007, Maggioni et al., 2012]. Whereas an extensive
range of different measures for valuation have been adopted in literature, the commonly
applied concepts of the Expected Value of Perfect Information (EVPI) and the Value of
the Stochastic Solution (VSS) for multi-stage stochastic models will form the basis for
evaluation of the model proposed in this thesis.
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The bounds given by the EVPI and VSS yield a quantitative standard of comparison for
determining the importance of considering uncertainties. These provide valuable insight as
to the potential benefit from solving the stochastic program over a deterministic program
in which random parameters have replaced expected values. The Value of the Stochastic
Solution indicates the expected gain from solving a stochastic model rather than its de-
terministic counterpart. The Expected Value of Perfect Information states how much a
decision maker should be willing to pay in order to obtain perfect information about the
future. The two measures are generally defined in terms of the ’wait-and-see’ (WS) solution,
the solution of the Recourse Problem (RP) and the expected result of using an expected
value solution (EEV). An introduction of the terms, followed by a mathematical deduction
of the evaluation measures will be given in the in the consecutive part of this section.

6.3.1 Calculation of the Expected Value of Perfect Information

The term Recourse Problem (RP) is commonly used in literature to denote the optimal
solution given by the stochastic programming model [Birge and Louveaux, 2011, Escudero
et al., 2007]. This notation will for ease of reference be adopted in this thesis in conjunction
with valuation of the proposed model. The RP value is also referred to as the ’here-
and-now’-solution, as opposed to the ’wait-and-see’-solution (WS). Assuming that perfect
information about the future realization of events could be obtained, and each specific
scenario independently solved to optimality, the WS value represents the expected optimal
solution value. This value is found by separately solving each specific scenario to optimality
[Escudero et al., 2007]. With these two definitions at hand, the EVPI can be formulated
as the difference between the wait-and-see and the here-and-now solution:

EV PI = WS −RP (6.1)

An occurence of high EVPI values serve as justification for investing in improved forecast-
ing techniques, whereas low EVPI values should discourage such investment [Birge and
Louveaux, 2011].

6.3.2 Calculation of the Value of the Stochastic Solution

When faced with elements of uncertainty, an approach frequently resorted to is solving the
Expected Value Problem (EV). The EV is obtained by replacing all random variables by
their expected values, and solving a deterministic program. As opposed to the stochastic
programming model producing the RP value, this approach involves a problem of consider-
able less size and complexity. By fixing all decision variables in the multi-stage stochastic
program at the optimal values obtained by using the expected value solution until the final
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stage, the Expected result of using the Expected Value solution (EEV) is produced [Birge,
1982, Escudero et al., 2007].

Escudero et al. [2007] also describe a second method for computation of EEV, termed
the expected result of using dynamic solutions of the average scenario. The deterministic
average scenario problem is solved in the first step of the procedure. The stochastic values
are replaced by their expected values at all subsequent stages. The resulting optimal first
stage variables are saved. At the following stage in the scenario tree, an average scenario
problem is solved for each scenario tree node leading up to the final stage. For each of the
nodes, the random parameters of subsequent stages are estimated by their expected values,
and all the variables of the preceding stages are fixed at the optimal solution values obtained
in the chain leading up to the node in question. The optimal values of the variables of the
current stage are still to be saved. The same procedure applies to the final stage, except
that use of expected values is no longer relevant. The dynamic EEV value is calculated
based on the optimal values obtained for each scenario tree node of the final stage. In
this way, we achieve a more realistic use of the expected value solution, as more precise
information is added to the model. In order to be able to distinguish the two procedures
described, they will be referred to as the static approach and dynamic approach in what
follows.

By employing the values described so far, the VSS value is found as the difference between
the solution to the stochastic programming model, RP, and the expected result of using a
deterministic expected value solution, EEV:

V SS = RP − EEV (6.2)

This value enables us to calculate the maximum amount that we would be prepared to pay
to ignore uncertainty over the total time horizon the model applies to.

Large VSS values indicate that uncertainty is of importance to the optimal solution, and
that the deterministic solution is of less value. Stochastic programming is deemed appro-
priate when VSS is high [Barbarosoğlu and Arda, 2004]. Comparing the EVPI and the
VSS, the latter is of greatest pertinence to the decision maker in situations where gathering
more information about the future can prove cumbersome, such as ours.

For maximization problems, Birge [1982] argues that the following relationship between the
values defining the evaluation measures applies:

EEV ≤ RP ≤WS (6.3)

The first relation, EEV ≤ RP , implies that a solution generated by a stochastic program
will always perform better than the expected result of using the EV solution. The last
relation, RP ≤ WS, on the other hand, suggests that obtaining perfect information is
always to be preferred.
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Due to certain attributes of the proposed MSP model, some requisite assumptions will need
to be made when estimating the different measures for valuation. The values presented will
be adjusted accordingly. Hence, calculations of the measures will not coincide strictly
with the theory presented in the preceding. This is to be explained in greater detail in
Section 10.2.1.
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7 Presentation of the Multi-Stage Stochastic Programming
Model

This section presents the complete representation of the SP model, including the assump-
tions and limitations used in the construction of the model as well as all necessary sets,
definitions, functions and restrictions.

7.1 Assumptions and Limitations

Deterministic models implicitly assume perfect information. The assumption of perfect
information might lead to inflexible and extreme decisions [Midthun et al., 2009]. In the
context of this disaster response problem (DRP), decisions are adapted to the expected de-
mand, number of available vehicles and the state of the infrastructure. If deviations from the
expected distribution network occur, these can potentially result in bad outcomes. Hence,
it seems reasonable to develop a SP model which considers these unknown conditions. Due
to the characteristics of the DRP described in Section 3 we have chosen to formulate the
model as a three-stage stochastic mixed integer program (SMIP). This enhances reality
representation, which is an important issue in efficient operations research-modeling pro-
cesses. However, it should be noted that there is a trade-off between reality representation
and solution speed [Nygreen et al., 1998]. For discussion of this aspect, we refer to Sec-
tion 10.1.

Even though the assumption of perfect information is relaxed in the three-stage SP approach
proposed, budget and supply among others are still treated as deterministic parameters. In
real life, budget will be stochastic in the sense that it varies with the effect of the earthquake.
Normally the budget is restrictive, but large enough to at least satisfy the demand of highest
importance. Supply at the ICDs is normally certain, but due to potential delays, supply
at the LDC might be stochastic. Still, both supply and budget are treated as deterministic
elements in this model, based on the following two reasons. Firstly, the model does not
consider explicit time periods, resulting in unrealistic implementation of the late arrival
of supplies as stochastic variables. Secondly, we seek to restrict the number of stochastic
parameters in order to reduce computational time. In a sector characterized by extreme
time sensitivity, a computational efficient model with minor errors will be preferred to an
model that takes days to run.

A general challenge in SP is the potentially immense number of possible realization of the
stochastic elements. The number of realizations, translated into an equivalent number of
future scenarios, is the product of possible outcomes for each distinct random value of a
parameter. Demand, size of the available vehicle fleet, utilities and state of the last-mile
transportation network comprise the parameters modeled stochastically. In a model span-
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ning three stages, this implies generation of an unlimited number of possible scenarios. We
assume that a discrete approximation of the possible outcomes in stage 2 and stage 3, along
with respective probability distributions, can be constructed, as illustrated in Figure 7, Sec-
tion 6.2. It is recognized that such an approach depends highly upon the specific sample
drawn, and is thus subject to error. Still, careful choice of input parameters is assumed to
reduce the risk of critical errors.

The most significant assumptions concern the choice of elements to be treated stochastically,
which will be based upon the aspects discussed in Section 3.2. Immediately following an
earthquake, the decision maker wishes to provide aid at the earliest possible point in time.
However, as described in Section 3.2, some beneficiaries may return to greater self-sufficiency
as the situation progresses, whilst others may relocate to different areas in hopes of finding
greater relief. The arise of unexpected challenges such as eruption of disease epidemics can
also bring about change in the level of demand at different PODs. This argument serves as
the grounds for considering demand as a stochastic parameter. The same reasoning applies
to the utility factor, as well as the utility interval size, which is dependent on identical
factors. As discussed in Section 2.2.3, allocation of vehicles can often prove troublesome due
to limited availability of vehicles and difficulty in predicting the actual level of availability.
The range of different types of vehicles accessible to the decision maker will be considered
known in advance, whereas the number of vehicles per type at disposal at each LDC will
be subject to uncertainty. Vehicle capacity is hence modeled as a stochastic parameter in
terms of the number of disposable vehicles, exclusively.

Allocation of drivers and other personnel, as well as allocation of vehicles, are time con-
suming processes, as mentioned in Section 3.2. However, time consuming to the extent
that it is carried out within the time taken for supplies to arrive at the operational LDCs.
At this point in time, further assessments providing updated information concerning the
level of demand across PODs has been conducted, and demand information is now assumed
certain. The same applies to utilities and utility interval sizes. Also the disposable number
of vehicles of each type is treated as a matter of certainty at this stage, as it is assumed
that the vehicles have arrived at the LDCs. The uncertain parameter of stage 2 yet to be
realized, is that of the transportation network. We expect that the network will be reduced
in consequence of an earthquake, which implies that a node could potentially be totally
disconnected from the rest of the distribution network.

Based on assessments of the extent of the earthquake, the decision maker is able to submit
initial estimates of the amount of supplies required in the affected area and the LDCs which
are most expedient to initialize. It should however be noted, that neither ICDs nor LDCs
will be subject to destruction by the earthquake. The LDCs that are actually destroyed
during the earthquake will not be eligible and simply excluded from the selection of available
LDC locations, as this information is assumed to be known when the initial decisions are
made.
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In order to fully comprehend the SP model, the conception of the three stages needs be
explained in further detail. Allocation of commodities and other necessary items, as well as
selection of LDCs to initialize, are modeled as decision made in stage 1. The first reception of
updated information marks the transition from stage 1 to stage 2. As information becomes
available in stage 2, the decision maker will be able to generate initial routes, stating the
load assigned to these vehicles and their destination PODs based on knowledge of demand,
resources which is now at his disposal and anticipation of the state of the network. In
accordance with this plan, vehicles are packed, and dispatched from the LDCs as soon as
they are loaded.

Mathematically, as information about the state of the distribution network is realized, the
3rd stage takes effect. In reality, if a planned route proves fully operative and able of being
carried out according to plan, this information will not be needed. Destinations are in effect
potentially able of being reached prior to reception of information, and corrective measures
regarding the vehicle and respective load serving this POD, decisions relating to stage 3,
will not be made. As a result, the value of the 3rd stage variables will be determined
subsequent to the completion of deliverance. Should however, a vehicle hit an obstacle in
advance of the relevant information being provided, it will be forced to wait until complete
information regarding the state of the distribution network is gained and a modified route
is generated. Hence, the transition from stage 2 to stage 3 is diffuse, and will only take
place for the set of vehicles faced with an obstacle when carrying out their initially planned
route. The 3rd stage variables describing the actual routes of vehicles which never reaches
the final stage, will coincide with the corresponding 2nd stage variables. Potential waiting
time will not be considered in the proposed model, and does not affect the total convoy
time subject to restriction. The variables indicating the full range of decision are depicted
in Figure 8 and corresponds to Figure 4 in Section 3.

Figure 8: An illustration of the decision variables determining point

Only the decisions made in the final stage of the distribution process indicate the actual
implementation of flow of commodities and vehicles from point of supply to point of con-
sumption. Notwithstanding, the decisions of the 2nd stage are regarded equally important.
This is due the fact that the planned route generated in stage 2 may prove able of com-
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pletion, which is to be preferred due to ease of management and increased predictability
throughout the distribution process. In real life, being able to predict and prepare for the
tasks to be performed will be of importance to the personnel involved in humanitarian
logistics, to ensure stable and comfortable working conditions.

Further assumptions concern repacking of vehicles at PODs during last mile distribution
in order to combine loads. This will allow for further shipment if arc capacities or arc
costs restrict the vehicles of the same type to which this applies, to proceed. Vehicles are
permitted to travel empty to be able to relieve other vehicles, when necessary. All vehicles
end their routes at the final destination POD, as defined by their designated distribution
routes generated in stage 2, given that they are able to reach the POD in question according
to plan and delivering to another POD does not provide an increase in the level of utility.
If the given destination POD is inaccessible to the vehicle type in question, this vehicle is
free to serve other PODs. As a direct consequence of this, the assigned load will not go to
waste and contribute to satisfaction of demand.

In order to enable control of inflow versus outflow of commodities and vehicles at the
LDCs, a dummy node system in which each LDC is provided with a corresponding dummy
LDC has been introduced. Figure 9 illustrates this system. By prohibiting inflow to the
original LDC from all nodes apart from the ICDs, but allowing both inflow and outflow
to the dummy LDCs, we allow for transshipment at the LDCs. In this way, the chance of
successfully reaching a POD is increased as the number of possible paths is extended. The
LDCs and their respective dummy LDCs are connected to the identical set of nodes, but not
to each other. The arcs connected to the original LDC are only outgoing, whereas the arcs
connected to the respective dummy LDC are symmetric. This prevents an artificial increase
in commodity and/or vehicle flow beyond the amounts really existing in the network. The
dummy LDCs, as opposed to their respective original LDCs, are empty nodes. They are
neither provided with any supplies or vehicles, nor do they experience any demand. The
dummy LDCs will be utilized should a vehicle need to return to the node of origin, or use
an LDC for transshipment purposes. Even though the LDC and corresponding dummy
LDC are represented by two different nodes in the transportation network, they are in
reality situated at the exact same location. If an LDC is to be used for transshipment only,
opening costs should not be induced. Transshipment will thus take place at the dummy
LDC, which will not be subject to opening costs.

A decisive and significant attribute of the proposed model is the enablement of initialization
of routes prior to reception of information regarding the final state of the distribution
network. The dispatched vehicles will thus need to be forced to follow the planned routes
to the extent possible. They will either be able to complete the given route, or need to be
given an alternative plan of attack should an obstacle hinder this route from being carried
through. In order to tackle the mathematical challenge of modifying a route, two almost
identical networks has been created. The original network utilized in stage 2 includes
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Figure 9: An illustration of the utilized dummy node system and the duplicated network
- Dotted arcs depict links connecting the original network and the duplicated network,
whereas unbroken arcs of the same color represent corresponding arcs

the nodes representing LDCs, dummy LDCs and PODs. The mathematically extended
network builds upon this network, but also includes a duplicated network consisting of
the the dummy LDCs and PODs only. The relationship between the different networks
are illustrated in Figure 9. As long as the arcs to be traversed exist in stage 3, flow will
occur in the original network according to the initially generated distribution plan. If an
obstacle impedes this route from being followed, the original network will be abandoned
and the vehicle in question will proceed in the duplicated network according to a modified
route. Flow on links connecting corresponding nodes of the original and duplicated network
represent artificial flow created for modeling purposes only, as to indicate a change of
network and transition to stage 3. It will thus not induce costs as it does not actually take
place in real life situations. For the same reason, the connecting links are incapacitated. All
other arcs can only handle a limited number of vehicles, and the arc capacities are generated
such that flow in both directions are accounted for. When a vehicle traverses an arc, the
remaining capacity of that arc is reduced accordingly. The implication of introducing a
duplicated network and a dummy node system is that arcs which in reality represent the
same distance, will be modeled as separate arcs between different nodes. This will need to
be considered when formulating the model.
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The modeling approach taken is designed to illustrate the actual course of events in a
realistic manner. The assumptions presented in this section joint with Item (1) - (8) from
the deterministic model in Section 5.2 form the complete set of assumptions applied to the
MSP model developed in the following section.

7.2 Formal Definitions

The following section give a formal definition of the sets, indices, constants and variables
used in the mathematical formulation of the stochastic programming model developed in
this study. As for the deterministic model, all sets are denoted by calligraphic upper-
case letters, indices and variables by standard lower-case letters and constants by standard
upper-case letters.

Network Quantities

QI - total number of ICDs in the original network
QL - total number of LDCs in the original network
QP - total number of PODs in the original network
QN - total number of nodes in the original network

Main Sets

B - set of commodity types
E - set of scenario tree nodes in the scenario tree
K - set of utility intervals
N - set of nodes

N = {1, . . . , QI ,
QI + 1, . . . , QI +QL,
QI +QL + 1, . . . , QI + 2QL,
QI + 2QL + 1, . . . , QI + 2QL +QP = QN}

T - set of stages
T = {1, 2, 3}

V - set of vehicle types
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Indices of Main Sets

b - commodity type b ∈ B
i, j, j′ - node i, j, j′ ∈ N
k - utility interval k ∈ K
n - scenario tree node n ∈ E
t - stage t ∈ T
v - vehicle type v ∈ V

Derived Sets

A - subset of arcs which vehicles traveling between ICDs and LDCs
are allowed to traverse

Avn - subset of arcs which vehicle type v traveling between LDCs,
dummy LDCs and PODs are allowed to traverse in scenario tree node n

A′
vn - subset of arcs and duplicated arcs which vehicle type v traveling

dummy LDCs and PODs, and the duplicated dummy LDC and
the duplicated PODs are allowed to traverse in scenario tree node n,
A′

vn = Avn ∪ {(i, (i+QL +QP )) : i ∈ LD ∪ P} ∪ {((i+QL +QP ), i) : i ∈ LD ∪ P}
∪ {((i+QL +QP ), (j +QL +QP )) : (i, j) ∈ Avn, i, j ∈ LD ∪ P}
∪ {(i, (i+ 2QL +QP )) : i ∈ L}

Et - set of scenario tree nodes at stage t,
Et ⊂ E

I - set of ICDs,
I = {1, . . . , QI}, I ⊂ N

L - set of LDCs,
L = {1, . . . , QL},L ⊂ N

LD′ - duplicated set of dummy LDCs,
LD′

= {1, . . . , 2QL}
LD - set of dummy LDCs,

LD = {1, . . . , QL},LD ⊂ LD
′ ∧ LD ⊂ N

P ′ - duplicated set of PODs,
P ′ = {1, . . . , 2QP }

P - set of PODs,
P = {1, . . . , QP },P ⊂ P ′ ∧ P ⊂ N

Vjn - subset of vehicle types allowed to travel into node j in scenario tree node n,
Vjn ⊆ V

Indices of Subsets

(i, j) - arc (i, j) ∈ A ∪Avn ∪ A′
vn

a(n) - predecessor scenario tree node a(n) ∈ E\E3
of scenario tree node n
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Deterministic Parameters

CI - unit capacity of vehicles traveling between ICDs and LDCs
CL
v - unit capacity of vehicle type v

CC
j - unit capacity at an LDC j

EC
b - unit cost of commodity type b

EI
ij - cost associated with traveling from ICD i to LDC j

EO
i - cost associated with opening an LDC i

F I
i - total available number of vehicles at ICD i

HB - available budget
HT - upper convoy time limit
MB - utility factor for residual budget
Pn - probability of scenario tree node n occurring
QC

b - unit size of commodity type b
QV

v - unit size of vehicle type v
Sib - supply of commodity type b at ICD i
T I
ij - time spent traveling from ICD i to LDC j

Stochastic Parameters

CA
ijn - unit capacity of arc (i, j) in scenario tree node n

Djbn - demand of commodity type b at POD j in scenario tree node n
EL

ijvn - cost associated with traveling from node i to node j for vehicle type
v in scenario tree node n

FL
ivn - total expected number of vehicles of vehicle type v at LDC i in scenario

tree node n
MD

jbkn - utility factor for satisfied demand at POD j of commodity type b in
utility interval k in scenario tree node n

TL
ijvn - time spent traveling from node i to node j for vehicle type v in scenario

tree node n
Ujbkn - size of utility interval k for commodity type b at POD j in scenario

tree node n

First Stage Variables

li =

{
1, if LDC i is opened
0, otherwise

xIij - number of vehicles to travel from ICD i to LDC j
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yIijb - amount of commodity type b sent from ICD i to LDC j

zIij =

{
1, if a vehicle traverses arc (i, j)

0, otherwise

Second and Third Stage Variables

djbkn - amount of satisfied demand of commodity type b at POD j in utility interval
k and scenario tree node n

xLijvn - number of vehicles of type v to travel from node i to node j in scenario tree
node n

yLijbvn - amount of commodity type b sent from node i to node j with vehicle type v

in scenario tree node n

zLijvn =

{
1, if vehicle type v traverses arc (i, j) in scenario tree node n

0, otherwise
wn - level of residual budget in scenario tree node n

7.3 Model Formulation

This section will explicate the stochastic programming model in its entirety. Each con-
straint, or group of connected constraints, will be presented separately and chronologically
according to the stage it applies to, accompanied by a brief explanation. The complete
model excluding explanations is in addition given in Appendix A.

Objective Function

max
∑
j∈P

∑
b∈B

∑
k∈K

∑
n∈E\E1

PnMjbkndjbkn +
∑

n∈E\E1

PnM
Bwn (7.1)

As defined in Section 3.4, the primary aim of the proposed model is to provide the local
agent with a sensible decision scheme explicitly stating the course of distribution of nec-
essary emergency supplies to the affected population in the event of an earthquake. The
model seeks to achieve this goal by considering effectiveness and fairness of distribution.
Effectiveness is measured in terms of cost, which by implication expresses time and dis-
tance involved in executing the distribution plan generated by the model. The vitality of
considering effectiveness is reflected in the urgency of the situation accompanying natu-
ral disasters. Pushed to extremes, time of delivery translates into number of lives saved.
The aspect of fairness also relates to level of urgency in reception of aid, as discussed in
Section 3.3.
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In light of these facts, the chosen objective function maximizes utility accumulated over
the scenario tree nodes, n, of stage 2 and 3. The two terms constituting the utility func-
tion express utility in terms of level of demand fulfillment and residual monetary budget
respectively, in the same manner as for the deterministic model stated in Section 5. What
separates the stochastic programming model from its deterministic counterpart however, is
the inclusion of different disaster scenarios reflecting the uncertainty in outcome following
an earthquake. The objective function in itself does not constitute a valid basis for eval-
uation of the model’s performance. This is due to the duplication of utility values caused
by summing both 2nd and 3rd stage utility. Yet, the reason for including both stages is
the desire to produce efficient decisions for both the planned and the realized distribution
plan. These decisions, planned as well as realized, should be made according to the level of
urgency in need at the PODs for every scenario tree node.

Constraints Stage t = {1}

The initial decisions concern which LDCs to open, and the amount of supply to provide
these LDCs with. The 1st stage decisions are made under uncertainty regarding the capacity
of the vehicle fleet performing last mile distribution, the level of final demandand the dis-
tribution network connecting the nodes in the network, in accordance with the description
of the Disaster Response Problem given in Section 3.2 .

Supply Constraints:

∑
j∈L

yIijb ≤ Sib i ∈ I, b ∈ B (7.2)

The Supply Constraints (7.2) ensure that the amount of commodities dispatched from the
ICDs is kept within the amount available at the ICDs.

LDC Capacity Constraints:

∑
i∈I

∑
b∈B

Qby
I
ijb − CC

j lj ≤ 0 j ∈ L (7.3)

The different LDCs are assumed to be subject to capacity limitations in terms of size of the
facility. Constraints (7.3) prohibit violation of these capacity restrictions for the initialized
LDCs, in addition to preventing inflow of commodities to the LDCs which are excluded from
the distribution process. These constraints correspond to LDC Capacity Constraints (5.7)
of the deterministic model given i Section 5.3.
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Vehicle Flow Constraints:

∑
j∈L

xIij ≤ F I
i i ∈ I (7.4)

xIij − F I
i z

I
ij ≤ 0 (i, j) ∈ A (7.5)∑

b∈B
Qby

I
ijb − CIxIij ≤ 0 (i, j) ∈ A (7.6)

zIij − xIij ≤ 0 (i, j) ∈ A (7.7)

Vehicle Flow Constraints (7.4) - (7.7) are exact replications of the Vehicle Flow Con-
straints (5.3) - (5.6) of Section 5.3. The reader is thus referred to this section for an
explanation of the group of constraints.

Constraints Linking Stage t={1} and t={2}

The transition from stage 1 to stage 2 of the distribution process takes place as the LDCs
have received their designated amounts of supply from the ICDs, in addition to information
about vehicle fleet capacity and demand. The 2nd stage decisions indicate the expected last
mile distribution routes, and represent the planned routes. They are generated based on
uncertain information regarding the state of the infrastructure connecting the LDCs and
PODs, as described in Section 3.2.

Transshipment Commodity Flow Balance Constraints:

∑
v∈V

∑
(i,j)∈Avn

yLijbvn −
∑

(j,i)∈A

yIjib ≤ 0 i ∈ L, b ∈ B, n ∈ E2 (7.8)

The linking constraints connecting the 1st and 2nd stage, control the planned number of
commodities to be used to serve final demand, and are intended to balance in- and outgoing
flow of supplies at the LDCs chosen for operation. The constraints ensure that the amount
of commodities dispatched from each LDC, does not exceed the number of commodities re-
ceived from the ICDs. These constraints correspond to the Transshipment Commodity Flow
Balance Constraints (5.8) of the deterministic model given i Section 5. However, inbound
flow of commodities from PODs and other LDCs is omitted from the stochastic formulation
owing to the dummy node system introduced to the stochastic programming model. The
purpose of this system is to enable control of inflow versus outflow of commodities at the
LDCs across the three stages.
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Constraints Stage t = {2}

Planned Demand Satisfaction Constraints:∑
v∈Vjn

∑
(i,j)∈Avn

yLijbvn −
∑

v∈Vjn

∑
(j,i)∈Avn

yLjibvn −
∑
k∈K

djbkn = 0 j ∈ P, b ∈ B, n ∈ E2

(7.9)∑
k∈K

djbkn ≤ Djbn j ∈ P, b ∈ B, n ∈ E2

(7.10)

djbkn ≤ Ujbkn j ∈ P, b ∈ B, k ∈ K,
n ∈ E2

(7.11)

Constraints (7.9) - (7.11) are equivalent to Constraints (5.9) - (5.11) of the deterministic
model, and apply to the 2nd stage scenario tree nodes. The reader is referred to Section 5.3
for an explanation of the constraints.

Planned Vehicle Flow Constraints:∑
(i,j)∈Avn

xLijvn − FL
ivnli ≤ 0 i ∈ L, v ∈ V, n ∈ E2 (7.12)

xLijvn − (
∑
j′∈L

FL
j′vn)z

L
ijvn ≤ 0 v ∈ V, n ∈ E2, (i, j) ∈ Avn (7.13)

∑
b∈B

QC
b y

L
ijbvn − CL

v x
L
ijvn ≤ 0 v ∈ V, n ∈ E2, (i, j) ∈ Avn (7.14)∑

(j,i)∈Avn

xLjivn −
∑

(i,j)∈Avn

xLijvn ≤ 0 j ∈ LD ∪ P, n ∈ E2, v ∈ Vjn (7.15)

The capacity of the vehicle fleet is amongst the realized information of stage 2. Con-
straints (7.12) ensure that the number of vehicles departing from an LDC does not exceed
the total available quantity of vehicles across the variety of types assigned to that LDC.
Constraints (7.13) consider the number of vehicles traversing an existing arc, making sure
that this quantity does not exceed the total number of available vehicles across all LDCs.
Their purpose is to force the binary flow variables indicating whether or not an arc is sub-
ject to passage, to one if a vehicle type traverses a given arc. Constraints (7.14) keep total
load assigned to the different vehicles within the vehicle’s capacity across all arcs which
they are allowed to pass. Constraints (7.15) represent the vehicle flow balance constraints
balancing in- and outgoing flow of vehicles at the dummy LDCs and PODs. They prohibit
an increase in the number of vehicles passing through a relevant node between point of
arrival and point of departure.
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Arc Capacity Constraints:∑
v∈V

QV
v (x

L
ijvn + xL(i+QL)jvn

) ≤ CA
ijn n ∈ E2, (i, j) ∈ Avn : i ∈ L, j ∈ N\I (7.16)∑

v∈V
QV

v x
L
ijvn ≤ CA

ijn n ∈ E2, (i, j) ∈ Avn : i ∈ P, j ∈ N\I (7.17)

Constraints (7.16) and Constraints (7.17) enforce arc capacity compliance by considering the
size and number of vehicles seeking to traverse an arc. They apply to the existing outgoing
arcs of LDCs and PODs, respectively. Due to the dummy node system, the outgoing arcs
of an LDC equal those of the respective dummy LDC, consequently rendering it necessary
to consider them concurrently.

Planned Commodity Flow Constraints:∑
v∈V

∑
(i,j)∈Avn:i∈L

yLijbvn −
∑
j∈P

∑
k∈K

djbkn = 0 b ∈ B, n ∈ E2 (7.18)

∑
(j,i)∈Avn

yLjibvn −
∑

(i,j)∈Avn

yLijbvn ≤ 0 j ∈ LD ∪ P, b ∈ B, v ∈ V, n ∈ E2 (7.19)

We wish the complete amount of commodities initially planned for dispatch from the LDCs
to contribute in satisfying final demand. This circumstance is guaranteed by means of
Constraints (7.18). The Realized Commodity Flow Balance Constraints (7.19) balances
inflow versus outflow of commodities at the dummy LDCs and PODs. They prohibit an
increase in the number of commodities shipped through a relevant node between point of
arrival and point of departure.

Constraints Linking Stage t={2} and t={3}

Demand Satisfaction Linking Constraints:∑
j∈P

∑
k∈K

djbkn −
∑
j∈P

∑
k∈K

djbka(n) ≤ 0 b ∈ B, n ∈ E3 (7.20)

∑
k∈K

djbka(n) −
∑
k∈K

djbkn

+(
∑

(i,j)∈A′
vn

∑
v∈Vjn

yLijbvn −
∑

(i,j)∈Ava(n)

∑
v∈Vja(n)

yLijbva(n)) ≤ 0 j ∈ P, b ∈ B, n ∈ E3 (7.21)

Constraints (7.20) and (7.21) comprise the links coordinating decision regarding the amount
of demand to be satisfied in the second and the third stage. Constraints (7.20) prevent total
planned demand satisfaction in stage 3 from exceeding the total actual demand satisfaction
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of the planned stage across all demand points. In stage 2 the vehicles are packed according
to realized capacity and demand, and tentative vehicle routes are generated. As the different
vehicles start their designated routes generated in stage 2 before stage 3 is initialized, we
are prevented from repacking the vehicles, and are in effect unable to add additional cargo
to increase total demand satisfaction in stage 3. The decision maker should however be
allowed to vary the amount to be delivered at the different destinations between stage 2
and 3. This is provided for by Constraints (7.21), which enable the model to change the
level of demand fulfillment at a demand point should it prove costly to reach or inaccessible,
or provide less utility than expected. These constraints also imply that PODs can receive
more than planned such that available commodities are not wasted.

Vehicle Flow Linking Constraints:∑
(i,j)∈A′

vn

xLijvn −
∑

(i,j)∈Ava(n)

xLijva(n) ≤ 0 i ∈ L, v ∈ V, n ∈ E3

(7.22)

xLijva(n) − xLijvn + (
∑

(j′,i)∈Avn

xLj′ivn −
∑

(j′,i)∈Ava(n)

xLj′iva(n) ) ≤ 0 v ∈ V, n ∈ E3, (i, j) ∈ Avn

(7.23)

xLijvn − xLijva(n) ≤ 0 v ∈ V, n ∈ E3, (i, j) ∈ Avn

(7.24)

The planned and realized last mile distribution decisions made in the 2nd and 3rd stage
respectively, require coordination. We thus need to enforce 3rd stage adherence to the
initial plan developed and initialized in the 2nd stage, and ensure that it is followed to the
extent feasible. The local agent is prohibited from repacking or loading additional vehicles
between stage 2 and 3. In that regard, Constraints (7.22) make sure that the number of
vehicles upon which the realized distribution plan of stage 3 is based, does not surpass the
loaded and potentially dispatched number of vehicles of stage 2.

Transition between the 2nd and 3rd stage takes place as a vehicle meets an infrastructural
obstacle which calls for diversion of planned flow. The network of stage 3 will at best
equal that of stage 2, and thus constitutes a subset of the operable arcs of stage 2. An
enforcement of the initial distribution plan is hence exclusively viable for their mutual
arcs. Constraints (7.23) - (7.24) coordinating vehicle flow in the last two stages, need thus
only apply to their common set of arcs. Constraints (7.23) require the realized vehicle
quantity traversing an arc in the final stage to equal that of stage 2, given that the flow
of vehicles into the start node of that arc does not diverge between stages. If however, the
number of vehicles able to reach the start node is less in the final stage than in stage 2, the
constraints allow for a reduction in the number of vehicles traversing that arc accordingly.
The vehicles are forced over in the duplicated network should a change of route prove
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necessary, and Constraints (7.24) are included to prohibit increase in vehicle flow in the
mathematical original network. Flow from the original into the duplicated network thus
indicates transition from stage 2 to stage 3. Both increase and decrease in vehicle quantity
to cross an arc is permitted in the duplicated network, to allow for unrestrained drawing
of final routes. Hence, all route modifications causing an increase in flow in the final stage
must be made in the duplicated network.

Commodity Flow Linking Constraints:

∑
(i,j)∈A′

vn

yLijbvn −
∑

(i,j)∈Ava(n)

yLijbva(n) ≤ 0 i ∈ L, b ∈ B, v ∈ V, n ∈ E3

(7.25)

yLijbva(n) − yLijbvn + (
∑

(j′,i)∈Avn

yLj′ibvn −
∑

(j′,i)∈Ava(n)

yLj′ibva(n) ) ≤ 0 b ∈ B, v ∈ V, n ∈ E3,

(i, j) ∈ Avn

(7.26)

yLijbvn − yLijbva(n) ≤ 0 b ∈ B, v ∈ V, n ∈ E3,

(i, j) ∈ Avn

(7.27)

In the exact same fashion as the Vehicle Flow Linking Constraints, the Commodity Flow
Linking Constraints (7.25) - (7.27) merge the decisions made in the 2nd and 3rd stage con-
cerning the amount of a commodity type to traverse an arc in a specific vehicle type.

Constraints Stage t = {3}

The majority of constraints describing the 2nd stage also relate to stage 3. The 3rd stage
constraints for which this applies are hence modified versions of constraints also stated for
stage 2. The most intuitive modification is that of the different networks they consider.
The constraints will not be explained in greater detail, but rather be accompanied by a
referral back to their 2nd stage equivalent.
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Realized Demand Satisfaction Constraints:

∑
v∈Vjn

∑
(i,j)∈A′

vn

yLijbvn −
∑

v∈Vjn

∑
(j,i)∈A′

vn

yLjibvn −
∑
k∈K

djbkn = 0 j ∈ P, b ∈ B, n ∈ E3

(7.28)∑
k∈K

djbkn ≤ Djbn j ∈ P, b ∈ B, n ∈ E3

(7.29)

djbkn ≤ Ujbkn j ∈ P, b ∈ B, k ∈ K,
n ∈ E3

(7.30)

Constraints (7.28) - (7.30) correspond to Constraints (7.9) - (7.11) of stage 2.

Realized Vehicle Flow Constraints:

∑
(i,j)∈A′

vn

xLijvn − FL
iva(n)li ≤ 0 i ∈ L, v ∈ V, n ∈ E3 (7.31)

xLijvn − (
∑
j′∈L

FL
j′va(n))z

L
ijvn ≤ 0 v ∈ V, n ∈ E3, (i, j) ∈ A′

vn (7.32)

∑
b∈B

Qby
L
ijbvn − CL

v x
L
ijvn ≤ 0 v ∈ V, n ∈ E3, (i, j) ∈ A′

vn (7.33)

zLijvn − xLijvn ≤ 0 v ∈ V, n ∈ E3, (i, j) ∈ A′
vn (7.34)∑

(j,i)∈A′
vn

xLjivn −
∑

(i,j)∈A′
vn

xLijvn ≤ 0 j ∈ LD′ ∪ P ′, n ∈ E3, v ∈ Vjn (7.35)

Constraints (7.31) - (7.33) and (7.35) correspond to Constraints (7.12) - (7.15) of stage 2. As
information regarding the capacity of the vehicle fleet is acquired at stage 2, the parameter
stating the 3rd stage vehicle availability is that of the preceding stage. Constraints (7.34)
are in addition added to the vehicle flow constraints of stage 3. Their purpose is to force
the binary flow variables indicating whether or not an arc is subject to passage to zero if a
vehicle type does not traverse a given arc.
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Arc Capacity Constraints:∑
v∈V

QV
v (x

L
ijvn + xL(i+QL)jvn

+ xL(i+2QL+QP )(j+QL+QP )vn) ≤ CA
ijn n ∈ E3,

(i, j) ∈ Avn : i ∈ L, j ∈ N\I
(7.36)∑

v∈V
QV

v (x
L
ijvn + xL(i+QL+QP )(j+QL+QP )vn) ≤ CA

ijn n ∈ E3,

(i, j) ∈ Avn : i ∈ P, j ∈ N\I
(7.37)

Constraints (7.36) - (7.37) correspond to Constraints (7.16) - (7.17) of stage 2. However,
a duplication of the distribution network enabling in transit modification of the initially
planned route, is introduced to the 3rd stage. The arcs signifying connection between an
LDC and the remaining nodes in the mathematical original network will in consequence be
subject to a threefold duplication. The arcs connecting a POD and the remaining nodes
in the original network are similarly subject to a twofold duplication. While considering
this, Constraints (7.36) and (7.37) ensure arc capacity compliance for arcs having LDCs
and PODs as points of departure, respectively.

Realized Commodity Flow Balance Constraints:∑
(j,i)∈A′

vn

yLjibvn −
∑

(i,j)∈A′
vn

yLijbvn ≤ 0 j ∈ LD′ ∪ P ′, b ∈ B, v ∈ V, n ∈ E3 (7.38)

Constraints (7.38) correspond to Constraints (7.19) of stage 2, with the addition of also
applying to the LDCs and PODs constituting the mathematical duplicated network.

Efficiency Constraints Applied to All Stages

Budget Constraints:∑
i∈L

EO
i li +

∑
(i,j)∈A

∑
b∈B

EC
b y

I
ijb +

∑
(i,j)∈A

EI
ijx

I
ij

+
∑
v∈V

∑
(i,j)∈Avn

EL
ijvnx

L
ijvn + wn = HB n ∈ E\E1 (7.39)

Constraints (7.39) ensure that the budget is honored, and calculate the residual bud-
get. They apply to the last two stages separately, but both take 1st stage costs into
account.

58



7 PRESENTATION OF THE MULTI-STAGE STOCHASTIC PROGRAMMING
MODEL

Model Formulation

Convoy Travel Time Constraints:∑
(i,j)∈A

T I
ijz

I
ij +

∑
v∈V

∑
(i,j)∈A′

vn

TL
ijvnz

L
ijvn ≤ HT n ∈ E3 (7.40)

Constraints (7.40) account for the time spent serving the different PODs by keeping convoy
time within a given bound. However, seeing how the binary vehicle flow variables merely
indicate whether or not one or more vehicles traverse an arc, the calculated time value
should not be taken as the total delivery time.

Non-Negativity Constraints for All Variables

li ∈ {0, 1} i ∈ L (7.41)

xIij ≥ 0 integer, (i, j) ∈ A (7.42)

yIijb ≥ 0 (i, j) ∈ A, b ∈ B (7.43)

zIij ∈ {0, 1} (i, j) ∈ A (7.44)

djbkn ≥ 0 j ∈ P, b ∈ B, k ∈ K, n ∈ E2 ∪ E3 (7.45)

xLijvn ≥ 0 integer, v ∈ V, n ∈ E2, (i, j) ∈ Avn (7.46)

yLijbvn ≥ 0 v ∈ V, n ∈ E2, (i, j) ∈ Avn, b ∈ B (7.47)

zLijvn ∈ {0, 1} v ∈ V, n ∈ E2, (i, j) ∈ Avn (7.48)

xLijvn ≥ 0 integer, v ∈ V, n ∈ E3, (i, j) ∈ A′
vn (7.49)

yLijbvn ≥ 0 v ∈ V, n ∈ E3, (i, j) ∈ A′
vn, b ∈ B (7.50)

zLijvn ∈ {0, 1} v ∈ V, n ∈ E3, (i, j) ∈ A′
vn (7.51)

wn ≥ 0 n ∈ E\E1 (7.52)

Constraints (7.41) - (7.44) represent the non-negativity constraints describing the deci-
sions made in the initial stage of the distribution process. The non-negativity constraints
associated with the decision variables of the second and final stage are given by Con-
straints (7.46) - (7.48) and (7.49) - (7.52), respectively, whereas Constraints (7.45) relate
to both last two stages.
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8 Implementation of the Models

Three commercial softwares are utilized to obtain and illustrate the solutions produced by
the models presented in Section 5.3 and Section 7.3 to fictive problems. Generation of
instances in Xcode or Microsoft Visual Studio form the first step of the implementation
process, followed by optimization of the problem in Xpress in the 2nd step. The third and
final step is executed in Matlab and is intended to simplify interpretation of the output
produced by Xpress. This section describes the use of the three commercial softwares,
in addition to the process of generating different instances to be used for testing of the
models.

Figure 10: An outline of the steps involved in the implementation process

All programming code is written by the authors. A c + + code enables the user to feed
input into the console to generate data of interest. The data file generated consists of sets,
subsets, parameters and other required figures to be read by the optimizer. The output
produced by the optimizer is in turn used as input into a software which plots a map to
visualize the location of the totality of nodes constituting the mathematically extended
network, in addition to the flow of vehicles in this network. Figure 10 serves to illustrate
the total implementation process.
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8.1 Xcode Version 3.0 and Microsoft Visual Studio 2010 Version 10.0.40219.1
SP1Rel

The two softwares are both suites of tools including c++ source code. We have used the
programs to build and compile the written c++ code which generates instances based on
input data from the user. The written code can be run by both programs. The number
of PODs, |P|, LDCs, |L|, commodity types, |B|, and possible outcomes in stage t = 2 and
t = 3, represent a few of the basic input data which the user will be inquired to feed to
the console. Other parameters required to be able to solve the mathematical models will
be generated automatically based on the characteristics of the problem. The generation
of instances will be described in greater detail in Section 8.4. The output of the executed
code is a text file. This file contains all parameters necessary for successful compilation
of the mathematical model. Two separate codes have been produced, applicable to the
deterministic- and the stochastic programming problem respectively. The latter will be
provided in digital files to be enclosed with the thesis.

8.2 Xpress-IVE 64bit Version 1.22.04

Both the deterministic and the stochastic programming models are implemented in mosel
and run by the Xpress optimization suite. Xpress is a commercial software which enables
optimization of mathematical problems. We use Xpress Mosel Version 3.2.3 and Xpress
Optimizer Version 22.01.09. Mosel code is written such that data is read directly from
the generated text file where the model builder can access it. The software uses LP relax-
ation, branch-and-bound algorithms and other presolve procedures to reduce the size of the
problem prior to preforming a global search to find an optimal solution. Some elements
and restrictions are added to the mosel code in order to reduce the number of variables
created. For large problems, the size of the computer memory is critical. If the computer
memory is sufficient, the global search will by default terminate when the optimality gap
is less than 0.001%. When the optimizations are carried out, output will be generated if
an optimal solution is found or the process is terminated by the user. The output gives a
clear solution to the mathematical problem, in addition to code to be read by Matlab.
The mosel code produced for the proposed MSP model, the deterministic model and the
calculators of EEV’ and WS’ values will be provided in digital files to be enclosed with the
thesis.

8.3 Matlab R2011b Version 7.13.0.564

Matlab is a numerical computing environment and fourth-generation programming lan-
guage. We use this software to visualize the entire array of nodes and existing arcs of the
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mathematically extended network, in addition to the arcs that will be traversed in the dis-
tribution process, i.e. the final vehicle routes. By implementing the results into Matlab,
we are able to track the randomness of the arcs related to each scenario, and illustrate the
use of the duplicated network. The arcs that experience flow are represented by thicker
lines, whereas and the connecting links are given by dashed lines. The ICDs are indicated by
orange boxes in each corner, the LDCs and the PODs by blue and white boxes respectively,
and the epicenter by a red box.

8.4 Instance Generation

Figure 11: Illustration of the world as assumed in generation of instances - The distances
of the figure does not agree with reality

The totality of instances used to demonstrate the applicability of the models proposed in
this thesis are generated in accordance with the descriptions given in Section 8.1− 8.3. Due
to differences in certain attributes of the deterministic and the MSP model, some of the
parameters required by the two models will be of different nature. This section describes
the generation of stochastic data files exclusively, as this generation process is the most
comprehensive.
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Generation of instances is semi-automatic, in the respect that the user will be required to
feed the following data to the console: The number of commodity types, (|B|), the number
of LDCs, (|L|), the number of PODs, (|P|), vehicle types, (|V|), budget, (HB), utility factor
for residual budget (MB), upper convoy time limit, (HT ), unit size of the commodity types,
(QC

b ), unit specific costs (EC
b , E

O
i ), the number of possibilities in stage 2 and 3, (|E2| and

|E3|
|E2|), available vehicles, (F I

i and FL
iv1), supply, (Sib), capacities, (CI , CL

v and CC
j ) and

assumed demand (Djb1).

Based on this input data, the program assigns values to the remaining sets and parameters.
Vehicle size is generated based on the given vehicle capacity. The number of vehicles of
each of the given types disposable at the LDCs will increase or decrease randomly with
up to 30% in the second stage. The utility factor for residual budget is given a value high
enough to ensure efficient vehicle flow, yet low enough to ensure higher priority of the utility
of demand fulfillment, Mjbkn. For every instance generated, the number of ICDs will be
equal to four and located as shown in Figure 11, one in each corner. The ICDs’ range of
distribution cover a quarter of a circle with a radius of 920 length units. LDCs located in
certain areas might in effect be covered by two ICDs. The darker blue fields in Figure 11
indicates the areas of dual coverage. The arcs connecting ICDs and LDCs have unlimited
capacity in terms of the total number of vehicles that they are able to carry. The epicenter
of the earthquake is given random coordinates, ranging from 0 and 1300 length units in
each direction, within the reference frame depicted in the figure. The epicenter will thus be
placed within one of the four quadrants in the system of coordinates, and the LDCs and
PODs will be given random locations within this same quadrant.

The expected demand at each POD is defined by the user. This value is however subject to
uncertainty in the first stage of the SP model, and demand will vary with up to 30% from
the assumed value for the 2nd stage scenario tree nodes. There is greatest likelihood of
increase in demand moving from stage 1 to stage 2. The successor nodes of each 2nd stage
scenario tree node will experience the same level of demand as their predecessor. Four
utility intervals, K, will be applied to all instances generated. The size of these utility
intervals, Ujbk, correlates with the level of demand at the three different stages. As the
number of delivered items increases, the utility interval size increases accordingly, as shown
in Figure 6 in Section 5.1. The utility factor for demand fulfillment across the set of PODs,
Mjbkn, depends on a given POD’s distance from the epicenter, and will change in line with
the expected and realized demand in stage 1 and stage 2 respectively.

The anticipated network of stage 1 is constructed such that all LDCs and PODs are con-
nected to at least two other nodes; the two closest to the node in question. A minimum of
one arc within a set of linked nodes, will be linked to an LDC. All arcs of the network will
be assigned a random quality, 1, 2 or 3. The higher the number, the higher the quality and
capacity. High quality values also imply less travel time and cost associated with traversing
a given arc. Travel time and cost are functions of the distance between the nodes. After
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an earthquake has hit, nodes closer to the epicenter are statistically connected to less arcs
than those situated further away, based on an assumption of correlation between distance
from the epicenter and extent of damages. Arcs of lower quality are most likely to prove
inoperable, and total capacity is in effect subject to reduction.

Each LDC is assigned a corresponding dummy LDC. The dummy LDCs are placed "north"
of their respective original LDC. The real network consists of ICDs, LDCs and PODs. The
mathematical original network on the other hand, comprises LDCs, dummy LDCs and
PODs, whereas the duplicated network consists of duplicated dummy LDCs and duplicated
PODs only. The mathematically extended network includes both the duplicated and the
original network. For ease of visualization, the nodes of the duplicated network are all
located "far east" of their original nodes.

The leaf tree nodes of stage 3 are given an equal probability of occurrence of P3 = 1
|E3| , as

are the scenario tree nodes in stage 2, P2 =
1

|E2| .
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9 An Illustrative Example

Figure 12: An outline of the characteristics of the illustrative example

A numerical example will be given in the following sections to illustrate how the two pro-
posed models can be used to optimize the planning and distribution of humanitarian aid.
The MSP model will however be the main focal point. How important features of the mod-
els such as utility factors, utility size, distribution network, different costs and capacities,
together with commodity and vehicle sizes, may influence the allocation of commodities
will be subject to analysis. The major aim of this section is to provide a comprehensive
interpretation of the mathematical models, and illustrate their applicability. Numerical
solutions will be presented and compared in Section 9.3 The results obtained in this illus-
trative example were found using Microsoft Visual Studio, Xpress-IVE and Matlab, as
explained in Section 8.

A problem consisting of four ICDs, |I| = 4, two LDCs, |L| = 2, and three PODs, |P| = 3
is considered. Two vehicle types, |V| = 2, are available to distribute a single type of
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commodities. Initial supply is set at sufficient level, whilst vehicle capacity and budget
might prove insufficient in some scenarios. An overview of this distribution problem is
given in Figure 12.

The arcs between the ICDs and the LDCs are incapacitated, because of the assumption
of standard vehicles as stated in Section 5.2. Flow from ICDs to LDCs will however be
restricted by the capacity of the LDC. The green lines in Figure 12 symbolize possible
routes leading from ICDs to LDCs. Arcs connecting LDCs and PODs are divided into
three categories according to their quality. In Figure 12 thicker arcs indicate higher quality,
and thus higher capacity. Travel time and cost depend on the length and quality of the
respective arc. The thinner the arc, the longer the travel times, and the higher the costs
induced. Traversing a poor-quality arc exposes the vehicles to a higher level of stress than
the good-quality arcs, and is consequently more expensive. Therefore, thicker arcs are
preferred when possible.

The available supply at the different ICDs is sufficient to serve the totality demand, but
due to restrictive aircraft capacity at least two vehicles will need to be utilized. This will
imply an increase in total costs, a matter subject to minimization. Only ICDs covering the
affected area will be able to provide initial supply, as described in Section 8.4. ICD 1 is
located too far away from the affected area, whereas ICD 4 only has one vehicle at disposal
making it unable to singly provide all aid necessary. As ICD 3 is situated even further away
from the affected area than ICD 4 and ICD 2, this option will be the most expensive.

By observing the relation between LDC capacities and LDC costs, we would assume the
only LDC chosen for operation to be LDC 2. Only 25 units of the commodity type can be
handled at LDC 1, which is less than 18% of expected demand, necessitating initialization of
both LDCs. Total opening costs and transportation costs will consequently be substantially
higher for this option. If LDC 1 is to be opened, the increase in utility of demand fulfillment
induced by being able to deliver an additional 25 units must be greater than the reduction
in monetary utility implied by the increase in associated costs. This is due to the nature
of Objective Function (5.1).

Considering the PODs exclusively, we would expect POD 1 to receive the total quantity of
commodities demanded in the first utility interval prior to satisfaction of demand at the
remaining POD, seeing as how this will provide highest expected utility. POD 3 should
receive at least some items, prior to the level of demand satisfied at POD 1 reaching the
second utility interval. This effect is produced as a result of considering the aspect of
fairness, as described in Sections 3.3 and 4.6.

In terms of commodity type and vehicle types, it is apparent that vehicle type 1 will be able
to deliver 100 units of the commodity, whereas vehicle type 2 is able to transport 200 units.
The size of the two different vehicle types will restrict the number of vehicles of type 2
traversing poor quality arcs with a capacity of 1000, to be less than or equal to two.
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Figure 13: The scenario tree applicable to the illustrative example, in addition to the
networks employed at stage 1 and 2 and for each of the different scenarios

Two possible outcomes can unfold from a parent node in both stage 1 and 2, resulting in a
total of seven scenario tree nodes and four distinct scenarios as illustrated in Figure 13. The
different realized networks are shown for the respective scenarios, as well as the coupling
of decisions for each of the scenarios. Existence of an arc in the networks depicted in
Figure 13 indicates that at least one, but not necessarily all, of the available vehicle types
will be allowed to traverse the arc in question.

To enable comparison of the stochastic and the deterministic model, the latter model is
applied to each of the four scenarios in addition to the average scenario problem described
in Section 6.3.2.

The remaining utilized data not mentioned in the preceding discussion, will be given in
Appendix C.

9.1 The Deterministic Approach

The initial problem takes place in the immediate aftermath of an earthquake. The solution
to the expected value problem considering 1st stage parameters only is given in Figure 14.

By solving the deterministic model for each of the four possible scenarios separately, we
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Figure 14: Optimal distribution strategy for the 1st stage average scenario problem

are able to calculate the expected optimal solution. The decision maker will determine
an optimal strategy for distribution based on the characteristics of each scenario. These
solutions will be better than (or equally good as) the one of the average scenario problem.
The optimal strategy in terms of choice of LDCs to open and flow of goods from ICDs
to LDCs is identical for all of the scenarios. The optimal last mile distribution strategy
however, differs between scenarios. Comparing these decision schemes with that of the
average scenario problem, deviations in distribution plans are recognized for the majority
of scenarios. The different optimal strategies are depicted in Figure 15 and 14.

9.2 The Stochastic Approach

Solving the illustrative problem by means of the MSP model naturally results in genera-
tion of solutions different from that of the deterministic approach. The optimal value of
objective function will receive little attention in the following discussion, due to the nature
of the objective function. Both planned as well as realized DFU and MU, are included for
maximization, resulting in an objective function value which is difficult to interpret.

Presentation of the results for each of the stages will be given in the following sections.
For each of the stages, two illustrations showing the vehicle flow are provided for ease of
visualization. The left picture illustrates the flow as defined by the mathematical decision
variables based on the mathematically expanded network, as described in Section 7.1. As
this network includes fictive nodes and arcs, a second illustration to the right of the Mat-
lab-map is provided in order to show the flow of goods and vehicles as it would appear in
real-life.
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Figure 15: Optimal distribution strategies for the different scenarios when solved separately

9.2.1 Decision Scheme for Stage 1

The decisions made in the first stage are not directly represented in the objective function,
but still have a large impact on the objective function value. Initialization and operation of
an LDC imply both opening costs and transportation costs upon distribution. The initial
decisions also affect the range of possible last mile distribution routes which can be applied
at the following stages. Providing supply to a single LDC only, will entail greater risk of
being disconnected from certain nodes as compared with operation of several LDCs. Such
a situation can potentially prove catastrophic for those in need. The decision concerning
the amount of supplies to deliver to the LDCs is decisive for the achievable level of demand
fulfillment at stage 3, and is made based on rough estimates. LDC capacity, available
supply and available aircrafts restrict the quantities which can be allocated to the different
LDCs, but even within these limits dispatching excessive amounts of supply can result in
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shortage in budget, and is thus unfavorable.

Figure 16: The flow from ICDs to initialized LDCs at stage 1
The duplicated network shown in the left map, is not subject to use at this stage

Figure 16 presents the range of 1st stage decisions for this example. Due to insufficient
funds, total expected demand exceeds the 100 units delivered to LDC 2. The two aircrafts
utilized are fully loaded, and dispatch of additional units would require use of yet another
aircraft. This would induce costs beyond the residual budget. The restrictive nature of
the budget also prevents initialization of LDC 1, which is less attractive to operate due to
inferior capacity.

9.2.2 Decision Scheme for Stage 2

Firstly, we wish to describe the nature of the MSP model’s Objective Function (7.1), and
emphasize the necessity of considering the terms it contains. Special mention will be given
to the inclusion of variables of the 2nd stage, as this is not intuitively perceivable.

The demand satisfaction term is included to ensure achievement of fair and sensible distri-
bution for the initial distribution plan as planned in stage 2. Upon loading and dispatch
of the vehicles chosen to perform last mile distribution, it will be of practicality due to
both managing and operating purposes that their initially assigned destinations correspond
to the actual final destination. If the 2nd stage decisions are omitted from the objective
function, production of initial plans in which the vehicles are assigned to suboptimal des-
tinations can occur, as the model only focuses on the final stage decisions. Suboptimal
planning in the 2nd stage arises from the desire to spend as little as possible of the budget,
due to the maximization of residual budget. The demand satisfaction term will be bounded
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by the amount of supplies received at the LDCs at stage 1. The entire amount of supplies
planned to be dispatched from the LDCs is required to contribute to fulfillment of demand
at the PODs. Also, delivery of items exceeding the quantity demanded is disallowed.

The economical term for stage 2 is also a part of the objective function in order to ensure
that efficient decisions are made. Should this term be omitted, the model would produce
plans in which a superfluous number of vehicles is dispatched from the LDCs in order to
increase the opportunity set for the following stage. The initial distribution plan would in
addition implement purposeless traversal of arcs by this set of vehicles until the budget is
spent or the upper limit for convoy time is reached, based on the same line of reasoning. We
seek to avoid this effect as no local agent would wish to implement an initial plan produced
on these grounds. The initial decision scheme generated in stage 2, should be logical and
readily apparent to the local agent and in accordance with reality.

Figure 17: Planned vehicle and commodity flow in scenario tree node 2, Stage 2
The duplicated network shown in the left map, is not subject to use at this stage

Complete information concerning the realized number of vehicles per available type as well
as actual level of demand and accompanying utility factors, will be attained at stage 2.
This knowledge, in addition to that of the realized distribution networks in stage 3, will
affect the choice of routes, and can cause differences in the routes planned for each of the
scenario tree nodes in stage 2. This is illustrated by Figure 17 and Figure 18.

Two vehicles are packed and planned to travel two different distances in scenario tree node 2,
as shown in Figure 17. The mathematical flow of this scenario tree node is identical to one
of the realized routes to be presented in the following section. The flow related to scenario
tree node 3 however, differs by its use of dummy LDC 1, as given in Figure 18 (left). LDC 1
is used for transshipment, but due to attributes of the mathematical model, flow must go
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Figure 18: Planned vehicle- and commodity flow in scenario tree node 3, Stage 2
The duplicated network shown in the left map, is not subject to use at this stage

through the respective dummy LDC as it is prevented from passing through the real LDC.
The flow as it would appear in the real-life network is illustrated in the right part of the
figure. A single vehicle is packed at LDC 2, and will serve some PODs via LDC 1.

9.2.3 Decision Scheme for Stage 3

The networks realized in the 3rd stage upon which the final distribution plans are built,
are depicted in Figure 13. The four different scenarios will be described individually in the
following.

The planned route for scenario 1, scenario tree node 4, is given by scenario tree node 2 as
shown in Figure 17. Both vehicles are packed and dispatched from the LDCs as soon as
loading is complete according to this plan. Vehicle type 1 set to serve POD 1, follows this
plan from point of supply to point of consumption. Hence, it never reaches stage 3 as it
does not require additional information about the network to complete its task. This is
illustrated in the left map in Figure 19 by means of a red line indicating the route followed
by vehicle type 1. This line stays within the mathematical original network throughout the
entire period of distribution.

The vehicle planned to served POD 2 and POD 3 however, hits an obstacle after reaching
and providing delivery to POD 2. The road between POD 2 and POD 3 proves impassable,
and the plan needs to be changed accordingly. To avoid more dead-ends, the driver makes
a call to the local agent and receives information about the complete state of the network.
The reception of this information indicates transition from stage 2 to stage 3. The vehicle
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Figure 19: Realized vehicle and commodity flow in the scenario tree node 4, Scenario 1

is no longer required to follow the original plan, and further distribution is carried through
in the duplicated network (left part of Figure 19) symbolizing transition from stage 2 to
3. The realized route as followed in the real network is illustrated in the right part of
Figure 19. The modified route leading to vehicle type 2’s final destination comprises the
optimal route considering the realized network of this specific scenario.

Figure 20: Realized vehicle and commodity flow in the scenario tree node 5, Scenario 2

The initial distribution plan in Scenario 2 equals that of scenario 1. As the totality of arcs
constituting the path to be followed are intact, complete network information will never
be required and the 3rd stage is in consequence never reached. The 2nd and 3rd stage
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variables are in effect identical. This is illustrated in Figure 20.

Figure 21: Realized vehicle and commodity flow in the scenario tree node 6, Scenario 3

The initial plan for scenario 3 is impossible to enforce owing to reduction of arcs in the
realized network. The first distance however, from LDC 2 to POD 1, will be traveled by
the vehicle according to the 2nd stage plan. As visualized in the left map in Figure 21, the
duplicated network is used by the vehicle to return to LDC 2. From this node it travels
via the dummy LDC 1, thus using this as a transshipment node. This does not induce
opening cost, as the node is not used to process and manage supplies. When the vehicle
finally reaches POD 3, the decision variables in the mathematical model can assume one
of two values, both resulting in the exact same route. The optimizer may choose to make
the vehicle return to the original network, deliver the units demanded and travel directly
to POD 2, as shown in the left map. Or, the decision variables may be set such that the
vehicle delivers the items in POD 3, returns to the duplicated network, proceeds to the
duplicated POD 2 and finally returns to the original network to deliver to POD 2. The
objective function value does not differ between these two choices of decisions, and the
algorithm used by the solver is thus free to decide between the two. The real-life result
provided will be the same, as showed in the right map of Figure 21. Decision of this kind
constitute symmetric solutions.

In the final scenario, the initial distribution plan proves inapplicable even before dispatch.
In practice, this would most likely imply waiting time at the LDC in order for information
about the network to be realized. As soon as this information becomes available, an optimal
actual route based on the realization of the network will be generated. Because POD 1
proves impossible to reach, the driver will be provided with a new distribution plan stating
the destinations to serve and the amount of supplies to delivery based on the load carried
by the vehicle. Constraint (7.28) and (7.29) prevent the vehicle from transporting more
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Figure 22: Realized vehicle and commodity flow in the scenario tree node 7, Scenario 4

than what is delivered and demanded at demand points, forcing the vehicle to unload 1.9
items at the LDC before dispatch. The left map in Figure 22 shows the path taken by
the vehicle in stage 3 leading from the LDC into the duplicated network and further to
the duplicated POD 2. The vehicle is to satisfy demand at POD 2, and thus traverses the
dotted arc connecting the duplicated POD 2 and the real POD 2 to deliver the planned
amount of supplies. As opposed to in scenario 3, the vehicle now returns to the duplicated
network to complete the route, before ending his route at POD 3 in the original network.
As can be seen from the right map, POD 2 receives 38.1 units and not the planned amount
of 19.9, whereas POD 3 receives an additional 21 units relative to the planned amount. The
model permits change in final destinations to minimize waste of commodities. This will be
the case when demand points prove inaccessible or provide less utility than expected as
compared to other demand points.

9.3 Comparison of the Two Approaches

The two measures for valuation, EVPI and VSS, described in Section 6.3 form a sensible
basis for comparison of the two approaches presented in the preceding sections. The cal-
culation procedure for these measures will be described in Section 10.2.1. Even though the
objective function of the MSP model includes both planned and realized utility, only 3rd
stage Demand Fulfillment Utility (DFU) and Monetary Utility (MU) will be considered
to enable comparison with the deterministic approach. DFU and MU will be presented
separately as they have more obvious interpretations when analyzed individually. Also the
WS, EEV and RP solutions presented are given in terms of 3rd stage DFU and MU in
addition to total value for reasons of interpretation. The resulting values are denoted by
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WS’, EEV’, RP’, EVPI’ and VSS’ to indicate that they represent adjusted values.

MU depends on the remaining budget. Increasing the budget may in effect provoke a
situation in which the solutions generated are identical with that of a lower budget case with
all other parameters fixed, but an improvement in objective function value is experienced
due to the increased contribution to residual budget. The primary goal in our model is
to find a solution which satisfies demand to the greatest extent possible. We do however,
seek cost-efficient solutions. Including MU for both the 2nd and 3rd stage in the objective
function is essential in order to achieve efficiency of distribution .

Evaluation of the value of perfect information for this illustrative example is based on the
EVPI’ given in Table 3. The total EVPI’ shows that the value of perfect information is
negligible, as an improvement of only 0.19% in the solution will be provided by obtainment
of better forecasts, as compared to the MSP solution. Receiving perfect information will
only increase total monetary utility, as the same level of utility of demand fulfillment is
provided by both the solution of the MSP model and that of the deterministic model using
perfect information. The EVPI’MU is positive because the local agent will allocate less
supplies to the LDCs due to his knowledge of inaccessibility of POD 1 in scenario 4 .

Table 3: Valuation measures for the illustrative example

Scenarios Calculated EVPI’ VSS’

1 2 3 4 WS’ EEV’ RP’ Value % Value %

DFU 20780 20780 22780 16723 20265 12921 20265 0 0.00 7344 56.84
MU 1536 1842 1414 2041 1709 1865 1668 41 2.46 -197 -10.56
Total 22316 22622 24194 18764 21974 14786 21933 41 0.19 7147 48.34

The VSS’ values presented in Table 3 clearly show that the proposed MSP model serves as
a more robust decision support tool than an expected value approach. In this example, the
load assigned to the vehicles will prevent efficient delivery of goods to beneficiaries in an
average scenario problem. The reason for this is that basing allocation of supplies amongst
vehicles on expected values will result in all units being assigned to vehicle type 2. This
vehicle type is less likely to reach all of the PODs. The MSP model considers all possible
scenarios simultaneously, and thus provides a solution more likely to be applicable across
the total range of future outcomes. The DFU produced by use of the MSP model is thus
larger than that of the EEV model. A negative VSS’MU , indicates that less funds are spent
when the EEV approach is applied, as compared to the solution of the MSP model. This
however is not an intentional saving, but occurs because the vehicles are unable to follow
the routes generated by the EEV model. In summary, the VSS’ values clearly show that
the MSP model is to be preferred over the deterministic expected value model for this
example. They also indicate that uncertainty is crucial to consider in order to obtain sound
solutions.
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10 Computational Study

In this section, the applicability, quality and value of the proposed MSP model will be
evaluated by conducting a series of numerical tests. The most important findings will be
presented in two separate sequences; the first consisting of tests regarding computational
efficiency of the MSP model, whereas the second seeks to validate the proposed model and
demonstrate its value as compared to deterministic approaches. All instances are either
stopped as run time exceeds 43200s (12hrs), or when a MIP solution within 0.10 % of the
optimal solution has been found, unless otherwise stated.

Computational efficiency will be assessed by changing 1) the configurations of the network
in terms of number of PODs; 2) the number of LDCs; 3) the number of possible outcomes
in stage 2; 4) the number of possible outcomes per parent node in stage 3; and 5) the size of
the budget. At least 30 instances are considered for each of the aspects subject to testing.
All tests are conducted for at least 15 different values for the parameter of interest, to enable
identification of possible trends. In addition, two separate sets of corresponding values are
generated to be able to present average values. Using an average provides the advantage
of being able to hedge against the effect of non-representative extremities. All results
relating to computational efficiency were obtained using Xpress-IVE on PCs connected to
a computational cluster, equipped with 2x AMD Opteron 2431 2,4 GHz processors and 24
GB RAM.

The last sequence of tests makes use of a set of different test cases to illustrate how different
input parameters may affect the optimal solution and the corresponding routing decisions
produced by the MSP model, as compared that of deterministic approaches. Four corre-
sponding instances are generated for each of the test cases considered in order to be able
to state the results in terms of average values, based on the same reasoning as given above.
The results are given in terms of the Expected Value of Perfect Information (EVPI) and
the Value of the Stochastic Solution (VSS). The results concerning the value of the MSP
model provided below were obtained using Xpress IVE on a PC equipped with Intel(R)
Core(TM) i7-2600 3.40GHz processor and 16.0 GB RAM.

A complete outline of the average solution times and the average problem sizes related to
the different tests performed to demonstrate the computational efficiency of the proposed
model is given in Appendix E - G. Output files containing the results produced by these
different tests, as well as the input data files used in validation of the model, will be provided
in digital files to be enclosed with the thesis.
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10.1 Computational Efficiency of the Stochastic Program

Limitations of the proposed model in relation to problem size will be thoroughly discussed
in this section. Questions regarding the applicability of the model as well as its function as
a decision support tool, will be addressed.

Apart from for the tests which evaluate the effect of altering the number of scenario tree
nodes at different stages in the model, the total number of scenario tree nodes will be set
to 13. Stage 2 will include three scenario tree nodes, and stage 3 a total of nine with three
successor nodes per parent node, resulting in nine different future scenarios. The number of
possible scenarios considered when evaluating disaster response problems generally ranges
from 8 to 100, which is the case for scholars such as Vitoriano et al. [2010] and Rawls and
Turnquist [2010]. Contemplation of nine scenarios is thus deemed a realistic figure for the
tests to be conducted. Scholars tend to consider only a limited number of demand points for
distribution. Vitoriano et al. [2010] treat 9 demand points (PODs), while 6 and 30 PODs
are treated by Barbarosoğlu and Arda [2004] and Rawls and Turnquist [2010] respectively.
Static characteristics of the problem which serve as a basis for the following tests are given
in Table 4.

Table 4: Static problem characteristics - common for all instances

# of # of # of Successor nodes

LDCs PODs vehicle types stage 2 stage 3

5 15 2 3 3

10.1.1 Varying the Number of LDCs

The computational results in this part of the study are based on instances in which the
only parameter subject to change is the number of LDCs. Two different testings regarding
two different numbers of PODs have been performed for a range of varying LDC-quantities.
As stated introductorily, two corresponding sets of instances have been generated in order
to create an average. Solutions for 2 ∗ 16 instances with 15 PODs, and 2 ∗ 8 instances with
40 PODs have been calculated for the first and second testing respectively. The maximum
number of LDCs in the instances are 90. This will serve to illustrate computational time
and change in optimal solutions in a comprehensive and reliable manner.

A large number of LDCs will imply several decisions in all 3 stages, and hence presumably
higher computational time as compared to a case consisting of fewer LDCs. This presump-
tion is verified by all instances generated, and is reflected by the average values depicted in
Figure 23.
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Figure 23: Average solution time when varying the number of LDCs - All instances are
solved to a gap of 0.1 %

Only one of the instances considered was unable to find an optimal solution within 12
hours; that of 90 LDCs. In Figure 23, this value has been equaled out by a similar instance
of less computational time. A network consisting of a quantity of LDCs six times that of
the number of PODs, is considered unlikely. Thus, this time overrun is not regarded as
critical. All remaining instances were solved far within the acceptable time frame, indicating
computational efficiency for varying levels of LDCs. By interpretation of the trend line,
we expect the solution time to further increase for higher numbers of LDCs. This result is
assumed to be applicable also to cases with input parameters different from those considered,
and we conclude that number of LDCs correlates with computational time.

All other parameters held constant, increase in the number of LDCs implies higher levels of
available capacity both in terms of total vehicle capacity and total handling capacity. Higher
objective function values would be a natural expectation in situations of wider ranges of
LDCs for operation. However, results show that the marginal value of having extra LDCs to
choose from experiences a steep decline as the the number of LDCs exceeds approximately
25 % the number of PODs. These results are given in Figure 24 and Figure 25. Across all
cases tested, the overall trend is initialization of averagely 27 % of the available LDCs. The
implication of these results is that expanding the number of LDCs increases computational
time without necessarily adding any extra value to the solution. Moreover, the intangible
cost of having several possible LDCs to manage, maintain, keep updated and prepared for
operation may cause greater inconvenience to the decision maker and his team, than the
value of having these extra LDCs available.
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Figure 24: Average objective function value when varying the number of LDCs - Instances
are based on a network consisting of 15 PODs and solved to a gap of 0.1 %

Figure 25: Average objective function value when varying the number of LDCs - Instances
are based on a network consisting of 40 PODs and solved to a gap of 0.1 %
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10.1.2 Varying the Number of PODs

The computational results in this part of the study are based on instances in which the
only parameter subject to change is the number of PODs. Increasing the number of PODs
will expand the number of feasible solutions in addition to the number of symmetric solu-
tions. This will entail an increase in computational time as reflected by a larger number of
constraints and variables.

Figure 26: Average solution time when varying the number of PODs - All instances are
solved to a gap of 0.1 %

Figure 26 shows that a decision maker will still be able to obtain an optimal solution within
an acceptable time frame. Solutions are found within 45 minutes when considering up to
250 PODs. It is however reasonable to assume that a larger number of arcs would be
connected to each node in the network in real-life situations. Despite this fact, we argue
that the instances reflect a realistic network based on comparison with the work of other
researchers, such as Barbarosoğlu and Arda [2004], Hsueh et al. [2008], Mete and Zabinsky
[2010], Özdamar et al. [2004]. These articles provide examples with significantly lower
numbers of PODs as compared with the 250 considered in this study.

As the number of PODs increases, so does the chance of achieving higher objective function
values, given that budget, capacity and supply is sufficient in meeting demand. Comparison
of optimal objective function values across instances is thus deemed difficult (and futile)
due to differences in level of attainable utility. However, Figure 27 shows indication of
growth in optimal objective value in line with an increasing number of PODs. In addition,
substantial variation in the objective function value is observed. The reason for such vari-
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Figure 27: Average objective function value when varying the number of PODs - All in-
stances are solved to a gap of 0.1 %

ance is ambiguous. Even if additional utility is attainable, an increase in this value may
still not occur. PODs in the immediate vicinity of the earthquake generate higher utility of
demand fulfillment than remote PODs. The additional utility of fulfilling demand at remote
PODs may provide less additional utility as compared to utility lost by the cost incurred
in providing this aid. Furthermore, PODs close to the earthquake are more likely to prove
inaccessible owing to larger damage to this part of the distribution network, and objective
function might in fact drop. Restrictive capacity, supply and budget can also obviously im-
pede further improvement of solutions, and entail decreasing marginal utility. By studying
Figure 27, it can be observed that even if the average optimal solution increases, this is
mainly caused by additional utility of demand fulfillment at stage 2, DFU2. The realized
demand fulfillment utility, DFU3, is fairly constant. Based on this, we conclude that if the
number of demand points increases as the event progresses, with all other parameters held
constant, growth in the realized utility of providing aid will not necessarily be experienced.
Occurrence of after-shocks as an example can bring about such a situation of sudden adding
of PODs.

The test results also show that the number of constraints and variables in the initial matrix
as well as in the presolved matrix, correlates with computational time. This is illustrated in
Table 5 and demonstrates the importance of presolve. According to Baricelli et al. [1998],
change of certain coefficient values as to obtain tighter constraints may be critical in order
to find solutions to a problem within reasonable time. The sets of instances tested do
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Table 5: Correlation between constraints/variables and solution time when varying the
number of PODs

Matrix Presolved

Constraints Variables Constraints Variables

0.9208 0.9324 0.9192 0.8987

not require unreasonable computational time, but should the size of the problems grow,
presolving may still prove to be of vital importance .

10.1.3 Varying Budget and Number of Successor Nodes per Parent Node in
the Scenario Tree

The effects of altering the number of successor nodes per parent node in both stage 2
and stage 3, as well as budget, represent the final aspect subject to analysis. All other
parameters are held constant. By varying the number of successors individually, inspection
of the complexity of the model is enabled by study of the effect of varying the number
of scenario tree nodes in stage 2, or stage 3, whilst maintaining the number of scenarios.
Figure 28 illustrates two possible instances of this type. The scenario tree at the left has
three successor nodes per parent node in stage 2 and two in stage 3, whereas the right
instance has two successor nodes per parent node in stage 2 and three in stage 3.

Figure 28: Illustration of two instances subject to varying numbers of successor nodes per
parent node - Both consist of six scenarios

The tests executed demonstrate an effect which contradicts the argument made by Baricelli
et al. [1998], stating that tighter constraints will lead to decline in solution time. Two sets
of instances were tested for varying numbers of successor nodes per parent node for both
stage 2 and stage 3. The first instance considers a situation of limited budget amounting

83



10 COMPUTATIONAL STUDY
Computational Efficiency of the Stochastic Program

to 100 000 monetary units, as opposed to excessive budget of 500 000 monetary units in
the second instance. The effect the sufficiency versus insufficiency of funds has on solution
time is unambiguous. Average computational time is higher for instances of limited budget,
regardless of the number of scenarios, and regardless of whether the highest number of
successor nodes per parent node is contained by stage 2 or 3.

A possible explanation is that an instance of this kind could prove hard to solve, as compared
with an instance with a larger feasible area, if the optimizer finds several nearly feasible
solutions which could have produced high objective function values. The optimizer uses
branch and bound techniques when solving the problem, and would need to perform a high
number of branchings before realizing that the solution is actually infeasible. This would
require extensive computational time, a likely explanation for the results found here.

The average solution times when varying the number of successor nodes in stage 2 and 3
are plotted in Figure 29 and Figure 30 respectively. The instances have been solved to a
gap of 1 % due to high run times, some even exceeding 43 200 sec. A solution within 1 %
of the best bound, is tolerable in a real life situation.

Figure 29: Average solution time when varying the number of successor nodes per parent
node in stage 2 - All instances are solved to a gap of 1 %

Another clear tendency made visible by the two figures is the increase in solution time
as the number of scenarios increases. The ability to solve to optimality depends on both
the level of budget and the number of successor nodes for each stage, as demonstrated in
Table 6. It is worth noticing however, that the computational times required to locate an
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Figure 30: Average solution time when varying the number of successor nodes per parent
node in stage 3 - All instances are solved to a gap of 1 %

optimal solution are in general considerably lower than 43 200 seconds, but the verification
of this solution to ensure its optimality has proved time consuming due to slow reduction
of the best bound. Figure 31 serves to illustrate this fact. The green boxes represents a
feasible solution, and the yellow line the best bound. The solution proved to be optimal is
found long before the optimizer reach a gap of 0.1%.

Table 6: Ability to find optimal solutions when varying the number of successor nodes per
parent node in stage 2 and 3

Budget # of nodes per parent node # of scenarios Solved to optimality?stage 2 stage 3

100

10 3 30 yes
20 3 60 no
3 6 18 yes
3 7 21 no

500

40 3 120 yes
50 3 150 no
3 20 60 yes
3 30 90 no

Figure 32 visualizes the problem size in terms of the number of variables and constraints.
For instances of identical scenario quantities, the problem size is largest for instances with
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Figure 31: Illustration of reduction in best bound to find optimal solution as depicted in
Xpress-IVE

Figure 32: Total number of constraints and variables when varying the number of successor
nodes per parent node in stage 2 and 3

the highest number of successor nodes per parent node in stage 2, as opposed to in stage 3.
We would thus expect that these instances would be more time consuming to solve. Despite
of this, Figure 33 shows that the average computational time is higher when the number of
successor nodes per parent node is greater in stage 3 than in stage 2. A possible explanation
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Figure 33: Average problem size when varying the number of successor nodes per parent
node in stage 2 and 3 - All instances are solved to a gap of 1 %

is that even though the real size of the problem is bigger in terms of variables and constraints,
the complexity, in addition to the amount of symmetric solutions, of a problem in which
the highest number of successor nodes is contained by stage 3 might be greater. Hence,
computational time does not only depend on the problem size, but also on which of the
constraints and variables an increase in the problem size effects. The implication of this is
that information regarding the state of the distribution network is of greater significance
for solution time, than knowledge of actual demand and vehicle capacity.

A further finding demonstrated by the tests performed concerning the configuration of the
scenario tree instances, regards the objective function value. Figure 34 depicts the average
values for each of the four terms constituting the objective function, as well as the total
value. Both in case of sufficient and insufficient budget, the values produced when the
highest number of successor nodes are held by the 2nd stage exceed that of highest number
of successor nodes in stage 3. The reason for this can be explained by the possibility of
not being able to reach a certain POD. Inaccessibility of a demand point will yield zero
demand fulfillment, whereas a reduction in demand or available vehicle capacity will still
enable fulfillment of demand, only not to the extent planned.
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Figure 34: Average objective function values for high and low budget instances, when
varying the number of successor nodes per parent node in stage 2 and 3
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10.2 Validation of the Multi-Stage Stochastic Program

This section will provide a quantitative validation of the proposed multi-stage SP model.
The validation will be based on the two measures for valuation presented in Section 6.3;
the Expected Value of Perfect Information (EVPI) and the Value of the Stochastic Solution
(VSS). These measures will be applied to a range of different test cases of interest, which
serves to illustrate how the model performs under different conditions.

The section will be introduced by a preliminary explanation of the chosen method for
calculation of the the Expected Value solution (EEV), a prerequisite for finding the VSS.
The base case example, upon which the different test cases are built, will be presented,
and extended into a description of its test versions. An overview of the full range of EVPI
and VSS measures obtained will be given, followed by an evaluation and analysis of the
results. Finally, based on the analysis, the robustness of the proposed model and its ability
to produce resilient outcomes in situations characterized by substantial uncertainty, will be
discussed.

10.2.1 Explanatory Remarks for Calculation of the Valuation Measures

In order to achieve a comprehensive and elucidative assessment of the value of the MSP
model, the dynamic approach for calculation of the EEV, based on the description given in
Section 6.3, will be adopted. To further improve the validation process, several instances
will be generated for all cases, such that the valuation measures to be presented in the
following are represented by their respective average values. In this way we are able to
hedge against extreme outcomes and present representative values for the measures. A
more veracious account of the value of the model can thus be given.

All instances representing the same test case are identical in terms of input data for all
parameters apart from those representing the characteristics of the network. The charac-
teristics of the different networks are given in terms of the parameters stating operability or
inoperativeness across the array of their constituting arcs, in addition to the cost of and time
needed to traverse these. All other factors held constant, these stochastic characteristics of
the network can potentially have a tremendous impact on the optimal solution.

We have chosen to utilize the dynamic approach for calculation of the EEV value exclusively,
as it is expected to produce a more realistic result for the EEV solution than the static
approach. This is because we are able to take corrective measures in the 2nd stage before
the 3rd stage is initialized. By adjusting the EV solution to the outcome of the 2nd stage,
improved conformity with the realized situation of the 2nd stage is achieved. Such an
approach would be in greater accordance with the decision making process taking place in
real life disaster situations. Also, in order to be able to apply the static approach, Linking
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Constraints (7.21), (7.23) and (7.26) would occasionally need to be relaxed due to their
confining disposition. This would enable avoidance of the generation of infeasible solutions
in estimation of EEV values. Constraint relaxation increases the dimensions of the problem,
and hence the feasible region, which enables us to find feasible solutions in cases where the
constraints are too restrictive. This EEV value would in effect be closer (or equally close)
to the RP value than the true optimal EEV value, thus not giving an accurate reflection of
the actual value of the MSP model.

Owing to certain attributes of the proposed MSP model, some requisite assumptions re-
garding the expected network have been made when estimating the Expected result of using
the Expected Value solution (EEV). This information is required as input in the EV calcu-
lations, which form the basis for the consecutive EEV calculation. The expected network
will be represented by the initially expected network of stage 1. This might not be entirely
mathematically correct, but we argue that the 1st stage input data still represents valid val-
ues for expectation. Mathematically, finding the expected network would be a cumbersome
process as the network is represented by a 0/1 matrix. Construction of a more advanced
EEV calculator is beyond the scope of this thesis, and a calculator which suffice for the
purpose of validating the developed model has rather been created.

All EEV and RP values are given in terms of optimal 3rd stage values exclusively, as op-
posed to the objective function value produced by the original MSP model which include
both 2nd stage and 3rd stage optimal variable values. This enables comparison of these
values with the WS value produced by the deterministic model. Whereas the MSP model
generates both an anticipated distribution plan and a realized distribution plan, both sub-
ject to maximization, the deterministic model only performs a single last mile distribution
optimization. It should also be noted that the values produced, both in terms of EVPI
and VSS, are only to be used for comparison of different instances, and are not to be in-
terpreted as an indication of the true economical value of the proposed MSP model in a
literal sense. This is due to the nature of the objective function of the model, as explained
in Section 7.3.

10.2.2 Introduction of the Base Case

As an initial action in the validation process seeking to validate the MSP model proposed,
an example denoted the base case has been generated and applied. This base case will
serve as a platform, upon which a range of test cases seeking to reflect the performance of
the model are built. It will also act as a point of reference in evaluation of the valuation
measures produced for the different test cases. By consciously and singly changing input
parameters of interest, pertinent test cases will be generated.

The characteristics of the base case is inspired by real earthquake data from the earthquake
which hit Haiti on January 12, 2010. Some modifications and assumptions regarding the
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data set are made when adequate information is lacking, or the available information is
incompatible with the attributes of the model. The adopted data is provided via Logistics
Cluster [2012b].

Figure 35: Configuration of the distribution network applied during validation of the model

The size of the network chosen as a basis for the entirety of base cases, and hence all
descendant test cases, is in immediate agreement with the distribution network utilized
during the disaster in Haiti. It consists of |P| = 20 PODs and |L| = 5 LDCs, as depicted
by red and blue boxes respectively in Figure 35. The reciprocal location of the nodes
will also remain unaltered throughout the range of instances. The operativeness of the arcs
connecting these nodes will vary between base cases in order to ensure representativeness of
the valuation measures presented. They will however be identical for all test cases relating
to the same base case. Arc capacities and the cost and time needed to traverse an arc, will
in effect be identical for appurtenant cases. In addition to the parameters listed in Table 7,
those omitted from Table 8 will be treated as static values, and are thus common for the
entire array of cases irrespective of the originating base case.

In order to keep computational time within a reasonable frame, |N | = 9 scenarios has been
considered. As argued in Section 10.1, this is deemed a realistic number of future outcomes.
|V| = 2 vehicle types (v-types) of different capacities have been placed at the decision
maker’s disposal in order for him to distribute |B| = 3 different commodity types (c-types) in
varying quantities to the PODs. Complete demand for each of the c-types across all demand
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Table 7: Static problem characteristics - common for all cases

# of # of # of Successor Nodes

LDCs PODs vehicle types stage 2 stage 3

5 20 2 3 3

nodes is given in Table 8, as is the capacity of the LDCs and the available distribution
budget. The vehicle capacity of each v-type is also given, along with the accumulated
capacity across the total number of available vehicles. Seeing how the commodity types are
of different sizes; total demand, total LDC capacity and total vehicle capacity are converted
into an equivalent unit of measurement (st. units). By stating these quantities in terms of
standard units, as opposed to number of items, we allow for comparison. We do not wish
to limit the time available to serve the PODs, as our main priority is to satisfy demand
as extensively as possible. The total convoy time is thus set at a level high enough to
guarantee that it will not affect the solution, and will not be a parameter of interest. We
also assume an abundance of supplies at the ICDs, based on the description of the problem
given in Section 3.1.

Table 8: Characteristics of the base case - subject to change in the descendant test cases

Demand LDC V-cap
per c-type cap per v-type

Bud- Tot Tot Tot
get 1 2 3 dem 1 2 3 4 5 cap 1 2 cap

5E+5 1020 2360 4380 30000 674 3014 2095 9796 9021 30000 88 45 30000

10.2.3 Presentation of the Test Cases

In evaluation of the proposed SP model serving as a decision support tool for support in
development of distribution plans in real-life disasters, we seek to challenge the model on
aspects expected to influence its performance. We wish to register and illustrate the impact
of changing input parameters expected to entail a reduction or increase in feasible region.
In order to do so, we expose the decision maker to a situation of both restrictive and non-
restrictive funding streams, reflected in the available amount of budget. The total level
of demand is also made subject to change relative to the available level of LDC capacity,
vehicle capacity and budget. The intention is to demonstrate efficiency in distribution
when demand exceeds the level of resources needed, and also when the level of resources is
sufficient relative to the level of demand.
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The total level of available vehicle capacity across the different vehicle types may or may
not affect the solution by dictating the outbound amount of supplies to be distributed. As
argued in Section 3.1, a scarcity of transportation capacity is often the case in distribution
of relief. By changing the vehicle capacity of each vehicle type whilst leaving total number
of available vehicles unaltered, this aspect will be examined. The same reasoning applies
to total level of LDC capacity.

The preceding argumentation serves as the motivation behind the choice of considering the
effect of changing budget, total LDC capacity, total demand and total vehicle capacity.
An overview of the cases we have chosen to consider is given in Table 9. It should be
noted that the levels of demand and capacity subject to change are stated in terms of
anticipated quantities as given in the initial phase of distribution. This is due to the fact
that realized levels of demand and capacity are randomly generated, thus exempt from
manual manipulation. Four different versions of the base case and descendant test cases
are created, and an average value to represent the valuation measures are calculated based
on corresponding cases, as explained in Section 10.2.1.

Table 9: Overview of the test cases

Case Variable parameter Value
(st. units)

1 Total demand 40 000
2 Total demand 1 000

3 Total LDC capacity 40 000
4 Total LDC capacity 1 000

5 Total vehicle capacity 40 000
6 Total vehicle capacity 1 000

7 Budget 1E+06
8 Budget 3E+05

10.2.4 Results and Discussion

The values of the WS, EEV and RP solutions are given in terms of average third stage
utility on the grounds stated in Section 10.2.1, and denoted by WS’, EEV’ and RP’ to
indicate that they represent adjusted values. The overall results from the test cases are
given in Table 10, where WS’, EEV’ and RP’ are given along with EVPI’ and VSS’. The
EVPI’ and VSS’ are given both in terms of average third stage utility and in percent. The
majority of instances have been solved to a gap of 0.1 %. If a solution has not been found
within 3600 sec, the current solution has been accepted. The average run time to optimality
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for the SP solution is 1132.24 sec. The run times to optimality for the EEV and WS models
are negligible for the cases under consideration.

Table 10: Resulting valuation measures in terms of average values

EVPI’ VSS’

Case WS’ EEV’ RP’ Value % Value %

Base case 802 028.0 564 314.5 743 843.8 58 184.3 8.1 179 529.3 31.4

1 770 623.0 552 018.0 712 042.8 58 580.3 8.6 160 024.8 28.5
2 217 182.5 106 212.4 201 895.5 15 287.0 7.8 95 683.1 92.6

3 802 176.8 566 538.5 743 765.5 58 411.3 8.2 177 227.0 30.8
4 371 568.0 242 460.8 339 980.0 31 588.0 9.1 97 519.3 39.7

5 1 023 402.5 653 499.5 919 238.3 104 164.3 11.7 265 738.8 40.8
6 144 814.5 118 339.2 132 709.3 12 105.2 9.6 14 370.1 12.4

7 852 053.3 619 224.0 795 126.7 56 926.5 7.4 175 902.7 27.8
8 707 662.3 445 005.3 595 680.0 111 982.3 18.7 150 674.8 33.8

Case 1 and 2 test the effect of increasing and decreasing total demand respectively, relative
to the base case. Comparing the VSS’ of Case 1 and 2 with the base case show that the
value of the stochastic solution decreases when there is a shortage in resources. As the SP
model does not have the resources needed to satisfy demand, the feasible area is reduced
resulting in a decrease in the quality of the SP solution. Moreover, when shortage in supply
resources are experienced, stochasticity is not the critical restraining factor which depreciate
the solution, but the fact that supply is scarce. When, on the contrary, resources are in
excess, the value of the VSS’ experiences a substantial increase of 2 times the VSS’ of the
base case. This implies that evaluating the distribution policy and making decisions using
a SP model is essential when resources exceed demand.

Considering the VSS’ for Case 5 and 6, similar results are obtained by altering total vehicle
capacity. The same reasoning as for Case 1 and 2 is applied. The adjusted value of the
stochastic solution declines as vehicle capacity becomes insufficient. Consequently, tolera-
tion of the additional effort and complexity that the SP model entails is less convincingly
justified. Under limited vehicle capacity, solving the deterministic EV problem provides a
substitutable solution, but at a lower complexity level. As vehicle capacity exceeds demand
and total LDC capacity, VSS’ increases. The SP model gives a solution with higher levels
of utility accumulated over every scenario than the expected result of using an EV solution,
and is preferred.

Varying total LDC capacity in Case 3 and 4 indicates that further increase in capacity as
compared to the base case has no effect on neither the EVPI’ nor the VSS’ value. Increasing
LDC capacity beyond this level will not contribute to more efficient distribution, as it will
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not be utilized in order to fulfill demand to a higher extent. For the same reasons, an
increase in LDC capacity will not increase the value of the stochastic solution. Still, the
VSS’ is high, and can justify the use of the SP model.

Restrictive parameters of the cases chosen will prevent the utilization of higher levels of
capacity, as several factors influence the solution of the model. However, insufficiency in
total LDC capacity yields an increase in the value of perfect information. Total LDC
capacity is dispersed across several LDCs. Hence, selecting the LDCs which will enable the
local agent in charge of final distribution, to provide the highest possible level of demand
fulfillment, is of the utmost significance. The level of supplies received by an LDC is
confined by the capacity of the LDC in question. When LDC capacity is restricted, the
value of the stochastic solution shows an upward trend as expected value solutions are more
likely to suggest suboptimal choices of LDCs to initialize. We would also be willing to pay
to receive more accurate information regarding the elements of uncertainty which influence
the decisions to be made.

An increase or decrease in budget will only have a slight impact on the VSS’ and EVPI’
as compared to the base case example. The budget is sufficient for supplying the demand
nodes in the base case. A further increase will not necessarily improve the solution in
terms of an increase in the level of demand fulfillment. A reduction in budget such that
it is not sufficient to supply all demand nodes and limits the allowed arcs of the v-types,
increases EVPI’ and VSS’ as compared with when budget is in excess. This is in accordance
with the previous results. The effect however, is smaller than in the previous cases, as the
differences in VSS’ and EVPI’ are far less than in the other cases. The reason for this
is that the budget has a small impact on the optimal solution as compared to the level
of demand fulfillment. This is because of the diminutive value given the utility factor for
residual budget, in agreement with the main objective of humanitarian logistics as given in
Section 2.2.1. Scarcity of vehicle and LDC capacity will influence the amount of satisfied
demand, which is the main priority of our proposed model when maximizing the objective
function.

The average VSS’ of the base cases demonstrates that the solution brought forth by the
SP model yields a considerable improvement over the deterministic model, when total LDC
and vehicle capacity and demand have equal values. Average VSS’ values of the test cases
ranging from 12.4% to 92.6% indicate that this result, to a greater or lesser extent, applies
to all the test cases. Furthermore, based on the level of the values, we argue that the
stochastic programming approach taken is to be deemed appropriate, as large VSS values
indicate that uncertainty is of importance to the optimal solution. An average EVPI’
ranging from 7.4% to 18.7% demonstrates that obtaining higher quality forecasts of the
state of the infrastructure, the level of demand and level of resources in the events of a
disaster can prove somewhat beneficial for the cases under consideration.

Comparing the percentual EVPI’ of the different test cases with that of the base case, the
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overall trend is an increase in its value in events of shortage of resources, and decline in
situations of excess. We expect this effect to become even more evident as the level of
excess or deficiency is further increased. There is less value of perfect information when
the decision maker has adequate amounts of resources available, and an investment in im-
proved forecasting techniques should not be carried through. On the other hand, when
demand exceeds available resources, we would be interested in investing in techniques to
achieve better forecasts. Excessive amounts of available transportation resources will in-
crease the feasible area and make it easier for the SP model to produce sound solutions.
Constraint (7.12) and (7.31) will in these cases be non-binding, and are in effect redundant.
Because of the excessive amount of transportation resources, the MSP model potentially
has a larger number of alternative solutions, and can be more certain of being able to satisfy
demand. In consequence, when supply and capacity exceed demand perfect information is
not a necessary prerequisite for producing a good solution and of less worth.

For all test cases, WS’≤SP’≤EEV’, which is consistent with the findings of Birge [1982] as
presented in Section 6.3.2. When considering all the test cases simultaneously, it is readily
apparent that the potential benefit from solving the stochastic program over solving the
deterministic expected value program is highly convincing in situations of resource excess,
and more so than in situations of resource deficiency. The EVPI’ values similarly indicate
that the potential worth of more accurate forecasts of stochastic elements in the immediate
aftermath of a disaster is generally of some value. However, acquiring forecasts of higher
quality can more often than not prove too arduous in the event of an earthquake, causing
the VSS to be of greater pertinency to the decision maker than the EVPI, as argued in
Section 6.3.2.
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11 Conclusive Remarks

This thesis proposes a comprehensive approach to handling the disaster response problem,
which comprises of facility location and last mile distribution of humanitarian aid in the
event of an earthquake. Both a deterministic and a stochastic programming model have
been developed as decision support tools for the underlying problem. The deterministic
model serves as an important foundation for the extension into the stochastic model, and
is a valid base for comparison of the two.

Crucial assumptions and limitations of the deterministic model confine its applicability
in terms of generation of reliable solutions. Neither the information flow associated with
the real-life problem, nor its appurtenant sequence of decisions are reflected in this model,
implying poor representation of the reality. It does however perform well in terms of
solution speed. Hence, the deterministic model has served as a platform for the advanced
stochastic programming model, where an improvement of reality representation has been
of importance in the modeling process.

The stochastic programming model resembles the deterministic model in terms of its struc-
ture. However, an obvious improvement from its deterministic counterpart is the intro-
duction of uncertainty in a number of essential parameters. Enabling postponement of
decisions and ability to coordinate the point of decision and the point of realization of
relevant information constitute further enhancements. By doing so, both information flow
and the related time are considered. We believe that despite an increase in solution time,
inclusion of the elements of uncertainty form a major improvement and the implications
of including stochasticity substantiate the model’s applicability as a decision tool. The
reasons for this, are the impact randomness has on the underlying problem, and the ability
to approach a realistic approximation. In what follows, three main contributions of the
proposed stochastic programming model will be emphasized.

Firstly, the stochastic programming model consists of three distinct stages, each relating
to a different set of decisions influencing the final outcome of the distribution process.
Introduction of multiple stages enables consideration of an extended planning horizon. In
accordance with the situation faced by organizations providing distribution of humanitarian
aid, this accentuates the actual course of events as they appear in reality. The use of recourse
actions has proved appropriate due to the nature of the information flow related to disaster
events. A range of different factors will be subject to uncertainty due to the unpredictability
of events, and this initially unknown information will be realized at different points in time
throughout the distribution process. As the consequences of a disaster are both random
and next to impossible to predict, including several stages has enabled consideration of
multiple stochastic elements, providing greater compliance with reality. In addition, this
stage-wise structure has allowed for a combination of both facility location and last mile
distribution in a single model, optimizing both planning problems simultaneously.
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Secondly, the stochastic model explicitly considers fairness of distribution, an aspect deemed
vital to consider in relation to humanitarian logistics. Being able to plan immediate response
according to the most urgent needs as reflected in the utility induced by providing aid, is
crucial in order to keeping the number of fatalities to a minimum.

Thirdly, the model created allows for dispatch of aid prior to reception of complete infor-
mation regarding the state of the infrastructure, entailing a substantial improvement in
responsiveness. The initial distribution plan is generated based on the expected outcome
of the earthquake and the corresponding impact on the infrastructure. Modification of the
initially generated routes is executed when an obstacle is hit which prevents a route from
being carried through according to plan. As a result, postponement of the requirement for
complete and reliable information regarding the realized state of the distribution network
is achieved, and aid will be provided at the earliest possible point in time. In order to being
able to handle early dispatch and modification of routes, a duplicated network has been
introduced to the model proposed. Furthermore, the model is formulated such that it is
able to cope with change of final destinations should demand points included in the initial
plan prove inaccessible. This reduces wasteful use of resources and enables the decision
maker to make use of the totality of commodities dispatched from the LDCs in order to
obtain the highest possible level of utility.

These contributions are substantiated by the measures presented for a range of instances
of interest, which is indicated by the value of the stochastic solution. All test results prove
the stochastic model to provide the decision maker with better solutions than correspond-
ing expected value solutions. Despite the occurrence of some symmetric solutions arising
from the use of the duplicated network, the solution times are acceptable even in cases of
overwhelming problem sizes. Findings of the computational study provide possible users
of the model with relevant contemplations. These are reflected by the decline in marginal
utility when the number of LDCs exceeds 27 % that of the demand points. A further
major finding is the increase in solution time entailed by occurrence of a larger number of
realizations regarding uncertain parameters in stage 3 than in stage 2. Hence, complete
information concerning the state of the infrastructure will be of greater importance to the
decision maker, as compared with knowledge of actual demand and vehicle capacity.

A possible improvement of the model is represented by enabling return to LDC for reloading
in order to provide further delivery of aid. This would possibly compensate for shortages in
vehicle capacity, but would require introduction of time indices to symbolize the sequence of
vehicles flow. Adding time indices increases the complexity of the model, and has therefore
been omitted from consideration in the model proposed to ensure computational efficiency.
Improvement could also be achieved by use of algorithms or dynamic constraint generation
to eliminate consideration of 2nd stage decisions in the objective function proposed for
the stochastic model. This would produce a logical and readily comprehensible objective
function of greater interpretive value.
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Based on the arguments given in this report and outlined above, we conclude that we have
successfully developed a multi-stage stochastic programming model that provides a decision
maker aiming to optimize humanitarian aid distribution with a sufficient decision support
tool.
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A The Multi-Stage Stochastic Programming Model

Network Quantities

QI - total number of ICDs in the original network
QL - total number of LDCs in the original network
QP - total number of PODs in the original network
QN - total number of nodes in the original network

Main Sets

B - set of commodity types
E - set of scenario tree nodes in the scenario tree
K - set of utility intervals
N - set of nodes

N = {1, . . . , QI ,
QI + 1, . . . , QI +QL,
QI +QL + 1, . . . , QI + 2QL,
QI + 2QL + 1, . . . , QI + 2QL +QP = QN}

T - set of stages
T = {1, 2, 3}

V - set of vehicle types

Indices of Main Sets

b - commodity type b ∈ B
i, j, j′ - node i, j, j′ ∈ N
k - utility interval k ∈ K
n - scenario tree node n ∈ E
t - stage t ∈ T
v - vehicle type v ∈ V

Derived Sets

A - subset of arcs, (i, j), which vehicles traveling between ICDs and LDCs
are allowed to traverse

Avn - subset of arcs, (i, j), which vehicle type v traveling between LDCs, dummy LDCs
and PODs is allowed to traverse in scenario tree node n
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A′
vn - subset of arcs and duplicated arcs, (i, j), which vehicle type v traveling between LDCs,

dummy LDCs and PODs, and the duplicated dummy LDC and the duplicated PODs
is allowed to traverse in scenario tree node n,
A′

vn = Avn ∪ {(i, (i+QL +QP )) : i ∈ LD ∪ P} ∪ {((i+QL +QP ), i) : i ∈ LD ∪ P}
∪ {((i+QL +QP ), (j +QL +QP )) : (i, j) ∈ Avn, i, j ∈ LD ∪ P}
∪ {(i, (i+ 2QL +QP )) : i ∈ L}

Et - set of scenario tree nodes at stage t,
Et ⊂ E

I - set of ICDs,
I = {1, . . . , QI}, I ⊂ N

L - set of LDCs,
L = {1, . . . , QL},L ⊂ N

LD′ - duplicated set of dummy LDCs,
LD′

= {1, . . . , 2QL}
LD - set of dummy LDCs,

LD = {1, . . . , QL},LD ⊂ LD
′ ∧ LD ⊂ N

P ′ - duplicated set of PODs,
P ′ = {1, . . . , 2QP }

P - set of PODs,
P = {1, . . . , QP },P ⊂ P ′ ∧ P ⊂ N

Vjn - subset of vehicle types allowed to travel into node j in scenario tree node n,
Vjn ⊂ V

Indices of Subsets

(i, j) - arc (i, j) ∈ A ∪Avn ∪ A′
vn

a(n) - predecessor scenario tree node a(n) ∈ E
of scenario tree node n

Deterministic Parameters

CI - unit capacity of vehicles traveling between ICDs and LDCs
CL
v - unit capacity of vehicle type v

CC
j - unit capacity at an LDC j

EC
b - unit cost of commodity type b

EI
ij - cost associated with traveling from ICD i to LDC j

EO
i - cost associated with opening an LDC i

F I
i - total available number of vehicles at ICD i
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HB - available budget
HT - upper convoy time limit
MB - utility factor for residual budget
Pn - probability of scenario tree node n occurring
QC

b - unit size of commodity type b
QV

v - unit size of vehicle type v
aib - supply of commodity type b at ICD i
T I
ij - time spent traveling from ICD i to LDC j

Stochastic Parameters

CA
ijn - unit capacity of arc (i, j) in scenario tree node n

Djbn - demand of commodity type b at POD j in scenario tree node n
EL

ijvn - cost associated with traveling from node i to node j for vehicle type
v in scenario tree node n

FL
ivn - total available number of vehicles of vehicle type v at LDC i in scenario

tree node n
MD

jbkn - utility factor for satisfied demand at POD j of commodity type b in
utility interval k in scenario tree node n

TL
ijvn - time spent traveling from node i to node j for vehicle type v in scenario

tree node n
Ujbkn - size of utility interval k for commodity type b at POD j in scenario

tree node n

First Stage Variables

li =

{
1, if LDC i is opened
0, otherwise

xIij - number of vehicles to travel from ICD i to LDC j

yIijb - amount of commodity type b sent from ICD i to LDC j

zIij =

{
1, if a vehicle traverses arc (i, j)

0, otherwise

Second and Third Stage Variables

djbkn - amount of satisfied demand of commodity type b at POD j in utility interval
k and scenario tree node n

xLijvn - number of vehicles of type v to travel from node i to node j in scenario tree
node n
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yLijbvn - amount of commodity type b sent from node i to node j with vehicle type v

in scenario tree node n

zLijvn =

{
1, if vehicle type v traverses arc (i, j) in scenario tree node n

0, otherwise

wn - level of residual budget in scenario tree node n

Objective Function

max
∑
j∈P

∑
b∈B

∑
k∈K

∑
n∈E\E1

PnMjbkndjbkn +
∑

n∈E\E1

PnM
Bwn (A.1)

Constraints Stage t = {1}

∑
j∈L

yIijb ≤ aib i ∈ I, b ∈ B (A.2)

∑
i∈I

∑
b∈B

Qby
I
ijb − CC

j lj ≤ 0 j ∈ L (A.3)

∑
j∈L

xIij ≤ F I
i i ∈ I (A.4)

xIij − F I
i z

I
ij ≤ 0 (i, j) ∈ A : i ∈ I (A.5)∑

b∈B
Qby

I
ijb − CIxIij ≤ 0 (i, j) ∈ A (A.6)

zIij − xIij ≤ 0 (i, j) ∈ A (A.7)

Constraints Linking Stage t={1} and t={2}

∑
v∈V

∑
(i,j)∈Avn

yLijbvn −
∑

(j,i)∈A

yIjib ≤ 0 i ∈ L, b ∈ B, n ∈ E2 (A.8)
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Constraints Stage t = {2}

∑
v∈Vjn

∑
(i,j)∈Avn

yLijbvn −
∑

v∈Vjn

∑
(j,i)∈Avn

yLjibvn −
∑
k∈K

djbkn = 0 j ∈ P, b ∈ B, n ∈ E2 (A.9)

∑
k∈K

djbkn ≤ Djbn j ∈ P, b ∈ B, n ∈ E2

(A.10)

djbkn ≤ Ujbkn j ∈ P, b ∈ B, k ∈ K,
n ∈ E2

(A.11)

∑
(i,j)∈Avn

xLijvn − FL
ivnli ≤ 0 i ∈ L, v ∈ V, n ∈ E2 (A.12)

xLijvn − (
∑
j′∈L

FL
j′vn)z

L
ijvn ≤ 0 v ∈ V, n ∈ E2, (i, j) ∈ Avn (A.13)

∑
b∈B

QC
b y

L
ijbvn − CL

v x
L
ijvn ≤ 0 v ∈ V, n ∈ E2, (i, j) ∈ Avn (A.14)∑

(j,i)∈Avn

xLjivn −
∑

(i,j)∈Avn

xLijvn ≤ 0 j ∈ LD ∪ P, n ∈ E2, v ∈ Vjn (A.15)

∑
v∈V

QV
v (x

L
ijvn + xL(i+QL)jvn

) ≤ CA
ijn n ∈ E2, (i, j) ∈ Avn : i ∈ L, j ∈ N\I (A.16)∑

v∈V
QV

v x
L
ijvn ≤ CA

ijn n ∈ E2, (i, j) ∈ Avn : i ∈ P, j ∈ N\I (A.17)

∑
v∈V

∑
(i,j)∈Avn:i∈L

yLijbvn −
∑
j∈P

∑
k∈K

djbkn = 0 b ∈ B, n ∈ E2 (A.18)

∑
(j,i)∈Avn

yLjibvn −
∑

(i,j)∈Avn

yLijbvn ≤ 0 j ∈ LD ∪ P, b ∈ B, v ∈ V, n ∈ E2 (A.19)
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Constraints Linking Stage t={2} and t={3}

∑
j∈P

∑
k∈K

djbkn −
∑
j∈P

∑
k∈K

djbka(n) ≤ 0 b ∈ B, n ∈ E3 (A.20)

∑
k∈K

djbka(n) −
∑
k∈K

djbkn

+(
∑

(i,j)∈A′
vn

∑
v∈Vjn

yLijbvn −
∑

(i,j)∈Ava(n)

∑
v∈Vja(n)

yLijbva(n)) ≤ 0 j ∈ P, b ∈ B, n ∈ E3 (A.21)

∑
(i,j)∈A′

vn

xLijvn −
∑

(i,j)∈Ava(n)

xLijva(n) ≤ 0 i ∈ L, v ∈ V, n ∈ E3

(A.22)

xLijva(n) − xLijvn + (
∑

(j′,i)∈Avn

xLj′ivn −
∑

(j′,i)∈Ava(n)

xLj′iva(n)) ≤ 0 v ∈ V, n ∈ E3, (i, j) ∈ Avn

(A.23)

xLijvn − xLijva(n) ≤ 0 v ∈ V, n ∈ E3, (i, j) ∈ Avn

(A.24)

∑
(i,j)∈A′

vn

yLijbvn −
∑

(i,j)∈Ava(n)

yLijbva(n) ≤ 0 i ∈ L, b ∈ B, v ∈ V, n ∈ E3

(A.25)

yLijbva(n) − yLijbvn + (
∑

(j′,i)∈Avn

yLj′ibvn −
∑

(j′,i)∈Ava(n)

yLj′ibva(n)) ≤ 0 b ∈ B, v ∈ V, n ∈ E3,

(i, j) ∈ Avn

(A.26)

yLijbvn − yLijbva(n) ≤ 0 b ∈ B, v ∈ V, n ∈ E3,

(i, j) ∈ Avn

(A.27)
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Constraints Stage t = {3}

∑
v∈Vjn

∑
(i,j)∈A′

vn

yLijbvn −
∑

v∈Vjn

∑
(j,i)∈A′

vn

yLjibvn −
∑
k∈K

djbkn = 0 j ∈ P, b ∈ B, n ∈ E3

(A.28)∑
k∈K

djbkn ≤ Djbn j ∈ P, b ∈ B, n ∈ E3

(A.29)

djbkn ≤ Ujbkn j ∈ P, b ∈ B, k ∈ K,
n ∈ E3

(A.30)

∑
(i,j)∈A′

vn

xLijvn − FL
iva(n)li ≤ 0 i ∈ L, v ∈ V, n ∈ E3 (A.31)

xLijvn − (
∑
j′∈L

FL
j′va(n))z

L
ijvn ≤ 0 v ∈ V, n ∈ E3, (i, j) ∈ A′

vn (A.32)

∑
b∈B

Qby
L
ijbvn − CL

v x
L
ijvn ≤ 0 v ∈ V, n ∈ E3, (i, j) ∈ A′

vn (A.33)

zLijvn − xLijvn ≤ 0 v ∈ V, n ∈ E3, (i, j) ∈ A′
vn (A.34)∑

(j,i)∈A′
vn

xLjivn −
∑

(i,j)∈A′
vn

xLijvn ≤ 0 j ∈ LD′ ∪ P ′, n ∈ E3, v ∈ Vjn (A.35)

∑
v∈V

QV
v (x

L
ijvn + xL(i+QL)jvn

+ xL(i+2QL+QP )(j+QL+QP )vn) ≤ CA
ijn n ∈ E3,

(i, j) ∈ Avn : i ∈ L, j ∈ N\I
(A.36)∑

v∈V
QV

v (x
L
ijvn + xL(i+QL+QP )(j+QL+QP )vn) ≤ CA

ijn n ∈ E3,

(i, j) ∈ Avn : i ∈ P, j ∈ N\I
(A.37)

∑
(j,i)∈A′

vn

yLjibvn −
∑

(i,j)∈A′
vn

yLijbvn ≤ 0 j ∈ LD′ ∪ P ′, b ∈ B, v ∈ V, n ∈ E3 (A.38)
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Efficiency Constraints Applied to All Stages

∑
i∈L

EO
i li +

∑
(i,j)∈A

∑
b∈B

EC
b y

I
ijb +

∑
(i,j)∈A

EI
ijx

I
ij

+
∑
v∈V

∑
(i,j)∈Avn

EL
ijvnx

L
ijvn + wn = HB n ∈ E\E1 (A.39)

∑
(i,j)∈A

T I
ijz

I
ij +

∑
v∈V

∑
(i,j)∈A′

vn

TL
ijvnz

L
ijvn ≤ HT n ∈ E3 (A.40)

Non-Negativity Constraints for All Variables

li ∈ {0, 1} i ∈ L (A.41)

xIij ≥ 0 integer, (i, j) ∈ A (A.42)

yIijb ≥ 0 (i, j) ∈ A, b ∈ B (A.43)

zIij ∈ {0, 1} (i, j) ∈ A (A.44)

djbkn ≥ 0 j ∈ P, b ∈ B, k ∈ K, n ∈ E2 ∪ E3 (A.45)

xLijvn ≥ 0 integer, v ∈ V, n ∈ E2, (i, j) ∈ Avn (A.46)

yLijbvn ≥ 0 v ∈ V, n ∈ E2, (i, j) ∈ Avn, b ∈ B (A.47)

zLijvn ∈ {0, 1} v ∈ V, n ∈ E2, (i, j) ∈ Avn (A.48)

xLijvn ≥ 0 integer, v ∈ V, n ∈ E3, (i, j) ∈ A′
vn (A.49)

yLijbvn ≥ 0 v ∈ V, n ∈ E3, (i, j) ∈ A′
vn, b ∈ B (A.50)

zLijvn ∈ {0, 1} v ∈ V, n ∈ E3, (i, j) ∈ A′
vn (A.51)

wn ≥ 0 n ∈ E\E1 (A.52)
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B Data for the Illustrative Example

General Parameters
Number of ICDs 4
Number of LDCs 2
Number of PODs 3
Number of scenario tree nodes 7
Budget 100,000
Utility factor for residual budget 1
Upper convoy time limit 200,000
Aircraft capacity from the ICDs 100
Commodity types 1
Commodity cost 10
Commodity size 2

ICD Specific Parameters
ICD

1 2 3 4

Supply 100 200 100 200
Number of vehicles 5 5 4 1

LDC Specific Parameters

LDC

1 2

Capacity 200 400
Opening cost 200 2000
Expected number of v-type1 5 6
Expected number of v-type2 2 3
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POD Specific Parameters
POD

1 2 3

Expected demand 50 30 60

Vehicle Specific Parameters
Vehicle type

1 2

Capacity 200 400
Size 250 500

Arcs Connecting the ICDs and the LDCs
Travel cost Travel time

ICD LDC 1 LDC 2 LDC 1 LDC 2

1 3688 3458 3688 3458
2 2331 3014 2331 3014
3 3472 2676 3472 2676
4 1972 2070 1972 2070
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Arcs Connecting the LDCs and PODs
Arc cost

Node LDC 1 LDC 2 POD1 POD 2 POD 3

LDC 1 - 266 139 0 127
LDC 2 266 - 180 145 0
POD 1 139 180 - 0 0
POD 2 0 145 0 - 87
POD 3 127 0 0 87 -

Arc capacity

Node LDC 1 LDC 2 POD1 POD 2 POD 3

LDC 1 - 1000 1000 0 3000
LDC 2 1000 - 1000 2000 0
POD 1 1000 1000 - 0 0
POD 2 0 2000 0 - 2000
POD 3 3000 0 0 2000 -

Arc capacity

Node LDC 1 LDC 2 POD1 POD 2 POD 3

LDC 1 - 532 278 0 254
LDC 2 532 - 360 291 0
POD 1 278 360 - 0 0
POD 2 0 291 0 - 175
POD 3 254 0 0 175 -
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C Results from Varying the Number of LDCs

Time relation Objective value

# of Seconds to Seconds to Seconds to MU MU DFU DFU SP
LDCs 10% 1% 0.1% stage 2 stage 3 stage 2 stage 3 value

1 - - 200 000 200 000 - - 400 000
2 1 15 38 318 020 318 139 164 642 153 422 954 222
3 1 9 14 302 050 302 167 157 169 137 271 898 656
4 1 30 125 257 388 257 693 281 533 243 489 1 040 102
5 1 10 275 217 287 217 600 430 768 375 877 1 241 532
6 1 30 556 200 303 200 940 441 373 398 632 1 241 247
7 4 135 1 019 189 581 190 291 281 914 250 287 912 072
8 8 55 234 178 316 178 976 314 865 276 440 948 597
9 10 45 70 200 987 201 351 657 987 642 031 1 702 355
10 6 50 333 201 286 202 582 454 028 278 071 1 135 967
20 22 146 1 399 89 101 90 715 584 873 480 905 1 245 594
30 18 228 411 157 457 158 901 446 594 381 426 1 144 377
40 14 1 014 2 998 211 669 213 150 636 296 564 365 1 625 479
70 20 504 4 015 110 542 111 402 615 768 568 095 1 405 806
90 133 2 142 23 097 136 476 137 506 510 618 477 748 1 262 346

|POD|=15

Time relation Objective value

# of Seconds to Seconds to Seconds to MU MU DFU DFU SP
LDCs 10% 1% 0.1% stage 2 stage 3 stage 2 stage 3 value

2 1 1 3 171 324 171 343 57 544 49 796 450 006
10 17 106 412 7 648 8 571 624 853 493 564 1 134 635
20 22 484 3 812 382 1 859 438 973 391 174 832 388
24 7 1 092 2 734 100 668 766 828 640 728 1 408 323
30 27 95 1 479 1 912 2 508 745 489 728 194 1 478 103
40 93 10 189 25 199 74 1 187 412 564 353 839 767 664
50 65 556 1 749 2 1 224 595 022 516 648 1 112 896
80 91 1 002 4 097 308 1 245 732 052 674 853 1 408 457

|POD|=40
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D Results from Varying the Number of PODs

Instances Problem size

Number of Seconds to Seconds to Seconds to Optimal Matrix Presolved
PODs 10% 1% 0.1% solution Constraints Variables Constraints Variables

1 0 8 9 215 865 7 1654 277 3 252 2 327
2 0 13 20 325 475 8 3864 971 3 756 2 766
3 0 13 53 664 778 8 9605 283 4 022 3 019
4 0 7 48 358 084 10 5266 131 4 810 3 592
10 8 13 50 1 265 132 15 5338 297 6 656 5 154
20 2 56 223 1 053 211 30 1361 4 817 12 376 9 740
30 13 55 95 1 349 945 46 6812 1 007 18 159 14 296
40 5 76 364 1 575 943 63 7912 5 637 17 469 13 712
50 9 71 603 1 413 668 87 3773 3 639 58 429 28 442
60 8 168 1327 1 683 645 107 632 37 275 32 354 25 697
70 75 169 620 1 631 337 136 025 45 191 40 801 32 234
80 4 52 503 2 708 796 160 352 48 391 41 649 33 192
90 25 85 408 2 025 363 191 177 54 477 47 767 37 981
100 72 404 1125 1 544 751 226 316 61 723 54 930 43 531
110 53 1139 1624 2 838 265 259 657 66 217 58 394 46 389
120 50 100 1181 2 406 784 297 028 73 581 63 428 50 508
200 204 211 1759 11 821 461 684 953 119 083 105 305 83 964
250 118 210 3156 1 861 296 1 005 664 148 419 132 192 255 282
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2
E Results from Varying the Number of Successor Nodes per Parent Node in

Stage 2

Budget =100,000
Time relation Objective value

# of Seconds to Seconds to Seconds to MU MU DFU DFU SP
succ. s=2 10% 1% 0.1% stage 2 stage 3 stage 2 stage 3 value

1 2 8 331 194 124 243 700 235 032 479 050
2 1 398 613 109 308 400 779 364 208 765 404
5 4 97 2 530 36 925 36 925 496 956 440 042 1 010 848
7 243 1 071 3 398 4 143 4 609 386 160 279 868 674 780
8 51 730 4 885 13 317 13 568 152 719 150 689 330 293
10 267 2 342 21 994 181 547 226 274 192 622 419 624
20 935 23 943 43 000 890 1 203 337 564 228 750 568 407
30 1 017 5 178 24 060 11 685 11 949 161 022 156 234 340 890
40 9 042 39 812 43 188 217 471 265 829 251 188 517 705
50 3 225 28 072 43 289 670 1 176 342 350 270 942 615 138
60 340 25 239 43 202 285 1 356 940 611 483 770 1 426 022
70 300 17 590 25 337 3 685 4 674 196 327 170 464 375 150
80 12 875 42 641 43 238 2 600 2 928 259 992 242 950 508 470
90 25 858 27 576 43 200 8 893 9 329 400 816 287 551 706 589
100 12 671 41 974 43 218 318 352 273 114 264 029 537 813
120 36 918 36 920 43 226 234 627 1 166 220 1 132 040 2 299 121
150 33 116 43 998 44 922 298 768 388 296 249 749 639 111
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Budget =500,000
Time relation Objective value

# of Seconds to Seconds to Seconds to MU MU DFU DFU SP
succ. s=2 10% 1% 0.1% stage 2 stage 3 stage 2 stage 3 value

1 - 5 31 377 332 377 680 269 389 262 814 1 287 214
2 8 26 118 344 749 344 537 513 444 467 801 1 670 530
5 4 74 750 419 952 420 636 393 380 332 222 1 566 190
7 7 88 3 739 341 014 341 828 449 200 367 900 1 499 941
8 8 134 783 379 677 380 285 367 893 288 358 1 416 212
10 5 451 3 701 2 651 352 728 353 206 295 820 260 354 631 054
20 2 865 4 448 24 113 372 870 373 478 305 867 235 911 1 288 124
30 660 1 067 9 236 365 449 365 761 298 538 278 147 1 307 895
40 2 778 2 778 29 290 340 235 340 573 278 746 260 810 610 182
50 4 354 23 301 43 169 364 098 364 725 386 328 336 222 1 451 372
60 4 933 7 090 19 898 380 915 381 781 689 796 396 605 1 849 096
70 1 855 1 855 26 687 343 259 344 296 635 764 494 500 1 817 819
80 11 061 27 065 43 138 343 312 344 008 487 940 420 515 1 595 774
90 3 156 4 873 43 102 375 151 375 862 431 239 323 762 1 506 014
100 5 624 8 201 43 172 351 093 351 874 405 072 343 138 1 451 176
120 16 762 16 762 43 223 348 246 348 826 862 678 827 465 2 387 214
150 7 958 15 986 43 229 351 360 351 894 460 769 310 744 737 384
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F Results from Varying Budget and Number of Successor Nodes per Parent
Node in the Scenario Tree

Budget = 100,000
Time relation Objective value

# of Seconds to Seconds to Seconds to MU MU DFU DFU SP
succ. s=3 10% 1% 0.1% stage 2 stage 3 stage 2 stage 3 value

1 7 25 323 1 810 2 004 297 012 260 786 561 611
2 1 42 5 304 2 748 2 798 285 490 263 348 554 383
5 75 503 22 128 1 507 2 320 313 276 249 122 566 223
7 51 741 24 777 84 270 300 685 281 815 582 853
8 35 1 868 43 201 10 954 12 128 251 927 140 005 207 507
10 83 1 403 21 947 2 127 2 611 394 552 339 284 738 572
20 460 10 321 42 051 1 657 2 252 280 708 225 359 509 975
30 557 24 815 43 203 1 132 1 857 411 531 382 290 796 809
40 7 902 42 367 43 201 1 789 2 593 355 300 306 963 666 644
50 860 42 236 43 203 92 569 253 086 196 897 450 643
60 3 310 42 747 43 215 978 2 721 264 016 193 707 230 711
70 1 806 43 103 43 204 1 826 2 860 328 276 230 326 563 288
80 2 577 42 784 43 238 1 812 3 136 253 818 195 094 453 859
90 54 012 43 200 43 200 202 1 568 296 006 215 717 513 492
100 5 002 38 620 43 209 83 1 299 307 156 208 956 517 494
120 61 026 41 199 43 378 757 2 257 257 130 190 270 225 207
150 13 535 40 615 43 391 179 065 180 238 362 949 285 016 1 007 267
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Budget = 500,000
Time relation Objective value

# of Seconds to Seconds to Seconds to MU MU DFU DFU SP
succ. s=3 10% 1% 0.1% stage 2 stage 3 stage 2 stage 3 value

1 - 3 43 361 677 362 497 373 215 304 503 1 401 891
2 - 14 43 365 008 365 126 346 992 307 889 1 385 014
5 12 79 723 363 319 364 567 388 270 290 352 1 406 507
7 4 115 3 421 347 018 347 566 398 984 359 967 1 453 534
8 11 137 5 111 363 868 365 428 265 028 165 535 1 159 858
10 10 212 1 342 346 293 347 020 481 181 401 882 1 576 375
20 3 092 3 095 23 500 338 622 340 581 391 368 286 408 678 490
30 389 618 22 982 350 488 351 412 517 410 462 550 1 681 859
40 136 828 43 201 345 222 346 305 462 619 384 305 1 538 450
50 375 2 665 43 203 367 835 369 046 307 228 234 602 1 278 711
60 489 4 764 43 200 361 228 362 734 373 091 257 382 1 354 435
70 4 657 16 987 43 205 339 439 340 654 488 162 341 544 754 900
80 1 134 12 825 43 202 338 947 340 681 350 525 286 482 658 318
90 8 545 20 433 43 240 364 650 366 185 374 459 269 124 1 374 417
100 23 677 26 968 43 267 344 117 346 072 419 389 277 776 1 387 353
120 21 427 43 004 43 208 362 859 363 881 299 081 194 093 1 219 913
150 69 409 43 205 43 205 355 413 356 995 610 088 489 194 1 811 689
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