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Abstract

We use the linear decision rule approach to develop a model for a stochastic multi-
stage generation planning problem in the Nordic region. By developing both the
primal and the dual versions of the program, the loss of optimality incurred by the
linear decision rule approach can be estimated. Uncertain parameters take values
in an uncertainty set defined by upper and lower bounds. Alternative modelling
methods for stochastic problems of comparable size and structure either suffer from
the curse of dimensionality, or have to rely on unrealistic simplifying assumptions
to achieve tractability. We show that the linear decision rule approach gives a good
trade-off between tractability and accuracy for a stochastic generation planning
problem.
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Sammendrag

Ved å anta lineære beslutningsregler utvikler vi en stokastisk fler-stegs modell for
planlegging av kraftproduksjon i Norden. Både den primale og den duale versjonen
av problemet er implementert. En øvre grense for tapet av optimalitet påført av
å begrense beslutningsreglene til å være lineære er beregnet ved å sammenligne
den primale objektivverdien med den duale. Usikre parametre kan ta verdier i et
sett definert av øvre og nedre grenser. Andre eksisterende løsningsmetoder for å
håndtere stokastiske fler-stegs problem får raskt uhåndterbare dimensjoner, eller
må benytte seg av urealistiske forenklinger for å oppnå løsbarhet. Vi viser at ved å
bruke lineære beslutningsregler på et stokastisk kraftplanleggings-problem, oppnås
det en god avveining mellom løsbarhet og presisjon.
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1 Introduction

The perspective of a central planner is used in many power generation planning
models for the Nordic region, such as the EMPS and the ECON BID model.
This perspective yields the same optimal solution as the solution in a perfect
competition market. Since the Nordic region has a functioning deregulated power
market, these models are able to give results that correspond to reality.

The task of generation planning is complicated both by the presence of uncertain-
ties and the span in space and time in which the planning takes place. Uncertain
factors could include inflow to the reservoirs, fuel prices, capacity limits, consump-
tion and new technology. This implies that multi-stage stochastic modelling of the
problem is appropriate.

In stochastic programming the classical approach to solve problems is to approxi-
mate the underlying stochastic process of the uncertain parameters to be discrete.
The process can then be represented with a finite scenario tree, where each branch
represents one possible realization. The solution time of the optimization model
scales with the size of the scenario tree, which grows exponentially with the num-
ber of time stages. An important issue is therefore to generate scenario trees in
a way that gives a good approximate representation of the uncertainty without
using a large number of scenarios (Heitsch and Römisch, 2009). However, Kaut
and Wallace (2007) state that the ability to guarantee good scenario trees is highly
dependent upon the knowledge of the underlying process. As the probability dis-
tributions of the uncertain parameters rarely are known, generating good scenario
trees can be problematic. Stochastic programming problems are in general hard to
solve. Dyer and Stougie (2006) show that two-stage stochastic programming with
independently distributed stochastic parameters, following discrete distributions
is #P-hard and the multi-stage case is shown to be even harder to solve. Accord-
ing to Shapiro and Nemirovski (2005), stochastic programs are computationally
intractable even when medium accuracy solutions are sought. These findings show
that it is important to focus on developing tractable methodology, that can rea-
sonably approximate stochastic programs.

Hydrothermal generation planning has been a focus of study in operations re-
search. Stochastic dynamic programming (SDP) has been used to solve the plan-
ning problem for the Nordic region, a recent example is given in Wolfgang et al.
(2009), where the inflows are modelled as stochastic. The method derives the opti-
mal operating strategy from Bellman’s backward recursive relationship (Bellman,
1957), and expected future costs are found at each possible future state. However,
the dimensionality of this approach quickly gets out of hand, as discretization of
future states is required, and it has limited use for real-size problems. A more re-
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cent approach developed by Pereira and Pinto (1991), is known as stochastic dual
dynamic programming (SDDP) and uses a decomposition method to handle the
multidimensionality of the problem. In this method there is no need for discretiza-
tion of future states, but both SDP and SDDP use scenarios to model the future,
and therefore require scenario generation which in turn can be a demanding task
as already discussed.

Our contribution is to show that the linear decision rule (LDR) approach can be
beneficially applied to the generation planning problem. The advantage of this
approach is that there is no need for state discretization or scenario generation,
hence making it an attractive alternative to traditional methods. The general idea
of the decision rule approach is to model the decision variables as functions of the
realizations of the uncertain parameters. Uncertainties are modelled as continu-
ous random variables that are within upper and lower bounds. The idea itself is
old but was recently “resurrected" in Ben-Tal et al. (2004) in the framework of
robust optimization. Shapiro and Nemirovski (2005) identifies that the approach
scales linearly with the number of time stages, highlighting the benefits of LDR
to multi-stage stochastic programming. With the introduction of the dual LDR
approximation in Kuhn et al. (2009) it is possible to estimate the loss of accuracy
imposed by the LDR approach. The LDR approximation has successfully been
used to solve supply chain problems with more than 70 decision stages (Ben-Tal
et al., 2005), network design problems involving hundreds of random variables
(Atamturk and Zhang, 2007), and robust control problems involving 12 state vari-
ables and 20 time stages (Goulart et al., 2008). The approach has also been used
in the context of reservoir management as early as in Revelle et al. (1969).
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2 Theory

Optimization belongs to the field of applied mathematics and encompasses the use
of mathematical models and methods to find the best alternative for a decision
maker operating in complex environments. Optimization models are divided in
to different classes depending on the functions and variables used to describe the
underlying problem. We will focus on the class of linear programming (LP) prob-
lems, where all functions are linearly dependent on the decision variables and all
decision variables are continuous (Lundgren et al., 2010). A typical application of
optimization models is on multi-period problems. For these problems the decision
maker has to find the values for the decision variables that optimizes the objective
function and at the same time satisfies the constraints in each time period. A
general linear multi-period program with T periods is can be formulated as

min z =
T∑
t=1

c>t xt (2.1a)

s.t.
T∑
s=1

Atsxs≥ bt (2.1b)

xt≥ 0, (2.1c)

in which the xt vectors of size n represent the decisions taken in time period t.
The objective function coefficients ct are vectors of size n and exist for each period
t. The number of constraint matrices Ats of size m×n is T ×T such that period-t
constraints can include decision variables from other time periods. The right-hand
side vector bt is of size m.

To describe a problem as exact as possible, parameters Ats , bt and ct need to be
carefully determined. Some parameters might be time-consuming to determine due
to the complexity of the problem, an example being the variable cost of production.
Other parameters might not be possible to determine with certainty at all, such
as future demand. Because the future is in fact uncertain, most real life problems
include some parameters of this last type. It is well documented in theory and
practice that disregarding or underestimating uncertainty is a common mistake
that often results in severely suboptimal decisions (Kuhn et al., 2011). Stochastic
models account for uncertainty in contrast to deterministic models which assume
that all parameters can be stated with certainty. As most real life problems are
affected by uncertainty of some form, the modelling potential for stochastic pro-
grams is significant.
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When uncertainty is introduced in an optimization model, the timing of the deci-
sions relative to the timing of new information must be specified. Decisions taken
after observing the uncertain parameters offers an opportunity to adapt to the
received information, and are called recourse decisions (Higle, 2005). A stage is
commenced when new information is observed. Stages define the basic structure
of stochastic problems, as this is the only time it is meaningful to make new deci-
sions. Multi-stage recourse models describe problems where there is a sequence of
uncertain parameters being revealed and associated recourse decisions being made.
Nonanticipativity constraints are included in multi-stage models to ensure that de-
cisions taken at a specific stage only rely on information available at this stage.
The multi-stage recourse problem has attracted a lot of attention as its structure
is applicable to a large class of practical problems (Chen et al., 2008).

2.1 The decision rule approach

Recourse decisions can be modelled as decision rules. In this section, we present
a general formulation for a decision making problem under uncertainty with T
stages. The structure and notation is the same as in Kuhn et al. (2011) and will
be used throughout this text. We are consistent in the use of bold for matrices
and vectors.

The uncertain parameters observed in any stage t are noted ξt ∈ Rkt ,where kt is
the number of uncertain parameters observed in stage t. The uncertainty set Ξ
represents the range of all values ξ can adapt, and is assumed to be a bounded
polyhedron of the form

Ξ =
[
ξ ∈ Rk : Wξ ≥ h

]
, (2.2)

for some W ∈ Rl×k and h ∈ Rl. Naturally decisions taken at stage t can only be
based on the already observed parameters ξ1, ξ2, . . . , ξt and not on future observa-
tions ξt+1, ξt+2, . . . , ξT . Decisions are based on the whole history of observations,
i.e. xt(ξ1, ξ2, . . . , ξt) ∈ Rnt , in which nt represents the number of decisions made
in stage t. Requiring that xt depends solely on ξt reflects the nonantcipative
nature of the problem. For simplicity, the history of observations is defined as
ξt = (ξ1, ξ2, . . . , ξt) ∈ Rkt , where kt =

∑t
s=1 ks and represents the total number

of observed parameters up to stage t. Finally, ξ = ξT and k = kT , representing
the complete set of the uncertain parameters and the total number of observed
parameters respectively.

By using this general notation, we can explicitly include uncertainty in the general
linear multi-stage problem presented in Equation (2.1). We will focus on the case
of fixed recourse, meaning that the constraint matrices Ats are independent of ξ.
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The case of random recourse is more intricate and is investigated in Kuhn et al.
(2009). A stochastic problem will often have some decisions and constraints not
affected by uncertainty. To make it convenient to include deterministic decisions
and constraints we will require that the first element of all scenarios ξ1 is equal
to 1. This requirement will not cause any loss of generality and has notational
advantage.

The general formulation for a decision making problem under uncertainty with T
stages can be formulated with decision rules in the following way:

minimize Eξ
( T∑
t=1

ct(ξt)
>xt(ξt)

)
(P)

subject to Eξ
( T∑
s=1

Atsxs(ξ
s)
∣∣∣ξt) ≥ bt(ξt),
xt(ξ

t) ≥ 0

 ∀t ∈ T ∀ξ ∈ Ξ

In the formulation above, Eξ(·) denotes expectation with respect to the random
parameters ξ and T is the set (1, . . . , T ) of time stages.

The general decision problem formulated in P provides considerable modelling
flexibility. In Kuhn et al. (2011) it is shown how the problem P encapsulates de-
terministic and multi-stage stochastic linear programs, robust optimization prob-
lems and tight convex approximation of chance-constrained programs as a special
case.

The uncertainty set can contain infinitely many scenarios ξ. All of the stage t
decisions, xt(ξt), are parametrised in ξt. Each ξt corresponds to one scenario
ξ which results in infinitely many decision variables. A similar argument can
be deducted for the constraints. The stage-t constraints are conditioned on the
observation history ξt because E(·|ξt) is the conditional expectation with respect
to ξ given ξt. This implies that also the stage-t constraints are parametrised in ξt

and that there will be infinitely many constraints when there are infinitely many ξ
in Ξ. An infinite number of decision variables and constraints makes the program
P severely computationally intractable.

2.2 Linear decision rules

A tractable approximation for problem P is obtained by restricting the space of
decision rules to those that exhibit a linear dependence on the observation history
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ξt.

For the further argumentation we define the truncation operator P t :Rk −→ Rkt

through P tξ = ξt. Restricting the decision rules to be linear then amounts to
setting

xt(ξ
t) = X tξ

t = X tP tξ (2.3)

where X ∈ Rnt×kt . The objective function coefficients and the right hand side
vectors are linear functions of the observation history, and can be defined as
ct(ξ

t) = Ctξ
t = CtP tξ for some Ct ∈ Rnt×kt and bt(ξt) = Btξ

t = BtP tξ
for some Bt ∈ Rmt×kt . This is a nonrestrictive assumption since we are free to
redefine ξ such that it contains ct(ξt) and bt(ξt) as subvectors (Kuhn et al., 2009).
For simplicity we define m =

∑T
t=1mt, and n =

∑T
t=1 nt, as the total number of

constraints and variables respectively.

Substituting the linear decision rules and the expressions for ct(ξt) and bt(ξt) into
P yields the following problem.

minimize Eξ
( T∑
t=1

(CtP tξ)>X tP tξ
)

(Pu)

subject to Eξ
( T∑
s=1

AtsXsP sξ
∣∣∣ξt) ≥ BtP tξ,

X tP tξ ≥ 0,

 ∀t ∈ T ∀ξ ∈ Ξ

To ensure that the linear decision rule approximation will convert to a tractable
program, we require the conditional expectations Eξ(ξ|ξt) to be linear in ξt (Kuhn
et al., 2009). In other words there should exist matrices M t ∈ Rk×kt such that
Eξ(ξ|ξt) = M tξ

t for all ξ ∈ Ξ. If, for example, the parameters ξt are mutually
independent or if the process of the random parameters belong to the class of
autoregressive moving-average models, this requirement is automatically satisfied
(Kuhn et al., 2011).

The problem can be simplified and re-expressed in terms of M t, and the second
order moment matrix of the random parameters M ∈ Rk×k defined by M =
E(ξξt). The steps of these algebraic manipulations are stated in Kuhn et al.
(2011), and the resulting reformulation of Pu is P̄u.
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minimize
T∑
t=1

Tr(P tMP>t C
>
t X t) (P̄u)

subject to
( T∑
s=1

AtsXsP sM tP t −BtP t

)
ξ ≥ 0,

X tP tξ ≥ 0,

 ∀t ∈ T ∀ξ ∈ Ξ

We can see from the new formulation that the decision variables no longer are
parametrised in ξ. By restricting the decision rules to be linear, the number of de-
cision variables equals the finite number of elements in the matrices X1, . . . ,XT .
The problem is, however, still not suitable for numerical solution due to the in-
finite number of constraints. Robust optimization techniques offer a proposition
to reformulate the ξ-dependent constraints in terms of a finite number of linear
constraints. We will only show the final result of this transformation without re-
peating the involved manipulations, the proposition used can be found in Kuhn
et al. (2011).

minimize
T∑
t=1

Tr(P tMP>t C
>
t X t) (PU)

subject to
( T∑
s=1

AtsXsP sM tP t −BtP t

)
= ΛtW ,

X tP t = ΓtW ,

Λth ≥ 0,

Γth ≥ 0,

Λt,Γt ≥ 0


∀t ∈ T

The decision variables in PU are the elements of matricesX t ∈ Rnt×kt , Λt ∈ Rmt×l

and Γt ∈ Rnt×l for t = 1, . . . , T . The decision variables Λt and Γt can be described
as support variables to ensure feasibility for all ξ ∈ Ξ. Both objective function and
constraints are linear in the decision variables and the dimensions of the problem is
finite. The problem described in PU can thus be solved efficiently with off-the-shelf
LP solvers.

The size of the problem PU grows polynomially in k, l,m and n. These numbers
increase linearly with T , making the size of PU scale only quadratically with the
number of decision stages.
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2.3 Approximation error

The massive reduction of computational complexity incurred by restricting the
decision rules to be linear, necessarily comes at the loss of optimality. With this
restriction we underestimate the decision makers flexibility, as decision rules in
reality can take any functional form. The difference between the objective values
of the LDR approximation and the exact problem, ∆U = minPU − minP , is
the loss of optimality. As PU is a restriction of a minimization problem, ∆U is
necessarily non-negative making the objective value of PU an upper bound for the
objective value of P .

The calculation of ∆U requires the solution of P itself which, as we know, is
unattainable. We can find a lower bound for the optimal objective value of P
by solving the associated dual program D. Unfortunately the program D is as
intractable as P due to the infinite number of constraints and decision variables.
Using the same arguments as for the primal problem P , the dual problem D can be
re-formulated as a finite linear program by restricting the dual decision variables
to be linear functions of the observation history ξt. The steps of the re-formulation
can be studied in Kuhn et al. (2011), and the final formulation is

maximize
T∑
t=1

Tr(P tMP>t B
>
t Y t) (DL)

subject to
( T∑
s=1

A>stY sP sM tP t −CtP t

)
= ΦtW ,

Y tP t = ΨtW ,

Φth ≤ 0,

Ψth ≥ 0,

Φt,Ψt ≤ 0,


∀t ∈ T

The decision variables in DL are the elements of matrices Y t ∈ Rmt×kt , Φt ∈ Rnt×l

and Ψt ∈ Rmt×l for t ∈ T . The matrices Φt and Ψt are analogue to the primal
matrices Λt and Γt, while the matrices Y t contain the coefficients in the dual linear
decision rules. As both objective function and constraints are linear in the decision
variables and the dimensions of the problem are finite, the problem described in
DL can just like the primal version described in PU be solved efficiently.

The dual approximation error can be defined as ∆L = minDL −minD and is nec-
essarily non-negative as DL is a restriction of a maximization problem. Although
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neither ∆L or ∆U can be calculated, the joint primal and dual approximation er-
ror ∆ = min PU - max DL can be found by finding solutions to two tractable
programs.

∆ = minPU −maxDL

= minPU −minP + minP −maxD + maxD −maxDL

= ∆U + minP −maxD + ∆L

≥ ∆U + ∆L (2.4)

The last equality in (2.4) follows from weak duality, and show that ∆ constitutes
an upper bound on both ∆U and ∆L. A large ∆ thus indicates the possibility for
a large approximation error, and corresponding low accuracy. Similarly, a small ∆
indicates a small approximation error and high accuracy.

2.4 Stage aggregation

Many models require a large number of time stages to describe the underlying
problem in a satisfactory way. The size of LDR models grows only quadratically
with the number of time stages, but also for this approach the computation time
will eventually become unacceptable. To be able to efficiently solve problems with
a large number of time stages, stage aggregation can be applied. Rocha and Kuhn
(2012) use the combination of LDR and stage aggregation on a portfolio optimiza-
tion problem for an electricity retailer in a deregulated electricity market.

The idea of stage aggregation is to reduce the number of times the decision maker
receives new information, thus reducing the actual number of stages in the problem.
To do so the planning horizon T is subdivided into a number of macroperiods
s ∈ (1, . . . , S), and the problem is re-formulated such that the decision maker only
receives new information at the start of a new macroperiod. We let ts denote the
first time stage belonging to macroperiod s. All decisions taken within macroperiod
s are based on the observation history ξts . From Section 2.1 we recall that kt defines
the number of parameters observed in stage t. When stage aggregation is used,
kt = 0 for all periods except the first in each macroperiod.
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3 Application: Generation planning in a hydrother-
mal system

Our application of the LDR approach is on a hydrothermal generation planning
problem of the Nordic power system. From the point of view of a system-wide
planner, the objective is to determine generation targets for each power plant
and transmission targets for each power line such that the total expected costs
are minimized. These costs consist of fuel costs for thermal units together with
purchase costs from neighboring regions. Demand in each area has to be satisfied
in all time periods, and the transmission and generation must not override their
capacity limits. The Nordic system is dominated by hydropower generation where
reservoirs provide a means to store energy. Having this flexibility is valuable
because it makes it possible to distribute the use of “free” hydro generation to time
periods with high thermal generation cost. Availability of the water is limited by
the upper and lower limits of the reservoir, and the inflow. This imposes a time
dependence on the operating decisions, where a decision today affects the operating
costs in the future.

In our application, the planning horizon is 60 weeks, and the time resolution is
weekly. The areas are aggregated into the four Nordic countries Norway, Sweden,
Finland and Denmark, and all data are given as aggregated for each of these areas.
Denmark is the only area without hydropower. There are seven generator types
and 18 transmission lines, in which ten are between areas, and eight connect the
areas to outside regions. We define an area as being inside the model, and an
outside region if it is outside the model and not part of the optimization process.
Coupling with the outside regions is done on the basis of power prices, and the
regions in the model are Germany, Poland and the Netherlands. Figure 3.1 gives
a visualization of the problem modelled.

In Section 3.1 a deterministic model is developed, and this model is then used
as a basis for the LDR model developed in Section 3.3. In the LDR approach,
uncertainties in fuel prices and inflow are taken into account.
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Figure 3.1: Picture of the Nordic power system with connections to Europe.

3.1 Deterministic model

The complete mathematical formulation of the deterministic generation planning
model is given in this section.

Sets and indices

A : set of areas, indexed by i ∈ (1, . . . , A)
T : set of time periods, indexed by t ∈ (1, . . . , T )
L : set of transmission lines, indexed by l ∈ (1, . . . , L)
J : set of generator types, indexed by j ∈ (1, . . . , J)
O : set of outside regions, indexed by o ∈ (1, . . . , O)
H : set of hydro-producing areas (H ⊂ A )

11



Parameters

γ : percentage line loss
Ctj : running cost of generator type j in time period t [e/MWh]
Dti : demand in area i in period t [MWh/week]
TCl : transmission capacity of flow in line l [MWh/week]
GCji : capacity of generator type j in area i [MWh/week]
Iti : inflow in area i in period t [MWh/week]
RMax
i : reservoir maximum in area i [MWh]

RMin
i : reservoir minimum in area i [MWh]

RStart
i : start reservoir level in area i [MWh]

REnd
i : minimum end reservoir level in area i [MWh]

ToAl : the area/region that line l goes to
FrAl : the area/region that line l goes from
Pto : power prices in outside region o in time period t [e/MWh]

Variables

gtji : generation of generator type j in area i in time period t [MWh/week]
btl : flow in transmission line l in time period t [MWh/week]

Mathematical formulation The mathematical formulation of the generation
planning problem stated below has the same underlying structure as the general
multi-period problem (2.1).

min
∑
t∈T

[∑
i∈A

∑
j∈J

Ctjgtji (3.1a)

+
∑
o∈O

( ∑
l∈L:

ToAl=o

Ptobtl −
∑
l∈L:

FrAl=o

Ptobtl
)]
, (3.1b)

for all timeperiods t ∈ T subject to:
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∑
j∈J

gtji +
∑
l∈L:

ToAl=i

btl(1− γ)−
∑
l∈L:

FrAl=i

btl ≥ Dti, ∀i ∈ A (3.2)

t−1∑
s=1

gs,1,i ≥ RStart
i −RMax

i +
t−1∑
s=1

Isi, ∀i ∈ H (3.3)

−
t−1∑
s=1

gs,1,i ≥ RMin
i −RStart

i −
t−1∑
s=1

Isi, ∀i ∈ H (3.4)

−gtji ≥ −GCji, ∀i ∈ A, (3.5)
∀j ∈ J

−btl ≥ −TCl, ∀l ∈ L (3.6)

gtji, btl ≥ 0, ∀i ∈ A, (3.7)
∀j ∈ J ,∀l ∈ L

The objective of the planning problem is to minimize total generation cost in
all areas and time periods, as seen in (3.1a). In addition, there is negative cost
when selling power to outside regions, and a positive cost when buying as seen in
the part (3.1b). Constraint (3.2) is the power balance constraint, ensuring that
demand is covered in all areas and in all time periods. The demand is covered
by the areas own generation, plus import and less export. The reservoirs in each
area need to be within their minimum and maximum levels. Reservoir level in
one period is equal to the reservoir level in the previous period plus the inflow
minus the hydro-generation as seen in the water balance constraints (3.3) and
(3.4). Generation must be nonnegative and within the capacity limits in each area
and for each generator type. The flow in each powerline must also be nonnegative,
and within the transmission capacity of the given line. These variable requirements
are represented by the constraints (3.5) - (3.7).

To ensure that the reservoirs levels at the end of period T do not fall below a set
target, an end reservoir requirement is specified with additional constraints:

∑
s∈T

gs,1,i ≥ RStart
i −RMax

i +
∑
s∈T

Isi, ∀i ∈ H (3.8)

−
∑
s∈T

gs,1,i ≥ REnd
i −RStart

i −
∑
s∈T

Isi, ∀i ∈ H (3.9)
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3.2 Data

The modelling period is defined as being the 60 weeks from January 2008–March
2009. In this section, all data used in the model is defined.

Generation The set of generators are:

J = {Hydro, Nuclear, CoalCondensing, CoalExtraction,
GasExtraction, CCGT, GasTurbine}

Generator types 3 and 4 are fueled by coal, and types 5, 6 and 7 are fueled by gas.
CCGT stands for combined cycle gas turbine. Generation capacities are constant
for the whole of the modelling period, and are seen in Table 3.1. The data is from
Nordel and Thema Consulting group.

Table 3.1: Generator capacities in all areas [GWh/week]

NO SE FI DK
Hydro 4951.6 2720.8 520.3 0
Nuclear 0 1501.6 444.5 0
CoalCondensing 0 0 279.6 68.7
CoalExtraction 0 0 154.4 713.2
GasExtraction 0 0 30.4 246.5
CCGT 70.6 0 0 80.1
GasTurbine 0 692.7 90.4 98.8

The following equation was used to calculate the generation cost of the generator
types in all time periods:

Ctj =
PFtj
Efηj

+ Vj +
PCtNf

ηj
(3.10)

where,
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Ctj : running cost of generator type j in time period t [e/MWh]
PFtj : fuel price for generator j in time period t [e/ton]
PCt : price of CO2-quota in time period t [e/ton]
Nf : CO2 content in fueltype f [MWh/ton]
Ef : energy content in fueltype f [MWh/ton]
Vj : variable operating cost of generator type j [e/MWh]
ηj : efficiency of generator j

We further define PKt as the coal price and PGt as the gas price in each pe-
riod. Table 3.2 shows the relevant characteristics for the different generator types.
Hydro- and nuclear generators are modelled using fixed variable production costs,
and the variable cost for the gas turbine reflects the cost for staying idle. There
are no start-up costs for the generators, and the generator up-time is 168 hours
per week. The data is from Thema Consulting Group.

Table 3.2: Fuel type, efficiency and variable cost of generator types.

Generator type Fuel type ηj Vj
[%] [e/MWh]

Hydro n/a 100 0.0
Nuclear n/a 100 15.0
CoalCondensing Coal 42 1.5
CoalExtraction Coal 41 1.5
GasExtraction Gas 39 1.5
CCGT Gas 54 1.5
GasTurbine Gas 35 25.0

Table 3.3 shows energy content and CO2 content for the fuels. Data is from Econ
Pöyry.

Table 3.3: Energy and CO2 content for coal and gas.

Fuel type Nf Ef
[ton/MWh] [MWh/ton]

Coal 0.34 7.17
Gas 0.20 13.33

The expected prices for coal and gas are found by using the weekly average prices
from the years 2000–2010. The data for the coal prices are from McCloskey, and
for the gas prices the data is from Nord Pool Gas and Reuter Ecowin. The CO2-
quota prices are from the actual modelling period, and is from NASDAQ OMX
Commodities Europe.
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Transmission The power lines connecting the areas together and coupling the
Nordic areas with the outside regions have constant capacity and no ramping
constraints. The losses are one percent of the transmitted amount. Table 3.4 gives
the capacities, and the data is from Econ Pöyry.

Table 3.4: Transmission capacities and destinations of power lines.

From area To area TC l

[GWh/week]
NO SE 596.4
NO DK 159.6
NO FI 16.8
SE NO 655.2
SE DK 332.6
SE FI 344.4
DK NO 159.6
DK SE 409.9
FI NO 16.8
FI SE 277.2
NO NL 117.6
SE GE 100.8
SE PO 100.8
DK GE 350.3
GE SE 100.8
GE DK 260.4
NL NO 117.6
PO SE 100.8

Demand Generation from CHP and wind is modelled as fixed parameters as
they in reality are highly dependable on factors not included in this model. In
the demand data used the generation from CHP and wind in the actual planning
period is subtracted from the consumption in the same period. The demand data
is retrived from Nord Pool Spot and shown in Figure 3.2.

Inflow Data for expected weekly inflows to reservoirs are derived by taking the
average inflow of the corresponding week in the period 1995–2010. The inflow
data is shown in Figure 3.3, where it can be seen that the inflow is greatest in
Norway which is natural as it is the country with the highest reservoir capacity in
the Nordics. Furthermore, the inflow is higher in spring and summer, because in
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Figure 3.2: Demand in all areas with CHP and wind production subtracted.

addition to the precipitation falling as rain, the snow reservoirs are melting. The
data is from Vattenfall and Nord Pool Spot.

Reservoir data The expected reservoir level at the end of the planning horizon
should be higher or equal to the specified end reservoir level, REnd

i . The start and
end reservoir values are average values for the corresponding week during the years
2000–2010. During this period, the capacity has been near constant. Reservoir
data used in the model is given in Table 3.5 where REnd

i is given for T = 60.

Table 3.5: Reservoir data for all hydro producing areas [GWh]

NO SE FI
RMax
i 81888 33758 5530

RMin
i 10000 10000 1000

RStart
i 54515 19975 3412
REnd
i 37155 11506 2363

Outside region power prices The weekly average power prices in the outside
regions during the modelling period are used in the model. The power price data
in these regions are from the power exchanges in the respective countries.
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Figure 3.3: Expected inflow in all hydro-producing areas.
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3.3 The LDR model

We have applied the LDR framework described in Section 2.2 to the generation
planning problem outlined in Section 3.1. We have used matrix formulation and
the reader is referred to Guslitser (2002) for a LDR inventory problem given in
summation form. Our procedure in implementing the generation planning problem
has been to generate the matrices for problem PU in Matlab. Matlab is then
used to perform necessary matrix calculations and format the resulting constraints
and objective function to text-files with Mosel-code. These text files are then
included in XpressMP which solves the program. The work flow is illustrated in
Figure 3.4. In this section, we will explain the contents of these matrices as fully
as we find necessary in order for the reader to understand the implementation.
The Matlab-scripts together with the Mosel-code and data files can be found
at the following webpage: http://folk.ntnu.no/vefring. The deterministic model is
also implemented and attached here.

format output
to text-
files with

Mosel-code

Create matrices
in Matlab,
and per-

form matrix
calculations

Include
text-files in
XpressMP,
and call
optimizer

Manipulate
output from
XpressMP

in Matlab

Figure 3.4: Flowchart showing the modelling process.

Uncertain parameters The inflows to hydro-producing areas and fuel prices
for all time stages make up the set of uncertain parameters in ξ. All parameters are
modelled as mutually independent random variables with a uniform distribution
between upper and lower bounds. The number of uncertain parameters revealed
in each time period, kt, is equal to five; the inflow to each of the three hydro-
producing areas, the price of gas and the price of coal. Decisions are made at
the beginning of each week, and we are able to make these decisions on the basis
of the inflows observed up until the previous week and the fuel prices observed
up until the present week. This is an appropriate representation of reality as a
planner would know the price in the current period, whereas he would only know
the actual inflow after it has been observed. The uncertain parameters revealed
at stage t are then:

19



ξt =


It−1,1
It−1,2
It−1,3
PKt

PGt

 .

The expected values of the uncertain parameters are known in the beginning of
the planning period, and is denoted with an asterisk. I∗ti is the expected inflow,
PK∗t is the expected coal price and PG∗t is the expected gas price. The fuel prices
affect the generation costs according to Equation (3.10).

Support estimation The upper and lower bounds on the uncertain parameters
is defined by a uncertainty level θ. For example, inflow is described as:

Iti ∈ [I∗ti(1− θI), I∗ti(1 + θI)] t ∈ T , i ∈ A (3.11)

Bounds on the possible realizations of the uncertain fuel prices are found in the
same way with θPK and θPG defining the uncertainty levels of coal and gas respec-
tively. Uncertainty levels can be calculated so as to cover specified proportions of
the mass of the underlying probability distribution as in Rocha and Kuhn (2012).
Part of our experiments has been to assess the influence of different uncertainty
levels θ, and having a variety of uncertainty levels have therefore been more impor-
tant then the numeric values of these levels. As we describe the support using a
percentage of the expected value, the uncertainty is naturally larger in absolute val-
ues when the expected values are larger. This can be seen in Figure 3.5, where the
expected inflow in Sweden is plotted with the upper and lower bounds for θI = 0.2.
A sample realization of the actual inflow is also shown in the figure.
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Figure 3.5: Expected inflow in Sweden with upper and lower bounds with and uncertainty
of θI=0.2.

To describe the uncertainty set on the form of Equation (2.2) the W -matrix and
h-vector takes the following form:

W =



1 0 · · · 0
−1 0 · · · 0

−I∗1,1(1− θI) 1 · · · 0
I∗1,1(1 + θI) −1 · · · 0

...
... . . . ...

−PG∗T (1− θPG) 0 · · · 1
PG∗T (1 + θPG) 0 · · · −1


, h =



1
−1

0
0
...
0
0


.

There are two rows for each random parameter, so the length ofW and h is twice
the total amount of uncertain parameters, 2k.

Moment estimation To incorporate dependencies between the different uncer-
tain parameters the the moment matrix, M = E(ξξ>) must be specified. As the
uncertainties are modelled to be mutually independent the covariance between two
parameters is zero. The covariance of a random variable with it self is the variance
of the random variable, and the diagonal elements ofM therefore include variance
terms.
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M =


I∗1,1 × I∗1,1 + V ar(I1,1) I∗1,1 × I∗1,2 · · · I∗1,1 × PG∗T

I∗1,2 × I∗1,1 I∗1,2 × I∗1,2 + V ar(I1,2) · · · I∗1,2 × PG∗T
...

...
. . .

...
PG∗T × I∗1,1 PG∗T × I∗1,2 · · · PC∗T × PG∗T + V ar(PGT )

.

The uncertain parameters are uniformly distributed between the bounds defined
in 3.11. By using basic probability theory the variance of the uncertain inflow can
be expressed as:

Var(Iti)=
I∗tiθ

I

3

In the case of mutually independent random parameters, the conditional expecta-
tions reduce to unconditional expectations, and the matrixM t ∈ Rk×kt in Problem
PU defined in Section 2.2 is divided in two parts. The first kt× kt submatrix is an
identity matrix, and the last (kt + 1), . . . , k rows contain the expected value of the
parameter in the first column, and zero for the remainder of the columns.

It should be noted that approximating the uncertain parameters to be mutually
independent is a major simplification. Inflow in one week is correlated to the inflow
last week and the inflow in neighboring areas. When it comes to fuel prices, the
probability space is dependent on global demand for energy, structural bottlenecks
in the supply chain and technological development (O. Lofsnes and E. Torgnes,
personal communication, May 4, 2012). Furthermore, there exists some correlation
between the coal and the gas price which are not reflected in the model. However
the LDR framework supports such dependencies, and changes need only be made
in theM andM t matrices to incorporate this. An approach that incorporates the
underlying stochastic processes, is to perform a sampling procedure of the random
variables as is done in Rocha and Kuhn (2012) by using for example Monte Carlo
sampling.

Variables The number of decisions to be taken in each time period, nt, consists
of the generation gtji and transmission btl. In our case this means that nt =
J ×A+L = 46, and according to the matrix formulation introduced in Section 1,
the decision variables xt can be written as one vector:

x>t = (gt,1,1, gt,1,2, . . . , gt,j,i, . . . , gt,J,A, bt1, . . . , bt,l, . . . , bt,L)
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Recall that the decision variables are linear functions of the uncertain parameters,
such that xt = xt(ξ

t) = X tξ
t. The entries of the matrix X t ∈ Rnt×kt are the

decision variables of the LDR problem, together with the support variables Λt ∈
Rmt×2k and Γt ∈ Rnt×2k.

Parameters All cost coefficients have linear dependence on the observation his-
tory ξt, that is ct = ct(ξ

t) = Ctξ
t. The matrix Ct ∈ Rnt×kt contains the deter-

ministic cost-coefficients in the first column, as ξ1 = 1. The elements of ct which
are dependent on the observation histories are the costs of coal-, and gas-fueled
generation. As none of the stage-t constraints are affected by future decisions,
Ats = 0 for all t ≤ s. The elements of the Ats-matrix are zero when s < t except
for the rows corresponding to the water balance constraints. In these constraints
the hydro-generation variables from the previous periods are involved. The right-
hand- side matrix, Bt ∈ Rmt×kt , consist of elements only in the first column, with
an exception again of the water-balance constraints. As the sum of inflows up to
time t is present in the right hand side of these constraints, there are non-zero
elements in the columns corresponding to the inflows for past time periods.

Problem size In each time period there are A power balance constraints shown
in (3.2), and 2×H water balance constraints shown in Equations (3.3) and (3.4).
There are also 2 × (J × A + L) constraints securing variable bounds, seen in
Equations (3.5) – (3.7). This means that the number of constraints in each period,
mt, is equal to 102 except for in the last period where there are 2×H additional
water balance constraints securing the end reservoir level. The matrix Ats ∈
Rmt×nt is then a 102× 46 matrix.

The size of the generation planning problem grows quickly with the number of
uncertain parameters revealed in each period, kt. In addition to the program with
uncertainty in both inflow and fuel prices described in this section, primal and
dual versions of two simplified models are developed to attain computational con-
venience. One of the simplified models have deterministic fuel prices and stochastic
inflow, whereas the other has stochastic fuel prices and deterministic inflow. The
number of uncertain parameters are then reduced to kt = 3 and kt = 2 respec-
tively. The sizes of these simplified programs are shown in Table 3.6, and it can be
seen that the problem size is substantially reduced with fewer uncertain parame-
ters.

Stage aggregation Implementation of stage aggregation reduce the dimensions
of many of the parameter- and variable-matrices in the problem due to the reduc-

23



Table 3.6: Dual and primal problem size for different number of uncertain parameters.

kt=5 kt= 3 kt=2
Primal Dual Primal Dual Primal Dual

# variables 5 670 372 6 171 108 3 410 436 3 712 224 2 280 468 2 482 782
# constraints 2 639 142 2 639 142 1 590 594 1 590 594 1 066 320 1 066 320

tion in kt. When for example the planning horizon is 60 weeks and the number
of macroperiods is 10, ξts = ξts+1 =, . . . ,= ξts+5. As mentioned in Section 2.4, kt
equals zero as long as t is not the first time period in a macro period. Many of the
matrices has to be adapted to the new information structure. The water balance
constraints within each macroperiod uses the expected inflow scenario to plan the
decisions, and when new information arrives when a new macroperiod is entered,
the decisions are readjusted according to actual inflow. When it comes to plan-
ning with uncertain fuel prices, the decision maker bases all decisions within one
macroperiod s on the fuel price observed at ts. Figure 3.6 show how the problem
size increases linearly with the number of macroperiods. Stage aggregation with
60 macroperiods equals the problem without stage aggregation.
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Figure 3.6: Primal problem size with uncertainty in inflow at different number of
macroperiods.
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4 Computational results

Numerical results are obtained using the solver package XpressMP and the imple-
mentation is written in the Mosel language. A linux cluster of 2.4 GHz processors
with 24Gb RAM is used to run the models.

We investigate the effect of uncertainty in inflow and fuel prices on the accuracy and
runtime of the LDR model. To assess the value of adaptivity in the LDR model,
we compare the optimal value of the primal program with that of a deterministic
planning program. We also investigate the effect of uncertainty on power prices and
reservoir levels. Stage aggregation is implemented as a means to reduce complexity,
and the appropriateness of this is evaluated.

Unless all uncertainties are explicitly defined as non-zero, we have used the “simpli-
fied” models with either only fuel price uncertainty or only inflow uncertainty.

4.1 Suitability of the LDR approach
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Figure 4.1: Impact of uncertainties on accuracy and the value of adaptivity for different
planning horizons.

From Figure 4.1, we see that with increasing planning horizon, the cumulative cost
increases. The primal and dual LDR problems define the bounds for the optimal
objective value for the exact problem. The gap between these bounds is the ∆
defined in Equation (2.4), and increases with the planning horizon, indicating a
loss of accuracy with increased planning horizon. Worst case planning (WCP) is
an appropriate way to model a decision maker that has to commit to a genera-
tion strategy at the start of the planning horizon without being able to adapt to
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observations. As reservoir limits must be guaranteed, worst case for a generation
planner corresponds to the lowest possible inflow scenario. The WCP expected
total cost was calculated using generation targets from the deterministic solution
with low inflow scenario, and is depicted in Figure 4.1. The primal LDR approx-
imation defines a feasible solution to the uncertain generation planning problem,
and the expected total cost can therefore be compared to the expected total cost
from worst case planning. We define the value of adaptivity to be the additional
value of being able to adapt to observations. This value is calculated as the dif-
ference between the WCP objective and primal LDR objective, as a percentage of
the worst case objective.

The runtime for the programs with both inflow and fuel price uncertainty is in
the order of two days for just 42 time periods, which is unacceptable for a real
operation.

0 6 12 18 24 30 36 42 48 54 60
0

1

2

3

Time stages

R
un

ti
m
e
[h
ou

rs
]

Primal program

θPK,θPG = 0.1
θPK,θPG = 0.2
θPK,θPG = 0.3

0 6 12 18 24 30 36 42 48 54 60
0

20

40

60

80

Time stages

R
un

ti
m
e
[h
ou

rs
]

Dual program

θPK,θPG = 0.1
θPK,θPG = 0.2
θPK,θPG = 0.3

Figure 4.2: Runtimes for primal and dual problem with fuel price uncertainty.

Figure 4.2 show the runtimes for the primal and dual program with different fuel
price uncertainty levels and planning horizons. As expected, the runtime follows a
quadratic shape, increasing with the number of time stages. The runtimes of the
dual program are many times longer than the primal program. This is because
the fuel price uncertainty affects the objective function in the primal program
while it affects the constraints in the dual program reducing the feasible region.
The characteristics are reversed for the programs with inflow uncertainty. For the
primal program the inflow uncertainty affects the constraints making this the more
time consuming program to solve. The inflow uncertainty affects the constraints in
the primal program and this is why the primal runtime is longer in this case.

Figures 4.3 and 4.4 show how inflow uncertainty and fuel price uncertainty affect
the ∆ for different planning horizons. In general, the accuracy of the LDR solution
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Figure 4.3: Impact of inflow uncertainty and planning horizon on approximation accu-
racy.
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decreases as the time horizon and uncertainty level increase. Inflow uncertainty has
a considerably larger impact on the solution accuracy than fuel price uncertainty.
As the Nordic region is dominated by hydropower, it is no surprise that the problem
is more sensitive to uncertainty in inflow than that of fuel prices. We notice a
substantial increase in the approximation error gap in Figure 4.3 as the planning
horizon exceeds 18 time stages. This coincides with the timing of the spring flood
as seen in Figure 3.3. When the inflow suddenly rises, so does the spread of
possible inflow scenarios, and it becomes harder to generate good linear decision
rules that encapsulate this spread. This is also the reason why the ∆ decreases
if the planning horizon lasts longer than until after the summer season. A ∆ of
close to 60% when there is inflow uncertainty is much higher than in the case of
only fuel price uncertainty, when the ∆ is only 3.5% for the planning horizon of
60 weeks. Even though optimality cannot be guaranteed, the value of adaptivity
is more than 40%, and this shows that the LDR approach provides a solution that
is substantially better than that of a WCP approach.

4.2 Power prices

In optimization theory, the shadow price of a constraint corresponds to the marginal
cost of tightening the constraint, or the marginal utility of relaxing the constraint.
In the power balance constraints, the shadow price is the marginal cost of con-
suming one more unit of power, and this can be interpreted as the power price
in e/MWh under the assumption of perfect competition. Figure 4.5 shows the
average power prices generated by the model at different inflow uncertainty levels.
This is compared to the system price in the actual planning period 2008–2009.
From this we can see that the power prices increase as the level of uncertainty
increases. As the uncertainty level increases, it becomes necessary for the planner
to hold back on the free hydro-generation to ensure that end reservoir constraints
are met. More expensive generation must then be used, resulting in increased
power prices. The prices also become more volatile at high levels of θI . The actual
system price in the modelling period is not the best comparison however, as the
fuel prices in this period were abnormally high, and the model uses fuel prices
which are the average between the years 2000–2010. The level of the power price
from the model is similar to real power prices, and the uncertainty level of θI = 0.3
gives the best fit power price with the actual system price. This indicates that the
actual inflow uncertainty is even higher than 0.3.

Figure 4.6 shows the power prices for the different areas at the uncertainty level
θI = 0.3. Sweden and Norway have relatively stable power prices throughout the
planning period, while Finland and Denmark have more volatile prices. The reason

28



0 6 12 18 24 30 36 42 48 54 60
20

30

40

50

60

70

Week number

P
ow

er
pr
ic
e
[e

/M
W

h]

Actual
θI=0
θI=0.1
θI=0.2
θI=0.3

Figure 4.5: Average area prices for different values of uncertainties compared to the actual
system price.

for this is the relative amount of hydropower available in each country. Whereas
Sweden and Norway has the majority of their demand for power covered by hydro,
Denmark and Finland are more dependent on coal and gas-fueled generator types.
This demonstrates the advantage of having the ability to store water in between
periods, and not being so exposed to fluctuations in the fuel prices.

The impact of fuel price uncertainty on the power price forecast is limited in
Norway, Finland, and Sweden. Here, the power prices rise only around 1%, while
in Denmark the change is more notable as seen in Table 4.1. This is again because
Denmark is more dependent on thermal generators and has strong connections
to Germany. Table 4.1 shows the maximum and minimum percentage change
in power prices during the planning horizon when the fuel price uncertainty is
increased from zero to θPK , θPG = 0.2.

Table 4.1: Effect of increasing fuel price uncertainty from 0 to 0.2 on power prices.

NO SE FI DK
Max change [%] 1.29 1.27 1.29 33.36
Min change [%] 1.29 1.27 1.29 -20.15
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Figure 4.6: Price forecasts in the different areas with θI = 0.3.

4.3 Reservoir levels

By combining the decision rules resulting from the optimization process with actual
scenarios, we can analyze how the realization of different scenarios affects actual
decisions. The reservoir level is a good indication of this effect, as it illustrates
how the available water is distributed for different scenarios. Figure 4.7 shows
the reservoir levels in all hydro-producing areas as a function of time, and the
historic average reservoir levels are plotted alongside. Extreme inflow scenarios
with θI = 0.3 are shown in the graphs. We see that the high and average inflow
scenarios coincide well with the historic averages. When the lowest possible inflow
scenario occurs, the realized reservoir levels are lower than average. In Finland
the reservoir levels do not coincide that well with the historic average. This is
possibly because the actual reservoir capacity is significantly lower than in Sweden
and Norway.

The target end reservoir is shown as a dotted line, and when inspecting the actual
end values, we can see that this target is met if the expected inflow scenario occurs.
However, in the case of low inflow, the end reservoir is below the target. This is
because the decision maker assumed expected inflow in the last period.
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Figure 4.7: Reservoir levels in all areas for different inflow scenarios, plotted together
with the historic averages.

4.4 Complexity reduction

Problem reduction Before XpressMP calls the optimizer, a pre-solve is auto-
matically performed to reduce the size of the problem. Table 4.2 shows that the
number of variables and constraints in the primal program with uncertain inflow
was more than halved by this size reduction. This shows a potential for more effi-
cient formulation of the problem so that less variables and constraints are needed,
which in turn would lead to a reduction in runtime. When the inflow uncertainty
is set to zero, the problem reduces to a deterministic one, drastically reducing the
problem size.

Stage aggregation To reduce the size of the problem, stage aggregation was
implemented for the LDR model of 60 weeks. Figure 4.8 shows how the number of
macroperiods affect the runtime of the model and the objective value. As expected,
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Table 4.2: Complexity reduction of automatic pre-solve by XpressMP.

θI=0.2 θI=0
Original size After presolve Reduction [%] After presolve Reduction [%]

# variables 3 410 436 1 587 009 53 2217 99.93
# constraints 1 590 594 536 208 66 597 99.96

the runtimes becomes shorter as the number of macroperiods is reduced. The
complexity reduction of stage aggregation comes with a loss of accuracy, shown
by the objective value in the figure. As the number of macroperiods approaches
the number of actual periods, the objective value converges from above to the
objective value for the porblem without stage aggragation. As stage aggregation
provides less flexible decision rules, the objective value of the problem with stage
aggregation provides an upper bound to the objective value of the LDR problem
without stage aggregation. Figure 3.6 indicates that an approximation based on six
macroperiods provides a reasonably accurate solution as the objective value is only
1.2% higher than the optimal objective value with 60 time stages. The reduction
in runtime is close to 70%, and this indicates the advantage of applying stage
aggregation. The runtime is eight hours, which is still fairly long for a generation
planner.
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Figure 4.8: Objective values and runtimes for the primal program with θI = 0.2 with
different number of macroperiods.

Figure 4.9 shows how the decision rules are applied to actual scenarios to produce
generation targets for hydro production in Norway when the inflow is at either of
the extreme scenarios. When the inflow scenario is low, the generation targets are
adjusted to account for less available water. The opposite is true in the case of
high inflow where the same decision rules result in higher generation targets due to
the observation history of high inflows. The generation targets using the decision
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rules from the model with six macroperiods, are very similar to that of no stage
aggregation. This shows how decision rules resulting from the model using stage
aggregation produce good quality generation targets. The decision rules from the
stage aggregation model result in the same generation targets for both scenarios
for the duration of the first macroperiod. No new information is revealed during
the first macroperiod, and the the generation targets do therefore not adapt to
actual inflow scenario.
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Figure 4.9: Hydro production in Norway for θI = 0.2 with and without the use of stage
aggregation of six macroperiods.
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5 Conclusion

In this thesis, a multi-stage stochastic generation planning problem for the Nordic
region is studied. By restricting the decision rules to only those which are linear in
the observation history of uncertain parameters, the original intractable program is
transformed into a tractable one. The linear decision rule restriction is also applied
to the dual version of the original problem, and these programs are implemented
in XpressMP. Power prices and reservoir levels from the models coincides well
with actual data from the planning period. The difference between the objective
values of the primal and the dual programs define ∆, which is the upper bound
on the approximation error imposed by the LDR approach.

We find that ∆ increases as the planning horizon and the uncertainty levels in-
crease, and that inflow uncertainty has a substantially larger impact on ∆ than
uncertainty in fuel prices. In fact, for a planning horizon of 60 weeks and inflow
uncertainty of 30 %, ∆ is close to 60%. This indicates a potentially high optimality
gap of the LDR solution. However, as the optimal value of the excact problem is
unattainable, comparison to other tractable approximations is important. When
compared to WCP, the flexibility available from using the LDR approach is sub-
stantial. Other stochastic modelling methods traditionally used for comparable
problems quickly grows to inconvenient dimensions, and involve demanding sce-
nario generation. In conclusion, we can say that the LDR approach generates good
feasible solutions at reasonable efforts, thus making it an attractive approach for
the stochastic generation planning problem.
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Appendix A

In this section we give a short description of the attached files. The files are also
available at the following webpage: http://folk.ntnu.no/vefring.

Data.xls gives all the data and data sources used in the modelling.

matrices.m is a Matlab-script creating all the matrices used in the
formulation.

CreateMoselCode.m is a Matlab-script taking the matrices created in
matrices.m as input, and performing the necessary matrix manipulations in
order to format the problem codes in both primal and dual versions.

PrimalTemplate.mos is the Mosel-code with the primal problem calling the
optimizer. It includes the text-file with Mosel-code created by
CreateMoselCode.m.

DualTemplate.mos is the Mosel-code with the dual problem calling the
optimizer.

DataW_T60.txt and TidsDataW_T60.txt are datafiles included by
PrimalTemplate.mos and DualTemplate.mos

NordiskDeterministisk.mos is the deterministic version of the generation
planning program.
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