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Norwegian Abstract

Value-at-Risk-modeller (VaR-modeller) gir kvantil-prognoser for fremtidige avkastninger. Der-
som et realisert tap er større enn, eller lik, sin tilsvarende VaR-prognose, f̊ar vi et brudd. En
VaR-modell er vanligvis validert ved å vurdere realiserte bruddsekvenser. Det er utviklet flere
statistiske tester for dette form̊alet, kalt backtester. Denne artikkelen presenterer en omfattende
styrkestudie av de mest anerkjente backtestene. Vi simulerer avkastningsserier og estimerer VaR-
prognoser, slik at de resulterende bruddsekvensene ikke tilfredsstiller nullhypotesen til backtestene.
Deretter benytter vi backtestene p̊a disse sekvensene og undersøker deres evne til å forkaste feilak-
tig spesifiserte VaR-modeller. Den betingede dekningstesten Geometric, av Berkowitz et al. (2011),
presterer best. Det trengs et minimum av datapunkter for å gjøre inferens med tilfredsstillende
styrke. Et utvalg p̊a 250 datapunkter, som er minstekravet satt av Basel Commitee on Banking
Supervision (2011), vil ikke være tilstrekkelig. Den vanlig implementasjonen av den populære Dy-
namic Quantile backtesten, av Engle og Manganelli (2004), har for høy forkastningsrate for korrekt
spesifiserte VaR-modeller.
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Abstract

Value-at-Risk (VaR) models provide quantile forecasts for future returns. If a loss is greater than
or equal to the corresponding VaR forecast, we have a breach. A VaR model is usually validated
by considering realized breach sequences. Several statistical tests exist for this purpose, called
backtests. This paper presents an extensive study of the statistical power for the most recognized
backtests. We simulate returns and estimate VaR forecasts, resulting in breach sequences not
satisfying the null hypothesis of the backtests. We apply the backtests on the data, and assess
their ability to reject misspecified models. The Geometric conditional coverage test by Berkowitz
et al. (2011) performs best. A minimum amount of observations is needed to make inference with
satisfying power. A sample size of 250 data points, which is the minimum requirement set by the
Basel Committe on Banking Supervision (2011), is not sufficient. The common implementation
of the Dynamic Quantile test, by Engle and Manganelli (2004), has a too high rejection rate for
correctly specified VaR models.

Keywords: Backtesting, Risk management, Value-at-Risk

1. Introduction

Value-at-Risk (VaR) gained increased popu-
larity through the 1990s among financial insti-
tutions and later also non-financial firms. The
successful introduction of RiskMetricsTM by J.
P. Morgan (1996), and the recognition of VaR
as a regulatory tool1, made it the standard risk
measure. VaR is defined as the threshold value
which loss will exceed with a given probability.
A mathematical definition of VaR is given in
Appendix A.

Currently used VaR models have several lim-
itations, e.g. clustering of breaches, as illus-
trated by the frequent VaR breaches by fi-
nancial firms during recent periods with high

1For the regulatory history, see Basel Committe on
Banking Supervision (1996a,b, 2006, 2011)

volatility. The most noticeable being the 2000–
2001 dot-com bubble, the 2007–2011 financial
crisis and the 2010 European sovereign debt
crisis. Even though accurate VaR estimates do
not prevent losses from happening, they can
provide management with an understanding of
current risks and assistance with the allocation
of capital.

The extensive use of VaR, both for internal
and external purposes, drives the demand for
proper VaR models suitable for different types
of markets. The models are evaluated by the
accuracy of their forecasts. This is done by
comparing each realized return to the corre-
sponding VaR forecast. Whenever the loss ex-
ceeds the VaR, we have a breach or hit. This
hit sequence should have a proportion of hits
in line with the chosen target probability of
the VaR model, and the hits should be inde-
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pendent of past information. Statistical pro-
cedures testing for these properties are called
backtests, and are quite numerous in the liter-
ature. This paper provides an extensive study
of the power properties of the most recognized
backtests.

Most backtests yield a test statistic that
asymptotically follows a known probability dis-
tribution under the null hypothesis. However,
the statistic does not necessarily follow this dis-
tribution for finite samples. Thus, we evaluate
if the asymptotic distributions are appropriate
to make inference on finite samples. We show
that the test sizes for finite samples differ from
the significance level of the tests. Using asymp-
totic critical values can thus lead to erroneous
conclusions for finite samples used in practice.
One should therefore always use finite sample
distributions, as described by Dufour (2006),
when backtesting.

The power study is introduced by assessing
the power of the backtests to reject a hit pro-
cess with a probability of breach different from
the one tested for. We start by doing this from
a solely theoretical point of view and then show
the implication of estimation. We find evidence
that the common implementation of the Dy-
namic Quantile test, by Engle and Manganelli
(2004), has a too high rejection rate for cor-
rectly specified VaR models.

We expand the power study by including de-
pendence in the breach series. We find that
the Geometric conditional coverage test, by
Berkowitz et al. (2011), performs best over-
all. To get a satisfactory power when using
this test, we identify sample sizes of 1,000, 750
and 500 data points as lower limits when test-
ing 1%, 5% and 10% VaR, respectively. This
implies that backtesting using one year of data
with daily observations, which is the minimum
requirement set by Basel Committe on Bank-
ing Supervision (2011), will have too low power
against misspecified VaR models.

The paper is organized as follows: Section 2
includes a review of the existing literature on

backtesting and power studies, Section 3 gives
a theoretical overview of the considered back-
tests, Section 4 shows the finite sample distri-
bution methodology, Section 5 gives a detailed
description of the experiments, shows the re-
sults and gives a discussion on these, and Sec-
tion 6 concludes.

2. Relevant literature

When VaR became widespread in the late
1990s, a large literature on calculating interval
forecasts already existed, as Chatfield (1993)
summarizes. However, few tools for evaluat-
ing their performance were available. Kupiec
(1995) points out the importance of assessing
and quantifying the accuracy of VaR estimates,
and develops a backtesting framework to test
for correct number of breaches. Backtests only
considering correct number of breaches, such as
Kupiec (1995), are in the literature referred to
as unconditional coverage tests. Christoffersen
(1998) argues that the breaches would also
need to be independent to validate a model.
He formalizes an out-of-sample criterion which
states that the probability of breach must be
constant and equal to a desired level, condi-
tional on all past information. In his paper,
he introduces a simple test using a first-order
Markov chain to test for violation of the crite-
rion. Backtests considering only higher-order
dynamics, such as clustered breaches, are re-
ferred to as independence tests. Backtests con-
sidering both properties are called conditional
coverage tests.

In light of the recent financial crises, VaR
models producing VaR estimates giving inde-
pendent and correct number of breaches have
been given increased focus. Conditional cover-
age tests are needed to validate such models,
and several tests have been suggested to im-
prove existing ones.

Christoffersen and Pelletier (2004) criticize
the first-order Markov test of having too low
power against general forms of dependence.
They suggest a duration-based approach that
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uses the time between breaches to test con-
ditional coverage for an infinite number of
lags. The first duration-based test suggested
by Christoffersen and Pelletier (2004) fits the
discrete durations to a continuous distribu-
tion, producing an erroneous null hypothesis.2

Later, improvements have been suggested, by
Haas (2005) and Berkowitz et al. (2011), us-
ing discrete distributions and correctly speci-
fied null hypothesis, yielding higher power.

The literature also provides regression-based
tests such as the Dynamic Quantile test by
Engle and Manganelli (2004). The Dynamic
Quantile test utilizes the criterion by Christof-
fersen (1998) that the probability of breach
must be independent of all past information,
and allows us to test any variable in the in-
formation set. Unlike other tests, such as the
first-order Markov test, past information is not
restricted to be a binary variable representing
whether last day was a breach or not. Christof-
fersen (1998) suggests a similar test in his pa-
per, called the forecast efficiency test, using the
J-test from the GMM framework by Hansen
(1982). However, this test has not been given
much attention in the literature.

Clements and Taylor (2003) criticize the Dy-
namic Quantile test, as the linear regression
cannot be estimated efficiently with binary
variables. They suggest a modified version of
the Dynamic Quantile test by using a logistic
transformation of the dependent variable.

With several backtests, there is a need
for studies comparing and evaluating them.
Christoffersen and Pelletier (2004) show that
the duration-based approach gives higher
power than the Markov test. They use an
asymmetric GARCH(1,1)-t model with fixed
parameters as underlying return process, and
estimate VaR with a Historical Simulation VaR
model. Using the same setup and parame-
ters, Haas (2005) shows that his alternative pa-

2Christoffersen and Pelletier (2004) account for the
discreteness bias by using the Monte Carlo testing tech-
nique, as described by Dufour (2006).

rameterization of the duration-based test out-
performs the continuous version by Christof-
fersen and Pelletier (2004). To our knowledge,
only Berkowitz et al. (2011) have done a power
study comparing a wide range of the most rec-
ognized backtests. They use an asymmetric
GARCH(1,1)-t model with four sets of param-
eters as underlying return processes, and find
the Dynamic Quantile test to perform best.

All power studies mentioned use a rolling
window to estimate VaR. This study con-
tributes by showing that the use of a rolling
window affects the power of the backtests,
mainly the Dynamic Quantile test. We esti-
mate VaR using a Normal VaR model, instead
of a Historical Simulation VaR model, as a
parametric model gives a better foundation to
evaluate backtests from a theoretical point of
view. We also evaluate a larger set of alterna-
tive hypothesis than have been done in earlier
power studies.

3. Backtests applied in the power study

This section provides an introduction to the
backtests considered in this paper. All tests
are model independent, i.e. they can be used
without knowing the underlying VaR model.

A realized return less than the negative VaR
causes a breach or hit. We define the hit func-
tion as

It =

{
1 if rt < −VaRt(p)
0 otherwise,

(1)

where rt is the return at day t and VaRt(p) is
the VaR forecast for day t, with target prob-
ability p. As VaRt is a forecast for day t, it
is Ωt−1-measurable, where Ωt−1 is the infor-
mation set at day t − 1. Christoffersen (1998)
states that the hit sequence should satisfy

Pr(It | Ωt−1) = p, for all t (2)

Equation (2) is the basis for three differ-
ent kinds of tests: unconditional coverage
(UC), independence (Ind) and conditional cov-
erage (CC). Unconditional coverage tests assess
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whether the observed number of hits is in line
with the expected number, E [

∑n
t=1 It] = np.

Independence tests test whether the probabil-
ity of breach is the same each day, regardless
of previous outcomes, Pr(It | Ωt−1) = Pr(It+1 |
Ωt) for all t. Conditional coverage tests test
whether the probability of breach is a con-
stant given value each day, Pr(It | Ωt−1) =
p, for all t. Note that the property in the con-
ditional coverage tests equal Equation (2).

The power study will focus on conditional
coverage tests, though we will for benchmark-
ing purposes include the PF (proportion of fail-
ures) test by Kupiec (1995), which is an un-
conditional coverage test. We also include an
overview of the independence tests for com-
pleteness.

3.1. Kupiec test for unconditional coverage

Kupiec (1995) notes that the probability of
observing n1 breaches, regardless of sample size
n, should be binomially distributed. He derives
the following likelihood

L (π; It, It−1, . . . ) = πn1 (1− π)n−n1 , (3)

where π is the probability of breach. The max-
imum likelihood (ML) estimate is then π̂ =
n1/n. The log-likelihood statistic becomes

LRUC = −2 ln

[
L (π; It, It−1, . . . )
L (n1/n; It, It−1 . . . )

]
(4)

We can test the following hypothesis by adding
constraints under the null hypothesis

H0,UC: π = p
H1,UC: π 6= p

Under the null hypothesis, LRUC will be
asymptotically χ2(1) distributed. We will re-
fer to this test as PF.

3.2. Autocorrelation tests for independence
and conditional coverage

3.2.1. First order Markov chain

Christoffersen (1998) notes that the hit se-
quence should be a Bernoulli process with

mean p. He applies a first-order Markov pro-
cess and estimates the one-step-ahead transi-
tion probabilities Pr(It+1 | It), given by

Π1 =

[
π0,0 π0,1
π1,0 π1,1

]
=

[
1− π0,1 π0,1
1− π1,1 π1,1

]
,

(5)
where πi,j is the transition Pr(It+1 = j | It =
i). The likelihood function of this process is
approximately3 given by

L(Π1; I1, I2, . . . , IT )

= (1− π0,1)n0,0π
n0,1

0,1 (1− π1,1)n1,0π
n1,1

1,1 , (6)

where ni,j is the number of observations with
value i followed by j. Maximizing Equation (6)
gives the following ML estimates

Π̂1 =




n0,0

n0,0+n0,1

n0,1

n0,0+n0,1

n1,0

n0,0+n0,1

n1,1

n0,0+n0,1


 (7)

The log-likelihood statistic becomes

LR = −2 ln


 L (Π1; It, It−1, . . . )

L
(
Π̂1; It, It−1, . . .

)


 (8)

We test the following hypothesis by adding con-
straints under the null hypothesis

H0,Ind: π1,0 = π1,1
H1,Ind: π1,0 6= π1,1
H0,CC : π1,0 = p and π1,1 = p
H1,CC : π1,0 6= p or π1,1 6= p

Testing for independence gives the following
ML estimates π̂1,0 = π̂1,1 = (n0,1+n1,1)/(n0,0+
n1,0 + n0,1 + n1,1).

Under the null hypothesis, LR will be asymp-
totically χ2(1) distributed for independence
and χ2(2) distributed for conditional coverage.
We will refer to the conditional coverage test
as Markov.

3The first day should be censored, but are instead
omitted. The exact likelihood can be found in Christof-
fersen (1996).
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3.2.2. Dynamic Quantile with linear regression

Engle and Manganelli (2004) suggest a back-
test based on explanatory variables available in
the information set. Consider the following lin-
ear model

It−p = α+

n∑

i=1

β1,iIt−i+
m∑

j=1

β2,jg (·)+ut, (9)

where p is the target probability, ut is the er-
ror term, β1,i and β2,j are the regression coef-
ficients, and g (·) is a function from the infor-
mation set Ωt−14. We set g (·) = VaRt−j and
n = m = 3 in this paper.

Equation (9) can be estimated by ordinary
linear regression. Independence and condi-
tional coverage can be tested by the following
Wald statistics

DQInd =
β̂
′
R′
(
R [X′X]−1 R′

)−1
Rβ̂

p(1− p), (10)

DQCC =
β̂
′
X′Xβ̂

p(1− p) , (11)

where β̂ =
(
α̂, β̂1,1, ..., β̂1,n, β̂2,1, ..., β̂2,m

)′
, R

is the 1 × (n + m + 1) matrix (0, 1, ..., 1) and
X is the matrix of ones in the first column and
lagged hit and VaR sequences in the others.

The statistics will test the following hypoth-
esis

H0,Ind: β1,i = 0 and β2,i = 0
H1,Ind: β1,i 6= 0 or β2,i 6= 0
H0,CC : β1,i = 0, β2,i = 0 and α = 0
H1,CC : β1,i 6= 0 or β2,i 6= 0 or α 6= 0

Under the null hypothesis, the test statistics
will be asymptotically χ2(n + m) distributed
for independence and χ2(n+m+1) distributed
for conditional coverage. We will refer to the
conditional coverage test as DQ.

4g (·) may be directly related to It (e.g. realized re-
turns, VaR forecasts) or indirectly (e.g. realized returns
on a benchmark portfolio, value of indicators).

3.2.3. Dynamic Quantile with logistic regres-
sion

Clements and Taylor (2003) point out that
as It is binary, the linear specification in Equa-
tion (9) cannot be estimated efficiently. We can
instead estimate a logit model

Pr(It = 1) =
(
1 + e−Xt

)−1
, (12)

where Xt = α+
∑n

i=1 β1,iIt−i +
∑m

j=1 β2,jg (·).
We set g (·) = VaRt−j and n = m = 3 in this
paper.

Likelihood ratio tests can then be applied
for testing the following hypothesis by adding
constraints under the null hypothesis, for i =
1, . . . , n and j = 1, . . . , n

H0,Ind: β1,i = 0 and β2,j = 0
H1,Ind: β1,i 6= 0 or β2,j 6= 0
H0,CC : β1,i = 0, β2,j = 0

and α = ln(p/(1− p))
H1,CC : β1,i 6= 0 or β2,j 6= 0

or α 6= ln(p/(1− p))

Under the null hypothesis, the log-likelihood
ratio statistics will be asymptotically χ2(n+m)
distributed for independence and χ2(n+m+1)
distributed for conditional coverage. We will
refer to the conditional test as DQLogit. The
DQ and DQLogit test together will be referred
to as the regression-based tests.

3.3. Duration-based tests for independence and
conditional coverage

Christoffersen and Pelletier (2004) suggest a
test based on the distance between each hit.
The duration of time in days between two hits
is defined as

Di = ti − ti−1, (13)

where ti is the time of hit number i. If the
backtesting criterion in Equation (2) is satis-
fied, hits will be i.i.d. Bernoulli random vari-
ables. Hence, the durations should be memory-
less. They will then follow a geometric distri-
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bution with the following probability distribu-
tion function (p.d.f.)

Pr(D = d) = fgeo(d; p) = (1−p)d−1p, d ∈ N+,
(14)

where p is the unconditional probability of
breach.

The discrete hazard function is given by

λ(d) = Pr(D = d | D ≥ d)

=
Pr(D = d)

Pr(D ≥ d)
=

f(d)

S(d− 1)
, (15)

where S(x) = Pr(D > x) = 1 − F (x) denotes
the survivor function and F (x) the cumulative
distribution function (c.d.f.). The memory-less
property of the geometric distribution implies
a constant hazard function.

Several parameterizations using the
duration-based approach have been sug-
gested. They should collapse to Equation (14)
under the null hypothesis, but will have
different sets of alternative hypothesis de-
pending on the parameterization. Parameters
are estimated using maximum likelihood.
The likelihood calculation is straightforward,
except for the first and the last duration. If
the first observation is not a breach, the first
duration will be the number of days until
first breach. For example, if the first breach
happens on day 5, then D1 = 5 − 1 = 4. In
this case, D1 will be right censored, and we
indicate this by setting CF = 1. Thus, for
this observation we use the survivor function
instead of the p.d.f. to find the probability of
observing a duration greater than D1. The
same method is applied to the last duration.
If the last observation is not a breach, the last
duration will be the number of days since last
breach, and the last duration will be right
censored. For example, if the last breach
happens on day 98, and we have 100 days in
the series, DN = 100 − 98 = 2. We set CL
= 1 to use the probability from the survivor
function instead of the p.d.f.

The log-likelihood functions of the duration-

based tests can generally be written as

lnL(θ;D1, D2, . . .)

= CF lnS(D1;θ) + (1− CF ) ln f(D1;θ)

+
∑N−1

i=2
ln f(Di;θ) + CL lnS(DN ;θ)

+ (1− CL) ln f(DN ;θ), (16)

where θ is a vector of parameters contained in
the space of possible parameters, θ ∈ Θ. The
p.d.f. and the survivor function depend on the
chosen parameterization. For each test we will
define the p.d.f., while the survivor function
can be derived from it.

The log-likelihood ratio statistics for the
tests are given by

LR = 2 lnL(θ∗;D1, D2, . . .),

− 2 lnL(θ0;D1, D2, . . .)

θ∗ ∈ Θ, θ0 ∈ Θ0 (17)

where θ∗ is the vector of parameters maxi-
mizing the log-likelihood function, and θ0 is
the vector of parameters maximizing the log-
likelihood function under the null hypothesis.

We will not define Θ and Θ0 for each test
explicitly. Θ will be the set of possible param-
eters restricted by the p.d.f., while Θ0 will be
the set of parameters satisfying the constraints
for both the p.d.f. and the null hypothesis.

3.3.1. Continuous Weibull distribution

Christoffersen and Pelletier (2004) fit the dis-
crete durations to a continuous distribution,
which gives a slightly misspecified null hypoth-
esis. Under this null hypothesis, the durations
will be memory-less and follow an exponential
distribution

fexp(d; p) = pe−pd, d ∈ N+ (18)

In order to establish a statistical test for inde-
pendence, they fit the durations to the Weibull
distribution

fCW(d; a, b) = abbdb−1e−(ad)
b
, d ∈ N+ (19)

θ = (a, b), a > 0, b > 0 (20)
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where a is the probability of breach, and b
determines the memory of the process. This
distribution has the characteristic that when
b = 1, it equals the exponential distribution,
thus it is memory-free. We can test the follow-
ing hypothesis by adding constraints under the
null hypothesis

H0,Ind: b = 1
H1,Ind: b 6= 1
H0,CC: a = p and b = 1
H1,CC: a 6= p or b 6= 1

Under the null hypothesis, LR will be asymp-
totically χ2(1) distributed for independence
and χ2(2) distributed for conditional coverage.
However, it is important to recognize that the
null hypothesis in Equation (18) is misspeci-
fied for discrete durations and will not be equal
to the geometric distribution in Equation (14).
With geometric distributed durations, LR will
not converge to any asymptotic distribution.
In order to test the hypothesis that durations
follow a geometric distribution, an empirical
distribution must be obtained to account for
the bias. We will refer to the conditional cov-
erage test as WeibullCon.

3.3.2. Discrete Weibull distribution

Nakagawa and Osaki (1975) define the dis-
crete Weibull density as

fDW(d; q, b) = q(d−1)
b − qdb , d ∈ N+ (21)

θ = (q, b), q ∈ (0, 1), b > 0
(22)

where q is the probability of at least one non-hit
observation before a hit occurs, while b deter-
mines the memory of the process. With b = 1
we get the geometric distribution and we can
test the following hypothesis by adding con-
straints under the null hypothesis

H0,Ind: b = 1
H1,Ind: b 6= 1
H0,CC: q = 1− p and b = 1
H1,CC: q 6= 1− p or b 6= 1

Under the null hypothesis, LR will be asymp-
totically χ2(1) distributed for independence
and χ2(2) distributed for conditional coverage.
We will refer to the conditional coverage test
as WeibullDisc.

3.3.3. Discrete Weibull distribution with alter-
native parameterization

Haas (2005) suggests the following parame-
terization, as it will enhance numerical stabil-
ity.

fDWH(d; a, b) = e−a
b(d−1)b − e−(ad)b , d ∈ N+

(23)

θ = (a, b), a > 0, b > 0 (24)

where a determines the probability of a hit and
b the memory of the process. Under the null hy-
pothesis the durations follow a geometric dis-
tribution. We can test the following hypothesis
by adding constraints under the null hypothe-
sis

H0,Ind: b = 1
H1,Ind: b 6= 1
H0,CC: a = − ln (1− p) and b = 1
H1,CC: a 6= − ln(1− p) or b 6= 1

Under the null hypothesis, LR will be asymp-
totically χ2(1) distributed for independence
and χ2(2) distributed for conditional coverage.
We will refer to the conditional coverage test
as WeibullHaas.

3.3.4. Geometric distribution with time-
varying hazard rate

Berkowitz et al. (2011) define the hazard
function directly, and derive the p.d.f. using
the conditional probability. The hazard func-
tion and the p.d.f. are defined as

λDG(d; a, b) = adb−1, d ∈ N+ (25)

fDG(d; a, b) = λDG(d; a, b)
d−1∏

i=1

(1− λDG(i; a, b))

(26)

θ =(a, b), a ∈ (0, 1), b ≤ 1
(27)
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where a determines the probability of a hit and
b determines the memory of the process. Un-
der the null hypothesis the hazard function is
constant and the p.d.f. collapses to the geomet-
ric distribution. We can test the following hy-
pothesis by adding constraints under the null
hypothesis

H0,Ind: b = 1
H1,Ind: b 6= 1
H0,CC: b = 1 and a = p
H1,CC: b 6= 1 or a 6= p

It is important to recognize that the true pa-
rameter b, which is restricted to be 1 or less, lies
on the boundary of the parameter space when
testing b = 1. LR will still converge asymptot-
ically to a distribution, but it will not follow
a usual χ2 distribution. The asymptotic dis-
tributions are given by Self and Liang (1987).5

The distributions of LR will asymptotically be
a 50:50 mixture of χ2 (0) and χ2 (1) for inde-
pendence, and a 50:50 mixture of χ2 (1) and
χ2 (2) for conditional coverage. We will refer
to the conditional coverage test as Geometric.

4. Inferring with finite samples

Most backtests yield a test statistic asymp-
totically following a known probability distri-
bution. However, the test statistic does not
necessarily follow this distribution for finite
samples. The unknown distribution can be ap-
proximated by simulating data yielding the test
statistic under the null hypothesis. Using the
approximated distributions, we can make accu-
rate inferences for newly calculated test statis-
tics, as described by Dufour (2006).

Assuming the test statistic, S, has an un-
known distribution under H0. Let S =
(S1, . . . , SN ) be a sample of N i.i.d. random
variables with the same distribution as S. The

5H0,Ind and H0,CC correspond to case 5 and 6 in Self
and Liang (1987), respectively.

cumulative distribution function of S, F (S0),
is approximated by,

F̂N (S0; S) =
1

N

N∑

i=1

I (Si ≤ S0), (28)

where I (C) is the indicator function of condi-
tion C such that,

I (C) =

{
1 if condition C holds
0 otherwise

(29)

There is a positive probability of a tie between
the calculated statistic and a point in S. To
handle ties we define a vector of random vari-
ables, U = (U1, . . . , UN ). These are i.i.d. ran-
dom variables from U (0, 1). Each Ui is associ-
ated with Si in the following manner.

Zi = (Si, Ui) (30)

Z = (Z1, . . . ,ZN) (31)

This is used to compare two statistics, Si and
Sj where Si = Sj . We compare them according
to the following definition,

Zi ≤ Zj ⇔ {Si < Sj or (Si = Sj , Ui ≤ Uj)}
(32)

The p-value for a newly calculated statistic
with its associated random variable, Z0 =
(S0, U0), is given by the following formula,

p̃N (Z0; Z) =
N × G̃N (Z0; Z) + 1

N + 1
, (33)

where,

G̃N (Z0; Z) =
1

N

N∑

i=1

I (Zi ≥ Z0)

= 1− F̂N (S0; S)

+
1

N

N∑

i=1

I (Si = S0) I (Ui ≥ U0)

(34)

We use N = 50,000 when approximating the fi-
nite sample distributions. Distributions are ap-
proximated for each specification of lookback,
sample size and probability of breach.
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5. Test size and power properties

Christoffersen (1998) states a criterion,
which a breach process should satisfy. We re-
peat this criterion here, and will from now on
refer to it as the conditional coverage criterion.

Pr(It | Ωt−1) = p for all t (35)

From the conditional coverage criterion, we de-
fine a weaker criterion ensuring independence
of hits, which we refer to as the independence
criterion

Pr(Ii | Ωi−1) = Pr(Ij−1 | Ωj−2) for all i, j
(36)

This section starts by assessing the test size
of the backtests. We simulate data satisfying
the conditional coverage criterion, and calcu-
late rejection rates by applying asymptotic crit-
ical values.

The power study is then commenced by
backtesting simulated return and VaR series re-
sulting in a breach sequence satisfying the inde-
pendence criterion. The probability of breach
differs from the one tested under the null.

We then show how the different backtests re-
act to estimation of VaR using a rolling win-
dow. The Normal VaR model is applied on
simulated return series from the standard nor-
mal distribution and the Student-t distribu-
tions, and the ability of the backtests to reject
the model is shown.

We conclude with a study of conditional
coverage power, backtesting hit sequences also
possessing dependence.

All experiments are performed with 1%, 5%
and 10% VaR models, sample sizes of 100, 250,
500, 750, 1000, 1,250, and 1,500, and lookback
periods of 250 and 1,000 days. We will only
present a representative selection in this paper.
The complete results will be referred to as the
extensive study.6

6The complete results can be obtained by contacting
the authors.

5.1. Test sizes using asymptotic critical values

We simulate return and VaR series result-
ing in hit sequences satisfying the conditional
coverage criterion, with an underlying proba-
bility of breach, π. To examine the test size,
the data is backtested with the null hypothesis
satisfied. We vary the underlying probability
of breach and backtest accordingly. The simu-
lation process is further detailed in Appendix
B.

If an asymptotic distribution is accurate for
the considered sample size, the rejection rates
should be close to the significance level of the
test, which we set to 5%. Table 1 shows the
test size of the tests using asymptotic critical
values. The first column reports the sample
size of the hit sequence.

The top panel shows the results for 1% VaR.
For small samples PF performs poorly and Ge-
ometric is generally undersized. Both perform
well for large ones. WeibullCon is slightly over-
sized. Markov and DQLogit are clearly under-
sized for finite samples, while DQ and Weibull-
Haas are oversized. WeibullDisc is undersized
for small sample sizes and oversized for large
ones.

The panel in the middle shows the results for
5% VaR. PF, DQLogit and Geometric are close
to the significance level of 5% for most sample
sizes. DQ, WeibullDisc and WeibullHaas are
oversized for small sample sizes, but perform
well for large ones. WeibullCon is generally
oversized, while Markov is undersized for small
sample sizes and oversized for large ones.

The results in the bottom panel are for 10%
VaR. PF, Markov, DQ, DQLogit and Geomet-
ric are close to the significance level of 5% for
most sample sizes. WeibullDisc and Weibull-
Haas tend to be oversized for small sample
sizes, but are close to significance level for large
ones. WeibullCon is clearly oversized for all
sample sizes.

We conclude that the test size, generally, dif-
fers from the significance level for finite sam-
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Table 1: Test size at 5% significance level using asymptotic critical values

Sample PF Markov DQ DQLogit Cont Disc Haas Geo

π = 1%
100 0.018 0.018 0.303 0.051 0.057 0.045 0.249 0.030
250 0.095 0.012 0.134 0.021 0.062 0.025 0.155 0.020
500 0.071 0.010 0.148 0.017 0.082 0.044 0.106 0.030
750 0.039 0.021 0.126 0.019 0.093 0.080 0.101 0.073
1000 0.055 0.027 0.102 0.018 0.085 0.084 0.086 0.053
1250 0.066 0.026 0.087 0.021 0.077 0.081 0.081 0.055
1500 0.056 0.033 0.076 0.022 0.069 0.074 0.072 0.057

π = 5%
100 0.063 0.022 0.086 0.039 0.084 0.062 0.108 0.030
250 0.060 0.042 0.065 0.042 0.078 0.084 0.083 0.053
500 0.053 0.040 0.058 0.052 0.072 0.064 0.062 0.044
750 0.054 0.047 0.057 0.057 0.075 0.059 0.058 0.044
1000 0.051 0.054 0.055 0.060 0.079 0.057 0.055 0.045
1250 0.045 0.078 0.052 0.061 0.083 0.057 0.053 0.046
1500 0.052 0.063 0.054 0.060 0.092 0.052 0.054 0.046

π = 10%
100 0.044 0.041 0.063 0.056 0.095 0.084 0.084 0.049
250 0.057 0.057 0.053 0.064 0.097 0.061 0.062 0.044
500 0.054 0.049 0.051 0.060 0.139 0.056 0.055 0.045
750 0.053 0.053 0.051 0.055 0.194 0.053 0.053 0.044
1000 0.045 0.053 0.050 0.054 0.248 0.053 0.052 0.046
1250 0.049 0.050 0.051 0.055 0.308 0.051 0.051 0.045
1500 0.048 0.052 0.049 0.051 0.363 0.052 0.054 0.048

Note: Return and VaR series are simulated resulting in hit sequences satisfying the con-
ditional coverage criterion, with a breach probability π. The data is backtested with the
probability of breach set to π under the null. Rejection rates are calculated over 50,000
successful7 Monte Carlo trials. Sample is the sample size of the simulated data. PF is an
unconditional coverage test. Markov is a first-order Markov test. DQ and DQLogit are
regression-based tests. Cont, Disc, Haas and Geo are duration-based tests referred to as
WeibullCon, WeibullDisc, WeibullHaas and Geometric. Details on each test are given in
Section 3.

ples.8 Using asymptotic critical values can,
as a consequence, give very misleading results.

7Samples where the backtests fail to calculate a test
statistic are re-simulated. The results are therefore con-
ditional on the test statistics being feasible. A note on
the feasibility ratios of the tests can be found in Ap-
pendix C.

8The test sizes will converge to 5% for large samples
for all tests, except WeibullCon, which has a misspeci-
fied null hypothesis. Note that the convergence will not
be monotonic, as seen from Table 1.

For instance will PF with 250 days sample size
and 1% VaR, which is commonly used, reject
almost twice its significance level. When com-
puting power we will therefore apply the Monte
Carlo testing technique, as described in Sec-
tion 4.
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Table 2: Power to reject wrong unconditional probability of breach at 5% significance level
using finite sample distributions

π PF Markov DQ DQLogit Cont Disc Haas Geo

0.025 0.991 0.971 0.658 0.875 0.967 0.979 0.979 0.987
0.030 0.908 0.838 0.325 0.625 0.808 0.854 0.856 0.892
0.035 0.664 0.547 0.122 0.333 0.505 0.578 0.586 0.639
0.040 0.343 0.258 0.048 0.148 0.228 0.276 0.289 0.322
0.045 0.123 0.096 0.036 0.069 0.087 0.106 0.113 0.122
0.050 0.050 0.053 0.048 0.050 0.048 0.047 0.050 0.053
0.055 0.101 0.096 0.101 0.068 0.079 0.072 0.077 0.086
0.060 0.272 0.230 0.213 0.132 0.186 0.182 0.187 0.217
0.065 0.516 0.446 0.392 0.262 0.358 0.377 0.395 0.446
0.070 0.747 0.684 0.597 0.450 0.595 0.613 0.631 0.683
0.075 0.897 0.851 0.777 0.653 0.792 0.809 0.819 0.863

Note: Return and VaR series are simulated resulting in hit sequences satisfying the
independence criterion. The underlying probability of breach, π, ranges from 0.025 to
0.075. The data is backtested with the probability of breach set to 0.05 under the null.
Rejection rates are calculated over 20,000 successful Monte Carlo trials. The sample size
is 1,000 and the lookback period for the estimation is 250 days. PF is an unconditional
coverage test. Markov is a first-order Markov test. DQ and DQLogit are regression-based
tests. Cont, Disc, Haas and Geo are duration-based tests referred to as WeibullCon,
WeibullDisc, WeibullHaas and Geometric. Details on each test are given in Section 3.

5.2. Testing unconditional coverage using fi-
nite sample distributions

We simulate return and VaR series result-
ing in hit sequences satisfying the indepen-
dence criterion. The underlying probability of
breach, π, ranges from 2.5% to 7.5%. The data
generation is further detailed in Appendix B.
To examine the power against deviating pro-
portion of hits, the data is backtested with the
probability of breach set to 5% under the null.

Table 2 shows the power at 5% significance
level using finite sample distributions. The
first column shows the underlying probability
of breach. PF performs best, as expected. PF
is designed to test unconditional coverage, and
thus will not have to sacrifice any power to test
non-existing dependence in hits. Markov com-
bines an independence test and an uncondi-
tional coverage test, where the latter is equiv-
alent to PF. It performs well. The duration-
based tests, with the exception of WeibullCon,
perform almost as well as PF. The regression-
based tests perform noticeably worse than the

other tests. The extensive results state that
the internal ranking of the tests is the same for
all sample sizes and all values of π, though the
power varies.

5.3. Implications of estimating VaR using a
rolling lookback window

The most common technique to construct
VaR estimates is by using a rolling lookback
window.9 However, this technique introduces
bias in the backtests as the VaR estimates will
be serially dependent because of overlapping
samples. It is possible to avoid serial depen-
dence by using non-overlapping samples, but
with 250 lookback days one will be able to cre-
ate only one estimate for every year of data.
Despite its disadvantages, rolling sample win-
dow is to our knowledge the best method for
practical purposes. We will continue the power

9This technique is suggested by Alexander (2008a)
and is widely used by practitioners, as discussed by
Pérignon and Smith (2010).
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Table 3: Rejection rates at 5% significance level using finite sample distributions and
estimating VaR with a rolling window

L PF Markov DQ DQLogit Cont Disc Haas Geo

Normal VaR model
50 0.020 0.041 0.696 0.672 0.046 0.030 0.031 0.018
100 0.009 0.028 0.341 0.328 0.030 0.023 0.024 0.018
250 0.009 0.026 0.147 0.146 0.029 0.024 0.025 0.021
500 0.016 0.029 0.101 0.100 0.031 0.028 0.030 0.026

1,000 0.029 0.039 0.090 0.091 0.038 0.036 0.038 0.036

Historical Simulation VaR model
50 0.072 0.082 0.971 0.959 0.088 0.055 0.059 0.049
100 0.003 0.031 0.636 0.599 0.029 0.021 0.022 0.015
250 0.001 0.022 0.252 0.248 0.022 0.020 0.021 0.017
500 0.003 0.021 0.146 0.148 0.024 0.020 0.021 0.018

1,000 0.023 0.035 0.125 0.124 0.036 0.034 0.036 0.033

Note: Normally distributed returns are simulated. The VaR series are estimated with
a 5% 1) Normal VaR model and 2) Historical Simulation VaR model. The models use
a rolling window to estimate VaR. The data is backtested with the probability of breach
set to 5% under the null. Rejection rates are calculated over 20,000 successful Monte
Carlo trials. The sample size is 1,000 and L is the size of the lookback window. PF is an
unconditional coverage test. Markov is a first-order Markov test. DQ and DQLogit are
regression-based tests. Cont, Disc, Haas and Geo are duration-based tests referred to as
WeibullCon, WeibullDisc, WeibullHaas and Geometric. Details on each test are given in
Section 3.

study with this technique and discuss the re-
sults in light of the implications.

5.3.1. Implications of estimation using cor-
rectly specified VaR model

We simulate i.i.d. returns from the standard
normal distribution

rt ∼ N(0, 1) (37)

We then estimate VaR using a Normal VaR
model

V̂aRt(p) = −r̄t − Φ−1 (p) st, (38)

where Φ−1 is the inverse c.d.f. of the standard
normal distribution, and r̄t and st are the es-
timated mean and standard deviation using a
rolling window. The estimators are given in
Appendix D. p is the target probability, set to
5%.

The data is backtested with the probability
of breach set to 5% under the null. If the es-
timated parameters in Equation (38) are re-
placed with population parameters, we will get
a breach process satisfying the conditional cov-
erage criterion in Equation (35), with an un-
conditional probability of breach equal to p. As
we then are under the null hypothesis, the re-
jection rates of the tests will be the same as
the significance level of the tests. However, as
we estimate the parameters, this criterion is no
longer satisfied.

The rejection rates for the tests are shown
in Table 3. Results using a Historical Simula-
tion VaR model10 are presented for compari-
son. Table 3 shows that the rejection rates are
different from the significance level of the tests
due to estimation.

10Alexander (2008a) gives details on the Historical
Simulation VaR model and its properties.
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Estimating the Normal VaR model will make
the unconditional probability of breach depend
on the size of the lookback window, L. We have

Pr(rt < −V̂aRt(p)) = Pr(It = 1)

= FL−1


 Φ−1(p)√

1 + 1
L


 ,

(39)

where Φ−1 is the inverse c.d.f. of the standard
normal distribution and FL−1 is the c.d.f. of
the Student-t distribution with L − 1 degrees
of freedom. The complete derivation can be
found in Appendix E.

An unconditional probability of breach dif-
ferent from p will increase the rejection rate
of all backtests. For appropriate large values
of L, this implication is negligible.11 There-
fore, we assume the unconditional probability
of breach, and the variance of It, to be the same
whether the parameters in the VaR model are
estimated or not.

Estimating VaR using a rolling window, with
overlapping samples, will give three important
implications.

First, dependence in the VaR estimates due
to rolling window will give autocovariance in
the hit sequence12. The variance of the total
number of breaches is given by

var

(
N∑

t=1

It

)
= Nvar(It) +

∑

i 6=j
cov(Ii, Ij)

(40)
where cov(Ii, Ij) is the covariance between Ii
and Ij .

Appendix G shows that
∑

i 6=j cov(Ii, Ij) < 0.
This implies lower variance for the total num-
ber of breaches. The isolated effect is that a
larger proportion of the test statistics will fall
within the non-rejection region of the test, and

11For smaller lookback windows we can multiply the
VaR estimate with a correction constant to correct the
bias.

12This can be observed from Figure F.3(a).

the rejection rates will decrease. This is di-
rectly observed for the PF test as it only con-
siders the total number of breaches.

Second, autocovariance in the hit sequence
also gives the following conditional probability
of breach

Pr(It = 1 | It−l = 1) =
cov(It, It−l)

p
+ p (41)

Pr(It = 1 | It−l = 0) = −cov(It, It−l)
1− p + p,

(42)

where l is the time lag.13 As cov(It, It−l) 6=
0, the conditional probability of breach differs
from the unconditional probability.

This bias in the conditional probability will
increase the rejection rate of all conditional
coverage tests, as they test for independence.
To assess the magnitude, we can look at the
rejection rate of the Markov and the duration-
based tests. These tests will be affected by
both the lowered variance and the biased con-
ditional probability. We know that the latter
will increase the rejection rate. The lowered
variance will, on the other hand, decrease the
rejection rates. From the results in Table 3, we
observe rejection rates lower than the signifi-
cance level, indicating that the bias resulting
from lower variance is the strongest.

Third, there is covariance between the hit
function and the lagged VaR estimates. This
can be observed in Figure F.3(b).

This will increase the rejection rate when
testing for dependence between hits and lagged
VaR estimates. The magnitude can be assessed
by looking at DQ and DQLogit, which use
lagged VaR estimates as regressors. These tests
will be affected by the implications from low-
ered variance, the conditional probability, and
the covariance between hits and lagged VaR
estimates. The first implication leads to de-
creased rejection rates, while the two other will

13The derivation of Equation (41) and Equation (42)
can be found in Appendix H.
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increase it. As Markov is a special case of the
DQ test, we know that the combined effect of
the two first implications should be a decrease
in the rejection rate. From the results in Ta-
ble 3, we observe rejection rates higher than
the significance level, indicating that the bias
from the non-zero covariance between hits and
lagged VaR estimates is very strong.

When we have a correctly specified VaR
model producing VaR estimates very close to
the true VaR, we do not want to reject the
null hypothesis for practical purposes. Hence,
we state that a correctly specified VaR model
is our null hypothesis when estimation risk is
negligible. The following discussion is based on
this assumption.

As seen from Table 3, the probability of com-
mitting a type I error is higher than the signifi-
cance level for DQ and DQLogit, and lower for
the others. Ideally, we like to use a test pro-
cedure for which the type I error probability is
small. A rejection rate under the null hypothe-
sis lower than the significance level is not a se-
rious problem, as a rejection for an undersized
test will strengthen our belief that we are under
an alternative hypothesis. However, rejecting
the null hypothesis more than the significance
level, as DQ and DQLogit do, is a serious prob-
lem, as we have no upper bound for the type I
error probability. As a consequence making a
type I error is no longer highly unlikely.

5.3.2. Implications of estimation using incor-
rectly specified VaR model

We simulate return series from the following
leptokurtic model

rt = t (v)

√
v − 2

v
, (43)

where t (v) is a Student-t distributed random
variable with v degrees of freedom. rt is con-
structed such that the variance is held con-
stant, var (rt) = 1, for v > 2. We estimate
VaR using the 5% Normal VaR model as in
Equation (38). The data is backtested with

the probability of breach set to 5% under the
null. Using the Normal VaR model with pop-
ulation parameters for the mean and the stan-
dard deviation, denoted VaRt(p), will give the
following probability of breach

π∗ = Pr(rt < −VaRt(p))

= Fv

(
Φ−1 (p)

√
v

v − 2

)
, (44)

where Fv is the c.d.f. of a Student-t distribution
with v degrees of freedom. We vary v to get
π∗ = 0.025, 0.030, 0.035, 0.040 and 0.045. The
values of v providing π∗ are found by Equa-
tion (44) and are listed in Table I.8.

Table 4 shows the rejection rates. When we
introduce leptokurtosis, to deviate further from
the null hypothesis, we observe that the power
increases for all tests as expected. Compar-
ing the results in Table 2 and Table 4, we ob-
serve that the rejection rates are lower when
estimating VaR, with the exception of DQ and
DQLogit for values of π∗ close to the tested
value, 5%.

Estimation using a rolling window will make
the probability of committing type II error
higher for all tests, except for DQ and DQLogit
for π∗ close to 5%.

5.4. Testing conditional coverage using finite
sample distributions

We simulate return series from the following
GARCH(1, 1)-t model, by Bollerslev (1986)

rt = t (v)σt

√
v − 2

v
(45)

σ2t = ω + αε2t−1 + βσ2t−1, (46)

where t (v) is a Student-t random variable with
v degrees of freedom, α is the error parameter,
β is the persistence parameter and ω is a con-
stant. We set α + β = 0.99 and ω = 0.01.
This setup gives stationarity, which ensures a
finite and positive unconditional variance, and
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Table 4: Power to reject wrong unconditional probability of breach at 5% significance level
using finite sample distributions and estimating VaR with a rolling window

π∗ PF Markov DQ DQLogit Cont Disc Haas Geo

0.025 0.685 0.561 0.358 0.597 0.526 0.591 0.614 0.675
0.030 0.544 0.435 0.267 0.489 0.378 0.468 0.469 0.547
0.035 0.359 0.289 0.202 0.377 0.247 0.325 0.315 0.362
0.040 0.187 0.142 0.142 0.247 0.113 0.156 0.163 0.192
0.045 0.049 0.043 0.119 0.158 0.037 0.049 0.054 0.061

Note: Student-t distributed returns are simulated. The VaR series are estimated with a
5% Normal VaR model with a rolling window. The data satisfies the independence crite-
rion, with π∗ ranging from 0.025 to 0.045 by varying the degrees of freedom as described
in Equation (44). The data is backtested with the probability of breach set to 5% under
the null. Rejection rates are calculated over 20,000 successful Monte Carlo trials. The
sample size is 1,000 and the lookback period for the estimation is 250 days. PF is an
unconditional coverage test. Markov is a first-order Markov test. DQ and DQLogit are
regression-based tests. Cont, Disc, Haas and Geo are duration-based tests referred to as
WeibullCon, WeibullDisc, WeibullHaas and Geometric. Details on each test are given in
Section 3.

(a): π∗ = 0.05 (v →∞) (b): π∗ = 0.025 (v = 2.561)
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Figure 1: Power to reject wrong conditional probability of breach at 5% significance level using finite sample dis-
tributions and estimating VaR with a rolling window. GARCH(1, 1)-t distributed returns are simulated. The VaR
series are estimated with a 5% Normal VaR model. π∗ is the probability of breach given a 5% Normal VaR model,
with population parameters, applied on Student-t returns with v degrees of freedom, as described in Equation (44).
The data is backtested with the probability of breach is set to 5% under the null. Rejection rates are calculated over
20,000 successful Monte Carlo trials. α is the error parameter in the GARCH model. The sample size is 1,000 days
and the lookback period for the estimation is 250 days. Details on each test are given in Section 3.

reflects typical financial markets.14 VaR is still
estimated using a Normal 5% VaR model with
rolling window. α is varied from 0.00 to 0.25.
To examine the power against wrong propor-
tion and clustering of hits, the data is back-

14Examples are equity markets and exchange rates
as explained by Alexander (2008b) and Taylor, S. J.
(2005), respectively.

tested with the probability of breach set to 5%
under the null. Table 5 shows the power at
5% significance level using finite sample dis-
tributions. The first column shows the error
parameter, α.

Figure 1 illustrates the results from Ta-
ble 5 showing the Geometric, DQLogit, PF and
Markov test.
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Table 5: Power to reject wrong conditional probability of breach at 5% significance level
using finite sample distributions and estimating VaR with a rolling window

α PF Markov DQ DQLogit Cont Disc Haas Geo

π∗ = 0.03 (v = 2.818)
0.00 0.548 0.439 0.269 0.494 0.389 0.472 0.483 0.556
0.05 0.354 0.312 0.407 0.485 0.381 0.595 0.595 0.696
0.10 0.327 0.391 0.628 0.644 0.573 0.777 0.784 0.852
0.15 0.349 0.488 0.740 0.762 0.681 0.858 0.868 0.909
0.20 0.382 0.571 0.817 0.825 0.739 0.901 0.903 0.936
0.25 0.412 0.641 0.858 0.877 0.772 0.922 0.925 0.952

π∗ = 0.04 (v = 3.938)
0.00 0.180 0.137 0.141 0.252 0.116 0.153 0.165 0.194
0.05 0.121 0.165 0.426 0.408 0.274 0.534 0.535 0.643
0.10 0.123 0.326 0.715 0.687 0.612 0.834 0.841 0.903
0.15 0.134 0.471 0.844 0.818 0.771 0.930 0.925 0.958
0.20 0.149 0.566 0.902 0.883 0.837 0.959 0.958 0.977
0.25 0.172 0.650 0.931 0.922 0.877 0.970 0.973 0.984

π∗ = 0.05 (v →∞)
0.00 0.010 0.024 0.151 0.150 0.028 0.023 0.026 0.020
0.05 0.095 0.161 0.493 0.425 0.235 0.517 0.536 0.639
0.10 0.197 0.438 0.834 0.787 0.755 0.915 0.920 0.954
0.15 0.217 0.618 0.932 0.910 0.909 0.982 0.980 0.991
0.20 0.207 0.723 0.968 0.955 0.956 0.994 0.992 0.997
0.25 0.176 0.789 0.984 0.977 0.974 0.996 0.997 0.998

Note: GARCH(1, 1)-t distributed returns are simulated. The VaR series are estimated
with a 5% Normal VaR model. π∗ is the probability of breach given a 5% Normal
VaR model, with population parameters, applied on Student-t returns with v degrees of
freedom, as described in Equation (44). The data is backtested with the probability of
breach set to 5% under the null. Rejection rates are calculated over 20,000 successful
Monte Carlo trials. α is the error parameter in the GARCH model. The sample size is
1,000 days and the lookback period for the estimation is 250 days. PF is an unconditional
coverage test. Markov is a first order Markov test. DQ and DQLogit are regression-based
tests. Cont, Disc, Haas and Geo are duration-based tests referred to as WeibullCon,
WeibullDisc, WeibullHaas and Geometric. Details on each test are given in Section 3.

Figure 1 (a) shows the power with π∗ = 0.05
(v →∞). The Geometric test performs best
with steepest power curve and highest power
for high degrees of heteroscedasticity. The
DQLogit test has higher power for low degrees
of heteroscedasticity. This is due to the prob-
lems regarding parameter estimation with a
rolling window, as discussed in Section 5.3.1.
As expected, the PF test has the lowest power.

Figure 1 (b) shows the power with π∗ =

0.025, (v = 2.561). Again the Geometric test
performs best with highest power for all specifi-
cations. The PF test performs well for the case
of no heteroscedasticity, but does not capture
dependence in the hit sequence, when α > 0.

The same findings are seen in the extensive
results for all sample sizes larger than 100 data
points and all VaR target probabilities, though
the power varies.
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5.4.1. Implications of sample size

As expected, sample size and power are
clearly connected. Figure 2 shows the power
with π∗ = 0.025 (v = 2.561) for different sam-
ple sizes. These settings yield high degrees of
heteroscedasticity and leptokurtosis in the un-
derlying returns. The power increases steadily
as the sample size increases from 100 to 1,500
data points. The power is below 0.60 with 250
data points for all tests considered. Testing
under such conditions would result in a proba-
bility of type II error of 0.40. Thus for a clearly
misspecified model, we would still fail to reject
it 40% of the time.

π∗ = 0.025 (v = 2.561), α = 0.250
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Figure 2: Power at 5% significance level using finite
sample distributions estimating VaR using a rolling win-
dow. GARCH(1, 1)-t distributed returns are simulated.
The VaR series are estimated with a 5% Normal VaR
model. π∗ is the probability of breach given a 5% Nor-
mal VaR model, with population parameters, applied
on Student-t returns with v degrees of freedom, as de-
scribed in Equation (44). The data is backtested with
the probability of breach is set to 5% under the null. Re-
jection rates are calculated over 20,000 successful Monte
Carlo trials. α is the error parameter in the GARCH
model. The lookback period for the estimation is 250
days. Details on each test are given in Section 3.

Table 6 is a practitioner’s table which in-
dicates how large a sample size is needed to
make use of the Geometric backtest. The table
gives sample sizes which yield power above 0.70
for reasonable introduction of heteroscedastic-
ity and leptokurtosis.

Table 6: Sample size recommendation for backtesting
with the Geometric test

VaR target probability Min. sample size

1% 1,000
5% 750
10% 500

Note: The table shows the minimum sample size
recommended, given the VaR target probability, for
backtesting using the Geometric test. Details on each
test are given in Section 3. The sample size recom-
mendations yield power above 0.70 for reasonable in-
troduction of heteroscedasticity and leptokurtosis.

6. Conclusion

This paper evaluates, through an extensive
power study, the performance of the most rec-
ognized Value-at-Risk backtests. We provide
four key findings: i) Asymptotic critical val-
ues should not be used when backtesting finite-
sample data. ii) The common implementation
of the Dynamic Quantile test, by Engle and
Manganelli (2004), has a too high rejection rate
for correctly specified VaR models. iii) The Ge-
ometric test, by Berkowitz et al. (2011), has the
highest power overall. iv) Backtesting 100 or
250 data points will not be sufficient due to low
power.

We first assess the test size of all backtests.
The results show that none of the tests follow
the asymptotic distribution for sample sizes of
100 up to 1,500. Some tests have up to twice
the expected rejection rate for certain specifi-
cations. Using asymptotic distributions when
backtesting can thus give misleading results.
One should therefore use finite sample distri-
butions from Monte Carlo simulations to cal-
culate p-values, as described in Section 4.

We then review the power of the backtests to
reject hit processes with a probability of breach
different from the one tested for. We start
by doing this from a solely theoretical point
of view and then show the implication of esti-
mation. We reveal several novel findings. The
most important is that the common implemen-
tation of the Dynamic Quantile test, by Engle
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and Manganelli (2004), has a too high rejec-
tion rate for correctly specified VaR models,
when estimating VaR with a rolling window.
We illustrate this with both the Normal and
the Historical Simulation VaR model. The lat-
ter model is used by Berkowitz et al. (2011)
when they conclude that the Dynamic Quan-
tile test has best power properties.

The results from the power study, consider-
ing varying breach probability and clustering
of breaches, show that the Geometric backtest
performs best overall.

The power strongly depends on the amount
of backtesting data, where more data gives
higher power. We identify minimum sample
sizes, when applying finite sample distributions
to the Geometric backtest. These sample sizes
are 1,000, 750 and 500 when testing for 1%, 5%
and 10% VaR, respectively. The other back-
tests, which have less power, will need even
more data. Sample sizes of 100 and 250 data
points for backtesting yield low power. This is
an important finding in light of regulatory de-
mands, by Basel Committe on Banking Super-
vision (2011), stating that backtesting can be
done using a minimum of one year with daily
data.

Appendix A. Definition of
Value-at-Risk

Given some target probability, p, the Value-
at-risk of the portfolio is given by the smallest
number, l, such that the probability that the
loss exceeds l is not larger than p. Mathemat-
ically, if rt is the random variable representing
the upcoming return at time t, then VaRt (p)
is given by,

VaRt (p) = −inf {x ∈ R : Pr (rt > x) ≤ 1− p}
(A.1)

For example, if a portfolio has a 5% daily VaR
of 12%, there is 5% probability to experience a
return less than or equal to -12% the next day
given that the portfolio does not trade. It is

also expected that the portfolio will suffer a re-
turn less than or equal to -12% 1 out of 20 days
if the VaR holds a constant target probability.

Appendix B. Generation of return and
VaR series under the null
hypothesis

Consider a sequence of VaR forecasts,
VaRt(p), and hits It, given by

It =

{
1 if rt < −VaRt(p)
0 otherwise,

(B.1)

Christoffersen (1998) states that a sequence of
VaR forecasts is efficient with respect to the
information set if the following criterion is sat-
isfied.

Pr(It | Ωt−1) = p, for all t, (B.2)

where Ωt−1 is the information set at time t−1,
and p is the probability of breach.

To simulate stochastic return and VaR se-
ries satisfying this criterion, we draw random
numbers from two normal distributions.

µt ∼ N (0, 1) (B.3)

rt ∼ N (µt, 1) (B.4)

where µt is t − 1 measurable and is the mean
of the return distribution at time t. We as-
sume that we know that returns are normally
distributed with population standard deviation
1. As µt is measurable at time t − 1, the VaR
calculation is straightforward.

VaRt(p) = −µt − Φ−1(p), (B.5)

such that Equation (B.2) is satisfied, that is

Pr(It | Ωt−1) = Pr (rt < −VaRt(p) | Ωt−1)

= Pr
(
rt − µt < Φ−1(p) | Ωt−1

)

= Φ(Φ−1(p))

= p, (B.6)

where Φ is the c.d.f. of the standard normal
distribution.
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Table C.7: Feasibility ratios at 5% significance level with 1% unconditional probability of
breach

Sample PF Markov DQ DQLogit Cont Disc Haas Geo

100 1.000 0.627 0.251 0.252 0.202 0.185 0.248 0.262
250 1.000 0.922 0.705 0.705 0.622 0.564 0.695 0.710
500 1.000 0.994 0.963 0.961 0.933 0.882 0.954 0.956
750 1.000 0.999 0.995 0.995 0.989 0.974 0.994 0.995
1000 1.000 1.000 1.000 0.999 0.999 0.993 1.000 1.000
1250 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000
1500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note: Return and VaR series are simulated resulting in hit sequences satisfying the
conditional coverage criterion. The underlying probability of breach is 1%. The data is
backtested with the probability of breach set to 1% under the null. Sample is the sample
size of the simulated data. PF is an unconditional coverage test. Markov is a first-order
Markov test. DQ and DQLogit are regression-based tests. Cont, Disc, Haas and Geo are
duration-based tests referred to as WeibullCon, WeibullDisc, WeibullHaas and Geometric.
Details on each test are given in Section 3.

Appendix C. Feasibility ratios

All backtests, except the PF test, have cer-
tain minimum requirements in order to calcu-
late a test statistic. E.g. if the return and VaR
series result in zero breaches, only the PF test
is able to compute a test statistic. All other
backtests will be infeasible. Larger sample size
and higher probability of breach increase the
feasibility ratios of the tests.

Table C.7 shows the feasibility ratios of the
tests for different sample sizes with a probabil-
ity of breach set to 1%. We see that the feasibil-
ity ratio is low for sample sizes of 100 and 250,
and close to one for sample sizes larger or equal
to 500. In our study, the feasibility ratios are
close to one for all recommended sample sizes.

Appendix D. Normal VaR estimation

Consider a return process with i.i.d. normal
variables with mean µ and standard deviation
σ.

rt ∼ N
(
µ, σ2

)
(D.1)

The theoretical VaR, given a target breach
probability p, is then given by

VaRt(p) = −µ− Φ−1(p)σ, (D.2)

where Φ−1 is the inverse c.d.f. of the standard
normal distribution.

With unknown mean and standard devia-
tion, the parameters must be estimated. We
calculate the sample mean, r̄t, using the L pre-
vious observations.

r̄t =
1

L

t−1∑

i=t−L
ri (D.3)

We calculate the sample variance, s2t , using the
same observations.

s2t =
1

L− 1

t−1∑

i=t−L
(ri − r̄t)2 (D.4)

The estimated VaR forecast at time t is then
given by

V̂aRt(p) = −r̄t − Φ−1(p)st (D.5)

Appendix E. Unconditional probability
of breach when using Nor-
mal VaR estimation

Consider a return process with i.i.d. normal
variables

rt ∼ N
(
µ, σ2

)
, (E.1)
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and VaR estimated as described in Appendix
D.

The unconditional probability of breach us-
ing the VaR estimate will be

Pr(rt < −V̂aRt(p)) = Pr(rt < r̄t + Φ−1(p)st)

= Pr

(
rt − r̄t
st

< Φ−1(p)
)

(E.2)

Knowing that rt and r̄t are independent and
normally distributed, yt = rt − r̄t will be dis-
tributed as

yt = rt − r̄t ∼ N
(

0, σ2 +
σ2

L

)
, (E.3)

or

yt = zt

√
σ2 +

σ2

L
, (E.4)

where zt are i.i.d. standard normal variables
and L is the lookback period.

The sample variance is a chi-squared dis-
tributed random variable with L − 1 degrees
of freedom, multiplied with a constant

s2t =
σ2

L− 1
V (E.5)

V ∼ χ2
L−1 (E.6)

yt and st are independent. The ratio of yt and
st will be

rt − r̄t
st

=
zt

√
σ2 + σ2

L√
σ2

L−1V
= zt

√
L− 1

V

√
1 +

1

L

(E.7)
We substitute the random variables in Equa-
tion (E.7) with a Student-t distributed random
variable which is defined as

t (v) = z

√
v

V
, (E.8)

where V is a chi-squared distributed random
variable with v degrees of freedom, and z is a
standard normal distributed random variable.
We then get

rt − r̄t
st

= t (L− 1)

√
1 +

1

L
, (E.9)

and calculate the probability given in Equa-
tion (E.2)

Pr

(
t (L− 1)

√
1 +

1

L
< Φ−1(p)

)

= Pr


t (L− 1) <

Φ−1(p)√
1 + 1

L




= FL−1


 Φ−1(p)√

1 + 1
L


 , (E.10)

where FL−1 is the c.d.f. of a Student-t distri-
bution with L− 1 degrees of freedom.

The unconditional probability of breach is

Pr(rt < −V̂aRt(p)) = FL−1


 Φ−1(p)√

1 + 1
L


 ,

(E.11)
and will approach p as L approaches infinity.

Appendix F. Linear dependences due to
Normal VaR estimation

Consider a return process generated from the
standard normal distribution

rt ∼ N(0, 1) (F.1)

We apply the Normal VaR model in Equa-
tion (D.5), assuming that returns are normally
distributed with unknown mean and standard
deviation.
st and r̄t are serially dependent, as their esti-

mators use overlapping data. st will have L−1
common observations with st−1, where L is the
lookback window as defined in Appendix D.
The same applies to r̄t.

As st and r̄t are serially dependent, VaR es-
timates, V̂aRt(p), will be serially dependent as
well.

The hit function, It, is given by

It =

{
1 if rt < −V̂aRt(p)
0 otherwise,

(F.2)
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Figure F.3: 1,000,000,000 standard normal distributed returns are simulated. The VaR series is estimated with a
10% Normal VaR model. We then estimate i) the autocovariance in the hit series and ii) the covariance between hits
and lagged VaR estimates, with 50 days and 250 days lookback windows.

and will be dependent on lagged VaR estimates
and lagged values of itself.

We simulate a long data series of returns and
apply the Normal VaR model. We then esti-
mate i) the autocovariance in the hit series and
ii) the covariance between hits and lagged VaR
estimates. The results are given in Figure F.3.

We see that the magnitude of the autoco-
variance in the hit sequence increases with the
time lag. When the lag is larger than the look-
back window, the autocovariance is zero. The
magnitude of the covariance between hits and
lagged VaR estimates decreases with the time
lag. For lags larger than the lookback window,
the covariances are zero.

Appendix G. Lower variance of the total
number of breaches due to
Normal VaR estimation

Consider a VaR sequence obtained from a
Normal VaR model. The variance of the total
number of breaches, will then be lower with
parameters estimated, using overlapping data,
than with population parameters. We have

var

(
N∑

t=1

It

)
= Nvar(It) + 2

∑

i<j

cov(Ii, Ij)

(G.1)

where var(It) = p∗(1 − p∗). p∗ is the uncon-
ditional probability of breach with estimation,
given by Equation (E.11).

In Appendix F we showed that cov(Ii, Ij) =
0 for |i − j| > L, where L is the lookback
window as defined in Appendix D. As the hit
process is stationary, the autocovariance only
depends on the time-shift, l. Hence, we have
cov(Ii, Ii+l) = cov(Ii+τ , Ii+l+τ ) = γl, where γl
is the autocovariance function.

We simplify Equation (G.1) to take these
facts into account

var

(
N∑

t=1

It

)
= Nvar(It) + 2

L∑

l=1

(N − l)γl

(G.2)

If we assume that p∗ is equal to the uncon-
ditional probability of breach without estima-
tion, var(It) will be the same with estimation
as without.

Without estimation, γl = 0 for all l > 0,
and the variance of the sum of hits will simply
be Nvar(It). However, with estimation, the
last sum in Equation (G.2) will be negative, as
shown in Appendix F, resulting in lower vari-
ance.

Lower variance due to estimation is easily
observed in simulations. Figure G.4 shows the
c.d.f. for a binomial random variable, repre-
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senting total number of breaches without es-
timation, and the c.d.f. with Normal VaR esti-
mation using a rolling window. From the graph
we see that Normal VaR estimation gives lower
variance.
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Figure G.4: The cumulative distribution function for a
1,000 trial Binomial(5%) random variable and the cu-
mulative distribution function for the sum of 1,000 hits
from normal distributed returns with a 5% estimated
Normal VaR. The lookback is 250 days. The distribu-
tions are estimated with 10,000 simulations.

Appendix H. Conditional probability of
breach with autocovari-
ance in the hit sequence

Consider a hit sequence with binary vari-
ables, It, where the probability of breach is
given by

Pr(It = 1) = p (H.1)

Note that by using the law of total expecta-
tions, we have

E[It] = E[It | It = 1] Pr(It = 1)

+E[It | It = 0] Pr(It = 0) = Pr(It = 1)

= p (H.2)

We assume there exist dependence in the se-
quence such that hits are autocorrelated. Thus,
they have an autocovariance, γl, different from

zero, where l is the time lag.

cov(It, It−l) = E [(It − E[It])(It−l − E[It−l])]

= E[ItIt−l]− E[It]E[It−l]

= E[ItIt−l]− p2 = γl (H.3)

If the variables are autocorrelated, the condi-
tional probability of breach is given by

Pr(It = 1 | It−l = 1) =
Pr(It = 1 ∩ It−l = 1)

Pr(It−l = 1)

=
E[ItIt−l]
E[It−l]

(H.4)

Pr(It = 1 | It−l = 0) =
Pr(It = 1 ∩ It−l = 0)

Pr(It−l = 0)

=
E[It]− E[ItIt−l]

1− E[It−l]
(H.5)

We substitute E[ItIt−l] with the relation
from Equation H.3 and E[It−l] with p from
Equation H.2 and get

Pr(It = 1 | It−l = 1) =
γl + p2

p
=
γl
p

+ p

(H.6)

Pr(It = 1 | It−l = 0) =
p− γl − p2

1− p

=
p(1− p)− γl

1− p
= − γl

1− p + p (H.7)

Pr(It = 0 | It−l = 1) and Pr(It = 0 | It−l = 0)
follow from the law of total probability

Pr(It = 0 | It−l = 1)

= 1− Pr(It = 1 | It−l = 1)

= −γl
p

+ (1− p) (H.8)

Pr(It = 0 | It−l = 0)

= 1− Pr(It = 1 | It−l = 0)

=
γl

1− p + (1− p) (H.9)
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Appendix I. Probability of breach us-
ing a Normal VaR model
with Student-t distributed
returns

Consider a return process

rt = t (v)

√
v − 2

v
, (I.1)

where t (v) is a Student-t distributed random
variable with v degrees of freedom.

We assume that we know the population
mean, µ = 0, and the population standard de-
viation, σ = 1, of the return process, but do not
know the underlying distribution. If we calcu-
late VaR making the mistake of assuming nor-
mally distributed returns as in Equation (D.2),
we will get an underlying probability of breach,
π, different from the target probability, p, used
in the Normal VaR model.

Table I.8: Degrees of freedom given Student-t underly-
ing returns and Normal VaR forecasts with population
parameters

p = 0.01
π 0.015 0.014 0.013 0.012 0.011
v 4.977 7.522 10.920 17.340 36.178

p = 0.05
π 0.025 0.030 0.035 0.040 0.045
v 2.561 2.818 3.218 3.938 5.789

p = 0.10
π 0.050 0.060 0.070 0.080 0.090
v 2.764 3.156 3.807 5.100 8.944

Note: Degrees of freedom, v, are found by solving
Equation (I.2) numerically for given π and p.

To find v given p and π, we solve the follow-
ing equation numerically.

π = Pr(rt < −VaRt(p))

= Fv

(
Φ−1 (p)

√
v

v − 2

)
, (I.2)

where Fv is the c.d.f. of a Student-t distribu-
tion with v degrees of freedom, and Φ−1 is the

inverse c.d.f. of the standard normal distribu-
tion. Table I.8 lists the values of v such that
we get π for a given p.

References

Alexander, C., 2008a. Market Risk Analysis. Vol. IV.
Wiley.

Alexander, C., 2008b. Market Risk Analysis. Vol. II.
Wiley.

Basel Committe on Banking Supervision, 1996a.
Amendment to the Capital Accord to Incorporate
Market Risks. Bank for International Settlements,
Basel.

Basel Committe on Banking Supervision, 1996b. Super-
visory Framework For The Use of “Backtesting” in
Conjunction With The Internal Models Approach to
Market Risk Capital Requirements. Bank for Inter-
national Settlements, Basel.

Basel Committe on Banking Supervision, 2006. Interna-
tional convergence of capital measurement and capi-
tal standards: A revised framework. Bank for Inter-
national Settlements, Basel.

Basel Committe on Banking Supervision, 2011. Basel
III: A global regulatory framework for more resilient
banks and banking systems. Bank for International
Settlements, Basel.

Berkowitz, J., Christoffersen, P. F., Pelletier, D.,
2011. Evaluating Value-at-Risk models with desk-
level data. Management Science 57 (12), 2213–2227.

Bollerslev, T., 1986. Generalized autoregressive con-
ditional heteroskedasticity. Journal of Econometrics
31 (3), 307–327.

Chatfield, C., 1993. Calculating interval forecasts. Jour-
nal of Business and Economic Statistics 11 (2), 121–
135.

Christoffersen, P. F., 1996. Essays on forecasting in eco-
nomics. Ph.D. thesis, Univeristy of Pennsylvania.

Christoffersen, P. F., 1998. Evaluating interval fore-
casts. International Economic Review 39 (4), 841–
862.

Christoffersen, P. F., Pelletier, D., 2004. Backtesting
Value-at-Risk: A duration-based approach. Journal
of Financial Econometrics 2 (1), 84–108.

Clements, M. P., Taylor, N., 2003. Evaluating interval
forecasts of high-frequency financial data. Journal of
Applied Econometrics 18 (4), 445–456.

Dufour, J. M., 2006. Monte Carlo tests with nuisance
parameters: A general approach to finite-sample
inference and nonstandard asymptotics. Journal of
Econometrics 133 (2), 443–477.

Engle, R. F., Manganelli, S., 2004. CAViaR: Con-
ditional autoregressive Value-at-Risk by regression
quantiles. Journal of Business and Economic Statis-
tics 22 (4), 367–381.



24
Nordbø, Røynstrand, and Strat

Evaluating the Power of Value-at-Risk Backtests

Haas, M., 2005. Improved duration-based backtesting
of Value-at-Risk. Journal of Risk 8 (2), 17–38.

Hansen, L. P., 1982. Large sample properties of gener-
alized method of moments estimators. Econometrica
50 (4), 1029–1054.

J. P. Morgan, 1996. RiskMetrics, 4th Edition. New
York.

Kupiec, P., 1995. Techniques for verifying the accuracy
of risk measurement models. Journal of Derivatives
3, 73–84.

Nakagawa, T., Osaki, S., 1975. The discrete Weibull dis-
tribution. IEEE Transactions on Reliability R-24 (5),
300–301.

Pérignon, C., Smith, D. R., 2010. The level and qual-
ity of Value-at-Risk disclosure by commercial banks.
Journal of Banking and Finance 34 (2), 362–377.

Self, S. G., Liang, K.-Y., 1987. Asymptotic properties of
maximum likelihood estimators and likelihood ratio
tests under nonstandard conditions. Journal of the
American Statistical Association 82 (398), 605–610.

Taylor, S. J., 2005. Asset price dynamics, volatility, and
prediction. Princeton University Press.


	Title Page
	masteroppgave.pdf

