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Abstract

In this thesis we analyze the real options to shutdown, startup and abandon gas fired
power plants. We assume that the plants’ status for a given year is either operating,
in standby or retired. Their status is further dependent on a stochastic two-factor
model for the spark spread process. The analysis is made possible by data on
operating status as reported annually to the US Energy Information Administration.
We estimate the irreversible costs of switching by structural estimation of a real
options model. The proposed model also indicates the spark spread triggers and
option values for the switching decisions.
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Sammendrag

I denne avhandlingen analyserer vi realopsjoner knyttet til å midlertidig stenge ned,
starte opp og endelig legge ned gasskraftverk. Vi antar at statusen til et kraftverk
i et gitt år er enten i drift, i standby eller nedlagt. Statusen er avhengig av en
stokastisk to-faktor modell for kraftverkets spark spread. Analysen er muliggjort
med data for kraftverkenes årlige status som hvert år rapporteres til US Energy
Information Administration. Ved å benytte strukturell estimering av en realopsjons-
modell, estimerer vi de irreversible kostnadene som inntreffer ved en statusendring.
Den foreslåtte modellen gir også teoretiske triggerverdier for når statusendringer bør
inntreffe i henhold til realopsjonsteori, samt opsjonsverdiene som ligger i muligheten
til å endre status.
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1 Introduction
In the presence of irreversibility and uncertainty, switching decisions - as typically made in
natural resource industries - can be considered real options. Real options theory values the
opportunity to invest in, shutdown, restart, or abandon production assets, as call and put
options on the present value of the future cash flows of the assets. According to theory, the
decision maker should delay incurring irreversible switching costs until a significant gap
develops between the switching decision’s expected payoffs and costs. Higher uncertainty
induces an incentive to wait, and the gap between the expected payoffs and costs necessary
to trigger the switching decision should widen. While the theory of real options is well
established as a framework for prescribing optimal decision making, empirical verification
of the theory remain scarce. This is mainly due to a lack of data.

Fleten, Haugom, and Ullrich (2012) examine empirically the real options to shutdown,
startup, and abandon peak power plants. The exercise is made possible by a dataset with
detailed information for 1,121 individual US power plants for the period from 2001 to
2009. Their work is close in spirit to that of Moel and Tufano (2002).

Our contribution is to provide a structural model for the data Fleten et al. (2012) are
investigating and present estimates of the switching costs. The proposed model is built
on the ideas from the infinite resource case in Brennan and Schwartz (1985). By means
of structural estimation we estimate the costs of switching1. Moreover, we calculate the
trigger levels at which switching decisions occur and the resulting option values.

The remainder of the thesis is structured in the following way. Section 2 gives a review
of the literature. In section 3 an overview of the data is provided. Section 4 explains the
methodology. The results are presented in section 5 and discussed in section 6. Section 7
concludes.

2 Literature review
The real options literature rationalizes how firms should time investments in the face of ir-
reversible investment costs and uncertainty over the future rewards from the investments.
Arrow (1968) introduces one of the first models for optimal capital policy concerning irre-
versible investments. Since then real options theory has primarily been applied to natural
resource industries (see Brennan and Schwartz (1985)), in discussions of growth options
as sources of firm value (compare Myers (1977), Kester (1984) and Pindyck (1988)), and
as a technique to value projects (see McDonald and Siegel (1986) and Paddock, Siegel,
and Smith (1988)). The considerable research within the field of real options has culmi-
nated in introductory textbooks, such as Dixit and Pindyck (1994) and Trigeorgis (1996).
Despite the theoretical contributions to the literature and the vast number of applications
that assume firms optimally make decisions in the presence of uncertainty, little empirical
evidence has been provided on real options effects.

2.1 Empirical verification of real options theory
Empirical studies of real options explaining asset prices are found in Quigg (1993) and
Davis (1996). These papers suggest that real options models are able to explain the ob-

1By switching costs, we refer to the restart, shutdown and abandonment cost. In addition, the
maintenance costs of being in standby are included in this definition as they are a direct result of the
decision to change status.
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served market prices for land and minerals, respectively. Studies that empirically examine
whether investments respond to changes in uncertainty typically focus on natural resource
industries. Hurn and Wright (1994) and Dunne and Mu (2010) investigate the impact of
price volatility on offshore oil field and refinery investments. Both papers use the historic
realized variance of commodity prices as the uncertainty measure. In contrast, Kellogg
(2010) uses implied volatility to measure expected price volatility. He finds that Texas
oil companies reduce their drilling activity when volatility increases. The magnitude of
this change is deemed to be consistent with real option theory. Kellogg (2010) further
discusses why these real options effects are observed:

Why might these estimates of firms’ responses to changes in expected volatil-
ity accord so well with theory? Given the small size of the majority of these
firms, it seems unlikely that they are formally solving Bellman equations. How-
ever, they may have developed decision heuristics that roughly mimic an op-
timal decision-making process. Moreover, the firms have a strong financial
incentive to get their decision-making at least approximately right(Kellogg,
2010, p. 30).

Heggedal, Linnerud, and Fleten (2011) examine whether uncertainty with respect
to the introduction of a market for renewable energy certificates affected the timing of
investments in small hydro power plants in Norway. They conclude that investors holding
a portfolio of licenses during the time period from 2001 to 2009 act in line with real
options theory, and uncertain climate policy decisions delay their investment rate.

The predictions of the Brennan and Schwartz (1985) real options model are empirically
evaluated in Moel and Tufano (2002). They examine the shutdown and startup decisions
for 285 gold mines from 1988 to 1997. The empirical data is found to be well described
by the real options model. In a similar way, Fleten et al. (2012) examine the real options
to shutdown, startup, and abandon existing peak power plants, and find evidence of real
options effects, particularly for shutdown and abandonment decisions. Their work differs
from that of Moel and Tufano (2002) in three aspects. They examine peak power plants
rather than gold mines, explicitly take into account the decision to abandon a plant, and
include measures of regulatory uncertainty.

2.2 The real options to shutdown, startup and abandon
Brennan and Schwartz (1985) is the pioneering article on the joint decisions to invest and
abandon. They establish a general model of the decision to shutdown, startup and aban-
don a mine producing a natural resource whose price are assumed to follow a geometric
Brownian motion. Several authors have argued that mean-reverting price processes, in-
stead of geometric Brownian motion based models, are more appropriate for commodities
(see for example Cortazar and Schwartz (1994) and Smith and McCardle (1998)).

2.2.1 Spark spread models with short and long term uncertainty

Schwartz and Smith (2000) develop a two-factor model where the short term deviations
are modeled with a mean-reverting process, and the equilibrium price evolves according to
an arithmetic Brownian motion. Näsäkkälä and Fleten (2005) and Fleten and Näsäkkälä
(2010) use this to model the spark spread, defined as the difference between the price
of electricity and the cost of gas used for the generation of electricity, in order to value
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a gas fired power plant. By using the spark spread process they have a single reference
price process for gas fired power plant investments. When electricity and gas processes are
used separately there is no such reference price, compare Deng, Johnson, and Sogomonian
(2001).

In the two-factor model for the spark spread, the short term deviations reflect non-
persistent changes, e.g. changes in the demand resulting from variations in the weather.
The equilibrium price reflects fundamental changes that are expected to persist, e.g.
expectations regarding the discovery of natural gas (Näsäkkälä and Fleten, 2005). Other
two-factor models with long and short term factors are found in Ross (1997) and Pilipović
(1998). The spark spread is the sum of a short term deviation and an equilibrium price,
and can be positive or negative. Näsäkkälä and Fleten (2005) thus express it as

S(t) = χ(t) + ξ(t), (1)

where χ(t) is the short term deviation from the equilibrium price ξ(t).
The short term deviation reverts toward zero, following an Ornstein-Uhlenbeck process

dχ(t) = −κχ(t)dt+ σχdBχ(t), (2)

The equilibrium price follows an arithmetic Brownian motion process

dξ(t) = µξdt+ σξdBξ(t), (3)

where κ, σχ, σξ and µξ are constants. The standard Brownian motions, Bχ(t) and Bξ(t),
are correlated according to ρdt = dBχ(t)dBξ(t).

In Schwartz and Smith (2000) it is shown that the dynamics given in equations 1-
3, imply that the spark spread is normally distributed. Hence, the expected value and
variance are given by

Et[S(t)] = e−κ(T−t)χ(t) + ξ(t) + µξ(T − t) (4)

and

V art(S(t)) =
σ2
χ

2κ(1− e−2κ(T−t)) + σ2
ξ (T − t) + 2(1− e−κ(T−t))ρσξσχ

κ
(5)

2.2.2 The value of an operating plant

An increase in the variability of the spark spread increases the value of up and down
ramping, making a peak power plant more valuable. On the other hand, uncertainty
also delays investments, compare Dixit and Pindyck (1994). In their numerical example
Näsäkkälä and Fleten (2005) illustrate the relative strengths of these opposite effects.
The expression that is derived in Näsäkkälä and Fleten (2005) for the value of an ideal
peak plant is given as
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V (χ(t), ξ(t)) = C
∫ T

t
e−r(s−t)


√
V art(S(s))
√

2π
e
− (EC−Et[S(s)])2

2V art(S(s)) (6)

+ (Et[S(s)]− EC) Φ
Et[S(s)]− EC√

V art(S(s))

 ds− G

r

(
1− e−r(T−t)

)

where C is the capacity of the plant, EC is the emission cost, G is the fixed costs of
running the plant, (T − t) is the remaining lifetime of the plant, and Φ is the cumulative
distribution function. The expected value and variance of the spark spread, Et[S(s)] and
V art(S(s)), are given by equations 4 and 5, respectively.

Deng and Oren (2003) find that the operational characteristics affect the valuation of a
power plant to different extents, depending on the operating efficiency of the power plant
and the assumptions about the electricity and the generating fuel prices. The impacts of
physical operating characteristics on the power plant valuation are generally found to be
far more significant under mean-reversion models than they are under geometric Brownian
motion price models (Deng and Oren, 2003).

2.2.3 Optimal switching of status

There is a large body of literature analyzing the problem of optimal switching, either from
a theoretical perspective or aiming at specific applications. Optimal switching among a
number of alternatives in response to changing economic conditions can be viewed as a
set of linked or compound options. Each switch is an exercise of an option, and each
switch yields an asset that combines a cash flow with the option of switching again.
Consequently we have compound options that need to be priced simultaneously (Dixit
and Pindyck, 1994).

One of the earliest works on optimal switching is by Mossin (1968) who develop a
model where operating revenue follows a trendless random walk with upper and lower
reflecting barriers. There is no possibility of abandonment in the model, but the optimal
revenue levels at which it is optimal to shutdown and startup are calculated. The more
general model of Brennan and Schwartz (1985) includes the possibility of shutting down
as well as active operation and abandonment. According to Dixit and Pindyck (1994), the
model of Brennan and Schwartz (1985) confuse the transition to the two states from an
active state, by using the same lower threshold symbol for shutdown and abandonment.
As maintenance costs are assumed to be zero in their numerical solution, abandonment
will never be considered in the Brennan and Schwartz (1985) model. Hence, only switches
between an operating and a suspended state are considered. A more coherent analysis
is found in the subsequent work of Dixit (1989) where the entry and exit decisions are
isolated from issues of lay-up or finite stocks.

Recent work on optimal switching includes that of Adkins and Paxson (2011). They
study optimal replacement and abandonment decisions for real assets, when both revenues
and costs are uncertain and deteriorate with age. A quasi-analytical model is derived
that is thought sufficiently flexible to deal with other real options models involving two
variables.
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2.3 Structural estimation of real options models
The main focus in the real options literature has been on normative models of strategic
and operating flexibility in capital budgeting decisions under uncertainty (Gamba and
Tesser, 2009). From a descriptive point of view, structural estimation could be applied to
assess the empirical validity of a real options model, as is the case of financial derivatives
models. Estimating structural models can however be computationally difficult. For
example, dynamic discrete choice models are commonly estimated using the nested fixed
point algorithm developed by Rust (1987). This requires solving a dynamic programming
problem thousands of times during estimation and numerically maximizing a nonlinear
likelihood function. Kellogg (2010) employs the nested fixed point routine as a means to
empirically verify a real options model.

According to Gamba and Tesser (2009) the lack of descriptive contributions to the
literature is generally due to two related challenges of real options models. Firstly, the
underlying real assets are often not traded and their value is thus not observed. Secondly,
some of the drivers may be unrelated to price but related to uncertainty in quantity.
Gamba and Tesser (2009) propose an approach for structural estimation of real options
models where the procedure allows for unobserved heterogeneity of firms. Unobserved
heterogeneity implies that different firms, although in the same industry, may have dif-
ferent parameters for the same objective functions (Gamba and Tesser, 2009). As such,
the approach is an extension of the nested fixed point algorithm.

One of the concerns with the nested fixed point algorithm is the excessive amount
of computation demanded. Recent research proposes computationally simple estimators
for structural models using a two-step approach that is computationally light and often
requires minimal parametric assumptions. An example is mathematical programming with
equilibrium constraints as described in Su and Judd (2011) and applied by Vitorino (2011).
Since this approach is reliable and has speed advantages, structural models may become
more accessible to a larger set of researchers (Su and Judd, 2011).

3 Data
Fleten et al. (2012) have collected detailed information on 1,121 individual US power
plants for the period from 2001 to 2009, a total of 8,189 plant-year observations. This
data is unique in its scope and level of detail, and is our main source of data. When
appraising this data, we only consider the data for plants that are situated in the PJM
interconnection and that run on natural gas. We select the 2004-2006 time frame due to
availability of electricity futures data, compare the discussion in section 6.1.

3.1 Futures prices of electriciy and natural gas
The spark spread parameters - κ, ρ, σχ, σξ, µξ, χ0 and ξ0 - should ideally be estimated
on a continuous time basis as more and more price information will be available to the
decision maker. Furthermore, since each generator has its own variable non-fuel cost and
heat rate, the data series for forward prices of the spark spread should be calculated on
an individual generator basis2.

2The formulae for calculating the spark spread is S=Se-KHSg-V OM where Se and Sg are the prices of
electricity and natural gas, respectively, and KH is the heat rate of the generator given as the reciprocal
of its efficiency. V OM denotes the non-fuel costs, i.e. the variable operation and maintenance costs.
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However, given the resolution of data on the status changes in Fleten et al. (2012),
it is sufficient to estimate the spark spread parameters at three instances in time, i.e.
one for each of the reported time periods 2003-2004, 2004-2005, 2005-2006, compare
tables 3 and 4. Since the Form 8603 is collected by the Energy Information Administration
in mid-February each year, see Fleten et al. (2012), we choose to estimate the spark
spread parameters in April in the three time periods. We merge the generators into
nine cost and efficiency specific groups, thereby limiting the number of times the spark
spread parameters need to be estimated. There are 594 peak plants located in the PJM
interconnection that run on natural gas, and these plants are distributed across the nine
cost and efficiency specific groups.

Figures 1(a) and 1(b) show futures prices of electricity and natural gas4, respectively,
for the time period 2003-2006. These time series are used to calculate the time series for
spark spread forward prices in figure 2(a) during the same time period. Figure 2(b) shows
the spark spread forward curve as of April 2006.

(a) Historical futures prices of electricity from the
PJM interconnection

(b) Historical futures prices of natural gas from the
Henry Hub

Figure 1: (a) shows the historical futures prices of electricity in the PJM inter-
connection from April 2003 to April 2006. (b) depicts the futures prices of natural
gas from the Henry Hub from April 2003 to April 2006. Constracts maturing in 1
and 10 months are shown for both commodities.

3Form 860 contains detailed data for nearly every power plant in the United States, both existing and
planned.

4Data from Ecowin Reuters and New York Mercantile Exchange.
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(a) Historical forward prices of the spark spread (b) Forward curve of the spark spread

Figure 2: (a) shows the historical forward prices of the spark spread for the PJM
interconnection and Henry Hub natural gas from April 2003 to April 2006. (b)
illustrates the linear trend in the forward curve of the spark spread as of April 2006.
A plant efficiency of 29.3% and V OM of 4.6 $/MWh are used to obtain the spark
spread forwards.

We randomly select generator #6407 from the nine cost and efficiency specific groups.
Generator #6407 belongs to a group with an efficiency of 29.3% and variable operation
and maintenance costs V OM of 4.6 $/MWh. The calculation of the spark spread for-
wards in figure 2 are based on the characteristics of this group. Even though we merge
the generators into nine groups based on V OM and efficiency, the generators still have
individual values for capacity C, fixed operation and maintenance costs G, and operating
status (OP for operating, SB for standby, and RE for retired).

In the remainder of the thesis we report and discuss the results of generator #6407,
thereby providing consistency and preserving space. Note that the results from the struc-
tural estimation come for all the plants in the dataset. The operating characteristics of
generator #6407 are summarized in table 1.

Table 1: Operating characteristics of generator #6407

Parameter Efficiency V OM G C Status
Unit % $/MWh m$/yr TWh/yr 2003-2004-2005-2006

29.31 4.6 0.1638 0.3986 OP→ SB→ OP→ SB

Industry convention is to quote G in $/kW-yr and C in MW, but in order to apply
these parameters in equation 6 they are converted to m$/yr and TWh/yr, respectively.

During the time period from 2001 to 2009, the interest rate on 10-year US Treasury
bonds varies from 4% to 6% with a mean of 4.7%. Hence, we set the risk-free interest
rate to 4.7%.

3.2 Status changes of US power plants
The plants in the dataset from Fleten et al. (2012) are collected from three US electricity
hubs. Summary statistics are presented in table 2, while status changes for the plants are
shown in tables 3 and 4.
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Table 2: Plant Summary Statistics

Age (yrs) Size (MW) Efficiency
NOBS 1,121 1,121 1,121
Mean 18.6 43.1 24.7%
Stdev 14.1 41.0 4.6%
Min 0 0.4 5.4%
Max 60 246.0 41.8%

Table 2 presents summary statistics for the age (to the nearest year), size (MW), and
efficiency (%) of plants in the sample. The ages are calculated based upon the first year
a plant appears in the sample.

Table 3: Shutdown: Transitions from OP to OP/SB by Year

from year to year OP SB Total
2001 2002 695 2 697
2002 2003 803 1 804
2003 2004 808 43 851
2004 2005 820 12 832
2005 2006 829 16 845
2006 2007 848 0 848
2007 2008 851 2 853
2008 2009 885 0 885

Total 6,539 76 6,615

Table 3 shows the number of plants classified as operating (OP) in the from year and
either operating (OP) or shutdown (SB) in the to year

Table 4: Startup and Retirement: Transitions from SB to OP/SB/RE by
Year

from year to year OP SB RE Total
2001 2002 60 221 1 282
2002 2003 47 198 1 246
2003 2004 9 143 49 201
2004 2005 22 153 13 188
2005 2006 1 158 6 165
2006 2007 6 173 0 179
2007 2008 32 139 2 173
2008 2009 7 127 6 140

Total 184 1,312 78 1,574

The number of plants classified as shutdown (SB) in the from year and either operating
(OP), shutdown (SB), or retired (RE) in the to year are accounted for in table 4.
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4 Methodology

4.1 Estimating the spark spread parameters
Since neither the short term deviation χ(t) nor the equilibrium price ξ(t) can be observed
directly, estimates of the short and long term dynamics need to be inferred from data that
are somehow dependent on the dynamics in question. Näsäkkälä and Fleten (2005) point
out that the difference in electricity and gas futures prices is the risk-adjusted expected
future spark spread value. Thus futures prices can be used to estimate the risk adjusted
dynamics of short term deviations and equilibrium price. Since expected short term
variations revert toward zero when the maturity increases, the long maturity futures will
contain information about the equilibrium price. When the time to maturity is short, the
short term variations may be nonzero. The difference of long and short maturity forwards
therefore yields information about the short term dynamics (Näsäkkälä and Fleten, 2005).

The parameters for mean-reversion κ, correlation ρ, and volatility σχ and σξ, are
estimated from the forward price history with a Kalman filtering procedure5. The long-
term drift µξ is then estimated from long term forwards by means of a linear regression.
Finally, the current short term deviation χ0 and equilibrium price ξ0 are chosen so that
the expected value fits the forward curve. For a thorough review of the procedure, we
refer to Schwartz and Smith (2000) and Näsäkkälä and Fleten (2005).

4.2 Valuation of an operating peak plant
For the purpose of parsimony and tractability in the analysis, the lifetime of the peak
power plants are assumed to be infinite. Since power plants tend to be refurbished and
upgraded, the engineered lifetime of approximately 25 years is often greatly extended in
practise6. In principle, our analysis is equivalent to the infinite resource case of Brennan
and Schwartz (1985). Infinite lifetime implies that the value of an operating plant is given
by equation 6 when T approaches infinity. However, there is no analytical solution to this
integral and in section 4.2.2 we thus resort to numerical methods. This is unfortunate
as it reduces the speed of computation in the structural estimation, see section 4.4. In
an attempt to bypass numerical solutions, we try to value an operating peak plant in
accordance to the framework of McDonald and Siegel (1986).

4.2.1 Quasi-analytical solution

McDonald and Siegel (1986) value a project as a simple contingent claim where the owner
of the project has an infinite set of options on the underlying asset. Alternatively, the
option values can be calculated using the standard Black-Scholes formulae, and by sum-
ming these values over time the project value can be obtained. In our case, the owner of
an operating power plant has an infinite set of European call options on the spark spread.
Instead of the contingent claims method, we use dynamic programming to solve for the
value of the plant. Since the spark spread is modeled by a two-factor model, the value of

5A Kalman filter procedure recursively computes estimates for unobserved state variables based on
observations that depend on these state variables. In Appendix A we have included the R code for the
Kalman filter.

6For further justifications of the assumption about infinitely lived power plants, compare the discussion
in Fleten and Näsäkkälä (2010). A convenient analytical alternative is to model the lifetime of the plant
as random following a Poisson process, see e.g. Dixit and Pindyck (1994, chap. 6). In effect, this would
raise the required return to equity.
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the operating power plant is a function of short term deviation χ(t) and equilibrium price
ξ(t), i.e. V (χ(t), ξ(t)) assuming the fixed costs of running the plant G can be neglected.

Multivariate Itô’s Lemma7 is used to expand dV (χ(t), ξ(t)) and it gives the following
relation

dV (χ, ξ) = Vχ(χ, ξ)dχ+ Vξ(χ, ξ)dξ + 1
2Vχχ(χ, ξ)(dχ)2 (7)

+ 1
2Vξξ(χ, ξ)(dξ)

2 + Vχξ(χ, ξ)dχdξ

Inserting equations 2 and 3 into 7 gives

dV (χ, ξ) = Vχ(χ, ξ) (−κχdt+ σχdBχ) + Vξ(χ, ξ) (µξdt+ σξdBξ) (8)

+ 1
2Vχχ(χ, ξ)σ2

χdt+ 1
2Vξξ(χ, ξ)σ

2
ξdt+ Vχξ(χ, ξ)ρσχσξdt

Taking expectations on both sides yields

E[dV (χ, ξ)] = Vχ(χ, ξ) (−κχdt) + Vξ(χ, ξ) (µξdt) (9)

+ 1
2Vχχ(χ, ξ)σ2

χdt+ 1
2Vξξ(χ, ξ)σ

2
ξdt+ Vχξ(χ, ξ)ρσχσξdt

Bellman’s principle of optimality states that over a time interval dt, the total expected
return on the value of the project, rV (χ, ξ)dt, is equal to the sum of its expected rate of
capital appreciation and the dividends from holding the project, i.e.

rV (χ, ξ)dt = E[dV (χ, ξ)] + πdt (10)

where we use the risk-free rate r as the discount rate (due to the estimation of risk-
adjusted parameters in the spark spread dynamics) and denote the cash flow from an
operating plant by π.

Equation 9 is inserted into equation 10, and we divide both sides by dt. Then

rV (χ, ξ) = Vχ(χ, ξ) (−κχ) + Vξ(χ, ξ) (µξ) + 1
2Vχχ(χ, ξ)σ2

χ (11)

+ 1
2Vξξ(χ, ξ)σ

2
ξ + Vχξ(χ, ξ)ρσχσξ + π

When rearranging the expression in equation 11 we have the following partial differential
equation (PDE)

1
2
(
Vχχ(χ, ξ)σ2

χ + Vξξ(χ, ξ)σ2
ξ

)
+ Vχξ(χ, ξ)ρσχσξ (12)

+ Vχ(χ, ξ)(−κχ) + Vξ(χ, ξ)(µξ)− rV (χ, ξ) + π = 0
7In mathematics, Itô’s Lemma is used to find the differential of a function of a stochastic process. The

lemma is widely employed in mathematical finance and its best known application is in the derivation of
the Black−Scholes equation used to value options.
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To the best of our knowledge, this PDE cannot be solved analytically. However, if we
set the correlation ρ equal to zero8, we can use the method of separation of variables to
find the homogeneous solution of the form

Vhom(χ, ξ) = J(χ)K(ξ) (13)

i.e. the homogeneous solution of the PDE is the product of a function of χ and a function
of ξ.

After some differential calculus9 equation 13 turns into

Vhom(χ, ξ) = C1χM

(
2κ+ sepconst

4κ ,
3
2 ,
κχ2

σ2
χ

)
e
ξ

σ2
ξ
(−µξ+

√
µ2
ξ
−σ2

ξ
sepconst+2σ2

ξ
r)

(14)

+ C2χM

(
2κ+ sepconst

4κ ,
3
2 ,
κχ2

σ2
χ

)
e
ξ

σ2
ξ
(−µξ−

√
µ2
ξ
−σ2

ξ
sepconst+2σ2

ξ
r)

+ C3χU

(
2κ+ sepconst

4κ ,
3
2 ,
κχ2

σ2
χ

)
e
ξ

σ2
ξ
(−µξ+

√
µ2
ξ
−σ2

ξ
sepconst+2σ2

ξ
r)

+ C4χU

(
2κ+ sepconst

4κ ,
3
2 ,
κχ2

σ2
χ

)
e
ξ

σ2
ξ
(−µξ−

√
µ2
ξ
−σ2

ξ
sepconst+2σ2

ξ
r)

where C1, C2, C3 and C4 are arbitrary constants, and 0 ≤ sepconst ≤ 2r is the separation
constant. M(a, b, z) and U(a, b, z) are the Kummer and Tricomi functions, respectively.
These solve the Kummer equation given as

z
d2w

dz2 + (b− z)dw
dz
− aw = 0 (15)

with a regular singular point at 0 and an irregular singular point at ∞. It has two
linearly independent solutions given by the Kummer M(a, b, z) and Tricomi U(a, b, z)
functions. See Abramowitz and Stegun (1972, chap. 13) for definitions of the confluent
hypergeometric functions.

It can be shown that the particular solution to equation 12 when ρ = 0 is

Vpart(χ, ξ) = C

(
χ

r + κ
+ ξ

r
+ µξ
r2

)
(16)

where C is the capacity of the plant, χ is the short term deviation in the spark spread,
κ is the rate of mean reversion, ξ is the equilibrium price, µξ is the long term drift, and
r is the risk-free interest rate.

In line with Dixit and Pindyck (1994, chap. 6) the value of the plant must be consid-
ered for two cases, depending on whether the spark spread χ+ξ exceeds emission costs E
or not. When χ+ξ < E and either χ or ξ, or both, move towards -∞, the value of the
option to resume operation tends towards zero. Conversely, when χ+ξ > E and either
χ or ξ, or both, move towards ∞, the value of the option to suspend operation tends
towards zero. See appendix B for a complete derivation of the quasi-analytical solution.

8The two-factor model of Pilipović (1998) also neglects correlation.
9Dockendorf and Paxson (2010) provide a discussion on how to solve for functions such as J(χ) in

equation 13.
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4.2.2 Numerical solution

An alternative to the quasi-analytical approach in section 4.2.1, is to obtain the value
of an operating plant by solving the integral in equation 6 numerically. A step-by-step
derivation of this expression is found in appendix C. In the real options model in section 4.3
we need to differentiate the expression in equation 6 with respect to ξ. After differentiating
we have

Vξ(t) (χ(t), ξ(t)) = dV (χ(t), ξ(t))
dξ(t) (17)

= C
∫ T

t
e−r(s−t)

− (Et[S(s)]− EC)
√

2π
√
V art(S(s))

e
− (EC−Et[S(s)])2

2V art(S(s))

+ Φ
Et[S(s)]− EC√

V art(S(s))

+ (Et[S(s)]− EC)
√

2π
√
V art(S(s))

e
− (EC−Et[S(s)])2

2V art(S(s))

 ds

= C
∫ T

t
e−r(s−t)

Φ
Et[S(s)]− EC√

V art(S(s))

 ds

where C is the capacity of the plant, EC is the emission cost, (T − t) is the remaining
lifetime of the plant, and Φ is the cumulative distribution function. The expected value
and variance of the spark spread, Et[S(s)] and V art(S(s)), are given by equations 4 and
5, respectively.

As is evident from equation 17 and the nature of the cumulative distribution function,
an increase (decrease) in the equilibrium price ξ, will increase (decrease) the value of the
operating plant V (χ(t), ξ(t)). In other words, the higher the long term spark spread, the
more valuable is the operating plant.

A numerical method suitable for solving the integrals in equation 6 and 17 is the
Gauss Lobatto rules, see for example Weisstein (2012). In appendix D we have written
the algorithm in C++10.

4.3 Modeling the real options to shutdown, startup and aban-
don

When modeling the real options to shutdown, startup and abandon we assume that the
switching decisions are made as a function of equilibrium price and occur instantly. In
other words, the current short-term realization χ(t) is disregarded in the switching de-
cisions. In theory, switching decisions under two-factor dynamics depend on both short
and long term uncertainty. In practice however, short term effects diminish quickly and
have insignificant bearing on the decision to switch operating status.

This assumption accords well with the logic applied for the investment decision in
Näsäkkälä and Fleten (2005) and Fleten and Näsäkkälä (2010). The parameters governing

10This script can be called as a user-defined function when performing structural estimation in AMPL.
Depending on the spark spread estimates, a smooth shape of the integrands in equations 6 and 17 is
possible. Thus simpler numerical methods, such as composite Simpson’s rule, can be applied without
affecting the accuracy of the numerical solution. The advantage is that such simple algorithms can be
implemented directly in AMPL, thereby avoiding the need for user-defined functions.
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the short term variations, i.e. mean reversion κ and short term volatility σχ, still affect
the value of the plant, compare section 4.2. Hence, the short term parameters have an
indirect effect on the switching decisions.

The motivation for omitting the short term realization when switching decisions are
made is due to the fact that status switches are long term decisions, and switching of
operating status is never made due to non-persistent spikes in the price process11.

An operator decides whether the peak power plant should be operating, in standby,
or retired. When the plant is operating its strategic value is the sum of the value of the
operating plant and the option to shutdown. A plant that is in standby has a strategic
value that consists of two options - an option to startup and an option to abandon
operation. There is also a continuous maintenance cost related to being in standby, which
we denote by M . When a plant is retired there is no going back, and the operation is
thus permanently shut down. In figure 3, a principle drawing is made on how the real
options model may work over time.

Figure 3: The real options to shutdown, startup and abandon - principle
drawing

The switching costs are denoted by E, R, and S, representing the costs of shutting
down, restarting and abandonment, respectively. While the interpretations of E and R
are as positive costs, S can be considered a salvage value, allowing it to be both negative
and positive. Figure 4 depicts the sequence of switching costs E, R, and S as well as the
continuous maintenance costs M . Note that switching from operating to retired status
will never occur as this is inherent in the dataset. We dropped the few occurrences of
OP→RE as being driven by something other than spark spread economics.

11Consequently, the spark spread is only governed by the equilibrium price process given in equation 3.
In discrete time this process is equivalent to ∆ξ = µξ ∆t + σξ

√
∆t ε where ε ∼ N(0, 1).
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Figure 4: Sequence of switching costs

According to the framework of Dixit and Pindyck (1994, chap. 7) three value-matching
and three smooth-pasting conditions can now be formulated. At the boundary, the value-
matching conditions ensure that the values in two adjacent states are equal, and the
smooth-pasting conditions are first order necessary conditions that avoid the optimal
solution being at a kink. Assuming for now that we know the costs, M , E, R and
S, we have a system of six equations with six unknowns. The six unknowns are the
three trigger values for equilibrium price, ξshutdown, ξstartup, and ξabandon, and the three
arbitrary constants related to the three option values. The option values can be derived
and analyzed using a contingent claims or a dynamic programming approach as is done
in appendix E.

The switching decisions are made on the basis of equilibrium price. Hence, the shut-
down decision is evaluated at the spark spread value S(t) = ξshutdown in time t and
bounded by

V (χ, ξ) +B2e
β2ξ = D1e

β1ξ +D2e
β2ξ − M

r
− E (18)

d(V (χ, ξ) +B2e
β2ξ)

dξ
=
d
(
D1e

β1ξ +D2e
β2ξ − M

r
− E

)
dξ

(19)

where B2, D1 and D2 are arbitrary constants that are to be determined. β1 and β2 are
the positive and negative root, respectively, of the fundamental quadratic

1
2σ

2
ξβ

2 + µξβ − r = 0 (20)

The left-hand side of the value-matching condition, see equation 18, is the sum of the
value of the operating plant and the option to shutdown. At S(t) = ξshutdown this sum
must equal what the operator receives in the standby state minus the switching cost, i.e.
the sum of the option to restart and the option to abandon minus maintenance costs and
the shutdown cost, which is the right-hand side of equation 18. The subsequent smooth-
pasting condition ensures that the equality holds when differentiating with respect to
equilibrium price.

The decision to startup is evaluated at S(t) = ξstartup in time t and constrained by

19



D1e
β1ξ +D2e

β2ξ − M

r
= V (χ, ξ) +B2e

β2ξ −R (21)

d
(
D1e

β1ξ +D2e
β2ξ − M

r

)
dξ

=
d
(
V (χ, ξ) +B2e

β2ξ −R
)

dξ
(22)

The left-hand side of equation 21, is the sum of the option to restart and the option
to abandon minus maintenance costs. At S(t) = ξstartup this sum must equal what the
operator receives in the operating state minus the switching cost, i.e. the sum of the
value of the operating plant and the option to shutdown minus the restart cost, which
is the right-hand side of equation 21. The smooth-pasting condition makes sure that the
equality holds when differentiating with respect to equilibrium price.

The decision to abandon is evaluated at S(t) = ξabandon in time t and bounded by

D1e
β1ξ +D2e

β2ξ − M

r
= S (23)

d
(
D1e

β1ξ +D2e
β2ξ − M

r

)
dξ

= d (S)
dξ

(24)

In equation 23 the left-hand side is the sum of the option to restart and the option
to abandon minus maintenance costs. At S(t) = ξabandon this sum must equal what the
operator receives in the retired state, i.e. the salvage value, which is the right-hand side
of equation 23. In the smooth-pasting condition the equality holds when differentiating
with respect to equilibrium price.

Taking derivatives and inserting trigger values of equilibrium price, we have the fol-
lowing system of equations

V (χ, ξshutdown) +B2e
β2ξshutdown = D1e

β1ξshutdown +D2e
β2ξshutdown − M

r
− E (25)

Vξ(χ, ξshutdown) + β2B2e
β2ξshutdown = β1D1e

β1ξshutdown + β2D2e
β2ξshutdown (26)

D1e
β1ξstartup +D2e

β2ξstartup − M

r
= V (χ, ξstartup) +B2e

β2ξstartup −R (27)

β1D1e
β1ξstartup + β2D2e

β2ξstartup = Vξ(χ, ξstartup) + β2B2e
β2ξstartup (28)

D1e
β1ξabandon +D2e

β2ξabandon − M

r
= S (29)

β1D1e
β1ξabandon + β2D2e

β2ξabandon = 0 (30)

The structural estimation is constrained by the above real options model.

4.4 Structural estimation
According to Rust (1987), the idea of structural estimation is to employ a micro-theoretic
model to derive aggregate investment parameters from individual optimizing behavior.
Rust (1987) further provides a strategy for maximum likelihood estimation of single-agent
dynamic programming models, known as the nested fixed-point algorithm. Su and Judd
(2011) argue that structural estimation of economic models is an important technique for
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analyzing economic data but that the technique - as described in Rust (1987) - is often
viewed as computationally difficult. They claim that even though optimization is used
heavily in econometrics, there is a large gulf between current practice in econometrics
and the methods found in the mathematical programming literature. Thus Su and Judd
(2011) propose a mathematical programming approach where structural parameters and
endogenous economic variables are chosen so as to maximize the likelihood of the data.
The optimization problem is subject to the constraints that the endogenous economic
variables are consistent with an equilibrium for the structural parameters. When formu-
lated in this way, it is evident that we have to define the likelihood (the objective function)
and the equilibrium constraints, and submit this problem to one of the state-of-the-art
optimization solvers12(Su and Judd, 2011).

In sections 4.4.1 - 4.4.3 we perform the structural estimation by means of a mathemat-
ical programming method. Inspired by the real options model in Brennan and Schwartz
(1985), Gamba and Tesser (2009) find the switching costs of the gold mines through struc-
tural estimation. As discussed in section 4.2, the Brennan and Schwartz (1985) model is
in essence similar to our real options model. While Gamba and Tesser (2009) maximize
the value of the mines by finding the implicit sequence of optimal decision making, we
formulate the real options explicitly, compare the system of equations in section 4.3. Not
only will this allow us to estimate the switching costs, but also the trigger levels and option
values to shutdown, startup and abandon. To be able to compare the two approaches, we
briefly formulate our model in the framework of Gamba and Tesser (2009) in appendix F.

4.4.1 Objective function

The objective function may involve a maximum likelihood estimator as in equation F.13
in appendix F. In order to find such an estimator, we need to assume a distribution for
the error terms, and we also need to figure out where to put the error terms. A possibility
is to include normally distributed error terms in conjunction with the switching costs, i.e.
the structural parameters. However, since there are few time observations per plant, we
formulate an alternative objective function where we minimize penalties. See appendix G
for the AMPL code.

A penalty δ is introduced whenever the data deviates from the real options model in
section 4.3. We minimize these penalties δt,a,i ≥ 0, i = 1, . . . , 6 across time t and plants
a. As such, the objective function is related to the method of least absolute deviation.
The logic is explained in the pseudo code below.

12In this thesis we use AMPL, a comprehensive and powerful algebraic modeling language for nonlinear
optimization problems, and we let AMPL communicate with the nonlinear solver KNITRO, see for
instance Fourer, Gay, and Kernighan (1993) and Byrd, Nozedal, and Waltz (2006).
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Minimize
δt,a,i

Ta∑
t=2

P∑
a=1

6∑
i=1

δt,a,i

subject to if OPt−1 → OPt

then δt,a,1 = max(ξshutdownt,a − ξt,a, 0)
else if OPt−1 → SBt

then δt,a,2 = max(ξt,a − ξshutdownt,a , 0)
else if SBt−1 → OPt

then δt,a,3 = max(ξstartupt,a − ξt,a, 0)
else if SBt−1 → SBt

then δt,a,4 = max(ξt,a − ξstartupt,a , 0) and δt,a,5 = max(ξabandont,a − ξt,a, 0)
else

then δt,a,6 = max(ξt,a − ξabandont,a , 0)

As an example, consider what happens to plant a that is observed to be in standby
(SB) in (t − 1) and operating (OP) in t. If the equilibrium price ξt,a of plant a is above
plant a’s trigger level for startup ξstartupt,a at time t, nothing happens and the penalty δt,a,3
is zero by default. In other words, the plant operator decides to restart the plant and
behaves in accordance with real option theory. However, if the equilibrium price ξt,a of
plant a is below plant a’s trigger level for startup ξstartupt,a at time t, a penalty δt,a,3 is
introduced. The size of the penalty is the deviation of ξt,a from ξstartupt,a , i.e. the plant
operator decides not to restart the plant and acts contrary to real options theory.

4.4.2 Additional constraints

In addition to the system of equations in section 4.3 there are additional constraints that
need to be defined.

Since option values never can be negative, the following constraints are introduced for
the option coefficients

B2 ≥ 0 (31)
D1 ≥ 0 (32)
D2 ≥ 0 (33)

For the trigger values, the logical relationship below must hold

ξstartup ≥ ξshutdown ≥ ξabandon (34)

Uncertainty induces an incentive to wait. Thus there exist relations between the static
NPV trigger values and the dynamic trigger values that emanate from uncertainty in the
future cash flows. See for instance Dixit (1992) for perspectives on these hysteresis effects.
Due to the value of waiting when there is uncertainty, the following relations are in force
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ξshutdown ≤ ξNPV,stop (35)
ξstartup ≥ ξNPV,start (36)

The expressions for ξNPV,stop and ξNPV,start can be found by setting uncertainty to zero,
i.e. V art(S(t)) = 0, for the value of an operating plant, see equation 6. Remember that
no uncertainty means that the option values will be zero, compare appendix E. Using
this, the two NPV trigger values can be derived, and their value is determined by the
following expressions

C

(
χt

r + κ
+ ξNPV,stop

r
+ µξ
r2 −

EC

r

)
− G

r
= −M

r
− E (37)

and

−M
r

= C

(
χt

r + κ
+ ξNPV,start

r
+ µξ
r2 −

EC

r

)
− G

r
−R (38)

The switching costs are constrained by

M ≥ 0 (39)
R ≥ 0 (40)
S ∈ R (41)

Since there is no NPV trigger value for the abandonment decision, we constrain the
salvage value S from above. As explained in figure 4, our real options model do not
consider changes from an operating to a retired status. An economic constraint that
underpins the absence of this status change, is the upper boundary on the salvage value.
Given that the firm is operating, the value of shutting down must always be greater or
equal to the salvage value. If not, it would never be optimal to switch to standby. Hence,
we have the following boundary on the salvage value when the plant is operating

S ≤ D1e
β1ξ +D2e

β2ξ − M

r
− E (42)

4.4.3 Assumptions and approximations

Consistent with industry standards, we assume that both the switching cost of shutting
down E and the emission costs EC are zero. Furthermore, we assume that the restart
cost R, maintenance costs M and salvage value S depend on the linear relations below

R = r1 + r2C + r3SBtime (43)
M = m1 +m2C (44)
S = s1 + s2C + s3Eff (45)
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where C is the capacity of the plant, SBtime is the number of time periods the plant
has been in standby, and Eff is the efficiency of the plant. r1, r2, r3, m1, m2, s1, s2 and
s3 are the structural parameters to be estimated.

The parameters affecting restart cost are size and the number of time periods the
plant has been in standby. So the larger the size and the longer the time in standby, the
higher is the cost of restarting the plant. This intuition relies on positive values of r2 and
r3. We include the constant r1 to account for the potential effect from other explanatory
parameters.

When the plant is in standby, the maintenance costs are dependent on the size of
the plant and a constant term. For positive values of m2, larger plant size gives higher
maintenance costs.

The salvage value depends on the size and efficiency of the plant. Larger plant size
and higher efficiency result in higher salvage value as long as s2 and s3 are positive.
The constant term s1 is included to account for the costs of disabling the generator.
The age of the plant is not included as an explanatory parameter as we believe the
efficiency parameter accounts for the same effects, i.e. new generators generally have
higher efficiency than old ones.

Since the normal cumulative distribution function is not predefined in AMPL, we use
the following approximation from Johnsen, Kotz, and Balakrishnan (1994)

Φ
Et[S(s)]− EC√

V art(S(s))

 ≈ e

2×0.7988
(
Et[S(s)]−EC√
V art(S(s))

)1+0.04417
(
Et[S(s)]−EC√
V art(S(s))

)2



1 + e

2×0.7988
(
Et[S(s)]−EC√
V art(S(s))

)1+0.04417
(
Et[S(s)]−EC√
V art(S(s))

)2

 (46)

The appropriate numerical method for solving the integrals in equations 6 and 17 is
the Gauss Lobatto rules. However, it is more convenient to solve these integrals by means
of the composite Simpson’s rule directly in the optimization problem. The difference in
the numerical values obtained by these two approaches, is neglectable.

5 Results

5.1 Spark spread parameters
We estimate the spark spread parameters for nine groups with varying V OM and effi-
ciency. Generator #6407 belongs to one of these, and the results as of April 2004, April
2005 and April 2006 are summarized in table 5 for this group. The estimated parameters
for the remaining groups are found in appendix H.

Table 5: Spark spread parameters for generator #6407

Parameter r κ ρ σχ σξ µξ χ0 ξ0
Unit $/MWh $/MWh $/MWh $/MWh $/MWh
2004 0.047 4.406 -0.650 30.027 11.129 0.473 -9.231 -16.360
2005 0.047 2.008 -0.820 33.068 18.688 0.190 -5.613 -20.920
2006 0.047 1.859 -0.867 40.006 22.287 -0.532 6.345 -29.600
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We expect to see higher uncertainty in the short term than in the long term spark
spread values. Generally, we observe that the volatility in short term deviation σχ is
approximately twice as high as the volatility in equilibrium price σξ. From 2004 to 2006
we see a significant increase in both short and long term uncertainty. This time period is
characterized by high levels and high volatility in the natural gas prices. The high prices
of natural gas explain the relatively low estimated levels of the spark spread (χ0 + ξ0)
during the three years.

A mean reversion parameter κ of 1.86 imply that the short term variations are expected
to halve in about 4 months13. Higher mean reversion rate means shorter half-time. From
2004 to 2006 we observe a decrease in the rate of mean-reversion, i.e. an extended impact
from short term deviation χ0 on the expected spark spread value, see equation 4.

The correlation ρ between the mean-reverting and arithmetic Brownian motion process
is always negative and decreases during the time period from 2004 to 2006. Negative
correlation means that the short term deviation tends to move in opposite direction of
the equilibrium price. The long term drift µξ decreases during the same time period, and
in 2006 it turns negative. At this location and point in time, the market was pessimistic
about the future development of equilibrium price.

5.2 Switching costs from structural estimation
The main objective with the structural estimation is to estimate the restart cost, main-
tenance costs and salvage value for each plant in the dataset. Estimates of the structural
parameters are given in table 6 and for generator #6407 the resulting switching costs -
R, M and S - are given in table 7. The relationships between the structural parameters
and the switching costs are defined in section 4.4.3.

Table 6: Estimated structural parameters

r1 r2 r3 m1 m2 s1 s2 s3
0.000 0.000 0.000 0.110 10.337 -4.175 492.724 12.872

As we can see from table 7, the restart cost R hits the lower boundary of zero. This
estimate implies that the generator does not experience any cost when going from the
standby to the operating state. Based on industry experience, we expect the restart cost
to vary up to an upper boundary of $1.00m depending on the generator’s size and the
number of years since it switched into the standby state14.

Table 7: Estimated switching costs R (m$), M (m$/yr) and S (m$) for
generator #6407

R M S
0.000 4.230 195.989

For generator #6407 the estimated maintenance costs are $4.23m/year. The mainte-
nance costs are the yearly expenses of keeping a generator in the standby state. The price

13The maturity in which short term deviations are expected to halve is given by T0.5 = −ln(0.5)/κ.
14Thanks to assistent professor Carl J. Ullrich at Virginia Tech for providing insights into the industry.

Dr. Ullrich worked for seven years in the US electric power industry. His primary duties included
capital budgeting analyses for power plants and economic analyses of various operational and maintenance
strategies.
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of a new generator is between $150/kW and $450/kW15, so an upper boundary for a new
generator with the characteristics of #6407 is then $20.45m. Put in this perspective, the
estimated maintenance costs are clearly too high. By looking at the two structural pa-
rameters, m1 and m2, we observe that the former is in line with our expectations whereas
the latter is too high. The interpretation is that every plant incur a fixed cost of being in
standby m1 of $0.11m plus a coefficient m2 related to the size of the plant.

The salvage value of generator #6407 is estimated to be $195.99m, which is signifi-
cantly higher than what we anticipate. If a decision is made to abandon the generator,
there are costs associated with the disabling of the generator, and these expenses can be
interpreted as s1. The sign of s1 is right, but the value of -$4.18m is lower than expected.
If a generator is abandoned, it is possible to sell the generator equipment and components
in the second hand market. The maximum second hand value of a generator is approxi-
mately $150/kW16 resulting in an upper boundary of $6.83m for generator #6407. This
maximum value is significantly lower than the estimated second hand value of $200.16m.
Consequently, the estimated salvage values are not realistic.

For every year, more information will be available on electricity and gas futures prices.
Thus, the spark spread parameters are estimated each year and we obtain yearly plant
specific values for both the trigger values ξstartup, ξshutdown and ξabandon, and the option
coefficients D1, D2 and B2. Note that yearly changes in the trigger values are not a result
of the spark spread process itself. These changes are rather a result of changes in the
economic environment, such as interest rate and reserve margin changes, affecting the
process’ parameters. The real options trigger values for generator #6407 are given in
table 8.

Table 8: Trigger values ($/MWh) for generator #6407

Trigger values
ξstartup ξshutdown ξabandon

Year
2004 -20.165 -20.165 -20.447
2005 -14.108 -14.108 -41.713
2006 0.960 0.960 -42.790

We observe that the estimated shutdown and startup triggers are equal throughout the
sample period. This makes sense when the optimal solution requires the restart cost to
equal zero as the value-matching conditions at ξshutdown and ξstartup are identical. In 2004
and 2005 we see that the trigger values for shutdown and startup are negative. At first
glance, a startup trigger value that is negative may seem unlikely. However, operating
peak plants have the flexibility to switch between being producing and idle from one day
to another, and the operator takes day-to-day variations in the spark spread into account
when deciding whether to produce or not. If the spark spread is negative, the production
is typically suspended temporarily in order to avoid losses. The contribution of this
flexibility is dealt with in the plant’s value function through the variance of the spark
spread in equation 6. Therefore, negative trigger values for the startup and shutdown

15Depending on size, manufacturer and technology, the price of a new generator varies from $189.54/kW
to $407.62/kW based on 68 generators from General Electric, ABB, Alstom and Rolls Royce.

16A 171MW GE 7FA Gas Turbine Generator Set is for sale at The Utility Warehouse for $25m, equaling
$146/kW. This is a modern generator, hence the upper price boundary of $150/kW in the second hand
market. The Utility Warehouse is a marketplace established in 1995 that connects over 300 buyers and
sellers of generating equipment.
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decisions are reasonable.
The abandonment trigger is negative throughout the sample period. A plant operating

under a positive spark spread will provide a positive cash flow as long as the revenue
exceeds the fixed operating costs. If we assume the fixed operating costs to be small,
abandonment will occur only when the spark spread is negative. Hence, we never observe
positive trigger values for the abandonment decision. The value of the abandonment
trigger has to be lower than the shutdown trigger, which is evident from table 8. Generator
#6407 experiences several status changes during the time period in the sample, including
a change from standby to operating from 2004 to 2005. The economic reason for entering
the operating state in 2005 is due to the relatively high value of the operating plant at
that time, so that it is more valuable for the operator to be operating than staying in
standby. It also becomes less likely to abandon the plant in 2005 because the operating
plant is more valuable than the previous year. The abandonment triggers mirror this
reasoning, as the trigger values decrease from -$20.45/MWh in 2004 to -$41.71/MWh in
2005.

Increasing volatility, see table 5, increases the value of the operating peak plant. At the
same time, real options theory states that higher uncertainty gives a greater incentive to
wait. During the time period 2004-2006 we thus expect to see increasing startup triggers,
decreasing shutdown triggers, and decreasing abandonment triggers. For the estimated
startup and abandonment triggers this is true. But as the shutdown triggers must equal
the startup triggers when the restart cost is zero, the shutdown triggers increase in the
event of higher uncertainty. A potential explanation is that the effect from increased
plant value is relatively higher than the incentive to wait following an increase in the
uncertainty.

The option values are given in table 1017, and these are calculated from the estimated
option coefficients in table 9. The startup option represents the value of the flexibility
to restart operation from the standby state. When the plant is in standby and the
spark spread is in the interval between the startup and the abandonment trigger, there
is always a chance that the spark spread can improve and make operation profitable
again. We observe that generator #6407 has an increase in the value of the startup
option every year, from $161.68m in 2004 to $275.98m in 2006. During the same period
there is an increase in the volatility of the spark spread. As volatility increases, the value
of an option on the cash flows from the operating plant also increases. Thus there is
consistency between our model and the results but the options are generally too valuable
to be realistic. For comparison, consider the largest generator in our data sample. With
the most advanced technology, the list price of this generator is $71m. To be realistic,
the estimated option values cannot exceed the price of buying a new generator.

Table 9: Option coefficients (m$) for generator #6407

Option coefficients
D1 D2 B2

Year
2004 281.742 61.077 39.746
2005 311.975 62.556 22.662
2006 271.604 82.316 20.770

17The startup, abandonment and shutdown option values are given by D1e
β1ξ

startup , D2e
β2ξ

abandon and
B2e

β2ξ
shutdown , respectively.
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The shutdown option values the flexibility of going from operating to standby when
the spark spread hits a level that results in negative cash flows from operating the plant.
The shutdown option decreases for generator #6407, from $124.15m in 2004 to $81.18m
in 2006. As the volatility increases, the value of operation increases, and thus the option
value of giving up these cash flows decreases.

Table 10: Option values (m$) for generator #6407

Option values
Startup Abandon Shutdown

Year
2004 161.676 124.149 80.792
2005 242.003 81.888 29.665
2006 275.981 81.177 20.482

The abandonment option values the flexibility to stop paying the continuous mainte-
nance costs and receive a potential salvage value. We observe the same pattern for the
abandonment option as for the shutdown option, i.e. it decreases from $80.79m in 2004
to $20.48m in 2006. The option to abandon the plant gets lower as the volatility increases
and the value of the operating plant increases.

6 Discussion

6.1 Limitations in the data
The data on electricity futures prices are troublesome since trade volumes have been low
and many of the contracts are discontinued. The US market for exchange traded electricity
futures and options virtually collapsed in the wake of the Enron scandal. By February
2002, the New York Mercantile Exchange decided to delist all of its futures contracts due
to lack of trading18. From April 2003 however, time series of peak futures contracts for
the PJM interconnection are available, compare figure 1(a). As the spark spread model
assumes complete markets, the illiquidity in the futures market will inevitably bias our
model’s results.

For practical reasons, we merge generators into cost and efficiency specific groups.
The spark spread parameters are then estimated in April for each group and every year in
the dataset. By selecting this particular month and dividing the generators into specific
groups, we lose some information on the spark spread dynamics. In general, estimation
of spark spread parameters on a yearly time basis may be problematic. Ideally, the spark
spread parameters are estimated for every generator in continuous time. The data on
operating status however, comes with yearly time resolution. We do not know at which
time the switching decision actually takes place during a given year. In that respect,
our choice of equilibrium price as profitability indicator is justified, as it is the long term
trends in the spark spread that determine if a generator retires during the year or not.
Whether the retirement occurs in April or October is in this case not of the essence.

18See NYMEX Notice number 02-57, Notice of Delisting of NYMEX Electricity Contracts (February
14, 2002)
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6.2 Limitations in the model
The work of Fleten et al. (2012) suggest that the single most important profitability
indicator for the plants is the reserve margin. Our model is market-oriented, implying
that the only way these plants make money is through the markets for which we have price
information. If there are no other markets or mechanisms by which peak plants can profit,
then reserve margin serves as an indicator for future spark spread. An implicit assumption
is thus that changes in futures prices impound projected reserve margin changes. Negative
changes in reserve margin may emanate from retirement of power plants. We assume that
such changes are reflected in higher futures prices for electricity and, perhaps less likely, in
lower futures prices for natural gas. Thus, the values of the remaining generators increase.

However, if there are other markets for reserve capacity, the reserve margin not only
signals future spark spread, but also other sources of revenue for a peaking plant. PJM
has an Operating Reserve Mechanism to ensure adequate operating reserves and uses a
Reliability Pricing Model to provide incentives for participants to build an efficient mix
of generating resources. Consequently, the use of long term spark spread as profitability
indicator may not be the only or most optimal choice.

In addition, there are alternatives to the two-factor model we apply for the spark spread
process, see for instance Benth and Kettler (2011). We assume that the sum of the two
factors in the model, short term deviation and equilibrium price, is normally distributed.
Based on this assumption we derive the expression for the value of an operating plant.
We pursue an analytical solution to this expression but there is no way of avoiding the
use of numeric, compare the quasi-analytical solution in appendix B. Therefore, we need
to employ numerical methods within the value-matching and smooth-pasting conditions,
and this may cause technical issues to the optimization solver19. An analytical solution
to the value of an operating plant is thus desirable, and requires the use of another spark
spread process.

According to Deng and Oren (2003), the impacts of operating characteristics on the
power plant valuation, compare equation 6, are far more significant under mean-reversion
models than they are under geometric Brownian motion price models. This significance
is also found to be increasing with decreasing plant efficiency. Since we consider plants
that are less efficient than those evaluated in Näsäkkälä and Fleten (2005) and include a
mean-reversion model for the spark spread, the values obtained for the operating plants
may be too optimistic. In appendix C we derive the expression for the operating plant
assuming that it is costless to temporarily suspend production, and that the generators
optimally and immediately adapt to the observed spark spread. In reality, operators
face operating challenges that potentially prevent them from making such ideal decisions.
One way to adjust for these costs is to assign a higher value to the variable operation and
maintenance costs V OM .

In section 4.4.3 we assume linear relations for the switching costs. There may be
other functional forms for R, M and S that describe the cause and effect relationships
in a more coherent manner. For example, the dependence of size in the expression for
the restart cost is not necessarily linear. Instead, there can be a diminishing effect of
size on the restart cost, e.g. through the expression R = r1 + r2(1 − e−C) + r3SBtime.
However, such changes to the model do not alter the fact that the estimated switching
costs are unrealistic. Error terms can be added to equations for the switching costs in

19At some points the Hessian (matrix of second derivatives) will not be defined and we need to relax
the accuracy of the numerical method to achieve stable results.
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section 4.4.3 that allow us to formulate a maximum likelihood estimator. But the number
of time observations in the dataset is too low for the method of maximum likelihood to
be efficient.

6.3 Implications for further research
There are two implications from the results. The first implication concerns the use of
structural estimation as a technique in econometric analysis. We have shown that it
is possible to estimate the parameters of structural models by formulating an objective
function that minimizes the difference between the observed data and the normative
structural model. The optimization problem is constrained by the structural model and
then submitted to a state-of-the-art solver. Indeed, this is in the spirit of Su and Judd
(2011):

(. . . ) the habit of restricting models to cases with closed-form solutions
is unnecessary. There is no reason for economists to impose this burden on
themselves instead of writing down the models they really want to analyze and
solving them. (Su and Judd, 2011, p. 17).

The real options model we find in section 4.3 consists of six equations with ten unknown
parameters, i.e. the trigger values ξshutdown, ξstartup and ξabandon, the option coefficients
B2, D1 and D2, and the switching costs M , E, R, and S. There is no closed-form
solution to this problem. But by performing structural estimation we are able to estimate
the structural parameters for M , R, and S (assuming E = 0). Unlike Gamba and
Tesser (2009), our real options model is formulated explicitly. Hence we can extract more
information about the value of the real options and, perhaps more importantly, the timing
of operation decisions.

The second implication from our work concerns the extent to which operators actually
delay irreversible switching decisions following an increase in the uncertainty of their
environment. According to real options theory, the shutdown trigger should decrease, the
startup trigger should increase and the abandonment trigger should decrease due to an
increase in the long term volatility. The results show that these effects are present for
the startup and abandonment decision. Such sensitivity analysis may be a step towards
empirical verification of real options theory.

7 Conclusion
By applying structural estimation within the context of a real options model, we estimate
the irreversible switching costs of status changes for gas fired power plants. The switching
costs are dependent on the plant’s capacity, time in standby and efficiency. The estimated
restart cost is zero for all plants, implying that the plants do not incur any costs when
going from standby to operating. The maintenance costs consist of a fixed cost plus a cost
dependent on the plant’s size. The estimated fixed cost is in line with our expectations
with a value of $0.11m/year. However, the cost dependent on the size of the plant is
unrealistically high. There exists a second hand market for generator equipment, and we
therefore assume the salvage value to be the sum of two parts. The first part is a cost
related to the disabling of the generator. Secondly, there are potentially positive cash
flows from sale of the equipment in the second hand market. The estimation shows that
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there is a cost related to the abandonment of a plant, although the absolute value of this
estimate is too high to be realistic. The cash flows from a sale in the second hand market
are positive but significantly higher than anticipated. In total, the estimated salvage value
is not realistic.

Due to the estimated restart cost being zero, the trigger values for startup and shut-
down are identical. Whereas the startup and abandonment triggers behave according to
real options theory, the behavior of the shutdown trigger contradicts the theory when
the uncertainty in the environment increases. This is due to the estimated restart cost
of zero. The development of the estimated option values shows that real options effects
are present. The scaling however, does not match our expectations based on industry
experience.

The spark spread is modeled as the sum of two stochastic factors, where the first
factor is the short term deviation following a mean-reverting process. The second factor,
the equilibrium price, follows an arithmetic Brownian motion and is assumed to be the
profitability indicator in our model. We estimate the spark spread parameters through a
Kalman filter procedure and use linear regression to find the drift at given points in time.
We find that it is not possible to obtain an analytical solution to our real options model
with such a spark spread process. Even a quasi-analytical solution involves mathematics
that requires the use of numeric to some extent. Numerical solutions of the real options
model may result in technical problems to the structural estimation. Thus, a spark spread
process that gives an analytical solution of the real options model is preferable in future
analysis.
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A Kalman filter procedure (R code)
From Schwartz and Smith (2000) and Harvey (1990, chap. 3) we can obtain the transition
equation for the state variables

xi = ci +Gixi−1+ωi∀i = 1, ..., N (A.1)

where

ci = [0, µξ∆ti] (A.2)

Gi =
[
e−κ∆ti 0

0 1

]
(A.3)

The disturbance vectors ωi, which are serially uncorrelated and normally distributed,
have zero expected value and the following covariance matrix

Cov(χ∆ti , ξ∆ti) = W =
[

(1− e−2κ∆ti)σ
2
χ

2κ (1− e−κ∆ti)ρσξσχ2κ
(1− e−κ∆ti)ρσξσχ2κ σ2

ξ∆ti

]
(A.4)

The relationship between the state variables xi = [χi, ξi] and price observations yi =
[ST1
i , S

T2
i ] is given by the measurement equation

yi = (d+ Fxi) (A.5)

where

d = (µξT1, µξT2)∀i = 1, ..., N (A.6)

F =
[
e−κT1 1
e−κT1 1

]
(A.7)

The likelihood function of a given parameter set - µ, κ, ρ, σχ, σξ - with a prior mean
and covariance matrix can by means of the transition equation A.1 and measurement
equation A.5 be derived. See the attached CD for the complete R code of the Kalman
filter procedure.

B Plant valuation using confluent hypergeometric func-
tions

The boundary conditions imply that C1, C2, and C4 must equal zero when χ+ξ < E, and
that C1, C2, and C3 must equal zero when χ+ξ > E. Whereas the limits for equilibrium
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price ξ are straight-forward to derive, the limits when short-term deviation χ approaches
∞ or -∞ deserve some explanation. First of all, by converting the Tricomi function
into the parabolic cylinder function the limits can be treated in a more comprehendible
manner. For the case of χ+ξ < E, the value of the operating plant is given as

V0(χ, ξ) =C3χU

(
2κ+ sepconst

4κ ,
3
2 ,
κχ2

σ2
χ

)
e
ξ

σ2
ξ
(−µξ+

√
µ2
ξ
−σ2

ξ
sepconst+2σ2

ξ
r)

(B.1)

=C3
χ√
κχ2

σ2
χ

D

−sepconst
2κ ,

√√√√2κχ2

σ2
χ

×
e
κχ2

2σ2
χ 2

sepconst
4κ e

ξ

σ2
ξ
(−µξ+

√
µ2
ξ
−σ2

ξ
sepconst+2σ2

ξ
r)

where D(v; z) is the parabolic cylinder function. D(v; z) tends towards ∞ for large nega-
tive values of z and towards zero for large positive z for all v < 0 (Dockendorf and Paxson,
2010). In figure 5 we plot the Tricomi function for relevant values of a and z and show
that the same logic applies to this function.

Figure 5: The Tricomi function for relevant values of a and z

Secondly, if equation B.1 is the solution for the case where χ+ξ < E, it is implic-
itly assumed that D

(
−sepconst/2κ,

√
2κχ2/σ2

χ

)
converges to zero faster than eκχ

2/2σ2
χ

approaches∞, when χ goes to -∞. Numerical examples show that this indeed is the case.
By applying the same logic to V1(χ, ξ), i.e. the value of the operating plant when χ+ξ

> E, the expression for the value of an operating plant is given by

V (χ, ξ) =



V0(χ, ξ) = C3χU
(

2κ+sepconst
4κ , 3

2 ,
κχ2

σ2
χ

)
×

e
ξ

σ2
ξ
(−µξ+

√
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ξ
−σ2

ξ
sepconst+2σ2

ξ
r)

χ+ ξ ≤ E

V1(χ, ξ) = C4χU
(

2κ+sepconst
4κ , 3

2 ,
κχ2

σ2
χ

)
×

e
ξ

σ2
ξ
(−µξ−

√
µ2
ξ
−σ2

ξ
sepconst+2σ2

ξ
r)

+ C
(

χ
r+κ + ξ

r
+ µξ

r2

)
χ+ ξ > E

(B.2)

In order to find the arbitrary constants C3, C4 and the separation constant sepconst,
one value-matching and two smooth-pasting conditions are formulated and evaluated at
χ+ξ=E
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V0(χ, ξ) = V1(χ, ξ) (B.3)
dV0(χ, ξ)

dχ
= dV1(χ, ξ)

dχ
(B.4)

dV0(χ, ξ)
dξ

= dV1(χ, ξ)
dξ

(B.5)

After solving the three equations above, C3, C4 and sepconst can be inserted in equation
B.2. We then have the expression for the value of an operating plant as a function of χ
and ξ when ρ is zero.

C Derivation of plant value assuming normal distri-
bution

A peak plant will only generate electricity when the spark spread exceeds emission costs.
If the emissions costs are assumed to be zero, this means that the plant will be operating
only when the spark spread is positive. The value of the plant at time t is the expected
cash flows minus the fixed operational costs G

V (χ(t), ξ(t), κ, µξ, σχ, σξ, ρ) =
∫ T

t
e−r(s−t)

C × c (χ(s), ξ(s), κ, µξ, σχ, σξ, ρ)−G
 ds

(C.1)

where C is the capacity of the plant, T − t is the remaining lifetime of the plant, and c(s)
is the expected value of spark spread exceeding emissions cost EC at time s

c (χ(s), ξ(s), κ, µξ, σχ, σξ, ρ) = E[max(S(s)− EC, 0)|Fs] =
∫ ∞
EC

(y − EC)h(y) dy (C.2)

In equation C.2 the term h(y) is the density function of a normally distributed variable
y, whose mean and variance are those of the spark spread at time s. See equations 4 and 5
for Et[S(s)] and V art(S(s)), respectively. Partial integration gives

37



∫ ∞
EC

(y − EC)h(y) dy =
∫ ∞
EC

(y − EC) e−
(y−E[S])2
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
which is the last factor of the integrand in equation 6.

D Numerical integration (C++ code)
The composite Simpson’s rule is applied to find a numerical value of the operating plant.
This method is adequate when the integrand is relatively smooth. This is the case for our
value function, and by adjusting the number of integration points n, we are able to obtain
an accurate value for the peak plant. In our estimations we use a time period from t = 0
to t = 200 with n = 500 integration points. As the Simpson’s rule estimation requires
a lot of calculation, there are other alternative methods available that can reduce the
processing time of the algorithm. With our sample it is sufficient to apply the Simpson’s
method.

For a larger dataset however, it may be appropriate to use a more effective numerical
approach for the plant value. One alternative is to use the Gauss Lobatto quadrature,
which is similar to Gaussian quadrature except that it includes the endpoints of the
integration interval. Furthermore, it is accurate for polynomials up to degree 2nŰ3 where
n is the number of integration points. See Abramowitz and Stegun (1972) or Weisstein
(2012) for a detailed description. The C++ code for the Gauss Lobatto quadrature are
found on the attached CD, and could be exported to AMPL if the processing time with
the Simpson’s rule takes too long.
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E Valuation of switching options
When the power plant is in standby, compare figure 3, the operator has two options -
either to restart or abandon operations. In order to value these options, denoted F0, we
make use of the dynamic programming approach, see Dixit and Pindyck (1994, chap. 4).
Since we assume that the pricing model given by equations 1- 3 describes the spark spread
dynamics adjusted for risk, the options must satisfy the following Bellman equation

rF0(ξ)dt = E[dF0(ξ)]−Mdt (E.1)

Applying Itô’s Lemma and taking the expectation result in the following differential
equation for the option value

1
2σ

2
ξ

d2F0(ξ)
dξ2 + µξ

dF0(ξ)
dξ

− rF0 −M = 0 (E.2)

The solution to the differential equation in E.2 is the linear combination of two inde-
pendent solutions plus any particluar solution. That is

F0(ξ) = D1e
β1ξ +D2e

β2ξ − M

r
(E.3)

where D1 and D2 are positive and unknown parameters to be determined. β1 and β2 are
the positive and negative roots of the fundamental quadratic equation that is found by
inserting F0(ξ) = Deβξ −M/r into E.2, and hence given as

β =
−µξ ±

√
µ2
ξ + 2σ2

ξr

σ2
ξ

(E.4)

When the plant is operating the same reasoning applies, except that B1 must equal
zero to satisfy its boundary condition, i.e. the option to shutdown move towards zero as
the spark spread approaches ∞. In mathematical terms this option value is

F1(ξ) = B2e
β2ξ (E.5)

where β2 is the negative root of the fundamental quadratic in equation E.4.

F Implicit real options approach
In the natural resource investment model of Brennan and Schwartz (1985), the mine
produces a single commodity whose spot price follows a stationary stochastic process.
The production entails a variable operation and maintenance cost, and the revenues are
subject to taxation. While the mine is idle, a maintenance cost is paid. Operations can be
suspended and restarted, and both switching decisions incur a fixed and non-recoverable
cost. The decision to abandon the mine is irreversible. When the mine is operating,
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the natural resource of the mine is depleted, and a completely exhausted mine is thus
abandoned.

In our real options model, see section 4.3, we neglect taxation and assume an infinite
resource. With a few adjustments to the Brennan and Schwartz (1985) model, we can
therefore employ the framework of Gamba and Tesser (2009). The formal valuation model
and the econometric specification are given below.

The valuation model The overall state is defined by x=(ξ,m) where ξ is the equi-
librium price and m is the operating mode, i.e. {operating, standby, retired}. The
maintenance cost of being idle is given as M , and the fixed and variable operation
and maintenance costs are denoted by G and V OM , respectively. The decision set is
DS={operating, standby, retired}. The firm’s decision, denoted d, is on the operating
mode, d ∈ DS(x).

The cash flow function is given as

CF (x) =


Cξ∆t−G∆t if m = operating

−M∆t if m = standby

0 if m = retired

(F.1)

Note that C is the capacity of the plant, and that equilibrium price ξ is estimated using
V OM .

The payoff from decision d in state x=(ξ,m) is

g(x, d) = CF (ξ, d)− SC(ξ, d) (F.2)
where SC(ξ, d) denote the switching costs, i.e. SC(ξ, operating)=R is the startup cost,
SC(ξ, standby)=E is the shutdown costs and SC(ξ, retired)=S is the abandonment cost.

Given a decision d at x, the state evolution function is

x′ = f(x, d) = (ξ′,m′) (F.3)
where m′=d and ξ′ follows the exogenous dynamic given in equation 3.

The firm’s problem is to find the schedule of contingent decisions for current and future
dates that maximizes the expected discounted rewards. As before, the model has infinite
horizon and a stationary discount factor β ∈ (0,1) is given. The stationary transition
probability is

p(dx′|x, d) =

p(dξ′|ξ) if x′ = f(x, d)
0 otherwise

(F.4)

The value of the plant, V al, is the fixed point of the Bellman operator

V al(x) = max
d∈DS(x)

(g(x, d) + βEx,d[V al(f(x, d))]) (F.5)

and the related optimal decision schedule is

arg max
d∈DS(x)

(g(x, d) + βEx,d[V al(f(x, d))]) (F.6)

where Ex,d is the expectation with respect to p(·|x, d).
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The econometric specification There is a sequence of observations (xat ,dat ) for t=1,...,Ta
and a ∈ A, that is, for all time periods and plants. In discrete time the equilibrium price
is

ξ′ = ξ + µξ∆t+ σξ
√

∆tη (F.7)

where η ∼ N(0, 1). Gamba and Tesser (2009) assume that there is an unobservable
stochastic process {εt} so that through additive separability

g(x, d) + ε(d) (F.8)

is the actual payoff at x from d. Assumptions concerning conditional independence are
borrowed from Rust (1987) and will not be restated here. The Bellman operator is now

V al(x) = max
d∈DS(x)

(g(x, d) + ε(d) + βv(x, d)) (F.9)

which has transition probability

Pr(dx′, d′|x, d) = P (d′|x)p(dx′|x, d) (F.10)

where P (d′|x|) is the choice probability. Since the parameters of the exogenous stochastic
process are known, the state transition probability p(dx′|x, d) can be dropped from equa-
tion F.10. The error term ε is assumed to have a generalized extreme value distribution,
with parameters (a,b), i.i.d. over all possible choices. Hence, the fixed point problem is

v(x, d) = Ex,d

b log
∑

d′∈DS(x′)
e

1
b
(g(x′,d′)+βv(x′,d′))

 (F.11)

and the choice probability of d conditional on x is

P (d|x) = e
1
b
(g(x,d)+βv(x,d))∑

d′∈DS(x′) e
1
b
(g(x,d′)+βv(x,d′))

(F.12)

where v is the unique fixed point of the Bellman operator.
The decision model is known up to the value of some structural parameters, θ. Given

the sample of observations, the maximum likelihood estimator reduces to

θ̂ = argmaxL(θ) = argmax
∑
a∈A

Ta∑
t=1

logP (dat |xat , θ) (F.13)

Gamba and Tesser (2009) further incorporate unobserved heterogeneity into this frame-
work. For numerical solutions and algorithms suitable for this purpose, we refer the
interested reader to their work.
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G Nonlinear programming (AMPL code)
Our structural model, compare section 4.4, is solved as a nonlinear optimization problem.
The AMPL code can be found on the attached CD.

H Estimated spark spread parameters

Table 11: Spark spread parameters

Parameter r κ ρ σχ σξ µξ χ0 ξ0
Unit $/MWh $/MWh $/MWh $/MWh $/MWh

Efficiency=16.0% and V OM=6.9 $/MWh
2004 0.047 11.423 -0.446 62.894 12.878 0.759 -14.057 -71.039
2005 0.047 6.467 -0.440 44.367 14.788 -0.010 -7.752 -90.891
2006 0.047 4.182 -0.595 50.226 17.864 -3.010 32.118 -125.782

Efficiency=18.0% and V OM=7.3 $/MWh
2004 0.047 10.110 -0.463 53.681 12.273 0.689 -12.877 -58.753
2005 0.047 5.165 -0.609 38.820 14.703 0.039 -7.229 -74.863
2006 0.047 3.753 -0.642 46.491 17.843 -2.404 25.812 -103.347

Efficiency=20.6% and V OM=8.2 $/MWh
2004 0.047 8.181 -0.502 43.782 11.739 0.619 -11.700 -46.770
2005 0.047 3.979 -0.597 34.826 14.976 0.088 -6.705 -59.130
2006 0.047 3.246 -0.700 43.050 18.032 -1.796 19.504 -81.200

Efficiency=21.3% and V OM=7.6 $/MWh
2004 0.047 7.633 -0.516 41.477 11.634 0.603 -11.420 -43.210
2005 0.047 3.743 -0.618 34.166 15.107 0.101 -6.585 -54.710
2006 0.047 3.106 -0.717 42.351 18.182 -1.657 18.052 -75.300

Efficiency=23.7% and V OM=7.5 $/MWh
2004 0.047 6.184 -0.563 35.850 11.417 0.552 -10.570 -33.870
2005 0.047 3.023 -0.693 32.713 15.834 0.134 -6.208 -42.670
2006 0.047 2.677 -0.769 40.501 18.881 -1.221 13.514 -58.650

Efficiency=26.0% and V OM=5.0 $/MWh
2004 0.047 5.292 -0.601 32.752 11.290 0.517 -9.973 -24.787
2005 0.047 2.549 -0.749 32.389 16.766 0.159 -5.941 -31.687
2006 0.047 2.330 -0.811 39.756 19.910 -0.912 10.303 -44.399

Efficiency=32.0% and V OM=4.9 $/MWh
2004 0.047 3.921 -0.682 28.722 11.363 0.444 -8.747 -11.390
2005 0.047 1.273 -0.913 39.286 25.563 0.210 -5.398 -14.400
2006 0.047 1.397 -0.918 43.482 26.955 -0.283 3.758 -20.460

Efficiency=34.9% and V OM=4.5 $/MWh
2004 0.047 3.551 -0.709 27.848 11.475 0.418 -8.314 -6.283
2005 0.047 1.203 -0.922 39.662 26.390 0.227 -19.770 -5.822
2006 0.047 1.247 -0.932 44.442 28.914 -0.060 1.444 -11.630
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