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Chapter 1

Introduction

Statistics is “the science of learning from data, and of measuring, con-
trolling and communicating uncertainty” (Davidian and Louis, 2012). In
statistics, the goal is often to utilize observations of some sort to gain in-
sight about a process of interest, or to do prediction related to this process,
by building statistical models that represent the data-generating process.
To be able to learn about a process from data we often want a model that
is realistic, interpretable, and possible to draw inference from with the
available data. For most realistic processes, compromises between these
three are necessary. We can simplify the model, include more knowledge,
add restrictions, or get more data. There can be several sources of infor-
mation about a process, and to make good predictions one should use all
the sources, as well as prior knowledge about (parts) of the process.

In this thesis we aim to use knowledge-based statistical methods. The
word knowledge-based refers to something founded on an accumulation of
facts or information. By knowledge-based statistical methods, we mean
methods that aim to include the understanding of a phenomenon, such
as facts, information, or descriptions, acquired through experience or by
perceiving. For the use of prior knowledge, the Bayesian framework has
appealing properties, and we also see that by the choice of model, a fre-
quentist approach can be suitable for including knowledge.

Advances in technology have radically changed how much and in which
ways data are collected. There has been a rapid increase in digital data
collection for example through the use of mobile phones and other smart
devices, geospatial technology using global positioning systems (GPS) and
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2 Maria Lie Selle

geographical information systems, and whole-genome DNA sequencing. In
this thesis we show how knowledge about farm locations available from
GPS can enhance separation of di↵erent e↵ects, how knowledge about
genomic sequences from DNA sequencing can be used to construct genomic
relations, and how knowledge about regions and processes in the genome
from previous studies can be used identify important e↵ects in di↵erent
genomic regions. We show that by including this knowledge, we can make
more accurate and consistent predictions.

In plant and animal breeding, artificial selection is used to improve
the traits of plants and animals (Bourdon and Bourbon, 2000; Acquaah,
2009). To improve populations through selection, breeding designs and
statistical methods are required to identify and utilize genetic di↵erences
between individuals for the traits of interest (Bourdon and Bourbon, 2000;
Acquaah, 2009; Isik et al., 2017). Breeding programs are based on the
principle that an individual’s trait can provide insight to its underlying
genetic value (Lynch and Walsh, 1998), and genetic and genomic evalu-
ations involve statistical models for estimation of this genetic value, by
using relevant data such as trait measurements, covariates and relation-
ship with other individuals. The amounts of data available can be vast,
so computationally fast and user-friendly methods are necessary.

This thesis develops new and combine existing statistical models and
model components for variance and dependency within quantitative genet-
ics, that allow inclusion of knowledge about the processes of interest. The
models are motivated by and applied to challenges in plant and breeding,
with the aim to contribute to genetic and genomic evaluation. With the en-
closed papers we try to make contributions towards improving predictions
of genetic e↵ects, by proposing models that are closer to the underlying
data-generating processes. Our working hypothesis has been that we can
improve these predictions by using models that include knowledge about
genetic and spatial processes, and that are aligned with current scientific
understanding, to the extent of what is possible with available data and
existing inference methods.

However, this does not mean that we aim to make “true” mathemati-
cal models to describe the processes of interest, as there is no such thing,
wisely stated by Box et al. (1987) (“All models are wrong, but some are
useful”), and Steyerberg et al. (2019) (“We recognize that true models
do not exist. ... A model will only reflect underlying patterns, and hence
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should not be confused with reality”). Further, our goal is to make predic-
tions, not explain, which means that a simple but less true model can be a
better model than a truer but less simple model (Hagerty and Srinivasan,
1991; Shmueli et al., 2010).

There are three recent statistical contributions in particular that have
made inference with the proposed models possible. These are (i) the inte-
grated nested Laplace approximations, an approximate Bayesian inference
scheme introduced in Rue et al. (2009), (ii) the ability to represent Gaus-
sian random fields on manifolds as Gaussian Markov random fields using
stochastic partial di↵erential equations (Lindgren et al., 2011), and (iii)
the hierarchical likelihood for fitting hierarchical generalized linear models
(Lee and Nelder, 1996). These have enabled us to do inference with the
proposed models. Further, novel software for breeding program simulation
(Gaynor et al., 2019), have enabled us to validate the predictions from the
proposed models in settings close to reality, rather than validating the
inference methods on data generated from the proposed models.

This introduction defines relevant concepts, reviews background ma-
terial and provides more details than the paper format allows. The rest
of this chapter is organized as follows. Section 1.1 presents the class of
linear mixed models, and how prior knowledge can be included about the
model parameters in both a Bayesian setting and a frequentist setting.
Section 1.2 covers the two methods for performing statistical inference
that are used in the thesis. Section 1.3 presents model selection, and the
concept of simulation as experimentation. Section 1.4 introduces Gaussian
random fields, Gaussian Markov random fields, and the explicit link be-
tween them. Section 1.5 gives a brief overview over models used in spatial
statistics. Section 1.6 gives an introduction to quantitative genetics and
breeding, relevant for the applications in the papers.

The main contributions of this doctoral thesis are contained in the
four enclosed papers. In Chapter 2, summaries of the papers are given,
identifying the scientific contributions and how they are related.
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1.1 Linear mixed models

The class of models known as generalized linear mixed models (GLMM)
(Fahrmeir et al., 2013) provides a range of models for the analysis of
grouped data, where the di↵erences between groups can be modeled as
random e↵ects. A subclass of GLMM are the linear mixed models (LMM),
the class of models used in this thesis where the response variable is as-
sumed to come from a Gaussian distribution. Following Fahrmeir et al.
(2013), we give an introduction to LMM.

A LMM can be defined through stages in a hierarchical manner. In the
first stage, the response variables are assumed to be linearly dependent
on fixed e↵ects, that are constant across subjects, and random e↵ects,
that vary across subjects. Let (yi,wT

i ) denote the values of the response
variable y and a vector of covariates w for subject i, where i = 1, . . . , n.
The first stage is then defined through the measurement model

yi = w
T
i � + u

T
i � + "i,

where � is a vector of (p+1) fixed covariate e↵ects with vector of covariates
w

T
i = (1, wi1, . . . , wip), � is a vector of q random e↵ects with design vector

u
T
i = (ui1, . . . , uiq), and "i is the residual term assumed to be independent

and identically distributed as N (0,�2). The general form of the LMM in
matrix notation is

y = W� +U� + ",

where y is an n⇥ 1 vector of the observations, W is an n⇥ (p+1) matrix
of covariates, � is a (p+1)⇥ 1 vector of fixed-e↵ects coe�cients including
a common intercept, U is an n ⇥ q design matrix, � is a q ⇥ 1 vector of
random e↵ects, and " is an n⇥ 1 vector of the residuals.

In the second stage, it is assumed that the random e↵ects are re-
alized values of a random variable distributed according to some prob-
ability distribution, for example according to a Gaussian distribution,
� ⇠ N (0,R�2

�).
In this thesis we have proposed models in both the Bayesian and fre-

quentist framework that fit in the class of LMM. The next two sections
present the LMM, first from a Bayesian perspective, and then an exten-
sion of the LMM in a frequentist framework that allows inclusion of prior
knowledge on random e↵ects.
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1.1.1 Bayesian setting

Here, the LMMwith two variance components is discussed from a Bayesian
perspective following Sorensen and Gianola (2002) and Gelman et al.
(2013). Again, the first stage of the LMM consists of the measurement
model, here specified as a likelihood

⇡(y|⌘,�2) ⇠ N (⌘, I�2),

where the linear predictor ⌘ = W� +U� is often called the latent field,
and �2 is a hyperparameter. In a Bayesian setting all parameters are
assumed to come from a probability distribution, so in the second stage,
both fixed and and random e↵ects are assigned prior distributions

⇡(�|B�2
�) ⇠ N (0,B�2

�),

⇡(�|R�2
�) ⇠ N (0,R�2

�),

where B and R are known, non-singular matrices, and the parameters �2
�

and �2
� are hyperparameters. If all distributions in the latent stage are

assumed to be Gaussian, the model is known as a latent Gaussian model,
a class of models assumed in several of the papers in this thesis. We return
to latent Gaussian models in Section 1.2.

The third stage consists of assigning prior distributions to the hyperpa-
rameters, the parameters that control the distributions of the latent field
and the likelihood. The choice of prior distributions for these parameters
is important, since the priors allow the user to include knowledge about
the parameters. Blangiardo and Cameletti (2015) highlight in particular
two aspects which need to be taken into account when assigning prior dis-
tributions to the hyperparameters. The first is the type of distribution,
which should be representative of the nature of the hyperparameters. The
second is the choice of parameters of the prior distribution, which make the
distribution more or less informative, and provide the level of knowledge
about the hyperparameters.

The prior distributions can range from informative, expert priors to
objective priors. When a statistician has access to detailed prior knowl-
edge on the parameters of interest, this information can be used to con-
struct informative priors (Ayyub, 2001; O’Hagan et al., 2006; Albert et al.,
2012). The detailed prior knowledge can for example be distributions from
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previous observations of similar phenomenons, results from previous ex-
periments, or from consulting with experts in the field. An example of
informative priors used in this thesis are the penalized complexity priors
introduced by Simpson et al. (2017). The penalized complexity priors
have only a single parameter that the user must choose, and this param-
eter controls the flexibility allowed in the model, causing the prior to be
vague, weakly informative, or strongly informative.

Furthest from the informative priors are non-informative priors, also
known as objective priors (Bernardo, 1979; Berger et al., 2009). Statis-
ticians assigning objective priors to the hyperparameters aim to add as
little subjective information as possible into the model. An example of an
objective prior is the Je↵reys prior (Je↵reys, 1946).

Instead of assuming a prior that is non-informative along the whole
support of the parameter, it can be enough to assure ignorance only on a
subset of the parameters where the likelihood is far from zero. This strat-
egy leads to a vague prior (Blangiardo and Cameletti, 2015). For instance,
a vague prior distribution for a regression parameter is theN (0, 106) distri-
bution. The prior is vague because it is nearly flat, but would nevertheless
favor values closer to zero than further away from zero. In the Bayesian
models in this thesis, the parameters of fixed e↵ects, corresponding to the
elements of � in this section, are assigned the N (0, 103) distribution as
prior distribution. Although a large part of this thesis focuses on including
prior knowledge into models, these parameters are not prioritized for the
use of more informative priors, as there is usually su�cient information in
the data to estimate the fixed e↵ects.

A class of popular prior distributions are the conjugate priors. These
prior distributions are limited in their flexibility, but yield models that
are easy to treat analytically. The models are easy to treat because the
conjugate prior distributions ensure that the posterior distribution belongs
to the same family as the prior distribution. Since the functional form
of the posterior distribution is known when applying conjugate priors,
it is easy to extract summary statistics or analytically derive any other
quantities of interest (Blangiardo and Cameletti, 2015).

Although the possibility of including knowledge beyond the observed
data is appealing, specifying prior distributions can be challenging. One
parameter that is particularly challenging is the random e↵ects variance
parameter �2

� (Gelman et al., 2006), as this parameter does not have any
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simple family of conjugate prior distributions. The inverse-gamma(a, b)
family is conditionally conjugate, meaning that if �2

� has a inverse-gamma
prior distribution, then the posterior conditional distribution ⇡(�2

� |�,�,�2,y)
is inverse-gamma (Gelman et al., 2006). This prior is an attempt for a
non-informative prior within the conditionally conjugate family with the
a, b set to low values. However, in the limit where a, b become close to
zero, the prior distribution yields an improper posterior density (Gelman
et al., 2006). Therefore a, b must be set to reasonable values. For data
sets in which low values of variance parameters are possible, inferences be-
come sensitive to the inverse-gamma parameter choice a, b, and the prior
distribution is no longer non-informative.

1.1.2 Frequentist setting

The focus now shifts to a frequentist setting, where only the data and the
model are used in estimation and to make predictions. However, the choice
of model can allow inclusion of knowledge about the process of interest,
which we use in one of the papers of this thesis. We first repeat the LMM
specified as a likelihood

⇡(y|⌘,�2) ⇠ N (⌘, I�2). (1.1)

If heterogeneity is expected to be present in the random e↵ects parts of
the LMM, this can be modeled with a linear predictor in the random e↵ect
variance. The second stage of the LMM then becomes

⇡(�|�d) ⇠ N (0,⇤), (1.2)

where ⇤ is a diagonal matrix with variances estimated using a linear pre-
dictor with a log link function log(⇤jj) = w

T
d,j�d. Here, �d is a fixed e↵ect

and the design vector wd,j could contain prior information about the size
of the di↵erent random e↵ects. This prior information could be included
to control the size of the random e↵ects variance, and by this the relative
importance of the random e↵ects.

In this thesis we used model (1.2) to include information about the
importance of di↵erent genomic markers (DNA sequences) in the genome.
We explain the approach with an example. Let � = (�1, . . . , �q) contain
the random e↵ect of genomic markers labeled (1, . . . , q). Assume that
markers (1, . . . , r) with r < q are located in a region of the genome previ-
ously shown to explain more variation than other regions, and the markers



8 Maria Lie Selle

(r + 1, . . . , q) are not located in such regions. This information is in our
case the prior knowledge, and is used to specify the design vector wd. We
specify weight 1 for positions (1, . . . , r), i.e. w

T
d,(1,...,r) = (1, . . . , 1), and

weight 0 for positions (r + 1, . . . , q), i.e. wT
d,(r+1,...,q) = (0, . . . , 0).

1.2 Estimation

There are two main approaches to statistical inference; Bayesian and fre-
quentist. Bayesian inference is based on estimating the posterior distribu-
tion of the parameters in the latent stage and the hyperparameters. It is
most commonly performed using Markov chain Monte Carlo (MCMC)
methods (Givens and Hoeting, 2005; Gamerman and Lopes, 2006), in
which samples are generated from posterior distributions by constructing a
Markov chain with the target posterior as the stationary distribution. For
models belonging to the class of latent Gaussian models, Bayesian infer-
ence can be performed using the integrated nested Laplace approximations
method (Rue et al., 2009). This method approximates the posterior distri-
butions without using sampling-based methods, and is much faster than
MCMC methods (Rue and Martino, 2007).

Statistical inference for LMMs in the frequentist setting is usually per-
formed using likelihood-based methods. The most common method is re-
stricted maximum likelihood estimation (REML) (Fahrmeir et al., 2013).
Other methods for inference are penalized likelihood or empirical Bayes
(Fahrmeir et al., 2013), template model builder (Kristensen et al., 2015),
the expectation maximization algorithm (Givens and Hoeting, 2005), and
hierarchical likelihood (Lee and Nelder, 1996).

In this thesis, a Bayesian approach is taken in three of the papers, and
a frequentist approach is taken in one of the papers. For Bayesian inference
we use the integrated nested Laplace approximations, and for inference in
the frequentist framework we use hierarchical likelihood. Introductions to
both methods are given below.
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1.2.1 Bayesian inference of latent Gaussian models using

integrated nested Laplace approximations

This section gives a brief presentation of how the integrated nested Laplace
approximations (INLA; Rue et al., 2009) are used to approximate the
posterior marginal distributions for a model in the latent Gaussian model
(LGM) class. In-depth descriptions of the INLA methodology can be
found in Rue et al. (2009), Martins et al. (2013), Blangiardo and Cameletti
(2015) and Rue et al. (2017). We first present the class of LGMs, the class
of Bayesian models susceptible to INLA-based inference.

The class of LGMs includes many models, for example generalized
linear (mixed) models, generalized additive (mixed) models, and spline
smoothing methods. LGMs are hierarchical models, where observations y
are assumed to be conditionally independent given a latent Gaussian ran-
dom field x and hyperparameters ✓1, i.e. ⇡(y|x,✓1) ⇠ ⇧i2I⇡(yi|xi,✓1).
The latent field x includes both fixed and random e↵ects and is as-
sumed to be Gaussian distributed given parameters ✓2, i.e. ⇡(x|✓2) ⇠
N (µ(✓2),⌃(✓2)). Finally, the hyperparameters ✓ = (✓1,✓2), are assigned
prior distributions ✓ ⇠ ⇡(✓).

For the computations in INLA to be both fast and accurate, the LGM
has to satisfy some assumptions. Since INLA integrate over the hyperpa-
rameter space, the number of non-Gaussian hyperparameters should be
low, typically less than 10, and not exceeding 20. Further, the latent field
should not only be Gaussian, it should be a Gaussian Markov random
field. The conditional independence property of a Gaussian Markov ran-
dom field yields sparse precision matrices which makes computations in
INLA fast due to e�cient algorithms for sparse matrices. Lastly, each ob-
servation yi should depend on the latent field through only one component
xi. Gaussian random fields and Gaussian Markov random fields will be
covered in Section 1.4.

The main aim of Bayesian inference is to estimate the marginal pos-
terior distribution of the variables in the model. The marginal posteriors
are given as

⇡(✓j |y) =
Z

⇡(✓|y)d✓�j (1.3)

⇡(xi|y) =
Z

⇡(xi|✓,y)⇡(✓|y)d✓ (1.4)
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INLA do this by breaking down the problem into three sub-problems

1. Approximate ⇡(✓|y)

2. Approximate ⇡(xi|✓,y) for i of interest

3. Compute ⇡(✓j |y) and ⇡(xi|y) using the results from sub-problem 1
and 2, and numerical integration

A brief summary of the steps is given below. For details we refer to Rue
et al. (2009) and Martins et al. (2013).

The marginal posterior distribution for ✓ in sub-problem 1 is approx-
imated starting from the identity

⇡(✓|y) = ⇡(x,✓|y)
⇡(x|✓,y) / ⇡(y|x,✓)⇡(x|✓)⇡(✓)

⇡(x|✓,y) (1.5)

The numerator in (1.5) is easy to compute, but the denominator is in
general not available in closed form and must be approximated. However,
when the model has a Gaussian likelihood, the full conditional ⇡(x|✓,y)
and its marginals ⇡(xi|✓,y) are also Gaussian. This implies that for each
value of ✓, ⇡(✓|y) can be computed exactly, without the need of approxi-
mations. In this thesis we assume a Gaussian likelihood in all our models,
meaning that we have no approximations in sub-problem 1.

For the approximation in sub-problem 2, there are di↵erent options
for non-Gaussian likelihoods, but with a Gaussian likelihood, this step
simplifies as sub-problem 1. Rather than approximating ⇡(xi|✓,y), INLA
compute these Gaussian marginals exactly. Since a Gaussian likelihood
ensures exact distributions of ⇡(✓|y) and ⇡(xi|✓,y), the only source of
error from INLA is then from the numerical integration.

Finally, in sub-problem 3, INLA use numerical integration to solve the
integrals in (1.3) and (1.4), with respect to ✓. INLA have three di↵erent
options for exploring the ✓ space. The first is using a grid search around
the mode of ⇡(✓|y). This option is the default option when the dimension
of ✓ is 1 or 2, and is also the most accurate. An illustration of the grid
search approach for a ✓ of dimension two is shown in Figure 1.1. The mode
of ⇡(✓|y) is located and the principal component directions are explored
by grid search to locate the majority of the probability mass. The second
option is to use the central composite design (Box and Wilson, 1951),
which cleverly locates fewer points around the mode of ⇡(✓|y). This option
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is the default strategy for dimensions of ✓ larger than two. The last option
is to ignore the variability around the hyperparameters and to use only
the mode of ⇡(✓|y).

Putting it all together, the INLA computation scheme for a model with
a Gaussian likelihood is (Martino and Riebler, 2019)

1. Explore the ✓ space through ⇡(✓|y). Find the mode of ⇡(✓|y) and a
series of points {✓1, . . . ,✓K} in the area with high density of ⇡(✓|y).

2. Compute ⇡(✓1|y), . . . ,⇡(✓K |y) for the K chosen support points us-
ing (1.5).

3. Compute ⇡(xi|✓1,y), . . . ,⇡(xi|✓K ,y) for theK chosen support points.

4. Solve (1.3) and (1.4) via numerical integration. The integral in (1.4)
is solved as

⇡(xi|y) =
KX

k=1

⇡(xi|✓k,y)⇡(✓k|y)�k, (1.6)

where �k are appropriate weights depending on the chosen support
points. The integral in (1.3) is solved similarly.

1.2.2 Estimation using hierarchical likelihood

Inference is also performed using hierarchical likelihood (h-likelihood; Lee
and Nelder, 1996). The method is suited for hierarchical generalized linear
models, and allows fixed and random e↵ects in a linear predictor for the
variance parameters. The fitting algorithm is implemented in Rönneg̊ard
et al. (2010b), and an overview of estimation with GLMMs via h-likelihood
is described in Lee et al. (2018). The rest of this section gives a brief outline
of h-likelihood theory following Rönneg̊ard et al. (2010b) with more detail
given in Lee and Nelder (1996), Lee et al. (2018), and Alam et al. (2015).

The conditional log-likelihood for y given � for the model in (1.1) has
the so-called canonical form

l(y|�;✓⇤,�) =
y✓

⇤ � b(✓⇤)

�
+ c(y,�),

where ✓⇤ is the parameter of interest and � = �2. In the case of a Gaussian
model ✓⇤ = µ

⇤, where µ
⇤ is the conditional mean of y given �, and µ

⇤ =
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Figure 1.1: Illustration of the exploration of the posterior marginal for
✓. The mode is located and the principal component directions z1 and z2
are explored by a grid search (blue points) to locate the majority of the
probability mass

W� + U�. In the canonical form, the function b(✓⇤) satisfies E(y|�) =
b0(✓⇤) and Var(y|�) = b00(✓⇤)�, and c(y,�) is a known function. The
h-likelihood is then defined as

h = l(y|�;✓⇤,�) + l(v|↵),

where v = v(�) is a strict monotonic link function specified such that the
random e↵ects occur linearly in the linear predictor ⌘⇤ = µ

⇤, and l(v|↵) is
the log density for v with parameter ↵. The adjusted profile h-likelihood
is

hp =

✓
h+

1

2
log |2⇡H�1|

◆
|�=�̂,v=v̂,

where H is the Hessian matrix of the h-likelihood h.
In order to estimate the model parameters, Lee and Nelder (1996)

suggested a two-step procedure. First, the h-likelihood h is maximized
with respect to the � and � for given variance parameters. Next the
adjusted profile h-likelihood hp is maximized to estimate the dispersion

parameters � and ↵ for given �̂ and �̂. Iteration between the two steps
continue until convergence.
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The fitting algorithm implemented in Rönneg̊ard et al. (2010b) for
estimating parameters in the model from (1.1) and (1.2) using the h-
likelihood (Lee and Nelder, 1996) is described below.

1. Start by setting ⇤ = I�2
� , and set starting values for �2

� and �2.

Iterate from 2. to 4. until convergence:

2. Estimate �̂ and �̂ from the following augmented linear model

✓
y

0

◆
=

✓
W U

0 I

◆✓
�

�

◆
+

✓
"

��

◆
(1.7)

using weighted least squares with weight matrix

V =

 
I

1
�2
"

0

0 ⇤�1

!

3. To estimate the elements in ⇤ and �2, compute the hat matrix
H(n+q)⇥(n+q) for the model in (1.7). Then

a. Fit a gamma distributed generalized linear model with response
�̂i/(1�Hjj), log link, linear predictor wT

d �d, and weights (1�
Hjj)/2. Here Hjj is jth the diagonal element in the hat matrix
H with j = n+ i.

b. Fit a gamma distributed generalized linear model with response
"̂i/(1�Hii), identity link, linear predictor �, and weights (1�
Hii)/2.

4. From 3. we have ⇤̂ii = exp(wT
d,i�̂d), and �̂2 = �̂.

Weighted least squares is an extension of ordinary least squares re-
gression, where each observation is weighted according to some criterion
(Fahrmeir et al., 2013). The model in (1.7) can be rewritten as

ya = Ta� + e (1.8)
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The weighted least squares solutions for the model (1.8) is then

�̂ = (T T
a V

�1
Ta)

�1
T

T
a V

�1
ya

The use of h-likelihood is generally not accepted by all statisticians,
with the main criticism for the h-likelihood being non-invariance of in-
ference with respect to transformation (Rönneg̊ard et al., 2010a). Non-
invariance here means that the h-likelihoods of two equivalent models are
not equivalent. However, a restriction that random e↵ects occur linearly
in the linear predictor is implied in the h-likelihood, and assures invariance
(Lee et al., 2007, 2018).

1.3 Model selection

In this section we discuss di↵erent approaches for performing model selec-
tion, the task of selecting a statistical model from a set of candidate mod-
els, given data (Claeskens et al., 2008; Leeb and Pötscher, 2009; Claeskens,
2016). We distinguish between two di↵erent motives for statistical mod-
eling and selecting models; to predict or increase understanding, which
determine the approach for evaluating the models. The two approaches
are often connected, but the predictive versus explanatory distinction has
an impact on the statistical modeling (Shmueli et al., 2010).

When the goal of statistical modeling is to make predictions, we must
determine whether a model, built on a training set, can be used to make
predictions to support decision making. When the goal is to increase
the understanding of a process of interest, we must determine whether a
statistical model is a good representation of the truth. We discuss both
approaches in this section, with most focus on making predictions, since
this is the focus of the enclosed papers in this thesis.

As mentioned in the beginning of this introduction, the papers in this
thesis aim to make contributions towards improving predictions of certain
genetic e↵ects. These e↵ects are not observable from data, but are com-
ponents of the response variables in our models. Because the e↵ects we
aim to predict are not observable, simulation studies have been important
to evaluate predictions from our computer models. Simulation studies
are computer experiments often used by statisticians to understand the
behavior of the statistical models and methods, where the parameters of
interest are known from the process generating the data (Ripley, 1987;
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Gentle, 2006). What we can call the computer models, are the proposed
statistical models for making predictions, and simulation models are the
models used to generate data where the parameters of interest are known.
A part of this section is dedicated to simulation of data from simulation
models.

1.3.1 Making predictions

The assessment of goodness-of-fit of statistical models through their pre-
dictive performance is often done by evaluating the accuracy of point
predictions. This can be done using the root mean-square error (RMSE)
(Claeskens, 2016), which is simply the square root of the mean of the
squared di↵erence between the mean (posterior) estimate and the true/observed
value. The predictive ability of a model for a set of observations is then
typically calculated using an average over each point prediction, and we
choose the model with the lowest average RMSE.

The RMSE does not assess the prediction uncertainty. To do this,
the whole predictive distribution of the model must be evaluated, which
is known as probabilistic forecasting (Gneiting and Raftery, 2007). The
continuous ranked probability score (CRPS; Gneiting and Raftery, 2007)
measures a combination of bias and sharpness of the posterior distribution,
by taking into account the whole predictive distribution, and is a popular
score function for this kind of forecasting

CRPS(F, y) =

Z 1

�1
(F (u)� 1{y  u})2 du,

where F is the predictive cumulative distribution and y is the true/observed
value (Gneiting and Raftery, 2007). In this thesis we use the CRPS for
model evaluation in most papers, where the predictive cumulative distri-
bution F is approximated with a Gaussian distribution with mean and
variance from the posterior distribution of the estimates. The two scores
mentioned so far (RMSE, CRPS) are negatively oriented, meaning that
lower values of the scores, indicate a better predictive ability.

Correlation is an important measure of prediction accuracy in plant
and animal breeding (Bourdon and Bourbon, 2000; Lado et al., 2013;
Ferrão et al., 2017; Elias et al., 2018). In this thesis the sample corre-
lation coe�cient, also known as the Pearson product-moment correlation
coe�cient (Walpole et al., 2012), is used to estimate the linear association
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between two variables. The correlation works with point estimates and
ignores uncertainty of the estimates, and a high value of this metric is de-
sired. The reason why correlation is popular to assess model performance
in plant and animal breeding is explained in Section 1.6.

In this thesis we make predictions that are both in-sample and out-of-
sample. The in-sample predictions are based on data used in the model
construction, whereas the out-of-sample predictions are based on data
not used in the model construction. For out-of-sample predictions, the
data are separated in two data sets; the training data and the testing
data (Friedman et al., 2001). Usually, a large part of the data is used
in the parameter estimation, known as training, and a smaller subset of
the available data is reserved for evaluation of the predictions, known as
testing.

A popular approach for performing training and testing systematically
is cross-validation (Friedman et al., 2001; Konishi and Kitagawa, 2008;
James et al., 2013). In cross validation the data is first partitioned into
r subsets of similar size. Next, training and testing is performed in sev-
eral rounds starting with the first subset as testing set and the combined
remaining r � 1 subsets as training set. In the second round, the second
subset is used as testing set, and the combined remaining r � 1 subsets
as training set. This continues until all subsets have been used as testing
sets. Based on the estimates from the training set, we obtain predictions
for the testing set, and can combine (e.g. average) the predictive perfor-
mance over all rounds to get a total estimate of the model’s predictive
performance.

1.3.2 Increase understanding of a phenomenon

In many scientific fields, for example the social sciences, statistical meth-
ods are used to increase the understanding of a process of interest, to
discover causal e↵ects of variables, and models are built to be good repre-
sentations of the truth (Shmueli et al., 2010). When this is the case, model
selection is focused towards variable selection, the process of selecting a
subset of relevant variables for use in model construction (Dunson, 2008;
Heinze et al., 2018). This is done by testing whether the model assump-
tions fit with the data, by using various model choice criteria to select the
most promising model among candidate models (Claeskens et al., 2008),
and not by evaluating predictions.
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There are several popular diagnostics and approaches, and we mention
some of these here. For example are analysis of residuals and the coe�cient
of determination R2 play important roles in evaluation of regression mod-
els (Walpole et al., 2012), and the Akaike information criterion is one of
the most widely used criteria for model choice within likelihood-based in-
ference (Fahrmeir et al., 2013). The deviance information criterion (DIC;
Spiegelhalter et al., 2002) is widely used to compare model fit between
di↵erent hierarchical Bayesian models while also assessing the model com-
plexity. It is defined as

DIC = D(✓) + pD,

where D(✓) is the posterior mean deviance and pD is the e↵ective number
of parameters in the model. The “spike-and-slab” regression (Mitchell
and Beauchamp, 1988) is a Bayesian variable selection technique that is
useful when the number of possible variables is larger than the number of
observations, and the reversible jump MCMC (Green, 1995) can be used
to move between models with di↵erent numbers of variables.

1.3.3 Simulation as experimentation

For the applications presented in this thesis, the goal is to predict certain
random e↵ects in the models. When modeling real data, the true random
e↵ects are not known, and it is therefore not possible to evaluate the
predictions from this real data. Simulation studies are therefore performed
in all papers of the thesis. In these computer experiments, data are created
by pseudorandom sampling (Ripley, 1987; Gentle, 2006). This way it is
possible to understand the behavior of the statistical models and methods
because the parameters of interest are known from the process generating
the data. With a large number of realizations (sets of artificial data) for
each set of parameters, it is possible to experiment with di↵erent models,
and make model comparisons.

The statistical model used for simulation of data can be either conve-
nient or mechanistic (Ripley, 1987). By this we mean that the simulation
model is either a simplified version of the process of interest, or aimed to
represent the actual mechanisms of the process, respectively. The conve-
nient simulation model is often the same model as the computer model,
whereas a mechanistic model is a more complex model than the computer
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model. Although we use the term mechanistic, we do not mean that the
mechanistic simulation model is not stochastic, merely that the simula-
tion model is based on the mechanisms of the process of interest. Both
convenient and mechanistic simulation models can be used to help under-
standing the behavior of the statistical computer models, to predict, or to
aid decision making (Ripley, 1987). However, with data simulated from
the convenient model the evaluation mostly informs whether the simula-
tion program and the computer model do what they are intended to do.
On the other hand, evaluation with data generated from the mechanis-
tic model allows testing of the performance and behavior of a computer
model with data more similar to observed data. Most of the data gen-
erated in this thesis is generated from mechanistic models, more realistic
and complex processes than the models used in estimation.

Simulation of genomic data is commonly done using mechanistic mod-
els that rely on the underlying genomic processes discovered during the
past century (Zhang et al., 2015b; Faux et al., 2016; Xu et al., 2013). It
is for example known that only a few of many so-called genomic markers
may have causal e↵ect on the traits of interest, so simulation of the ge-
netic e↵ects is performed according to this using a mechanistic model. In
the computer models however, the e↵ects of genomic markers are usually
assumed to come from distributions where all markers can be assigned an
e↵ect (Meuwissen et al., 2001; Muir, 2007), because the genetic processes
are too complex to model. In this thesis we have used the AlphaSimR soft-
ware (Gaynor et al., 2019) which allows stochastic simulations of breeding
programs to the level of DNA sequence for every individual. We return to
genomic markers and the computer models commonly used within plant
and animal breeding in Section 1.6.

1.4 Gaussian random fields

Gaussian random fields (GRFs) play an important role in statistics, es-
pecially in spatial statistics, and in this thesis GRFs play an important
role as model components. This section presents GRFs, a subclass of
GRFs known as Gaussian Markov random fields, and the stochastic par-
tial di↵erential equation approach (Lindgren et al., 2011), which allows
representing GRFs as GMRFs.

A GRF is a random function over an arbitrary domain involving Gaus-
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sian probability density functions of the variables. Let {x(s), s 2 D} be
a stochastic process where D 2 Rd. The process {x(s), s 2 D} is then a
GRF if for any k � 1 and any locations s1, . . . , sk 2 D, (x(s1), . . . , x(sk)) is
normally distributed (Rue and Held, 2005). The mean is µ(s) = E(x(s)),
and the covariance function is C(s, t) = Cov(x(s), x(t)), and usually the
dimension d of the domain D is 1,2 or 3.

GRFs can be included as random e↵ects in LMMs to model the depen-
dency in point referenced data, where the field is usually assumed to be
stationary and isotropic. A GRF is stationary if µ(s) = µ for all s 2 D,
and C(s, t) only depends on s � t. If in addition the covariance func-
tion only depends on the Euclidean distance between s and t, the field
is isotropic. In this thesis, the GRFs are assumed to be stationary and
isotropic.

For the GRF to be a valid probability model, the covariance function
must be positive definite (Rue and Held, 2005). To ensure positive definite-
ness, it is common to use established positive definite covariance functions
such as exponential, Gaussian, powered exponential, and Matérn covari-
ance functions (Rue and Held, 2005). Among the most popular is the
Matérn covariance function (Matérn, 1960; Guttorp and Gneiting, 2006)

C(s, t) =
�2
s

2⌫�1�(⌫)
(kt� sk)⌫ K⌫ (kt� sk) , (1.9)

where K⌫ is the modified Bessel function of the second kind and order
⌫ > 0, k · k denotes the Euclidean distance in Rd, and �2

s is the marginal
variance. For the scaling parameter  > 0, an empirically established
relation to the range parameter is  =

p
8⌫/⇢, where the range parameter

⇢ > 0 describes the distance where the correlation between two points is
near 0.1. The parameter ⌫ determines the mean-square di↵erentiability
and the smoothness of the field. This value is generally di�cult to identify
from data, so it is usually fixed (Lindgren et al., 2011).

1.4.1 Gaussian Markov random fields

Inference with GRFs is computationally expensive because it requires fac-
torization of dense precision matrices (Rue and Held, 2005). Gaussian
Markov random fields (GMRFs) do not incur this penalty because the
Markov property ensures sparse precision matrices. This excellent compu-
tational property makes GMRF modeling popular in a range of statistical
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areas. Rue and Held (2005) mention several applications within structural
time series analysis, analysis of longitudinal and survival data, graphical
models, semiparametric regression and splines, image analysis, and spatial
statistics. Here, we introduce GMRFs following Rue and Held (2005), and
in Section 1.4.2 we show how GMRFs can be used to represent GRFs to
make computations with GRFs e�cient.

Before introducing GMRFs further, two concepts need to be intro-
duced; conditional independence and undirected graphs. For three random
variables X, Y and Z, we denote the conditional independence between
X and Y given Z as

X ? Y | Z,

meaning that conditional on Z, Y and X are independent. The same can
be expressed as ⇡(x, y|z) = ⇡(x|z)⇡(y|z).

The conditional independence structure of GMRFs can be represented
using undirected graphs. Let the undirected graph G be a tuple G =
(V, E), where V is a set of nodes in the graph and E contains the edges
{i, j}, i, j 2 V and i 6= j. If and only if {i, j} 2 E , there is an undirected
edge between nodes i and j. If V = {1, . . . , n}, the graph is labeled. An
example of an undirected graph is shown in Figure 1.2.

The random vector x = (x1, . . . , xn) 2 Rn is a GMRF with respect to
the labeled graph G with mean µ and precision matrix Q, if and only if
the density of x has the form

⇡(x) = (2⇡)n/2|Q|1/2 exp
✓
�1

2
(x� µ)TQ(x� µ)

◆
, (1.10)

and Qij 6= 0 if and only if {i, j} 2 E for all i 6= j (Rue and Held, 2005).
A GMRF is usually parameterized with the precision matrix because

it is sparse. The precision matrix also has the property that it gives
information about the conditional independence of the GMRF. An element
in the precision matrix, Qij , is zero if and only if xi and xj are conditionally
independent given all other nodes x�ij . This means that the non-zero
pattern in Q determines the graph G, and that for a given graph G, the
non-zero terms in Q can be determined.

The Markov properties of a GMRF are related to the conditional in-
dependence of the corresponding graph G = (V, E). We now present three
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x1 x2 x3 x4 xn

Figure 1.2: A linear undirected graph

Markov properties that are all equivalent for a GMRF. These are the
pairwise Markov property

xi ? xj | x�ij , if {i, j} /2 E and i 6= j,

the local Markov property

xi ? x�{i,ne(i)} | xne(i), for every i 2 V,

and the global Markov property

xA ? xB | xC , for all disjoint sets A, B and C, where C

separates A and B, and A and B are non-empty.

Here ne(i) refers to the neighbors of xi, the nodes with a direct edge to
xi.

The computational advantages of GMRFs compared to GRFs comes
from the sparsity of the precision matrix, and the use of sparse matrix
algorithms. In general, the cost of factorizing a dense n ⇥ n (covari-
ance) matrix is O(n3). The cost of factorizing the precision matrix of a
GMRF depends on the GMRF itself, but typical costs are O(n) for one-
dimensional GMRFs, O(n3/2) for two-dimensional GMRFs, and O(n2) for
three-dimensional GMRFs. Details and algorithms for computations with
GMRFs are given in Rue and Held (2005).

The auto-regressive process of order 1

The auto-regressive process of order 1 is a simple example of a GMRF
on a linear graph (Rue and Held, 2005). The linear graph in Figure 1.2
corresponds to an auto-regressive process of order 1, and the model can
be expressed as

xi = ⇢xi�1 + "i

"i ⇠ N (0,�2(1� ⇢2)), |⇢| < 1
(1.11)
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The model specifies that the output variable depends linearly on the previ-
ous values and a stochastic term. By representing (1.11) in the conditional
form, the assumption about conditional independence can be seen directly

xi | xi�1 ⇠ N (⇢xi�1,�
2(1� ⇢2)),

x1 ⇠ N (0,�2), |⇢| < 1,

for i = 2, . . . , n. In this form of the model, the assumption about condi-
tional independence is easier to see; xi and xj with 1  i < j  n and
j � i > 1, are conditionally independent given {xi+1, . . . , xj�1}.

The joint density of x has the form given in (1.10) with a tridiagonal
precision matrix given by

Q =
1

�2(1� ⇢2)

0

BBBBB@

1 �⇢
�⇢ 1 + ⇢2 �⇢

. . .
. . .

. . .

�⇢ 1 + ⇢2 �⇢
�⇢ 1

1

CCCCCA

The tridiagonal form of the matrix is due to the conditional indepence of
xi and xj given the rest for |i� j| > 1.

1.4.2 The stochastic partial di↵erential equation approach

In this section we present the stochastic partial di↵erential equation (SPDE)
approach introduced by Lindgren et al. (2011). The approach is a com-
bination of results within stochastic process theory (Whittle, 1954, 1963)
and numerical methods for solving partial di↵erential equations. Lind-
gren et al. (2011) showed how to provide an explicit link between some
GRFs in the Matérn class and GMRFs, using an approximate stochastic
weak solution to (linear) stochastic partial di↵erential equations. Their
approach enables continuous modeling with GRFs by a GMRF represen-
tation, leading to fast computations.

The approach is based on the equation

(2 ��)↵/2x(s) = W(s), s 2 Rd, (1.12)

where � =
Pn

i=1
@2

@x2
i
, W is Gaussian white noise,  controls the range

and ↵ controls the smoothness. The stationary solutions of (1.12), are
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GRFs with Matérn covariance function (Whittle, 1954, 1963). The Matérn
covariance function was presented in (1.9), and its parameters are coupled
with the SPDE in (1.12) with ↵ = ⌫ + d/2, and

�2
s =

�(⌫)

�(⌫ + d/2)(4⇡)d/22⌫
,

where ⌫ is the smoothness parameter and �2
s is the marginal variance of

the Mátern covariance function.
The continuous solution x(s) is approximated by the finite element

method, an approximate numerical method to solve partial di↵erential
equations. The domain of interest is discretized into non-overlapping tri-
angles, and an approximation to the GRF is built on a basis function rep-
resentation on the discretized domain. The full description of how GRFs
are represented using GMRFs via the SPDE approach can be found in
Lindgren et al. (2011).

1.5 Spatial statistics

Spatial statistics is a sub-field of statistics that uses spatially referenced
data (Gelfand et al., 2010). The field is a cornerstone in petroleum and
hydrology, and is also used for applications within many other fields, such
as agriculture, ecology and epidemiology. By learning from spatial data,
it becomes possible to make predictions for locations where no data have
been observed, and to understand the underlying spatial processes gener-
ating the data.

Gelfand et al. (2010) divide spatial statistics into three fields; continu-
ous spatial variation, discrete spatial variation, and spatial point patterns.
Models for continuous spatial variation assumes a continuous process in
space, with observations at a discrete set of locations � known as point-
referenced data. Discrete spatial variation deals with lattice data, pixel
data and areal unit data, while in models for spatial point patterns the
spatial locations are considered as random events. In this thesis we cover
models for both continuous and discrete spatial variation.

The branch of statistics covering models for continuous spatial varia-
tion is often referred to as geostatistics. The models in geostatistics grew
out from the work of Krige (1951), known for the kriging technique, and
Matérn (1960), with the Matérn covariance function. An important model
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for continuous spatial variation is the Gaussian process, where the random
vector of the of the spatial locations is assumed to be a GRF. In this thesis
we use the SPDE approach to represent GRFs as GMRFs to do e�cient
modeling of continuous spatial variation.

Statistical modeling of discrete spatial variation is often done using a
Markov random field (Guyon, 1995), where the Gaussian case is the pre-
viously introduced GMRF (Rue and Held, 2005). Models that have been
heavily used to model discrete spatial variation are the conditional and in-
trinsic auto-regressions (Besag, 1974). Among those, the most commonly
used are Gaussian conditional auto-regressions (CAR) which are GMRFs,
and intrinsic auto-regressions which are conditional auto-regressions with
singular precision matrices (Gelfand et al., 2010). An example of a Gaus-
sian conditional auto-regression on the line is the auto-regressive process
or order 1, and the corresponding graph in Figure 1.2.

1.6 Breeding and quantitative genetics

Quantitative genetics is the study of quantitative traits, and is a corner-
stone in both evolutionary biology and breeding (Lynch and Walsh, 1998;
Sorensen and Gianola, 2002). In quantitative genetics it is of interest to
study measurable traits, predict certain random e↵ects known as breeding
values, and identify regions of DNA associated with a particular trait. In
plant and animal breeding, estimated breeding values are used to select
individuals for future breeding, in order to increase the population mean
for some traits of interest (Bourdon and Bourbon, 2000; Acquaah, 2009;
Isik et al., 2017).

The applications in this thesis have all been within plant and animal
breeding, with the aim to contribute to improve estimation and prediction
of di↵erent genetic e↵ects. This section starts with a summary of some
basic concepts in quantitative genetics, and continues with more intro-
duction to plant and animal breeding, where breeding trials and the most
common statistical models within breeding are presented.

1.6.1 Some important concepts in genetics

The DNA (deoxyribonucleid acid) contains the genetic information of a
living organism. It is composed of two chains of nucleotides, which again
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TCTGAC · · ·

AGACTG · · ·

Figure 1.3: A simple illustration of the DNA with the nucleobases

are composed of one of four nitrogen-containing nucleobases (cytosine,
guanine, adenine or thymine) (Ziegler et al., 2010). A specific segment of
the DNA is known as a locus, and the base variant in a specific locus is
known as an allele. A group of alleles in an organism that were inherited
together from a single parent is known as a haplotype, and the combina-
tion or pair of alleles in an organism at a particular locus is known as a
genotype. Figure 1.3 shows a simple illustration of the DNA double helix
and some nucleobases. In this figure, the sequence TCTGAC is one hap-
lotype, and AGACTG is another haplotype, both consisting of six alleles.
The combination T/A is an example of a genotype.

A quantitative trait locus (QTL; Lynch and Walsh, 1998) is a locus
or a region of several loci in the genome that contains genes a↵ecting
quantitative traits. By locating QTL in the genome, work can be done to
determine what the genes in the QTL code for. The concept of QTL is
particularly relevant for one of the papers in this thesis, where we include
information in the models about potential QTL in di↵erent regions of the
DNA.

A genetic marker (or genomic marker) is a gene or DNA sequence with
known location in a chromosome that can be used to identify individu-
als. An example of a genomic marker is a single-nucleotide polymorphism
(SNP). A SNP is a type of genetic variation, defined as a locus where the
type of nucleotide present can di↵er between individuals (Ziegler et al.,
2010). For example, in a specific locus, the cytosine (C) nucleotide may
appear in most individuals, but in a minority of individuals, the position
is occupied by the adenine (A) nucleotide. This means that there is a SNP
at this specific locus, with the two possible nucleotide variations, C or A.

Linkage disequilibrium is a non-random relationship between alleles at
two or more loci (Lynch and Walsh, 1998). Under linkage disequilibrium,
haplotypes do not occur at the frequencies expected when the alleles are
independent. Positive linkage disequilibrium exists when two alleles occur
together on the same haplotype more often than expected, and negative
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Table 1.1: Example of 5 haplotypes spanning 7 mutations from Kelleher
et al. (2019). The original alleles are coded as 0 and mutated alleles are
coded as 1

Locus
1 2 3 4 5 6 7

H
ap

lo
ty
p
e a 1 0 0 1 1 0 0

b 1 0 0 0 1 1 0
c 1 0 0 0 1 1 0
d 0 1 0 0 0 0 1
e 0 1 1 0 0 0 1

linkage disequilibrium exists when alleles occur together on the same hap-
lotype less often than expected. Because of this non-random relationship
between alleles, non-coding markers in the genome can be correlated with
QTL, and in this way “capture” e↵ects a↵ecting traits.

A phylogeny, or a phylogenetic tree, is a directed diagram showing
the evolutionary relationships between di↵erent biological species or other
entities (Morrison, 2016). The phylogeny is based on similarities and dif-
ferences in physical or genetic properties. Haplotypes can for example be
connected in a phylogeny, where the edge between two haplotypes indicate
a mutation in an allele. In one of the papers in this thesis, we construct
models for phylogeny. An example of 5 haplotypes spanning 7 loci from
this paper is given in Table 1.1. The alleles are coded using 0 or 1, rather
than the letters indicating the nucleobases. An example of a plausible
phylogeny for the haplotypes is shown in Figure 1.4, where haplotypes are
denoted as nodes with allele sequences. Relationships between haplotypes
are denoted as edges, and mutated sites are denoted with a number on
edges. For example, the haplotype i has allele sequence 0000000, and the
haplotype g with sequence 1000100 di↵ers from the haplotype i due to
mutations in loci 5 and 1.

In quantitative genetics, measurable traits of interest are known as
phenotypes. These are assumed to consist of a genetic part and an envi-
ronmental part, sometimes with an interaction term (Conner et al., 2004).
When a phenotype is caused by several genes, the phenotype usually has
continuous distribution in a population, and is often assumed to be Gaus-
sian distributed. In this thesis, the response variable in our statistical
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Figure 1.4: Phylogenetic tree for the haplotypes in Table 1.1

models are phenotypic observations, which are assumed to be Gaussian
distributed. Further, we assume that there are no interaction e↵ects be-
tween the genetic and environmental part of the phenotype.

The total phenotypic variance in a population is divided into com-
ponents representing the genetic and environmental variation. Further,
the genetic variation can be divided into additive and non-additive ge-
netic variation, �2

g = �2
a + �2

n (Conner et al., 2004). The e↵ects behind
the additive genetic variation, the additive e↵ects, are commonly known
as breeding values. These values are sums over allele substitution e↵ects
over the unobserved genotypes of causal loci. Non-additive e↵ects are
defined as the remaining genetic e↵ects not captured by the additive val-
ues. Statistically, the non-additive e↵ects capture variation due to allele
interactions within and between loci (Conner et al., 2004).

1.6.2 Plant and animal breeding trials

The goal of both plant and animal breeding is to identify the individuals
in a population with the highest genetic value for some traits of interest
(Bourdon and Bourbon, 2000; Acquaah, 2009). By selecting these indi-
viduals for future breeding, the population mean for the traits of interest
can be moved in the desired direction, for example towards higher grain
yield for plants, or higher milk yield for cattle. To determine which indi-
viduals to select, a breeding program is performed through several phases:
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(i) defining breeding goal, (ii) collecting phenotypes, genotypes and pedi-
grees, (iii) genetic evaluation to estimate and predict breeding values, (iv)
selection of parents for next generation based on the estimated breeding
values, (v) mating in an animal breeding program or re-planting genetic
lines in a plant breeding program, and (vi) evaluation of the program
with respect to the genetic diversity maintained and realized response to
selection. Detailed descriptions of breeding programs within plant and
animal breeding can be found in Acquaah (2009) and Bourdon and Bour-
bon (2000), respectively. In this thesis we have focused our contributions
to phase (iii) estimation and prediction of breeding values. To be able to
estimate and predict breeding values, methods for separating the genetic
variation from environmental variation are required. This is done both
through the design of the breeding program, and using statistical models
applied to the gathered data, estimating genetic e↵ects.

Estimates of genetic e↵ects, and the additive and non-additive com-
ponents have di↵erent applications in breeding (Acquaah, 2009). The
estimates of additive e↵ects are used to identify parents of the next gen-
eration, because additive values indicate the expected change in mean
genetic value in the next generation. Estimates of genetic e↵ects are used
to identify individuals for commercial production, because genetic values
indicate the expected phenotypic value. Estimates of genetic values are
particularly valuable in plant breeding where individual genotypes can be
e↵ectively cloned, whereas additive e↵ects are usually more of interest in
animal breeding.

The development of experimental design in plant breeding was pio-
neered by R.A. Fisher. Thes plant breeding designs are based on replica-
tions, randomization and blocking (Fisher, 1926, 1935). The experiments
are designed to control environmental error and to give reasonable con-
fidence that the di↵erences between genetic lines will be detected. Time
and resources limit the experimental design, so environmental e↵ects are
included in the models for estimation of breeding values (Isik et al., 2017).

The most popular spatial model for environmental e↵ect within agri-
culture is the separable auto-regressive model (Cullis and Gleeson, 1991;
Gilmour et al., 1997). When di↵erent varieties are planted in a lattice
consisting of rows and columns, this model can be used to capture the
environmental e↵ect of the field. The precision matrix for the model is
constructed as the Kronecker product (Neudecker, 1969) between the pre-
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cision matrix for an auto-regressive model along the rows, and the pre-
cision matrix for an auto-regressive model along the columns. We use
this models for discrete spatial variation in one of the papers in this the-
sis. The response to selection determines how fast a breeder can advance
the population towards higher population mean for some trait of interest
through selection (Acquaah, 2009). The value of the response to selection
is the di↵erence between the mean phenotypic value of the o↵spring of the
selected parents, and the whole of the parental generation before selec-
tion. Factors that influence this value are the total phenotypic variation
in the population �2

p, the (narrow sense) heritability of the trait of inter-
est �2

a/�
2
p, and the proportion of the population that is selected for the

next generation (Acquaah, 2009). Since a breeder wants to advance the
population to higher trait means, the response to selection is important
to control.

In Section 1.3 correlation was mentioned as an important score of
predictive performance of statistical models in plant and animal breeding.
More specifically, it is the correlation between the true breeding value and
the estimated breeding value breeders are interested in. This is because
this value is related to the response to selection (Lynch and Walsh, 1998;
Bourdon and Bourbon, 2000). By choosing models and methods that yield
predictions with high correlations with the true breeding values, a breeder
can increase the response to selection.

1.6.3 The animal models

The models in this thesis are based on the animal model and the extensions
that are presented in this section. The animal model is a GLMM that uses
pedigree information to partition the observed phenotypic variance into
di↵erent genetic and environmental components. This model is widely
used in both animal and plant breeding (Lynch and Walsh, 1998; Bourdon
and Bourbon, 2000), and in this thesis it is used to estimate and predict
breeding values, where we have assumed Gaussian distributed phenotypic
observations.

Under the simplest form of the animal model, the phenotypic observa-
tion for individual i is expressed as

yi = w
T
i � + ai + "i, i = 1, . . . , n
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where wi is a vector of covariate e↵ects for individual i, � contains fixed
e↵ects, ai is the breeding value, and "i is a residual e↵ect. The breeding
value is modeled as a random e↵ect assuming a ⇠ N (0,A�2

a) given the
pedigree, where �2

a is the additive genetic variance in the base popula-
tion. The elements of A are Aij = 2⇥ij , where ⇥ij is the coe�cient of
coancestry between individuals i and j, a measure of expected relatedness
(Lynch and Walsh, 1998). The residual e↵ects are assumed to the iden-
tical and independently distributed according to " ⇠ N (0, I�2). Solving
the animal model using Henderson’s mixed model equations (Henderson,
1950), assuming known covariance matrices for a and ", provide best lin-
ear unbiased predictions (BLUP; McCulloch, 2003) for the breeding values.
Because of this, the animal model is often referred to as a BLUP model.

The animal model can be extended to model the e↵ect of genomic
markers such as SNPs. With current technology, genome-wide informa-
tion about an individual can readily be obtained, either through SNP-
array genotyping or sequencing platform (LaFramboise, 2009). Since the
genome-wide information has become abundant, modeling this data has
become the standard in plant and animal breeding. The application of this
modeling has been shown to improve genetic gains in breeding during the
last decade (Meuwissen et al., 2001; Hickey et al., 2017; Ibanez-Escriche
and Simianer, 2016). This powerful tool, using high-density SNP marker
panels, can be used to predict breeding values, and is then known as ge-
nomic prediction (Meuwissen et al., 2001). The extended animal model
that includes SNP marker e↵ects, is commonly referred to as the SNP-
BLUP model (Koivula et al., 2012)

yi = w
T
i � + z

T
i u+ "i,

where zi is a vector of length q containing the genotype coding of the
SNP marker values of individual i, and u are the random e↵ects of the q
SNPs, usually modeled as independent following a Gaussian distribution,
u ⇠ N (0, I�2

u). Typically there are many more SNP-markers than trait
observations, which raises identification issues (de los Campos et al., 2009;
Gianola et al., 2009).

Instead of modeling the marker e↵ects directly, SNP markers are some-
times used to model the genomic relationship between individuals. This
is commonly referred to as a genomic BLUP (GBLUP; Wang et al., 2018)
model. The GBLUP model substitutes the pedigree-based relationship
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matrix A with the marker-based relationship matrix G, and is given by

yi = w
T
i � + gi + "i,

where the genetic e↵ect is assumed to be g ⇠ N (0,G�2
g), where G =

ZZ
T /k. Z is a column centered genotype matrix, and k = 2

P
l %l(1�%l)

with %l as the allele frequency of marker l (VanRaden, 2008).
A common inference method for the animal model is REML, often per-

formed using the implementation in the ASReml program (Butler et al.,
2009). MCMC methods have been popular within breeding research, but
is rarely used within the breeding industry, probably due to the compu-
tational costs. Animal models with genetic dependency explained by the
pedigree have a GMRF structure (Steinsland and Jensen, 2010), which
means that INLA can be used and is very e�cient (Holand et al., 2013;
Steinsland et al., 2014). Animal models with genetic dependency explained
by SNP markers belong in the class of LGMs, but the precision matrixG

�1

is dense. Estimation can still be done using INLA, but it is not possible
to take full advantage of INLA’s sparse matrix computational benefits.
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Chapter 2

Scientific papers

The previous chapter introduced a number of topics relevant for the sci-
entific papers in this thesis. This chapter identifies the scientific contribu-
tions of the papers, how they are connected, and present their importance
and relevance first as a unit, then separately.

The enclosed scientific papers aim to contribute knowledge-based sta-
tistical models for learning from data in the field of quantitative genetics
and breeding. We have aimed to use and propose models that are re-
alistic and aligned with scientific understanding, that are interpretable,
and possible to draw inference from with the available data and existing
methods.

Thesis goal

With this thesis we have tried to fill gaps in literature for models in quan-
titative genetics that allow inclusion of prior knowledge. The scientific
papers in this thesis have all been motivated by challenges in plant and
animal breeding, where an important goal is to estimate and predict breed-
ing values. From an applied point of view, the aim of this thesis is to
contribute to improving estimates and predictions of breeding values and
haplotype e↵ects.

Working hypothesis

Our working hypothesis, the temporarily accepted basis for research, has
been that we can improve predictions of random genetic e↵ects by using

33
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models that include knowledge about genetic and spatial processes, and
that are aligned with current scientific understanding, to the extent of
what is possible with available data and existing inference methods.

To be able to get good estimates of breeding values and haplotype
e↵ects, it is necessary with a well designed breeding program, so that an
individual’s trait can provide insight to its underlying genetic value, and
to use statistical models and methods that are able to separate the genetic
e↵ects from the environmental e↵ects. Our focus is on proposing statistical
models for improving the breeding values and haplotype e↵ects, and the
design of breeding programs is therefore outside the scope of the thesis.

Enablers for scientific innovation

There are several available scientific contributions that have made infer-
ence and evaluation with the proposed models possible. The Bayesian
framework has appealing properties for inclusion of prior knowledge, and
the use of novel inference methods like INLA and the SPDE approach
enable fast and accurate inference with models that was not feasible 10-
20 years ago. The hierarchical generalized linear models framework is
also suited for inclusion of knowledge through the variance components of
random e↵ects, using h-likelihood.

An important enabler for evaluation with realistic data, is the recent
development of software for breeding program simulation (e.g., Faux et al.,
2016; Gaynor et al., 2019). Further, recent technological advances have
made genome-wide information abundant (LaFramboise, 2009), and the
availability of such data has inspired the development of tools over the
last decades such as genomic prediction (Meuwissen et al., 2001; Ibanez-
Escriche and Simianer, 2016; Hickey et al., 2017).

Innovation

The models and model components we propose in the scientific papers
make up the innovation of the scientific approach, and are the main con-
tributions of the thesis. We propose variance and dependency models for
genetic and spatial e↵ects, that are in line with what is known about na-
ture, to the extent of what is possible with current inference methods and
data gathering methods. We propose models in both the Bayesian hier-
archical framework and in the frequentist hierarchical generalized linear
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model framework.
Prior information is included as prior distributions, or by choice of

model for variances. For the priors of spatial e↵ects, we use knowledge
about spatial processes being continuous. Knowledge about size of param-
eters is included via prior distributions based on discussions with geneti-
cists. Haplotypes are modeled using the knowledge of expected similarities
between them, and knowledge about the importance of di↵erent genetic
markers is included via linear predictors for the variances.

Evaluation

We evaluate the proposed models relative to commonly used models us-
ing simulated data, and use the results from real data as complement
to the simulation results. The simulated data are mainly generated from
mechanistic models imitating the genetic processes in nature and breeding
procedures to the extent of what is feasible, and not from the proposed
computer models that are simplified versions of nature. This leads to fair
comparisons between the models.

To evaluate the models we have used mostly correlation and CRPS to
compare predictive performance. The use of correlation is standard in the
breeding community because it gives breeders insight about the response
to selection. However, from a statisticians point of view, it is important
to control and communicate uncertainty in estimates. Because of this, we
propose using the CRPS, to evaluate probabilistic forecasts.

Since we have been able to generate data from mechanistic models,
and make fair model comparisons, we have not focused on comparing
inference methods, for example comparing the results using INLA and
MCMC methods.

Documentation

Documentation is important to ensure reproducible results, and to make
the research verifiable for other scientists. The papers in this thesis strive
to give a clear description of data sets and data simulation procedures,
inference methods, evaluation criteria, and chosen parameter values. The
papers contain online supplementary material with coding examples that
together with the papers themselves should be su�cient to ensure repro-
ducibility and verification of the results in the papers. For the applications
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with real data, some of the data sets are available online, whereas other
are available on request.

The scientific papers

The following papers constitute the scientific contribution of this thesis.

Paper I: Selle, M.L., Steinsland, I., Hickey, J.M., and Gorjanc, G. (2019).
“Flexible modelling of spatial variation in agricultural field trials
with the R package INLA”, published in Theoretical and Applied

Genetics. Electronic supplementary material available from link.

springer.com/article/10.1007/s00122-019-03424-y#Sec31.

Paper II: Selle, M.L., Steinsland, I., Powell, O., Hickey, J.M., and Gor-
janc, G. (2020). “Modeling environmental variation in genetic eval-
uations for smallholder breeding programs”.

Paper III: Mouresan, E.F, Selle, M., and Rönneg̊ard, L. (2019). “Ge-
nomic Prediction Including SNP-Specific Variance Predictors”, pub-
lished in G3: Genes, Genomes, Genetics. Electronic supplementary
material available from doi.org/10.25387/g3.9247832.

Paper IV: Selle, M.L., Steinsland, I., Lindgren, F., Brajkovic, V., Cubric-
Curik,V., and Gorjanc, G. (2020). “Hierarchical modeling of haplo-
type e↵ects based on a phylogeny”, submitted to Frontiers in Ge-

netics. Electronic supplementary material available from doi.org/

10.6084/m9.figshare.12024450.

All papers present models or modeling approaches that aim to improve
current methods by taking a knowledge-based approach, which is the sta-
tistical contribution of this thesis. The papers all strive to improve predic-
tions of breeding values and haplotype e↵ects in quantitative genetics with
respect to correlation and CRPS. This is done through the development
of new and combining existing variance and dependency models in new
ways that allow inclusion of prior knowledge about di↵erent processes.

Overall, we conclude that including prior knowledge into the statistical
models, in the form of knowledge about size of parameters or e↵ects,
spatial locations and distribution of the underlying processes, or expected
similarities or relationships between e↵ects, can improve predictions for
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the random e↵ects of interest. The results and conclusions from the papers
allow and encourage scientists to use their expert knowledge, and to use
models that are interpretable and realistic.

Paper I: “Flexible modelling of spatial variation in agricul-

tural field trials with the R package INLA”

This paper analyzes agricultural field experiments using di↵erent estab-
lished spatial dependency models in a Bayesian framework. The three
models are: an independent row and column e↵ects model, a separa-
ble first-order auto-regressive model (Cullis and Gleeson, 1991; Gilmour
et al., 1997), and a GRF with Matérn covariance function represented as
a GMRF via the SPDE approach.

The main contribution of this paper is to show how to include a contin-
uous spatial model to agricultural field trials which allows for flexibility, is
interpretable, and is easily available in the R (R Core Team, 2017) pack-
age implementing the INLA method. The flexibility opens opportunities
for new field trial designs, and the interpretable parameters of the Matérn
covariance function can allow plant breeders to get a better understand-
ing of the underlying spatial processes a↵ecting the observed phenotypes
in the agricultural field trials. The separation of di↵erent e↵ects in the
phenotype allow better estimates of the breeding value, which we see from
the results.

Knowledge about the underlying spatial process causing environmental
variation in the phenotypes is included in the model via the prior distri-
bution for the spatial e↵ects. The processes in nature causing changes in
soil fertility, watering and soil depth, are expected to be continuous. A
GRF model is therefore suggested as the prior for the spatial e↵ects, in
addition to the two other more common models, and a case without a
spatial model.

The main results show that the estimates of genetic e↵ects can be
improved by accounting for spatial dependency in trials irrespective of the
magnitude of the spatial variation. The highest improvement is achieved
when spatial variation is modeled using either the discrete first-order auto-
regressive model or the continuous GRF.

The findings are based on estimation using simulated data. The simu-
lated genetic e↵ects are generated using a mechanistic model using the R
package AlphaSimR (Faux et al., 2016; Gaynor et al., 2019). The simula-
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tion of the spatial e↵ects is performed assuming an underlying GRF, due to
the assumptions about continuous spatial variation mentioned above. All
models are also tested on simulated data where the spatial e↵ects are gen-
erated from the discrete separable first-order auto-regressive model. The
conclusions are the same as the ones drawn from findings with simulated
data from the GRF.

Hyperparameters that are variance parameters are assigned prior dis-
tributions according to the inverse-gamma distribution. Although we ex-
perienced that changing from the inverse-gamma distribution to the pe-
nalized complexity priors changed the posterior for one of the variance
parameters, we kept the results with the inverse-gamma priors to avoid
overwhelming the target audience, which are geneticists, bio-technologists
and breeders.

Paper II: “Modeling environmental variation in genetic eval-

uations for smallholder breeding programs”

This paper contributes to filling the gap for spatial modeling in animal
breeding programs. There seems to be extensive literature on model-
ing genotype-by-environment e↵ects (Tiezzi et al., 2017; Yao et al., 2017;
Schultz and Weigel, 2019), but modeling spatial dependency in the envi-
ronmental e↵ect between herd locations on its own is not commonly done.
The e↵ects of herds are usually assumed to be fixed categorical e↵ects
or independent random e↵ects. In this paper however, knowledge about
farm location is included in the model to enhance separation of genetic
and environmental e↵ects, which is the key contribution of this paper. By
this, we aim to improve genetic evaluation of smallholder animal breeding
programs by including a spatially dependent environmental e↵ect, and we
consider the improvement for di↵erent strengths of genetic relatedness in
the population.

The proposed models are applied to both simulated data and real cat-
tle data. The simulated data are generated from a mechanistic model,
using the R package AlphaSimR (Faux et al., 2016; Gaynor et al., 2019)
to simulate the genetic e↵ects. Three di↵erent scenarios for breeding the
animals imitate di↵erent breeding strategies controlling the strength of
genetic relatedness. The simulated spatial e↵ects are linear combinations
of eight sampled Matérn GRFs. This is because we want to mimic several
layers of environmental e↵ects such as di↵erent climatic e↵ects. Further-
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more, we are assuming the Mátern GRF as prior for the spatial e↵ects,
and we want the simulated spatial e↵ects to come from a di↵erent model
than the Mátern GRF.

We take a Bayesian approach to modeling, so knowledge about the
relative size of the e↵ects acting on the phenotype are included in the
model by setting prior distributions for the variance parameters. Based
on conversations with geneticists, who are experts in the field, we have set
informative priors for the variance parameters.

The results show that including both an independent model and a
spatially dependent model for herds gives the best separation of genetic
e↵ects and environmental e↵ects. Powell et al. (2019) propose using ge-
nomic markers rather than pedigree information to model the dependency
between individuals. While the pedigree is only able to capture the ex-
pected relationship between individuals, the genomic data are able to cap-
ture the realized relationship between individuals. The results from our
paper support the findings of Powell et al. (2019), and show that a spatial
model is less important to include when using genomic markers to cap-
ture relationships between individuals. However, our results also suggest
that there is prospect for a better separation of environmental and genetic
e↵ects when including a spatially dependent herd model in addition.

Paper III: “Genomic prediction including SNP-specific vari-

ance predictors”

This paper proposes a general model for genomic prediction using a link
function approach within the hierarchical generalized linear model frame-
work, that can include external information on genomic markers. The
motivation for this research was the increasing amount of available biolog-
ical information on genomic markers (e.g., NCBI et al., 2020), and the ex-
pected increase of this information as the current technology for obtaining
whole-genome information is becoming more available. Although a large
number of methods have been developed already for genomic prediction
(Meuwissen et al., 2001; de los Campos et al., 2009; Habier et al., 2011;
Gianola, 2013; Zhang et al., 2014), there has been a gap in literature for
a general linear mixed model to include explanatory variables for SNP-
specific variances, that allow both continuous and categorical variables.
This paper contributes to fill that gap.

Our aim is to assess the accuracy of the proposed variance models un-
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der di↵erent genetic architecture. We conclude that the proposed models
are able to improve estimation of breeding values relative to the standard
SNP-BLUP model without external information. As more accurate in-
formation on genomic markers will become available, we believe that the
proposed models will become more useful.

The proposed models fit in the class of LMM in the presented frequen-
tist setting. Prior knowledge about genomic markers is included in the
model by specifying covariates for the variance of the random marker ef-
fects. This gives the model a flexibility that is in line with our knowledge
about the genetic process.

The conclusions in this paper are mainly based on results from simula-
tion studies, where genomic data are simulated from a mechanistic model
imitating di↵erent genetic architecture. Applying the proposed model to a
real data set allows us to compare the model with an approach suggested
by Zhang et al. (2015a), and we find that our results are comparable with
theirs.

Paper IV: “Hierarchical modeling of haplotype e↵ects based

on a phylogeny”

This paper proposes a model component for modeling haplotype e↵ects
within quantitative genetics that is based on the phylogeny between the
haplotypes. The motivation for this model came from the work of Kelleher
et al. (2019), who are building phylogenies on large data sets, and the fact
that most haplotypes are similar in e↵ect, due to most mutations in the
genome not having causal e↵ects on phenotypes.

The main contribution of this paper is the development of an auto-
regressive model of order one that hierarchically models haplotype e↵ects
by leveraging phylogenetic relationships between the haplotypes described
with a directed acyclic graph. The model, which we have called the hap-
lotype network model, yields a sparse precision matrix for the haplotypes.

There is extensive literature on estimating haplotype e↵ects (Tem-
pleton et al., 1987; Balding, 2006; Thompson, 2013; Morris and Cardon,
2019). One issue with estimating these e↵ects is that there is usually
an uneven distribution of haplotypes in a population (Ewens, 1972, 2004;
Walsh and Lynch, 2018). This means that few haplotypes are frequently
observed in individuals, but most haplotypes are observed in only a few
individuals. Estimating the e↵ects of rare haplotypes is therefore chal-
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lenging. However, by using knowledge about the genetic processes that
create a “network” of haplotypes, we are able to infer the e↵ects of these
rare haplotypes much better than using models that assume independent
haplotypes, since e↵ects of similar haplotypes are expected to be similar.
This shows the importance and relevance of the paper.

A Bayesian framework is chosen, which makes it possible to incorporate
knowledge about the genetic processes. From knowledge about mutations
and haplotypes, it is expected that most haplotypes have similar e↵ect
when they are only a few mutations apart. Therefore we choose a prior
for the auto-correlation parameter that has most mass close to 1.
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Abstract
Key message Established spatial models improve the analysis of agricultural field trials with or without genomic data 
and can be fitted with the open-source R package INLA.
Abstract The objective of this paper was to fit different established spatial models for analysing agricultural field trials using 
the open-source R package INLA. Spatial variation is common in field trials, and accounting for it increases the accuracy of 
estimated genetic effects. However, this is still hindered by the lack of available software implementations. We compare some 
established spatial models and show possibilities for flexible modelling with respect to field trial design and joint modelling 
over multiple years and locations. We use a Bayesian framework and for statistical inference the integrated nested Laplace 
approximations (INLA) implemented in the R package INLA. The spatial models we use are the well-known independent 
row and column effects, separable first-order autoregressive ( AR1⊗ AR1 ) models and a Gaussian random field (Matérn) 
model that is approximated via the stochastic partial differential equation approach. The Matérn model can accommodate 
flexible field trial designs and yields interpretable parameters. We test the models in a simulation study imitating a wheat 
breeding programme with different levels of spatial variation, with and without genome-wide markers and with combining 
data over two locations, modelling spatial and genetic effects jointly. The results show comparable predictive performance 
for both the AR1⊗ AR1 and the Matérn models. We also present an example of fitting the models to a real wheat breeding 
data and simulated tree breeding data with the Nelder wheel design to show the flexibility of the Matérn model and the R 
package INLA.

Introduction

In plant breeding, the main goal is to select individuals with 
the best performance as new market varieties or to select 
individuals with the best genetic potential as parents of 
the next generation. To this end, breeders use field trials to 
estimate genetic and breeding values of individuals. Spatial 
variation is common in such trials, and if not accounted for 
it can impact the estimation. There can be several sources of 
spatial variation in a field trial, such as changes in fertility, 
watering and soil depth. Other sources of spatial variation 
that often occur are external influences due to the way plots 
are treated, for example the effect of drilling, spraying and 
harvesting. This extraneous variation can be handled by the 
addition of further effects in a model, such as column or 
row effects.

Traditionally, spatial variation has been accounted 
for by using control plots, replications and blocks. These 
approaches do not account for fine-grained spatial vari-
ability, in particular they do not account for dependency 
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between neighbouring blocks and plots within blocks, which 
can affect the estimation of genetic values. Several models 
have been proposed to model spatial variation. One of the 
most widely used is the separable first-order autoregres-
sive ( AR1⊗ AR1 ) model introduced by Cullis and Glee-
son (1991) and extended by Gilmour et al. (1997). It has 
been shown to fit well in many trials (e.g. Gilmour et al. 
1997; Rodríguez-Álvarez et al. 2018). There are other mod-
els that can correct for spatial variation. For example, there 
is a whole class of Gaussian intrinsic models based on the 
seminal work of Besag and Higdon (1999), which have not 
gained much traction in plant breeding applications. Much 
has also been done on smoothing techniques, among which 
the recent SpATS approach explores two-dimensional 
smooth surfaces through the use of tensor product P-splines 
(Rodríguez-Álvarez et al. 2018). Nearest neighbour models 
are reviewed by Piepho et al. (2008), and the use of spatial 
kernels is also common (Elias et al. 2018; Mao et al. 2019).

Most of the popular spatial methods in plant breeding use 
lags between plot locations as a distance, while continuous 
spatial variation is not commonly addressed. If observations 
are irregularly spaced, the autoregressive and other models 
assuming equal spacing are not applicable. However, there 
are extensions to the autoregressive model, using covariance 
functions known as the power model and the exponential 
model (Schabenberger and Gotway 2017). The kernel meth-
ods presented in Elias et al. (2018) also use covariance func-
tions based on Euclidean distance between plots.

In this paper, we limit the focus to spatial variation in 
agricultural field trials such as changes in fertility, water-
ing and soil, not to the spatial variation occurring due to 
the way plots are treated. We model this spatial variation 
using different models with publicly available open-source 
software. We fit the common column and row effects and 
the separable first-order autoregressive AR1⊗ AR1 model 
(Cullis and Gleeson 1991; Gilmour et al. 1997). In addition, 
we fit a Gaussian random field (Matérn) model to the field 
trial via the stochastic partial differential equation (SPDE) 
approach introduced by Lindgren et al. (2011).

For inference, we use the Bayesian numerical approxi-
mation procedure known as the integrated nested Laplace 
approximations (INLA) introduced by Rue et al. (2009) with 
further developments described in Martins et al. (2013). The 
method is implemented in the R package INLA where mod-
els are fit with the inla() function with the same ease 
as using the base R functions lm() or glm(). INLA cal-
culates marginal posteriors for all model parameters (fixed 
and random effects and hyper-parameters) and linear com-
binations of effects without using sampling-based methods 
such as Markov chain Monte Carlo (MCMC). It is based on 
numerical approximations and numerical methods for sparse 
matrices and is much faster than sampling-based methods 
(Rue and Martino 2007).

INLA has previously been compared with several other 
methods for statistical inference. One of these is Mathew 
et al. (2015) who compared INLA, MCMC (as implemented 
in the R package MCMCglmm; Hadfield et al. 2010) and 
restricted maximum likelihood (REML) (as implemented 
in the ASReml program; Butler et al. 2009), and found 
that INLA can be used for rapid and accurate estimation 
of genetic parameters. The computation time for INLA and 
REML was about the same and significantly shorter than 
with MCMC, which was also the conclusion of Holand et al. 
(2013). Huang et al. (2017) compared INLA and REML 
for spatial models and showed that the performance of 
INLA–SPDE was comparable to REML. We emphasize 
that these comparisons are not straightforward because dif-
ferent programs implement different computational meth-
ods as well as different models. For example, the R package 
INLA implements a full Bayesian analysis (using the INLA 
method), as does the R package MCMCglmm (using the 
MCMC method), while the ASReml program implements an 
empirical Bayes analysis (using a two-stage method where 
first hyper-parameters are estimated and then using these 
estimates the fixed and random effects are estimated). Gia-
nola et al. (1986) and Sorensen and Gianola (2007) describe 
these differences in great detail.

The R package INLA is flexible with respect to the 
field trial design and to including several years and loca-
tions in the analysis. For example, it can fit designs beyond 
the standard lattice design, which we demonstrate with the 
Nelder wheel design used in forestry (Parrott et al. 2012). 
For a recent review and comprehensive treatment of the R 
package INLA, see Bakka et al. (2018) and Krainski et al. 
(2018).

The objective of this article was to test established spa-
tial models for analysing agricultural field trials using the 
open-source R package INLA. This R package allows us to 
fit multi-trial data where designs vary between trials and do 
not necessarily have to be regular. With a simulation study, 
we show that the Matérn model performs equally well as the 
AR1⊗ AR1 model. Further, using the package enables full 
Bayesian analysis. We also fitted the models on wheat data 
from Lado et al. (2013) and on a simulated tree breeding 
data set with the Nelder wheel design to further demonstrate 
the flexibility of the Matérn model and SPDE approach 
implemented in the R package INLA.

Material and methods

In this section, we present the data for a simulated wheat 
breeding programme, a real wheat field trial and a simulated 
tree breeding trial with the Nelder wheel design. We also 
present the used statistical models, studied cases, how we 
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inferred model parameters and how we evaluated the dif-
ferent models.

Experimental design and data

Simulated wheat data

To evaluate and compare the proposed models, we have 
simulated a wheat breeding programme and correspond-
ing field trials using the R package AlphaSimR (Faux et al. 
2016; Gaynor et al. 2019). The simulation followed closely 
our previous work (Gaynor et al. 2017; Gorjanc et al. 2018), 
where we simulated a wheat-like genome and 30 years of a 
wheat breeding programme with field trials.

The ancestral wheat-like genome had 21 chromosomes, 
each with 1000 single nucleotide polymorphism markers 
and 1000 quantitative trait loci. Each year in the breeding 
programme was based on 100 crosses between 50 parental 
inbred lines with 100 doubled-haploid lines per cross, result-
ing in a total 10,000 lines. These were planted in headrows, 
and the 1000 best individuals were planted in a preliminary 
yield trial with 0.25 heritability. The 100 best went through 
a final stage of planting and selection. The 50 best indi-
viduals from the preliminary yield trial and the following 
stages were used as parents in the next year of the breed-
ing programme. Selection was based on phenotype with the 
exception of the preliminary yield trial in years 20 through 
30, where we used the estimated breeding value.

We have focused our attention to the preliminary yield 
trial, because this stage has low replication, which makes 
modelling of spatial variation important. The 1000 lines in 
the preliminary yield trial were planted in two locations, 
with plots randomly assigned, ensuring that each line was 
planted once in each location so that the two locations were 
considered as replicates. The fields in the two locations had 
the same design, plots arranged in a lattice with 50 rows 
and 20 columns. The distance between columns was twice 
as large as the distance between rows causing long and nar-
row plot shape.

We let the years 1 through 19 serve as burn-in years for 
the breeding programme, and for years 20 through 30 the 
plots in the preliminary yield trial were assigned spatially 
dependent effects. We sampled plot spatial effects from a 
Matérn model generated via the SPDE approach with a spa-
tial range of 10 units. We varied the proportion of variation 
due to spatial effects to be 0% , 50% , or 75% of the residual 
variance, that is, with 50% a half of variation between plots 
was due to spatial effects and a half due to other unknown 
effects (plot residual). More detailed description of the 
Matérn model and the SPDE approach is given in the “Spa-
tial effect” and “The SPDE approach to spatial modelling” 
sections. To simulate yield phenotypes, we summed the 
year, location, individual genetic, spatial dependent plot 

and independent plot residual effects. We sampled year 
and location effects from a Gaussian distribution with an 
expected value of 0 and variance equal to residual variance. 
Individual genetic effects were based on quantitative trait 
loci genotypes and corresponding allele substitution effects 
(Faux et al. 2016; Gaynor et al. 2019). We standardized the 
yield phenotype before the data analysis, by centring with 
the mean and scaling with the standard deviation across both 
locations within the same year.

The reason for simulating spatial effects from the Matérn 
model generated via the SPDE approach was that this gen-
erated realistic geostatistical spatial processes—the true 
underlying spatial variation in a field is more likely a con-
tinuous process rather than discrete process. However, we 
also simulated spatial effects according to the AR1⊗ AR1 
model. We varied the proportion of variation due to spatial 
effects to be 0% , 50% , or 75% of the residual variance, and 
we set the autocorrelation parameter to be 0.8 in both row 
and column directions. This autocorrelation corresponds to 
a range of 10 units.

Chilean wheat data

We used parts of the wheat field trial data presented in Lado 
et al. (2013) and used by Rodríguez-Álvarez et al. (2018) as 
shown in Fig. 1. The data consisted of 384 advanced lines 
from wheat breeding programmes in Chile and Uruguay in 
years 2011 and 2012, and 16 additional lines that were not 
genotyped. The advanced lines were evaluated in the Santa 
Rosa region under two different levels of water supply: full 
irrigation (FI) and mild water stress (MWS). We analysed 
the total grain yield harvested within each plot.

The experimental design was an alpha-lattice with 20 
incomplete blocks, with each block containing 20 geno-
types. Two replicates were used for each year and irrigation 
level, so that each trial had 40 rows and 20 columns, and the 
lines were assigned the same plot for each year and irriga-
tion level. According to Rodríguez-Álvarez et al. (2018), 
the replicates were placed such that the first/second 20 rows 
corresponded to the first/second replicate. This is indicated 
by the horizontal line in Fig. 1. Plots were twice as long as 
they were wide and consisted of five rows 2 m long and 0.2 
m distance among the rows.

This gave four data sets each with 800 observations. The 
384 genotyped lines had 102,324 genome-wide markers. We 
imputed missing genotypes with the average allele dosage 
and computed the VanRaden (2008) genomic relationship 
matrix among the 384 advanced lines. For the 16 lines not 
genotyped, but with phenotypic observations, we assumed 
a genomic relationship of zero between themselves and the 
384 advanced lines.

One line had missing phenotypic observations for all rep-
licates in 2011, and five other lines had missing phenotypic 
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observation for one replicate each. We standardized the 
yield phenotype before the data analysis, by centring with 
the mean and scaling with the standard deviation across all 
locations for multi-trial models and for each trial separately 
for the single-trial models.

Simulated tree data with the Nelder wheel design

We also simulated data with a design used by tree breeders to 
test the effect of multiple planting densities on tree growth, 
known as the Nelder wheel design (Parrott et al. 2012). We 
chose this particular design to show the flexibility of the R 
package INLA and the SPDE approach. The Nelder wheel 
design is circular with rings radiating outward with increas-
ing distance. Spokes connect the centre with the furthest ring, 
and at the intersections of spokes and rings, a tree is planted. 
The variable planting densities within a single trial eliminate 
the need for separate trials for each planting density.

In the simulation, we tested 10 different planting densities 
with 30 planted trees for each density. The inner circle had 
a radius of 10, and the 9 subsequent circles had a radius of 
1.15 times the radius of the previous circle (Fig. 2).

We simulated the phenotype for each tree as a sum of 
the intercept with a value of 10, the tree density covariate 
multiplied by a regression coefficient of 10, a spatial effect 
simulated from a Matérn model using the SPDE approach, 

Fig. 1  Grain yield in the 
Chilean wheat data (Lado et al. 
2013)
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and a Gaussian residual with zero mean and variance 0.5. 
The simulated field (spatial effects) had a variance of 0.5 and 
a range of 10. There was no other effects to the design, that 
is, no treatment other than density, since modelling other 
genetic and environmental effects was illustrated with the 
simulated wheat data and the Chilean wheat data.

The growing area available to each tree i was calculated 
from:

where ! is the angle between rays in radians and ri is the 
radius of circle i. The factor k is 1.15. The planting density 
was then calculated as the inverse of the growing area.

Statistical models

We assumed to have n  plots such that a single field trial 
was indexed by the rows and columns of an r × c array. 
There were m ≤ n different lines planted in these plots. The 
observed phenotype y(si) was assumed to be a realization of a 
random variable Y(si) in plot coordinates si ∈ ℝ2 , i = 1,… , n . 
We considered the following general linear model:

with

where !0 is an intercept, ! = (!1 ,… , !nf ) is a vector of 
effects with a known covariate vector wi for plot i with 
!i ∼ N(0, "2

!i
) (for example year or location effects), gj is the 

genetic effect for individual j = 1,… ,m tested in the plot i 
and x(si) is the spatial effect for the plot.

Genetic effect

We assumed that the genetic effect gj was a sum of an 
additive genetic effect (breeding value) aj and a non-addi-
tive (residual) genetic effect nj . For non-additive genetic 
effects, we assumed an independent prior distribution 
n ∼ N(0, Im!

2
n
) . For additive genetic effects, we assumed 

that they were fully explained by genome-wide markers such 
that a ∼ N(0,A!2

a
) , where A is a relationship matrix. We 

calculated the relationship matrix as A = ZZT∕k , where Z 
is a column-centred genotype matrix of dimension m × p , 
p is the number of markers, and k = 2

∑
lql(1 − ql) with ql 

being allele frequency at marker l (VanRaden 2008). An 
equivalent model for the additive genetic effects was to use 
the genotype matrix directly, letting a = Zu , where u are 
marker effects u ∼ N(0, !p!

2
u
).

Genome-wide marker data contain substantial amount of 
shared information among related individuals due to shared 

Growing area (i) =
!r2

i
(k − k−1 )

2
,

(1)y(si)|!(si), "
2
e
∼ N(!(si), "

2
e
),

(2)!(si) = "0 + wi! + gj + x(si),

genome segments. Therefore, we could compress it to reduce 
model dimension while retaining information, which saved 
computation time (e.g. Jolliffe 1986). With singular value 
decomposition, we obtained:

where U is a unitary matrix of dimension (m × m) , S is the 
diagonal matrix (m × n) of singular values and V is an (n × n) 
matrix of eigenvectors. We used the principal components 
(the columns of ZV ) corresponding to the largest singular 
values of S and chose p∗ components that explained approxi-
mately 95% of the variation in Z . That is, we replaced the 
Z by Z∗ = ZV(∶, 1 ∶ p∗) of dimension m × p∗ . The linear 
predictor from (2) then became:

where z∗
j
 is the jth row vector of Z∗ for individual j and 

u∗ ∼ N(0, !p∗!
2
u∗
) are principal component effects.

Spatial effect

We tested the independent row and column effects model, 
the separable first-order autoregressive ( AR1⊗ AR1 ) model 
and a Gaussian random field (Matérn) model via the SPDE 
approach. The independent row and column model and sepa-
rable autoregressive model are based on a discretization of 
the field and model only a finite collection of spatial random 
variables. For these models, we omit the si in x(si) and use xi . 
This is to emphasize that these models use neighbouring plots 
as opposed to the Gaussian random field which is a continu-
ous spatial process and for which we use the notation x(si).

Row and column effects model

Row and column effects can model the underlying smooth 
spatial field as well as external variation due to field manage-
ment. We assumed:

where ri ∼ N(0, !2
r
) is the row effect and ci ∼ N(0, !2

c
) is the 

column effect of plot i, i = 1,… , n.

Separable autoregressive model, AR1⊗ AR1

The autoregressive model of order 1 (AR1) for the Gaussian 
vector x = (x1 ,… , xr) is defined as:

where |!| < 1.
For modelling the influence of neighbouring plots 

along rows and columns, the autoregressive model in each 

Z = USVT ,

(3)!j(si) = "0 + w i! + z∗
j
u∗ + nj + x(si),

xi = ri+ ci,

x1 ∼ N(0, !2
x
∕(1 − "2)),

xi|xi− 1 ∼ N("xi− 1 , !
2
x
), i = 2,… , r,
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direction was combined into a two-dimensional first-order 
separable autoregressive model (Cullis and Gleeson 1991; 
Gilmour et al. 1997), denoted as AR1⊗ AR1 . In this model 
the spatial effect vector x of length n  was modelled as:

with ! = !r ⊗ !c . The matrices !r and !c are the covari-
ance matrices of first-order autoregressive processes in row 
and column direction, respectively, and ⊗ is the Kronecker 
product. The model had two dependency parameters, one in 
each direction, !r and !c , and a variance parameter !2

x
.

Gaussian random fields and the Matérn model

In the model described above, the spatial variation was mod-
elled as discrete, meaning that the model only considers data 
on a fixed field trial layout, possibly allowing the distance 
between rows to be different from the distance between col-
umns. Assuming a continuous field for the spatial variation 
is, however, more realistic and allows the spatial variation 
to be modelled at any observed distance or field trial layout.

Continuously indexed Gaussian random fields play an 
important role in spatial statistical modelling and geosta-
tistics. In the field D ∈ ℝd with coordinates s ∈ D  , the 
continuously indexed Gaussian random field x(s) has a 
joint Gaussian distribution for all finite collections {x(si)} . 
The Gaussian random field is specified through the mean 
! and the covariance matrix ! = C(si, sj).

In this study, we used ! = 0 and the Matérn covariance 
function, which is the most important covariance function 
in spatial statistics (Stein 2012). We refer to this Gauss-
ian random field model as the Matérn model. The Matérn 
covariance function between locations si, sj∈ ℝd was:

where K! is the modified Bessel function of the second 
kind and order ! > 0 . The parameter ! can be expressed as 
! =

√
8"∕# , where ! > 0 is the range parameter describing 

the distance where the correlation between two points was 
near 0.1, and !2

s
 is the marginal variance. The parameter 

! determined the mean-square differentiability of the field. 
The SPDE approach is a computationally efficient way to fit 
the Gaussian random field (Matérn) model (Lindgren et al. 
2011), which we describe in the “The SPDE approach to 
spatial modelling” section.

Prior distributions

We used a full Bayesian approach to estimation which 
requires prior distributions for all parameters. The model 
consisted of two layers of parameters. The first layer 

x ∼ N(0,!!2
x
),

(4)C(si, sj) =
!2
s

2 "−1 Γ(")

(
#‖sj− si‖

)"
K"

(
#‖sj− si‖

)
,

consisted of fixed and random effects, for which we have 
specified most prior distributions above. In addition, a 
Gaussian prior with mean 0 and variance 1000 was assigned 
to the intercept and covariate effects, meaning !2

"i
= 1000 . 

The second layer consisted of the variance/dispersion param-
eters and other (spatial) parameters controlling the first layer 
and the likelihood for the data, i.e. all variance parameters, 
the parameters of the AR1⊗ AR1 and the Matérn models. 
For parameters in this layer, which we refer to as the hyper-
parameters, we used the default priors of the R package 
INLA. These are proper, but weak priors. For variance 
parameters, this was an inverse gamma prior with shape 1 
and inverse scale 5 × 10−5 , which has 95% percentiles at 
approximately 0.009 and 0.010. In the separable autoregres-
sive model, the same inverse gamma prior was set for the 
marginal variance !2

x
∕(1 − "2) . The transformed variable 

log((! + 1)∕(! − 1)) was assigned a Gaussian prior with 
mean 0 and standard deviation 0.15, which has 95% percen-
tiles at approximately − 0.15 and 0.15 for ! . Priors for the 
Matérn model were specified for the parameters ! and ! that 
control spatial range and variance; see the “The SPDE 
approach to spatial modelling” section. We used the default 
joint Gaussian prior on log(!) and log(!) with mean 0 and 
identity covariance matrix, so that log(!) and log(!) were 
independent (Blangiardo and Cameletti 2015) and automati-
cally scale to the size of the field.

Case studies

Simulation study

We fitted the model (1) with two versions of the linear predic-
tor (3) to the preliminary yield trial of each simulated breed-
ing programme—without and with genome-wide markers. The 
two linear predictors were:

where !0 , wi! , gj , z∗j u∗ were as described as in the “Statistical 
models” section. The linear predictors differed in that model 
(5) assuming that individuals were genetically independent, 
whereas model (6) used genome-wide marker data to model 
the genetic dependency. The linear predictors included both 
trials simultaneously. The k in sk

i
 indicated that the plot coor-

dinates si were in field k, where k = 1, 2 , and a fixed effect of 
location was included in wi! . Otherwise, the two locations 
were assumed to be independent realizations from the same 
distribution, and we used all three spatial models described in 
the “Spatial effect” section to fit spatial variation. We also 
fitted a model where the spatial effect was omitted, which we 

(5)!(sk
i
) = "0 + wi! + x(sk

i
) + nj,

(6)!(sk
i
) = "0 + w i! + x(sk

i
) + z∗

j
u∗,
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denoted as the NoSpatial model. Since the distance between 
columns was twice as large as the distance between rows, we 
accounted for this with the Matérn model, by appropriately 
scaling the column coordinates. The matrix Z∗ was con-
structed using p∗ = 500 principal components of the singular 
value decomposition of the centred genotype matrix Z.

Chilean wheat data

Using the data sets from the four trials (Lado et al. 2013) 
presented in the “Experimental design and data” section, 
we fitted the model (1) with different versions of the linear 
predictor (3). The four linear predictors were:

where !0 , x(si) , z∗j u∗ , and nj are as described in the “Statisti-
cal models” section. As with the simulation study, we used 
the three spatial models described above and the NoSpatial 
model. The linear predictors W1M and W2M included all 
four trials simultaneously, and therefore the intercept !k , 
k = 1,… , 4 , was trial specific to capture fixed year and irri-
gation effects. Further, the k in sk

i
 indicated that the plot 

coordinates si were in field k. The four trials in Fig. 1 showed 
quite different spatial patterns with respect to dependency in 
distance and variance, so it was not reasonable to assume 
that they were realizations from the same distribution. How-
ever, assigning separate variance and parameters controlling 
the spatial dependency to each trial increased the number of 
hyper-parameters considerably. We therefore modelled the 
spatial effect in the trials from 2011 as independent realiza-
tions from the same underlying distribution, and the same 
for the 2012 trials, because these showed most similar 
behaviour. This gave two sets of spatial parameters in the 
model, one set for the 2011 trials and one set for the 2012 
trials. We emphasize that this decision was driven by obser-
vation of the data. The matrix Z∗ was constructed using 
p∗ = 280 principal components of the singular value decom-
position of the centred and scaled genotype matrix Z.

Nelder wheel plot

To analyse the simulated tree data, we fitted the model (1) 
with the following linear predictor:

where !0 is the intercept, ! is a density effect, and a Matérn 
model is assumed for the spatial effect x(si) . We also fitted a 
model where the spatial effect was omitted.

!(si) = "0 + x(si) + nj, W1: wheat model 1

!(si) = "0 + x(si) + z∗
j
u∗ + nj, W2: wheat model 2

!(sk
i
) = "k + x(sk

i
) + nj, W1M: use all trials

!(sk
i
) = "k + x(sk

i
) + z∗

j
u∗ + nj, W2M: use all trials

!(si) = "0 + wi" + x(si),

SPDE, inference and evaluation of case studies

The SPDE approach to spatial modelling

Modelling with Gaussian random fields is computationally 
challenging because they give rise to dense precision matri-
ces that are numerically expensive to factorize in the esti-
mation procedures (Rue and Held 2005). Gaussian Markov 
random fields do not incur this penalty because they have 
a sparse precision matrix due to their Markov property. 
Lindgren et al. (2011) showed how to construct an explicit 
link between (some) Gaussian random fields and Gauss-
ian Markov random fields by showing that the approximate 
weak solution of the SPDE:

is a Gaussian random field with Matérn covariance function 
as given in (4). Here, W(⋅) is the Gaussian white noise, Δ is 
the Laplacian, ! is a smoothness parameter, ! is the scale 
parameter in (4), d is the dimension of the spatial domain 
and ! is a parameter controlling the variance. The parameters 
of Matérn covariance are linked to the SPDE through:

where ! = " − d∕2 , and we use ! = 2 and d = 2.
A Gaussian Markov random field approximation 

described in Lindgren et al. (2011) is enabled by solving 
the SPDE in (7) by the finite element method. Further details 
on the SPDE approach to spatial modelling can be found in 
Lindgren et al. (2011).

Bayesian inference with INLA and the R package INLA

Statistical inference is carried out using the INLA method 
introduced in Rue et al. (2009), which is implemented for 
use in R (R Core Team 2018) in the R package INLA (avail-
able at www.r-inla.org). In this section, we give a short 
introduction to the class of models known as latent Gauss-
ian models and how INLA can be used to approximate the 
posterior marginal distributions for such models. For an 
in-depth description of INLA, useful sources are Rue et al. 
(2009), Martins et al. (2013) and the recent review by Rue 
et al. (2017).

The class of latent Gaussian models includes many mod-
els, for example generalized linear (mixed) models, general-
ized additive (mixed) models and spline smoothing methods. 
Latent Gaussian models are hierarchical models in which 
observations y are assumed to be conditionally independent 
given a latent Gaussian random field x and hyper-parameters 

(7)
(!2 − Δ)"∕2x(s) = W(s),

s ∈ ℝ
d, " = # + d∕2, ! > 0, # > 0,

!2
s
=

Γ(")

Γ(#)(4$)d∕2%2"&2
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!1 , that is, !(y|x,!1 ) ∼ Πi∈I!(yi|xi,!1 ) . The latent field x 
includes both fixed and random effects and is assumed to 
be Gaussian-distributed given hyper-parameters !2 , that is, 
!(x|!2 ) ∼ N("(!2 ),!(!2 )) . The parameters ! = (!1 ,!2 ) are 
known as hyper-parameters and control the Gaussian field 
and the likelihood for the data. These are usually variance 
(dispersion) parameters for simple models, but can also 
include other parameters, for example autocorrelation. The 
hyper-parameters must also be assigned a prior density to 
completely specify the model.

The main aim of Bayesian inference is to estimate the 
marginal posterior distribution of the variables in the model, 
that is, !("j|y) for hyper-parameters and !(xi|y) for location 
parameters. INLA computes approximations to these densi-
ties quickly and with high accuracy. Laplace approximations 
are applied to integrals that are Gaussian or close to Gauss-
ian, and for non-Gaussian problems, conditioning is done to 
break down the approximations into smaller sub-problems 
that are almost Gaussian.

For the computations in INLA to be both quick and 
accurate, the latent Gaussian models have to satisfy some 
additional assumptions. Since INLA integrates over the 
hyper-parameter space, the number of non-Gaussian hyper-
parameters ! should be low, typically less than 10, and not 
exceeding 20. Further, the latent field should not only be 
Gaussian, it must be a Gaussian Markov random field. The 
conditional independence property of a Gaussian Markov 
random field yields sparse precision matrices which makes 
computations in INLA fast due to efficient algorithms for 
sparse matrices. Lastly, each observation yi should depend 
on the latent Gaussian field through only one component xi.

The R package INLA can be installed from within R. It 
is run using the !"#$() function with three mandatory argu-
ments: a data frame containing the data, a formula much 
like the formula for the standard !"() function in R and a 
string indicating the likelihood family. The default is Gauss-

ian with the identity link. The following call generates an 
object of type inla:

Prior distributions are specified through additional argu-
ments. Several tools to manipulate models and likelihoods 
exist as described in tutorials at the Web page www.r-inla.
org and the books by Blangiardo and Cameletti (2015), 
Krainski et al. (2018). The ! scripts used for the fitted mod-
els and the tree breeding simulation are available in Online 
Resource 1. Specifically we provide R code for all the fitted 
models to the real wheat data and the simulation and analysis 
of the tree breeding data with the Nelder wheel design.

Here, we show how to fit an: (1) Row + Col model, (2) 
AR1 row and AR1 col model, (3) AR1⊗ AR1 model and 
(4) Matérn model. The data should be stored in a data 
frame or list. Here, the data frame Data has one row for 
each observation with columns containing the phenotype, 
id for each line and row and column in the field. The id for 
each line is included twice because we want to model the 
genetic effect with and without genetic markers.

In the formula below, we indicate that each line should be 
modelled both with an independent normal distributed effect 
and using marker effects for the markers stored in Gen, the 
approach described in the “Genetic effect” section.

To include a spatial model, one of the following functions 
can be added to Formula.
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Here, f() indicates a random effect with a specific 
model. The group argument nests the random effect within 
each level of the group factor, and the control.group 
argument specifies the model between the group levels. 
The models with formula including either of effects (1)–(3) 
are fitted with the call to inla() as described above. The 
SPDE approach (4) requires a few additional stages which 
we show in the full code available in Online Resource 1.

Evaluation of model performance

We evaluated the models using the correlation between the 
true and estimated values, the continuous rank probability 
score (CRPS), by identifying the top individuals, and the 
residual variance.

We used the CRPS to take into account the whole pos-
terior predictive distribution, that is, to compare the esti-
mated posterior means with the true/observed values while 
accounting for the uncertainty of estimation. The CRPS is 
defined as (Gneiting and Raftery 2007):

where F is the cumulative distribution of the estimator of 
interest and y is the observed value. The CRPS is negative 
oriented, so the smaller the CRPS the closer the estimated 
value is to the observed/true value. For readers not familiar 
with the CRPS, three plots in Fig. 3 show the cumulative 
distribution functions for estimates and the observed value 
of 1.0. In Fig. 3a, the estimate is close to the true value and 
the area between the curves is small and so is the CRPS. In 
Fig. 3b, the estimated mean is equal to the true value, but 
the large uncertainty due to estimation causes a large area 
between the curves, and hence a larger CRPS than in Fig. 3a. 
In Fig. 3c, the uncertainty of the estimation is small, but the 

CRPS(F, y) = ∫
∞

−∞

(F(u) − 1 {y ≤ u})2 du,

estimated mean is further from the true value, causing the 
area and the CRPS to be large.

For the simulated data, we computed the correlation and 
the CRPS between true and estimated breeding value. We 
also quantified how many of the ten best individuals were 
among the estimated top 100 individuals.

For the real data, we did not know the true breeding 
value, and it was therefore not possible to validate the esti-
mated breeding values. We therefore focused on the residual 
variance from each model as a measure of the unexplained 
variance. This value can be seen as a proxy for the coeffi-
cient of determination ( R2 ), a measure on how much of the 
data variance is explained by a given model (Gelman and 
Hill 2006).

Results

In this section, we present the results from the three cases 
presented in the “Case studies” section. In the results from 
the simulation study, we compare correlation, CRPS and 
top ranking of individuals between the spatial models. In 
the results from the real data, we present estimated genetic 
variances, marker variances and residual variances and com-
pare these between the different models. In the results from 
the simulated tree breeding data, we present the posterior 
distribution of all parameters and the estimated spatial effect.

Simulation study

This section presents the results from the simulation study. 
The models were evaluated using the correlation and CRPS 
between the true and estimated breeding value and using the 
number of the top ten individuals that were among the top 
100 ranked individuals when considering estimated breed-
ing value (posterior mean). In this section, all tables have 
three scenarios indicating the proportion of environmental 
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Fig. 3  Cumulative distribution function (CDF) of the observation (true value = 1; solid line) and of estimate (dashed line)
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variance due to spatially structured variation in the data, 
0.00, 0.50 or 0.75, while the total variance was the same. 
Proportion of spatial variation therefore indicates how much 
of total environmental variance was due to structured spa-
tial noise and unstructured noise (see the “Simulated wheat 
data” section).

In this section, we only present the results from data with 
spatial effects generated from the Matérn model via the 
SPDE approach. Tables with results for correlation, CRPS 
and ranking, based on data with spatial effect generated from 
the AR1⊗ AR1 model, are given in the Online Resource 2. 
These results show similar tendencies to the ones presented 
in this section. Tables showing average estimates for resid-
ual variance, genetic and marker variance and other spatial 
hyper-parameters based on data with spatial effect generated 
from the Matérn model are given in the Online Resource 2.

In Table 1, the average correlation is presented, in Table 2 
the average CRPS is presented, and in Table 3 the average 
number of the top ten individuals that are among the top 100 
ranked individuals is presented. The average was taken over 
100 independent realizations of the breeding programme 
described in the “Simulated wheat data” section. We note 
that genomic data improved the correlation, CRPS and the 

average number of the top ten individuals for all models and 
proportions of spatial variance. We further note that model-
ling the spatial variation also improved these metrics. Below, 
we go through each table in detail.

Across all metrics, the Matérn and AR1⊗ AR1 stand out 
as best to model the spatial variation. These had the highest 
correlation when spatial variation was present as seen in 
Table 1. When there was no spatial variation, the two models 
did not perform worse than not including a spatial effect. 
The performance increased as the extent of spatial variation 
increased. The CRPS results in Table 2 show lower CRPS 
for the Matérn model and the AR1⊗ AR1 models compared 
to the NoSpatial and Row + Col models. These results are in 
line with the correlation results with one exception for the 
AR1⊗ AR1 model. We also note an improvement in CRPS 
with increasing extent of spatial variation.

The average number of the top ten individuals among the 
top 100 ranked individuals is given in Table 3. The Matérn 
and AR1⊗ AR1 models again had better results when there 
was a spatial variation in the data and when genome-wide 
markers were used—in this setting there were on average 
between 6 and 8 of the top ten individuals among the top 
100 ranked individuals. As expected, the NoSpatial showed 

Table 1  Correlation between 
the simulated true and 
estimated breeding value in the 
preliminary yield trial by the 
proportion of spatial variation, 
the spatial model and using 
genome-wide markers

The standard error was around 0.002

Genome-wide markers No Yes
Prop. of spatial var 0.00 0.50 0.75 0.00 0.50 0.75

NoSpatial 0.39 0.39 0.39 0.62 0.61 0.62
Row + Col 0.39 0.41 0.42 0.62 0.63 0.64
AR1⊗ AR1 0.39 0.47 0.56 0.62 0.68 0.74
Matérn 0.39 0.47 0.57 0.62 0.68 0.74

Table 2  CRPS between the 
simulated true and estimated 
breeding value in the 
preliminary yield trial by the 
proportion of spatial variation, 
the spatial model and using 
genome-wide markers

The standard error was around 0.0002

Genome-wide markers No Yes
Prop. of spatial var 0.00 0.50 0.75 0.00 0.50 0.75

NoSpatial 0.149 0.149 0.149 0.114 0.115 0.114
Row + Col 0.169 0.142 0.138 0.114 0.113 0.111
AR1⊗ AR1 0.169 0.127 0.117 0.114 0.108 0.100
Matérn 0.148 0.127 0.117 0.114 0.107 0.099

Table 3  Average number of the 
top ten individuals among the 
top 100 ranked individuals in 
the preliminary yield trial by the 
proportion of spatial variation, 
the spatial model and using 
genome-wide markers

The standard error was around 0.05

Genome-wide markers No Yes
Prop. of spatial var 0.00 0.50 0.75 0.00 0.50 0.75

NoSpatial 3.89 3.82 3.89 6.32 6.41 6.43
Row + Col 3.89 4.05 4.20 6.33 6.59 6.77
AR1⊗ AR1 3.89 4.81 5.81 6.32 7.36 8.07
Matérn 3.89 4.80 5.85 6.32 7.38 8.15
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no improvement when the degree of spatial variation was 
increased and the Row + Col model showed only a little 
improvement with respect to all evaluations.

We also evaluated predictions of breeding values for 
1000 doubled-haploid individuals that were genotyped, 
but not phenotyped. These individuals served to test out-
of-sample prediction, which we could perform using esti-
mated genome-wide marker effects. The average correlation 
between the true and predicted breeding value is presented 
in Table 4, where AR1⊗ AR1 and Matérn again had the 
highest correlation. For the CRPS in Table 5, we see a simi-
lar trend as for the phenotyped individuals; however, the 
improvement with the higher degree of spatial variation is 
now less dominant. Finally, the average number of the top 
ten individuals among the 100 ranked individuals is given 
in Table 6. These results improved with the Matérn and 
AR1⊗ AR1 model and with the increasing spatial variation. 
The results for the non-phenotyped doubled-haploid lines 
showed lower correlation, higher CRPS and lower number of 
the top ten individuals captured than in the preliminary yield 
trial. This is expected as we had not observed any phenotype 
data on the doubled-haploid lines.

Chilean wheat data

In this section, we present results from fitting the models 
W1, W2, W1M and W2M to the Chilean wheat data. We 
present the estimated genetic variances, marker variances 
and residual variances from the different spatial models. 
These are shown in Fig. 4. We also present the posterior 
predicted phenotype from model W2 for the 2011 trial with 
full irrigation. Tables showing estimates for residual vari-
ance, genetic and marker variance, and other spatial hyper-
parameters are given in the Online Resource 2.

We first focus on the results from fitting the models with-
out genome-wide markers (models W1 and W1M), which 
are shown in Fig. 4a, b. The estimated genetic variances were 
similar within each trial except for the NoSpatial case which 
assigned all variation to the residual variance in the trial 
from 2011 with mild water stress (MWS), indicating a very 
bad model fit. Between the trials, there was more variation 

between the estimates of genetic variance; however, most 
95% confidence intervals overlap between the different mod-
els and trials with a few exceptions. The uncertainty in the 
genetic variance was reduced when all trials were analysed 
together (W1M), which was expected as more data were 
used in this model. For the residual variance, we expected 
that it would differ both between models and trials as they 
described the amount of variation not explained by the struc-
tured model terms. As expected, the residual variance from 
NoSpatial was the largest as this model cannot explain spa-
tial variation. The AR1⊗ AR1 model had the lowest residual 
variance, closely followed by the Matérn model in the 2011 
trials. When all trials were analysed jointly, the residual vari-
ance increased slightly for the AR1⊗ AR1 and the Matérn.

We now focus on the results for models including 
genome-wide markers (models W2 and W2M) in Fig. 4c–e. 
We note that marker variance estimate had large uncertainty 
and was lower in 2011, particularly in the medium-water 
stress condition. The genetic variance not captured by mark-
ers (Fig. 4d) became more similar between the different tri-
als compared to model W1 (as summarrized in Fig. 4a). The 
residual variance did not change significantly, indicating that 
the markers captured the variation that was already captured 
by the genetic effect modelled in W1 and W1M. However, 
with genome-wide markers we captured the genetic depend-
ency between individuals with the model, which makes it 
possible to predict genetic value for non-phenotyped indi-
viduals as shown in the previous subsection.

Table 4  Correlation between the simulated true and predicted breed-
ing value for the non-phenotyped doubled-haploid lines by the pro-
portion of spatial variation and the spatial model

The standard error was around 0.004

Prop. of spatial var 0.00 0.50 0.75

NoSpatial 0.36 0.36 0.36
Row + Col 0.36 0.37 0.38
AR1⊗ AR1 0.36 0.42 0.47
Matérn 0.36 0.42 0.48

Table 5  CRPS between the simulated true and predicted breeding 
value for the non-phenotyped doubled-haploid lines by the proportion 
of spatial variation and the spatial model

The standard error was around 0.00004

Prop. of spatial var 0.00 0.50 0.75

NoSpatial 0.128 0.128 0.129
Row + Col 0.128 0.128 0.127
AR1⊗ AR1 0.128 0.126 0.122
Matérn 0.128 0.126 0.122

Table 6  Average number of the top ten individuals among the top 
100 ranked individuals for the non-phenotyped doubled-haploid lines 
by the proportion of spatial variation and the spatial model

The standard error was around 0.06

Prop. of spatial var 0.00 0.50 0.75

NoSpatial 3.37 3.38 3.35
Row + Col 3.37 3.51 3.60
AR1⊗ AR1 3.37 3.99 4.67
Matérn 3.37 3.97 4.75
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We show the fitted values from model W2 for the 
2011 full irrigation trial in Fig. 5. These show how the 
AR1⊗ AR1 and Matérn models managed to capture the 
spatial pattern in the observations, whereas the NoSpatial 
model and Row + Col model could not. Since we do not 
know the true spatial effects for the data, we cannot know 
for a fact that this spatial variability is real. However, from 
the simulation study we showed that the models accounting 
for spatial variability do not perform worse than the NoS-
patial model when there is no spatial variability acting on 
the phenotype. Note that the scale here is different from the 
one in Fig. 1 since models were fitted to standardized data.

Nelder wheel plot

In this section, we present the results from fitting the model 
presented in the “Nelder wheel plot” section to the simu-
lated tree breeding data. In Fig. 6, the posterior distributions 
for the intercept, fixed density effect, spatial range, spatial 

variance and residual variance from the Matérn model are 
presented along with the true values used in simulating the 
data. For all parameters, the posterior distribution contained 
the true values and the distribution modes were close to the 
true values for the Matérn model.

For the NoSpatial model, the true effect of density is 
barely covered by the 95% confidence interval of the poste-
rior distribution (Fig. 6b), and the true intercept is not cov-
ered (Fig. 6a). The posterior residual variance is approxi-
mately twice as large as the true residual variance in Fig. 6c. 
This is expected as the NoSpatial model cannot account for 
the spatial variation, and we therefore expect it to perform 
worse than the Matérn model in this comparison.

In Fig. 7, we show the simulated spatial effect, the pos-
terior mean spatial effect and the standard deviation of the 
estimate. The mean estimate resembled closely the true 
spatial field, especially in locations where we had observa-
tions. The standard deviation was the smallest where we had 
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and W1M) and the bottom panels for models that use genome-wide marker data (W2 and W2M)
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observations and where the observations were more densely 
observed.

Discussion

The objective of this paper was to test established spatial 
models for analysing agricultural field trials using the open-
source R package INLA. We have fitted both spatial and 
genetic effects jointly in a simulated wheat trial data, a real 
wheat data set and a simulated tree breeding data set with 
the Nelder wheel design. Here, we highlight three points for 
discussion: (1) the importance of modelling spatial variation 
in agricultural field trials, (2) the flexibility of the R package 
INLA and the SPDE approach to model multiple trials and 
years as well as non-standard designs and non-standard phe-
notype distributions and (3) the limitations of the R package 
INLA to estimate large numbers of hyper-parameters and to 
fit genomic models.

Modelling spatial variation

With the analysis of simulated wheat data sets, we showed 
that the estimates of genetic effects can be improved by 
accounting for spatial dependency in trials irrespective of 
the magnitude of the spatial variation. This is in line with 
the other studies (Elias et al. 2018; Rodríguez-Álvarez et al. 
2018; Velazco et al. 2017; Piepho et al. 2008). We observed 
the greatest improvements with both the AR1⊗ AR1 model 
(Cullis and Gleeson 1991; Gilmour et al. 1997) and the 
Matérn model using the SPDE approach (Lindgren et al. 
2011). We measured this improvement with the correlation 
and continuous rank probability score (CRPS) between the 
true and estimated effects as well as the average number 
of the top ten individuals that were among the 100 ranked 
individuals based on the estimates. When we attempted to 
model non-existing spatial variation, the results were not 
significantly worse compared to not modelling it. This obser-
vation suggests that the AR1⊗ AR1 model and the Matérn 
model are good default spatial models that do not overfit 

Fig. 5  Posterior fitted values 
from the model W2 for trial 
2011 FI using all three methods 
of spatial correction and no 
spatial correction
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the data. A reviewer pointed out that field trial design and 
management effects should be modelled in addition to spa-
tial effects. When this is required (e.g. Borges et al. 2019; 
González-Barrios et al. 2019), the demonstrated R package 
INLA can easily accommodate this via its general model for-
mulae functionality, that is, by adding block and sub-block 
effects and row and column effects. These effects can be 
modelled either as fixed or as random effects.

Flexibility of the R package INLA

Through modelling the real wheat data, we demonstrated 
the flexibility of the R package INLA to model both the 
genetic and spatial effects for several trials simultaneously. 
We treated the spatial variation in each trial as an independ-
ent realization of the chosen spatial model. By modelling 
spatial and genetic effects across several trials jointly with 
one model, we did not lose any information as we would if 
spatial effects were estimated first and then subtracted from 
the data (Schulz-Streeck et al. 2013). Furthermore, there 
is a large potential in modelling all trials jointly because 
this approach enables reduction of the required number of 
replicates per individual per trial and therefore test more 
individuals (Bernal-Vasquez et al. 2014). It also makes it 
possible to estimate location and year effects, which can be 
helpful for future management of the trial locations.

With the Nelder wheel design, we demonstrated the flex-
ibility of the Matérn model using the SPDE approach with 
respect to the field trial design. This flexibility arises from 
the continuous modelling of spatial effects with the Matérn 
model as compared to the discrete approach of other stand-
ard models. The Nelder wheel example is a very special 
case and does not resemble standard agricultural field tri-
als, which largely have a regular lattice layout of plots. We 
have nevertheless included this example to demonstrate the 
flexibility of the Matérn model and the R package INLA. 
This approach can be used for regular as well as non-regular 
designs, which can be useful in special settings, for example, 
when plot sizes differ (Archbold et al. 1987), when design 
is non-standard as in the Nelder wheel design (Parrott et al. 
2012), when spatial correlation is not expected to follow 
standard patterns due to external variation (Bakka et al. 
2019), or if the terrain does not allow for a lattice-like layout 
of plots. Another possible use of the Matérn model could be 
to jointly model neighbouring trials. In this case, the Matérn 
model can accommodate any layout of the plots across the 
trials, while the AR1⊗ AR1 model would require that plots 
from the neighbouring trials follow a common layout to all 
trials. Other applications of the Matérn model and the SPDE 
approach could be in conservation and utilization of genetic 
resources in forestry, particularly in natural or semi-natural 
stands not planted in a formal layout, and for identification 
of trees in the wild for collection of seed for cultivation or 

for reforestation. The approach can also make use of area 
observations (Lindgren et al. 2011; Bakka et al. 2018) to 
model total yield per area with varying area between plots. 
These flexibilities could enable design of new field trials or 
an advanced analysis of existing trials that do not follow the 
common lattice-like layout.

In this study, we focused on phenotypes that can be 
modelled with a Gaussian distribution only. However, the 
R package INLA enables seamless modelling of other dis-
tributions such as binomial, Poisson and others. Breeder’s 
scores and other types of field trial data frequently follow 
these types of distributions. For most models, the only code 
change required is a switch of the distribution family; for 
example, to change the model with a continuous Gauss-
ian distribution to a discrete Poisson distribution we sim-
ply change inla(..., family = ”Gaussian”) 
to inla(..., family = ”Poisson”). Krainski 
et al. (2018) or Blangiardo and Cameletti (2015) provide 
further details on this. While the code change is simple, we 
have to note that the change of phenotype model impacts 
the interpretation of parameters. To this end, the R pack-
age INLA enables sampling from posterior distributions and 
these samples can be used to calculate parameters of interest. 
De Villemereuil et al. (2016) provide an excellent overview 
of this topic.

Limitations of the R package INLA

While the R package INLA enables flexible modelling 
of data from multiple trials and years, this might usually 
require increasing the model complexity by accounting for 
trial-specific residual variance or trial-specific spatial param-
eters—by increasing the number of hyper-parameters, that 
is, parameters controlling the likelihood and latent field, for 
example variance parameters. We have performed such an 
analysis with the real wheat data, where spatial variation in 
2011 and 2012 trials differed substantially in both depend-
ency with distance and variance. While this can be accom-
modated with the R package INLA, we highlight that the 
INLA method is best when it is based on a relative small 
number of non-Gaussian hyper-parameters, typically less 
than ten, and not exceeding 20. This limitation is due to the 
numerical integration of multidimensional posterior distri-
bution of hyper-parameters in INLA (Rue et al. 2017). Since 
there is limited information to estimate hyper-parameters 
from a single trial, a parsimonious solution would be to 
group similar trials together and estimate hyper-parameters 
per group instead of per trial. This is what we did for the 
2011 and 2012 trials with the real wheat data.

The main drawback with using R package INLA for ana-
lysing modern agricultural trials is that genome-wide marker 
data are highly dimensional, which leads to dense systems 
of equations. INLA is based on numerical approximations 
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and numerical methods for sparse matrices, and even though 
INLA can fit genomic models either via the genomic rela-
tionship matrix or via marker effects (Strandén and Garrick 
2009), there is substantial computational overhead to handle 
such models, which is not the case for the pedigree model 
which has a sparse precision matrix (Steinsland and Jensen 
2010; Henderson et al. 1984). This is why we chose to fit 
the genome-wide markers directly via the principal compo-
nent approach, which is similar to the proposal of Ødegård 
et al. (2018). Another option would be to fit a model with 
individual genetic effects following VanRaden (2008), but 
with a genomic relationship matrix that uses dense–sparse 
partitioning into core and non-core individuals (Misztal 
2016). More research is required in this area to increase the 
usefulness of the R package INLA for the modern breeding 
applications.

Finally, since the INLA method implements a full Bayes-
ian analysis, prior distributions have to be set for all param-
eters of the model. The marker variance estimates in the 
models for Chilean wheat data were quite small, and we 
expected this to be larger. Testing the same models using 
the informative penalized complexity priors (Simpson et al. 
2017) increased the mean marker variance. However, we 
have used the default prior distributions in the R package 
INLA for simplicity. It should be emphasized that using 
default priors is a choice as much as using any other prior 
or even using a specific distribution for the phenotype 
observations. Setting a prior based on the knowledge about 
the process is likely to improve the inference. Choosing a 
prior distribution for parameters in the model is not always 
straightforward, and more work is being done in the statistics 
community to improve this (Fuglstad et al. 2019).

Conclusion

This study showed how to fit established spatial models 
for analysing agricultural field trials using the open-source 
R package INLA. The results from the simulation study 
showed higher accuracy when spatial dependency was 
modelled and the highest increase in accuracy was reached 
using the discrete autoregressive ( AR1⊗ AR1 ) model and 
the continuous Gaussian random field (Matérn) model. Both 
models can be seamlessly fitted with the R package INLA, 
including joint modelling of multiple trials. The Matérn 
model and SPDE approach provide a flexibility with respect 
to field design that is not obviously available elsewhere and 
are particularly suitable for agricultural field trials that do 
not have a standard lattice-like structure such as the Nelder 
wheel design used in tree breeding. This flexibility opens 
opportunities for new field trial designs. It is freely avail-
able and yields interpretable parameters for the estimated 
spatial effects.
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Abstract

Statistical models are used to separate the genetic and environmental
e↵ects in genetic evaluation for animal breeding programs. Herds
or management groups are usually estimated using fixed or random
e↵ects to enhance the separation of the genetic and environmental
e↵ects. In smallholder dairy production systems of many low to
middle income countries (LMIC) the genetic and environmental parts
of the phenotype are often confounded due to small herd sizes and
weak genetic connectedness across herds. Our working hypothesis
was that estimating a spatially correlated random herd e↵ect can
enhance the separation of the genetic and environmental e↵ects for
smallholder dairy production systems, and thus improve genetic
evaluation beyond the models assuming fixed or random independent
herd e↵ects. The objective of this study was therefore to use simula-
tions and real data to quantify the power of a spatially correlated
herd e↵ect to improve genetic evaluation in smallholder breeding
systems. The most important results showed that (i) including a
spatial model improved the estimation and prediction of breeding
values, (ii) spatial covariates did not improve estimates remarkably
when a spatial model was included, (iii) the models without spatial
e↵ects were not able to separate genetic and spatial components,
and (iv) the benefit of including a spatial model was largest when
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the genetic and environmental components were hard to separate.
We have demonstrated the potential of spatial modeling to improve
genetic evaluation in LMIC smallholder dairy production systems.
The improvement gained by the proposed models is driven by en-
hanced separation of the genetic and environmental e↵ects. However,
there are infrastructural and technological challenges that need to
be solved before the LMIC smallholder breeding systems can benefit
from this modeling.

1 Introduction

Over the past century genetic selection of dairy cattle has had a big impact
on the increase in milk production in developed countries (Weigel et al.,
2017). For example, the average milk production of US Holstein cows
has almost doubled between 1960 and 2000, and more than half of this
is due to improved genetics (Dekkers and Hospital, 2002). However, the
same improvement in livestock productivity has not been achieved in low
to middle income countries (LMIC), for example in the countries in East
Africa. While large-scale farmers usually reach milk yields of 17–19 litres
per cow per day, milk yields of smallholder producers in Kenya are about
5–8 litres per cow per day (Rademaker et al., 2016).

LMIC smallholders are constrained by both technological and infrastruc-
tural di�culties not present for farms in developed countries (Philipsson
et al., 2011; Majiwa et al., 2017). Whereas large commercial farms in
developed countries keep records of performance, pedigree, and can mea-
sure phenotypes accurately (Powell et al., 2019), the smallholders usually
do not keep records (Ojango et al., 2019), and the absence of automated
phenotyping systems leads to less accurate phenotypic measurements.

To get accurate genetic evaluations from a breeding program, a su�cient
amount of data is needed, and the data should be properly structured
(Jorjani et al., 2001). In developed countries, commercial farms usually
have large herds, and there is widespread use of artificial insemination
(AI), causing strong genetic connectedness between herds. In many LMIC
breeding systems on the other hand, the smallholder farms contribute
significantly to the dairy industry, and there is low genetic connectedness
due low usage of AI. For example, smallholder milk-producing households
in Kenya, who own one to three cows, own approximately 80% of the
national dairy herds (Rademaker et al., 2016), and 87% of Kenyan farmers
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asked in a survey used natural bull services rather than AI, even though
54% reported they preferred AI (Lawrence et al., 2015). Similar values for
the proportion of natural bull services and AI usage was reported by Bebe
et al. (2003) and Baltenweck et al. (2004).

Small herd sizes and low genetic connectedness across herds, lead to
confounding of the genetic and environmental e↵ects, which makes it hard
to accurately estimate the genetic component of the phenotype. When
the herd sizes are small, for example if a herd consists of only one cow, it
is not possible to separate the genetic and environmental e↵ects on the
phenotype. When the genetic connectedness is low, the genetic relationship
between animals in di↵erent herds is low, which also makes it hard to
separate genetic and environmental components. Since most farmers use
bull services, or in some cases their own or neighbor’s bull, it is reasonable to
assume that most farmers close in distance, for example farmers belonging
to the same village, use the same bulls. This creates genetic connectedness
across herds close in distance, for example across herds belonging to the
same village, even though the overall genetic connecteness is low.

In the statistical models for genetic evaluations, the genetic e↵ect is
modeled using expected or realized relationship between animals, derived
either from respectively a pedigree or genomic markers. A herd e↵ect, or a
herd-year-season e↵ect is often included as the main environmental e↵ect
(Visscher and Goddard, 1993; Ojango et al., 2019; Pereira et al., 2019), to
separate the genetic component of the phenotype from the environmental
component. When herd sizes are small the herds are treated as random,
as this has been found to give higher accuracy than treating them as fixed
(Visscher and Goddard, 1993; Frey et al., 1997; Schae↵er, 2018; Powell
et al., 2019). In addition, including other covariates in the statistical
models is a way of including information in the model that can further
enhance the separation of genetic and environmental e↵ects.

Environmental e↵ects can be on management level (herd level), or on
a larger scale, possibly shared by herds close in distance. Examples of
environmental e↵ects on management level are education, age, experience,
land size, cost of bull service and the use of AI. Some of these can be
similar for herds close in distance. The practice and education level will
probably be high for farmers that live in proximity to education facilities,
the quality of feeding used in farms is likely similar in farms belonging to
the same villages, and vaccination in farms is likely correlated with local,
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regional or national government policies. These can therefore be similar
between herds close in distance, for example herds that belong to the same
village. Examples of large scale environmental e↵ects are climate e↵ects,
proximity to roads, markets, and towns, and government policies. Many
of the environmental e↵ects, both the ones on management level and the
large scale e↵ects, can therefore be assumed to be spatially correlated. We
will refer to environmental e↵ects on management level as herd e↵ects, and
large scale environmental e↵ects as spatial e↵ects.

Genotype-by-environment interaction e↵ects have been shown to exist
in dairy cattle productive traits (Strandberg et al., 2009; Hayes et al.,
2009), and there exists several studies on how to model these interactions.
Genotype-by-environment interaction on larger geographic regions yielding
environment-specific genomic parameters was modeled by Yao et al. (2017),
and Schultz and Weigel (2019) have incorporated herdmate data to model
genotype-by-herd interactions for prediction of within-herd performance.
Although many aim to model the genotype-by-environment e↵ect, it is
not common to model the spatial dependency in the environmental e↵ect
between herd locations. One example is Tiezzi et al. (2017), who used
geographical location and weather data in addition to herd summaries to
describe environmental conditions in genetic evaluations, with and without
genotype-by-environment interaction. They concluded that the farming
environment explained variation in the data, as well as the genotype-by-
environment component. An other example is Sæbø and Frigessi (2004),
who proposed to model veterinary district as an environmental e↵ect with
prior spatial smoothing.

In many applications the collected data are geographically referenced,
meaning their location in space is known, and these are called spatial data.
The data collected from each herd are point-referenced data, with herd
locations s typically two-dimensional containing latitude and longitude.
The random outcome at the specific locations and the spatial indices can
vary continuously in a fixed domain. A common model for spatial processes
is a Gaussian random field (GRF) which for each set of locations (s1, ..., sn),
the vector (y(s1), ..., y(sn)) has a multivariate Normal distribution with
mean µ and a spatially structured covariance matrix ⌃ (Rue and Held,
2005).

Modeling with continuously indexed GRFs is computationally challeng-
ing because they give rise to dense precision matrices that are numerically
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expensive to factorize (Rue and Held, 2005). Gaussian Markov random
fields (GMRFs) do not incur this penalty because they have a sparse
precision matrix due to their Markov property. Lindgren et al. (2011)
showed how to construct an explicit link between (some) GRFs and GM-
RFs. This computationally e↵ective approach is known as the stochastic
partial di↵erential equation (SPDE) approach, and allows implementation
of computationally e�cient numerical methods for spatial data.

The aim of this study was to determine whether modeling spatially
dependent environmental e↵ects in addition to independent herd e↵ects
could improve genetic evaluation and prediction in LMIC breeding systems,
and to determine if the impact was dependent on the genetic connectedness
across the herds, and the use of pedigree or genomic markers for modeling
genetic relationships. In addition we wanted to test whether adding spatial
covariates was necessary when we had a spatial model.

A simulation study was performed to evaluate the importance of in-
cluding a spatially correlated e↵ect in genetic evaluation. The design was
developed to resemble the LMIC smallholder farming system commonly ob-
served in East Africa with small herd sizes, and several breeding strategies
with di↵erent genetic connectedness across herds. The results showed that
including a spatial model improved genetic evaluations, especially with low
genetic connectedness. We also performed a case study with cattle data
from Slovenia, where the observations were sampled to resemble the LMIC
smallholder farming system, and the results indicated that the models
separated the genetic and environmental components in di↵erent ways.

2 Material and methods

We first introduce the data used in the analyses; a simulated smallholder
dairy cattle data set, and a Slovenian Brown-Swiss cattle data set. Then
we present the statistical models used for genetic evaluation, and how the
models were evaluated.

2.1 Simulation models

We simulated data to evaluate the importance of including a spatial model
to improve genetic evaluation. The design was developed to resemble
the LMIC smallholder farming system structure commonly observed in



6

East Africa with small herds clustered around villages, and three di↵erent
breeding strategies. The three breeding strategies controlled the genetic
connectedness, from low genetic connectedness between herds from di↵erent
villages, to strong genetic connectedness across all herds regardless of
village. For each breeding strategy, we generated 60 independent data sets
according to the following model for observation yi

yi = gi + hi + ⇠i + ei, (1)

where gi was the genetic e↵ect of individual i, hi ⇠ N (0,�2
h) was the herd

e↵ect with �2
h = 0.25, ⇠i was the spatial e↵ect, and ei ⇠ N (0,�2

e) was an
independent residual e↵ect with �2

e = 0.25. We now describe in detail how
the genetic and spatial e↵ects were generated.

2.1.1 Simulation of genetic founder e↵ects

The genetic e↵ects were simulated from a burn-in phase designed to mimic
historical evolution. A genome consisting of 10 chromosome pairs was simu-
lated for a species similar to cattle. The sequence data was generated using
the Markovian Coalescent Simulator (Chen et al., 2009) and AlphaSimR
(Faux et al., 2016; Gaynor et al., 2019). The simulated genome sequences
were used to produce 5000 founder individuals, who served as the initial
parents. For each chromosome, sites segregating in the founders’ sequences
were randomly selected to serve as 5000 single-nucleotide polymorphism
(SNP) markers and 1000 quantitative trait loci (QTL) per chromosome,
yielding in total 50000 SNPs and 10000 QTL.

A single underlying trait architecture was simulated for all individuals
via QTL allele substitution e↵ects (Lynch et al., 1998) that were sampled
from a standard normal distribution. The true breeding value of each
individual was calculated by summing the QTL allele substitution e↵ects.
The single underlying trait architecture was used to create two correlated
traits with di↵erent heritabilities (Lynch et al., 1998) for cows (h2 = 0.3)
and bulls (h2 = 0.8), respectively. These phenotypes were used for the
initial assignment of bulls and their selection throughout the evaluation
phase.
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2.1.2 Breeding and herd simulation

We created 100 villages, each consisting of 20 herds, with herd sizes
generated from a zero truncated Poisson distribution with � = 1.5. The
110 best males from the founder individuals based on true genetic values
were set aside as selection bulls, 100 of them as natural selection bulls, and
10 of them as AI bulls. The remaining founders were considered as cows,
and were randomly placed in the herds, until the herds were full. Since the
herd sizes were sampled, we did not have the same number of individuals
in each independent replicate. On average there were 3860 cows in total,
and the cows not assigned to a herd were discarded.

The spatial coordinates in north-south direction and in east-west direc-
tion for each of the 100 villages were sampled from a uniform distribution
on (�1, 1). The spatial coordinates s 2 R2 of the 2000 herds were then
sampled from a bi-variate normal distribution with mean from the cor-
responding village location, and variance 3.5 · 10�4I2⇥2. This made the
herds clustered around each village.

We created three di↵erent breeding strategies controlling the genetic
connectedness in the population. In breeding strategy A, each village had
their own bull, meaning that the cows were strongly related within the
village and unrelated across villages. In breeding strategy B, each village
had their own bull for mating in 75% of the herds, while mating in the
remaining herds was performed with AI, using one of the 10 AI bulls at
random, meaning that cows were still strongly related within villages, and
somewhat related across villages. In breeding strategy C, the 100 natural
selection bulls were randomly mated to cows across all herds and villages,
meaning that cows were equally related within and across villages.

This population was then simulated over twelve discrete generations of
breeding. Within each farm, old cows were replaced by new cows. The cows
who had male calves were not replaced, and their calves were evaluated
on phenotype for suitability as natural selection bulls if they came from a
farm using natural selection bulls, or as AI bulls if they came from a farm
using AI.

The true breeding values for cows in the 11th generation were scaled to
have mean zero and variance �2

g = 0.1, and were used as genetic e↵ects in
the model for observation yi (1) with 3860 records on average. In addition,
the true breeding values for new cows in the 12th generation were stored
for prediction purposes. The estimated genetic e↵ects of individuals in
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generation 11 were used to predict the breeding values of non-phenotyped
individuals in generation 12. For prediction using pedigree we had on
average 1930 such records. To ease the computations with the genomic
marker based model, we predicted breeding values for only 200 of the new
cows in generation 12, which were chosen randomly.

2.1.3 Simulation of spatial e↵ects

The spatial e↵ects were simulated from multiple Gaussian processes to
mimic several sources of environmental e↵ects, both on spatial (large scale)
and on management level (small scale). We imagined that these di↵erent
sources could be temperature, precipitation, elevation, land size, proximity
to markets and towns, education level of the farmer, vaccine use in farms,
local or regional policies. We summed di↵erent Gaussian processes v,
where some were weighted to have di↵erent importance for the total spatial
e↵ect, according to

⇠ =
3X

i=1

vi +
6X

i=4

vi(1 + ↵i) +
8X

i=7

vi(1 + ↵i + �i)

where the weights ↵,� ⇠Uniform(�0.5, 0.5), and the di↵erent sources v
were distributed as GRFs with mean zero and Matérn covariance function
(Matérn, 1960). The Matérn covariance function between locations si, sj 2
Rd is

C(si, sj) =
�2

2⌫�1�(⌫)
(ksj � sik)⌫ K⌫ (ksj � sik) , (2)

where K⌫ is the modified Bessel function of the second kind and the
order ⌫ > 0 determines the mean-square di↵erentiability of the field. The
parameter  can be expressed as  =

p
8⌫/⇢, where ⇢ > 0 is the range

parameter describing the distance where correlation between two points is
near 0.1, and �2 is the marginal variance. The range parameter ⇢ for each
of the fields v was sampled from a uniform distribution on (0.1, 0.5), the
marginal variance �2 was either 0.2 or 0.3 with equal probability, and the
parameter ⌫ was fixed to 1. The final field ⇠ was scaled to have mean zero
and variance �2

⇠ = 0.4.
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2.1.4 Creating spatial covariates

The simulated Gaussian processes making up the spatial e↵ects were used
to create spatial covariates describing the di↵erent sources of spatial and
environmental e↵ects. In addition we sampled two GRFs with mean
zero and a Matérn covariance function which were used as covariates not
a↵ecting the phenotype (dummy covariates).

For the processes v1,v2,v3 we assumed that we could observe the
spatial covariates perfectly without any error, which could be reasonable
for some covariate e↵ects like average temperature and precipitation.

For the processes v4,v5,v6 we assumed that they were di�cult to
obtain accurately, so we added normal distributed error terms with mean
zero and variance equal to 10% of the marginal variance of the weighted
fields. This could be reasonable for some covariates that are di�cult to
measure or that vary with time. It could for example be di�cult to quantify
the area where cows are allowed to graze or the amount of di↵erent types
of feeding used.

For the processes v7,v8 we assumed that we could only observe categor-
ical values of the continuous e↵ects, for example distance to markets and
towns could be categorized as either a rural or urban area. For the process
v7 we created a two-level categorical covariate by sampling a threshold
from a uniform distribution between one standard deviation from the mean
of v7 in both negative and positive direction. Values of v7 above the
threshold were assigned one level, and values below were assigned the other
level. For the process v8 we created a three-level categorical covariate by
sampling two thresholds. The lower threshold was sampled from a uniform
distribution between two standard deviations below the mean of v8 and the
mean of v8. The upper threshold was sampled from a uniform distribution
between the mean of v8 and two standard deviations above the mean of
v8. The values of v8 were then assigned one of three categorical levels
depending on which thresholds they were between. In this way we had
ten spatial covariates, where the eight of them were continuous and two
were categorical, and two of the continuous covariates did not a↵ect the
phenotype.
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2.1.5 Changing the proportion of spatial variance and herd clus-

tering

To evaluate how the models performed when there was no or little spatial
e↵ect on the phenotype, we created scenarios with di↵erent proportions of
spatial variance relative to the sum of herd e↵ect variance and spatial vari-
ance. We kept �2

⇠+�2
h = 0.65, and let �2

⇠/(�
2
⇠+�2

h) = {0, 0.2, 0.4, 0.6, 0.8, 1}.
This was repeated for 30 of the data sets.

We also wanted to evaluate the importance of how closely the herds
were clustered around each village. To do this we changed the variance of
the bi-variate distribution for the spatial coordinates s 2 R2 of the 2000
herds to 1 · 10�4I2⇥2 which made the herds more closely clustered around
the villages, and to 9 ·10�4I2⇥2 which made the herds less clustered around
the villages. This was repeated for each of the 60 data sets.

2.2 Case study: Brown-Swiss cattle data

We had phenotypic data for 30314 Brown-Swiss cattle from Slovenia col-
lected between 2004 and 2019, from 2012 di↵erent herds. The data included
a trait describing a body confirmation measure, year and scorer of the
data, cattle age, stage of lactation, year and month of calving, and herd
location coordinates. In addition the data contained a pedigree for 56465
animals including the cows with phenotypes. We analyzed the trait, which
was centered and scaled by subtracting the phenotypic mean and dividing
by the phenotypic standard deviation.

The average herd size was approximately 15 cows per herd, and most
cows belonged to herds consisting of more than five animals. To imitate
data similar to the typical LMIC design, with few individuals per herd, a
subset of the full data was used. We sampled 3800 individuals from the full
data without replacement, with sampling probability equal to the inverse
herd size, meaning that larger herds had fewer records in the data subset.
The subset contained cows from 1838 di↵erent herds, and the average herd
size was about 2 cows per herd. The 1838 herds were scattered over most
of Slovenia, and their locations are shown in Figure 1. The axes show the
coordinates in kilometers from the Transverse Mercator coordinate system
using datum WGS84.
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Figure 1: The location of the herds in the case study data shown with
black points, and the border of Slovenia in grey. The axis units are in km

2.3 Statistical models

The following model was fitted to the observed phenotype yi of individual
i = 1, ..., n,

yi = wT
i � + ai + hi + x(si) + ei (3)

where � is a vector of covariate e↵ects, including a common intercept, with
known covariate vector wi and � ⇠ N (0,�2

�), ai is the additive genetic

e↵ect, hi is the herd e↵ect with h ⇠ N (0,�2
hI), x(si) is the spatial e↵ect

for the herd in plot coordinates si 2 R2 modeled as a GRF with µ = 0

and Matérn covariance function as given in (2) with variance �2
s and range

⇢, and ei is a residual e↵ect with e ⇠ N (0,�2
eI).

We assumed that the genetic e↵ect could be explained by the additive
genetic e↵ect (breeding value), which was estimated using relationship
matrix either based on pedigree or genome-wide markers. For the pedigree
based model we assumed the breeding values were distributed as a ⇠
N (0,�2

aA), where A was the relationship matrix derived from the pedigree
(Lynch et al., 1998). For the genomic marker based model we assumed
the breeding values were distributed as a ⇠ N (0,�2

aG), where G was a
relationship matrix calculated from G = ZZT /k, Z was a column-centered
SNP marker matrix, and k = 2⌃lql(1� ql), with ql the allele frequency of
marker l (VanRaden, 2008).
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2.3.1 Prior distributions for hyper-parameters

We used a full Bayesian estimation approach which requires prior distribu-
tions for all parameters. For the intercept and fixed e↵ects we assumed
�2
� = 1000, and for the remaining variance parameters and the spatial range

we assumed penalized complexity (PC) priors (Simpson et al., 2017), which
are proper priors that penalize model complexity to avoid over-fitting. The
PC prior for variance parameters can be specified through a quantile u and
a probability ↵ which satisfy Prob(� > u) = ↵, and the PC prior for the
spatial range parameter through a quantile u and a probability ↵ which
satisfy Prob(⇢ < u) = ↵. We state the parameters u and ↵ below.

2.3.2 Fitted models for the simulation study

We fitted five di↵erent models to the simulated data; G, H, S, HS and HSC.
All models had an intercept �0, a genetic e↵ect ai, and a residual e↵ect ei.
G had no additional model components, H had a herd e↵ect hi in addition,
S had a spatial e↵ect x(si) in addition, HS had both a herd e↵ect and a
spatial e↵ect in addition, and HSC had a herd e↵ect, a spatial e↵ect and
the spatial covariates wi in addition. The models are summarized as

G: yi =�0 + ai + ei,

H: yi =�0 + ai + hi + ei,

S: yi =�0 + ai + x(si) + ei,

HS: yi =�0 + ai + hi + x(si) + ei,

HSC: yi =�0 + ai + hi + x(si) +wT
i � + ei,

where wi is the vector of spatial covariates for individual i and � is a vector
of spatial covariate e↵ects. The other e↵ects were modeled as described
in (3). The genetic e↵ect was estimated using either pedigree or genomic
markers. We used pedigree information for the phenotyped individuals,
their o↵spring, and three previous generations. For the variances and
spatial range we assumed PC prior distributions with quantiles u and
probabilities ↵, shown in Table 1. Model HSC had the same quantiles and
probabilities as model HS.
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Table 1: Parameters u and ↵ in the penalized complexity priors for variance
parameters and the spatial range, for the models applied to the simulated
data and case study data

ue, ↵e ua, ↵a uh, ↵h us, ↵s u⇢, ↵⇢
1 u⇢, ↵⇢

2

G 0.3, 0.5 0.1, 0.5 - - - -
H 0.15, 0.5 0.1, 0.5 0.25, 0.5 - - -
S 0.15, 0.5 0.1, 0.5 - 0.25, 0.5 0.6, 0.95 50, 0.8
HS 0.15, 0.5 0.1, 0.5 0.15, 0.5 0.1, 0.5 0.6, 0.95 50, 0.8

1 Simulation study
2 Case study

2.3.3 Model evaluation with simulated data

For the simulated data, we evaluated the predictive performance of the
models using correlation between the true breeding values and mean
posterior breeding values, and the continuous rank probability score (CRPS)
(Gneiting and Raftery, 2007), comparing both the mean and standard
deviation of the posterior breeding values with the true breeding values.
The CRPS takes into account the whole posterior predictive distribution,
meaning it compares the estimated mean posterior value with the true
value while taking into account the standard deviation of the posterior
distribution. The CRPS is negatively oriented, which means that lower
CRPS values indicates a better estimate of breeding value.

2.3.4 Fitted models for the case study

To the case study we fitted four di↵erent models, G, H, S, and HS. All
models had an intercept �0, three categorical fixed e↵ects (one describing
the year and scorer of the data, one describing cattle age and stage of
lactation, and one describing year and month of calving), a genetic e↵ect
ai, and a residual e↵ect ei. G had no additional model components, H had
a herd e↵ect hi in addition, S had a spatial e↵ect x(si) in addition, and HS
had both a herd e↵ect and a spatial e↵ect in addition. The genetic e↵ect
was estimated using the full pedigree. For the variances and spatial range
we assumed PC prior distributions with quantiles u and probabilities ↵,
shown in Table 1.
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We used the deviance information criterion (DIC) (Spiegelhalter et al.,
2002) to compare the model fit between the models fitted to the case study
data. The DIC is widely used to compare model fit between di↵erent
hierarchical Bayesian models while also assessing the model complexity.
Lower values of the DIC indicate a better model fit.

2.4 Inference

For inference, we used the Bayesian numerical approximation procedure
known as the Integrated nested Laplace approximations (INLA) introduced
by Rue et al. (2009), with further developments described in Martins
et al. (2013). INLA is suited for the class of latent Gaussian models,
which includes for example generalized linear (mixed) models, generalized
additive (mixed) models, spline smoothing methods, and the models used
in this study. INLA calculates marginal posterior distributions for all
model parameters (fixed and random e↵ects, and hyper-parameters) and
linear combinations of e↵ects without using sampling-based methods such
as Markov chain Monte Carlo (MCMC). For an in-depth description of
INLA, useful sources are Rue et al. (2009), Martins et al. (2013) and the
recent review Rue et al. (2017).

3 Results

In this section, we present the results from fitting the models to the
simulated data and the Brown-Swiss cattle case study. We will refer
to the mean posterior genetic e↵ect for phenotyped individuals as the
estimated breeding value (EBV), and the mean posterior genetic e↵ect for
non-phenotyped individuals as the predicted breeding value (PBV).

In the results from the simulation study, we compare average correlation
between true breeding values and EBVs or PBVs between the tested models,
and we compare the average CRPS between true breeding values and EBVs
or PBVs with standard error between the tested models. In the results
from the case study, we present the posterior variances from the tested
models, the DIC, the posterior spatial e↵ects, and show how the EBVs
di↵er between two of the models (H and HS).
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3.1 Simulation study

This section presents the results from the simulation study, where the
models G, H, S, HS and HSC presented in Section 2.3.2 were fitted to
data generated using di↵erent breeding strategies, A, B and C, where the
genetic and environmental e↵ects had di↵erent degrees of confounding as
presented in Section 2.1.

Overall, the results showed that in a LMIC context (i) including a
spatial model improved the estimation and prediction of breeding values,
(ii) the spatial covariates did not improve the results remarkably when a
spatial model was included, (iii) the models without spatial e↵ects were
not able to separate genetic and spatial components, (iv) the benefit of
including a spatial model was largest when the genetic and environmental
components were most confounded, (v) including a spatial model to the
random herd e↵ect even when there was no spatial e↵ects did not decrease
the prediction accuracy, and (vi) when spatial and genetic e↵ects were
confounded the estimation accuracy improved when herds were weakly
clustered rather than closely clustered. We go through each of these
findings in detail below.

3.1.1 Improving estimated and predicted breeding values via

spatial modeling

Including a spatial model improved the estimation and prediction of breed-
ing values. Table 2 presents the average correlations between true breeding
values and EBVs or PBVs for all models, and breeding strategies. Across all
metrics, model HS gave the highest correlations, when we do not consider
model HSC. The second best was S, third was H, and the poorest was G.
We also note that using genomic data improved the correlation compared
to using pedigree, and that the EBVs had overall higher correlation than
the PBVs. With breeding strategy A, the correlations for PBVs were com-
parable to the correlations for the EBVs, and the models using pedigree
had almost as high correlation as the models using genomic markers. This
is reasonable since the individuals from strategy A were strongly related
within the villages and by the pedigree.

Table 3 presents the average CRPS. The trends in the CRPS were
the same as for the correlation, with HS having the lowest CRPS. Again,
we note that using genomic data improved the CRPS compared to using
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pedigree, and in most cases average CRPS for the EBVs were lower than
for the PBVs.

Table 2: Average correlation over 60 independent replications for the
di↵erent breeding scenarios, using pedigree or genomic markers, and for
both estimated breeding values (EBV) and predicted breeding values
(PBV). The standard error for some values had order of magnitude 10�2,
and most had 10�3

Strategy A Strategy B Strategy C

EBV PBV EBV PBV EBV PBV

Pedigree

G 0.33 0.28 0.32 0.18 0.32 0.20
H 0.36 0.29 0.41 0.22 0.42 0.25
S 0.52 0.50 0.56 0.34 0.55 0.35
HS 0.54 0.52 0.58 0.36 0.57 0.37
HSC 0.57 0.55 0.59 0.36 0.58 0.37

Genomic markers

G 0.33 0.32 0.40 0.29 0.42 0.32
H 0.36 0.33 0.51 0.38 0.59 0.46
S 0.58 0.56 0.70 0.54 0.72 0.57
HS 0.63 0.60 0.74 0.57 0.75 0.60
HSC 0.64 0.62 0.74 0.58 0.75 0.60

3.1.2 Including spatial covariates

The spatial covariates did not improve the results remarkably when a
spatial model was already included. In the correlation results in Table 2
and the CRPS results in Table 3, results are included for model HSC, the
model including spatial covariates to the herd and spatial e↵ects. Both
the correlation and CRPS were only marginally better for the HSC model
compared to the HS model in some cases, and in the remaining cases
they were comparable. Because of this we have focused on the “cheaper”
models and not included model HSC in the remaining results from the
simulation study. Some additional results with model HSC are presented
in the additional results (see Section 6.1).
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Table 3: Average CRPS over 60 independent replications for the di↵erent
breeding scenarios, using pedigree or genomic markers, and for both esti-
mated breeding values (EBV) and predicted breeding values (PBV). The
standard error for all values had order of magnitude 10�3

Strategy A Strategy B Strategy C

EBV PBV EBV PBV EBV PBV

Pedigree

G 0.54 0.43 0.65 0.40 0.70 0.37
H 0.41 0.37 0.34 0.28 0.33 0.25
S 0.17 0.17 0.17 0.18 0.18 0.18
HS 0.16 0.16 0.17 0.18 0.18 0.18
HSC 0.16 0.16 0.16 0.18 0.17 0.18

Genomic markers

G 0.39 0.39 0.32 0.30 0.30 0.26
H 0.36 0.37 0.22 0.22 0.18 0.18
S 0.15 0.15 0.13 0.15 0.13 0.15
HS 0.14 0.15 0.12 0.15 0.12 0.14
HSC 0.14 0.14 0.12 0.15 0.12 0.14

3.1.3 Separating genetic and spatial components

The models without spatial e↵ects (G,H) were not able to separate the
genetic and spatial components. In Table 4 we present the average corre-
lation between the EBVs from all models and the true spatial e↵ects of
herd locations in each breeding strategy. This shows that the EBVs from
models G and H were correlated with the spatial e↵ects, and suggests that
the genetic e↵ect in G and H captured parts of the spatial components of
the simulated phenotype. The correlations from models S and HS were
closer to zero, suggesting that these models were better able to separate
genetic and spatial e↵ects. This, together with the correlation results in
Table 2 and CRPS results in Table 3, suggests that the herd e↵ect alone
was not su�cient to account for all environmental e↵ects in LMIC breeding
systems, and that the EBVs from models G and H have captured parts of
the spatially dependent e↵ects in the genetic e↵ect.
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Table 4: Average correlation between EBVs and true spatial e↵ects for
the di↵erent breeding strategies, using pedigree or genomic markers. The
standard error for all values had order of magnitude 10�3

Strategy A B C

Pedigree

G 0.68 0.64 0.64
H 0.70 0.60 0.58
S 0.11 0.06 0.06
HS 0.12 0.06 0.06

Genomic markers

G 0.84 0.74 0.69
H 0.83 0.63 0.50
S 0.16 0.05 0.04
HS 0.21 0.05 0.04

3.1.4 Comparing breeding strategies and genetic models

The benefit of including a spatial model was largest when the spatial
and genetic e↵ects were hard to separate. In Figure 2 we have plotted
the relative improvement in average correlation and CRPS between true
breeding values and EBVs/PBVs from model H to model HS, for the
di↵erent breeding strategies. With both the genomic marker based and the
pedigree based models, the improvement was largest with strategy A (about
50% to 80%), second largest with strategy B (about 35% to 65%), and third
largest with strategy C (about 20% to 45%). These strategies correspond
to strongly confounded genetic and spatial e↵ects, to separable genetic and
spatial e↵ects. With breeding strategy A there was not much di↵erence in
improvement between models using genomic markers or pedigree, whereas
there was a tendency in breeding strategy B and C that the improvement
was largest with the pedigree based models. This is because with genomic
markers, genetic relationship between individuals not related by pedigree
is captured and helps to separate genetic and environmental e↵ects.
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Figure 2: Percentage relative improvement in EBV correlation (A) and
CRPS (B) going from model H to HS for the di↵erent breeding strategies,
using pedigree or genomic markers

3.1.5 Changing proportion of spatial variance

Including a spatial model to the random herd e↵ect, even when there
was no spatial variation in the phenotype, did not decrease the prediction
accuracy. We varied the proportion of variance in the phenotype due to
herd and spatial e↵ects, and in Figure 3 we present the average correlation
and CRPS for EBVs estimated with genomic markers in breeding strategy
B. The x-axis goes from all herd e↵ect variance to all spatial e↵ect variance
relative to the total herd and spatial variance. For models G and H, the
average correlation and CRPS became worse as the proportion of spatial
variance increased, whereas for models S and HS the average correlation
and CRPS became better. Overall, model HS had the best correlation and
CRPS for all spatial variance proportions. It was equal to model H when
there was no spatial variation, and equal to model S when there was no
herd e↵ect variation.

From the results so far we have seen that model S had better correlation
and CRPS than model H. However, this is not always the case. When
most of the environmental variation was caused by herd e↵ects rather than
spatial e↵ects, model H gave better estimates than model S.
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Figure 3: Average correlation (A) and CRPS (B) with 95% confidence
intervals for EBVs with breeding strategy B for genetic models based on
genomic markers with varying spatial variance proportion

The same tendencies were seen for the PBVs for both genomic marker
based models and pedigree based models, and in the other breeding strate-
gies, which can be seen in tables presented in the additional results (see
Section 6.1).

3.1.6 Changing the herd clustering

When spatial and genetic e↵ects were di�cult to separate the prediction
accuracy improved when herds were weakly clustered rather than closely
clustered. When simulating the data we varied the distribution of herd
locations, from more closely clustered around each village (with herd
location variance 1 · 10�4) to less closely clustered around each village
(with herd location variance 9 · 10�4). In Figure 4 we present the average
correlation and CRPS for EBVs estimated using genomic markers with
breeding strategy A for the three intensities of clustering. The figure shows
that as herds were less clustered, the correlation increased and the CRPS
decreased across all models.

The same trend appeared for the PBVs and from the models using
pedigree, but not with breeding strategy B and C, where the genetic and
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spatial e↵ects were less confounded. Tables showing the correlation and
CRPS between true breeding values and EBVs or PBVs and correlation
between EBVs and true spatial e↵ects for all breeding strategies and herd
clustering are given in the additional results (see Section 6.1).
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Figure 4: Average correlation (A) and CRPS (B) with 95% confidence
intervals for di↵erent models, with di↵erent values of herd location variance
� · 10�4, using breeding strategy A for EBVs and genomic marker models

3.2 Case study: Brown-Swiss cattle

In this section we present the results from fitting the models to the subset
of the Brown-Swiss cattle data with 3800 individuals. We present the
posterior distributions of the hyper-parameters, the DIC, the estimated
spatial field from model HS, and compare the EBVs from models H and
HS. The corresponding results for the full Brown-Swiss cattle data set are
presented in the additional results (see Section 6.2).

We had four models, where model G included a common intercept, a
genetic e↵ect estimated with pedigree, additional fixed categorical e↵ects
and a residual e↵ect. Model H included a herd e↵ect in addition, model S
included a spatial e↵ect in addition, and model HS included both a herd
e↵ect and a spatial e↵ect in addition.

In general the results showed that (i) models H and HS explained most
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of the variation in the data and had the best fit according to the DIC, (ii)
the data had a spatially dependent structure captured by models S and
HS, and (iii) the two models with the best fit according to the DIC, models
H and HS, separated the genetic and environmental e↵ects di↵erently. We
go through each of these points in detail below.

3.2.1 Explained variation and model fit

Models H and HS explained most of the variation in the data and had
the best fit according to the DIC. In Figure 5 the posterior distributions
for the hyperparameters in the models are presented. The figure has five
panels showing the additive genetic variance �2

a, the residual variance �2
e ,

the herd e↵ect variance �2
h, the spatial variance �2

s , and the spatial range
⇢ in kilometers.
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Figure 5: Posterior distributions of hyper-parameters from models G, H, S
and HS applied to the case study data

The posterior additive genetic variance was similar between models
H and HS, higher in model S, and even higher in model G. The same
tendency was seen for the posterior residual variance. The posterior herd
e↵ect variance was lower in model HS than model H, which was reasonable
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since the herd e↵ect in model H captured the spatial component in the
phenotype, which model HS assigned to the spatial e↵ect. The posterior
spatial variance in model S was higher than in model HS since model S
captured herd e↵ects. Finally, the posterior spatial range was lower in
model S than in model HS, since model S captured herd e↵ects in the
spatial e↵ects which means shorter range of dependency between spatial
locations. The mean posterior range from model HS indicated that herds
more than 22 km apart had independent (large scale) environments.

Since model G cannot explain variation due to herd or other environ-
mental e↵ects, it was reasonable to assume that some of the posterior
genetic e↵ect in G was actually due to confounding with other e↵ects
arising from few individuals per herd. This explains the high posterior
additive genetic variance from model G. A similar reasoning could be used
for model S, which had to assign variation due to herd e↵ects, either to the
genetic e↵ects, the residual e↵ects or the spatial e↵ects. From Figure 5 it
can seem that the variation from herd e↵ects was distributed to all other
e↵ects, which explains why the posterior additive genetic variance and
posterior residual variance was higher in model S than models H and HS,
and why the posterior spatial variance was higher than in model HS. It
seems that models H and HS distributed variation similarly except for the
herd e↵ect which is expected to be higher in H than in HS.

In Table 5 the DIC for each of the models are presented. The table
indicates that model HS had the best fit, followed by model H, then
model S and finally model G. These numbers are in line with the posterior
hyperparameters, where we saw that model H and HS could explain most
of the variation in the phenotype. Although model S has the potential to
explain much variation as well, it is forced to assign herd e↵ects either to
genetic e↵ects, spatially dependent e↵ects, or residual e↵ects. We saw from
the results with the simulated data that model S gave worse predictions
that model H when most of the environmental variation was due to herd
e↵ects. This seems to be the case here considering the low posterior
spatial variance. Finally, model G was not able to separate the genetic and
environmental e↵ects, which lead to a poor model fit. A rule of thumb,
is that a complex model should be preferred over a less complex model if
the DIC is reduced with more than ten units. When it comes to choosing
between models H and HS, model HS should be preferred, as its DIC was
36 units smaller.
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Table 5: DIC for models G, H, S and HS applied to the case study

Model DIC

G 10494
H 9795
S 10233
HS 9759

3.2.2 The estimated spatial e↵ects

The data had a spatially dependent structure captured by models S and
HS. The posterior spatial field from model HS is shown in Figure 6. The
figure shows both the mean, in panel (A), and the standard deviation, in
panel (B), of the posterior distribution. The axes show coordinates in the
Transverse Mercator system in kilometers.

In the western part of Slovenia model HS suggested two environmental
regions with mean di↵erent from zero, one with positive e↵ect, and one
with negative e↵ect. In the central part of Slovenia, there were several
smaller regions with either positive or negative environmental e↵ect. In
the north east there were not many observations, so there was only a small
region of positive e↵ect, and zero e↵ects otherwise. The standard deviation
was lowest where we had observations, ranging between 0.1 and 0.2 in
these areas, and was highest where there were no observations, ranging
between 0.2 and 0.3 in these areas.

3.2.3 Comparing breeding values from models H and HS

The two models with the best fit, models H and HS, separated the genetic
and environmental e↵ects di↵erently. The DIC in Table 5 and the posterior
hyperparameters in Figure 5, indicated that models H and HS had the best
model fit and a similar decomposition of the genetic and environmental
e↵ects. Furthermore, the EBVs from models H and HS were highly
correlated, with a correlation of about 0.995.

To evaluate how well the models separated the genetic and environ-
mental e↵ects, we computed the correlation of the EBVs from both model
H and model HS with the mean posterior spatial e↵ects from model HS.
For model H this was about 0.14, whereas for model HS it was about 0.07.
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Figure 6: Mean (A) and standard deviation (B) of the posterior spatial
e↵ect from model HS. The axis units are in km

This could suggest that there were some e↵ects that were assigned to be
spatial in model HS, but assigned to be genetic in model H.

In Figure 7 we present the di↵erence in EBVs between models H and HS
as boxplots according to the mean posterior spatial e↵ects from model HS.
This shows that the di↵erence in EBVs was correlated with the spatial e↵ect
from HS. When the posterior spatial e↵ects were negative, the posterior
genetic e↵ect from model H was smaller than in model HS, and when the
posterior spatial e↵ect was positive the genetic e↵ect from model H was
larger than from model HS. The figure also shows how many cows were
used for each boxplot, and shows that for many of the cows, living in areas
not strongly a↵ected by spatial e↵ects, the di↵erence in EBV was not large.

The correlation between the EBV di↵erence and the posterior spatial
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Figure 7: The di↵erence in EBV between models H and HS against the
mean posterior spatial e↵ect from model HS

e↵ect from model HS was about 0.62. This is in line with what was seen
from the simulation results and suggests that although the two models had
highly correlated EBVs, there were di↵erences between the EBVs due to
model H not separating the environmental and genetic e↵ects as well as
model HS in the LMIC context.

4 Discussion

Our results highlight three main points for discussion, specifically: the
improvement in EBVs and PBVs from modeling spatial variation, the
limitations of the study, and the future possibilities for improving genetic
evaluation in LMIC animal breeding programs.

4.1 The improvement from modeling spatial variation

Our simulations showed that including a spatial component in the models
for genetic evaluation can improve the correlation and CRPS between
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true breeding values and EBVs or PBVs. The improvement in correlation
and CRPS was largest when the genetic and environmental e↵ects were
strongly confounded, a pedigree was used to model genetic relationships
rather than genomic markers, and when most of the environmental variation
was spatially correlated. We also saw that the EBVs from models without
spatial e↵ects were correlated with the true spatial e↵ects, whereas the
EBVs from models with spatial e↵ects were much less correlated with
the true spatial e↵ects. This suggested that the models without spatial
e↵ect did a poorer separation of genetic and environmental e↵ects than
the models with spatial e↵ect.

From changing the proportion of variation due to spatial and herd
e↵ects, we saw that including a spatial e↵ect to the herd e↵ect did not give
worse correlation and CRPS than only having a herd e↵ect, even if there
was no spatial variation in the observations. However, the model with
only spatial e↵ect as environmental e↵ect (S) did worse than the model
with only herd e↵ect as environmental e↵ect (H), when only a small part
of the environmental variation was due to spatial variation. This means
that excluding the random herd e↵ect in favor of a spatial e↵ect is not
recommended, but including both a herd e↵ect and a spatial e↵ect is the
recommended model choice.

The model that included spatial covariates (HSC) did not improve the
EBVs or PBVs remarkably compared to the model with herd and spatial
e↵ects (HS). This was because the spatial covariates all explained spatial
variation, which the spatial model was able to capture very well.

Among the three breeding strategies, A, B and C, the most realistic
was breeding strategy B, which assumed that most of the mating was
performed using the same bull for all herds belonging to the same village,
and 25% of farmers randomly chosen used AI. This is similar to what has
been reported in surveys. For example, in a survey for Kenyan farmers,
87% reported that they used bull services, and the remaining 13% used AI
(Lawrence et al., 2015).

From the case study we saw that the four models assigned variation in
the observations to the model components di↵erently, because they had
di↵erent model components. However, they all had the genetic component
in common. The two models without herd e↵ect (G, S) assigned higher
genetic variance than the two models with herd e↵ect (H, HS), indicating
that environmental e↵ects were not separated from the genetic e↵ects.
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We also saw that even though the two models with herd e↵ect (H,
HS) had highly correlated EBVs, there were di↵erences between the EBVs
and these di↵erences were correlated with the mean posterior spatial
e↵ects. Following the results from the simulation study, it is reasonable to
assume that the model with both herd and spatial e↵ect (HS) had the best
separation of the genetic and environmental e↵ects also in the case study.

4.2 The limitations of the study

The chosen model for simulating the data did not include all factors that
would emerge in a LMIC breeding program. Among the simplifications
that were made were: the absence of non-additive genetic e↵ects in the true
breeding values, absence of geneotype-by-environment interaction, absence
of errors in the pedigree and genotype observations, and considering only
a single trait and breed. The animals were initially distributed to herds by
random, and the farms using AI were also chosen by random.

The simplifications are likely to yield better correlation and CRPS
results than what could be expected in a real LMIC breeding program, but
the case study largely corroborates the main conclusions from the simulation
study. Future studies could for example consider a non-random distribution
of animals to herds and have farms using AI chosen non-randomly. These
non-random associations are realistic since well-resourced farmers are more
likely to use AI than farmers constrained by infrastructural challenges
(Schae↵er, 2018).

We tested how the models responded to changing the variation caused
by spatial and herd e↵ects, but we did not test how the models responded
to increasing or decreasing the genetic variance or the residual variance.
However, we used reasonable values that were based on conversations with
geneticists.

The case study was sampled from a larger data set to imitate the
data structure of LMIC smallholder breeding systems with few individuals
per herd. The results would be slightly di↵erent had a di↵erent subset
been used, but the conclusions would likely be the same since it is the
data structure which makes it hard to separate genetic and environmental
e↵ects.

Genotype-by-environment interactions have been modeled in several
studies (Strandberg et al., 2009; Hayes et al., 2009; Tiezzi et al., 2017; Yao
et al., 2017; Schultz and Weigel, 2019), but was not considered here, since
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it would likely lead to over-fitting the models when the herd sizes were as
small as in this case.

Finally, since the INLA method implements full Bayesian analysis,
prior distributions had to be assigned to all model parameters, which
is not always straightforward. However, setting a prior based on the
knowledge about the process is likely to improve the inference. We used
penalized complexity priors (Simpson et al., 2017) since these penalize
model complexity to avoid over-fitting, with parameters chosen based on
prior knowledge about the relative importance of the di↵erent e↵ects in
the models.

4.3 Future possibilities for improving genetic evaluation in
LMIC animal breeding

In this study we have shown that including a spatial e↵ect in the models
for genomic evaluation in LMIC smallholder breeding systems can improve
the EBVs and PBVs. We have also shown that spatial covariates do not
make a remarkable improvement in the EBVs and PBVs when a spatial
model is included. This result could be important for people considering
to collect spatial covariates or not, and resources could be spent elsewhere
when a spatial model is su�cient to capture the environmental e↵ects.

In order for genetic evaluation to be carried out, targeted phenotyping
and genotyping of animals in the smallholder farms is necessary. The use
of genomic markers over pedigree will yield higher accuracy than pedigree
(Powell et al., 2019), can be acquired for animals faster than building a
pedigree from scratch, and can be made cost e�cient by the usage of
genotype imputation (Aliloo et al., 2018). More widespread use of AI, can
improve genetic connectedness between herds across large distances, but is
still hindered by infrastructural challenges and higher costs than natural
bull services (Lawrence et al., 2015). Finally, when chosing herds to be
part of a larger cattle breeding program, farms should be chosen from
di↵erent areas, not clustered in the same area to make the separation of
genetic and environmental e↵ects as good as possible.



30

5 Conclusions

With this study we have demonstrated the potential of spatial modeling to
improve genetic evaluation in LMIC smallholder dairy production systems
by enhancing the separation of the genetic and environmental e↵ects beyond
using a fixed or random independent herd e↵ect. This has been shown for
three di↵erent breeding strategies, and for di↵erent proportions of spatial
variation and clustering of herds, with both pedigree and genomic marker
based genetic relationship matrices.

The inclusion of a spatial model in addition to a random herd e↵ect
did not perform worse than a model with only a random herd e↵ect even
when there was no spatial e↵ect in the observed phenotype. Further, the
inclusion of spatial covariates did not improve results remarkably when a
spatial model was included.
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6 Additional results

6.1 Simulation study

Changing proportion of spatial variance

Here we show the average correlation and CRPS between true breeding
value and EBV or PBV in all breeding strategies, using both pedigree and
genomic markers, when varying the proportion of spatial variance relative
to the sum of spatial variance and herd e↵ect variance. The herd locations
were simulated from a bivariate normal distribution with mean equal to
the village locations, and variance 3.5 · 10�4I2⇥2.

Table 6 and Table 7 show the correlation and CRPS respectively for
breeding strategy A. Table 8 and Table 9 show the correlation and CRPS
respectively for breeding strategy B. Table 10 and Table 11 show the
correlation and CRPS respectively for breeding strategy C.
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Changing the herd clustering

Table 12 and Table 13 show average correlation and CRPS respectively
between true breeding value and EBV/PBV in all breeding strategies,
using both pedigree and genomic markers, when the herd locations were
simulated from a bivariate normal distribution with mean equal to the
village locations, and variance 1 · 10�4I2⇥2.

Table 14 and Table 15 show average correlation and CRPS respectively
between true breeding value and EBV/PBV in all breeding strategies,
using both pedigree and genomic markers, when the herd locations were
simulated from a bivariate normal distribution with mean equal to the
village locations, and variance 9 · 10�4I2⇥2.

Correlation between true spatial e↵ect and EBV with changing

herd clustering

Table 16 shows the average correlation between the EBV and the true
spatial e↵ect in all breeding strategies, using both pedigree and genomic
markers, when the herd locations were simulated from a bivariate normal
distribution with mean equal to the village locations, and variance 1 ·
10�4I2⇥2.

Table 17 shows the average correlation between the EBV and the
true spatial e↵ect in all breeding strategies, using both pedigree and
genomic markers, when the herd locations were simulated from a bivariate
normal distribution with mean equal to the village locations, and variance
3.5 · 10�4I2⇥2. This is an extended table from the main results.

Table 18 shows the average correlation between the EBV and the
true spatial e↵ect in all breeding strategies, using both pedigree and
genomic markers, when the herd locations were simulated from a bivariate
normal distribution with mean equal to the village locations, and variance
9 · 10�4I2⇥2.
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Table 12: Average correlation for the di↵erent breeding strategies for EBV
and PBV, using pedigree or genomic markers, and the herd locations
simulated using variance 1 · 10�4I2⇥2. The standard error for some values
had order of magnitude 10�2, and most had 10�3

Strategy A Strategy B Strategy C

EBV PBV EBV PBV EBV PBV

Pedigree

G 0.32 0.27 0.32 0.18 0.32 0.19
H 0.35 0.29 0.41 0.22 0.41 0.25
S 0.51 0.48 0.56 0.34 0.55 0.35
HS 0.53 0.50 0.58 0.36 0.57 0.37
HSC 0.56 0.54 0.59 0.37 0.58 0.38

Genomic markers

G 0.32 0.30 0.40 0.29 0.42 0.32
H 0.34 0.32 0.51 0.38 0.58 0.46
S 0.57 0.55 0.70 0.54 0.72 0.57
HS 0.61 0.58 0.73 0.58 0.75 0.60
HSC 0.63 0.60 0.74 0.59 0.75 0.61

Table 13: Average CRPS for the di↵erent breeding strategies for EBV and
PBV, using pedigree or genomic markers, and the herd locations simulated
using variance 1 · 10�4I2⇥2. The standard error for all values had order of
magnitude 10�3

Strategy A Strategy B Strategy C

EBV PBV EBV PBV EBV PBV

Pedigree

G 0.559 0.438 0.667 0.406 0.706 0.371
H 0.419 0.374 0.343 0.281 0.335 0.252
S 0.168 0.168 0.166 0.180 0.180 0.183
HS 0.165 0.164 0.166 0.178 0.179 0.181
HSC 0.160 0.159 0.163 0.176 0.176 0.179

Genomic markers

G 0.395 0.402 0.325 0.302 0.299 0.264
H 0.372 0.378 0.225 0.222 0.180 0.181
S 0.152 0.156 0.130 0.151 0.126 0.146
HS 0.147 0.151 0.124 0.146 0.120 0.142
HSC 0.143 0.147 0.123 0.145 0.120 0.142
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Table 14: Average correlation for the di↵erent breeding strategies for EBV
and PBV, using pedigree or genomic markers, and the herd locations
simulated using variance 9 · 10�4I2⇥2. The standard error for some values
had order of magnitude 10�2, and most had 10�3

Strategy A Strategy B Strategy C

EBV PBV EBV PBV EBV PBV

Pedigree

G 0.33 0.29 0.32 0.17 0.32 0.19
H 0.37 0.31 0.41 0.22 0.42 0.25
S 0.55 0.54 0.56 0.34 0.55 0.35
HS 0.56 0.55 0.59 0.37 0.57 0.37
HSC 0.58 0.57 0.59 0.37 0.58 0.37

Genomic markers

G 0.34 0.31 0.40 0.27 0.44 0.33
H 0.36 0.33 0.53 0.38 0.61 0.47
S 0.61 0.60 0.70 0.54 0.72 0.57
HS 0.65 0.63 0.74 0.57 0.75 0.59
HSC 0.67 0.65 0.74 0.58 0.75 0.60

Table 15: Average CRPS for the di↵erent breeding strategies for EBV and
PBV, using pedigree or genomic markers, and the herd locations simulated
using variance 9 · 10�4I2⇥2. The standard error for all values had order of
magnitude 10�3

Strategy A Strategy B Strategy C

EBV PBV EBV PBV EBV PBV

Pedigree

G 0.500 0.410 0.615 0.392 0.688 0.370
H 0.393 0.348 0.326 0.270 0.325 0.248
S 0.164 0.163 0.165 0.179 0.180 0.184
HS 0.160 0.158 0.163 0.176 0.178 0.181
HSC 0.156 0.155 0.161 0.175 0.177 0.180

Genomic markers

G 0.374 0.387 0.308 0.289 0.282 0.253
H 0.349 0.362 0.209 0.211 0.169 0.174
S 0.145 0.147 0.130 0.152 0.126 0.147
HS 0.137 0.141 0.123 0.146 0.119 0.143
HSC 0.135 0.138 0.122 0.146 0.119 0.143
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Table 16: Average correlation between EBV and true spatial e↵ect in
all breeding strategies, using pedigree or genomic markers, and the herd
locations simulated using variance 1 · 10�4I2⇥2. The standard error for all
values had order of magnitude 10�3

Strategy A B C

Pedigree

G 0.87 0.76 0.70
H 0.86 0.65 0.51
S 0.23 0.06 0.03
HS 0.27 0.07 0.03
HSC 0.21 0.06 0.03

Genomic markers

G 0.67 0.64 0.63
H 0.71 0.62 0.60
S 0.12 0.07 0.06
HS 0.13 0.06 0.06
HSC 0.10 0.05 0.05

Table 17: Average correlation between EBV and true spatial e↵ect in
all breeding strategies, using pedigree or genomic markers, and the herd
locations simulated using variance 3.5 · 10�4I2⇥2. The standard error for
all values had order of magnitude 10�3

Strategy A B C

Pedigree

G 0.68 0.64 0.64
H 0.70 0.60 0.58
S 0.11 0.06 0.06
HS 0.12 0.06 0.06
HSC 0.10 0.06 0.06

Genomic markers

G 0.84 0.74 0.69
H 0.83 0.63 0.50
S 0.16 0.05 0.04
HS 0.21 0.05 0.04
HSC 0.18 0.05 0.03



Modeling environmental variation for smallholder breeding programs 45

Table 18: Average correlation between EBV and true spatial e↵ect in
all breeding strategies, using pedigree or genomic markers, and the herd
locations simulated using variance 9 · 10�4I2⇥2. The standard error for all
values had order of magnitude 10�3

Strategy A B C

Pedigree

G 0.83 0.72 0.67
H 0.81 0.59 0.47
S 0.12 0.04 0.03
HS 0.15 0.04 0.03
HSC 0.14 0.04 0.02

Genomic markers

G 0.69 0.65 0.63
H 0.67 0.57 0.56
S 0.09 0.05 0.05
HS 0.09 0.05 0.05
HSC 0.08 0.04 0.04
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6.2 Case study: Full Brown-Swiss cattle data

For the models G, H, S and HS applied to the full case study data set for
Brown-Swiss cattle we present the posterior hyperparameters in Figure 8,
the DIC in Table 19, the mean and standard deviation of the posterior
spatial e↵ects from model HS in Figure 9, and the di↵erence in EBV
between models H and HS plotted against the mean posterior spatial e↵ect
from model HS in Figure 10.
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Figure 8: Posterior distributions of hyper-parameters from models G, H, S
and HS applied to the full case study data

Table 19: DIC for models G, H, S and HS applied to the full case study
data

Model DIC

G 67329
H 70964
S 70096
HS 70929
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e↵ect from HS for the full case study data. The axis units are in km
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ABSTRACT The increasing amount of available biological information on the markers can be used to
inform the models applied for genomic selection to improve predictions. The objective of this study was to
propose a general model for genomic selection using a link function approach within the hierarchical
generalized linear model framework (hglm) that can include external information on the markers. These
models can be fitted using the well-established hglm package in R. We also present an R package
(CodataGS) to fit these models, which is significantly faster than the hglm package. Simulated data were
used to validate the proposed model. We tested categorical, continuous and combination models where
the external information on the markers was related to 1) the location of the QTL on the genome with
varying degree of uncertainty, 2) the relationship of the markers with the QTL calculated as the LD between
them, and 3) a combination of both. The proposed models showed improved accuracies from 3.8% up to
23.2% compared to the SNP-BLUP method in a simulated population derived from a base population with
100 individuals. Moreover, the proposed categorical model was tested on a dairy cattle dataset for
two traits (Milk Yield and Fat Percentage). These results also showed improved accuracy compared to
SNP-BLUP, especially for the Fat% trait. The performance of the proposed models depended on the
genetic architecture of the trait, as traits that deviate from the infinitesimal model benefited more from the
external information. Also, the gain in accuracy depended on the degree of uncertainty of the external
information provided to the model. The usefulness of these type of models is expected to increase with
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The identification of a large number of Single Nucleotide Polymor-
phisms (SNPs) along the genome, as a by-product of the sequencing
efforts (e.g., Daetwyler et al. 2014) and the development of SNP-chip
genotyping technology (Gunderson et al. 2005) have made genotyping
of thousands of markers affordable at low cost. Meuwissen et al.
(2001) foresaw these breakthroughs in technology and proposed a

new method of selection in animal breeding denoted as Genomic Se-
lection (GS). This method has been tested through simulation studies
(Meuwissen et al. 2001; Muir 2007) and cross validation with real data
in different species such as mice (Legarra et al. 2008), dairy cattle
(Luan et al. 2009; VanRaden et al. 2009), aquaculture (Sonesson and
Meuwissen 2009) and poultry (González-Recio et al. 2009). Nowadays,
GS has become part of the routine breeding schemes in dairy cattle
(Hayes et al. 2009) and other species including pigs (Ostersen et al.
2011; Hidalgo et al. 2015; Tusell et al. 2016) and poultry (Wolc et al.
2015).

Several statisticalmodels havebeenproposed for genomicprediction
using whole-genomemarkers. The most popular method provides best
linear unbiased predictions (BLUP) of marker effects (Meuwissen et al.
2001) by assuming that the marker effects come from a Gaussian
distribution with constant variance and everymarker can have an effect
on the analyzed trait. This method is referred to either as GBLUP or
SNP-BLUP depending on the implementation. Biologically, it seems
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more reasonable to assume that some of the markers are in linkage
disequilibrium (LD) with a causative gene or a quantitative trait locus
(QTL) and therefore can capture their effect on the studied trait,
whereas some markers are not in LD with any gene and should there-
fore not capture any effect. To achieve this idea, several methods have
been developed to incorporate different prior assumptions on the ge-
netic architecture of the trait. For this family of methods, often re-
ferred to as the Bayesian Alphabet (Gianola 2013), it is assumed that
the genetic effects of the SNPs follow alternative distributions like a
t-distribution (Bayes A) (Meuwissen et al. 2001), a double exponential
distribution (Bayes LASSO) (de los Campos et al. 2009; Usai et al.
2009) or a mixture of distributions (i.e., Bayes B, Bayes Cp, Bayes
R) (Meuwissen et al. 2001; Habier et al. 2011; Erbe et al. 2012). The
prior assumptions of these methods are rather arbitrary and their per-
formance relies heavily on the model assumptions capturing accurately
the true genetic architecture of the trait of interest (Daetwyler et al.
2010; Hayes et al. 2010).

Whole-genome sequencing of individuals has facilitated the de-
tection of genetic variants that can be used for GS. Currently, in Bos
Taurus cattle !28 million genetic variants have been reported
(Daetwyler et al. 2013). This large number of polymorphic markers
comes with a major challenge in terms of computational speed
and memory. One way to deal with this problem is to make use of
the biological information available on themarkers, e.g., to annotate the
markers in classes based on genome location or functionality and pri-
oritize those classes that show a higher probability of containing trait
associatedmarkers. Koufariotis et al. (2014) showed that protein coding
regions explain significantly more variation than similar number of
randomly chosen markers across many traits in cattle. Moreover, in a
study by Schork et al. (2013), the upstream and downstream classes
showed significant enrichment in trait associated variants suggesting
that these classes can potentially have important regulatory functions.
In the same line, Yang et al. (2011) stated that genic regions contributed
more additive genetic variance than non-genic regions for human
traits. However, Do et al. (2015) found that the contribution to total
genomic variance per SNP among the annotated classes was similar for
all regions in a feed efficiency study in pigs.

Several authorshave also investigated thepredictive ability ofmodels
based on annotation classes. Using kernelmethods,Morota et al. (2014)
and Abdollahi-Arpanahi et al. (2016) showed that a whole-genome
approach provided better predictive ability than that obtained from
classes of genomic regions considered separately. Likewise, Do et al.
(2015) using GBLUP and Bayesian methods (Bayes A, B and Cp)
found that classification of SNPs by genomic annotation had little
impact on the accuracy of prediction for feed efficiency traits in pigs.

Apart from genome annotation information, other biological in-
formation is available on the SNPs.QTLdatabases are available formost
livestock species (Hu et al. 2013) and Genome-Wide Association Stud-
ies (GWAS) (Bush and Moore 2012) have identified a great number of
trait-associated markers. Moreover, metabolic and signaling pathways
(Kanehisa et al. 2008; Croft et al. 2011; Caspi et al. 2012) and gene
regulatory networks (Lee et al. 2002; Shalgi et al. 2007; Hecker et al.
2009) can also provide valuable insight to the underlying biology of the
traits of interest (Snelling et al. 2013). A rather new tool that has been
developed to incorporate existing knowledge of the genetic architecture
of complex traits into a GS model is BLUP|GA, i.e., “BLUP approach
given the Genetic Architecture” (Zhang et al. 2014). This tool uses
publicly available GWAS results and showed improved prediction ac-
curacies compared to traditional GBLUP and Bayes B methods. Also, a
similar approach was developed by Kadarmideen (2014) (system ge-
nomic BLUP, - sgBLUP-) where SNPs with known biological role were

explicitly modeled in addition to conventional random SNP effects in
SNP-BLUP or GBLUP methods. Along with the BLUP approaches,
several Bayesian methods were also developed. Bayes Bp (Gao
et al. 2015) is a modified version of Bayes B (Meuwissen et al.
2001) able to utilize locus-specific priors. In their study, the authors
obtained locus-specific priors from variance analysis (ANOVA)
based on information from each single marker separately and the
results showed improved accuracy and decreased bias compared to
Bayes B and Bayes Cp. In a similar way, MacLeod et al. (2016)
proposed a modification to the BayesR method (Erbe et al. 2012)
that incorporates prior biological knowledge. This method provides
a flexible approach to improve the accuracy of genomic prediction
and QTL discovery taking advantage of available biological knowl-
edge. The basic idea of previously developed methods is to group
SNPs into those having a biological function and those with an
unknown function. Both the BLUP|GA and BayesBpmethods, also
include continuous weights for all, or a subset of markers. For the
BLUP|GA method, weights computed using trait-specific GWAS
results are used to construct the genomic relationship matrix,
whereas in BayesBp the weights are computed from single-SNP
ANOVA analyses.

Although a large number ofmethods have beendeveloped already
for GS, a general BLUP method to include explanatory variables for
SNP-specific variances that allowboth continuous and class variables
seems to be missing. Here we propose a general model using a link
function approach within the hierarchical generalized linear model
framework (Lee et al. 2006). The algorithm proposed by Lee and
Nelder (1996) is used, where the hierarchical generalized linear
model is fitted by iterating between augmented generalized linear
models. With this approach, rather complex models can be fitted
using a single deterministic fitting algorithm (see Rönnegård et al.
2010a, 2010b).

The aim of the paper is to assess the accuracy for such models
including predictors for SNP variances, with special emphasis on the
effect of the trait’s genetic architecture and LD structure on estimation
accuracy. We present a family of models where the SNP variances can
be modeled using both, categorical and continuous predictors, or a
combination of the two. The computation time of these models is also
studied and a new, faster R package (CodataGS) to fit these models is
presented.

MATERIALS AND METHODS

Data simulation
Data were simulated to evaluate themodels. Four different scenarios for
QTL variance distribution were simulated under three different genetic
architectures in which the number of QTL per chromosome was 10,
20 or 100. For each combination of scenario and genetic architecture,
100 simulation replicates were produced. This section describes the
simulations in detail.

A base population was simulated of 100 individuals that evolved
under randommating for 400 non-overlapping generations (generation
-399 to 0) maintaining the population size constant. After the 400 his-
torical generations, two more generations were simulated, still under
randommating and expanding the population size from 100 to 200 in-
dividuals per generation. Generation 1 was used as training set and
generation 2 as validation set. The genome comprised of two chromo-
somes of 1 Morgan each with 8,800 loci, evenly distributed across the
genome. In the base population alleles were coded as 0 or 1 with equal
probability resulting in intermediate average allele frequencies. In the
first generation, 1,000 loci per chromosome were selected randomly
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among those loci with a Minor allele frequency (MAF) higher than
0.05 to simulate the SNP marker panel. The same loci were used for
validation in generation 2.

To simulatephenotypes in generation 1 (training set),NQTL lociwere
selected randomly excluding loci that were on the edge of the chromo-
some and those with a MAF lower than 0.05. In order to simulate
different scenarios of genetic architecture underlying the trait, the num-
ber of QTL (NQTL) varied between 10, 20 and 100 per chromosome.
Moreover, the QTL effects, uj, j = 1, . . ., NQTL, were assumed to be
normally distributed with mean 0 and varying variance assigned in one
of the following ways:

Scenario 0 (Sc0): uj ! Nð0;s2
j Þ; where s2

j ¼ e1

Scenario 1 (Sc1): uj ! Nð0;s2
j Þ; where s2

j ¼ e1, with probability
0.5, and s2

j ¼ e3, with probability 0.5
Scenario 2 (Sc2): uj ! Nð0;s2

j Þ; where s2
j ¼ e1, if uj belonged to

chromosome 1, and s2
j ¼ e3, if uj belonged to chromosome 2

Here, e is the natural number and therefore the variance can take
values between e1 ¼ 2:7 and e3 ¼ 20:1. The difference between the
scenarios Sc1 and Sc2 is that in Sc1 heterogeneous QTL effects are
allowed on the same chromosome and may be in linkage disequilib-
rium with each other. On the other hand, in Sc2 the two different types
of QTL are located on different chromosomes to ensure low LD be-
tween them.

Scenario 3 (Sc3): uj ! Nð0;s2
j Þ; where s2

j ¼ e3f ðsjÞ, sj is the posi-
tion of QTL j and f is a function of relative distance to the
chromosome edge. Consequently, s2

j take values between e1

and e3. This scenario is motivated by the finding that fitness
genes tend to be located closer to the center of the chromosomes
(see e.g., Carneiro et al. (2009) and references therein).

For each scenario, the three separate genetic architectures were
simulated, i.e., with 10, 20 or 100 QTL per chromosome. In order for
the results from the different scenarios and genetic architectures to
be comparable, the total genetic variance was scaled to 1.0. In this
way, the obtained traits were either controlled by a small number of
QTL with medium-large effects or by a large number of QTL with
small effects.

In generation 1 (training set) phenotypes were simulated for all
200 individuals as:

yi ¼ mþ
XNQTL

j¼1

ZQTL;1ijuj þ ei;

where yi is the phenotype of individual i, m is a fixed effect which was
set equal to 0, ZQTL;1ij is the genotype for the jth QTL coded as 0, 1 or
2 for the homozygote, heterozygote and the alternative homozygote
respectively for individual i in generation 1, uj is the simulated nor-
mally distributed jth QTL effect as described above, and ei is the re-
sidual effect of the ith individual normally distributed withmean 0 and
the appropriate variance s2

e in order to create a trait with heritability
of 0.2.

Generation2was used as validation setwhere true genomic breeding
values (TBVs) were computed as:

TBVsi ¼
XNQTL

j¼1

ZQTL;2ijuj;

where ZQTL;2ij is the QTL genotype for QTL j and individual i for this
generation.

Genomic evaluation
To estimate the SNP effects, the marker panel of 1,000 SNPs per
chromosome mentioned above was used and the following model
was assumed:

yi ¼ mþ
Xp

j¼1

Zijyj þ ei; (1)

where yi is the phenotype of individual i, m is a fixed effect, p is the
total number of SNPs, Zij is the genotype of the SNP j for individual i
coded as 0, 1 or 2, ei ! Nð0;s2

eÞ is the residual effect, and

yj ! Nð0;t2j Þ (2)

is the jth SNP effect normally distributed with mean 0 and variance

t2j ¼ eaþbxj ; (3)

where aþ bxj is a linear predictor for the SNP-specific variance the
components of which are explained in the following section.

Evaluation models
The linear predictor for variance (aþ bxj) allows to incorporate any
type of external information about the SNP variance, making it possible
to assign the same variance for all SNPs, a subgroup of SNPs or assign a
unique variance for each SNP. We used this linear predictor for vari-
ance to introduce external information on the SNPs into the models
and the predictive performance of different prior assumptions was tested.
The log link ensures a positive variance (Aitkin 1987; Lee and Nelder
1998) and due to its computational robustness is a common choice of
link function in variance modeling (Jaffrezic et al. 2000; Sorensen and
Waagepetersen 2003; Rönnegård et al. 2010a). By using a Gamma gen-
eralized linear model with a log link, the score function for this model is
equivalent to the score function of the REML likelihood in a linear mixed
model (Lee and Nelder 1996, Lee et al. 2017 page 91) and therefore
produces REML estimates of the variance components. Furthermore,
especially for variances close to zero the likelihood will be more symmet-
ric on a logarithmic scale than on an untransformed scale, and thereby
gives better standard errors for the fitted variance components.

The models tested in this study were:

1. SNP-BLUP: In the traditional model the variance of the markers is
assumed to be equal for all markers and therefore xj ¼ 0 in the
linear predictor for the variance for all markers.

2. Categorical models (W10, W20 and W40): For these models the
genome was divided into non-overlapping windows of 10, 20 or
40 SNPs. Then, all the SNPs within a given window were given the
value xj ¼ 1 if they contained a QTL and xj ¼ 0 if they did not.
Hence, a study with known regions harboring the QTL was mim-
icked, where these regions were known with varying degree of
uncertainty.

3. Continuous model (LD): For this model, following Yang and Tem-
pelman (2012) and Rönnegård and Lee (2010), the linkage dis-
equilibrium (LD) between a SNP and a QTL was calculated as
r2 ¼ D2=ðpSpspQpqÞ, where D ¼ fSQ fsq 2 fSq fsQ (Falconer and
Mackay 1996), pS, ps, pQ and pq are the allele frequencies of the
SNP and QTL, fSQ, fsq are the homozygous haplotype frequencies
and fSq, fsQ are the heterozygous haplotype frequencies. Then, each

SNP was assigned the value of xj ¼
PNQTL

k¼1
r2jk. The relationship be-

tween SNPs and QTL was modeled in such way that markers in
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higher LDwith one or more QTL would be given more importance
in the model compared to other markers not in LD with any QTL.

4. Combination of categorical and continuous models (W10-LD,
W20-LD and W40-LD): In these models the genome was divided
into windows as in the previous categorical models but the SNPs
located within a window that harbored a QTL were given the value
of the LD with the QTL instead of 1. The model could, therefore,
differentiate between SNPs not only based on location but also
based on the relationship with the real QTL.

Table 1 gives an overview of all simulated scenarios and models
tested. Each scenario was simulated with 10, 20 and 100 QTL per
chromosome as described previously.

5. Additional models (W10-2var, W20-2var, W40-2var, Dis, W10-
Dis, W20-Dis and W40-Dis): The previously described models
include external information on the physical location of the QTL
relative to the SNPs or/and the relationship of the SNPs with the
QTL but they do not include any information about the QTL
variance. Therefore, a few additional models were created based
on the particular parameters used for the simulation of each ge-
netic architecture scenario. These models are defined as follows.
a. For the scenarios where the QTL effects came from distribu-

tions with two different variances (Sc1 and Sc2) we assumed this
information was known and we expanded the linear predictor
to aþ bxj1 þ gxj2 in order to accommodate for more variances
(in the models W10-2var, W20-2var, and W40-2var). The ge-
nome was divided in non-overlapping windows as before and
SNPs associated with a QTL with variance s2

j ¼ e1 was assigned
xj1 ¼ 1 and xj2 ¼ 0, while if it was associated with a QTL with
variance s2

j ¼ e3 it was assigned xj1 ¼ 0 and xj2 ¼ 1. If a SNP
was located within a window with no QTL then both xj1 and xj2
had a value of 0.

b. For Sc3, we used the distance of the markers from the edge of the
chromosome as external information either as a continuous vari-
able (Dis) or within windows (W10-Dis, W20-Dis and W40-
Dis), since the QTL variances were simulated in the same way.

German Holstein population data
To demonstrate the model on real data, we used a German Holstein
genomic prediction population consisting of 5024 bulls (Zhang et al.
2015). Three traits were measured, where the first two had highly

significant QTL from a GWAS. Including this information as explan-
atory variables for the SNP-specific variances was expected to improve
genomic selection. We were also able to compare our results with
Zhang et al. (2015), who have developed the algorithm BLUP|GA that
includes information about genetic architecture by building trait-spe-
cific genomic covariance matrices.

All bulls had been genotyped and we used the 42,373 SNPs
with minor allele frequency above 0.01. For the three traits, which were
milk yield,milk fat percentage and somatic cell score, Zhang et al. (2015)
provide highly reliable estimated breeding values (EBVs) for all bulls
from previous studies (Hu et al. 2013; Zhang et al. 2014). The EBVs for
milk yield and milk fat percentage were used as phenotypes.

We chose to fit the model 1) SNP-BLUP and models 2) W11 and
W41, with windows of size 11 and 41 SNPs centered around candidate
QTL peaks. To find candidate QTL, we performed GWAS, correcting
for genomic relationship using estimated residual and additive genetic
variance from GBLUP. All SNPs from GWAS with p-value less than
10!5 were considered a candidate QTL. For milk yield we identified
6 candidate QTL peaks and for the fat percentage we identified 5 can-
didate QTL peaks, which were used as the center of the windows.

Hglm method and CodataGS
The estimation of the SNP effects was performed by fitting the model
described by equations 1-3 that allows both continuous and categorical
predictors for the SNP-specific variances, or a combination of contin-
uous and categorical predictors. We tested a few examples of external
information on the SNPs and these models were fitted using the hglm
package in R (Rönnegård et al. 2010b). In the hglm package the linear
predictor for variance aþ bxj is specified using the X.rand.disp option
in the hglm function and the function estimates SNP effects (example of
the command line to call the hglm function with the optionX.rand.disp
can be found in the Supplementary File S1 line 156).

When the number of markers largely exceeds the number of
individuals, the computational speed and memory requirements can
be improved by fitting individual effects (i.e., EGBVs) in an equivalent
model instead of SNP effects (Strandén and Garrick 2009; Shen et al.
2013). This equivalent model, which uses the external information on
each SNP in the same way as in the hglm package, was implemented in
the R package CodataGS and is available on CRAN (https://cran.r-
project.org/web/packages/CodataGS). The theory is explained in the
Supplementary File S3. The CodataGS R package was used for the
analysis of the German Holstein population data.

Accuracy
Thepredictive ability of allmodelswas evaluatedas the correlationof the
estimated genomic breeding values (EGBVs) and the true genomic
breeding values (TGBVs) for the validation set (Generation 2). For each
simulation setup, 100 replicates were generated. The convergence of the
models varied from 71 to 100% and results are presented for those
replicates where all models converged. For the German Holstein pop-
ulation,we performed afivefold cross-validationwith all bulls randomly
separated in four groups of 1005 andone groupof 1004with bothmodel
1) and 2). Eachgroup served as a test set while the rest of the groupswere
used to estimate the SNP effects. The predictive ability wasmeasured as
the correlation between the EBVs and the phenotypes of the testing
individuals.

Data availability
Simulation of the data that support the findings is possible through the
attached simulation code in File S1 and File S2 (Functions for the

n Table 1 SUMMARY OF MODELS TESTED FOR EACH SCENARIO
OF GENETIC ARCHITECTURE SIMULATED

Modelsa Scenariob Sc0 Sc1 Sc2 Sc3

SNP-BLUP + + + +
W10 + + + +
W20 + + + +
W40 + + + +
LD + + + +
W10-LD + + + +
W20-LD + + + +
W40-LD + + + +
a
W10= categorical model with window of 10 SNPs, W20= categorical model
with window of 20 SNPS, W40= categorical model with window of 40 SNPS,
LD= continuous model with LD estimates, W10-LD= combined model with
window of 10 SNPs and LD estimates, W20-LD= combined model with window
of 20 SNPs and LD estimates, W40-LD= combined model with window of
40 SNPs and LD estimates.

b
Sc0= simulation scenario 0, Sc1= simulation scenario 1, Sc2= simulation
scenario 2, Sc3= simulation scenario 3.
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simulation) deposited at figshare. The simulation code and the meth-
odology described previously are sufficient to reproduce the results of
this study. The analysis programCodataGS used to apply the alternative
models on the Holstein dataset is available at https://cran.r-project.org/
web/packages/CodataGS. Supplemental material available at FigShare:
https://doi.org/10.25387/g3.9247832.

RESULTS
Table 1 contains different versions of the model tested. The fit-
ted SNP effects obtained from hglm for one simulation repli-
cate under scenario Sc0 with 10 QTL per chromosome are
presented in Figure 1. The R code to reproduce Figure 1 is found
in Supplementary File S1 (along with File S2). The results
show how the fitted SNP effects may change between model spec-
ifications. For example, it can be observed that with increasing
window size the estimated effects tend to be spread between
more SNPs.

Model performance
Table 2 shows the accuracies of the predicted EGBVs in the validation
set (generation 2) for scenario 0 (Sc0) with 10 QTL per chromosome

underlying the trait. In general, the alternative models performed
better than SNP-BLUP. The categorical models yielded higher ac-
curacies compared to the SNP-BLUP model by 14.3% (0.670 6
0.013), 11.9% (0.656 6 0.012) and 8.4% (0.635 6 0.012) for the
models W10, W20 and W40, respectively. Nonetheless, we observe
that the advantage of the categorical models over the SNP-BLUP
decreased with increasing window sizes. Moreover, the continuous
model (LD) resulted in higher accuracy than the SNP-BLUP or the
categorical models with an increase of 22.4% (0.717 6 0.011) in
accuracy with respect to the SNP-BLUP. Similarly, the combina-
tion models performed 20.6% (W10-LD, 0.707 6 0.013) 21.8%
(W20-LD, 0.714 6 0.013) and 23.2% (W40-LD, 0.722 60.013) bet-
ter than the SNP-BLUP model. Contrary to the categorical models,
the combination models maintained the gain in accuracy with in-
creasing window size. The alternative models provided unbiased
predictions while the SNP-BLUP showed upward bias (Table 2).
Finally, the mean squared error of prediction (MSEP) in the valida-
tion set improved with the alternative models compared to the SNP-
BLUP, indicating that predictions are closer to the true breeding
values in the alternative models compared with the SNP-BLUP.

Figure 1 Simulated QTL effects (black dots) and
fitted SNP effects under SNP-BLUP and 7 alternative
models (Categorical: W10, W20 and W40, Contin-
uous: LD, Combination: W10-LD, W20-LD and W40-
LD) for one simulation replicate under simulation
scenario Sc0 with 10 QTL per chromosome un-
derlying the trait.
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Effect of number of simulated QTL
In order to investigate the performance of the alternative models for
traits with different genetic architectures we simulated a trait controlled
by an increasingnumberofQTLwith eachhavingadecreasing effect.As
an overview, the accuracies of the different models in Sc0 with 20 and
100 QTL per chromosome are visualized in Figure 2 together with the
results from 10QTL per chromosome. The advantage of the alternative
models over the SNP-BLUP model decreased with increasing number
of QTL controlling the trait. When the number of QTL underlying the
trait is 20 QTL per chromosome, the accuracies obtained were 9.6%,
7.5% and 3.8% better than the SNP-BLUP for the W10, W20 andW40
models, respectively. The continuous model resulted in a gain of 12.9%
in accuracy while the combination models performed slightly better
than all the alternative models yielding gains in accuracy of 14%, 14.2%
and 13.5% for the W10-LD, W20-LD and W40-LD models, respec-
tively. Finally, in the case of 100 QTL per chromosome, all models
performed roughly the same as SNP-BLUP, yielding accuracies be-
tween 0.583 6 0.012 (W40) and 0.599 6 0.011 (W10-LD).

Effect of variance of the QTL effects
Thegenetic architectureof a trait doesnot onlydependon thenumberof
QTL that affect the trait. For example, mutations can affect protein
coding regions or regulatory regions and these mutations can have a
bigger or smaller effect on the trait. Therefore we can assume that their
effects come from amixture of distributions with varying variance over
the genome. For this purpose we simulated several scenarios where the
QTL effects were drawn fromamixture of distributions (see Sc1 – Sc3 in

Materials and Methods). We compared the performance of all models
under all scenarios of QTL effect variances and all cases of number of
QTL affecting the trait (Figure 3). In general the models performed
similarly under Sc1, Sc2 and Sc3 as in Sc0. Small differences were
observed in the case of 10 QTL per chromosome where all models
performed slightly better in Sc0 and Sc2 (QTL effects from a low
variance distribution on chromosome 1 and from high variance distri-
bution on chromosome 2) compared with the results from Sc1 and Sc3.
Nonetheless, this minimum difference disappeared quickly with in-
creasing number of QTL per chromosomes. The external information
included in the alternative models was related to the position of the
QTL on the genome and/or the relationship of the SNPs with the QTL
(LD), but no information about the distribution of the variance itself
was included. Therefore, we fitted additional models that considered
the way the QTL were simulated (see linear predictor 5: Additional
models Material and Methods, and Supplementary file Table S1). For
Sc1 and Sc2 we extended the linear predictor (aþ bxj1 þ gxj2) to
accommodate for two types of variances for the SNPs in windows that
harbored a QTL assuming that we knew beforehand the distribution
variance of the effect of that QTL and, as before, we tested 3 different
window sizes (10, 20 and 40 SNPs per window). The results showed
that these additional models performed similarly as the categorical
models (W10, W20 and W40) under all cases of genetic architecture
simulated. The only exception to these results was for the Sc2 with
100 QTL per chromosome where additional models showed a small
increase in accuracy compared to all othermodels (Supplementaryfiles,
Figure S1). For the Sc3 we used the distance of the SNP from the edge of
the chromosome as external information, either as a continuous vari-
able or within windows. Similarly as before, the additional models that
included information on the simulated distribution variance of the
QTL did not perform better than the alternative models. The combined
models (W10-Dis, W20-Dis and W40-Dis) performed the same as the
categorical models while the continuousmodel (Dis) showed no benefit
compared to the alternativemodels or the SNP-BLUPmodel under any
simulation scenario of genetic architecture.

Computation time
When the number of markers exceeds the number of individuals, the
computational speed andmemory requirements can be an important
drawback for the use of suchmodels.A solution to this problem is tofit
individual effects (i.e., EGBVs) in an equivalent model instead of
SNP effects. In this study all evaluations were performed using the
hglm R package that fits SNP effects. For a larger number of SNPs
the computations would be unfeasible and an equivalent model
which uses the external information on each SNP in the same way
as in the hglm package was implemented in the R packageCodataGS

n Table 2 ACCURACY AND BIAS OF THE PREDICTED EGBVS IN
THE VALIDATION SET (GENERATION 2) FOR THE SCENARIO
0 (SC0) WITH 10 QTLS PER CHROMOSOME UNDERLYING THE
TRAIT

Modelsa Accuracy (r) Bias (b)

SNP-BLUP 0.586 (0.010) 1.213 (0.089)

W10 0.670 (0.013) 1.003 (0.044)

W20 0.656 (0.012) 1.014 (0.048)

W40 0.635 (0.012) 1.030 (0.045)

LD 0.717 (0.011) 1.024 (0.041)

W10-LD 0.707 (0.013) 1.050 (0.053)

W20-LD 0.714 (0.013) 1.044 (0.050)

W40-LD 0.722 (0.013) 1.028 (0.042)

a
W10= categorical model with window of 10 SNPs, W20= categorical model
with window of 20 SNPS, W40= categorical model with window of 40 SNPS,
LD= continuous model with LD estimates, W10-LD= combined model with
window of 10 SNPs and LD estimates, W20-LD= combined model with window
of 20 SNPs and LD estimates, W40-LD= combined model with window of
40 SNPs and LD estimates.

Figure 2 Accuracies obtained under different cases
of genetic architecture of the trait for SNP-BLUP and
the alternative models.
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(https://cran.r-project.org/web/packages/CodataGS). The theory is
explained in the Supplementary File S3. Fitting individual effects
instead of SNP effects resulted in largely improved run time of all
models. For a training population of 200 individuals with 2,000 SNP
markers, fitting SNP effects (hglm) required on average 9.35 sec per
iteration while fitting individual effects (CodataGS) required only
0.46 sec per iteration (Figure 4). The improved speed and memory
requirements of the equivalent model can be considerably beneficial
since the usual size of the training sets is much larger than the one
used here (thousands of individuals with tens of thousands of SNPs).
Nonetheless, the speed performance of the equivalent model de-
pends heavily on the number of individuals and the relationship
between time and number of individuals is not linear but rather
exponential (Supplementary Figure S2).

German Holstein population results
To demonstrate the model on real data, we used a German Holstein
population consisting of 5024 bulls (Zhang et al. 2015). We chose to fit
the model 1) SNP-BLUP and models 2)W11 andW41 with windows
of sizes 11 and 41 SNPs centered around candidate QTL peaks. We
obtained the candidate QTL peaks after performing a GWAS, correct-
ing for genomic relationship using estimated residual and additive ge-
netic variance from GBLUP. All SNPs from the GWAS with p-value
less than 10!5 were considered a candidate QTL. For milk yield (MY) we
identified 6 candidate QTL peaks and for the fat percentage (Fat%) we
identified 5 candidate QTL peaks, which were used as the center of
the windows.

Table 3 shows the average accuracies obtained from the
SNP-BLUP and W41 models for two traits (MY and Fat%) in the

Figure 3 Accuracies obtained from SNP-BLUP
model and alternative models under all simulated
scenarios and genetic architectures.

Figure 4 Time of execution (seconds per iteration)
of SNP-BLUP and alternative models from hglm
package and CodataGS package.
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fivefold-cross-validation analysis. We present only the results from
the W41 model as the model W11 yielded very similar accuracies
as the W41 model. For both traits the W41 model yielded higher
accuracies than the SNP-BLUP. The W41 model showed a higher
advantage in predictive ability for the trait Fat% yielding an accu-
racy of 0.862 compared to the 0.811 obtained from the SNP-BLUP
model. The results for the MY trait were similar but the predictive
advantage of the W41 model was lower compared to the Fat% trait
(accuracy of 0.785 from the W41 model over 0.771 from the SNP-
BLUP model).

DISCUSSION
The knowledge on the genetic architecture of different traits, and SNP-
specific biological information, is increasing rapidly and several authors
have proposed methods for genomic selection that canmake use of this
available biological information to improve selection accuracy (Zhang
et al. 2010; Zhang et al. 2014; Su et al. 2014). In this line, this study
proposes a general model using a link function approach within the
hierarchical generalized linear model framework (Lee et al. 2006) to
include biological external information into the model. Following
Zhang et al. (2010), we used a base population of 100 individuals in
our simulation study. This is a rather small population size and the
results should therefore be extrapolated to larger effective population
sizes with caution.

All the results in the current study use the same general model
(described by equations 1 – 3) for predicting breeding values. The
alternative models in Table 1, including SNP-BLUP, are fitted within
this single framework and in the results the accuracies of the alternative
models are compared. There are numerous Bayesian models not in-
cluded within this framework that may be of interest to compare with.
However, we use SNP-BLUP as a basic model to compare the results to
and study the accuracies of models that make use of external informa-
tion on the SNPs.

Averyattractive featureof themethodproposed in this study is that it
provides a flexible way to model the SNP variances using a linear
predictor (equation 3). Any type of existing knowledge on the SNP
markers can be utilized and potentially increase the predictive ability of
the model. In this study we investigated the performance of external
information related to the position of the QTL on the genome and the
relationship of the SNP markers with the QTL and we showed that the
inclusion of such information can improve the predicting ability of
genomic selection. From our results we identified twomain factors that
influence theperformanceof suchmodels, the genetic architectureof the
trait and the quality/accuracy of the external information.

In themodelsW10,W20 andW40, the causative effect is assumed to
be within a window and does not assume that the exact position of the
causativemutation is known.Thismodel should be suitable for genomic
predictionwhereexternal information fromQTLstudies is included.For
the LDmodel and the combinedmodels (W10-LD,W20-LD andW40-
LD) it is assumed that the position of the causative SNP is known.
Especially in plant breeding, there is a need to include major genes,

whose positions are accurately known, in genomic prediction. For such
cases the models including LD information combines marker assisted
selection and genomic selection in a dynamic way.

We investigated models with three different window sizes that were
suitable for our simulated data. For applications on real data the optimal
numberofmarkers tobe included ineachwindow, in termsofprediction
accuracy, will depend onmarker density and the genetic architecture. In
our application on the dairy cattle data the optimal number of markers
within awindowwas not assessed statistically, but since themarkermap
wasmuchdenser than in the simulated datawe chose themodelwith the
largest number of markers, i.e., window size 40.

Genetic architecture of the trait
The performance of several alternative models in our study was better
compared to the SNP-BLUPmethod when the trait was controlled by a
small numberofQTLwithmedium-large effects. The advantageof these
modelswas reducedwith increasingnumberofQTLwithsmaller effects.
However, the alternative models did not result in lower accuracies
compared to the SNP-BLUPmodel. The reason is that as the estimated
effect of the external information on the SNP variances approaches zero
the model reduces to a SNP-BLUPmodel. Furthermore, as the number
ofQTL that control the trait increases, the external informationonSNPs
becomesmore similar among the SNPs. For example, for the categorical
models, a QTL is located within most or all defined windows and as a
result all SNPs get the same weight in the model. Moreover, most or
all SNPs are in LD with a QTL at similar levels. Consequently, the
alternative models turn into a SNP-BLUP model. These results are in
agreement with the findings of Zhang et al. (2010). In their simula-
tion study they investigated the performance of a BLUP model with
weighted G matrix and showed that for traits controlled by high num-
ber of QTL the traditional GBLUP and their method performed sim-
ilarly. This effect has also been observed in studies on real data (Zhang
et al. 2014). Analyzing three dairy cattle traits (Milk Yield (MY), Fat
percentage (FP) and Somatic Cell Count (SCC)) these authors found
that traits controlled by a few QTL with large effects (MY and FP)
perform better under models with external information on the SNPs
while the SCC trait, that is controlled by many QTL evenly distributed
along the genome, performed better under the standardGBLUPmodel.

In our simulation studywe created different genetic architectures for
the traitwith respectnotonly to thenumberof theQTLaffecting the trait
but also to the distribution of the QTL effects and their variances (see
Material andMethods).Our results showed that this aspect didnot affect
the performance of the alternative models. Moreover, the additional
models that included informationon thevariancedistributionacross the
genome were not able to provide any benefit, contrary to methods that
assume mixtures of distributions for the SNP markers like Bayesian
methods (Erbe et al. 2012).

External information
In this study we investigated the performance of models that include
information on the location of the QTL on the genome (categorical
models)and thereby tried tomimic the external informationavailableon
the QTL databases and the different window sizes resemble the degree
of uncertainty of a QTL region. Our results indicate that this type of
external information has the potential to improve the accuracy
of genomic selection and that the degree of improvement is inversely
related to the degree of uncertainty on theQTL region. Theusefulness of
the QTL database information has been demonstrated by Zhang et al.
(2014). In their study these authors searched for reported QTL on the
traits under consideration (Fat percentage, milk yield and somatic cell
score for dairy cattle and several traits for rice) and after a quality

n Table 3 MEAN ACCURACY (STANDARD ERROR) OF THE
PREDICTED EGBVS IN A 5-FOLD CROSS VALIDATION ANALYSIS
USING THE GERMAN HOLSTEIN DATA FOR TWO TRAITS

Modelsa MY Fat%

SNP-BLUP 0.771 (0.002) 0.811 (0.004)

W41 0.785 (0.002) 0.862 (0.003)

a
W41= categorical model with window of 40 SNPs around the top SNP for the
trait detected on a GWAS study. MY: Milk Yield, Fat%: Fat percentage.
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control to avoid the possible false positive reports they included this
information into a GBLUP model. For most of the examined traits an
increase in accuracywas observed, especially for the traits that showed a
characteristic genetic architecture. The discovery of new QTL or the
causative mutations is expected to increase in the future with the use of
whole genome sequence and the development of new methods for
analysis and as a consequence the information available will become
more accurate.

The external information that proved to be more valuable in this
study was the LD estimates between the SNPs and the QTL. In the
standard GBLUP method, markers in linkage equilibrium (LE) to the
causativeQTL tend tocapture effects due to family relationship,whereas
mainly markers in LD capture the QTL effects themselves (Habier et al.
2007, de los Campos et al. 2015). In the BayesBmodel (Meuwissen et al.
2001), the prior for the SNP variances is a mixture of two distributions
that tends to group markers into two classes: those in LD and those in
LE with the QTL. By modeling the two classes of markers better pre-
dictions for unrelated individuals can be obtained. In other studies, LD
information has been incorporated in amodel for themarker variances,
which smooths the effects betweenmarkers in close LD (e.g., the Bayes-
ian antedependence model by Yang and Tempelman 2012, and the
double hierarchical generalized linear model by Rönnegård and Lee
2010), and thereby captures the QTL effects rather than family infor-
mation. These models give better predictions than GBLUP when indi-
viduals are unrelated and the total number of QTL is small. This is in
line with our findings where the models including LD betweenmarkers
and QTL resulted in improved prediction accuracies, especially when
the number of simulated QTL was small. Finally, the results obtained
from the combined models indicate that information on the real re-
lationship between markers and QTL can compensate for the loss of
information due to the uncertainty of the QTL report.

The prior of BayesB is rather general because it does not use any
external information on the SNPs, whereas the model we propose gives
more specific information about each SNP. Since the information on
each SNP is more specific in our model its performance compared to
GBPLUP and BayesB is expected to improve as the number of indi-
viduals in the training set decreases, in linewith the results of Zhang et al.
(2015, Supplementary Table 1) .

The model applied in Zhang et al. (2015) is BLUP|GA and was
developed in Zhang et al. (2014). It includes external data on SNPs
in the model and has similarities to our model since both methods fit
trait-specific genomic relationship matrices. In the BLUP|GA method
SNPs are divided into two groups by the user. In the first group there is
a single genetic variance for all SNPs and in the second group SNP-
specific variances are modeled as proportional to user-specific weights.
Furthermore, the ratio between the variances for the two groups is also
user-specified. This is indeed similar to our proposed method, but with
some significant differences. The method that we propose uses a re-
gression approach where covariates are specified by the user, whereas
all model parameters are estimated. The covariates can include negative
values in ourmethod but the SNP variances will still be positive because
the genetic variances are modeled using a logarithmic link function. By
specifying covariates rather than weights for the SNP variances, hope-
fully, our proposed method will also be user friendly and the imple-
mentation in the CodataGS package (https://cran.r-project.org/web/
packages/CodataGS) fits ratherwell with the regression framework inR.

CONCLUSIONS
In this studywe investigated thepotential benefit of external information
on improving the accuracy of genomic selection. In conclusion, using
external information tomodel SNP-specific variances can provide gains

in accuracy compared to the traditional SNP-BLUP. Nonetheless, the
level of gain depends on the genetic architecture of the trait of interest
and the quality of the external information on the SNP markers. The
usefulness of these type of models is expected to increase with time as
more accurate information on the SNPs becomes available. Finally, our
analysis on real data indicated that the proposed method has potential
but further studies are required to confirm the advantage of this
approach.
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Abstract

This paper introduces a hierarchical model to estimate haplotype
e↵ects based on phylogenetic relationships between haplotypes and
their association with observed phenotypes. In a population there
are usually many, but not all possible, distinct haplotypes and few
observations per haplotype. Further, haplotype frequencies tend
to vary substantially � few haplotypes have high frequency and
many haplotypes have low frequency. Such data structure challenge
estimation of haplotype e↵ects. However, haplotypes often di↵er
only due to few mutations and leveraging these similarities can
improve the estimation of haplotype e↵ects. There is extensive
literature on this topic. Here we build on these observations and
develop an autoregressive model of order one that hierarchically
models haplotype e↵ects by leveraging phylogenetic relationships
between the haplotypes described with a directed acyclic graph.
The phylogenetic relationships can be either in a form of a tree or
a network, and we therefore refer to the model as the haplotype
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network model. The haplotype network model can be included as a
component in a phenotype model to estimate associations between
haplotypes and phenotypes. The key contribution of this work is
that by leveraging the haplotype network structure we obtain a
sparse model, and by using hierarchical autoregression the flow of
information between similar haplotypes is estimated from the data.
We show with a simulation study that the hierarchical model can
improve estimates of haplotype e↵ects compared to an independent
haplotype model, especially when there are few observations for
a specific haplotype. We also compared our model to a mutation
model and observed comparable performance, although the haplotype
model has the potential to capture background specific e↵ects. We
demonstrate the model with a case study of modeling the e↵ect of
mitochondrial haplotypes on milk yield in cattle. We provide R code
to fit the model with the R INLA package.

1 Introduction

This paper develops a hierarchical model to estimate haplotype e↵ects
based on phylogenetic relationships between haplotypes and their associa-
tion with observed phenotypes. With current technology we can readily
obtain genome-wide information about an individual, either through single-
nucleotide polymorphism array genotyping or sequencing platform. Since
the genome-wide information has become abundant, modeling this data
has become the standard in animal and plant breeding as well as human
genetics. The application of this modeling has been shown to improve
genetic gains in breeding (Meuwissen et al., 2001; Hickey et al., 2017;
Ibanez-Escriche and Simianer, 2016) and has potential for personalized
prediction in human genetics and medicine (Begum, 2019; de los Campos
et al., 2018; Lello et al., 2018; Maier et al., 2018).

Geneticists aim to infer which mutations are causing variation in phe-
notypes and what are their e↵ects. This aim is nowadays approached
with genome-wide association studies of regressing observed phenotypes
on mutation genotypes (see the recent review of Morris and Cardon, 2019).
However, mutations arise on specific haplotypes passed between genera-
tions, which limits accurate estimation due to low frequency of mutations,
correlation with other mutations and limited ability to observe all muta-
tions with a used genomic platform (e.g., Gibson, 2018; Simons et al.,
2018; Uricchio, 2019). Further, most mutations do not a↵ect a phenotype,
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while some mutations have background (haplotype) specific e↵ects (e.g.,
Chandler et al., 2017; Wojcik et al., 2019; Steyn et al., 2019).

Instead of focusing on mutation e↵ects we here focus on haplotype
e↵ects and their di↵erences to estimate the e↵ect of mutations on specific
haplotypes. There is extensive literature on estimating haplotype e↵ects
(Balding, 2006; Thompson, 2013; Morris and Cardon, 2019). One issue with
estimating haplotype e↵ects is that there is usually an uneven distribution
of haplotypes in a population (Ewens, 1972, 2004; Walsh and Lynch, 2018),
and estimating the e↵ects of rare haplotypes is equally challenging as
estimating the e↵ect of rare mutations. However, the described genetic
processes in the previous paragraph create a “network” of haplotypes
(sometimes referred to as genealogy or phylogeny), which suggests that
e↵ects of similar haplotypes are similar. This observation inspired Tem-
pleton et al. (1987) to cluster phylogenetically similar haplotypes. Others
have used similar approaches to utilize this data structure (Balding, 2006;
Thompson, 2013; Morris and Cardon, 2019).

We here approach the problem of estimating haplotype e↵ects by
leveraging phylogenetic relationships between haplotypes described with a
directed acyclic graph (DAG) (Koller and Friedman, 2009), and develop a
hierarchical model of haplotype e↵ects on this graph. We were inspired by
recent advances in building phylogenies on large data sets (Kelleher et al.,
2019), and aimed to develop a hierarchical model that could scale to a large
number of haplotypes. Our work extends the phylogenetic mixed modeling
of the whole genome (Lynch, 1991; Pagel, 1999; Housworth et al., 2004;
Hadfield and Nakagawa, 2010) to a specific region. This region specific
modeling could be applied either across species (macroevolution) or within
a species (microevolution).

A potentially important modeling aspect with respect to across and
within species modeling is that the phylogenetic mixed model assumes Brow-
nian motion for evolution of phenotypes along a phylogeny (Felsenstein,
1988; Huey et al., 2019). Brownian motion is a continuous random-walk
process with variance that grows over time (is non-stationary) (Blomberg
et al., 2019; Gardiner, 2009), which makes it a plausible model of evolution
due to mutation and drift. There are alternatives to Brownian motion, in
particular the Ornstein-Uhlenbeck process that can accommodate various
forms of selection (Lande, 1976; Hansen and Martins, 1996; Martins and
Hansen, 1997; Paradis, 2014). The Ornstein-Uhlenbeck process is also a
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continuous random-walk, but with an additional parameter that reverts
the process to the mean (is a stationary process; e.g., Gardiner (2009);
Blomberg et al. (2019)). Both of these models imply Gaussian distribu-
tions for the initial state and increments. The di↵erences between the
two processes might be important in the context of modeling haplotypes
that likely manifest less variation than whole genomes, particularly when
considering haplotypes within a species or even a specific population.

The aim of this paper is to develop a hierarchical model for haplotype
e↵ects by leveraging phylogenetic relationships between haplotypes. We
assume that such relationships are encoded with a DAG and therefore call
the model the haplotype network model. Since haplotypes di↵er due to
a small number of mutations and very few mutations have an e↵ect, we
expect that phylogenetically similar haplotypes will have similar e↵ects.
Furthermore, the small discrete number of mutation di↵erences suggest
discrete-time analogues of Brownian and Ornstein-Uhlenbeck processes.
Therefore, we have modeled the e↵ect of a mutated haplotype given its
parental haplotype with a stationary autoregressive model of order one
following the phylogenetic structure encoded with a DAG. The results show
that the haplotype network model improves the estimation of haplotype
e↵ects compared to an independent haplotype model due to sharing of
information. The results also show that it is comparable to a mutation
model, but as we discuss it has a potential to capture background specific
e↵ects.

2 Material and Methods

In this section we present the haplotype network model and show how to
use it as a component in a phenotype model. We also describe simulations,
a case study of modeling mitochondrial e↵ects on milk yield in cattle, and
the chosen method to perform inference and model evaluation.

2.1 The haplotype network model

Here, we present the haplotype network model, which is a hierarchical
model for haplotype e↵ects based on phylogenetic relationships between
haplotypes encoded with a DAG. The phylogenetic relationships can be
either in a form of a tree or a more general network. We also present two
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generalizations of the model � first due to multiple parental haplotypes
and second due to genetic recombination.

We assume throughout that the phylogeny between haplotypes is known
and that it can be encoded with a DAG. The haplotype network model
can in principle deal with di↵erent types of mutations, but for simplicity
we focus only on biallelic mutations with the code 0 used for the ances-
tral/reference allele (commonly at a higher frequency in a population), and
the code 1 used for the alternative allele that arose due to a mutation.

2.1.1 Motivating example

To motivate the haplotype network model, we use the example from Kelleher
et al. (2019) that presents 5 haplotypes spanning 7 biallelic polymorphic
sites (Table 1). Note that the 5 haplotypes are just a sample of the 27 = 128
possible haplotypes over the 7 sites. An example of a phylogeny for the
haplotypes is shown in Figure 1, where haplotypes are denoted as nodes
(we also show their allele sequence), relationships between haplotypes are
denoted as edges, and mutated sites are denoted with a number on edges.
For example, the ancestral haplotype i has allele sequence 0000000, and
the haplotype g with sequence 1000100 di↵ers from the ancestral haplotype
due to mutations at the sites 5 and 1.

Assuming that similar haplotypes have similar e↵ects, we model depen-
dency between parent-progeny pairs of haplotypes with an autoregressive
Gaussian process of order one. For the haplotypes in Table 1 and Figure 1,
this model implies the following set of conditional dependencies

hi ⇠ N
�
0,�2

hm

�

h
g
0 |hi ⇠ N

�
⇢hi,�2

hc

�

hg|hg0 ⇠ N(⇢h
g
0 ,�2

hc
)

ha|hg ⇠ N
�
⇢hg,�2

hc

�

hf , hb, hc, |hg ⇠ N
�
⇢hg,�2

hc

�

h
h
0 |hi ⇠ N

�
⇢hi,�2

hc

�

hh, hd|hh0 ⇠ N
�
⇢h

h
0 ,�2

hc

�

he|hh ⇠ N
�
⇢hh,�2

hc

�

where hi, hg, . . . , ha indicate the e↵ect of haplotypes i, g, . . . , a and h⇤0
indicates the e↵ect of haplotypes that occur between haplotypes separated
by multiple mutations, for example, g

0
is the additional haplotype between
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the haplotypes i and g due to two mutations between i and g. We describe
the other model parameters

�
⇢,�2

hm
,�2

hc

�
in the following.

Table 1: Example of 5 haplotypes spanning 7 mutations from Kelleher et al.
(2019). The ancestral (reference) alleles are coded as 0 and alternative
alleles are coded as 1

Site
1 2 3 4 5 6 7

H
ap

lo
ty
p
e a 1 0 0 1 1 0 0

b 1 0 0 0 1 1 0
c 1 0 0 0 1 1 0
d 0 1 0 0 0 0 1
e 0 1 1 0 0 0 1

Figure 1: Phylogenetic relationship of haplotypes in Table 1

2.1.2 The model

Assume a known general phylogenetic network of haplotypes described
with a DAG with haplotype e↵ects as nodes and relationships between the
haplotype e↵ects as edges, such as in Figure 1. We model the e↵ect of a
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chosen “starting” (this could be either a central, ancestral, most common or
some other haploptype) haplotype 0 with mean zero and marginal variance
�2
hm

as

h0 ⇠ N (0,�2
hm

), (1)

and any other haplotype j in the phylogenetic network as a function of its
one-mutation-removed parental haplotype p (j) assuming the autoregressive
Gaussian process of order one with the autocorrelation between haplotype
e↵ects of ⇢ (|⇢| < 1) and conditional variance of �2

hc
as

hj |hp(j) ⇠ N (⇢hp(j),�
2
hc
) (2)

We consider the autoregressive Gaussian process of order one that is
stationary both in mean and variance, which is achieved by setting the
marginal variance to �2

hm
= �2

hc
/(1 � ⇢2), so �2

hc
= �2

hm
(1 � ⇢2). This is

the standard autoregressive model of order one used in time-series analysis
(Rue and Held, 2005). The di↵erence here is that we are applying the model
onto a phylogenetic network described with a DAG or a tree (Basseville
et al., 1992; Datta et al., 2019; Wu et al., 2020).

The set of distributions in (1) and (2) give a system of equations for
all n haplotype e↵ects h = (h1, ..., hn)T as

h = T (⇢) ", (3)

T (⇢)�1
h = ", (4)

where the matrices T (⇢) and T (⇢)�1 respectively represent marginal and
conditional phylogenetic regression between haplotype e↵ects h, and the
vector " represents haplotype e↵ect deviations, " ⇠ N (0,D (⇢)�2

hc
). The

expression T (⇢) indicates that the matrix T depends on the value of ⇢.
Since haplotype e↵ect deviations are independent, the matrix D (⇢) is
diagonal and has value 1/(1� ⇢2) for the “starting” haplotype and 1 for
the other haplotypes. Following the assumed autoregressive process of
order one (2), the non-zero elements of T (⇢)�1 are 1 along the diagonal
and �⇢ between a haplotype e↵ect (row index) and its parental haplotype
e↵ect (column index). This simple sparse lower-triangular structure of the
matrix T (⇢)�1 arises from the Markov properties of the autoregressive
process (Rue and Held, 2005).
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From (3) covariance between haplotype e↵ects are

Var(h) = Var(T (⇢) "), (5)

= T (⇢)Var(")T (⇢)T = T (⇢)D (⇢)T (⇢)T �2
hc

(6)

= H (⇢)�2
hc

= Vh

�
⇢,�2

hc

�
(7)

The covariance expression (5) shows that haplotype covariances Vh

�
⇢,�2

hc

�

depend on the autocorrelation and variance parameters, while the co-
variance coe�cients H (⇢) depend only on the autocorrelation parameter.
So, the variance parameter is capturing scale (spread) of e↵ects and the
autocorrelation parameter is capturing the dependency structure. Note
that these two parameters are dependent by definition �2

hc
= �2

hm
(1� ⇢2).

When ⇢ = 0 there is no covariance between haplotype e↵ects due to phy-
logenetic relationships, which suggests a model where haplotype e↵ects
are identically and independently distributed, h ⇠ N (0, I�2

hm
). When

⇢ 6= 0 e↵ects of phylogenetically related haplotypes co-vary due to shared
mutations.

For completeness, the joint density of all n haplotype e↵ects h is
multivariate Gaussian

h|⇢,�2
hc

⇠ N (0,Vh

�
⇢,�2

hc

�
), (8)

with the probability density function

p(h|⇢,�2
hc
) =

✓
1p
2⇡

◆
n

��n

hc
(1� ⇢2)1/2 exp

 
� 1

2�2
hc

h
T
H (⇢)�1

h

!
(9)

The expression (9) involves inverse of the covariance coe�cient (pre-
cision) matrix H (⇢)�1, which we can obtain without computationally
expensive inverse of the H (⇢) (5). Following the definition (5), inverting
both sides and using the described structure of T (⇢)�1 available from the
DAG and D (⇢), we can e�ciently get this inverse by

H (⇢)�1 =
1

�2
hc

T (⇢)�1T
D (⇢)�1

T (⇢)�1. (10)

Inspection of the structure of (10) shows that this is a very sparse
matrix with a structure. We can compute the non-zero elements directly
with the following simple algorithm where we loop over all haplotypes:
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if the haplotype is the “starting” haplotype then
add 1� ⇢2 to the diagonal element

else
add 1 to the diagonal element

end if
if the haplotype has a parental haplotype then

set o↵-diagonal element between the haplotype and its parental haplo-
type to �⇢
add ⇢2 to the diagonal element of the parental haplotype

end if

To fully specify the model for h (8), prior distributions must be assigned
to the autocorrelation parameter ⇢, and the marginal variance �2

hm
or the

conditional variance �2
hc
. Because most mutations do not have an e↵ect we

can expect that most parent-progeny pairs of haplotypes will have similar
e↵ects, which suggests that the autocorrelation parameter will be close
to 1. This knowledge can be incorporated in the prior distribution for ⇢.
For the variance parameters there may be some prior knowledge about
the size of haplotype e↵ects relative to other e↵ects, which can also be
taken into account when choosing the prior distribution. We specify prior
distributions for these parameters in later sections.

2.1.3 Multiple parental haplotypes

Sometimes phylogenetic inference cannot resolve bifurcating trees with
dichotomies (one parental haplotype and two progeny haplotypes), and
outputs a multifurcating tree with polytomies (one parental haplotype
and multiple progeny haplotypes) or even just a network (multiple parent
haplotypes and multiple progeny haplotypes, e.g., Schliep et al. (2017);
Uyeda et al. (2018)). The multiple progeny case works out of the box
with the initial model, and we here present an extension of the model
presented in Section 2.1.2 “The model” that can accommodate the multiple
parent haplotypes and multiple progeny haplotypes case where the trees
or networks can be described with a DAG.

We assume that the e↵ects of all ancestral haplotypes, the haplotypes at
the top of the network, are independent and come from the same Gaussian
distribution N (0, I�2

hm
). We further assume conditional independence

between a haplotype and all previous haplotypes in the network given the
parents of that haplotype. In the model where each haplotype had only
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a single parent haplotype it was assumed that the haplotype e↵ect was
⇢ times the parental haplotype e↵ect plus some Gaussian noise. When
a haplotype has multiple parents, we now assume that the e↵ect is the
average over each of these processes from each parental haplotype.

We illustrate this with a small example which implies the model con-
struction used. Let haplotype d have parental haplotypes a, b, and c.
We denote the contribution from each of these parents hda , hdb , hdc , and
assume

hda =⇢ha + "da
hdb =⇢hb + "db
hdc =⇢hc + "dc

where ("da , "db , "dc)
T ⇠ N (0, I�2

hc
). Further, we assume that the resulting

e↵ect of haplotype hd is the average over all parent processes

hd =
⇢

3
(ha + hb + hc) +

1

3
("da + "db + "dc)

The distribution of hd conditional on ha, hb and hc becomes

hd|hda , hdb , hdc ⇠ N
 
⇢

3
(ha + hb + hc),

�2
hc

3

!

In general this means that hi|h1, ..., hk ⇠ N ( ⇢
k

P
k

j=1 hj ,
�
2
hc
k
), for hap-

lotype i with parental haplotypes 1, ..., k. This model construction cor-
responds to a model where one first takes every path down through the
DAG and assigns separate stationary autoregressive processes of order 1 to
each such path, and then assumes conditionally independent but identical
autoregressive processes of order 1, that is, the processes have the same
parameters.

Multiple parental haplotypes change the structure of the T (⇢)�1 ma-
trix to having �⇢/ki value between a haplotype e↵ect (row index) and its
parental haplotype e↵ect (column index), and the D (⇢)�1 matrix diagonals
for “non-starting” haplotypes to ki, where ki is the number of parental
haplotypes of the haplotype i. The algorithm to setup theH (⇢)�1 matrix is
then, looping over all haplotypes:
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if the haplotype is a “starting” haplotype then
add to the diagonal element 1� ⇢2

else
add ki to the diagonal element

end if
if the haplotype has parental haplotype(s) then

set o↵-diagonal element between the haplotype and its parental haplo-
type to �⇢
set o↵-diagonal elements between all parental haplotypes that share
that progeny haplotype to ⇢2/ki
add ⇢2/ki to the diagonal element of the parental haplotype(s)

end if

The model presented in this section is a straightforward model, and
is only one of many possible choices for a model accommodating multiple
parental haplotypes. We are only presenting one option for allowing such
graph structures in the model, other choices should also be explored.

2.1.4 Expanding to multiple regions due to recombination

The haplotype phylogeny can di↵er along genome regions due to recom-
bination � the process of swapping genome regions between haplotypes
during meiosis. We accommodate this in the haplotype network model by
considering each haplotype region separately, but still within the framework
of the same model. This means that the e↵ect of haplotype hi is modeled as
the sum of e↵ects for all haplotype regions. Consider haplotypes spanning
three regions. The e↵ect of haplotype i, is then assumed to be the sum of
the e↵ects of haplotype segments in each of the three regions

hi = h1,i + h2,i + h3,i

We assume the haplotype network model for each haplotype region, but
with joint hyper-parameters

�
⇢,�2

hc

�
. Let h = (h1,1, . . . , h1,n1 , h2,1, . . . , hm,nm)

be the e↵ect of all haplotypes in all regions, where m is the number of
regions and n is the number of haplotypes in each region. For h we then
assume

p(h|⇢,�2
hc
) =

✓
1p
2⇡

◆
n1+...+nm

��(n1+...+nm)
hc

(1� ⇢2)
m
2 exp

 
�h

T
H (⇢)�1

h

2�2
hc

!
,



12

with

H (⇢)�1 =

0

B@
H (⇢)�1

1
. . .

H (⇢)�1
m

1

CA (11)

Although recombination is common, we have focused on the special
case of no recombination in this study, where the haplotypes are connected
in one phylogeny as presented in Section 2.1.2 “The model”.

2.2 Phenotype model with haplotype e↵ects

We now show how the haplotype e↵ects can be included in a model
for phenotypic observations. We also present a phenotype model that
includes independent haplotype e↵ects or mutation e↵ects rather than the
haplotypes.

Let yp⇥1 be phenotype observations of p individuals and let hn⇥1 be
the e↵ect of n haplotypes obtained from phasing genotypic data of the
individuals. We assume the following model for the centered and scaled
phenotypic observations

yp⇥1 = Xp⇥r�r⇥1 + f
1
p⇥1 + ...+ f

s

p⇥1 +Zp⇥nhn⇥1 + ep⇥1, (12)

where � ⇠ N (0, I1000) is a vector of r fixed e↵ects with covariate matrix
X, f ⇠ N (0, I�2

f
) are random e↵ects, h are the haplotype e↵ects with

incidence matrix Z that maps haplotypes to individuals, and the residual
e↵ect is e ⇠ N (0, I�2

e). In the case of diploid individuals there will be two
entries in every row of Z, and a single entry for haploid individuals, male
sex chromosome or mitogenome.

For the haplotype e↵ects h we will assume three models. The first
is a base model with independent haplotype e↵ects (IH model), where
h ⇠ N

�
0, I�2

hm

�
. The second is the haplotype network model presented in

Section 2.1.2 “The model” (HN model), where h ⇠ N
�
0,Vh

�
⇢,�2

hc

��
. The

third is an alternative way of estimating haplotype e↵ects using a linear
combination of mutation e↵ects (mutation model). Assume h = Uv with
v ⇠ N

�
0, I�2

v

�
being mutation e↵ects, and U is the matrix containing the

haplotype allele sequences with reference alleles coded as 0 and alternative
alleles coded as 1.
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The models do not have a common intercept because a common inter-
cept and the mean level in the haplotype e↵ects are not identifiable when
⇢ approaches 1. Instead the mean level in the observations is captured by
the haplotype e↵ects. A sum-to-zero constraint can be specified for the
haplotype network part of the model if a common intercept is required,
but changes the model interpretation if ⇢ is close to 1. This problem is not
special for the haplotype network model, but occurs for all autoregressive
models when they are used as part of a structured mixed e↵ects model.
When the goal is to make predictions about the haplotype e↵ects, this
model choice will not influence the prediction results.

2.2.1 Prior distributions

We assigned penalized complexity (PC) prior distributions to the variances
of random e↵ects and the autocorrelation parameter. PC priors are proper
prior distributions developed by Simpson et al. (2017), that penalize
increased complexity induced by deviation from a simpler base model to
avoid over-fitting. For a random e↵ect with a variance parameter the base
models is a model where the variance of this random e↵ect is zero. For
the autoregressive model of order one we have assumed a base model with
⇢ = 1. We could have assumed a base model with ⇢ = 0, but it is more
likely that phylogenetically similar haplotypes have similar e↵ects. The
penalized complexity prior can be specified through a quantile u and a
probability ↵ which satisfy Prob(x > ux) = ↵x for the parameter x.

Although the precision matrix is specified with the conditional variance
(10), the prior is specified for the marginal variance since we often have a
better intuition for the marginal variance than the conditional variance.
Specifically, we specify the prior for the marginal standard deviation
�hm , and assume the conditions u�hm

> 0 and 0 < ↵�hm < 1. For the
autocorrelation parameter we use the PC prior developed for stationary
autoregressive processes (Sørbye and Rue, 2017) with base model at ⇢ = 1,
and parameters satisfying �1 < u⇢ < 1 and

p
(1� u⇢)/2 < ↵⇢ < 1. We

highlight that the prior by Sørbye and Rue (2017) was developed for a
stationary autoregressive process with di↵erent model assumptions than
the models presented in this paper. Ideally, the prior for the autoregressive
parameter would be tailored to the haplotype network model.
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2.3 Inference and evaluation

In this section we describe the used method for statistical inference; the
integrated nested Laplace approximations (INLA), and the used methods
for evaluating model fit in the simulation study.

2.3.1 Inference

All models in this study fit in the framework of hierarchical latent Gaussian
models, which makes INLA (Rue et al., 2009) a suitable choice to perform
inference as implemented in the R (R Core Team, 2018) package INLA

(available at www.r-inla.org). In this section we give a brief introduction
to latent Gaussian models and how INLA are used to approximate the
marginal posterior distributions in such models. For an in-depth description
of INLA see Rue et al. (2009), Blangiardo and Cameletti (2015), and Rue
et al. (2017).

The class of latent Gaussian models includes several models, for example
generalized linear (mixed) models, generalized additive (mixed) models,
spline smoothing methods, and the models presented in this article. Latent
Gaussian models are hierarchical models where observations y are assumed
to be conditionally independent given a latent Gaussian random field x and
hyper-parameters ✓1, meaning p(y|x,✓1) ⇠ ⇧i2Ip(yi|xi,✓1). The latent
field x includes both fixed and random e↵ects and is assumed to be Gaussian
distributed given hyper-parameters ✓2, that is p(x|✓2) ⇠ N (µ(✓2),⌃(✓2)).
The parameters ✓ = (✓1,✓2) are known as hyper-parameters and control the
Gaussian field and the likelihood for the data. These are usually variance
parameters for simple models, but can also include other parameters, for
example the ⇢ parameter in the HN model. We must also assign prior
distributions to the hyper-parameters to completely specify the model.

The main aim of Bayesian inference is to estimate the marginal posterior
distribution of the variables of interest, that is, p(✓j |y) for hyper-parameters
and p(xi|y) for the latent field. INLA computes approximations to these
densities fast and with high accuracy. The INLA methodology is based
on numerical integration of non-Gaussian hyper-parameters and utilizing
Markov properties of the Gaussian parameters. Hence, for the computations
to be both fast and accurate, the latent Gaussian models have to satisfy
some assumptions. The number of non-Gaussian hyper-parameters ✓

should be low, typically less than 10, and not exceeding 20. Further, the
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latent field should not only be Gaussian, it should be a Gaussian Markov
random field. The conditional independence property of a Gaussian Markov
random field yields sparse precision matrices which makes computations
in INLA fast due to the use of e�cient algorithms for sparse matrices.
Lastly, each observation yi should depend on the latent Gaussian field only
through one component xi.

The R package INLA is run using the inla() function with three
mandatory arguments: a data frame or stack object containing the data,
a formula much like the formula for the standard lm() function in R,
and a string indicating the likelihood family. Prior distributions for the
hyper-parameters are specified through additional arguments. Several tools
to manipulate models and likelihoods exist as described in tutorials at
www.r-inla.org, and in the books by Blangiardo and Cameletti (2015),
and Krainski et al. (2018). In the supplementary section, we have included
a script showing how we simulated the data from the haplotype network
model and how we fitted the model to the data.

2.3.2 Evaluation of model performance

We evaluated the predictive performance of the models using the continuous
rank probability score (CRPS) (Gneiting and Raftery, 2007). The CRPS
is a proper score which takes into account the whole posterior distribution,
meaning that it compares the whole estimated posterior distribution for
haplotype e↵ects with the true value, and with this, accounts for the
uncertainty in estimation. The CRPS is negatively oriented, so the smaller
the CRPS the closer the posterior distribution is to the true value. The
full Bayesian posterior output from inla() for these models are mixtures
of Gaussians, for which there is no closed form expression for CRPS.
The mixtures here are similar to plain Gaussians, so we approximate the
exact CRPS with the Gaussian CRPS using only the posterior mean and
variances provided in the results.

We calculated the CRPS for estimated haplotype e↵ects with the IH,
HN and mutation models. To ease the comparison we have then calculated
a relative CRPS (RCRPS) score as the log of the ratio between the averages
of the CRPS from the HN model and IH model, and correspondingly for
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the mutation model relative to the IH model. The score is computed as

log

 P
n

i=1CRPS(ĥi)HNP
n

i=1CRPS(ĥi)IH

!
,

where CRPS(ĥi)HN is the CRPS of the posterior distribution for haplotype
e↵ect of haplotype hi with the HN model. We will refer to this score as
the RCRPS.

We also calculated the root mean square error (RMSE) between the
mean posterior haplotype e↵ect and true haplotype e↵ects, but the results
for the relative RMSE and RCRPS were qualitatively the same. We decided
to present the RCRPS results because they take into account the whole
posterior distribution, whereas the RMSE only takes into account how
closely the posterior mean is to the true e↵ect.

In addition to comparing the haplotype estimates, we compared the
estimated mutation e↵ects from the HN model and the mutation model,
using the RCRPS (HN model versus mutation model). Although the HN
model estimates the haplotype e↵ects h, we can obtain mutation e↵ects
via v = (UT

U)�1
U

T
h. We could also obtain mutation e↵ects through

linear combinations of haplotype e↵ects.

2.4 Simulation study

To test the proposed HN model, we used simulated data. Here, we present
data simulated from two di↵erent models � the HN model with varying
degree of autocorrelation, and a more realistic mutation model where only
some mutations have causal e↵ect. We also present the models that were
fitted to the simulated data, and how the model fit was evaluated. In the
supplemental data (Supplemental 1), we provide an R script and the data
file to simulate from and fit the haplotype network model.

2.4.1 Simulation from the haplotype network model

We used the coalescent simulator msprime (Kelleher et al., 2016) to simulate
the phylogeny shown in Figure 2 with n = 107 unique haplotypes. We
then simulated phenotypes y for p = 400 individuals from the model

yp⇥1 = Zp⇥nhn⇥1 + ep⇥1, (13)
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where h ⇠ N
�
0,Vh

�
⇢,�2

hc

��
with Vh

�
⇢,�2

hc

�
built from the DAG describ-

ing the phylogeny (Figure 2 , (5)), and e ⇠ N (0, I�2
e).

We tested 15 parameter sets, from weak to strong haplotype e↵ect de-
pendency, and from low to high residual variance relative to the conditional
haplotype variance

⇢ = {0.1, 0.3, 0.5, 0.7, 0.9},
�2
e/�

2
hc

= {0.5, 1, 2}

We simulated a haploid system for simplicity, so the incidence matrix Z

was a zero matrix with a single 1 on each row indicating which individuals
had which haplotype. We were particularly interested in estimating the
haplotype e↵ect with few or no direct phenotype observations. This is the
extreme scenario where the haplotype network model could be beneficial.
To achieve this, we designed the incidence matrix to create two di↵erent
scenarios. In the first scenario, all haplotypes had associated phenotype
observation, but some haplotypes only had one observation. We assigned
a random sample of 15% of the haplotypes only to one individual each
and the rest of the haplotypes randomly to the remaining individuals. In
the second scenario, some haplotypes did not have phenotype observations.
We selected a random sample of 15% of the haplotypes that did not have
phenotype observations and assigned phenotype observations to the rest of
the haplotypes randomly.

2.4.2 Simulation from the mutation model

We also simulated haplotype e↵ects from a mutation model using the same
phylogeny as in the previous section, shown in Figure 2, and using p = 400
individuals. For the 107 unique haplotypes we had 106 mutations in the
haplotypes. We used the variants at these mutations to simulate haplotype
e↵ects and phenotypes according to the model

yp⇥1 = Zp⇥nhn⇥1 + ep⇥1, (14)

where h = Un⇥106v106⇥1, v was the mutation e↵ect, U a matrix containing
ancestral (reference) alleles coded as zero and alternative alleles coded as
1, and e ⇠ N (0, I�2

e). We sampled the mutation e↵ect v from

v =

(
N (0,�2

v), with probability �

0, with probability (1� �)
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Figure 2: The DAG describing the phylogeny of simulated haplotypes

where we chose �2
v so that the empirical variance of h, Var(h), was 1.

Again, we tested 15 parameter sets, from few to many causal variants,
and from low to high residual variance relative to empirical haplotype
variance

� = {0.1, 0.3, 0.5, 0.7, 0.9},
�2
e/Var(h) = {0.5, 1, 2}

We simulated haploid individuals, so the incidence matrix Z was a
zero matrix with a single 1 on each row indicating which individuals had
which haplotype. The incidence matrix was designed to create the same
scenarios as for the data simulated from the HN model in Section 2.4.1
“Simulation from the haplotype network model”.
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2.4.3 Models fitted to the simulated data

We fitted the HN model, IH model and the mutation model to the simulated
data

yp⇥1 = Zp⇥nhn⇥1 + ep⇥1, (15)

where h was assumed to be distributed according to:

h ⇠ N
�
0,Vh

�
⇢,�2

hc

��
for the HN model,

h ⇠ N
�
0, I�2

I

�
for the IH model and,

h = Uv, v ⇠ N
�
0, I�2

v

�
for the mutation model.

The residual e↵ect was e ⇠ N
�
0, I�2

e

�
. We assigned PC priors to the

⇢ parameter with u⇢ = 0.7 and ↵⇢ = 0.8, and to all variance parameters
with u = 0.1 and ↵ = 0.8.

2.4.4 Evaluation

For each combination of phenotype observation distribution across haplo-
types, proportion of residual variance relative to the haplotype variance,
and ⇢ or � parameters, we performed the same experiment 50 times. In
4% of the experiments when the data were simulated from the HN model,
the inference method was not able to fit the HN model, and we report
results only for cases where all models were successfully fitted. There was
no trend for any parameter set in particular causing the inference method
to break down.

Since we created di↵erent scenarios for how phenotype observations were
distributed among the haplotypes, we stratified the results for haplotype
e↵ects based on how many times a haplotype was observed in a phenotyped
individual. For the first scenario, where some haplotypes were phenotyped
either once or multiple times, we computed the RCRPS for these two
groups separately. For the second scenario, where some haplotypes were
not phenotyped, we present the RCRPS only for haplotypes that were
not phenotyped. In both cases, RCRPS less than zero indicates that the
HN/mutation model was better than the IH model on average. We present
the RCRPS for estimated mutation e↵ects only for the data simulated from
the mutation model, because the true mutation e↵ects were not generated
when simulating from the haplotype network model.
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2.5 Case study: Mitochondrial haplotypes in cattle

In this section we present a case study using the haplotype network model
to estimate the e↵ect of mitochondrial haplotypes on milk yield in cattle.
We first describe the data and then the fitted model.

2.5.1 Data

We demonstrate the use of the haplotype network model with a case study
estimating the e↵ect of mitochondrial haplotypes on milk yield in cattle
from Brajković (2019). We chose this case study because mitochondrial
haplotypes are passed between generations without recombination and are
as such a good case for the haplotype network model. The phenotyped data
comprised of information about the first lactation milk yield, age at calving,
county, and herd-year-season of calving for 381 cows. Additionally, the
data comprised of pedigree information with 6336 individuals (including
the 381 cows) and information about mitochondrial haplotypes (whole
mitogenome) variation between maternal lines in the pedigree. We inferred
the mitochondrial haplotypes by first sequencing mitogenome, aligning it
to the reference sqeuence and calling haplotype mutations as described in
detail in Brajković (2019). We used PopART (Leigh and Bryant, 2015) to
build a phylogentic network of mitochondrial haplotypes. For simplicity
we used the median-joining method to show that the haplotype network
model can be fit to the output of a standard phylogenetic method. In
this process we assumed that the ancestral alleles were the most frequent
alleles. The phylogeny contained 63 unique mitochondrial haplotypes each
separated by one mutation. Of the 63 haplotypes only 16 haplotypes were
observed in the 381 phenotyped cows. There were five haplotypes that
did not have a parent haplotype, meaning we treated them as “starting”
haplotypes in the haplotype network model.

2.5.2 Model

Let hn⇥1 be the e↵ect of the n = 63 mitochondrial haplotypes, and let
yp⇥1 be the phenotypes of the p = 381 cows. We fitted the following model
to centered and scaled phenotypes being first lactation milk yield

yp⇥1 = Xp⇥r�r⇥1 + cp⇥1 + ap⇥1 +Zp⇥nhn⇥1 + ep⇥1,



Hierarchical modeling of haplotype e↵ects based on a phylogeny 21

where � ⇠ N (0, I1000) contained e↵ects of age at calving as a contin-
uous covariate e↵ect and county as a categorical covariate e↵ect with
corresponding design matrix X, c ⇠ N

�
0, I�2

c

�
was the random e↵ect of

herd-year-season of calving (contemporary group), a ⇠ N
�
0,A�2

a

�
was

additive genetic e↵ect for the whole nuclear genome with the covariance
coe�cient matrix A derived from the pedigree (Henderson, 1976; Quaas,
1988), and lastly the mitochondrial haplotype e↵ects were fitted with
the haplotype network model h ⇠ N

�
0,Vh

�
⇢,�2

hc

��
with the covariance

matrix Vh

�
⇢,�2

hc

�
derived from the phylogeny and using the expanded

model that accommodates multiple parental haplotypes from Section 2.1.3
“Multiple parental haplotypes”. We assumed that residuals were distributed
as e ⇠ N (0, I�2

e). We assigned PC priors to the ⇢ parameter with u⇢ = 0.7
and ↵⇢ = 0.8, to the �2

hm
parameter with u�hm

= 0.1 and ↵�hm
= 0.3, and

to all remaining variance parameters with u�⇤ = 0.1 and ↵�⇤ = 0.8.

3 Results

In this section we present results from the simulation study testing the
behavior of the haplotype network model, and the case study estimating
the e↵ect of mitochondrial haplotypes on milk yield in cattle. In the results
from the simulation study, we present the RCRPS between the haploptype
network (HN) model and the independent haplotype (IH) model, and
between the mutation model and the IH model for the di↵erent parameter
sets. In the results from the case study, we present the mean and standard
deviation of the posterior mitochondrial haplotype e↵ects mapped onto the
phylogenetic network, and posterior estimates for the hyper-parameters.

3.1 Simulation study results

3.1.1 Simulation from the haplotype network model

We start by considering the results with the data simulated from the HN
model from Section 2.4.1 “Simulation from the haplotype network model”
that were fitted with the models from Section 2.4.3 “Models fitted to the
simulated data”.

The RCRPS (smaller values indicate that the HN or mutation models,
respectively, are better than the reference IH model) is presented in Figure 3.
This figure has three panels denoting haplotypes that were observed in (A)
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several phenotyped individuals, (B) only one phenotyped individual and
(C) were not observed in a phenotyped individual. The full lines show the
RCRPS between the HN model and the IH model, while the dashed lines
show the RCRPS between the mutation model and the IH model. Along
the x-axis the autocorrelation parameter ⇢ for the simulated haplotype
e↵ects increases from weak to strong phylogenetic dependency, and the
three colored lines indicate the amount of phenotypic variation due to
residual e↵ects relative to the variation from haplotype e↵ects.

In summary, Figure 3 shows that (i) the HN model outperforms the
IH model across a range of model parameter values, (ii) the HN model
is more important for haplotypes with fewer phenotypic observations,
(iii) the HN model is more important for noisy phenotypic data than
for phenotypic data with less noise, and (iv) when haplotypes are more
phylogenetically dependent, the HN model and the mutation model have
similar performance. We go through each of these findings in detail.

The HN model outperforms the IH model for almost all 15 parameter
sets. In all panels of Figure 3, almost all points with the full line are below
zero, meaning that the HN model gave better estimates of haplotype e↵ects
than the IH model. When the haplotype dependency due to phylogeny
was low, the RCRPS was around zero, meaning that the two models were
equal in estimating the haplotype e↵ects, which was expected. As the
phylogenetic dependency became stronger, the HN model improved relative
to the IH model, as seen from the decreasing RCRPS as ⇢ approaches 0.9.

The improvement in RCRPS with the HN model relative to the IH
model increased when haplotypes were observed in a smaller number of
phenotyped individuals. This is indicated by the decreasing RCRPS
when we compare panels (A), (B) and (C) in Figure 3. The panels
correspond to haplotypes observed in several (A), one (B) and no (C)
phenotyped individuals. The decrease in RCRPS was the largest in panel
(C) followed by panel (B) and panel (A). This means that modeling
phylogenetic dependency between haplotypes is most useful when there are
some haplotypes with few phenotypic observations, or if we want to predict
the e↵ect of new haplotypes. Especially for haplotypes that do not have
a direct link to observed phenotypes, the IH model is not useful, because
it assigns the average e↵ect of haplotypes with direct link to observed
phenotypes to haplotypes without such links, whereas the HN model can
assign the haplotype e↵ect based on a phylogenetic network. When the
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Figure 3: RCRPS (smaller values indicate that the HN or mutation models,
respectively, are better than the reference IH model) between the HN
model and the IH model (solid line) and between the mutation model
and the IH model (dashed line). The data were simulated from the HN
model with varying ⇢ parameter and ratio between the residual �2

e and
conditional haplotype variance �2

hc
. The three panels show RCRPS for the

haplotypes that were observed in (A) several phenotyped individuals, (B)
only one phenotyped individual and (C) were not observed in a phenotyped
individual

haplotype e↵ects had low phylogenetic dependency (⇢ was low), there was
not much di↵erence in RCRPS between the three panels, as there were no
similarities between the haplotype e↵ects from which the HN model could
learn from.

The improvement with the HN model relative to the IH model increased
when the phenotypic data were noisier. In panels (A) and (B) in Figure 3,
the RCRPS was lower with larger residual variance. This indicates that
the HN model did a better separation of the environmental and genetic
sources of variation than the IH model. Interestingly, we did not observe
the same in panel (C), that is for haplotypes that did not have direct link
to observed phenotypes. This was because the IH model performed equally
poorly in predicting new haplotypes regardless of the amount of residual
variance. The HN model on the other hand, performed slightly better as
there was less variation due to residual e↵ects for some values of ⇢ and
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similar for other values of ⇢ compared to the IH model.
As haplotypes became phylogentically more dependent with the increas-

ing ⇢, the HN model and the mutation model performed similarly. In all
panels, the dashed lines indicate a worse fit for the mutation model than
for the IH model, and the HN model when ⇢ was low. When ⇢ increased,
the mutation model improved relative to the IH model, and had a RCRPS
close to the RCRPS for the HN model, but not better than the HN model.

3.1.2 Simulated data from the mutation model

In the previous section we saw that the HN model outperformed the IH
model when the simulated haplotype e↵ects were generated from the HN
model itself. Now, we consider the results with the haplotype e↵ects simu-
lated from a more realistic mutation model from Section 2.4.2 “Simulation
from the mutation model”, and fitted with the models from Section 2.4.3
“Models fitted to the simulated data”. Here we varied the probability of
mutations having a causal e↵ect �, and we present results using � = 0.1,
since the results were qualitatively similar for all tested � values.

The RCRPS is presented in Figure 4 for the three di↵erent levels of
phenotype observations per haplotype and three di↵erent values of residual
variance relative to the empirical haplotype variance which was always 1.
The full lines show the RCRPS between the HN model and the IH model,
while the dashed lines show the RCRPS between the mutation model and
the IH model.

In general, the results align with the results from the previous section
except for the mutation model: (i) the HN model outperforms the IH model,
(ii) the HN model is more important for haplotypes with few phenotypic
observations, (iii) the HN model is more important for noisy phenotypic
data and (iv) the mutation model was marginally better than the HN
model in estimating haplotype e↵ects. We go through each of the findings
in detail.

The HN model outperformed the IH model for all tested parameter
sets. In Figure 4, all RCRPS values are well below zero. For haplotypes
observed in several or one phenotyped individual, the RCRPS was lower
than what was seen in panels (A) and (B) in Figure 3. For haplotypes with
no direct links to phenotype observations, the RCRPS was not improving
as much as seen in panel (C) in in Figure 3.

The improvement with the HN model relative to the IH model increased



Hierarchical modeling of haplotype e↵ects based on a phylogeny 25

Figure 4: RCRPS (smaller values indicate that the HN or mutation models,
respectively, are better than the reference IH model) between the HN
model and the IH model (solid line) and between the mutation model and
the IH model (dashed line). The data were simulated from the mutation
model with varying residual variance �2

e and empirical haplotype variance
1 (Var(h) = 1). The three scenarios show RCRPS for the haplotypes
that were observed in several phenotyped individuals (Several), only one
phenotyped individual (Once), and were not observed in a phenotyped
individual (Never)

with fewer phenotype observations per haplotype. The RCRPS in Figure 4
is lowest for haplotypes with no direct links to phenotype observations,
second lowest for haplotypes with one direct link to a phenotype observation,
and highest for haplotypes that were observed in several phenotyped
individuals.

The improvement with the HN model relative to the IH model increased
with increasing residual variation. In Figure 4 the RCRPS for haplotypes
observed in several or one phenotyped individual decreases with increasing
residual variance. This was again not the case for haplotypes with no direct
links to phenotype observations. As mentioned in the previous section,
the IH model is predicting new haplotypes equally poorly irrespective of
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the residual variance. The HN model on the other hand, improves the
prediction of new haplotypes when the phenotypic data is less noisy. This
explains why the improvement in RCRPS between the HN model and IH
model for haplotypes with no direct links to phenotype observations is
largest with less residual variation, seen by the RCRPS in panel (C) being
lowest for residual variance 0.5.

The mutation model was marginally better than the HN model in
estimating haplotype e↵ects. The dashed lines in Figure 4 indicate the
RCRPS between the mutation model and the IH model, and the full lines
indicate the RCRPS between the HN model and the IH model. The dashed
lines and full lines follow each other closely, and the dashed lines are slightly
lower than the full lines, indicating that the mutation model was slightly
better than the HN model, although not by much.

In Table 2 we present the average RCRPS between the HN model and
the mutation model for the posterior mutation e↵ects. This table has the
RCRPS for the two scenarios, where either all haplotypes had associated
phenotype observation, or most haplotypes had associated phenotype
observation and the rest did not, with di↵erent proportions of mutations
with causal e↵ect, and for di↵erent residual variance. RCRPS above zero
indicates that the mutation model had the best estimates, and RCRPS
below zero indicates that the HN model had the best estimates. Overall,
the di↵erence between the two models is small. The mutation model had
the best performance when there were few causal mutations, and the HN
model had the best performance when there were many causal mutations.

3.2 Case study results: Mitochondrial haplotypes in cattle

In this section we present results for the case study of estimating the
e↵ect of mitochondrial haplotypes on milk yield in cattle presented in
Section 2.5 “Case study: Mitochondrial haplotypes in cattle”. We present
the posterior mean and standard deviation for the e↵ect of mitochondrial
haplotypes mapped onto the phylogeny, the posterior distribution for the
autocorrelation parameter ⇢, and the mean and 95% confidence interval of
the posterior variances in the model.

In summary the results show (i) that there was sharing of information
between the mitochondrial haplotypes, (ii) that haplotypes without a direct
link to observed phenotypes were estimated with larger uncertainty, (iii)
indications of strong phylogenetic dependency between the haplotypes and,
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Table 2: RCRPS between the HN model and the mutation model for
mutation e↵ects by di↵erent values of residual variance �2

e , proportion
of causal mutations, and for the two scenarios where either all or most
haplotypes had direct links to observed phenotypes

All observed Most observed

�
2
e = 0.5
0.1 0.060 0.071
0.3 0.019 0.025
0.5 -0.002 -0.004
0.7 -0.019 -0.021
0.9 -0.027 -0.029

�
2
e = 1
0.1 0.123 0.111
0.3 0.043 0.037
0.5 0.004 0.000
0.7 -0.024 -0.022
0.9 -0.041 -0.034

�
2
e = 2
0.1 0.168 0.214
0.3 0.067 0.101
0.5 0.006 0.018
0.7 -0.025 -0.026
0.9 -0.042 -0.048

(iv) a significant proportion of the total phenotypic variation explained by
mitochondrial haplotypes. We now go through each of these findings in
detail.

The HN model enabled sharing of information from the haplotypes
that had a direct link with observed phenotypes, to the other haplotypes.
In Figure 5 we present the posterior mean for the e↵ect of mitochondrial
haplotypes with node color. Haplotype e↵ect estimates are similar for
phylogenetically similar haplotypes, meaning that there was sharing of
information between the haplotypes. The figure also shows that the
few haplotypes that had direct links with phenotype observations (nodes
labeled with 1) were separated from each other with a substantial number
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Figure 5: Posterior mean and standard deviation for mitochondrial hap-
lotype e↵ects on milk yield in cattle. Posterior means are denoted with
node color, while posterior standard deviations are denoted by the node
size. The number on each haplotype node indicates if the haplotype had a
direct link to a observed phenotype (1) or not (0)

of mutations, and still information was shared through the phylogeny to
all haplotypes, which was the aim of the HN model.

Haplotypes without direct links to observed phenotypes were estimated
with larger uncertainty. In Figure 5 we present the posterior standard
deviation for the e↵ect of mitochondrial haplotypes with node size. We see
that the haplotypes with direct links to observed phenotypes (nodes labeled
with 1) had smaller posterior standard deviation than the other hapolotypes
(nodes labeled with 0). The posterior standard deviation decreased slightly



Hierarchical modeling of haplotype e↵ects based on a phylogeny 29

Figure 6: Prior (dashed line) and posterior (solid line) distribution for the
autocorrelation parameter ⇢ for mitochondrial haplotype e↵ects on milk
yield in cattle

as the haplotypes without direct links were closer (in number of mutations)
to the haplotypes with direct links, which was expected. However, the
overall posterior standard deviations for haplotype e↵ects were relatively
large, because the data set was small and there were few haplotypes with
direct links to observed phenotypes, connected to the other haplotypes
with many mutations between them.

The posterior distribution for the autocorrelation parameter ⇢ indicated
strong dependency between haplotype e↵ects. The posterior distribution
of ⇢ is shown in Figure 6 together with the prior distribution. The mode
of the posterior distribution lies around 0.85, and the mean lies around
0.73, indicating that neighboring haplotypes had similar e↵ects, which is
related to the sharing of information between haplotypes seen in Figure 5.
We also note that the posterior distribution shifted to slightly lower values
of ⇢ compared to the prior distribution.

A significant amount of the total phenotypic variation was explained by
the mitochondrial haplotypes. In Table 3 we present the posterior mean and
95% confidence interval of each variance component in the model, and how
much of the total variation in the model (�2

c +�2
a+�2

hm
+�2

e) was explained
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Table 3: Posterior mean, 95% confidence interval (CI) for variance parame-
ters, and the proportion of variation explained by each variance component
for the case study estimating mitochondrial haplotype e↵ects on milk yield
in cattle

Variance parameter Mean CI Prop. variance explained

�2
c 0.035 (0.005, 0.090) 0.047

�2
a 0.329 (0.194, 0.533) 0.444

�2
hm

0.113 (0.033, 0.264) 0.152
�2
hc

0.048 (0.007, 0.154) 0.065
�2
e 0.265 (0.171, 0.416) 0.357

�2
c : variance of contemporary group e↵ects, �2

a: variance of nuclear-genome additive
e↵ects, �2

hm
: marginal variance of mitogenome haplotype e↵ects, �2

hm
: conditional

variance of mitogenome haplotype e↵ects, �2
e : variance of residuals

by each variance component. The posterior distribution of the conditional
haplotype variance was obtained by computing �2

hc
= �2

hm
(1� ⇢2), using

10000 samples from the mean posterior distributions of the marginal
haplotype variance and the autocorrelation parameter. We see that the
marginal haplotype variance �2

hm
and conditional haplotype variance �2

hc

is smaller compared to the additive genetic variance �2
a, and the residual

variance �2
e . This was expected as the mitogenome (⇠ 1 ⇥ 16kbp) is

much smaller than the nuclear genome (⇠ 2⇥ 3Gbp). In the light of this
di↵erence we can say that mitochondrial haplotypes captured a significant
amount of phenotypic variation. The variance for the random e↵ect of
herd-year-season of calving �2

c was also small compared to �2
a and �2

e .
It should be noted that this is a small data set with few haplotypes with

direct links to observed phenotypes. This causes the posterior estimates to
be strongly influenced by the prior distributions, especially the posterior
for ⇢, which we can see in Figure 6. However, we still chose to assign an
informative prior to ⇢, since it is expected that most mutations have no
causal e↵ect, and that phylogenetically similar haplotypes have similar
e↵ects.
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4 Discussion

The objective of this paper was to propose a hierarchical model that
leverages haplotype phylogeny to improve the estimation of haplotype
e↵ects. We have presented the haplotype network model, evaluated it
using simulated data from two di↵erent generative models, and applied
it in a case study of estimating the e↵ect of mitochondrial haplotypes
on milk yield in cattle. Here, we highlight three points for discussion in
relation to the proposed haplotype network model: the importance of the
haplotype network model, future development and possible extensions and
limitations.

4.1 The importance of the haplotype network model

We see three important advantages of the haplotype network model. These
are specifically the ability to share information between related haplotypes,
computational advantages when modeling a single region of a genome, and
the potential to capture background specific mutation e↵ects.

The haplotype network model utilizes phylogenetic relationships be-
tween haplotypes and with this improves estimation of their e↵ects. From
the simulation study, we saw the importance of this information sharing
when there is limited information per haplotype. For example, we were
able to estimate the e↵ect of haplotypes that had few or no direct links
to observed phenotypes with much higher accuracy than with a model
assuming independent haplotypes. In the haplotype network model the
autocorrelation parameter ⇢ and the conditional variance parameter �2

hc

reflect the e↵ects of phylogenetically similar haplotypes. As the autocorre-
lation approaches 1, haplotype e↵ects become more dependent. Further, if
the conditional variance is small the large dependency and small deviations
lead to similar e↵ects for phylogenetically similar haplotypes, suggesting
that mutations separating the haplotypes have very small or no e↵ect
compared to other shared mutations between haplotypes. If on the other
hand conditional variance is large, the large dependency and large devia-
tions lead to haplotype e↵ects that change rapidly along the phylogeny,
suggesting that mutations separating the haplotypes have large e↵ects. If
the autocorrelation parameter approaches 0, the dependency between phy-
logenetically similar haplotypes is decreasing, suggesting that haplotypes
should be modeled independently.
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The three extreme scenarios of hyper-parameter values could denote
three real cases. The first case with high autocorrelation and small condi-
tional variance could reflect a situation where the whole haplotype sequence
would be used to build a phylogeny and since most mutations do not have
a causal e↵ect, but some do, it is expected that similar haplotypes will
have similar e↵ects with small di↵erences between the haplotypes. The
second case with high autocorrelation and large conditional variance could
reflect the situation when the number of causal mutations would be high
compared to all mutations (because only such mutations are analyzed),
and therefore change of e↵ects along the phylogeny would be larger. The
third scenario with no autocorrelation could reflect the situation where
phylogeny does not correlate with phenotype change, which can be due to
many reasons (analysis of a genome region that is not associated with the
phenotype, inadequate genomic platform to capture genotype-phenotype
association, etc.).

As mentioned in the introduction, modeling phenotypic variation as a
function of haplotype variation has extensive literature (Templeton et al.,
1987; Balding, 2006; Thompson, 2013; Morris and Cardon, 2019). The
prime motivation for this work was the recent growth in the generation of
large scale genomic data sets and methods to build phylogenies (Kelleher
et al., 2019). To this end we aimed to develop a general haplotype network
model that could exploit phylogenetic relationships between haplotypes
in a computationally e�cient way. Namely, the model uses phylogeny
encoded with a DAG, which enables sharing of information between similar
haplotypes in a recursive way that also implies computational benefits.
The computational benefits come from the sparse precision matrix V

�1
h

,
which is due to the conditional independence structure encoded in the DAG
of a network of haplotypes (Rue and Held, 2005). Sparsity is important,
because it enables fitting large models due to smaller memory requirement
and faster calculations (Rue and Held, 2005). The computational benefits
are not critical when the number of haplotypes is small. In that case the
matrix Vh is small and easy to invert, but for the autoregressive model we
would have to invert it many times during the estimation procedure due
to dependency on the autocorrelation parameter. However, it is better to
avoid inversions if possible because it can lead to numerical errors and loss
of precision (e.g., Misztal, 2016).

While the haplotype network model is di↵erent to the pedigree mixed
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model (Henderson, 1976; Quaas, 1988) (where we model the inheritance
of whole genomes in a pedigree without (fully) observing the genomes) or
the phylogenetic mixed model (Lynch, 1991; Pagel, 1999; Housworth et al.,
2004; Hadfield and Nakagawa, 2010) (where we model the inheritance of
whole genomes in a phylogeny without (fully) observing the genomes),
the principles of conditional dependence between genetic e↵ects and the
resulting sparsity are the same (Rue and Held, 2005). The key di↵erence
of the haplotype network model is that it estimates the e↵ect of observed
haplotype sequences as compared to unobserved or partially observed
inheritance of whole genomes in a pedigree or phylogeny. To improve the
estimation of the haplotype e↵ects we take into account the phylogenetic
relationships. A similar model has also been used in spatial disease mapping
(Datta et al., 2019), showing potential of this kind of model in several
applications.

While the use of phylogenetic relationships might seem redundant if
we know (most of) the haplotype sequence, the simulations showed that
it improves estimation in most cases, even marginally compared to the
mutation model where we directly model mutation e↵ects. The haplotype
network model can be seen as a hybrid between the mutation model (that
models variation between the columns of a haplotype matrix) and the
independent haplotype model (that models variation between the rows
of a haplotype matrix). This hybrid view might improve genome-wide
association studies (see reviews by Gibson, 2018; Simons et al., 2018;
Uricchio, 2019; Morris and Cardon, 2019).

The haplotype network model has the potential to capture background
specific mutation e↵ects. Background specific mutation e↵ects are observed
when the e↵ect of a mutation depends on other mutations present in an
individual (e.g., Chandler et al., 2017; Wojcik et al., 2019; Steyn et al.,
2019). Such e↵ects can also manifest when a mutation is marking another
unobserved mutation with correlation that varies between backgrounds.
The haplotype network model can capture background specific mutation
e↵ects through the fact that it is modeling haplotype e↵ects and not
mutation e↵ects. If there are background specific mutation e↵ects the
haplotype e↵ect di↵erences will capture this, while a mutation model only
estimates an average e↵ect of a mutation across multiple backgrounds
(haplotypes). However, we must point that the haplotype network model
captures only local e↵ects, that is due to interactions between mutations
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present on a haplotype (e.g., Clark, 2004; Liu et al., 2019). We have not
evaluated how well the model captures background specific mutation e↵ects
in this study, and more simulations and applications to a range of data
sets are needed to evaluate this aspect.

4.2 Future development and possible extensions

There are several areas for future development with the haplotype net-
work model. We are looking into some areas: making the model more
flexible in the number of mutations separating phylogentically similar
haplotypes, modeling haplotype di↵erences in a continuous way utilizing
branch lengths, and incorporating biological information and phylogenetic
aspects of haplotype relationships.

We have developed the haplotype network model by assuming the
di↵erences between similar haplotypes are due to one mutation to simplify
the model definition. However, in the observed data there might not
be haplotypes that are separated by just one mutation. We handle this
situation by inserting phantom haplotypes. The order of mutations in such
situations is uncertain, and a model could be generalized to account for
these larger number of mutations between haplotypes. However, the current
“one-mutation” di↵erence model setup has a useful property of inferring
the value of unobserved haplotypes, and the sparse model definition does
not increase the computational complexity of the model.

The haplotype network model could be generalized to utilize time
calibrated distances between haplotypes rather than using the number of
mutations. The Ornstein–Uhlenbeck (OU) process is the continuous-time
analogue of the autoregressive process of order one used in this study, and
plays a major role in the analysis of the evolution of phenotypic traits along
phylogenies (Lande, 1976; Hansen and Martins, 1996; Martins and Hansen,
1997; Paradis, 2014; Yang et al., 2018). Relatedly, if the autocorrelation
parameter of the autoregressive process of order one is set to 1 we get
the non-stationary discrete random walk process, whose continuous-time
analogue is the Brownian motion, that is the basic model of phylogenetic
comparative analysis (Felsenstein, 1988; Huey et al., 2019). There is a
scope to improve computational aspects for these continuous models too
by employing recent developments from the statistical analysis of irregular
time-series (Lindgren and Rue, 2008).

In the haploptype network model presented in this study, the same
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autocorrelation parameter has been assumed for all mutations. However,
the autocorrelation parameter could be allowed to vary as Beaulieu et al.
(2012) did in the context of adaptive evolution. The stationary autoregres-
sive process of order one for trees with only one ancestral haplotype and
no recombination allows for such extensions without having to change the
variance parameter. For example, one could use di↵erent autocorrelation
parameters for di↵erent types of mutations to incorporate biological in-
formation into the model. This would enable combining the quantitative
analysis of mutation and haplotype e↵ects from this study with molecu-
lar genetic tools such as Variant E↵ect Predictor (McLaren et al., 2016).
Biological information about haplotypes could also be incorporated using
variant specific covariates, for example as implemented by (Susak et al.,
2020).

In this study we have assumed that the phylogenetic network is given,
and described with a DAG. There is a large body of literature on inferring
phylogenies in the form of strict bifurcating trees, more general trees or
networks, and recent developments in genomics are rapidly advancing the
field (e.g., Anisimova, 2012; Puigbò et al., 2013; Schliep et al., 2017; Uyeda
et al., 2018). We have named the model the haplotype network model,
because it can work both with phylogenetic bifurcating and multifurcating
trees, and phylogenetic networks. The only condition is that we describe
the haplotype relationships with a DAG, which gives the structure to
the hierarchical haplotype model. Many tools provide such output (e.g.,
Leigh and Bryant, 2015; Suchard et al., 2018; Kelleher et al., 2019). To
accommodate general DAGs, where a haplotype node could potentially
have multiple parental haplotype nodes, we have generalized the model
construction to allow for network structures. This generalization also
enables the model to describe haplotype relationships without paying
attention to the directionality, as long as there are no directed loops in the
graph.

Knowing the order of mutations, and therefore which haplotypes are
parental to other haplotypes, is beneficial because it leads to a tree structure
and a sparser model (Rue and Held, 2005). An example of non-optimal
sparsity can be seen in our case study. In Figure 5 the “central” haplotype
with the largest uncertainty is modeled as a progeny haplotype of four
surrounding haplotypes, which means that there is a dense 5⇥5 block
in the precision matrix V

�1
h

. The block is dense because the “central”
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haplotype is modeled as a function of the other four “parental” haplotypes,
which invokes conditional dependence between the “parental” haplotypes.
If however the “central” haplotype would have been used as the parental
haplotype the 5⇥5 block would be sparse since all other haplotypes would
be conditionally independent given the “central/parental” haplotype. The
same applies also for the other parts of the haplotype network in Figure 5.
These examples of non-optimal sparsity are a consequence of the haploptype
network we used, but we did this for simplicity and to emphasize the
flexibility of the haploptype network model.

The haploptype network model could also work with probabilistic
networks where edges have associated uncertainty (weights). If we can
encode such a network with a DAG, then the edge weights can be used
in model construction, for example in the same way uncertain parentage
is handled in pedigree models (Henderson, 1976). An alternative would
be to construct a model for each possible realization of a network, run
separate models and combine haplotype estimates in the spirit of Bayesian
model averaging. This latter approach is obviously computationally more
demanding.

4.3 Limitations

The haplotype network model also has limitations that merit further devel-
opment. We highlight three areas: if the haplotype network model necessary
given that we can model mutation e↵ects, the Gaussian assumption and
causal mutations, and modeling recombining haplotypes.

For the haplotype network model to achieve its full potential, the data
needs to have a certain structure. We saw from fitting the hapolotype
network model to a real data set, that having few haplotypes with direct
links to observed phenotypes and many haplotypes without, meant that
we had large uncertainty in estimated haplotype e↵ects. We also saw
from the simulated data, that the mutation model was slightly better at
estimating the mutation e↵ects than the haplotype network model, when
the data were simulated from a mutation model. However, the magnitude
of di↵erence was minimal. In the future, di↵erent data structures with
balanced and unbalanced structure spanning multiple populations with
varying levels of connectedness, small or large number of mutations, and
causal or non-causal mutations should be tested to find optimal scenarios
for the haplotype network model to achieve its full potential.
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The haplotype network model assumes that the haplotype e↵ects follow
a Gaussian distribution. If all, or very many, of the haplotypes have the
same e↵ect, the true haplotype e↵ect distribution may be quite di↵erent
from Gaussian, which breaks the model assumptions and perhaps other
models should be proposed. Blomberg et al. (2019) describe the underlying
theory behind the common Gaussian processes, such as Brownian motion
and Ornstein-Uhlenbeck process, and present general methods for deriving
new stochastic models, including non-Gaussian models of quantitative trait
macroevolution. See also Schraiber and Landis (2015), Landis et al. (2012)
and Duchen et al. (2017). Application of these models will depend on the
magnitude of deviations from Gaussian assumptions, which might be large
on the scale of macroevolution, but might also be large when looking at a
specific genome region.

Scaling the haplotype network model to multiple recombining haplotype
regions is challenging for two reasons. First, while phasing methods have
improved substantially in the last years (Marchini, 2019), determining
a recombination breakpoint is challenging due to a limited resolution to
resolve exact locus where recombination occured. Second, the sparsity
of the haplotype network model comes from the sparsity of the precision
matrix V

�1
h

, which is part of the prior distribution for haplotype e↵ects.
When developing the extension for recombining haplotypes we observed
that the sparsity in the prior is maintained also for multiple consequitive
haplotype regions along a chromosome as shown in (11). However, we
observed that the design matrices that link phenotype observations with
multiple haplotype regions start to create dense cross-products in the
system of equations as we increase the number of regions, and the sparsity
advantage from one haplotype region is lost. To this end we are exploring
alternative ways of formulating the haplotype network model following
data structures in Kelleher et al. (2019). Further research is needed to be
able to scale the haplotype network model to many haplotype regions or
even whole chromosomes and genomes.



38



Bibliography

Anisimova, M. (2012). Evolutionary Genomics Statistical and Computational
Methods, Volume, volume 855. Springer.

Balding, D. J. (2006). A tutorial on statistical methods for population association
studies. Nature reviews genetics, 7(10):781.

Basseville, M., Benveniste, A., Chou, K. C., Golden, S. A., Nikoukhah, R., and
Willsky, A. S. (1992). Modeling and estimation of multiresolution stochastic
processes. IEEE Transactions on Information Theory, 38(2):766–784.

Beaulieu, J. M., Jhwueng, D.-C., Boettiger, C., and O’Meara, B. C. (2012).
Modeling stabilizing selection: Expanding the Ornstein–Uhlenbeck model of
adaptive evolution. Evolution: International Journal of Organic Evolution,
66(8):2369–2383.

Begum, R. (2019). A decade of genome medicine: Toward precision medicine.
Genome Med, 11(13).

Blangiardo, M. and Cameletti, M. (2015). Spatial and spatio-temporal Bayesian
models with R-INLA. John Wiley & Sons.

Blomberg, S. P., Rathnayake, S. I., and Moreau, C. M. (2019). Beyond Brownian
motion and the Ornstein-Uhlenbeck process: Stochastic di↵usion models for the
evolution of quantitative characters. The American Naturalist, 195(2):000–000.
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Impact of mitogenome on milk traits in cattle). PhD thesis, University of Zagreb.
Faculty of Agriculture.

Chandler, C. H., Chari, S., Kowalski, A., Choi, L., Tack, D., DeNieu, M., Pitchers,
W., Sonnenschein, A., Marvin, L., Hummel, K., et al. (2017). How well do you
know your mutation? Complex e↵ects of genetic background on expressivity,
complementation, and ordering of allelic e↵ects. PLoS genetics, 13(11):e1007075.

39



40

Clark, A. G. (2004). The role of haplotypes in candidate gene studies. Genetic Epi-
demiology: The O�cial Publication of the International Genetic Epidemiology
Society, 27(4):321–333.

Datta, A., Banerjee, S., Hodges, J. S., and Gao, L. (2019). Spatial disease mapping
using directed acyclic graph auto-regressive (DAGAR) models. Bayesian
Analysis, 14:1221–1244.

de los Campos, G., Vazquez, A. I., Hsu, S., and Lello, L. (2018). Complex-trait
prediction in the era of big data. Trends in Genetics, 34(10):746–754.
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