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CrySyS Lab, Dept. of Networked Systems and Services
Budapest Univ. of Technology and Economics (BME)

biczok@crysys.hu

Abstract—Value-added 5G verticals are foreseen to be deliv-
ered as a service chain over multiple network operators with
extensive outsourcing of Virtual Network Functions (VNFs). In
this short paper we introduce the initial design of SafeLib,
a software middlebox platform based on Intel SGX, which
protects user traffic, VNF code, policy input and state in such
scenarios, while also retaining high performance. Augmenting
the smart integration of existing hardware and software building
blocks with new secure elements, the SafeLib architecture shows
considerable promise in a carrier-grade service context.

Index Terms—5G, VNF, middlebox, security, multi-operator,
service chain

I. INTRODUCTION

Novel 5G verticals are expected to add real value to services.
Most of these verticals will be delivered as a service chain
over multiple independent network operators collaborating
with each other [1]. Users would see a one-stop shop as they
need to contact a single network operator in order to obtain
the requested service. This operator would in turn outsource
part of its network functions to other operators when it lacks
the geographical footprint or available compute resources to
deliver the service on its own.
Flexible service delivery is required in order to provide such
collaboration between multiple operators [2]. Software middle-
boxes (Virtual Network Functions, VNFs) are a key enabler in
such a scenario, since VNFs can easily be outsourced from one
operator (OP1) to other network operators with which OP1
has a trust relationship. However, as illustrated in Figure 1,
such an environment comes with a complex security context,
where different parties have distinct requirements regarding
protection of different data [3].
Protect the user traffic. The user traffic, will be processed
by the VNF deployed in OP2’s domain. User 1 does not have
a trust relationship with operator OP2, therefore the deployed
software middlebox should protect user traffic.
Protect VNF code and policy input. The VNF running in
OP2’s domain receives its policy input (e.g., firewall rules,
coding parameters, filter expressions, etc.) from OP1. OP1
does not want reveal these policies to OP2 for a number of
reasons, such as competitive advantage or hiding its cyber-
defense strategy. For similar reasons OP1 might not want to

    User 2 

User 1 

Orch1 

VNF 

Orch2 

OP1 
OP2 

User traffic 

Code and policies 
Contract of trust 

Fig. 1. Multi-operator service function chaining: example scenario

reveal the VNF’s implementation (code) to OP2.
Protect VNF state. Stateful NFs store global states (e.g., user
data details), private per-flow states (e.g., used for searching,
terminating per-flow packets) and shared multi-flow states
(e.g., states shared between VNF components used for packet
management). Such states contain personal information (e.g.,
end-user data such as IP address and profile information)
which should remain hidden to OP2.
Even an honest-but-curious OP2 could pose risks for user
1 and OP1. It is therefore desirable to provide a software
middlebox which allows OP1 to securely outsource both
stateful and stateless VNFs to OP2.
Related work. To the best of our knowledge there is no current
software middlebox which provides all confidentiality and
functional requirements above. Previous work which addresses
similar problems may be divided in two main categories: cryp-
tographic vs. hardware approaches. Middleboxes designed
using a cryptographic approach [4], [5], [6], [7], [8], [9]
support a limited set of functionalities, and have a huge
performance overhead, making them impractical for carrier-
grade deployment. Proposals in the second category [10],
[11], [12], [13], [14] rely on trusted hardware such as Intel
SGX, generally exhibiting higher performance. A comparison
between current middleboxes and ours is shown in Table I.
Our contribution. In this short paper we present our initial
efforts in designing a software middlebox platform (SafeLib)
which satisfies the confidentiality and functional requirements978-1-5386-9376-6/19/$31.00 ©2019 IEEE



TABLE I
COMPARISON OF PROTECTED MIDDLEBOX PROPOSALS

Security Protection Functionality

Software Middleboxes Header Payload Code Policies State Stateful

Cryptographic

BlindIDS [5] 8 3 8 3 8 8

Embark [7] 3 3 8 3 8 8

BlindBox [4] 8 3 8 3 8 8

SPABox [6] 8 3 8 3 8 8

SplitBox [8] 3 3 8 3 8 8

Hardware-assisted

SGX-Box [13] 8 3 8 3 3 3

Trusted Click [11] 8 3 8 3 8 8

S-NFV [10] 8 8 8 8 3 3

Shield Box [14] 3 3 8 3 8 8

SafeBricks [12] 3 3 3 3 N/A N/A

SafeLib 3 3 3 3 3 3

above and is able to operate close to line speed. We draw
on existing hardware and software building blocks such Intel
SGX, mTCP and libVNF, and present the detailed architectural
and functional design of SafeLib. The rest of the paper is
organised as follows. Section II introduces a brief overview
of the technologies used for SafeLib. Section III introduces
the basic design of SafeLib. Section IV describes the detailed
architecture and the deployment procedure of SafeLib. Section
V discusses trade-offs and lays out future work. Finally,
Section VI concludes the paper.

II. BACKGROUND

Here we provide a brief overview on the technologies
relevant to SafeLib.
Intel SGX. Intel SGX [15] is a set of CPU instructions that
provides a trusted memory region named enclave to execute
the trusted code, and a remote attestation protocol (RAP) to
verify the enclave’s code.
Software isolation. It allows a process to request an enclave,
which can only be accessed by this process. Since the access
is enforced by the processor, even a malicious OS with a root-
level exploit can not access the enclave.

Remote Attestation Protocol. To verify that the enclave is
running the right code, a remote verifier initiates a challenge-
response protocol, using a mechanism to produce an enclave’s
measurement signed by the processor, and then verified (di-
rectly or indirectly) by Intel. If successful, this verification
shows to the owner of the middlebox that the enclave in OP2’s
domain is both correctly created (established in a specific
SGX-enabled system) and running the correct code.
mTCP. mTCP [16] is a user-level TCP stack, which is used
in SafeLib whenever a VNF terminating the transport layer
and operating at the application layer is outsourced to OP2
domain. Using mTCP as the back-end network stack brings
our middlebox the significant benefits.
Departure from the kernel’s complexity. mTCP allows us to
directly benefit from a high-performance packet I/O library

such as Intel DPDK [17] and netmap [18].
Perform batch processing. mTCP enables us to perform batch
packet I/O, alleviating the performance penalty of enclave
transitions at some point. It further improves the performance
of SafeLib by collecting flow-level events to and from the
application running inside the enclave without the need for
system calls; avoiding a large overhead.
libVNF. The libVNF framework [19] can be used to develop
high performance and horizontally scalable VNFs. We choose
libVNF over other similar frameworks [20]–[22] because i)
its API is generic, supporting the development of both L2/L3
VNFs and VNFs that terminate L4 and operate at the ap-
plication layer; ii) it allows developers to only focus on the
implementation of specific VNFs processing logic, rather than
considering details such as low-level networking operations.
The framework consists of five libraries accessible through
dedicated APIs handling i) VNF initialization, ii) inter-VNF
communication for service chains, iii) object requests iv) VNF
state management, and v) managing and monitoring VNF
replicas. Armed with these APIs, libVNF helps middlebox de-
velopers to only focus on writing the VNF specific processing
logic into callback functions that are called when an event of
interest (e.g., new connection, packet arrival, etc.) occurs.

III. SYSTEM DESIGN

We design SafeLib as a middlebox with the following
properties.

• Confidentiality: protects sensitive information, including
payloads and headers, cryptographic keys, VNF code and
input policies, and securely executes VNF operations.

• Generality: supports both L2/L3 VNFs (e.g, NAT, fire-
wall) as well as VNFs that terminate L4 connections and
operate at the application layer (e.g, Intrusion Prevention
System)

• Performance: operates on encrypted user traffic with an
acceptable performance (preferably at line rate speed)

• Low cost: deployment should not be costly.
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Fig. 2. SafeLib: high-level design

• Rich API: provides high-level APIs (e.g., low-level net-
working, cryptographic, routing operations) that allow de-
velopers to concentrate only on specific VNFs operations.

A. Threat model

Our target scenario is the untrusted domain of network
operators where the middleboxes used to process sensitive
information are deployed. We assume a powerful adversary
that can control the entire software stack of the network
provider outside the enclave, including kernel and hypervisor,
and the entire hardware system except the CPU. For example,
we assume the adversary can perform Direct Memory Access
(DMA) attacks from malicious peripherals, privileged software
attacks by exploiting bugs in software components, or DRAM
attacks [23] by exploiting vulnerabilities in hardware.

To protect against such a powerful adversary, we rely
on Intel SGX. By design, an adversary is unable to learn
anything about the protected data and code in the enclave,
and the remote attestation protocol is used to create a secure
communication channel between the right parties.

We note that the current implementation of SGX does not
protect against side channel attacks, such as cache timing
attacks [24]–[26], page-fault-based attacks [27], [28], and
denial of service attacks. SGX cannot protect against cache
timing attacks since the enclave does not have data dependent
memory access. A recent attack [29] leverages a bug in Intel
SGX processors to leak the enclave secrets from the CPU
cache. In our work we do not take any actions to protect
against such kind of attacks. Should middlebox developers
need to protect against such attacks, they should use crypto-
graphic primitives. Upcoming Intel processors are likely to be
designed to resist such attacks.

B. SafeLib: basic design

At a very high level, SafeLib consists of the smart integra-
tion of libVNF running inside an SGX enclave. The libVNF
framework is built over mTCP which in turn communicates
with DPDK for sending and receiving data to and from
the network interface card (NIC). Fig. 2 describes the high-
level design of SafeLib. SafeLib’s architecture considers both
characteristic limitations of SGX.

• Enclave does not support system calls: Instructions that
change the privilege levels (i.e., system calls) cannot be
executed inside the enclave. As a result, the application
has to exit the enclave and execute such instructions
outside the enclave memory region. However, such en-
clave transitions are expensive. As described in Section
II, mTCP alleviates such limitation.

• Memory size: The protected memory region named
enclave page cache (EPC) has a limited size of 94 MB.
Minimizing the code size inside the enclave brings us
performance and security benefits (e.g, reduces attack
surface). We overcome this limitation by partitioning
SafeLib code base into trusted and untrusted parts.

DPDK. mTCP communicates with the NIC via a kernel bypass
mechanism such as DPDK. DPDK polls packets from the NIC
and then mTCP threads query DPDK via an I/O interface
for processing a batch of packets. In our design DPDK runs
outside the enclave.
System bootstrap. A SafeLib middlebox is bootstrapped
by running the remote attestation protocol. The protocol is
initiated by a remote verifier which must be trusted (e.g.,
a gateway, GW) in the OP1 domain. If the verification is
successful, the remote verifier sets up a set of IPSec tunnels to
the OP2 domain. The outsourced VNF in the OP2 domain is
horizontally scaled into replicas. For each replica we set up a
single IPSec tunnel to the GW due to the limitation of mTCP
(it supports a single VNF thread per CPU core). We implement
a load balancer into GW to identify to which replica it should
forward the packets, and to load balance flows (the packets
from the same flow are sent over the same IPSec tunnel).
Packet flow. The gateway of OP1 (GW1) intercepts TLS
traffic initiated by user 1, decrypts it, identifies the right
replica to forward it to, and then sends it over the IPSec
tunnel. As part of this process packets are entirely encrypted
(header plus payload) and a new header is added to each
packet. VNF applications running inside SafeLib first call
the startEventLoop() method of libVNF to initialize
per core mTCP thread. (In each core there is an mTCP
running, and in each thread there is an epoll loop.) When
the encrypted packets arrive to DPDK from the NIC, mTCP
takes them and add them to the transport buffer, and then the
epoll loop reads them. (As part of this process a READ
event is generated.) A VNF application running inside the
enclave queries the buffer, reads the packets, decrypts them
and processes them. After the packets are processed, they are
encrypted and sent back to the NIC via DPDK. After SafeLib
processes the traffic, it tunnels the processed traffic to GW2,
which then establishes a TLS connection with user 2. Note
that this is possible because OP1 and OP2 has established a
trust relationship before.

IV. SAFELIB: DETAILED ARCHITECTURE

Next, we present the components and deployment process
of SafeLib.
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A. Components

Figure 3 shows which SafeLib components are placed inside
enclave, and which components are placed outside.
I/O interface. The use of DPDK brings the opportunity of al-
leviating the overhead of system calls to some extent, because
the packets are sent and received in batches. However, placing
DPDK outside the enclave opens two ways of interaction
with the enclave; via synchronous interface and via shared
memory. The first option promises low performance owing
to the constant entering/exiting the enclave for every packet
operation. In fact, it is crucial to send and receive the batches
of packets from inside the enclave. We plan to extend DPDK
to support an I/O interface and modify the mTCP I/O interface
to properly communicate with each other via shared memory.

State management. We modify the State Management API
of libVNF in order to run it with desirable performance inside
the enclave. To achieve that we partition the states based on
active and inactive flows. We keep the active flow states inside
the enclave, and encrypt the inactive states and transfer them
from the enclave to a local data store outside. The current
libVNF implementation provides a local cache and a local
data store as data structures. We use local cache to keep the
active flow states and local data store to keep the encrypted
inactive states. For that reason we place local cache inside the
enclave and local datastore outside the enclave. A new data
structure will be required to provide a fast search of all flow
states from inside the enclave (F S T).

Secure elements. Placing DPDK outside the enclave with-
out additional modifications to the current mTCP and libVNF
APIs would not be good security practice. As it is, DPDK will
have direct access to the packets once they are decrypted. To
enhance security, we add four functionalities.

The sendEncryptedPacketsToEnclave() function
will be used to transfer an encrypted packet from DPDK to
mTCP.

The decryptPacket(key, cipher) will be used to
decrypt the packet inside enclave.

The encryptPacket(key, cipher) will be used to
encrypt the packet after it is processed.

Finally, The sendPacketToDPDK() will be used to send
the encrypted processed packets back to DPDK.

More specifically, the four functionalities above implement
the IPSec endpoints. The IPSec key used to encrypt and
decrypt packets is stored inside the enclave. We use industry
standard encryption, such AES in GCM mode, for the security
algorithms of IPSec.

B. Deployment

To protect the VNF code, our scheme accesses the raw VNF
source code and then passes it through a compiler running
inside the enclave. The deployment procedure consists of
two phases, pre-phase and main-phase. For the pre-phase,
we use an additional enclave (pre-phase enclave) with two
components; a loader and a compiler.

OP1 initiates RAP to verify that the loader and the compiler
are securely established inside the pre-phase enclave. As part
of this process, the enclave returns a public key to OP1 who
in turn encrypts the VNF code, input policies and system
configuration, and transfers them to the loader using either
a command line tool or a REST API provided by the loader.
The loader decrypts the VNF code inside the enclave and
sends it to the compiler who compiles the code. The compiler
then returns a hash measurement of the compiled code to OP1;
OP1 uses this to verify the compiled code once it is transferred
to the main enclave together with the decryption key (by the
loader) used for processing. The main enclave then decrypts
the code and starts the execution. OP1 attests the main enclave
using the measurement obtained by the compiler, and then
establishes an IPSec tunnel with the main enclave for secure
communication.

Note that here we do not consider OS access to the unen-
crypted binary. One possibility is to use the method proposed
in [12]; we are currently investigating new methods.

V. DISCUSSION AND FUTURE WORK

It is clear that the next step for us is implementing and
evaluating the security and performance of SafeLib. Here
we also discuss some open questions regarding SafeLib’s
architecture and capabilities.
Placing DPDK inside the enclave. It is possible to place
DPDK inside the enclave but there is a trade-off. In the case
when DPDK is inside the enclave we do not need to extend
DPDK and modify the mTCP I/O interface to communicate
with each other via shared memory as described in Section
IV-A. This would reduce the effort of developing new code.
Furthermore the usage of shared memory between enclave and
non-enclave regions leads to the waste of cores since they only
read the user traffic from the concurrent queues. On the other
hand, placing DPDK outside the enclave drastically decreases
the size of the trusted computing base (TCB). As already
mentioned, the smaller the TCB the better the security and



the performance, therefore we choose to place DPDK outside
the enclave.
VNF chaining. In a more complex scenario, an additional
network operator (OP3) outsources a VNF (VNFB) to OP2’s
domain. The VNF outsourced by OP1 (VNFA) communicates
with VNFB using the Communication API of libVNF. En-
claves cannot be shared across different sockets and therefore
one SafeLib instance can be run in each CPU socket. Since
VNFA and VNFB are coming from different developers,
isolation between the two enclaves is required, otherwise con-
fidentiality of user data would be compromised. One possible
way to provide isolation is by leveraging the DPDK features.
However, we leave this as future work.
VNFs operating at L2/L3. This paper is concerned with
the design of a stateful middlebox using mTCP as the back-
end network stack. However, libVNF also provides support
for middleboxes operating at L2/L3. In such a case we can
also use mTCP, but DPDK is then directly polled for packets,
completely bypassing L4 in mTCP. However, the libVNF
API is not expressive enough for packet header manipulation,
therefore we plan to make the API more expressive in this
direction in the future.

VI. CONCLUSION

The desire for confidentiality and the lack of trust among
stakeholders in 5G multi-operator service chaining scenarios
give rise to the need for protected Virtual Network Functions.
In this short paper, we presented the initial architecture of
SafeLib, a software middlebox platform based on Intel SGX,
mTCP and libVNF. SafeLib provides confidentiality to user
traffic, VNF code, policy input and state in such scenarios,
while retaining both implementation flexibility for a wide
range of VNFs and high performance. The implementation
of SafeLib is currently underway.
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