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Abstract

Background and Objective : Medical image segmentation plays a vital
role in medical image analysis. There are many algorithms developed for
medical image segmentation which are based on edge or region characteris-
tics. These are dependent on the quality of the image. The contrast of a
CT or MRI image plays an important role in identifying region of interest
i.e. lesion(s). In order to enhance the contrast of image, clinicians generally
use manual histogram adjustment technique which is based on 1D histogram
specification. This is time consuming and results in poor distribution of
pixels over the image. Cross modality based contrast enhancement is 2D
histogram specification technique. This is robust and provides a more uni-
form distribution of pixels over CT image by exploiting the inner structure
information from MRI image. This helps in increasing the sensitivity and
accuracy of lesion segmentation from enhanced CT image. The sequential
implementation of cross modality based contrast enhancement is slow. Hence
we propose GPU acceleration of cross modality based contrast enhancement
for tumor segmentation.
Methods : The aim of this study is fast parallel cross modality based
contrast enhancement for CT liver images. This includes pairwise 2D his-
togram, histogram equalization and histogram matching. The sequential
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implementation of the cross modality based contrast enhancement is compu-
tationally expensive and hence time consuming. We propose persistence and
grid-stride loop based fast parallel contrast enhancement for CT liver images.
We use enhanced CT liver image for the lesion or tumor segmentation. We
implement the fast parallel gradient based dynamic seeded region growing
for lesion segmentation.
Results : The proposed parallel approach is 104.416 (± 5.166) times faster
compared to the sequential implementation and increases the sensitivity and
specificity of tumor segmentation.
Conclusion : The cross modality approach is inspired by 2D histogram
specification which incorporates spatial information existing in both guidance
and input images for remapping the input image intensity values. The cross
modality based liver contrast enhancement improves the quality of tumor
segmentation.

Keywords: 2D Histogram Matching, Contrast Enhancement, GPU, Image
Segmentation

1. Introduction

Computed tomography (CT) images of abdomen often possess low con-
trast [1, 2]. Radiologists often manually delineate lesions during segmenta-
tion of medical images, which can be difficult, time-consuming and prone to
observer variability [3]. Some segmentation algorithms do not perform well
when applied on the CT images and are time consuming [4, 5]. However,
their performance can be made better once the CT images are preprocessed
[6, 7]. Therefore, preprocessed CT images help in refining the lesions. One
possible preprocessing step is image enhancement for the better visualization
of tumors in undertaking surgical procedures [8, 9, 10].

Efficient preprocessing can certainly help to attain accurate segmentation
of the critical structures in medical images [7, 11]. High sensitivity and
specificity indicates the improved quality of the segmentation [5, 12]. The
liver images obtained from the CT scans are sometimes noisy, low in contrast
and contains high amounts of details. We consider contrast as the important
feature. If the image is high contrast then it becomes easier to identify and
segment the object of interest [2, 13]. In our case, lesion is necessary to be
segmented.
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There are many methods proposed to improve the contrast of the im-
age. Histogram equalization, histogram specification and histogram match-
ing are some of the ways to improve the contrast in the image as discussed
by [1, 14, 15]. We apply 2D histogram matching where CT liver is the target
image and the magnetic resonance imaging (MRI) liver slice is the guided
image [16, 17]. Cross modality based contrast enhancement exploits 2D his-
togram matching for liver enhancement. Once the image is enhanced then
the task is to segment tumor from enhanced image. Seeded region growing
for tumor segmentation is an easy and effective process. But the task of
cross modality based liver enhancement is computationally expensive and
time consuming [18]. Hence it becomes necessary to use GPU for real time
performance of liver contrast enhancement and tumor segmentation. We
propose accelerated cross modality guided liver enhancement scheme in this
paper and demonstrate that our technique improves tumor segmentation on
enhanced image.

The aim of this study is cross modality based liver enhancement to im-
prove the contrast of CT liver image for tumor segmentation. We propose
parallel implementation of liver contrast enhancement. This is accomplished
by 2D histogram matching using CT and MRI liver images. We propose
dynamic region of interest (RoI) based seeded region growing (SRG) for tu-
mor segmentation from enhanced CT image. The overall average speedup
obtained by parallel implementation is 104.416 ± 5.166 times compared to
the sequential CPU implementation of the contrast enhancement and tumor
segmentation. The enhanced liver image improves the sensitivity and speci-
ficity of the lesion segmentation. This is the first work targeted towards
the high performance multi-modality guided liver enhancement for tumor
segmentation to the best of our knowledge.

The rest of the paper is organized as follows. Section 2 briefs the related
works, background and motivation with respect to the liver image enhance-
ment. Section 3 explains the proposed methodology for liver contrast en-
hancement and its parallel implementation on the GPU. Further, we discuss
dynamic RoI based fast parallel SRG for tumor segmentation in Section 4.
Performance results and comparison of contrast enhancement and seeded re-
gion growing for tumor segmentation are mentioned in the Section 5. Section
6 concludes summarizing the main results related to the cross modality based
contrast enhancement and tumor segmentation.

1 INTRODUCTION 3
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2. Background and Motivation

Segmentation of lesions is a challenging problem in medical images be-
cause of the similar intensity values of structures of interest and the nearby
regions in image. Research works are targeting various methods for the seg-
mentation [19, 20, 21]. The results of the segmentation are subsequently
used in patient specific model for diagnostics, surgery planning and navi-
gation. One such approach using gradient based SRG has been presented
to segment the aorta and rib bones in thorax images by Rai and Nair [21].
Inspired by this idea, we propose parallel SRG to segment tumors from CT
liver images.

Image enhancement is regarded as a precursor to the accurate segmenta-
tion. CT scans are commonly used due to the availability and quicker imag-
ing time compared to MRI. CT scans often suffer from low contrast which
limit their utility [1, 2]. In this work, we show through our experiments that
corresponding MR image can be employed to improve the contrast of CT.
The idea to enhance an image using another cross modal image has been
witnessed in the literature for natural images [6, 7, 8, 9]. The motivation
to use cross modality guided image enhancement is to use the additional in-
formation contained in the other image having similar contents in different
imaging times or position but better contrast or minimal noise. Ultimately,
the details in the enhanced image can be improved from the perceptual per-
spective. In the context of liver images, tumors can be easily seen in the
enhanced CT image.

In this regard, the contrast of photographs was improved using the cor-
responding near infra red images [6, 14]. Histogram specification in combi-
nation with wavelet domain processing was used in this work. Yan et. al
proposed a variational approach using anisotropic filter to eliminate noise
in color images using infrared images [9]. The authors calculated cross cor-
relation between input images and then used joint filtering for denoising in
another approach [7, 11].

Deep learning is applied to multimodal image denoising recently [8]. A
deep learning method consisting of three convolutional neural networks has
been applied to denoise natural images. Various deep learning based ap-
proaches for CT denoising have been presented in the last few years, however,
they do not incorporate the multimodality guidance and use the CT image
alone for supervised learning [16, 17, 22]. Histogram based methods are use-
ful to enhance the global contrast of image [14], however, they introduce bad
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artifacts in the processed images. Since it does not consider the neighbor-
hood of the pixels while remapping, it does not necessarily gives the desired
contrast[2, 14, 23]. Two dimensional histogram specification is presented re-
cently to improve the 1D histogram specification [18]. It uses 2D cumulative
distribution function of the input and target images for remapping intensity
values in the original image.

We apply same notion to CT liver images by applying 2D histogram
matching based cross modality approach for liver contrast enhancement in
the following section.

3. Methodology: Liver Contrast Enhancement

We aim to improve the contrast of CT liver image considering MRI liver
image as the guidance image to increase the quality of lesion segmentation.
The methodology includes 2D contrast enhancement, gradient of enhanced
image and segment the lesion using gradient based SRG. The parallel ap-
proach for liver enhancement and lesion segmentation makes the process
faster in order to achieve real time implementation. In this section, we dis-
cuss parallel implementation of the cross modality based liver enhancement.

The flow of proposed GPU implementation of cross modality based con-
trast enhancement is shown in Figure 1. We load CT and MRI images of
liver on CPU and transfer it to the GPU. They need not be registered slices.
The first step of contrast enhancement of CT liver image is 2D (or pairwise)
histogram calculation (Hist 2d). We calculate parallel 2D histogram of both
CT (hist CT) and MRI (hist MRI) images. A 2D histogram is a plot of pixel
and its neighbouring element which allows us to discover, and show, the un-
derlying 2D frequency distribution (shape) of image. This shows how often
each set of values (pixel and neighbour) in the image occurs. Instead of just
considering the individual pixel values, it considers every possible pixel pair
in the input and guidance image and calculate 2D CDF accordingly [18, 24].

Further the calculation of cumulative distributive function (CDF 2d) of
CT (CDF CT) and MRI (CDF MRI) images on GPU creates the input for
the next step i.e. histogram equalization. 2D CDF is a function that describes
the probability of a possible pixel pair in the input and guidance image.
This helps in finding most frequent pairwise intensity values for histogram
equalization [18].

Then we perform parallel histogram equalization (HE 2d). This step
spreads out the most frequent pairwise intensity values increasing the global

3 METHODOLOGY: LIVER CONTRAST ENHANCEMENT 5
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contrast of image. Hence it improves lower contrast areas to gain a higher
contrast [18, 24].

The mapping (Map 2d) of histogram equalization onto the CT image
gives the enhanced image. It maps the modified intensity values obtained
from 2D histogram equalization to the corresponding pixels [18].

Inter block GPU synchronization (IBS) makes sure the updated values
are sent to the next modules in GPU computing blocks. These parallel
implementations of sub-modules of contrast enhancement are explained in
following sections.

   
  

  GPUCPU

Calculate 2D Histogram of CT and MRI 
Image (Hist_2d)

Calculate CDF of CT and MRI Image 
(CDF_2d)

Calculate 2D Histogram Equalization 
(HE_2d)

Mapping for Enhanced Image (Map_2d)

Load CT and 
MRI Image

Transfer 
Images

Save 
Enhanced 

Image

IBS

IBS

IBS

IBS-Inter Block GPU 
Synchronization

Figure 1: GPU Implementation of the Cross Modality based Contrast Enhancement

3.1. 2D Histogram
In this section, we discuss the 2D histogram implementation on GPU as

the first step of the contrast enhancement of CT liver image. The histogram
length (HL) is 256. We launch HLxHL parallel threads and find the histogram
of neighboring elements in pairs. Hence it is called as pairwise histogram.
Pairwise histogram is stored in an array of size HLxHL.

For each thread in parallel, it takes the pixel (x,y) and neighbouring pixel
(x+1,y) value. This represents one of the indices in the range of (0-HLxHL-
1) in histogram array given by variable temp as shown in Algorithm 1. We
increment corresponding value in the index position in histogram array as
shown in Figure 2. This function hist 2d for CT and MRI images gives
hist CT and hist MRI histograms respectively. These 2D histograms are
the input to the cumulative distributive function which is the next step of
contrast enhancement.

3 METHODOLOGY: LIVER CONTRAST ENHANCEMENT 6
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Algorithm 1: 2D Histogram of CT and MRI Image (Hist 2d)

1: HL=256 and launch HL x HL parallel threads
2: ti and tj can be any thread id between 0-255
3: while x<width of image do
4: while y<height of image do
5: if ti == I[x][y] and tj == I[x + 1][y] then
6: temp=ti*HL+tj;
7: atomicAdd(histogram[temp], 1);
8: end if
9: end while

10: end while

1

3

2

X 

Y 

Histogram Array Image

2 

3 

4 

1 
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259
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Figure 2: 2D Histogram

3.2. Cumulative Distributive Function (CDF)

In this step of contrast enhancement, we calculate CDF of 2D histograms
of CT and MRI liver images. The maximum number of histogram pairs can
be (w-1)x(h) where w and h are width and height of the image.

We launch HLxHL threads in parallel as shown in Algorithm 2. Each
thread calculates its CDF from respective 2D histogram values. These CDF
values for CT (CDF CT) and MRI (CDF MRI) images are the input to the
next step of contrast enhancement which is 2D histogram equalization.

3.3. 2D Histogram Equalization (HE 2d)

2D Histogram Equalization technique improves the contrast of image. It
spreads out the most frequent intensity values. This method increases the
global contrast of image. This improves the lower contrast areas to gain

3 METHODOLOGY: LIVER CONTRAST ENHANCEMENT 7
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Algorithm 2: Calculate CDF of CT and MRI Image (CDF 2d)

1: count= (width-1)*height i.e. maximum number of pairs
2: HL=256 and launch HL x HL parallel threads
3: ti and tj can be any thread id between 0-255
4: temp=ti*HL+tj;
5: while temp<HL*HL do
6: for int j=0; j<=temp; j++ do
7: cdf [temp]+ = histogram[j]/count;
8: end for
9: end while

higher contrast. The pseudocode for 2D histogram equalization is shown
in the Algorithm 3. We launch HLxHL threads in parallel. Each thread
calculates the corresponding histogram equalization by taking the minimum
difference between two CDFs (cdf1 for CDF CT and cdf2 for CDF MRI). It
takes into the account the first minimum euclidean distance value between
the indices when multiple minimum difference in CDFs are found. Again
when multiple solutions are available, it further computes and find out the
equalized value saved in array HE. This array is ready to get mapped for
enhanced image which is the final step of contrast enhancement.

3.4. Mapping

The mapping of 2D histogram equalization is essential for obtaining en-
hanced CT image as an output. We launch wxh threads where w and h are
width and height of the image respectively. This is reverse process of 2D his-
togram calculation as explained in the psuedocode given by the Algorithm
4. The index value is generated from the neighbouring pixel values of the
CT image. The pixel value in the CT image is changed by the correspond-
ing value in the location (index) given by the 2D histogram equalization
array. When all the threads are finished processing corresponding pixels, the
enhanced image is sent back to the CPU.

4. Application to The Tumor Segmentation

Seeded Region Growing is an easy approach to segment the various ob-
jects in an image. The result of the region growing relies mainly on the initial
seed(s) and the criteria defined to end recursive or iterative region growing

4 APPLICATION TO THE TUMOR SEGMENTATION 8
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Algorithm 3: Calculate 2D Histogram Equalization (HE 2d)

1: HL=256 and launch HL x HL parallel threads
2: ti and tj can be any thread id between 0-255
3: index=ti*HL+tj;
4: for k=0; k<HL; k++ do
5: for l=0; l<HL; l++ do
6: temp8=k*HL+l;
7: temp = cdf1[index]-cdf2[temp8]
8: if temp is minimum then
9: x = k

10: end if
11: if multiple minimum values found then
12: temp2 = absolute((ti-k) + (tj-l))
13: if temp2 is minimum then
14: x = k
15: end if
16: if multiple minimum temp2 are found then
17: temp3 = absolute((ti-tj) - (k-l))
18: if temp3 is maximum then
19: x = k
20: end if
21: end if
22: end if
23: end for
24: end for
25: HE[index]=x;

process [4, 19, 25, 26]. The parallel implementation of SRG based tumor
segmentation is shown in Figure 3.

We load CT and MRI images and transfer it to the GPU. GPU performs
cross modality based contrast enhancement and stores the enhanced CT im-
age in GPU memory. The control comes back to the CPU. This is essential
for the selection of seed(s) and to change the number of persistent blocks.
These persistent blocks (i.e. number of available computing resources on the
GPU) differ depending on the application. The next task is tumor segmenta-
tion. GPU computes the gradient of enhanced CT liver image. The gradient
of enhanced liver image is communicated through IBS to the next module
for tumor segmentation. We apply SRG on the gradient of enhanced liver

4 APPLICATION TO THE TUMOR SEGMENTATION 9
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Algorithm 4: Mapping for Enhanced Image (Map 2d)

1: launch (width)*(height) parallel threads
2: HL=256
3: tw can be any thread id between 0 to width-1
4: th can be any thread id between 0 to height-1
5: temp1 = I[tw][th];
6: temp2 = I[tw + 1][th];
7: index = temp1 ∗HL + temp2;
8: I[tw][th] = HE[index]; //EnhancedImage

image. Region grows and new seeds are formed from initial seed(s) based on
the threshold criteria. This process is iterative until the threshold criteria is
satisfied. The process stops when new seed(s) can not be formed and region
can not be grown further.

  

GPU

Image Enhancement

   

      Region Growing

     CPU

Hist_2d

Transfer Images

IBS CDF_2d IBS

HE_2dIBSMap_2dIBS

Gradient of Enhanced Image IBS

Can Region Grow?
No

Find New Seed(s) IBS

Yes

Load CT and 
MRI Images

Save Segmented 
Image

Set seed(s)

Change Persistent 
Blocks

Figure 3: GPU Implementation of SRG based Tumor Segmentation

In this work, we use threshold criteria defined by the homogeneity of
region and region aggregation considering the pixel values and their gradient
direction and magnitude. The criteria is defined via a cost function that uses
few features of the image around seed. Value of the cost function is compared
with homogeneity criteria specified to check if the value is smaller than 1.
The pixel becomes part of the region if there is a match; otherwise it is
excluded from the region. The cost functions for threshold criteria are given
by Rai and Nair [21]. They select homogeneity criterion using gradient based

4 APPLICATION TO THE TUMOR SEGMENTATION 10
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cost function which are dependent upon object contrast, texture features like
shape and color, intensities values, gradient direction and magnitude. The
cost function exploits features of image around the seed.

We apply parallel gradient based SRG algorithm on both enhanced images
and original CT liver images. We propose dynamic RoI based parallel SRG.

4.1. Dynamic SRG

(a) Grid of Blocks (b) Liver Mapped on GPU (c) Step 1

(d) Step 2 (e) Step 3

(f) Step 4

Figure 4: SRG using Dynamic RoI of Tiles

Dynamic SRG as the name suggests, it increases the region of interest
(RoI) in each iteration of SRG. The initial RoI is decided by number of
active computing blocks or persistent blocks that can be launched on GPU.
This represents the phenomenon of persistence. In order to communicate
valid data in between the blocks, inter block GPU synchronization (IBS) is
necessary. Persistence and IBS provide flexibility to exploit parallelism using
grid-stride loop through constant increase in RoI. One grid-stride is number
of active computing threads that can be launched on GPU device.

Gupta et al. [27] have explored persistent thread based GPU program-
ming. The idea behind this is once the SRG kernel launched from CPU, the

4 APPLICATION TO THE TUMOR SEGMENTATION 11
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control returns from GPU when the region is grown completely. Interme-
diate data transfers between CPU and GPU are avoided in this approach.
SRG kernel on GPU is launched from the host CPU. Region is grown on
GPU. Image elements are updated and communicated to the blocks via IBS.
The region is grown again on GPU, if new similar neighbouring elements
are found. This process continues until no similar neighbouring elements are
available. The kernel terminates when the region can not be grown further
and control returns to the CPU. Redundant data computations and commu-
nications are optimized on GPU using proposed approach. This process is
explained in the Figure 4.

Algorithm 5: Grid-stride Loop through Dynamic RoI

1: blockgrow=1;
2: while blockgrow==1 do
3: blockgrow=0;
4: unfinished=1;
5: Increase RoI of Tiles;
6: To Increase RoI of Tiles

w=w+1; h=h+1; d=d+1;
7: Ensure RoI within image dimensions;
8: while unfinished==1 do
9: unfinished=0;

10: for int i=blockIdx.x; i<=w/blockDim.x; i+=gridDim.x do
11: for int j=blockIdx.y; j<=h/blockDim.y; j+=gridDim.y do
12: for int k=blockIdx.z; k<=d/blockDim.z; k+=gridDim.z do
13: Region Growing(arguments, unfinished, blockgrow);
14: end for
15: end for
16: end for
17: Inter Block GPU Sync();
18: end while
19: end while

There are four persistent blocks processing grid of blocks using grid-stride
loop as shown in Figure 4a. We map 3D liver on grid of blocks as shown
in Figure 4b and initialize RoI of tiles around the seed as shown in Figure
4c. Persistent blocks operate within RoI. First step of SRG takes place.
Region is grown and RoI is incremented in all directions. This process makes
necessary neighbouring voxels available for the second step of SRG as shown

4 APPLICATION TO THE TUMOR SEGMENTATION 12



Post-Print copy of paper by Nitin et. al. in C.M.P.B. 184(2020), 105285
https://pubmed.ncbi.nlm.nih.gov/31896055/

in Figure 4d. New neighbouring voxels perform same function and RoI is
incremented again. This flow is repeated until region can not be grown
further as shown in Figures 4e and 4f. This approach reduces compute and
memory operations resulting in the increased performance. It is needed to
ensure that the increase in RoI lies within the image dimensions.

Complete process is defined in the Algorithm 5. RoI should be initialized
in such a way that all threads are busy performing SRG. Variable ”block-
grow” is essential to check the increase the RoI. Increase RoI of tiles if value
of ”blockgrow” is ”1”, otherwise stop SRG as region is grown completely.
This variable ”blockgrow” along with the variable ”unfinished” are updated
in the SRG segmentation step. Lower and upper values of RoI (in x, y, and
z directions) are calculated when ”blockgrow” is ”1”. It has to be made sure
that the RoI should not increase beyond image dimensions in the successive
steps of SRG.

Persistent blocks operate inside the RoI. Kernel SRG is called for the
voxels within the RoI. IBS makes sure only updated values are communicated
to the persistent blocks in each step of SRG. IBS can be atomic, quasi, lock
free or based on cooperative groups from NVIDIA toolkit CUDA 10.1 [28, 29,
30]. We use quasi IBS for our approach due to its efficient implementation
[28].

5. Results and Discussion

We discuss performance analysis of proposed parallel cross modality based
liver enhancement for tumor segmentation. The enhanced liver images and
segmented tumors are shown and the performance analysis of tumor segmen-
tation is discussed based on quality assessment. We use Intel(R) Core(TM)
i7-7700HQ CPU @ 2.80GHz RAM 24 GB, NVIDIA GPU GeForce GTX 1050
(RAM 4GB), and CUDA Toolkit 10.1 to compare the proposed parallel GPU
approach with CPU implementation.

5.1. Liver Enhancement

We propose fast parallel cross modality based contrast enhancement. 2D
histogram of CT image is mapped to 2D histogram of guidance or MR image
to get a better contrast image.

Figure 5 shows input CT, MRI and enhanced CT liver images without
any tumors. Figure 6 shows enhanced CT liver images with tumors. Fig-
ures show the contrast is enhanced significantly to observe tumors clearly.

5 RESULTS AND DISCUSSION 13
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CT Images MR Images Enhanced CT

Figure 5: CT, MR and Enhanced CT Images

Enhanced image is further processed for tumor segmentation using SRG.
Average time taken by NVIDIA GPU GeForce GTX 1050 is 1.976s ± 0.43s
providing the average speedup of 104.416 ± 5.166 times over CPU implemen-
tation (208.082s ± 55.799s) for tumor segmentation using 2D cross modality
based contrast enhancement.

In order to enhance the contrast in CT images, we investigate quality
improvements by fusing the information that is available in one modality
(e.g. liver inner structures in MRI) to guide the adaptive enhancement in
other image modality (e.g. CT in our case). This provides better control
over the enhancement and is more effective and efficient than the state of
the art technique used by clinicians. Clinicians generally use manual his-
togram adjustment technique based on 1D histogram specification on CT
or MRI scans. This process does not provide efficient distribution of pixels
for contrast enhancement of CT or MRI image. There are more chances of
artifacts in 1D enhancement as it results in random histogram and is also a
time consuming process.

However, 2D histogram specification incorporates spatial information while
calculating 2D CDFs of both the guidance and input images and for remap-

5 RESULTS AND DISCUSSION 14
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CT Images MR Images Enhanced CT

Figure 6: CT, MR and Enhanced CT Images showing Tumors
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(f) GLCM of Enh

Figure 7: CT, MR and Enhanced CT (Enh) with GLCM Plots

ping the input image intensity values. Instead of just considering the indi-
vidual pixel values, it considers every possible pixel pair in the input and
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guidance image and calculate 2D CDF accordingly. Looking at the Gray
Level Co-Occurrence Matrix (GLCM) plots in Figure 7, it can be observed
that the distribution of pixel pairs in GLCM plot of the resulting enhanced
image (Figure 7f) is expanded but concentrated along the diagonal in compar-
ison to GLCM plots of CT and MR image (Figures 7d and 7e), which means
it does not introduce artificial artifacts unlike 1D histogram specification or
histogram equalization.

We provide the histogram comparison of images using 1D and proposed
2D technique as shown in Figure 8. The proposed 2D cross modality approach
provides a proper distribution of pixel elements using guided MRI compared
to 1D approach applied on CT or MRI image. 1D approach introduces
unpleasant effects in the enhanced image. The histogram of enhanced CT
using cross modality approach is similar to guided MRI image. There are
more chances of artifacts in enhanced image using 1D approach as clinicians
use manual adjustment which may result in any random histogram of the
enhanced image. In the next section, we discuss the impact of cross modality
based contrast enhancement for tumor segmentation.

5.2. Tumor Segmentation

We propose fast parallel gradient based dynamic SRG for tumor segmen-
tation. Our proposed parallel SRG is implemented on GPU. It does not
involve transfer of data between CPU and GPU. The data for the research
work have been acquired from The Intervention Center, University of Oslo,
Norway [31]. The ground truths for tumor segmentation are provided by the
clinician. We present the visual comparison of tumor segmentation on both
enhanced and original CT liver images. The results in Figures 9, 10, and
11 show the tumor segmentation from original and enhanced liver images.
Figure 9a1 represents the original CT liver image. The gradient of input CT
image is shown in Figure 9a2. The tumor segmentation (Seg) and the ground
truth (GT) for the original CT liver slice are shown in Figures 9a3 and 9a4
respectively.

We enhance original CT liver image (Figure 9a1) using cross modality
based liver enhancement and the enhanced image (Enh CT) is shown in Fig-
ure 9b3. The tumor segmentation is performed on the enhanced CT liver
image (Figure 9b3) and segmented tumor from enhanced CT image is shown
in Figure 9b5. The quality of tumor segmentation is validated in our clinical
validation section using Table 1. Tumor segmentation for other CT liver
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Figure 8: Comparison between 2D Cross Modality and 1D Histogram Approach

(a1) CT Image (a2) Gradient (a3) Seg (a4) GT

(a) Original Liver Image 1

(b1) CT Image (b2) MR (b3) Enh CT (b4) Gradient (b5) Seg (b6) GT

(b) Liver Enhancement and Tumor Segmentation from Enhanced CT Image 1

Figure 9: Tumor Segmentation from Original and Enhanced CT Image 1
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(a1) CT Image (a2) Gradient (a3) Seg (a4) GT

(a) Original Liver Image 2

(b1) CT Image (b2) MR (b3) Enh CT (b4) Gradient (b5) Seg (b6) GT

(b) Liver Enhancement and Tumor Segmentation from Enhanced CT Image 2

Figure 10: Tumor Segmentation Original and Enhanced CT Image 2

(a1) CT Image (a2) Gradient (a3) Seg (a4) GT

(a) Original Liver Image 3

(b1) CT Image (b2) MR (b3) Enh CT (b4) Gradient (b5) Seg (b6) GT

(b) Liver Enhancement and Tumor Segmentation from Enhanced CT Image 3

Figure 11: Tumor Segmentation from Original and Enhanced CT Image 3

slices are shown in Figures 10, and 11 and the segmentation quality is im-
proved when the image is enhanced. Hence the cross modality based contrast
enhancement on CT liver images improves the quality of tumor segmentation
and it is faster. The proposed fast parallel liver enhancement based tumor
segmentation is 104.416 ± 5.166 times faster compared to the sequential im-
plementation. We include Table 2 showing experimental evaluation on 10
different datasets (including 107 tumor slices) obtained from The Interven-
tion Centre, Oslo University Hospital, Oslo, Norway. It can be observed from
the table that the cross modality based liver enhancement helps in improv-
ing the sensitivity, specificity (denoted by ’Sensi’ and ’Speci’ respectively in
Table 2) and accuracy of tumor segmentation and GPU implementation of
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Table 1: Tumor Segmentation Analysis on Five Slices

Tumor without any Enhancement with Enhancement Time-Enh+SRG(s)
Speedup

Slice #
Sensitivity,
Specificity

Accuracy
Sensitivity,
Specificity

Accuracy CPU GPU

1 0.55 0.99899 0.82 0.99906 272.07 2.48 109.706
2 0.38 0.99918 0.81 0.99898 265.98 2.41 110.365
3 0.47 0.99769 0.58 0.9968 167.81 1.68 99.887
4 0.83 0.87091 0.50 0.99765 162.03 1.61 100.64
5 0.47 0.99786 0.74 0.99823 172.52 1.70 101.482

Average 0.54 0.973 0.69 0.998 208.082s 1.976s 104.416
Std. Dev. 0.173 0.057 0.143 0.001 55.799s 0.43s 5.166

Table 2: Tumor Segmentation Analysis on Ten Different Datasets

Dataset
#

Size of
each Slice

(wxh)

Total
# of
Slices

# of
Tumor
Slices

without any
Enh (Average)

with Enh
- Average (Avg.)

Enh+SRG
Avg. Time (s)

Avg.
Speedup

Sensi,
Speci

Model
Accuracy

Sensi,
Speci

Model
Accuracy

CPU GPU

1 406x299 73 10 0.28 0.99132 0.36 0.99517 141.07 1.41 100.054
2 512x512 139 7 0.41 0.99213 0.52 0.99796 252.22 2.29 109.901
3 381x304 67 10 0.48 0.99412 0.65 0.99689 131.89 1.32 99.916
4 405x346 87 8 0.39 0.99325 0.47 0.99717 158.56 1.56 101.641
5 462x321 59 14 0.32 0.99173 0.50 0.99823 167.01 1.63 102.460
6 380x512 58 9 0.49 0.99112 0.64 0.99421 202.02 1.89 106.89
7 443x437 63 6 0.51 0.99201 0.71 0.99501 193.17 1.83 105.55
8 361x249 63 7 0.37 0.99312 0.57 0.99427 126.60 1.26 100.47
9 483x386 80 6 0.31 0.99415 0.59 0.99612 185.78 1.80 103.21
10 456x400 216 30 0.42 0.99178 0.62 0.99324 189.93 1.82 104.35

proposed approach is around 100 times faster compared to the CPU imple-
mentation. P value from ANOVA (analysis of variance) for the ten datasets
is 3.31×10−14 which is less than 0.05. We reject the null hypothesis and con-
clude that not all means are equal which confirms the means are statistically
significant for the concerned experiments.

5.3. Clinical Validation

Table 1 and 2 show the analysis of tumor segmentation before and after
enhancement of CT liver images. Table 1 includes 5 liver slices with tu-
mors from different datasets and Table 2 shows performance evaluation on
10 different datasets including 107 tumor slices. We chose sensitivity (true
positive rate or recall) and specificity (true negative rate) as performance
metrics for the evaluation of tumor segmentation [5, 12]. It is observed that,
the sensitivity and specificity are increased when the accuracy is nearly 1 on
the enhanced image. This implies that when the tumor is actually present,
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then it is predicted more accurately when the image is enhanced.

5.4. Discussion

In this paper, we propose fast parallel cross modality based contrast en-
hancement for CT liver images. Further GPU performs dynamic RoI based
tumor segmentation on enhanced CT liver image. These fast parallel imple-
mentations are based on persistence, grid-stride loop and IBS. The process
of cross modality based contrast enhancement is computationally expensive
and hence time consuming. This involves 2D histogram calculation, equal-
ization and histogram matching [22]. They require several light weight tasks.
The performance on GPU is improved compared to the CPU by dividing the
tasks on several active threads.

The second part of the process is tumor segmentation. We propose gra-
dient and dynamic RoI based SRG inspired from the works of Rai and Nair
[21]. Initially, the process needs small part of the region to be accessed in-
stead of whole image (as implemented previously on GPU). As soon as region
grows, RoI should be increased to access more neighbouring elements. GPU
implementation of SRG involves kernel termination and relaunch continu-
ously from CPU. This is time consuming. We avoid this by using persistence
and grid-stride loop and obtain the significant speedup i.e. 104.416 ± 5.166
times compared to the sequential implementation of liver enhancement and
tumor segmentation.

6. Conclusion

In this paper, we discuss cross modality based contrast enhancement for
CT liver images, application to tumor segmentation and their fast parallel
implementation on GPU. Cross modality based liver enhancement includes
CT liver image as an input and MRI liver image as a guided image. CT
and corresponding MRI images need not be co-registered. Pairwise 2D his-
togram implementation and histogram equalization spreads the intensity val-
ues across the image producing contrast enhanced CT image. We propose
persistence and grid-stride loop based fast parallel implementation on GPU.
The enhanced image then used for segmentation of tumors from enhanced
CT liver images effectively. We propose gradient and dynamic RoI based
seeded region growing for tumor segmentation. The parallel approach for
liver enhancement and tumor segmentation is 104.416 ± 5.166 times faster
compared to the CPU implementation.
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