
Industrial Economics and Technology Management
June 2011
Bjørn Nygreen, IØT
Associate Professor Poul Heegaard (ITEM), ITEM

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Industrial Economics and Technology Management

Service Deployment in Heterogeneous
Cloud-like Environments

Anders Nordby Gullhav

I have travelled the length and breadth of this country and talked with the best people,
and I can assure you that data processings is a fad that won’t last out the year

- The editor in charge of business books for Prentice-Hall, 1957

Abstract

The amount of power consumed by data centres world wide is increasing,
and due to growing electricity bills, service providers aim more attention
on energy-efficient management of their data centres. In order to achieve
this goal, a service provider need to make smart decisions regarding the
deployment of his services. At the same time, in order to satisfy his end-
users, a service provider needs to focus on delivery of services complying
with the quality of service (QoS) requirements. Consequently, he needs to
make decisions related to replication level of his services, as well.

In this thesis, I propose two interrelated mixed integer linear program-
ming (MILP) models aiming at supporting service providers in their de-
cision making. The first MILP concerns energy-efficient deployment of a
service provider’s services in his own virtualized data center, where the
objective is to minimized the cost of energy usage, while satisfying the re-
sponse time and availability requirements of the end-users. The second
MILP introduces the flexibility of Cloud computing by letting the service
provider have the opportunity to deploy services in a public cloud, and
hence the objective is to minimize the total cost of deployment, while still,
ensuring satisfactory QoS levels.

The proposed MILP models are tested on test instances of varying size
with the intention to discuss scalability issues and commenting on mod-
elling choices. The results show that the second model is the hardest to
solve, in terms of closing the optimality gap, but nevertheless, it is de-
picted that good solutions are found early in the branch and bound search.
Furthermore, different modelling choices illustrate the trade-off between
energy-efficient management of data center resources and service perfor-
mance.

Preface

This Master’s thesis is the result of the final work done in order to ac-
complish a Master of Science degree with specialization in Managerial
Economics and Operations Research at the Department of Industrial Eco-
nomics and Technology Management at the Norwegian University of Science
and Technology (NTNU).

This work has combined concepts from computer science, dependability
and performance analysis of ICT systems and operations research, which
have made me utilizing much of the knowledge I have acquired during my
five years of study at NTNU. In this respect, I feel that the work with this
master’s thesis have been inspiring and challenging, and thus I look forward
to continue my work in further studies.

I would like to thank my supervisor, Professor Bjørn Nygreen, for dis-
cussions, his advices and all the time he has devoted me. Moreover, I thank
my co-supervisor, Professor Poul Heegaard, at the Department of Telemat-
ics for his contributions in technical issues and for proposing this thesis in
the first place. Although, not as involved as in the last semester, I feel that I
still owe a thanks to graduated PhD Mate Csorba for giving me inspiration
to proceed with this topic. Lastly, I also owe thanks to my girlfriend for
letting me spend long nights writing on my thesis, without being too angry.

Note to the reader: Some paragraphs in Section 2 and Sections 4.4.1
to 4.4.3 is based on the background section in my specialization project
(Gullhav, 2010).

v

CONTENTS

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Overview of the Cloud computing concepts 5
2.1 Service models in Cloud computing 6
2.2 Cloud deployment models 6
2.3 Cloud security . 7
2.4 Cost models in public clouds 8

3 Power consumption in data centers 9

4 Service performance and dependability 12
4.1 Service definition . 12
4.2 Service level agreements . 13
4.3 The performance concept 14

4.3.1 Performance metrics 14
4.3.2 Response time calculation 15
4.3.3 Replication to increase performance 17

4.4 The dependability concept 17
4.4.1 The dependability tree 18
4.4.2 Fault tolerance . 20
4.4.3 Replication for fault tolerance 21
4.4.4 Availability calculation of replicated services 22

5 Related work on service deployment problems 26

6 Models of the service deployment problems 29
6.1 The service deployment problems 29
6.2 Model framework and assumptions 30

6.2.1 Service model . 30

vii

CONTENTS

6.2.2 Data center models 32
6.2.3 CPU power assignment to passive replicas 34

6.3 The Service Deployment Problem in a Private Data Center 35
6.3.1 Problem definition 35
6.3.2 MILP formulation of the SDP-PDC 39

6.4 The Service Deployment Problem in a Hybrid Cloud Envi-
ronment . 46
6.4.1 Problem definition 47
6.4.2 MILP formulation of the SDP-HCE 49

6.5 Generation of replication patterns 59

7 Numerical results and discussion 63
7.1 Implementation . 63
7.2 Generation of test instances 66
7.3 Detailed results of the SDP models 71

7.3.1 The PDC-5 test instance 71
7.3.2 The HCE-5 test instance 81

7.4 Scalability of the SDP models 87
7.4.1 Scalability considerations of the SDP-PDC model . . 88
7.4.2 Scalability considerations of the SDP-HCE model . . 92
7.4.3 Scalability of the replication pattern generation . . . 97

7.5 Performance and dependability concerns 99

8 Conclusions 101

9 Future work 104

References 107

A Summary of the MILP models 111
A.1 SDP-PDC formulation . 111

A.1.1 Constraints in the all-active approach 112
A.1.2 Constraints in the semi-active approach 113
A.1.3 Constraints in the capacity-lowering approach 114

viii

CONTENTS

A.2 SDP-HCE formulation . 115
A.2.1 All-active approach 117
A.2.2 Semi-active approach 119
A.2.3 Capacity-lowering approach 121

B Mosel code 124

ix

LIST OF FIGURES

List of Figures

1 Power consumption by the components of a server 10
2 The relationship between power consumption and CPU uti-

lization . 11
3 Ex. of a three-tier model . 13
4 The response time curve . 16
5 The dependability tree . 18
6 Reliability block diagram: series structure 23
7 Reliability block diagram: complex structure 24
8 A hybrid cloud environment 33
9 PDC-5 capacity-lowering approach: replication levels 72
10 PDC-5 capacity-lowering approach: replica deployment by

node . 74
11 PDC-5 semi-active approach: replication levels 75
12 PDC-5 semi-active approach: replica deployment by node . 76
13 HCE-5 capacity-lowering approach: replication levels 81
14 HCE-5 semi-active approach: replication levels 84
15 SDP-PDC: solution graph of the large examples 91
16 SDP-HCE: solution graph of the large examples 96

xi

LIST OF TABLES

List of Tables

1 Summary of the constraints in the SDP-PDC models 46
2 Summary of the constraints in the SDP-HCE models 59
3 Overview of the strategies to reduce the number of symmet-

rical solutions . 66
4 Scale of the different test instances 67
5 Amazon standard VM types 70
6 Rackspace standard VM types 70
7 PDC-5 capacity-lowering approach: response time and avail-

ability . 71
8 PDC-5 capacity-lowering approach: deployment and CPU

assignment of replicas . 73
9 PDC-5 capacity-lowering approach: utilization of the nodes. 74
10 PDC-5 semi-active approach: response time and availability 75
11 PDC-5 semi-active approach: deployment and CPU assign-

ment of replicas . 76
12 PDC-5 semi-active approach: utilization of the nodes 78
13 PDC-5 all-active approach: replication level 79
14 PDC-5 all-active approach: deployment CPU assignment

and utilization of the nodes 80
15 PDC-5: summary of approaches 80
16 HCE-5 capacity-lowering approach: deployment, CPU as-

signment and utilization . 82
17 HCE-5 semi-active approach: response time and availability

of each service . 83
18 HCE-5 semi-active approach: deployment, CPU assignment

and utilization of nodes . 85
19 HCE-5 all-active approach: deployment, CPU assignment

and utilization of nodes . 86
20 HCE-5: summary of approaches 87
21 SDP-PDC: overview of solutions and complexity on the larger

test instances . 89

xii

LIST OF TABLES

22 SDP-HCE: overview of solutions and complexity on the larger
test instances . 94

23 PDC: the average number of replication patterns 98

xiii

1 INTRODUCTION

1 Introduction

Providers of cloud software services are faced with several decisions regard-
ing the deployment of their software components. The end-users require
require low response time and downtime on the services they use, while the
service providers also have to deal with utilization and power management
of their hardware resources. These facts lead to the need for an analyt-
ical approach for service providers to make decisions about their service
deployment.

The relationship between the service provider and his end-users’ is han-
dled through a Service Level Agreement (SLA), which is a formal contract
including a specification of the services to be delivered and the quality re-
quirements of the delivered services. The quality of service (QoS) require-
ments, specified in an SLA, often include both performance and dependabil-
ity requirements, and to satisfy these, the service provider has to implement
some means. Fault tolerance, through replication of software components,
is often used to ensure service dependability. Replication might also be
used to ensure the appropriate response time of a service, in that a number
of copies of the same software component serves the demand from the end-
users’ at the same time. Thus the service provider needs to make decisions
regarding the replication level of the software components and where to
deploy the replicas.

The energy usage of data centres has increased considerably over the
past few year. Brown et al. (2008) report that the estimated energy con-
sumption of US data centres in 2006 was 61 billion kWh, or about 1.5
percent of the total US electricity consumption. Furthermore, they state
that the energy consumption was more than doubled from 2000 to 2006 and
that it is expected to double again by 2011. Beloglazov et al. (2011) argue
that the increasing energy consumption of computing systems has started
to limit further performance growth, and hence the objectives in computer
system design have shifted from performance improvements to power and
energy efficiency. This means that simultaneously as the service provider
has to ensure that the delivered services satisfies the end-users’ QoS require-
ments, he must focus on energy-efficient management of his data center(s).

1

A strategy used to minimize the power consumptions in a virtualized data
center is to consolidate the virtual machines, running the services, on a
minimum set of physical computing nodes, in order to turn off some of
them. However, due to variability in service demand, this might lead to a
situation where some virtual machines might not get the required amount of
resources, which lead to decreased performance and higher response times.
Hence, cloud service providers faces a trade-off between power efficiency
and performance (Beloglazov et al., 2011).

With the advent of the cloud computing paradigm, the deployment de-
cisions of a service provider does not only involve decisions about on which
physical nodes in his own data center the software components should be
deployed. In fact, Cloud computing gives the service provider the oppor-
tunity to deploy his services in other, public data centres, denoted public
clouds, as well. Cloud computing is an internet technology allowing for on-
demand resource scaling, aiming at increasing the utilization of computing
resources. Several firms are already investing large amounts of money in
data centres, where service providers and other companies can lease hard-
ware and network resource. Amazon is, through Amazon Elastic Compute
Cloud (EC2), providing a web service where users can acquire computing
capacity on demand (Amazon EC2 website, 2011). Of course, there are still
security and trust issues involved when deploying software in a public cloud,
and a lot of research is done regarding these concerns, but, despite the secu-
rity issues, the usage of public clouds are becoming more and more popular.
The attractiveness of Cloud computing lies in the on-demand resource scal-
ing properties, and this is especially attractive for service providers that are
providing a service with varying demand. Such service providers need to
install enough hardware to make their service handle demand peaks, which
would imply that a lot of hardware resources are idle at times with low
demand. Besides, the usage-based pricing model of Cloud computing may
be tempting. Thus when considering the possibilities that Cloud comput-
ing bring forward, a service provider needs to determine whether or not to
lease resources in a public cloud, and if he decides to do so, he must make
a decision about which software components that should be deployed in his
own data center and in the public cloud.

2

1 INTRODUCTION

Up to now, I have describes some of the tactical decisions a provider of
cloud software service will need to make. In a longer time horizon a ser-
vice provider has to make strategic decisions related to investment in data
center infrastructure and, of course, decisions related to his service portfo-
lio. Taking into account the cloud computing paradigm, a service provider
might decide to scale down his investment in hardware, and instead spend
more money on leasing hardware resources from public cloud providers.

However, the focus in this thesis will be on the tactical and operational
decisions faced by a service provider, and in this regard, the decisions re-
lated to the replication level of the services and the deployment of the
resulting replicated services components. Two mixed integer linear pro-
gramming (MILP) models are developed in order to support the decision
making, where the first MILP only considers deployment in the service
providers virtualized data center, whereas the second takes into account
the opportunities to deploy services in a public cloud, as well. The replica-
tion level decisions are based on both principles from queueing theory and
reliability block diagrams, and in order to deliver a service corresponding to
the SLA requirements of the end-users, the virtual machines, running the
replicated service components, are assigned a dedicated amount of resources
on the physical infrastructure. The objective in the first MILP model is
to minimize the power consumption, while ensuring an appropriate service
quality. As the second MILP model introduce possibilities for deployment
in a public cloud, the total cost of deployment, including cost of energy
usage in the service provider’s data center(s) and cost of using public cloud
infrastructure, is sought minimized.

The goal in this work is then to construct MILP models which can be
used to support service providers in their decision making, both regarding
the replication level and the deployment architecture of the resulting repli-
cas, and thereafter test the models in order to discuss their applicability
and adequacy. This thesis will also challenge the trade-off between power
consumption and performance, through a set of submodels.

The outline of the thesis is as follows: Next, in Section 2, I will give
an overview of the concepts of Cloud computing. Section 3 describes the
drivers of power consumption in data centres and presents a relationship be-

3

tween the power usage and the utilization of the servers’ central processing
unit (CPU). Thereafter, Section 4 details the concepts of service perfor-
mance and dependability and give an introduction to analytical models for
quantifying the response time and availability of ICT systems. These first
sections aim to present the necessary background and methodology in order
to understand the proposed mathematical programming models. Section 5
gives an overview of related work on Service Deployment Problems (SDP),
mainly focusing on approaches regarding performance and energy efficiency
in distributed systems, like Clouds. Suddenly, in Section 6 the service de-
ployment problems considered in this thesis are presented together with the
MILP models, while Section 7 considers the implementation of the models
in commercial software and presents and discusses the numerical results
obtained. Lastly, Section 8 concludes my work and Section 9 draw lines of
future work.

4

2 OVERVIEW OF THE CLOUD COMPUTING CONCEPTS

2 Overview of the Cloud computing concepts

Cloud computing is the most recent computing paradigm which promises to
deliver computing as the fifth utility, after water, electricity, gas and tele-
phony, over the Internet. As the cloud computing model still is an evolving
technology, its definition is also still evolving. The current definition of
Cloud computing by the National Institute of Standards and Technology
(NIST) is: a model for enabling convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and re-
leased with minimal management effort or service provider interaction (Mell
and Grance, 2009). The service provider is in this context the provider of
a service that potentially uses the infrastructure provided by the Cloud
to provide its service. The idea of cloud computing is then to make the
network of resources, as well as the management of the resources, hidden
from the service provider or end-user, thereby letting the resource pool be
viewed as a cloud. It is often assumed that Cloud computing is continuing
the earlier paradigm shift from mainframes to client-server models. How-
ever, Voas and Zhang (2009) points out that the cloud computing paradigm
might also seem to return to the original mainframe paradigm, where in
the latter, simple terminals were connected to powerful mainframes shared
by many users. Likewise, comparing the PCs of today with the powerful
Internet cloud, the PCs seem like lightweight terminals.

Virtualization is one of the key enablers of Cloud computing (Wang
et al., 2008), as virtual machines (VMs) gives the possibility to run several
virtual servers on a physical server, and thereby letting several software
applications utilize the same hardware. In this respect, the number of
physical machines can be reduced, and the economies of scale become more
prominent. Besides, VMs isolates the software running on a VM from other
VMs running on the same physical machine and the physical machine itself.
This is advantageous, in that if a VM on a physical machine fails because of
a fault in its running software, the fault is not affecting other VM instances
on that physical machine (Rosenblum, 2004).

5

2.1 Service models in Cloud computing

2.1 Service models in Cloud computing

NIST defines three service models for Cloud computing (Mell and Grance,
2009): Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and In-
frastructure-as-a-Service (IaaS). In the SaaS service model cloud-users are
delivered software applications over the Internet. This eliminate the need
for the cloud-users to install and run applications on their own comput-
ers, facilitating management and maintenance. Examples of such a ser-
vice model are Google Docs, Salesforce.com and webmails like Gmail and
Hotmail. In the IaaS service model the cloud-user is provided fundamen-
tal computing resources like processing power, storage and network, onto
which the cloud-user can deploy and run own software, including operat-
ing systems and applications. The cloud-user does not manage or control
the underlying infrastructure, and the service model thereby simplifies the
management of the cloud-user’s service provisioning. Examples of this ser-
vice model include Amazon Enterprise Compute Cloud (EC2) (Amazon
EC2 website, 2011) and Ubuntu Enterprise Cloud (Wardley et al., 2009).
The PaaS model lies between the SaaS and IaaS service models, as it pro-
vides the cloud-user not only computing resources but also software servers
and application environments, onto which the cloud-user can deploy own
applications. Examples of PaaS are Google AppEngine and Force.com.

2.2 Cloud deployment models

Furthermore, when considering cloud deployment models, NIST distin-
guishes between four different types of clouds (Mell and Grance, 2009).
Private clouds are clouds where the cloud infrastructure is operated solely
for a single organization, by the organization itself or a third-party. In a
community cloud, the infrastructure is shared by several organizations. Or-
ganizations that in common employ this cloud model often have a shared
mission or shared requirements related to security. On the other hand,
public clouds are clouds where the infrastructure is available to the general
public and is owned by an organization selling cloud services, denoted a
(public) cloud provider. Lastly, hybrid clouds are a composition of two

6

2 OVERVIEW OF THE CLOUD COMPUTING CONCEPTS

or more clouds, that are bound together by some sort of technology that
enables data and application portability. That is, the VMs have to be
packaged in a standardized format to allow for dynamic movement between
clouds. The Amazon Machine Image format (Amazon EC2 website, 2011)
can be used for this purpose as it is supported by other cloud solutions as
well, e.g the Ubuntu Enterprise Cloud. In such a way, a service provider
running a private cloud based on the Ubuntu Enterprise Cloud would be
able to dynamically deploy VMs, according to the demand for his services,
into the public Amazon EC2 cloud. The last MILP model presented in this
thesis is based on a hybrid cloud environment.

2.3 Cloud security

Considering the security concerns arising with usage of public clouds, Arm-
brust et al. (2010) points out that the users face security threats both from
outside and inside in the Cloud. Many of the outside threats are similar to
those already threatening large data centres. In an IaaS cloud, the cloud
user is responsible for application-level security, while the cloud provider
is responsible for the physical security. The authors emphasize that the
responsibilities of the cloud user may be outsourced, to a third party who
sell speciality security services, with ease because of the homogeneity and
standardized interfaces of platforms like Amazon’s EC2. In such a man-
ner, Cloud computing might make the handling of security threats from
the outside easier. On the other hand, Cloud computing introduce the
new problem of threats from the inside, where the cloud providers must
guard against attacks from the users, and thus protect the users from each
other. Another aspect of cloud security is the legal matters that may follow.
Kaufman (2009) ask questions related to the legal concerns emerging when
personal information is stored in the clouds, for example; who has jurisdic-
tion over data as it flows across borders, and can governments access that
information as it changes jurisdiction? She states that these questions can
not be answered by the usage of current laws, and that resolving these con-
cerns will take years if the past decade of attempts of making the current
laws fit into the internet world is used as a standard.

7

2.4 Cost models in public clouds

2.4 Cost models in public clouds

Many public cloud service providers (e.g. Amazon) have adopted at pricing
scheme that let the customers pay for only the actual usage of their appli-
cations. For many businesses and organizations this pay-as-you-go model
may seem attractive since the businesses do not need to invest in infras-
tructure, but instead utilize the economies of scale of the cloud providers
and lease computing resources. Thereby, they are turning capital expenses
to operating expenses. There are also other economic benefits of Cloud
computing, as stated by Armbrust et al. (2010). They argue that elastic-
ity and transference of risk, especially risk of underprovisioning and risk
of overprovisioning, are important economic benefits of Cloud computing.
Furthermore, they state that this transference of risk also outweighs even-
tual loss occurred if the pay-as-you-go pricing was more expensive than
buying and depreciating a comparable infrastructure (e.g. server) over the
same time period. The cost structure of the pay-as-you-go model in public
clouds vary among the different cloud IaaS providers, but they have some
similarities listed below1:

• Deployment costs, i.e. the costs of running a VM instance per time
unit,

• Communication costs, i.e. costs per gigabyte transferred in and out
of an instance,

Besides, some public cloud IaaS providers charges extra cost for hourly
usage of load-balancers and extended monitoring services. In addition, this
on-demand pricing scheme, Amazon AWS is offering long term contracts
to its customers, where VM instances are reserved for one or three years
against a one-time payment. This scheme leads to lower hourly costs for
the cloud-users. In the models in this thesis, the focused pricing scheme
in the public clouds is the on-demand model, and furthermore the models
only take into account the hourly costs of deploying VM instances and not
the communication costs. The latter cost component is left for future work.

1The cost structure presented here is based on (Amazon EC2 website, 2011),
(Rackspace Cloud hosting website, 2011) and (GoGrid Cloud hosting website, 2011)

8

3 POWER CONSUMPTION IN DATA CENTERS

3 Power consumption in data centers

As already stated, the data centres world wide currently consume a notice-
able amount of the total electricity consumption, and hence a potential area
of cost reduction for data center managers and service providers is by im-
plementing energy-efficient management of their infrastructure resources.
The focused infrastructure of data centres in this thesis is the physical
servers constituting the data centres, and hence I will in this section give
an introduction to the current drivers of power consumption in data center
servers and a relationship between power consumption of servers and the
CPU utilization.

Beloglazov et al. (2011) give an overview of the sources of power con-
sumption in a data center and a survey of the research done in the area of
energy-efficient management of data center resources. Minas and Ellison
(2009) in Beloglazov et al. (2011) present data indicating that main part
of power consumption in servers is the CPU, followed by the power supply
unit (PSU) efficiency loss and the memory. The distribution of power con-
sumption between the components of server is shown in Figure 1. In the
figure it is seen that the CPU is not dominating the total power consump-
tion, as was the case in earlier servers. Beloglazov et al. (2011) state that
this is due to the improvement of the CPU power efficiency, and especially
the advent of low-power modes. As a result of this, current CPUs consume
only 30 percent of their peak power consumption at idle times. Although
the idle power consumption of CPUs is decreasing, other components in the
server are still power inefficient in idle state, and thus an idle server might
still consume more than 70 percent of the peak power (Beloglazov et al.,
2011).

Fan et al. (2007) presents a relationship between the CPU utilization
and the total power consumption by a server, and they show that this
relationship can be expressed linearly as in (1).

p(u) = Pidle + (Pbusy − Pidle)u (1)

p(u) represents the total power consumption as a function of the CPU uti-
lization, u, Pidle refers to the power usage when the server is idle, while

9

Figure 1: Power consumption by the components of a server (Minas and Ellison, 2009
in Beloglazov et al., 2011)

Pbusy is the power usage of the server at peak load. Figure 2 shows the
measurements done in (Fan et al., 2007), together with the linear model
in (1) and an empirical non-linear model that more closely fits the mea-
surements. The empirical non-linear model uses a calibration parameter r
which minimizes the squared error. The authors report that r is set to 1.4.
Beloglazov et al. (2011) state that extensive experiments have shown that
the models predict the power consumption with an error below 5 percent
for the linear model and below 1 percent for the empirical model. In the
mathematical programming models presented in Section 6, the linear rela-
tionship in (1) is applied in order to quantify the power consumption of the
servers in a data center.

Beloglazov et al. (2011) argue that the main reason for power ineffi-
ciency in data centres is due to the low utilization of the servers, but also
acknowledge that there is a trade-off between power efficiency and service
performance. This is because modern service applications cannot be run
on fully utilized servers as small fluctuations in demand may then lead to
performance degradation. Barroso and Hölzle (2007) report two key obser-
vations related to the utilization of data center servers. They state that
servers are rarely kept idle or fully utilized. Instead servers operate often
between 10 percent and 50 percent of their maximum capacity.

10

3 POWER CONSUMPTION IN DATA CENTERS

Figure 2: The measured relationship between total power consumption of a server and
the CPU utilization (with error bars) compared with a linear model and an empirical
model (r = 1 of the relationship (Fan et al., 2007)

Moreover, Beloglazov et al. (2011) distinguish between two techniques
to dynamic power management on the hardware level in data centres. The
first technique lets servers be turned off or enter a low-power state in periods
of inactivity, in order to eliminate the power consumption of having idle
servers turned on, cf. equation (1). Benini et al. (2000) state that this
technique comes with a drawback, in that the transitions from a low-power
state to the active state might cause delays and additional power usage.
Another idea, instead of turning servers off, is to decrease or increase the
clock frequency and the supply voltage according to the demand. This
idea is adopted in the Dynamic Voltage and Frequency Scaling (DVFS)
technique. The models in this thesis will apply the former of these two
techniques, but as the models only considers a single time period, switching
costs of turning servers on and off are not regarded.

11

4 Service performance and dependability

This section will give an overview of the service performance and depend-
ability concepts used throughout this thesis. But firstly, I will give a defi-
nition of the service notion used throughout this thesis, and a brief intro-
duction to service level agreements, the formal contract between a service
provider and its end-user.

4.1 Service definition

A service in this thesis is defined as an aggregation of different subsys-
tems, denoted as components. These components are software modules,
collaborating in order to deliver the specified service to the end-users. The
partitioning of services into components can be done on different levels. In
this thesis the components reflect the various types of servers that is needed
for service delivery, e.g. web servers, database servers, application servers,
authentication servers or authorization servers. I assume that the different
components of a service not necessary are deployed on the same physical
server infrastructure, and thus I treat the services as distributed services.
A typical architecture of a distributed service is the three-tier model, where
one distinguishes between the presentation tier, the logic tier and the data
tier. The presentation tier handles interactions with the end-users directly,
while the logic tier evaluates the clients requests and processes data be-
tween the presentation tier and the data tier. The information is stored
in the data tier (e.g. database server). Web applications is often modelled
using this three-tier model, where the presentation tier represents the web-
server the client is directly connecting to. Other architectures of distributed
services includes n-tier models and peer-to-peer models. Figure 3 shows an
example of a simple web service modelled using the three-tier model.

In addition to the distinction between the service notion and the com-
ponent notion, the components might be replicated in order to increase the
performance and dependability of the service. This means that a compo-
nent can be viewed as being composed of a set of replicas. Replication of
components will be explained in more detail in sections 4.3.3 and 4.4.3.

12

4 SERVICE PERFORMANCE AND DEPENDABILITY

Figure 3: Example of a three-tier model that consist of a web-server (tier 1), an appli-
cation logic (tier 2) and a database (tier 3).

4.2 Service level agreements

A service level agreement (SLA) is a negotiated contract between the service
provider and the end-users of the service. Emstad et al. (2008) states that
an SLA may include:

• a description of the service or the set of services that is to be delivered
to the end-user,

• the quality of service (QoS) parameters of the service, and how they
are measured and the tolerance levels they are to be kept within,

• the amount of traffic the user can transmit, and

• the consequences the service provider faces if the QoS parameters
exceed the tolerance levels

In their description of SLAs and QoS, Emstad et al. (2008) define QoS
as the degree of compliance of a service to the agreement that exists between
the user and the provider of this service. There exist several interpretations
of the QoS notion, and ITU-T (1994) defines it as the degree of satisfaction

13

4.3 The performance concept

of a user of the service. This definition is more related to the experience
of the end-user, and the definition of Emstad et al. (2008) may fit better
in an engineering context where a system is to be dimensioned to meet
the requirements of the end-users. I will therefore use the first of these
two definitions of QoS in this thesis. Furthermore, Emstad et al. (2008)
describes a QoS parameter as a random variable characterizing the service,
and such variables include both performance and dependability metrics.

In the next two subsections I will elaborate on the concepts of service
performance and dependability, and touch the techniques used in this thesis
to quantify the performance and dependability of a service. For now, the
two concepts will be treated separately, although they are tightly coupled.
In Section 6, they are joined in order to make proper decisions on the
dimensioning of the services.

4.3 The performance concept

Performance, in the context of ICT-systems, is defined as the ability of a
system to provide the resources needed to deliver its services(Emstad et al.,
2008). Hence, if a service provider is to provide a service with high per-
formance to its end-user, the service components need to have access to an
amount of resources that corresponds to the demand. Now, I will present
the focused performance metric, and next, give a brief description of an
analytical model used to quantify this metric.

4.3.1 Performance metrics

There exist several metrics for quantifying the performance of a service,
including throughput, the portion of system capacity that is utilized by the
users, and various system times. The system times comprise the waiting
time, the time a service request is pending for service in the system; the
service time, the time a service request is served by the system; and the
sum of the two preceding, the sojourn time, the total time a service request
stays in the system (Emstad et al., 2008). Menasce and Almeida (2001)
define the response time of service as the sum of the sojourn time and the

14

4 SERVICE PERFORMANCE AND DEPENDABILITY

network latency, including protocol overhead and transmission delay. In
the models presented in this thesis, I focus on the response time metric
rather than the throughput, and furthermore, I do not model the network
latency. Thus I treat response time and sojourn time as the same quantity.

4.3.2 Response time calculation

The focused analytical models for calculation of the response time in this
work is queuing models, based on birth-death processes. I will not go deep
into the queuing theory concepts, but rather touch the concepts used in
the replication level decisions in the service deployment models, presented
in Section 6. There are written several books about queueing theory, and
this section is based on the works of Emstad et al. (2008) and Zukerman
(2010).

From the definition of a service, we have that a service is composed of
several collaborating components. Hence I choose to view a service as a
queueing network. For simplification, I assume that the queueing network
is acyclic, that is, a service request is not being processed in the same com-
ponent more than one time. Simultaneously, I assume that the the arrival
process is Poisson, the service time is negative exponentially distributed
and there is infinite buffer space, such that the network is made of Marko-
vian queues without loss. When this is the case, Burke’s theorem yields
that the departure process of a queue, in steady state, is also Poisson, and
hence, the arrival rate equal the departure rate.

In order to calculate the response time, or sojourn time, of a service, it
is first necessary to calculate the response time of each component. Using
Kendall’s notation, if the component is treated as an M/M/1 queue, with
a given arrival rate λ and an expected service time of 1/µ, the expected
response time, E[T] is given as

E[T] = 1
µ(1− ρ) = 1

µ− λ
(2)

where ρ = λ/µ is referred to as the utilization. For an M/M/1 queue the
utilization must take a value in the interval [0, 1) to be considered stable.

15

4.3 The performance concept

0 1 2 3 4 5 6 7 8 9 10

Arrival rate (req/s)

0

500

1000

1500

2000

2500

R
es

po
ns

e
tim

e
(m

s)

Response time (ms)

Response time as a function of utilization

Figure 4: The response time curve of an M/M/1 queue for values of λ between 0 and
9.5 request per second and µ = 10 requests/sec.

Figure 4 shows the relationship between the response time, in an M/M/1
queue, and the arrival rate, λ, given an excepted service time. In the
figure, the values of λ range from 0 to 9.5 requests per second and the
service rate µ equals 10 requests per second. As illustrated, the response
time increases dramatical when the utilization passes a certain threshold,
and this threshold is referred to as the ”knee of the curve”.

If the component is treated as an M/M/k queue, with a given arrival
rate λ and an expected service time of 1/µ, the expected response time,
E[T] is given as

E[T] = 1
µ(k − ρ)(P (W > 0) + k − ρ) (3)

where P (W > 0) is the probability of waiting, which for the loss-less sys-
tems considered here is given by Erlang’s C-formula. The stability condition
of an M/M/k queue is given by ρ < k.

The calculation of the total time a request spends in an acyclic queueing
network, i.e. the service response time, can be done using Burke’s theorem

16

4 SERVICE PERFORMANCE AND DEPENDABILITY

and (2) and (3). In fact, the expected response time of a service is the sum
of the expected response time in each component. Given that a service is
composed of a set, Q of components, viewed as |Q| M/M/1 queues, and
the request arrival rate into each component, q ∈ Q, is λq and the expected
service time of a request in each component is µq, then the expected service
response time is

E[TSERV] =
∑
q∈Q

E[Tq] =
∑
q∈Q

1
µq − λq

(4)

4.3.3 Replication to increase performance

Out of equations (2) - (4) and Figure 4 we can see that it is important to
keep the ratio between λ and µ low in order to obtain a good response time.
This means that the components need to be assigned or have access to an
amount of resources (eg. CPU power) that corresponds to the demand, i.e.
keep the utilization below the knee of the curve. One way of keeping the
utilization on a tolerable level, is by letting several identical components
serving the demand. These identical components, all serving demand, are
often termed active replicas, as opposed to passive replicas, which will be
elaborated in the next section. In such a case a load-balancer can be used
distribute the requests to the active replicas in a round-robin or totally
random fashion. This approach will lower the utilization of each replicated
component, and hence increase the performance through better response
times.

4.4 The dependability concept

Dependability is defined as the trustworthiness of a system such that re-
liance can justifiably be placed on the service it delivers (Laprie et al., 1992).
The goal of this part is to point out which types of means that can be used
in order to achieve the required degree of trustworthiness. To be able to
do this, one must first understand what is causing a system to not being
trustworthy and how trustworthiness can be quantified.

17

4.4 The dependability concept

4.4.1 The dependability tree

The causes of an untrustworthy system is grouped into a notion termed
threats, and the quantification of trustworthiness is done through a set of
dependability attributes. The relationship between this threats, attributes
and means can be illustrated by a tree, commonly known as the dependabil-
ity tree. The dependability tree is shown in Figure 5. The next paragraphs
will give an overview of the relevant concepts of threats, attributes and
means.

Figure 5: The dependability tree, illustrating the connection between the dependability
concepts: threats, attributes and means (Avizienis et al., 2001)

Threats

The threats to dependability are defined as failures, errors and faults. Fail-
ures are defined as the transition from correct service delivery to incorrect
service delivery. An error is defined as the part of a system state which is
liable to lead to failure. Lastly, a fault is defined as the adjudged cause of
an error(Laprie et al., 1992). Faults, errors and failures can be expressed
as a sequence of events. Faults may lead to errors in the internal state of
the system. This error can in turn lead to a failure, i.e. an event that
makes the system deliver an incorrect service. Furthermore, failure in one
(sub)system can be the cause of a fault in another (sub)system. There

18

4 SERVICE PERFORMANCE AND DEPENDABILITY

are several types of faults that can incur in a system, and Avizienis et al.
(2004) groups them into development faults (eg. software bugs), physical
faults, i.e. faults affecting hardware, and interaction faults, which include
all faults that have been propagated into the system by interaction with
another faulty system.

Attributes

To quantify dependability there is defined different attributes that describe
the properties of a system. Two of these attributes are availability and
reliability. The reliability of a system is defined as its ability to provide
uninterrupted service, and it is quantified by, for example, the mean time
to first failure. On the other hand, the availability of a system is its ability
to provide a set of (correct) services at a given instant of time. Measures of
availability are, for example, the mean uptime of a system and the asymp-
totic availability (Helvik, 2007). The chosen dependability attribute in the
subsequent models is availability, quantified using the asymptotic availabil-
ity, i.e. the probability that a system is working at a randomly chosen
time in the future. An analytical model for quantifying the availability of
a service is given in section 4.4.4.

Means

When developing a dependable system there are four techniques, or means,
that can be utilized. These means are:

• Fault prevention: how to prevent the occurrence or introduction of
faults

• Fault tolerance: how to provide a service complying with the spec-
ification in spite of faults

• Fault removal: how to reduce the number and severity of faults

• Fault forecasting: how to estimate the present number, the future
incidence, and the likely consequences of faults

19

4.4 The dependability concept

Fault prevention and fault removal is closely related and can be grouped
into a concept named fault avoidance, i.e. how to aim for fault-free systems
(Avizienis et al., 2004). Both fault avoidance and fault tolerance techniques
may be used to meet the dependability requirements of a system, and the
use of one of them does not exclude the other. A balanced usage of both
approaches is necessary (Helvik, 2007).

Fault tolerance is the only of this means that will be used explicitly
in the modelling of distributed services in the MILP models in section,
but the other means are included here to bring a simple overview over the
dependability concepts. A deeper description of fault tolerance will be given
in the next subsection.

4.4.2 Fault tolerance

In fault tolerance, the basic principle is that a fault is allowed to produce
an error, but the error is not allowed to cause a failure. Hence, the aim of
fault tolerance is to avoid failures in spite of faults. To prevent errors from
causing a failure it is necessary to detect the errors and either removing
them or compensate for the errors by introducing enough redundancy to
enable the delivery of an error-free service from the erroneous state. The
design of a fault tolerant system is dependent on which classes of faults
that the system should tolerate (Avizienis et al., 2004).

Gärtner (1999) has done two observations regarding the fault tolerance
of distributed systems. The first observation yields that no matter how well
designed or how fault tolerant a system is, there is always a possibility of
a failure if faults are too frequent or too severe. The second observation is
that to be able to tolerate faults, one must employ a form of redundancy.
Helvik (2007) defines redundancy as the addition of resources in the form
of hardware, software, information or time beyond what is needed for nor-
mal provision of system services. The service models in this thesis will
only explicitly employ redundancy in terms of additional subsystems, i.e.
replication of service components.

20

4 SERVICE PERFORMANCE AND DEPENDABILITY

4.4.3 Replication for fault tolerance

There exists different approaches to redundancy of software systems, and
there is distinguished between modular redundancy and standby redun-
dancy (Helvik, 2007). Only the latter one is regarded here. In order to
explain a the standby redundancy approach, consider a service consisting
of one component that is replicated through three active replicas in order to
fulfill the response time requirement (cf. Section 4.3.3). Let us assume that
the service complies with the response time requirement if and only if three
or more replicas are active at the same time. In such a case, if a replica
fails and the response time raises to an intolerable level, the end-user will
not consider the service as available. This lead to the need for some extra
replicas that could take over the service delivery in case of a failure in one
of the active replicas. I refer to these replicas as passive replicas, since they
remain passive until a failure occurs.

Standby redundancy is divided into different classes according to the
degree of updated state information in the passive replicas, compared to
the active replicas. One distinguishes between cold or lukewarm standbys,
where the passive copies have no or little state information; and hot stand-
bys, where the passive copies have an updated or almost updated version
of the state space of the active. Hot standbys will require a higher commu-
nication frequency than cold standbys in order to keep the state updated.
Letting the passive replicas having highly updated state information is ad-
vantageous for services that require short interruption in service delivery, as
higher updated state often means shorter failover delay, i.e. the time when
a failure occurs until a passive replica is ready for service delivery. The
replicated service components modelled in this thesis is assumed employing
hot standby redundancy.

When applying a redundancy approach it is important to ensure that
the deployment architecture of the replicated components does not lead to
a situation where replicas fail dependently of each other, i.e. a failure of
one replica should not imply that another replica fails. Hence, if a standby
redundancy scheme is used to make the service components able to de-
liver correct service despite potential hardware faults, then two replicas of

21

4.4 The dependability concept

the same software component should not be placed on the same physical
hardware. This deployment constraint is referred to as node-disjoint de-
ployment. Domain-disjoint deployment is another term, which state that
replicas of the same component is to be deployed in different clusters, or
domains, of physical machines. Such a deployment constraint is a means
to increase the availability related to link failures and failures in the man-
agement systems controlling a cluster.

4.4.4 Availability calculation of replicated services

The purpose of this subsection is to show how replication affect the avail-
ability of a service. Hence, in the subsequent availability calculations, the
failures related to the physical machines, the communication links or any
other systems, other than the replicated service components themselves,
are not taken into account.

Regarding the definition of a service presented earlier, we have that a
service consists of a multiple of components. In order to simplify the cal-
culations of the availability of a service, I assume that the components fail
independently of each other, and that the restoration time of a component
is independent of whether other components have failed. Furthermore, I
assume that the asymptotic availability of a component is known. When
these assumptions are taken it is possible to compute the availability of a
service by using the asymptotic availability of each component constituting
the service. This approach is called reliability block diagrams. Helvik (2007)
gives a nice presentation of this approach and the theory below are based
on his book.

The reliability block diagram approach uses the structure of a system,
here service, as a basis for the analysis. In my case, each of the components
of a service is called a reliability block, and together they form a series
structure. Figure 6 shows a simple service with three components in a
series structure.

A service modelled as a series structure fails if one of its components fail,
and hence, the asymptotic availability of the service is given by the product
of the asymptotic availabilities of each component. Using the example of a

22

4 SERVICE PERFORMANCE AND DEPENDABILITY

Figure 6: Reliability block diagram: series structure of service composed of a web server,
an application logic and a database server, with asymptotic availability Aw, Aa and Ad,
respectively.

3-tier service in figure 6, the availability of the total system is given by

ASERV = AwAaAd (5)

where Aw, Aa and Ad is the availability of the web server, application logic
and database server, respectively. Generalizing the formula for a service
consisting of a set of components, Q, where component q has availability
Aq, gives the following:

ASERV =
∏
q∈Q

Aq (6)

Since the asymptotic availability is the probability that a system is
working in a randomly chosen time in the future, the availability of each
component takes a value between 0 and 1. Therefore, the total availability
of a series system is upper-bounded by the availability of the component
with the lowest availability.

As stated above, I introduce redundancy in order to make the system
fault tolerant and increase the availability. Figure 7 shows a reliability
block diagram of the same service as in Figure 6, but now employing re-
dundancy in each component. For the sake of adding another dimension to
the calculations, I say that the web server need to have two active replicas
in order to serve the requests from the end-users with a tolerable response
time, while the other two components only have one active replica each. In
order to increase the availability of the total service, the web server and the
application logic has one passive replica each, whereas the database server
has two passive replicas, in case of failures.

23

4.4 The dependability concept

Figure 7: Reliability block diagram: complex structure of service composed of replicated
web servers, replicated application logics and replicated database servers, with asymptotic
availability Aw, Aa and Ad, respectively. The shaded blocks represent active replicas,
while the non-shaded represent passive replicas

A component having one active and a number of passive replicas is said
to form a parallel structure, and in Figure 7 the application logic and the
database server form parallel structures. A component having k active and
n − k passive replicas (k ≤ n) is termed a k-out-of-n structure, and the
web server in Figure 7 is said to have a 2-out-of-3 structure. A k-out-of-n
structure is in fact a generalization of a series and parallel structure, since
setting k = n gives a series structure and setting k = 1 and n > k gives
a parallel structure. In order to calculate the availability of the service in
Figure 7, we firstly calculate the availability of each component and then
use (6) to calculate the total availability. Computation of the availability
of a component, q, forming a k-out-of-n structure, hence also series and
parallel structure, is done as follows:

Ak−out−of−nq =
n∑
j=k

(
n

j

)
Ajq(1−Aq)n−j (7)

(6) and (7) gives the following formula for calculating the total asymp-
totic availability of a service:

ASERV =
∏
q∈Q

nq∑
j=kq

(
nq
j

)
Ajq(1−Aq)nq−j (8)

24

4 SERVICE PERFORMANCE AND DEPENDABILITY

where nq is the total number of replicas of component q and kq is the
number of active replicas of q. Formula (8) together with (4) can be used
in the decision making related to the number of active and passive replicas
of the service components, and these decisions will be elaborated in Section
6.

25

5 Related work on service deployment problems

This section will present some work done in the area of service deployment,
scheduling or resource optimization and approaches to power management
in data centres, and focuses mainly on approaches done with exact solu-
tion methods. Most of the reviewed work takes into account performance
aspects, in different manners, while a few only considers energy-efficient
management of data centres.

Xiong and Perros (2006) proposes an approach for resource optimiza-
tion in the computing environment of a service provider. The problem to
be solved consists of minimizing the cost of computer resources allocated
to high- and low-priority customers, while satisfying the customers’ SLA
requirements. The authors emphasize that using a statistical bound of
the response time as an SLA metric is more meaningful for the customers
than using the mean response time, which is typically used in literature.
The authors use queueing theory for quantifying the response time and
derive Laplace-Stieljes transforms (LST) of the response time distribution
for high- and low-priority customers, and they present two algorithms for
solving the resource optimization problems.

Hermenier et al. (2009) present solution procedures for dynamically al-
locating tasks (VMs) to nodes in clusters and creating reconfiguration plans
for migration of the VMs, using constraint programming. The first problem
is referred to as the Virtual Machine Packing Problem (VMPP), and has
the objective of minimizing the number of nodes used, in order to same
energy, while ensuring that each VM has access to sufficient memory and
CPU power. The resulting problem formulation is a multiple knapsack
problem, and it is solved using dynamic programming. The second prob-
lem, denoted the Virtual Machine Replacement Problem (VMRP), creates
a reconfiguration plan for each possible configuration using the number
of nodes determined by the VMPP and chooses the one with the lowest
migration costs, i.e. the cost of moving a VM from a node to another.

Van den Bossche et al. (2010) introduce a BIP model that is used to
deploy a set of applications, in a hybrid cloud environment, while minimiz-
ing the total costs of the service provider for executing the applications.

26

5 RELATED WORK ON SERVICE DEPLOYMENT PROBLEMS

The cost of executing an application consists of data traffic costs and the
costs of resource consumption in the public clouds, and each application
consists of different tasks with deadline constraints. The private clouds are
capacitated in terms of CPU power and memory, and hence tasks must
be outsourced if there is not free capacity in the private clouds, such that
the deadline is achieved. It shows that runtime of the BIP in the hybrid
cloud environment increases dramatically when the number of applications
are increased, and the authors propose development of custom heuristics in
future research.

Speitkamp and Bichler (2010) present an algorithm on a problem de-
noted the Static Server Allocation Problem (SSAP), which basically con-
sists of finding mappings between services and capacitated physical ma-
chines, and minimize the cost of the physical machines needed. The au-
thors state that the SSAP is strongly NP-hard, even when only one type
of resource is considered, and all servers have the same cost and capacity.
They also extend the problem to include time variable workload and con-
straints, including the maximum number of services to deploy on a server
and constraints stating that a subset of the services have to be deployed
on different physical servers. On problems with identical physical servers,
the authors propose to reduce the number of equivalent solutions by differ-
entiate the cost of physical servers by a small amount. For the extended
SSAP they propose an heuristic algorithm, consisting of two phases, where
the first phase solves the LP-relaxation of an original MIP formulation and
the second phase find an integral assignment of those services that were
fractionally assigned in the first phase. This heuristic is compared with
branch-and-bound, and additionally, the author compute a lower bound on
the number of servers, in order to compare the solution time and solution
quality. The authors report that he algorithm allowed them to solve large
problem sizes within minutes, with good solution quality.

Petrucci et al. (2010) have taken an approach to dynamically manage
the cluster power consumption through a MIP model, where one is to take
decisions about which servers that are active, their respective CPU fre-
quencies and find a mapping between a set of software applications and
the server. The objective of the approach is to minimize power consump-

27

tion while meeting the performance requirements of the applications. The
problem is modelled as a variant of the one dimensional variable sized bin
packing problem, which according to the authors, is known to be NP-hard.
The authors also extend the problem to take into account switching costs
for turning servers on and off and migration costs for changing the applica-
tion deployment configuration from one time period to another. The model
is solved by the use of CPLEX 11, and the authors set a solution tolerance
gap to 5 percent with respect to the optimal solution, in order to allow the
solver to provide acceptable solutions in short amount of time. The authors
report that by setting this optimality gap criteria the approach scales well
for clusters up with 350 servers.

Rao et al. (2010) propose a joint load balancing and power control
scheme for distributed cloud data centres, where load balancing is con-
ducted on the data center level and power control is conducted on the in-
dividual servers, by turning servers on and off and using Dynamic Voltage
and Frequency Scaling (DVFS). The objective in the model is to minimize
the total electricity cost for data centres in a multi-electricity-market envi-
ronment. The decisions in the model includes the number of servers turned
on and the CPU frequency in each data center and the amount of traffic
from a set of web portal servers to the data centres. They model delay con-
straints at each data center by treating a data center as an M/M/n queue,
where n is the number of turned-on servers, and also have a constraint on
the maximum CPU frequency at each data center. The proposed model
is a mixed integer non-linear program (MINLP) and the authors use the
Generalized Benders Decomposition (GBD) for solving the model.

The research presented in this section considers mostly load-balancing
and frequency scaling of the physical servers as a means to achieve good
performance. On the other hand, my work uses replication level decisions
in combination with deployment decisions to achieve the same. I have not
discovered any research considering these decisions jointly, and thus this
thesis might present a novel feature to deployment problems.

28

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

6 Models of the service deployment problems

This section presents two main interrelated Service Deployment Problems
(SDP), which differ with respect to the environment where the services
are to be deployed. Now, there will be given brief description of the two
problems, and then, the underlying assumptions related to the two main
parts of the problem, namely the services and the data centres or clouds,
are specified. Thereafter, some concerns about the replication model is
elaborated, and lastly the two problems are formulated as mixed integer
linear programming (MILP) models.

6.1 The service deployment problems

A deployment, in the context of this work, is mapping between the log-
ical software components, composing a service (cf. Section 4.1), and the
physical machines in a data center. The software components are assumed
packaged in virtual machines (VMs) before being deployed onto the physical
machines, and thus several VMs can be consolidated on the same physical
server. The deployment environment in the first SDP consists of the phys-
ical machines in a single virtualized data center, managed by the service
provider himself. In the second SDP the deployment environment is ex-
tended to include other data centres, available to the general public, i.e.
public clouds, as well, giving the service provider more flexibility in the
deployment decisions. In this case, the data center of a service provider is
referred to as the private cloud, and thus the service provider’s private cloud
forms a hybrid cloud together with the public clouds of IaaS providers.

According to the SLAs negotiated with his end-users, the service provider
is responsible for providing a service that corresponds with the response
time and availability requirements agreed on. In order to so, the service
provider need to make decisions regarding the replication level of his ser-
vices, more specifically, he needs to decide the number of active and passive
replicas of each component constituting a given service. Each of the result-
ing replicas is, as mentioned above, packaged in VMs before being deployed
onto the physical machines, and there is a one-to-one relationship between

29

6.2 Model framework and assumptions

VMs and replicas. As a reason of this the terms replica and VM are used
interchangeably throughout this thesis.

As noticed in Section 3, the applied power management technique focus
on turning of unused nodes, and thus the model includes decisions related
to this, as well. The decisions related to deployment, replication levels
and turned-off nodes need to be taken simultaneously, as all decisions are
affecting the cost of deployment. The cost of deployment are evaluated
through a cost function, and the cost function of the first MILP model
concentrates on the energy usage in the data center of the service provider,
and hence promotes an energy-efficient solution. Furthermore, since the
deployment environment in the second MILP model includes public clouds,
the costs of deploying VMs in those clouds also have to be accounted for,
resulting in a new cost function.

6.2 Model framework and assumptions

6.2.1 Service model

The end-users of a service are assumed to generate demand according to
a Poisson distribution where the average number of requests per second
is known. I assume that a request from an end-user is processed by the
different components of the service in sequence, such that the components
can be viewed as a chain of servers and that the request must processed
in every server before the response is sent back to the end-user. This is in
general not true, but this is done to lower the complexity in the performance
evaluation of the services. Moreover, each request for a service consumes
an average amount of CPU power. The amount of CPU power needed
to handle a service request may vary by the type of component, and is
therefore component-specific. This means that the total demand in CPU
power for a component is known. On the other hand, I have chosen to not
model the demand for memory or storage resources in the models herein,
but implementing this is left for future work. Thus this implies that the
only demanded resource in the system is processing power delivered by the
CPUs on the nodes.

30

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

As stated in Sections 4.3.3 and 4.4.3, components might be replicated
into a number of active and passive replicas, where the active replicas serve
the demand generated by the end-users. In this relation, I assume that the
demand for a given component is equally split between the active replicas
of this component. Furthermore, both active and passive replicas consume
an extra amount of CPU power for processing other task that is not directly
related to the serving of demand. Such tasks include state synchronization
between replicas and other management-related functions.

The average service time of a request being processed in a VM hold-
ing an active replica is known, and the services times are assumed to be
negative exponentially distributed. Corresponding with the average service
time, each VM running an active replica is assigned, or reserved, a fixed,
dedicated amount of CPU power on the physical server where it is deployed.
Naturally, as the demand and service time are not deterministic, the total
amount of CPU power assigned to the active replicas of a component must
be greater than the CPU power demanded by the service requests of the
component, otherwise the queues in the VMs would be saturated. Thus,
with a known demand distribution and a service time distribution it is pos-
sible to calculate the average sojourn time, or response time, of a request,
using the formulas provided in Section 4.3.2.

My definition of a service implicitly promotes the need for some amount
of communication between the components of a service. The models pre-
sented in this thesis neither model this communication as a cost nor as a
bandwidth requirement. Additionally, in reality, the group of replicas of a
component communicates internally in order to maintain an updated state,
but this type of communication is not modelled either. Modelling the com-
munication between collaborating components and internally in a group of
replicas of a component is left for future models.

The availability of the service components is given as the asymptotic
availability, that is the availability when the component is in steady state.
It is assumed that the all replicas of a component have the same availability,
and that the replicas of a component fails independently of each other. In
fact, I assume that a replica fails independently of every other replica in the
system. Besides, I consider the restoration time of a failed replica of being

31

6.2 Model framework and assumptions

independent of the state of other replicas, i.e. there is enough repairmen to
handle a situation where all replicas are failed. These assumptions about no
interdependency of replica failures and restoration times are not completely
realistic, but they significantly simplify the availability computations.

Lastly, even though the second SDP problem allows for deployment of
VMs in several data centres, there might exists bindings on some compo-
nents, stating that the replicas of that component should be deployed in a
specific data center. Such a constraint might, for example, be related to se-
curity concerns, in that a database server, containing private or confidential
information, is only allowed to be deployed in the private cloud.

6.2.2 Data center models

In the first SDP, I only consider a single virtualized private data center as
a possible site of deployment for the VMs running the replicated service
components. In this case I assume that the service provider has full control
over his own data center, and by this I mean that he can decide which
node that is used for deployment of a given replica. The nodes are in the
following models assumed to be homogeneous, meaning that the execution
of a given replica leads to the same usage of processing power, independently
of the node which runs the replica. The nodes in the private data center
is modelled with capacity constraints in terms of CPU power, and since
the nodes are assumed homogeneous, all nodes have the same capacity.
Furthermore, since the communication between service components are not
considered, neither the communication links in the data center nor the
network latency is modelled in the MILP models. Moreover, the nodes are
not assumed totally free of failures, but the node failures are not taken into
account in the computations of the services’ availability. This is done for
simplification. Instead, I forbid two replicas of the same component to be
deployed on the same node.

The second SDP problem adds another dimension to the deployment
problem, by including the option for the service provider to deploy his
replicated components in the cloud data centres of one or several public
IaaS providers. In this case, the service provider does not have control

32

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

over which nodes in the public cloud that runs his services, but he might
have the opportunity to make decisions about which out of possibly many
geographically distributed data centres, herein denoted domains, to run
his replicas. Hence, the problem of the service provider becomes to find an
optimal deployment configuration, where replicas can be deployed internally
on his own managed nodes or in the public cloud. Figure 8 illustrates a
hybrid cloud environment where the private cloud is connected to a public
cloud, consisting of several geographically distributed domains.

Figure 8: A hybrid cloud environment consisting of a private cloud and public cloud.
The domains are depicted by the smaller ellipses, while the physical nodes in the domains
are depicted by black circles. In contrast to the nodes in the private domains, the nodes
are not visible in the public domains.

Deployment of service components in the public clouds is also done
through the use of VM instances. However, different from the deployment

33

6.2 Model framework and assumptions

in the private data center, the VM instances provided by public cloud IaaS
providers come with capacity limits, related to CPU. In order to provide
flexibility to their users, public cloud IaaS providers deliver various types
of VM instances, differentiated by the capacities and cost. Although, there
exist, in reality, possibilities for buying large enough VM instances to run
more than one replica, I prohibit such decisions in my models.

Still, since the communication between the service components is not
regarded, neither the network latency in the public clouds nor the communi-
cation costs are modelled. This means that the network latency, including
the inter-domain latency, is not taken into account in my response time
model. Especially the latter latency component might be of importance in
services with low-latency requirements, but modelling network latency are
left for future work.

Likewise the nodes in the private data center model, the clouds, both
private and public, are not assumed free of failures, but these failures are not
accounted for in the availability computations either. In order to increase
the availability related to failures of clouds, some components may have
requirements on the number of clouds used for deployment of its replicas.

6.2.3 CPU power assignment to passive replicas

In order to make the time from an active replica fails to a passive replica
is ready to serve demand as short as possible, one must ensure that there
is a low probability of having to migrate the passive replica to another
node before it can turn active. A migration might be necessary if there
is not enough CPU power on the node, where the passive replica resides,
in order to let the replica serve demand. There exist several solutions to
overcome this, and I have modelled three different approaches. Firstly,
one might assign each passive replica the same amount of resources as
the active ones, meaning that all replicas could serve demand at the same
time. I call this approach the all-active approach since all replicas are active
and serving demand. Secondly, a more resource-friendly approach could be
taken, which only assigns enough CPU power to serve demand to a fraction
of the passive replicas, and hence I call this fraction of passive replicas as

34

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

semi-active and this approach the semi-active approach. These semi-active
replicas is in the further models not assumed of serving demand unless a
failure in one of the active replicas occurs. Lastly, it would also be possible
to lower the assignable capacity on each node, such that at least one of the
passive replicas deployed on a node can turn active. This last approach is
denoted the capacity-lowering approach. Regarding the second SDP model,
I use the same line of thought when modelling the deployment in the public
cloud domains. Except from the fact that the service provider is not able
to lower the capacity in the data center of an IaaS provider.

6.3 The Service Deployment Problem in a Private Data
Center

This subsection presents and solves a problem which will referred to as the
Service Deployment Problem in a Private Data Center (SDP-PDC). I have
built a MILP model of the problem and implemented the formulation in
commercial software to be able to test the formulation on different test
instances. Comments on the implementation and the numerical results are
given in Section 7.

Notational conventions in the MILP models

To be able to keep the MILP models presented in this section easy to read,
I use the convention where parameters are written with a uppercase letter,
the variables are denoted by a lowercase letter and the sets are denoted by a
uppercase letter in calligraphic font. The indices are written with subscript
letters in lowercase. In addition to this, the parameters and some variables
and sets, are written with a number of extra subscript uppercase letters.
Lastly, all constraints are depicted by having all variables on the left-hand
side of the sign.

6.3.1 Problem definition

The problem is composed of three main decision problems, namely deci-
sions related to the replication level of each of the service components,

35

6.3 The Service Deployment Problem in a Private Data Center

the decisions related to the deployment of these resulting replicas and the
decisions related to whether a node should be turned off or not. The result-
ing replication level and deployment decisions, together with the decisions
regarding the nodes to turn off, are evaluated using a cost function pro-
moting energy-efficient solutions. Now, the three decision problems will be
described in detail, before proceeding to the mathematical formulation.

Replication level decisions

A set of services, S, consists of a set of components, Qi (i ∈ S) which
should be replicated in order to meet the response time and availability
requirements. The response time and availability requirements are given
by the parameters REQRTi and REQAV i for each service i ∈ S, respectively.
Hence these parameters put performance and dependability constraints on
an entire service, and by the usage of equations (4) and (8), we are able to
formulate the following constraints:∑

q∈Qi

1
CPUASSiq
JOBLOADiq

− DEMi

aiq

≤ REQRTi, ∀i ∈ S (9)

∏
q∈Qi

niq∑
j=aiq

(
niq
j

)
AjV AILCiq(1−AV AILCiq)

niq−j ≥ REQAV i, ∀i ∈ S (10)

In (9) DEMi denotes the average request arrival rate for service i, as-
sumed equal for all components of i, aiq is the number of active replicas of
service-component pair (i, q). I assume that the requests arriving a com-
ponent is equally split between its active replicas, such that the arrival
rate into a replica of pair (i, q) equals DEMi

aiq
. Moreover, CPUASSiq, denotes

the CPU power assigned or reserved to a VM holding an active replica of
pair (i, q) for handling the demand, and lastly, JOBLOADiq is referred to
as the average amount of CPU power needed to process a request for pair
(i, q). This means that I assume that average service time of a request,
1
µ , in a given service-component pair (i, q) equal JOBLOADiq

CP UASSiq
. In real sys-

tems, it is not only the CPU power allocated to an application that affects

36

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

the service times, but also the frequency of I/O operation and memory
access will have an impact. For simplicity, this is not taken into account
in the models. Furthermore, in (10), AV AILCiq represents the asymptotic
availability of a pair (i, q), and niq denotes the total number of replicas
for (i, q). The variables in (9) and (10) are the number of active repli-
cas of (i, q), aiq, and the total number of replicas of (i, q), niq, and hence
both constraints are non-linear. To be able to model the replication level
decisions in a MILP model, I have chosen to construct an algorithm that
produces a number of replication patterns for each service. A replication
pattern for a service i defines a combination of active and passive replicas
for each component of i, and the set of such patterns for service i, satisfy-
ing the response time and availability requirements, is represented by Ri.
Thus, the decision is to choose one and only one replication pattern for
each service. The binary variables yir are used to state whether replication
pattern r ∈ Ri is adopted for service i. Generally, the parameters denot-
ing the number of active replicas and the total number of replicas of pair
(i, q), given a replication pattern, r, are represented by ACTRiqr and NRiqr,
respectively. Specifically, for the all-active approach the ACTRiqr parame-
ters are not needed as all NRiqr replicas are assumed active. Besides, for
the semi-active approach, the number of semi-active replicas to deploy is
given by the ceiling of the fraction between the number of passive replicas
and active replicas multiplied with a control parameter, SACOEFFiq. For
the chosen replication pattern, r, the number of semi-active replicas of pair
(i, q) is then dSACOEFFiq NRiqr−ACT Riqr

ACT Riqr
e, which is a trade-off between let-

ting all passive replicas being assigned the same amount of CPU power as
the active ones and letting no passive replicas being assigned more CPU
power than necessary for management-related tasks. As long as a com-
ponent needs passive replicas for availability purposes, this approach will
make at least one of the passive replicas semi-active.

The algorithm that produces the replication patterns is the same for all
three approaches and is described in Section 6.5, after the presentation of
the MILP model formulations.

37

6.3 The Service Deployment Problem in a Private Data Center

Deployment decisions

Generally, the active and passive replicas, resulting from a chosen replica-
tion pattern, are to be mapped to a set of nodes, N , in the private data
center of the service provider, such that the replicas of a component are
deployed node-disjoint. The nodes in the data center are equal in terms of
CPU capacity, and this capacity is denoted by CAPCPU . The VMs running
the active replicas of a given service-component pair (i, q) is assigned an
amount of CPU power, CPUASSiqVARi, on the node where it is deployed,
in order to serve demand. The parameters VARi have the purpose of en-
suring that the response time requirements hold even with an increase in
service demand and take a value greater than one, based on the burstiness
of the demand. This can be compared to the approach by Xiong and Perros
(2006), where they applied the statistical bound of the response time as the
performance metric, instead of the mean value. Furthermore, as described
in section 6.2.1, both active and passive replicas consume an additional
amount of CPU power, denoted CPUOHiq, which also must be taken into
account in the assignments.

Specifically, when taking into account the different approaches to as-
sign CPU power to passive replicas (cf. Section 6.2.3), all replicas in
the all-active approach are assigned assigned CPU power according to
CPUASSiqVARi, while this is also true for the semi-active replicas in the
semi-active approach. The assignment of CPU power to passive replicas in
the capacity-lowering approach corresponds to the paragraph above.

Summing up, one must make decisions regarding on which node to
deploy a replica, and according to which of the three approaches used,
decide which of the replicas that should be active, i.e. serving demand,
and semi-active, in the semi-active approach, while taking into account the
capacity constraints on the nodes and that the replicas of the same pair
(i, q) are deployed node-disjoint.

38

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

Turning off nodes

As described in Section 3, a server consumes a high amount of electrical
power even if it is completely idle. Therefore, in order to save energy, I
allow a server to be turned down if it is not used for deployment, and
assume that a server in a off-state is not consuming power.

6.3.2 MILP formulation of the SDP-PDC

Sets

The sets explained in the problem definition is summarized below.

S Set of all services, indexed by i
Qi Set of components of service i, indexed by q
Ri Set of replication patterns for service i, indexed by r
N Set of nodes, indexed by n

Parameters

The parameters used in the formulation are shown below, and most of
them have already received attention. However, the parameters related to
the power consumption are given a short review. Firstly, regarding the
relationship between power consumption and utilization in (1), the power
usage of an idle node is denoted PWRIDLE , while the coefficient in front
of the utilization (u) is simplified to PWRCOEFF . Neither PWRIDLE nor
PWRCOEFF is indexed by node as the nodes are assumed equal in terms of
power usage and CPU capacity. Moreover, the cost of energy usage is given
by COSTPWR, and in order to translate the power consumption into energy
usage, one need to take into account the length of the time period accounted
for. The length of the time period is denoted by HRS . Besides, regarding
the parameters denoting CPU usage and CPU assignment, these are given
as a percentage of the total CPU capacity of the nodes, which means that
the CPU capacity of node is assumed to be 100 (percent). Lastly, note
that the parameters ACTRiqr are not used in the all-active approach, while
SACOEFFiq are only used in the semi-active approach.

39

6.3 The Service Deployment Problem in a Private Data Center

HRS The length of the time period, in hours
COSTPWR Cost per unit of energy used
PWRCOEFF Coefficient translating CPU utilization to power usage
PWRIDLE The power consumption of an idle node
DEMi The avg. number of request for service i per time unit
JOBLOADiq The avg. CPU power needed to handle a request in (i, q)

per time unit
CPUDEMiq The CPU power demanded by service requests for (i, q)

= DEMiJOBLOADiq
CPUASSiq The amount of CPU power assigned to an active replica

of (i, q)
VARi The parameter ensuring that a service can handle the

peaks in demand
CPUOHiq CPU power overhead for management-related tasks in

replicas
CAPCPU CPU capacity on node
NRiqr The total number of replicas of (i, q) using replication pat-

tern r
ACTRiqr The number of active replicas of (i, q) using replication

pattern r
SACOEFFiq Coefficient used to control the number of semi-active repli-

cas of (i, q)

Variables

The binary deployment variables xiqn indicates whether a replica of the
service-component pair (i, q) is deployed on node n or not. Moreover, the
binary variables wiqn indicate whether a replica deployed on a node is ac-
tive, or not, and viqn indicates the same for semi-active replicas. Hence, the
viqn is only used in the semi-active approach. The binary variables yir have
already been mentioned and indicate the choice of replication pattern for a
service. As the model allows nodes that are idle to be turned off, I use on
to indicate this. Lastly, the variables mn are used in the capacity-lowering

40

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

approach and states the amount of CPU power to be subtracted from the
CPU capacity of a node, with the intention of letting any passive replica
on the node to turn active. The variables are summarized below.

xiqn =
{

1 if the a replica of (i, q) is deployed on node n
0 otherwise

wiqn =
{

1 if a replica of (i, q) deployed on node n is active
0 otherwise

viqn =
{

1 if a replica of (i, q) deployed on node n is semi-active
0 otherwise

yir =
{

1 if replication pattern r is used for service i
0 otherwise

on =
{

1 if node n is turned on
0 otherwise

mn The amount of non-assignable CPU power on node n in the
capacity-lowering approach

Objective function

As the objective in this model is to minimize the costs of energy usage, and
I prefer a linear model, the objective function is based on the linear rela-
tionship between power consumption and CPU utilization given in equation
(1). Following the line of thought in section 6.2.1, I distinguish between
the CPU power assigned to a VM holding an active replica and the CPU
power needed to serve demand. Hence, when I calculate the utilization on
a node, referred as u in (1), I take into account the CPU power needed to
serve demand. Note that the demand is split equally between the active
replicas of a component. In addition, the CPU power overhead, needed for
management related tasks, is accounted for. Since the CPU power param-
eters are given as a percentage value of the total capacity, the utilization
of a node is the sum of all used CPU power on the node. The utilization
of a node becomes:

41

6.3 The Service Deployment Problem in a Private Data Center

∑
i∈S

∑
q∈Qi

(
CPUOHiqxiqn + CPUDEMiq

∑
r∈Ri

wiqn
ACTRiqr

yir
)

(11)

where the first term caters for the CPU power overhead used by all replicas
and the second term caters for the CPU power usage of serving demand on
the node. Notice that one and only one replication pattern should be used
for service i, and hence only one yir equals one. This equation is based on
the semi-active and capacity-lowering approach, but as we will be seen soon,
the resulting objective function is the same for all approaches. Moreover,
putting (11) into the linear relationship between power consumption and
utilization and moving the summation in front of each term, we get:

pn =PWRIDLEon

+PWRCOEFF

∑
i∈S

∑
q∈Qi

CPUOHiqxiqn

+PWRCOEFF

∑
i∈S

∑
q∈Qi

CPUDEMiq

∑
r∈Ri

wiqn
ACTRiqr

yir (12)

where pn denotes the power usage on a node. The total power usage of the
private data center is the sum of the power usage on each node, which leads
to the following:∑

n∈N
pn =

∑
n∈N

PWRIDLEon

+PWRCOEFF

∑
i∈S

∑
q∈Qi

∑
n∈N

CPUOHiqxiqn

+PWRCOEFF

∑
i∈S

∑
q∈Qi

CPUDEMiq

∑
n∈N

wiqn
∑
r∈Ri

1
ACTRiqr

yir (13)

The last term in (13) can be simplified due to the fact that the sum of all
active replicas over n equals the number of active replicas, ACTRiqr, given
the chosen replication pattern r. Mathematically this relationship can be
written ∑n∈N wiqn = ∑

r∈Ri
ACTRiqryir, which gives the following:

42

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

∑
n∈N

pn =
∑
n∈N

PWRIDLEon

+ PWRCOEFF

∑
i∈S

∑
q∈Qi

∑
n∈N

CPUOHiqxiqn

+ PWRCOEFF

∑
i∈S

∑
q∈Qi

CPUDEMiq

∑
r∈Ri

ACTRiqryir
∑
r∈Ri

1
ACTRiqr

yir︸ ︷︷ ︸
=1

(14)

We see that the last part of the last term in (14) equals one, and hence can
be ignored. The derivation from equation (11) through (14) leads to an
objective function as stated in (15), where the power consumption is first
translated into energy usage and then into a monetary value.

min zPDC = COSTPWRHRS

(∑
n∈N

PWRIDLEon

+ PWRCOEFF

∑
i∈S

∑
q∈Qi

∑
n∈N

CPUOHiqxiqn

+ PWRCOEFF

∑
i∈S

∑
q∈Qi

CPUDEMiq

)
(15)

As mentioned the derivation (11) - (15) is based on the semi-active and
capacity-lowering approach, but is also valid for the all-active approach,
where all NRiqr replicas are active.

Constraints

Now, I will present the constraints that are used in the semi-active ap-
proach. Thereafter I will describe the adjustments which must be done
in order to make them fit into the all-active approach and the capacity-
lowering approach.

43

6.3 The Service Deployment Problem in a Private Data Center

Firstly, one must ensure that each service apply one and only one repli-
cation pattern, and this is done through (16). Remember that each repli-
cation pattern for a service simultaneously satisfies the response time and
availability requirements, and thus explicitly modelling these are not nec-
essary. ∑

r∈Ri

yir = 1, ∀i ∈ S (16)

Next, it is necessary to ensure that all replicas are deployed on the nodes
and that the right number of replicas are active and semi-active. The sets of
constraints (17) - (19), complemented with (20), guarantee the preceding.
(20) provides that a pair (i, q) can have an active or semi-active replica on
a node if there is a replica deployed there, i.e. xiqn = 1. Note that (17)
together with the binary definition of xiqn implicitly leads to node-disjoint
deployment of the replicas of a component.

∑
n∈N

xiqn −
∑
r∈Ri

NRiqryir = 0, ∀i ∈ S, q ∈ Qi (17)

∑
n∈N

wiqn −
∑
r∈Ri

ACTRiqryir = 0, ∀i ∈ S, q ∈ Qi (18)

∑
n∈N

viqn−
∑
r∈Ri

⌈
SACOEFFiq

NRiqr −ACTRiqr
ACTRiqr

⌉
yir = 0, ∀i ∈ S, q ∈ Qi (19)

wiqn + viqn − xiqn ≤ 0, ∀i ∈ S, q ∈ Qi, n ∈ N (20)

As mentioned, the nodes are capacitated, and thus a set of constraints,
(21), is needed in order to not overload the nodes with replicas. Note that
both active and semi-active replicas is assigned the amount of CPU power
needed for service provisioning, and that all replicas are assigned additional
CPU power, CPUOHiq, for processing tasks other than the requests from
the end-users. These constraints also prevents a node from being turned

44

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

off (on = 0) when there are replicas deployed on it.∑
i∈S

∑
q∈Qi

CPUASSiqVARiwiqn +
∑
i∈S

∑
q∈Qi

CPUASSiqVARiviqn+

∑
i∈S

∑
q∈Qi

CPUOHiqxiqn − CAPCPUon ≤ 0, ∀n ∈ N (21)

Lastly (22) - (26) define all variables as binary.

xiqn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, n ∈ N (22)

wiqn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, n ∈ N (23)

viqn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, n ∈ N (24)

yir ∈ {0, 1}, ∀i ∈ S, r ∈ Ri (25)

on ∈ {0, 1}, ∀n ∈ N (26)

In order to adjust the formulation above to the all-active approach,
there is necessary to change and remove a couple of constraints, whereas
the objective function remains the same. Firstly, the wiqn and viqn variables
can be removed from the formulation as all replicas are considered active,
and hence the constraints (18), (19) and (20) can all be removed. Secondly,
the capacity constraints (21) are changed to (27), where all replicas are
assigned the same amount of CPU power.

∑
iS

∑
q∈Qi

(CPUASSiqVARi +CPUOHiq)xiqn −CAPCPUon ≤ 0, ∀n ∈ N (27)

Then, in order to modify the formulation of the semi-active approach to
the capacity-lowering approach, the wiqn variables are still needed, but the
viqn variables are removed, and hence also the constraints (19). Besides,
the constraints (20) are altered, giving the constraints (28), which state
that a replica of pair (i, q) can only be active on a node if there is a replica
of the same pair deployed on that node. In this approach we also use a set
of variables mn, representing the amount of non-assignable CPU power on

45

6.4 The Service Deployment Problem in a Hybrid Cloud Environment

node n. These variables should be greater than or equal to the amount of
CPU power needed by any passive replica, deployed on the node, in order to
turn active. With the introduction of the mn variables it is also necessary
to change the node capacity constraints (21). The new constraints, used to
set the mn variables, and the altered capacity constraints, are depicted in
(29) and (30), respectively.

wiqn − xiqn ≤ 0, ∀i ∈ S, q ∈ Qi, n ∈ N (28)

mn − CPUASSiqVARi(xiqn − wiqn) ≥ 0, ∀i ∈ S, q ∈ Qi, n ∈ N (29)

∑
i∈S

∑
q∈Qi

CPUASSiqVARiwiqn +

∑
i∈S

∑
q∈Qi

CPUOHiqxiqn +mn − CAPCPUon ≤ 0, ∀n ∈ N (30)

Table 1 sums up the constraints used in the three different approaches.
In addition, a summary of the complete models is given in Appendix A.1.

Table 1: Summary of the constraints for the three different approaches to CPU assign-
ment of passive replicas in the SDP-PDC model

Approach Constraints
Semi-active (16) - (26)
All-active (16), (17), (27), (22), (25), (26)
Capacity-lowering (16) - (18), (28) - (30), (22), (23), (25), (26)

6.4 The Service Deployment Problem in a Hybrid Cloud
Environment

This subsection describes a problem which will be referred to as the Service
Deployment Problem in a Hybrid Cloud Environment (SDP-HCE), which
is an extension of the previous problem. A MILP model of the problem is
formulated and the formulation is implemented in commercial software to

46

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

be able to test the problem on the provided test instances. Comments on
the implementation and presentation of the numerical results are given in
Section 7.

6.4.1 Problem definition

Likewise the SDP-PDC, this problem is composed of three main decision
problems. The replication level decisions in this problem are made under
the same conditions as in the SDP-PDC, whereas the deployment deci-
sion environment differ from the previous model. The decisions related to
whether a node should be turned off or not are still only considered in
the private cloud of the service provider, and hence are not changed. The
resulting solutions are evaluated by a cost function which has similarities
with the objective function in the SDP-PDC model, but contain additional
terms to cater for the change in deployment environment.

Since the replication level decisions and the decisions to turn off nodes
are done in the same way as in the previous problem, these decisions are
not discussed here. On the other hand, the deployment decisions will now
be given an explanation.

Deployment decisions

The active and passive replicas, resulting from a chosen replication pattern,
from the set Ri, is to be deployed either on the nodes in the private cloud
of the service provider or in the public clouds, thus the deployment envi-
ronment is considered a hybrid cloud. Replicas mapped to the nodes in
the private cloud confront the same constraints as in the previous problem,
i.e. replicas of the same service-component pair (i, q) should be deployed
node-disjoint, and the deployment of replicas to the nodes faces a capacity
constraint. Besides, the nodes are still assumed equal in terms of CPU ca-
pacity and power consumption relative to the CPU utilization. The active
replicas of a given pair (i, q) should be assigned an amount of CPU power,
CPUASSiqVARi, whether it is deployed on a node in the private cloud or
in the public cloud. In addition both active and passive replicas still need

47

6.4 The Service Deployment Problem in a Hybrid Cloud Environment

an amount of CPU power, CPUOHiq for processing other task that is not
directly related to the serving of demand.

Deployment in the public clouds is not capacity-constrained in the same
way as in the private clouds. The service provider is assumed of having no
control over the physical infrastructure, including the nodes, in the public
cloud, but he is able to choose between several geographical locations for
deployment in the public clouds. These geographical location, from now
on denoted public cloud domains, are defined as the set DPU . In order to
deploy replicas in the public clouds, they have to be packaged into VMs,
which size and price are decided by the public cloud provider. Hence each
public cloud domain is associated with a set of VMs, where the VMs differ
in size and hourly cost. Since the replicas needs to be assigned a fixed
amount of CPU power, the cheapest VM that can run a given pair (i, q)
can be found in advance of the optimization, and thus the cost of deploying
a replica in a public cloud domain, d ∈ DPU , is given as COSTVMACTiqd

and COSTVMPASiqd, respective of whether the replica is considered active
or passive. Specifically, this means that all replicas of (i, q) in the all-active
approach cost COSTVMACTiqd, while this is also true for both semi-active
and active replicas in the semi-active approach.

In addition to node-disjoint deployment on the nodes, some service-
component pairs might have requirements on the number of cloud domains
to used for deployment of the replicas, as a means to make a service more
tolerant to failures in the management system of the cloud domains. The
parameters SPREADiq regulate the minimum number of cloud domains used
for deployment of the replicas of pair (i, q), and are given as a value between
zero and one, where taking the value one means that no replicas should be
deployed in the same cloud domain. Lastly, a given component may also
have a binding stating that the replicas of the component must be deployed
in a specific domain. The parameter which indicate a such binding, BINDiq,
for a given pair (i, q), equals d if only domain d might be used for deploy-
ment of the replicas of (i, q). If no such binding exists, BINDiq equal zero.
Note that a service-component can not have both constraints requiring a
minimum number of domains used for deployment and constraints requiring
that all replicas should be deployed in a specific domain.

48

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

6.4.2 MILP formulation of the SDP-HCE

Sets

As in previous model, we have a set of services, S, a set of components, Qi,
corresponding to a given service i and a set of replication patterns, Ri, for
each service i. Moreover the hybrid cloud environment is composed of a set
of cloud domains, denoted D, where the public and private cloud domains
are characterized by the sets DPU and DPR, respectively. All private cloud
domains are operated by the service provider, whereas the public cloud
domains might be operated by different IaaS cloud providers and different
IaaS cloud providers might operate several domains. Lastly, Nd refers to
the set of nodes in a given private cloud domain d. A summary of the sets
is given below.

S Set of all services, indexed by i
Qi Set of components of service i, indexed by q
Ri Set of replication patterns for service i, indexed by r
D Set of cloud domains for deployment, indexed by d
DPR Set of private cloud domains for deployment, indexed by d
DPU Set of public cloud domains for deployment, indexed by d
Nd Set of nodes for deployment in a private cloud domain d, indexed

by n

Parameters

The types of parameters used in the private data center model are also
included here. In addition, the binding parameters and the parameters
stating the cost of deployment in the public cloud domains, as well as the
parameters used to control the minimum number of used domains, are in-
troduced. Note that, not all parameters are used in all approaches.

49

6.4 The Service Deployment Problem in a Hybrid Cloud Environment

HRS The length of the time period, in hours
COSTPWR Cost per unit of energy usage
PWRCOEFF Coefficient translating CPU utilization to power usage
PWRIDLE The power consumption of a node in idle state
DEMi The avg. number of request for service i per time unit
JOBLOADiq The avg. CPU power needed to handle a request in (i, q)

per time unit
CPUDEMiq The CPU power demanded by service requests for (i, q)

= DEMiJOBLOADiq
CPUASSiq The amount of CPU power assigned to an active replica

of (i, q)
VARi The parameter ensuring that a service can handle the

peaks in demand
CPUOHiq CPU power overhead for management-related tasks in

replicas
CAPCPU CPU capacity on each node in a private cloud domain
NRiqr The total number of replicas of (i, q) using replication

pattern r
NRMXiq The maximum of NRiqr over r
ACTRiqr The number of active replicas of (i, q) using replication

pattern r
ACTRMXiq The maximum of ACTRiqr over r
SACOEFFiq Coefficient used to control the number of semi-active

replicas of (i, q)
COSTVMACTiqd Cost of using a VM instance for the active replicas of

(i, q) in public cloud domain d per hour
COSTVMPASiqd Cost of using a VM instance for the passive replicas of

(i, q) in public cloud domain d per hour
SPREADiq The required number of cloud domains used for a replica

in percentage of the total number of replicas
BINDiq Equal d if pair (i, q) only can be deployed in cloud do-

main d, and equal 0 if there is no binding on the domains
used for deployment.

50

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

Variables

Likewise in the previous model, the binary variables yir is used to indicate
whether replication pattern r is employed for service i or not. Since the
deployment environment is changed to include several cloud domains, the
deployment variables are altered. Firstly, I define uiqd to be binary vari-
ables stating whether one or more replicas of pair (i, q) are deployed in
cloud domain d ∈ D. Besides, the integer variables xDiqd, wDiqd and vDiqd
denotes the total number of replicas, active replicas and semi-active repli-
cas of pair (i, q) in cloud domain d. In addition, the binary variables xiqdn,
wiqdn and viqdn indicate whether a replica, active replica and semi-active
replica of pair (i, q) is deployed on node n in private cloud domain d ∈ DPR
or not. The variables fiqd are the fraction of demand-serving replicas of
pair (i, q) which is deployed in private cloud domain d and are used for de-
termining the amount of the requests served in the private cloud domains.
Furthermore, the binary variables odn state whether a node in private cloud
domain d is turned on, and hence used for deployment. Lastly, when ap-
plying the capacity-lowering approach, the variables mdn give the amount
of non-assignable CPU on node n in private cloud domain d.

uiqd =
{

1 if the a replica of (i, q) is deployed in cloud domain d
0 otherwise

xDiqd The total number of replicas of the pair (i, q) that is deployed in
cloud domain d

xiqdn =

 1 if the a replica of (i, q) is deployed on node n in private
cloud domain d

0 otherwise
wDiqd The number of active replicas of (i, q) that is deployed in cloud

domain d

wiqdn =

 1 if an active replica of (i, q) is deployed on node n in
private cloud domain d

0 otherwise
vDiqd The number of semi-active replicas of (i, q) deployed in cloud

domain d

51

6.4 The Service Deployment Problem in a Hybrid Cloud Environment

viqdn =

 1 if a semi-active replica of (i, q) is deployed on node n in
private cloud domain d

0 otherwise

yir =
{

1 if replication pattern r is used for service i
0 otherwise

odn =
{

1 if node n in private cloud domain d is turned on
0 otherwise

mdn The amount of non-assignable CPU power on node n in private
cloud domain d ∈ DPR, in the capacity-lowering approach

fiqd The fraction of demand-service replicas of (i, q) that is deployed
in private cloud domain d

Objective function

The objective function in the SDP-HCE contains two different types of
costs, namely the cost of energy usage in the private cloud domains and
the cost of deploying the replicas in the public cloud domains. The former
costs remain almost the same compared to the cost function in the SDP-
PDC, but must be altered to account for the possibility that not all demand
are served from the private cloud. Thus the cost of energy usage, zEC , is
calculated in the following way.

zEC = COSTPWRHRS

(∑
d∈DP R

∑
n∈Nd

PWRIDLEodn

+ PWRCOEFF

∑
i∈S

∑
q∈Qi

∑
d∈DP R

∑
n∈Nd

CPUOHiqxiqdn

+ PWRCOEFF

∑
i∈S

∑
q∈Qi

∑
d∈DP R

CPUDEMiqfiqd

)
(31)

where the last term in (31) accounts for the CPU power needed for serving
demand in the private cloud domains, and fiqd is defined by the set of
equations (32), in the semi-active and capacity-lowering approach, and (33),

52

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

in the all-active approach.

fiqd =
∑
r∈Ri

wDiqd
ACTRiqr

yir, ∀i ∈ S, q ∈ Qi, d ∈ DPR (32)

fiqd =
∑
r∈Ri

xDiqd
NRiqr

yir, ∀i ∈ S, q ∈ Qi, d ∈ DPR (33)

The deployment costs in the public cloud domains consist of two terms,
the cost of deploying active replicas and the cost of deploying passive repli-
cas. This part of the objective function is different in the various approaches
for assignment of CPU power to the passive replicas. In the all-active ap-
proach all replicas of (i, q) costs COSTVMACTiqd for deployment in public
cloud domain d, while the same is true for active and semi-active repli-
cas in the semi-active approach. Lastly, the active and passive replicas in
the capacity-lowering approach costs COSTVMACTiqd and COSTVMPASiqd

for deployment in public cloud domain d, respectively. The total, hourly
deployment costs of all approaches, zDCAA, zDCSA and zDCCL, are given
by (34), (35) and (36), for the all-active, semi-active and capacity-lowering
approach, accordingly.

zDCAA =
∑
i∈S

∑
q∈Qi

∑
d∈DP U

COSTVMACTiqdxDiqd (34)

zDCSA =
∑
i∈S

∑
q∈Qi

∑
d∈DP U

COSTVMACTiqd(wDiqd + vDiqd)

+
∑
i∈S

∑
q∈Qi

∑
d∈DP U

COSTVMPASiqd(xDiqd − (wDiqd + vDiqd)) (35)

zDCCL =
∑
i∈S

∑
q∈Qi

∑
d∈DP U

COSTVMACTiqdwDiqd

+
∑
i∈S

∑
q∈Qi

∑
d∈DP U

COSTVMPASiqd(xDiqd − wDiqd) (36)

53

6.4 The Service Deployment Problem in a Hybrid Cloud Environment

This leads to three different objective functions, zHCEAA, zHCESA and
zHCECL, shown in (37), (38) and (39), where the hourly cost of using the
public cloud domains is multiplied with the length of the time period.

min zHCEAA = zEC +HRSzDCAA (37)

min zHCESA = zEC +HRSzDCSA (38)

min zHCECL = zEC +HRSzDCCL (39)

Constraints

Likewise when the constraints in the SDP-PDC model was presented, I
begin by explaining the constraints in the semi-active approach and the
continue with describing the necessary adjustments done in order to model
the all-active and capacity-lowering approach.

The set of constraints ensuring that only one replication pattern is cho-
sen for each service is the same as in the SDP-PDC model.∑

r∈Ri

yir = 1, ∀i ∈ S (40)

To guarantee that all replicas of a pair (i, q) is deployed either on the
nodes in the private cloud or in the public cloud, I firstly choose to distribute
the replicas to the private and public domains, and further map the replicas
deployed in a private domain to the nodes. The same is done when the
decisions about setting replicas to be active or semi-active. This is shown
in (41) - (46). In the same manner as in the SDP-PDC model, one must
include a set of constraints ensuring that pair (i, q) only can be active or
semi-active replica on a node if a replica is deployed there. The same have
to be done on domain level in the public cloud domains, i.e. the number
of active and semi-active replicas of pair (i, q) in public cloud domain d

54

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

cannot be greater than the total number of replicas in this domain. This is
done in constraints (47) and (48).∑

d∈D
xDiqd −

∑
r∈Ri

NRiqryir = 0, ∀i ∈ S, q ∈ Qi (41)

∑
n∈Nd

xiqdn − xDiqd = 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR (42)

∑
d∈D

wDiqd −
∑
r∈Ri

ACTRiqryir = 0, ∀i ∈ S, q ∈ Qi (43)

∑
n∈Nd

wiqdn − wDiqd = 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR (44)

∑
d∈D

vDiqd −

∑
r∈Ri

⌈
SACOEFFiq

NRiqr −ACTRiqr
ACTRiqr

⌉
yir = 0, ∀i ∈ S, q ∈ Qi (45)

∑
n∈Nd

viqdn − vDiqd = 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR (46)

wDiqd + vDiqd − xDiqd ≤ 0, ∀i ∈ S, q ∈ Qi, d ∈ DPU (47)

wiqdn + viqdn − xiqdn ≤ 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR, n ∈ Nd (48)

As mentioned, some service components may have requirements on the
number of cloud domains used for deployment by the replicas. The param-
eters SPREADiq are used to control the number of domains used, and take
values between zero and one. Constraints (49) model these requirements.
The variables uiqd are used to keep track of the domains where a pair (i, q)
has replicas deployed, and thus one has to prevent these variables of being
one if the domain is not used. (50) prevent such cases.∑

d∈D
uiqd −

∑
r∈Ri

NRiqrSPREADiqyir ≥ 0, ∀i ∈ S, q ∈ Qi (49)

55

6.4 The Service Deployment Problem in a Hybrid Cloud Environment

xDiqd − uiqd ≥ 0, ∀i ∈ S, q ∈ Qi, d ∈ D (50)

The capacity constraints on the nodes in this model is equal to the
capacity constraints in the previous, except that all variables are indexed
with a private cloud domain index, d, as well.∑

i∈S

∑
q∈Qi

CPUASSiqVARiwiqdn +

∑
i∈S

∑
q∈Qi

CPUASSiqVARiviqdn +

∑
i∈S

∑
q∈Qi

CPUOHiqxiqdn − CAPCPUodn ≤ 0, ∀d ∈ DPR, n ∈ Nd (51)

According to the first part of the objective function, it is necessary to
determine the fraction of the demand for pair (i, q) that is served in a
private cloud domain d, i.e. determine the fiqd variables. (32) shows a non-
linear equation for setting these variables, and hence to be able to keep the
model linear that equation must be altered. Therefore (32) is transformed
to the set of inequalities in (52). Note that the inequalities, for a given
combination of i, q and d, will be redundant for all r except for the one
where yir = 1.

wDiqd
ACTRiqr

− fiqd −

ACTRMXiq

ACTRiqr
(1− yir) ≤ 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR, r ∈ Ri (52)

There exist also service components that, because of for example se-
curity issues, have bindings on which cloud domain that can be used for
deployment (i.e. BINDiq = d). In order to handle this, I introduce con-
straints forcing a xDiqd variable to zero if deployment of a replica of (i, q)
is prohibited in domain d. On the other hand, I set a xDiqd variable to
be greater than or equal to one if deployment of a replica of (i, q) is only
allowed in domain d. If there is no bindings on the domains used for deploy-
ment of a replica (i.e. BINDiq = 0), I treat the xDiqd variable as positive

56

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

integers. However, the constraints (41) will make xDiqd take an integer
value if BINDiq 6= 0, as well. This gives:

xDiqd ∈ N, ∀i ∈ S, q ∈ {q′ ∈ Qi : BINDiq′ = 0}, d ∈ D (53)

xDiqd ≥ 1, ∀i ∈ S, q ∈ {q′ ∈ Qi : BINDiq′ 6= 0},
d ∈ {d′ ∈ D : BINDiq = d′} (54)

xDiqd = 0, ∀i ∈ S, q ∈ {q′ ∈ Qi : BINDiq′ 6= 0},
d ∈ {d′ ∈ D : BINDiq 6= d′} (55)

Lastly, we restrict the rest of the variables, expect fiqd, to be binary or
integer.

wDiqd ∈ N, ∀i ∈ S, q ∈ Qi, d ∈ D (56)
vDiqd ∈ N, ∀i ∈ S, q ∈ Qi, d ∈ D (57)
uiqd ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, d ∈ D (58)

xiqdn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, d ∈ DPR, n ∈ Nd (59)
wiqdn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, d ∈ DPR, n ∈ Nd (60)
viqdn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, d ∈ DPR, n ∈ Nd (61)

yir ∈ {0, 1}, ∀i ∈ S, r ∈ Ri (62)
odn ∈ {0, 1}, ∀d ∈ DPR, n ∈ Nd (63)

In order to adjust the model above to the all-active approach one must
remove and change some constraints. Firstly, as all replicas are assumed
active it is not necessary to use the wDiqd, wiqdn, vDiqd and viqdn variables,
and thus the constraints (43) through (48) are removed. Thereafter, the
capacity constraints (51) are altered to (64), in the same manner as in the
SDP-PDC model. Besides, the constraints setting the fiqd variables are
altered to (65), since all replicas are active. The rest of the model remains
the same.

(CPUASSiqVARi + CPUOHiq)xiqdn −
CAPCPUodn ≤ 0, ∀d ∈ DPR, n ∈ Nd (64)

57

6.4 The Service Deployment Problem in a Hybrid Cloud Environment

xDiqd
NRMXiq

− fiqd −

NRMXiq

NRiqr
(1− yir) ≤ 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR, r ∈ Ri (65)

Next, to alter the model of semi-active approach to the capacity-lowering
approach some modifications has to be done. Likewise, in the modification
process above, some variables can be removed, namely the vDiqd and viqdn
variables. This leads to the removal of constraints (45) and (46), and ad-
justment of (47) and (48) to (66) and (67) below. Furthermore, we have to
set the variables, mdn, defining the amount of non-assignable CPU power
on each node in the private cloud domains, and thus also alter the capacity
constraints on the nodes. (68) and (69) set the mdn variables and con-
strains the CPU power assignment on the nodes, in the same manner as in
the SDP-PDC model.

wDiqd − xDiqd ≤ 0, ∀i ∈ S, q ∈ Qi, d ∈ DPU (66)

wiqdn − xiqdn ≤ 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR, n ∈ Nd (67)

mdn−
CPUASSiqVARi(xiqdn − wiqdn) ≥ 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR, n ∈ Nd (68)

∑
i∈S

∑
q∈Qi

CPUASSiqVARiwiqdn +

∑
i∈S

∑
q∈Qi

CPUOHiqxiqdn − CAPCPUodn ≤ 0, ∀d ∈ DPR, n ∈ Nd (69)

Table 2 concludes the presentation of the mathematical models by giving
a summary of the constraints used in the three different approaches of CPU
assignment to passive replicas. A summary of the models is also given in
Appendix A.2

58

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

Table 2: Summary of the objective function and the constraints for the three different
approaches to CPU assignment of passive replicas in the SDP-HCE model

Approach Objective Constraints
Semi-active (38) (40) - (63)

All-active (37) (40) - (42), (49), (50), (64), (65), (53) -
(55), (58), (59), (62), (63)

Capacity-lowering (39) (40) - (44), (66), (67), (49), (50), (68),
(69), (52) - (56), (58) - (60), (62), (63)

6.5 Generation of replication patterns

So far we have ignored the generation of the set of replication patterns for
each service. The simplest way of generating these is by a total enumeration
of all combinations of active and passive replicas for each component of a
service, while simultaneously giving an upper bound on the total number of
replicas. Thereafter one could check if a pattern confirms with the response
time and availability requirements. If the response time requirement of a
service is set high and the availability requirement is set low, this would
lead to a great number of patterns. But by analysing the problem it is
possible to remove several patterns that satisfy the SLA requirements as
well. Besides, by noticing that only the number of active replicas affect the
response time (cf. (9)) and the total number of replicas compared to the
number of active replicas affect the availability (cf. (10)), it is possible to
construct an algorithm consisting of an outer and an inner loop. The outer
loop constructs possible combinations of the number active replicas of the
components of a given service, while the inner loop uses the resulting num-
ber of active replicas, produced in the outer loop, and adds a combination
of the number of passive replicas of each component to the pattern, in order
to make an SLA-corresponding pattern. For the sake of readability of the
rest of this section, I define AC as a combination of the number of active
replicas for each component of a given service. Likewise, I define TC as a
combination of the total number of replicas for each component of a given
service, and together, AC and TC forms a replication pattern.

Algorithm 6.1, on page 62, shows the main parts of the approach taken

59

6.5 Generation of replication patterns

to generate replication patterns in my models. The algorithm takes a given
service i as input and uses the global parameters for the upper bound on
the response time, the lower bound on the availability and the maximum
number of active replicas and the maximum total number of replicas for
each component of i. The two latter parameters is set high enough in order
to not constrain the MILP solution. When finished running, the algorithm
have created the set of replication patterns and the matrices containing the
number of active replicas, ACTRiqr, and the total number of replicas, NRiqr

for each component of i.
Firstly, the algorithm initialize the temporary number of active replicas,

TMPAq, of each component of i and their upper limits. The initialization
sets the number of active replicas to one, but this number could of course
be increased if one has some preferences or knowledge of the problem in
advance. After the initialization, the algorithm enters the outer loop where
the AC is controlled. If the combination passes the control, then the tempo-
rary number of total replicas, TMPNq, and the upper limits, are initialized
for each component of i, and the algorithm proceeds to the inner loop. In
the inner loop, the pattern, consisting of an AC and a TC, is controlled. If
the pattern passes the control, then the ACTRiqr and NRiqr matrices and
the set of replication patterns, Ri, are updated with the new pattern and r
is incremented. Thereafter, the algorithm will generate more TCs, and up-
date the matrices and the set of replication patterns when a pattern passes
the control. This loop will continue until TMPNq reaches its upper limit
for all components, q, of i. When the inner loop has finished, there are
generated a new AC, and this new combination is sent to the inner loop if
it passes the control. Likewise the inner loop, the outer loop will continue
until TMPAq reaches its upper limit for all components, q, of i.

So far I have not explained what is controlled in the outer and inner
loop. Both controls consist of two tests, and the first test in the outer loop
checks the response time requirement, while the first test in the inner loop
checks the availability requirement of the service. The second tests in both
loops are more complex, but will be explained now, through an example.
Let us assume that a service consists of three components, and after run-
ning the algorithm for a couple of iterations in the outer loop, we know

60

6 MODELS OF THE SERVICE DEPLOYMENT PROBLEMS

that a solution with two, three and two active replicas of the components
agrees with the response time requirement. I denote this AC by (2,3,2), for
simplicity. Furthermore, there exists at least one TC, which together with
(2,3,2) forms a pattern that satisfies the availability requirement. Now,
assuming that there is generated an AC with the numbers (2,3,3), we know
that this combination satisfies the response time requirement, but it is a
more expensive solution, and hence we discard it and do not proceed to
the inner loop. (2,3,3) is a more expensive combination than (2,3,2) as the
last component has a higher number of active replicas while the first and
second have an equal number of active replicas, and thus the cost mini-
mization would prefer (2,3,2) above (2,3,3). However, if a combination of
active replicas with the numbers (1,3,3) is produced and the combination
satisfies the response time requirement, we can not directly tell whether it
is a more expensive solution than (2,3,2) or not, and therefore I choose to
proceed with such events. A generalization of this is to send a combination
of the number of active replicas to the inner loop if it satisfies the response
time requirement and has a lower number of active replicas, for at least one
component, than a already found pattern in Ri. The second test in the
inner loop is based on the same line of thought, but one must only compare
a TC with a already found pattern in Ri that is based on the same AC, cf.
R∗i in Algorithm 6.1.

61

6.5 Generation of replication patterns

Algorithm 6.1: createReplicationPatterns(i)

global REQRT i The required response time for service i
global REQAV i The required availability for service i
global MAXREP iq Maximum number of replicas for (i, q)
global MAXACT iq Maximum number of active replicas for (i, q)
global Ri The set of replication patterns for i, to be calculated
global NRiqr The number of replicas given r, to be calculated
global ACT Riqr The number of active replicas given r, to be calculated
local TMP Nq The temporary total number of replicas of component q
local TMP Aq The temporary number of active replicas of component q
local NUP q The temporary upper bound of number of replicas in total for q
local AUP q The temporary upper bound of number of active replicas for q
local r The replication settings counter

comment: Initialize r for service i
r ← 1
comment: Initialize the number of active replicas
for each q ∈ Qi

do

{
TMP Aq ← 1
AUP q ←MAXACT iq

while ∃ q ∈ Qi : TMP Aq < AUP q

do

if rt(TMP A, i) ≤ REQRT i and ∃ r ∈ Ri, q ∈ Qi : TMP Aq < ACT Riqr

then

comment: Initialize the total number of replicas
for each q ∈ Qi

do

{
TMP Nq ← TMP Aq

NUP q ←MAXREP iq

while ∃ q ∈ Qi : TMP Nq < NUP q

do

if av(TMP A, TMP N , i) ≥ REQAV i and
∃ r ∈ R∗i

a, q ∈ Qi : TMP Nq < NRiqr

then

comment: Update NR and ACT R

for each q ∈ Qi

do

{
NRiqr ← TMP Nq

ACT Riqr ← TMP Aq

comment: Update Ri and increment r
Add {r} to Ri

r ← r + 1
comment: Find new TMP N

TMP N ← findNewTMPN(TMP N)
comment: Find new TMP A

TMP A ← findNewTMPA(TMP A)

aR∗i = {r ∈ Ri|∀q ∈ Qi : TMP Aq = ACT Riqr}

62

7 NUMERICAL RESULTS AND DISCUSSION

7 Numerical results and discussion

The primary objective of the models developed in this thesis are to act as
decision support for service providers when making their decisions about
service deployment and replication levels. In order to investigate the appli-
cability of the models, they are tested on different test instances. Firstly,
I will give some comments on the implementation and the generation of
the test instances. Thereafter, the results obtained on the smallest test
instances is detailed, before the modelled on larger test instances in or-
der to discuss the scalability of the models. Lastly, some performance and
dependability concerns is discussed.

7.1 Implementation

To be able to test the different models using the test instances, to be pre-
sented, both models are implemented in the Xpress Mosel modelling lan-
guage (version 3.2.0) and run in the Xpress-IVE (version 1.21.02) environ-
ment with the Xpress Optmizer (version 21.01.00) solver. The computer
running this software has a Intel Core 2 Duo E6700 (2x2.6GHz) processor
and 4GB of RAM. All Mosel code can be found in Appendix B.

Since the model is implemented in a modelling language, there might
exist language specific features that can be utilized in order to make the
model more efficient, in terms of complexity and solution time. In the
implementation I have taken advantage of the option to dynamically create
variables, which slightly simplifies the formulation. This will be described
in the next paragraph. Besides, I have included some extra constraints in
the implementation with the purpose of removing symmetrical solutions.
These constraints will be elaborated thereafter.

Modelling of the constraints binding replicas to a specific domain

In the model formulation of the SDP-HCE model, in Section 6.4.2, the
constraints forcing all replicas of a given component to be deployed in a
given domain are handled by setting the xDiqd variables to zero for prohib-
ited domains. However, in the implementation of the model in the Mosel

63

7.1 Implementation

modelling language, the formulation of these constraints is done by dynam-
ically creating the deployment variables for domains that might be used
by a component for deployment. Hence one avoid creating variables that,
when set to another value than zero, nevertheless will be infeasible.

Additional constraints in the implementation

As a reason of the fact that all nodes are modelled equal in terms of CPU
capacity and power consumption, relative to the utilization, solving the
implementation of the model generates symmetrical solutions. Specifically,
this means that the optimal value does not change if all replicas deployed on
one node switch place with all replicas deployed on another node. Likewise,
if one node out of the total nodes is turned off, the objective value is
independent of which node that is turned off. Hence, several nodes in
the branch and bound (B&B) tree, not to be confused with the physical
machines in the models, will contain equally optimal solutions, which may
lead to slower convergence of the branch and bound algorithm.

In order to reduce the number of symmetrical solutions I choose to sort
the nodes according to the amount of their capacity which is assigned to
replicas. This means that the node with the lowest index number has the
greatest amount of its capacity assigned to replicas, while the node with
the highest index number has the least amount of its capacity assigned to
replicas, and hence also make potential turned off nodes being the ones
with the highest index number. To be able to do this sorting, I define a
variable, sn, for each node n, which equal the amount of capacity on a node
that is assigned to replicas. This is done mathematically as in (70) for the
capacity-lowering approach, and in the correspondingly for the other two
approaches. (71) handles the sorting.

∑
i∈S

∑
q∈Qi

CPUASSiqVARiwiqn +

∑
i∈S

∑
q∈Qi

CPUOHiqxiqn − sn = 0, ∀n ∈ N (70)

64

7 NUMERICAL RESULTS AND DISCUSSION

sn − sn+1 ≥ 0, ∀n ∈ {n′ ∈ N : n′ < |N |} (71)

Constraints (70) and (71) remove otherwise, feasible solutions without
affecting the optimal value. But including these constraints in the model,
also have a drawback. In preliminary tests, it turns out that the feasible
set has been so reduced that the Xpress solver has difficulties to find even
a feasible solution in the larger test instances. In order to overcome this,
I have implemented another less strict set of constraints, shown in (72).
These constraints simply sort the nodes according to whether they are
turned off or not.

on − on+1 ≥ 0, ∀n ∈ {n′ ∈ N : n′ < |N |} (72)

In conjunction with (72), I choose to deploy some active replicas of
a selected service-component pair before the optimization is called. The
selected service-component pair is the one with highest number of active
replicas in the replication pattern with the lowest number of active replicas.
Mathematically, let us denote this number of active replicas by A, then A
equal max(i,q) minr{ACTRiqr}. These A active replicas is consequently de-
ployed on the A nodes with the lowest index numbers. This predeployment
strategy will not affect the optimal solution when (72) is used. However,
it can not be combined with (70) and (71), since we can not know if these
A active replicas will be deployed on the nodes with the greatest amount
of CPU power assigned to the replicas, in the optimal solution. This pre-
deployment strategy was also used in (Gullhav, 2010), where there was
shown that the strategy gave shorter solution times. Using (72), together
with the predeployment strategy, instead of (70) and (71), might still give
some symmetrical solutions, but makes it easier for the Xpress solver to
discover solutions.

The additional constraints (70) - (72) is based on the SDP-PDC model,
but is also applied on the SDP-HCE model, where the sn and on variables
are formulated with an index, d, for the private cloud domain corresponding
to the node n. In order to do use the predeployment strategy in a private
cloud domains in the SDP-HCE model, I only consider predeployment of

65

7.2 Generation of test instances

Table 3: Overview of the strategies to reduce the number of symmetrical solutions

Name Constraints/strategy
SYM0 Predeployment strategy
SYM1 Predeployment strategy and (72)
SYM2 (70) and (71)

replicas of a service component which are forced to be deployed in a private
domain, i.e. replicas with BINDiq = d, d ∈ DPR.

In the testing of the models I have, in addition to the two preceding
strategies, also included a strategy which only considers predeployment of
replicas. The three strategies are denoted SYM0, SYM1 and SYM2, and
Table 3 gives an overview of the three.

7.2 Generation of test instances

Some of the data used in the generation of test instances are found by doing
web searches, while other data is randomly generated within an interval
with approximated bounds. All data used in the models are presented
below.

Problem scales

The test instances for the SDP-PDC model range from a case with five
services and twelve nodes to a case with forty services and eighty nodes. In
the SDP-HCE test instances I have only tested the model for one private
cloud domain, with varying number of nodes, and two public cloud domains,
provided by two different cloud IaaS providers. The number of components
of the services is generated by the use of a function which produces random
numbers. The minimum number of components is set to two, while the
maximum is set to four, in all test instances, expect for one test instance
where the maximum total number is raised to five. In the generation of
replication patterns each service component is associated with a maximum

66

7 NUMERICAL RESULTS AND DISCUSSION

Table 4: Scale of the different test instances

Test instance name # services range of # component # nodes # public domains
PDC-5 5 2-4 12
PDC-15 15 2-5 35
PDC-20 20 2-4 40
PDC-40 40 2-4 80
HCE-5 5 2-4 5 2
HCE-10 10 2-4 12 2
HCE-20 20 2-4 25 2

number of replicas and maximum number of active replicas. These numbers
are accordingly set to ten and seven.

Table 4 shows the scale of the different test instances. The naming of
the test instances, used in the table, will be retained throughout the thesis.

Availability and response time

Each service is associated with a lower bound on availability and an upper
bound on response time, and these values are generated randomly. The
response time bound of a service, REQRTi, is a random number between
200ms and 400ms multiplied by the number of components of this service.
The availability bound, REQAV i, of a service is a random number between
0.98500 and 0.99999. Besides, the asymptotic availability of a service com-
ponent, AV AILCiq, is generated randomly and takes a value between 0.950
and 0.999. Lastly, some components in the SDP-HCE model has restric-
tions on the minimum number of domains used, compared to the number
of replicas deployed, given by SPREADiq. This parameter takes a random
value between 0 and 0.4.

Demand and resource consumption

The average number of arriving requests per second, DEMi, for each service,
i, and thus also for each component of i, is a randomly generated integer
between 20 and 40. Moreover, the parameters VARi of a service, i, is also
randomly generated and takes a value between 1 and 1.5. The amount of

67

7.2 Generation of test instances

CPU power per request per second needed to process a request in service-
component pair (i, q), JOBLOADiq is random number between 0.25 and 1,
in percentage of the nodes’ CPU capacity. Lastly, the average service rate
of requests, usually denoted µ in queueing theory, of a service-component
pair (i, q) is random number between 0.2 and 1.5 multiplied by the average
number of arriving requests per second. In this manner, without consider-
ation VARi, the fixed amount of CPU power allocated to a replica of (i, q),
denoted CPUASSiq, equals µiqJOBLOADiq.

The BINDiq parameters

Some service components in the SDP-HCE model is bound to have its
replicas in a specific domain. I have only tested cases where the BINDiq
parameter takes a value of one or zero, meaning that no test instance has a
component forced to have all its replicas deployed in a public cloud domain.

Power consumption

In accordance with the relationship between utilization and power con-
sumption, (1), I have to set values for the power consumption of a node in
idle state and the power consumption of a fully utilized node. Fan et al.
(2007) report a nameplate power of 250W for a typical server, and I choose
to use this value as the power consumption of a fully utilized node. Be-
loglazov et al. (2011) and Barroso and Hölzle (2007) state that an idle
server consumes around 70 percent and 50 percent of the peak power, re-
spectively, and hence I set the idle power of a node to 150W. Furthermore,
I have scaled these numbers to kilowatt as electricity prices are given in ¢
per kilowatt-hour. Thenceforth, I use the peak power consumption and the
idle power consumption to calculate the PWRCOEFF parameter, which give
0.25−0.15

100% = 0.0012. Since the CPU capacity of the nodes are normalized to
100 percent it is necessary to divide the coefficient by 100.

2Unfortunately, a huge mistake has been done when setting PW RCOEF F in the test
instances. An human error, by me, led this parameter to be set to 0.0001. This was
discovered too late before the deadline, and thus the numbers presented are erroneous.

68

7 NUMERICAL RESULTS AND DISCUSSION

Costs

Firstly, the cost of energy usage, COSTPWR, is set to 10 ¢ per kilowatt-hour,
which is an approximate price for electricity costs in the industrial sector
in the USA (EIA, 2011). Furthermore, the cost of deploying replicas in the
public cloud domains is based on prices from Amazon AWS (Amazon EC2
website, 2011) and Rackspace (Rackspace Cloud hosting website, 2011).
These IaaS cloud providers provide several types of VMs with varying size
and price. I focus on the on-demand-based, standard instances, and in
this category Amazon AWS provide three different types of VMs, while
Rackspace provide seven. Amazon presents the CPU sizes of their VM
types using elastic compute units (ECU), and in order to include these
VM types in the modelling, I have done an estimation on the relative size
of these elastic compute units compared to the nodes in the private cloud.
Table 5 shows the hourly cost, CPU size, relative to the nodes, and memory
size for the VM types of Amazon. Rackspace, on the other hand, does not
provide information of about the CPU sizes of its VM types. So in order to
set the CPU sizes of Rackspace’s VM types, I have compared the VM types
of Amazon and Rackspace according to the size of memory and based the
estimation of the CPU sizes on this comparison. Table 6 shows the price,
memory size and estimated CPU size of Rackspace’s VM types. In my
test instances the public cloud domain based on Amazon’s VM instances is
denoted with domain index 2, while the public cloud based on Rackspace’s
VM instances is denoted with domain index 3. The private cloud domain
is denoted with index 1. Lastly, for the sake of simplicity, I set the HRS

parameter to 1, which has no impact on the solution in none of the models.
From the Tables 5 and 6 and the cost of energy usage, given above, it is

clear that deployment in the public cloud domains is much more expensive
than deployment in the service provider’s own private cloud. In order to
be able to weight the benefits of deployment in the public cloud and the
private cloud, it is necessary to take into account other costs than only the
cost of energy usage in the private cloud, like management and other cost
related the physical infrastructure. Such costs might hardly be influenced
in a short time period, and is hence not included in this thesis.

69

7.2 Generation of test instances

Table 5: Amazon standard VM types1 with corresponding hourly cost, CPU size and
memory size (Amazon EC2 website, 2011)

VM type Cost (¢ per hour) CPU size (in %) Memory size (GB)
VM1 9.5 10 1.7
VM2 38 40 7.5
VM3 76 80 15

Table 6: Rackspace standard VM types2 with corresponding hourly cost, estimated
CPU size and memory size (Rackspace Cloud hosting website, 2011)

VM type Price (¢ per hour) Estimated CPU size (in %) Memory size (MB)
VM1 1.5 2 256
VM2 3 5 512
VM3 6 7.5 1024
VM4 12 10 2048
VM5 24 25 4096
VM6 48 40 8192
VM7 96 80 15872

1EC2 instance types
2Cloud Servers

Infeasible test instances

Since much of the data is randomly generated, generation of infeasible test
instances might happen. Test instances might be infeasible if, for example,
the SPREADiq parameter is set too high for a service-component with a
large number of replicas, i.e. a service component have a lower bound on
the number of used domains that is higher than the number of domains. In
such cases the test instance is regenerated until a feasible test instances is
created.

Validity of test instances and results

A consequence of the fact the much of the data presented above are based on
estimation and assumptions, the main focus will not be directly on testing
if the proposed models give better results than other models in literature.
Instead I will concentrate on testing the applicability of the models, both in

70

7 NUMERICAL RESULTS AND DISCUSSION

Table 7: PDC-5 capacity-lowering approach: response time and availability of each
service

Service Availability Req. availability Response time (ms) Req. response time (ms)
1 0.99378 0.98747 345 560
2 0.99338 0.99279 613 630
3 0.98702 0.98546 791 1020
4 0.99938 0.99810 553 1120
5 0.98808 0.98692 397 1200

terms of whether the models behaves as intended or not and if the models
can tackle larger problem sizes.

7.3 Detailed results of the SDP models

Now, I will present the results obtained with the SDP-PDC and SDP-HCE
models on the smallest test instances, PDC-5 and HCE-5, correspondingly.
Both models are tested using the different approaches for assignment of
CPU power to passive replicas.

7.3.1 The PDC-5 test instance

The PDC-5 test instance consists of five service where the number of com-
ponents of each service is two, three, three, four and four, respectively.
These sixteen components are to be replicated into a number of replicas,
and each replica is to be deployed on one of the twelve nodes, with the
objective of minimizing the total energy costs.

Firstly, I will go through the solutions produced by employing the SDP-
PDC model with the capacity-lowering approach on the PDC-5 test in-
stance. In this case the SYM1 strategy is used to reduce the number of
symmetrical solutions. The chosen replication level for each component of
each service is depicted in Figure 9, where the services are denoted by s1
to s5. The resulting availability and response time of each service is shown
in Table 7 together with the corresponding availability and response time
requirements.

Table 8 gives the resulting deployment configuration by showing the

71

7.3 Detailed results of the SDP models

s1 s2 s3 s4 s5

Components

0

1

2

3

4

5

6

7

8

N
u
m

b
e
r

o
f

re
p
lic

a
s

Passive
Active

Figure 9: PDC-5 capacity-lowering approach: replication levels of each component of
each service, denoted by s1 to s5.

CPU assignment of the replicas on the nodes, where a service-component
pair is denoted by a (i, q) in the first column. The passive replicas can be
distinguished from the active ones, as the passive replicas are only assigned
a low amount of CPU power, enough to do tasks related to management and
state updating (cf. CPUOHiq). Although, there a twelve nodes which can be
used for deployment, an energy-efficient solution will try to shut down some
nodes if possible, and thus in this case, only eight nodes are used. Table 8
also shows the amount of non-assignable CPU power at each node, in the
second row from the bottom. This number should be greater or equal to
the amount of CPU power needed to make any passive replica active in case
of a failure. For example, on node 6 this amount equal 31.2, which is the
amount of CPU power needed in order to turn the passive replica of (4,4)
active. It is worth noticing that all passive replicas are collocated on the
same, small subset of nodes, and thus only the four last nodes have a non-
assignable amount of CPU power. Figure 10 illustrates the distribution of
the amount of CPU power assigned to active and passive replicas, and the
non-assignable amount of CPU power on each node. The figure also shows
the result of using SYM1 to reduce the number of symmetrical solutions, as
the amount of CPU power assigned to the replicas is decreasing with node

72

7 NUMERICAL RESULTS AND DISCUSSION

Table 8: PDC-5 capacity-lowering approach: mapping between replica and node. An
assignment is denoted by the amount of CPU power a replica is assigned on a node.

Nodes (CPU assignment in %)
(i, q) 1 2 3 4 5 6 7 8
(1,1) 22.8 22.8 0.7
(1,2) 11.1 11.1 11.1 0.7 11.1 0.7 11.1
(2,1) 20.0 20.0 0.8 0.8
(2,2) 6.8 0.8 6.8
(2,3) 9.0 9.0 0.6 9.0 9.0
(3,1) 17.4 17.4 0.6 0.6 17.4
(3,2) 4.4 4.4 0.8 4.4 4.4
(3,3) 7.9 7.9 7.9 0.7 0.7 7.9
(4,1) 17.6 0.8
(4,2) 21.0 21.0 0.6
(4,3) 25.0 1.0
(4,4) 31.7 0.5 0.5
(5,1) 19.0 19.0 0.8 0.8
(5,2) 33.5 33.5 1.0
(5,3) 51.2 0.5
(5,4) 64.3

Non-ass 0.0 0.0 0.0 0.0 19.2 31.2 24.0 50.7
Free cap 1.6 3.3 3.9 13.6 0.1 0.4 7.6 0.5

number.
Table 9 gives the actual utilization of the replicas. The utilization of

a replica is given by (11), without the summation over services and com-
ponents, used in the derivation of the objective function in the SDP-PDC
model. Hence the utilization is based on both the CPU power needed for
serving demand and the CPU overhead. The total utilization on a node
is shown in the bottom line, and we can see that the nodes with the most
non-assignable CPU power is the ones with the lowest utilization.

Now, the solutions produced by the semi-active approach are consid-
ered, and the results are obtained with the SYM2 strategy. In semi-active
approach, the choice of a replication pattern also indicates the number of
semi-active replicas to deploy. The chosen replication levels in the semi-
active approach is depicted in Figure 11, and one can see that the replication
levels are not quite the same as in the capacity-lowering approach. While
service 2 to service 5 remain unchanged, the first component of service 1
has now one active replica less and the second component has one active

73

7.3 Detailed results of the SDP models

1 2 3 4 5 6 7 8

Nodes

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

C
P

U
 a

ss
ig

nm
en

t t
o

re
p

lic
a

ty
pe

s

Free cap
Non-ass
Passive
Active

Figure 10: PDC-5 capacity-lowering approach: distribution of active and passive repli-
cas and non-assignable CPU power on each node.

Table 9: PDC-5 capacity-lowering approach: utilization of the nodes.

Nodes (Utilization of the nodes in %)
(i, q) 1 2 3 4 5 6 7 8
(1,1) 8.4 8.4 0.7
(1,2) 5.8 5.8 5.8 0.7 5.8 0.7 5.8
(2,1) 11.0 11.0 0.8 0.8
(2,2) 4.6 0.8 4.6
(2,3) 5.2 5.2 0.6 5.2 5.2
(3,1) 9.7 9.7 0.6 0.6 9.7
(3,2) 2.9 2.9 0.8 2.9 2.9
(3,3) 4.6 4.6 4.6 0.7 0.7 4.6
(4,1) 11.1 0.8
(4,2) 9.2 9.2 0.6
(4,3) 14.6 1.0
(4,4) 22.3 0.5 0.5
(5,1) 11.1 11.1 0.8 0.8
(5,2) 19.1 19.1 1.0
(5,3) 26.6 0.5
(5,4) 35.7

Total 52.4 54.1 51.8 45.6 51.7 38.4 37.1 30.2

74

7 NUMERICAL RESULTS AND DISCUSSION

s1 s2 s3 s4 s5

Components

0

1

2

3

4

5

6

7

8

9

N
u
m

b
e
r

o
f

re
p
lic

a
s

Passive
Semi-active
Active

Figure 11: PDC-5 semi-active approach: replication levels of each component of each
service, denoted by s1 to s5.

Table 10: PDC-5 semi-active approach: response time and availability of each service

Service Availability Req. availability Response time (ms) Req. response time (ms)
1 0.99338 0.98747 557 560
2 0.99338 0.99279 613 630
3 0.98702 0.98546 791 1020
4 0.99938 0.99810 553 1120
5 0.98808 0.98692 397 1200

replica more. The response time and availability of the services are given in
Table 10, and one can see that the response time of service 1 has increased,
but is still on a tolerable level. Another difference between Figure 9 and
Figure 11 is the introduction of semi-active replicas in the latter. One can
see that every service-component pair have at least one semi-active replica,
except from the last component of service 5 which have neither passive nor
semi-active replicas. The calculation of the number of semi-active repli-
cas gives that the last component of service 4 has two semi-active replicas
(d3−1

1 e = 2). Lastly, it is observed that there are few passive replicas, and
hence almost all replicas should be assigned enough CPU power to serve
demand.

The deployment of the resulting replicas is given in Table 11, still de-

75

7.3 Detailed results of the SDP models

Table 11: PDC-5 semi-active approach: mapping between replica and node. An assign-
ment is denoted by the amount of CPU power a replica is assigned on a node.

Nodes (CPU assignment in %)
(i, q) 1 2 3 4 5 6 7 8 9 10
(1,1) 22.8 22.81

(1,2) 11.1 11.1 11.1 11.1 11.1 0.7 11.1 11.11

(2,1) 20.01 20.0 0.8 20.0
(2,2) 6.8 6.81 6.8
(2,3) 9.01 9.0 9.0 9.0 9.0
(3,1) 0.6 17.41 17.4 17.4 17.4
(3,2) 4.4 4.4 4.4 4.41 4.4
(3,3) 7.9 7.9 7.9 7.91 0.7 7.9
(4,1) 17.6 17.61

(4,2) 21.01 21.0 21.0
(4,3) 25.01 25.0
(4,4) 31.7 31.71 31.71

(5,1) 19.0 19.01 19.0 0.8
(5,2) 33.51 33.5 33.5
(5,3) 51.21 51.2
(5,4) 64.3

Free cap 0.3 25.6 2.6 0.9 4.9 3.5 1.0 0.1 3.2 7.0

1Semi-active replica

1 2 3 4 5 6 7 8 9 10

Nodes

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

C
P

U
 a

ss
ig

ne
m

en
ts

 to
 r

ep
lic

a
ty

pe
s

Free cap
Passive
Semi-active
Active

Figure 12: PDC-5 semi-active approach: distribution of active, semi-active and passive
replicas on the nodes.

76

7 NUMERICAL RESULTS AND DISCUSSION

noted by the amount of CPU power assigned to the replicas. Although
both active and semi-active replicas are assigned an equal amount of CPU
power, the semi-active replicas are still assumed of not serving demand. In
order by be distinguishable from the active replicas, the semi-active ones are
marked by a footnote mark in Table 11. Compared to the capacity-lowering
approach, it is now necessary to have ten nodes turned on. The reason of
this increase can be explained by the fact that some passive replicas in the
capacity-lowering approach now is considered semi-active. The table also
shows the effect of the predeployment strategy employed in SYM2. In this
test instance, the chosen active replicas to deploy is the ones of pair (1,2),
and these replicas are deployed on the first five nodes. Furthermore, Figure
12 depicts the distribution of active, semi-active and passive replicas, by
CPU assignment, on each node. In comparison with the same figure in the
capacity-lowering approach, Figure 10, one can see that the total amount
of CPU power assigned to the semi-active replicas exceeds the amount of
non-assignable CPU power in the capacity-lowering approach. This makes
it easier for the service provider to activate passive, or semi-active, replicas
in case of failure in several active replicas, and thus reduce the probability
of turning on already turned-off nodes and migrating replicas. This might
imply shorter failover delay.

Since the semi-active replicas are assumed of not serving demand, their
utilization equal the utilization of a corresponding passive replica. The
utilization of the replicas is shown in Table 12, and one can observe that
the utilization on nodes with several semi-active replicas is relatively low,
cf. nodes 3 and 6 with three semi-active replicas each. The introduction
of semi-active replica generally reduces the utilization compared to the
capacity-lowering approach, which mainly can be explained by the increased
number of turned-on nodes.

Regarding the all-active approach, the solution produced on the PDC-5
test instance is not proven to be optimal with neither strategies to re-
duce the number of symmetrical solutions. The results obtained by using
the SYM1 strategy are presented below, and firstly, the chosen replication
levels are given in Table 13. Note that the passive replicas are assumed
active, and that the number of active replicas denotes the minimum num-

77

7.3 Detailed results of the SDP models

Table 12: PDC-5 semi-active approach: utilization of the nodes

Nodes (Utilization of the nodes in %)
(i, q) 1 2 3 4 5 6 7 8 9 10
(1,1) 16.2 0.71

(1,2) 5.0 5.0 5.0 5.0 5.0 0.7 5.0 0.71

(2,1) 0.81 11.0 0.8 11.0
(2,2) 4.6 0.81 4.6
(2,3) 0.61 5.2 5.2 5.2 5.2
(3,1) 0.6 0.61 9.7 9.7 9.7
(3,2) 2.9 2.9 2.9 0.81 2.9
(3,3) 4.6 4.6 4.6 0.71 0.7 4.6
(4,1) 11.1 0.81

(4,2) 0.61 9.2 9.2
(4,3) 1.01 14.6
(4,4) 22.3 0.51 0.51

(5,1) 11.1 0.81 11.1 0.8
(5,2) 1.01 19.1 19.1
(5,3) 0.51 26.6
(5,4) 35.7

Total 30.4 37.5 20.0 47.8 52.5 12.4 45.8 52.8 28.7 33.4

1Semi-active replica

ber of replicas which must be active in order to fulfill the response time
requirement. The additional replicas ensure that the response time holds
even in case of failures, and thus make the services satisfy the availability
requirement. Since all replicas are assumed active, the decisions are only
based on the total number of replicas, but the corresponding number of
active and passive replicas, from the chosen replication patterns, are pre-
sented for comparison with the other approaches. By inspection, one can
see that the replication levels chosen in this case equal the replication level
in the capacity-lowering approach, and hence also achieve equal response
time and availability values.

Table 14 presents the mapping between replicas and nodes, by showing
the CPU assignment values, in the all-active approach. In this case all
replicas of a service-component pair (i, q) are assigned an equal amount
of CPU power and all replicas are also assumed of serving demand. The
former affects the number of nodes used, and the resulting deployment
configuration uses eleven nodes, compared to eight and ten in the two

78

7 NUMERICAL RESULTS AND DISCUSSION

Table 13: PDC-5 all-active approach: replication level of each component of each service

Number of replicas for each service-component pair (si, qq)
s1 s2 s3 s4 s5

q1 q2 q1 q2 q3 q1 q2 q3 q1 q2 q3 q4 q1 q2 q3 q4
Active 2 5 2 2 4 3 4 4 1 2 1 1 2 2 1 1
Passive 1 2 2 1 1 2 1 2 1 1 1 2 2 1 1 0
Total 3 7 4 3 5 5 5 6 2 3 2 3 4 3 2 1

previous approaches. The latter makes the total utilization on the nodes
more balanced, however, the utilization is still generally lower than in the
capacity-lowering approach.

Table 15 gives an overview of the solutions of the three different ap-
proaches employed on the PDC-5 test instance, including the objective
value, the average utilization on the turned-on nodes and the running times
until the optimal solution was found. As presented the solutions are found
relatively early in all cases, but in the all-active approach the objective
value is not proven to be optimal within the limited maximum running
time of 7000 seconds. However, the best bound is found in the root node
of the B&B tree and equal the optimal objective value in the semi-active
approach, 15.36, but the B&B algorithm does not manage to close the gap,
by for example, proving that it is not feasible to use only ten nodes. Fur-
thermore, as already pointed out, the average utilization of the nodes in
the capacity-lowering approach is higher than the corresponding numbers
in the other approaches. Considering the cost of energy usage in the three
approaches, we see clearly that the capacity-lowering approach delivers the
most energy-efficient solution. From the objective function, (15), we know
that the number of nodes used is an important determinant, and is in fact
dominating the cost. Thus, one might question if there is more reasonable
to only minimize the number of nodes used. In such a case, there might be
easier for the solver to close the optimality gap. Since the number of nodes
naturally is an integer, any fractional lower bound can be rounded up to
the nearest integer, and this might help the solver in proving the optimal
solution. Lastly, the bottom row states the strategies used to reduce the
number of symmetrical solutions when obtaining the solutions.

79

7.3 Detailed results of the SDP models

Table 14: PDC-5 all-active approach: mapping between replica and node. An assign-
ment is denoted by the amount of CPU power a replica is assigned on a node. The
bottom line shows the total utilization of the nodes.

Nodes (CPU assignment and utilization in %)
(i, q) 1 2 3 4 5 6 7 8 9 10 11
(1,1) 22.8 22.8 22.8
(1,2) 11.1 11.1 11.1 11.1 11.1 11.1 11.1
(2,1) 20.0 20.0 20.0 20.0
(2,2) 6.8 6.8 6.8
(2,3) 9.0 9.0 9.0 9.0 9.0
(3,1) 17.4 17.4 17.4 17.4 17.4
(3,2) 4.4 4.4 4.4 4.4 4.4
(3,3) 7.9 7.9 7.9 7.9 7.9 7.9
(4,1) 17.6 17.6
(4,2) 21.0 21.0 21.0
(4,3) 25.0 25.0
(4,4) 31.7 31.7 31.7
(5,1) 19.0 19.0 19.0 19.0
(5,2) 33.5 33.5 33.5
(5,3) 51.2 51.2
(5,4) 64.3

Free cap 0.2 0.2 1.2 2.3 3.7 3.9 7.8 8.1 8.5 12.3 17.4
Utilization 28.9 36.0 33.1 34.8 28.0 30.4 34.0 31.4 30.8 45.8 28.0

Table 15: PDC-5: summary of approaches

All-active Semi-active Capacity-lowering
Used nodes 11 10 8
Avg. utilization 32.8% 36.1% 45.2%
Min cost 16.86 15.36 12.36
Solution time (s) 1371 1 2
Symmetry constraints SYM1 SYM2 SYM1

1The objective value of the all-active approach is not proven to be optimal and has a
gap between the best bound and the best solution in branch-and-bound of 8.89%. The
best solution was found after 137 seconds, while max runtime was set to 7000 seconds

80

7 NUMERICAL RESULTS AND DISCUSSION

s1 s2 s3 s4 s5

Components

0

1

2

3

4

5

6

7

8

9

N
um

be
r

of
 r

ep
lic

as

Passive
Active

Figure 13: HCE-5 capacity-lowering approach: replication levels of each component of
each service, denotes s1 to s5

7.3.2 The HCE-5 test instance

The services modelled in the HCE-5 test instance is the same as in the
PDC-5 test instance, i.e. they have the same number of components, the
same demand, the same availability and availability and response time re-
quirements. On the other hand, the deployment environment have changed
to a hybrid cloud with two public cloud domains, operated by different
IaaS providers, and a single private cloud domain. Since the cost of energy
usage in the private cloud is generally lower than the cost of deployment in
a public cloud domain, the number of nodes is reduced to five in order to
make it necessary to deploy some replicas in the public cloud.

Likewise in the presentation of the results from the PDC-5 test instance,
I will firstly show the the results obtained by using the capacity-lowering
approach. Figure 13 depicts the replication levels, and by inspection, we
see that the total number of replicas and the number of active replicas
corresponds to the semi-active approach in the SDP-PDC model. Hence
the service availability and response time is shown in Table 10.

The deployment of the replicas is given in Table 16. Deployment on the
nodes in the private cloud is still indicated by the amount of CPU power

81

7.3 Detailed results of the SDP models

Table 16: HCE-5 capacity-lowering approach: Deployment, CPU assignment and uti-
lization. In the column indicating the minimum number of used domains, a value of 0
means that the component is not constrained by a such constraint. The first column
from the right indicates the value of the BINDiq parameter, where a value one means
that the pair (i, q) have to be deployed in the private cloud (domain 1)

Nodes
(CPU assignment and utilization in %)

Public cloud domains
(number of replicas) Min #

domains
used

Bind-
ing2 3

(i, q) 1 2 3 4 5 Act Pas Act Pas
(1,1) 22.8 0.7 0 1
(1,2) 11.1 11.1 11.1 11.1 11.1 1 2 0 0
(2,1) 20.0 20.0 0.8 0.8 0 1
(2,2) 6.8 0.8 6.8 0 1
(2,3) 0.6 4 0 0
(3,1) 17.4 17.4 17.4 0.6 1 0
(3,2) 0.8 4 1 2 0
(3,3) 7.9 7.9 0.7 0.7 2 1 0
(4,1) 17.6 0.8 0 1
(4,2) 21.0 0.6 1 2 0
(4,3) 25.0 2 1 0
(4,4) 0.5 1 1 0
(5,1) 19.0 19.0 0.8 0.8 1 0
(5,2) 1 2 1 0
(5,3) 51.2 0.5 0 1
(5,4) 64.3 0 1

Non-ass 0.0 0.0 0.0 19.2 50.7
Free cap 0.2 0.3 0.8 0.1 0.2

Utilization 57.2 52.4 55.8 46.0 30.4

assigned to the replica, while deployment in the public cloud domains is
given by an integer, telling the number of replicas, active and passive, that
are deployed in the domain. In the HCE test instances, some components
have requirements on the minimum number of domains used (cf. SPREADiq)
and other components might be bound to have all its replicas deployed in
the private domain. These requirements on a component is shown in the
two last columns. It is seen that the replicas of service-component pair
(3,2) and (4,2) need to be deployed in at least two domains, while the other
replicas have no such constraints. Some cells in the second column from the
right contain a zero value, meaning that there are no constraints related to
the number of used domains for the corresponding component. Note that

82

7 NUMERICAL RESULTS AND DISCUSSION

all pairs (i, q) with BINDiq naturally have no constraints on the minimum
number of domains used. In the testing of the capacity-lowering approach
on the PDC-5 instance it was seen that all passive replicas were kept on the
same nodes, and this characteristic is also found in Table 16, where only
nodes 4 and 5 are used for deployment of passive replicas. Regarding the
deployment in the public cloud domains, the results show that for a given
service component, maximum one of the public domains are chosen, and
furthermore no passive replicas are deployed in domain 2. The latter can
partly be explained by the fact that the cost of deploying a passive replica
in domain 2 is much higher than deploying the same replica in domain 3,
cf. Table 5 and 6, as the amount of CPU assigned to a passive replica is less
than or equal to 1 percent of the node capacity. In the case of pair (1,2),
the cheapest VM type for an active replica in domain 3 is VM5 with cost
24 ¢ per hour, while if the replica instead was deployed in domain 2, the
cost would have been 38 ¢ per hour. Lastly, the bottom column in Table
16 shows the utilization of the nodes, and it proves that there is a small
increase in the utilization on the nodes compared to the case in the PDC-5
test instance.

Now, the focus is on the semi-active approach, and in this case the
results obtained with the SYM2 strategies are presented. The solutions
achieved by using the SYM2 strategy give replication levels according to
Figure 14, which imply the service availabilities and response times shown
in Table 17. The number of active replicas is the same as in the capacity-
lowering approach (cf. Figure 13), but the total number of replicas of the
components of service 4 have another distribution, affecting the availability

The deployment configuration is illustrated in Table 18, in the same

Table 17: HCE-5 semi-active approach: response time and availability of each service

Service Availability Req. availability response time (ms) Req. response time (ms)
1 0.99338 0.98747 557 560
2 0.99338 0.99279 613 630
3 0.99118 0.98546 791 1020
4 0.99816 0.99810 553 1120
5 0.98808 0.98692 397 1200

83

7.3 Detailed results of the SDP models

s1 s2 s3 s4 s5

Components

0

1

2

3

4

5

6

7

8

9

N
um

be
r

of
 r

ep
lic

as

Passive
Semi-active
Active

Figure 14: HCE-5 semi-active approach: replication level of each component of each
service, denoted s1 to s5.

manner as in the capacity-lowering approach. Since the active and semi-
active replicas are assigned the same amount of processing power, the semi-
active replicas are again distinguished by a footnote mark. The main differ-
ence in the deployment configuration comparing with the capacity-lowering
approach is that the several passive replicas now are considered semi-active,
which hence lower the utilization on the nodes in the private cloud domain.
This also implies that more replicas need to be deployed in the public cloud,
which in turn increases the total cost of the service provider. Table 18 also
shows the effect of the predeployment strategy. Among the service compo-
nents bound to be deployed in the private cloud domain, (2,1) is chosen to
have two active replicas predeployed on the first two nodes.

The results produced by the all-active approach, using the SYM1, strate-
gies are quite similar to the ones that are presented above, using the semi-
active approach. In fact, the replication levels are equal, although all repli-
cas is assumed active in the case considered here. Table 19 gives an overview
of the deployment of the replicas in the hybrid cloud environment, as well
as the utilization on the nodes in the private cloud. Since all replicas is
assumed active, a slightly higher number of replicas is deployed in the pub-
lic cloud, and amplified by the fact that all replicas deployed in the public

84

7 NUMERICAL RESULTS AND DISCUSSION

Table 18: HCE-5 semi-active approach: Deployment, CPU assignment and utilization
of nodes. In the column indicating the minimum number of used domains, a value of
0 means that the component is not constrained by a such constraint. The first column
from the right indicates the value of the BINDiq parameter, where a value one means
that the pair (i, q) have to be deployed in the private cloud (domain 1)

Nodes
(CPU assignment and utilization in %)

Public cloud domains
(number of replicas) Min #

domains
used

Bind-
ing2 3

(i, q) 1 2 3 4 5 Act1 Pas Act1 Pas
(1,1) 22.8 22.82 0 1
(1,2) 11.12 11.1 11.1 11.1 11.1 2 1 0 0
(2,1) 20.0 20.0 0.8 20.02 0 1
(2,2) 6.82 6.8 6.8 0 1
(2,3) 5 0 0
(3,1) 17.42 3 1 0
(3,2) 0.8 4.42 4 2 0
(3,3) 0.7 5 1 0
(4,1) 17.62 17.6 17.62 0 1
(4,2) 21.02 3 2 0
(4,3) 25.0 25.02 1 0
(4,4) 2 1 0
(5,1) 0.8 3 1 0
(5,2) 3 1 0
(5,3) 51.2 51.22 0 1
(5,4) 64.3 0 1

Free cap 0.1 1.2 0.7 0.9 0.2
Utilization 39.1 60.3 8.9 12.3 46.1

1The column gives the number of active and semi-active replicas
2Semi-active replica

clouds need to be packaged in a VM instance with the CPU size correspond-
ing to an active replica, this leads to a more expensive solution compared
to the other approaches.

Table 20 sums up this section by showing the average utilization on the
nodes in the private cloud domain, the usage costs in the public cloud do-
mains, the total cost and the time it took to achieve the solutions using the
Xpress solver. Comparing the average utilization of the nodes in the HCE-5
test instance against the utilization levels in the PDC-5 case, one can see
that the capacity-lowering and the all-active approach has slightly higher
average value, while the opposite is true for the semi-active approach. Con-

85

7.3 Detailed results of the SDP models

Table 19: HCE-5 all-active approach: deployment, CPU assignment and utilization of
nodes. In the column indicating the minimum number of used domains, a value of 0
means that the component is not constrained by a such constraint. The first column
from the right indicates the value of the BINDiq parameter, where a value one means
that the pair (i, q) have to be deployed in the private cloud (domain 1)

Nodes
(CPU assignment and utilization in %)

Public domains
(number of replicas) Min # domains

used
Bind-
ing(i,q) 1 2 3 4 5 2 3

(1,1) 22.8 22.8 0 1
(1,2) 11.1 11.1 11.1 11.1 11.1 3 0 0
(2,1) 20.0 20.0 20.0 20.0 0 1
(2,2) 6.8 6.8 6.8 0 1
(2,3) 5 0 0
(3,1) 4 1 0
(3,2) 4.4 5 2 0
(3,3) 7.9 5 1 0
(4,1) 17.6 17.6 17.6 0 1
(4,2) 21.0 2 2 0
(4,3) 25.0 1 1 0
(4,4) 2 1 0
(5,1) 19.0 3 1 0
(5,2) 3 1 0
(5,3) 51.2 51.2 0 1
(5,4) 64.3 0 1

Free cap 0.1 0.2 0.2 0.5 0.7
Utilization 27.6 47.7 32.5 31.2 32.2

sidering the difference in the public cloud deployment costs, we observed
in the PDC-5 test instance that the capacity-lowering approach needed the
fewest number of nodes to run replicas. This leads, in the case considered
here, to fewer replicas deployed in the public clouds, and hence lower costs.
Since the costs of deployment in public clouds are dominating the cost in
the private cloud, the difference between the approaches is relatively large.
This domination of the costs in the public cloud domains lead to a situation
where all nodes are used in the private cloud, and hence this raises a ques-
tion about the objective function. It might be argued that when considering
a hybrid cloud environment, more cost factors related to the operation of
the private cloud is needed if it should be worthwhile to minimize the to-
tal costs. Moreover, Table 20 also shows the time the solver used to solve
the problems. In the capacity-lowering and all-active approach, the solver

86

7 NUMERICAL RESULTS AND DISCUSSION

needed 69 seconds and 19 second to prove optimum, respectively, but the
best solutions were in fact found after only 5 seconds in both cases. When
testing of the semi-active approach the solver is not able of proving that
the best solution is optimal. Using the SYM2 strategy for reducing the
number of symmetrical solutions the best solution is found after 16 seconds
and uses the rest of the running time, until 7000 seconds, to lower the gap
between the best bound and best solution to 0.64 percent. Using the SYM0
strategy in the same approach produces the same best solution, but require
321 seconds to find this solution. However, using this latter strategy, the
optimality gap after 7000 seconds of running time is as low as 0.46 percent.

Table 20: HCE-5: summary of approaches

All-active Semi-active Capacity-lowering
Avg. utilization of nodes 34.2% 33.3% 48.3%
Cost of using public domain 2 323.0 285.0 171.0
Cost of using public domain 3 303.0 256.5 67.5
Total cost 633.7 546.2 246.2
Solution time (s) 19 161 69
Symmetry constraints SYM1 SYM2 SYM1

1The objective value of the semi-active approach is not proven to be optimal and has
a gap between the best bound and the best solution in branch-and-bound of 0.64%. The
best solution was found after 16 seconds, while max runtime was set to 7000 seconds

7.4 Scalability of the SDP models

After showing the basic functioning of the models, the focus will now be
on testing whether the models are applicable to larger problem sizes or
not, and thus the results presented below do not concentrate on the de-
tails regarding deployment or replication levels. The model formulations,
including both the SDP-PDC and SDP-HCE model, will be tested on the
larger test instances given in Table 4, starting with the SDP-PDC model.
Besides, all three approach for assignment of CPU power to passive replicas
and the strategies employed to reduce the number of symmetrical solutions
are included in the testing. Lastly, there will also be given comments on
the scalability of the algorithm used to generate replication patterns.

87

7.4 Scalability of the SDP models

7.4.1 Scalability considerations of the SDP-PDC model

The test instances include PDC-15, PDC-20 and PDC-40, which consist of
15, 20 and 40 services and 35, 40 and 80 nodes, respectively. In the PDC-15
test instance, the number of components for a given service ranges between
two and five, while in the other test instances this number ranges between
two and four. Firstly, each of the approaches for assignment of processing
power to the passive replicas are gone through, in the same order as done
above, before a comparison of the different approaches is presented. In all
the larger test cases for the PDC model the maximum running time of the
Xpress solver is set to 4000 seconds.

Table 21a gives an overview of the solutions produced by the capacity-
lowering approach on the large test cases, together with some measures on
the complexity of solving the cases. All three strategies used to reduce
the number of symmetrical solutions are tested, but for all test instances,
using SYM1 makes it too hard for the solver to find even a feasible so-
lution. Thus the solver produces no solutions when employing the SYM1
constraints, but on the other hand provides reasonable good lower bounds
on the objective value. Considering the PDC-15 and PDC-20 case one can
observe that the usage of SYM0 provides the best solutions, but also the
worst lower bound. However, considering the lower bounds produced with
the help of the SYM1 and SYM2 strategies, one can acknowledge that the
SYM0 strategy produces solutions with an optimality gap below 5 percent.
Furthermore, it is seen that the best solutions are found within a short
amount of time. Advancing to the PDC-40 case, we see a quite different
situation. Now, the usage of the SYM2 strategy provides superior solutions
compared to SYM0. Although, the time to find the best solution is as high
as 2329 seconds. However, Figure 15a, depicting the evolution of the best
solution on a time scale, shows that relatively good solutions are found
within short time. For example, a solution with cost 83.54 is found after 70
seconds, while when using the SYM0 strategy, this solution is found after
2300 seconds. In Figure 15a it is also observed that the lower bound is not
increased after the initial heuristics used by the Xpress solver.

Now, proceeding to the semi-active approach, the overview of the solu-

88

7 NUMERICAL RESULTS AND DISCUSSION

Table 21: SDP-PDC: overview of solutions and complexity on the larger test instances.
In all tests on the large examples the maximum runtime of the solver is set to 4000 seconds
due to the limited memory capacity. The row denoting the solution time presents the
time used to find the best solution in the cases where optimum are not proved, while
presents the time to prove optimum in the cases where the optimum is proved.

(a) Capacity-lowering approach
PDC-15 PDC-20 PDC-40

SYM0 SYM1 SYM2 SYM0 SYM1 SYM2 SYM0 SYM1 SYM2
nodes used 22 23 25 26 53 50
Avg. utilization 54.21% 51.85% 51.45% 49.96% 47.84% 50.71%
Best solution 34.19 35.69 38.79 40.29 82.04 77.54
Best bound 32.32 32.63 32.69 37.01 37.29 37.01 74.18 74.18 74.18
Gap 5.47% 8.41% 4.59% 8.14% 9.58% 4.33%
Solution time 53 37 179 66 2919 2329
variables 3932 3950 3931 4609 4623 4609 19480 19496 19480
constraints 3917 3963 3944 4628 4677 4662 19518 19607 19591

(b) Semi-active approach
PDC-15 PDC-20 PDC-40

SYM0 SYM1 SYM2 SYM0 SYM1 SYM2 SYM0 SYM1 SYM2
nodes used 31 31 35 36 72 72
Avg. utilization 38.47% 38.48% 36.80% 35.73% 35.25% 35.22%
Best solution 47.69 47.69 53.79 55.29 110.54 110.54
Best bound 46.52 47.69 47.69 53.35 53.79 53.79 108.63 108.65 109.04
Gap 2.45% 0.00% 0.82% 2.71% 1.73% 1.36%
Solution time 14 10 20 169 9 475
variables 5711 5770 5710 6802 6862 6801 28914 29018 28914
constraints 2085 2160 2112 2447 2531 2480 10043 10208 10116

(c) All-active approach
PDC-15 PDC-20 PDC-40

SYM0 SYM1 SYM2 SYM0 SYM1 SYM2 SYM0 SYM1 SYM2
nodes used 33 33 37 38 76 76
Avg. utilization 36.14% 36.14% 34.77% 33.84% 33.39% 33.37%
Best solution 50.69 50.69 56.79 58.29 116.54 116.54
Best bound 49.27 50.69 50.69 56.36 56.57 56.79 114.52 114.54 115.04
Gap 2.80% 0.00% 0.76% 2.57% 1.73% 1.29%
Solution time 1 1 3165 6 5 5
variables 2010 2057 2010 2334 2383 2343 9817 9896 9816
constraints 95 164 123 102 180 140 210 368 288

89

7.4 Scalability of the SDP models

tions and complexity is found in Table 21b. In the PDC-15 case we can see
that both usage of SYM0 and SYM2 give the same best solution, which in
fact is optimal, while usage of SYM1 does not provide any solution, but the
solver manages to find a lower bound on the problem that equals the opti-
mal solution. Moreover, in the PDC-20 case, by the usage of SYM0, one is
able to find the optimal solution, however the best solution is proved opti-
mal by the best lower bounds in the case where SYM1 or SYM2 are used.
Regarding the largest case, PDC-40, we observe that both usage of SYM0
and SYM2 give equal best solutions, but none of strategies can help the
solver to prove optimality. Although, the SYM2 strategy provides a better
lower bound, there might be argued that the SYM0 strategy achieve the
best result since it is providing the same best solution as by usage of SYM2
in shorter time. Figure 15b illustrates the evolution of the best solution
in the PDC-40 case using the SYM2 strategy, and the figure shows that it
takes around 200 seconds to obtain a reasonable good solution, which back
up the arguments above.

The results of the all-active approach are given in Table 21c, and the
tests on the PDC-15 and PDC-20 cases show that the solutions produced
by usage of the SYM0 strategy gives optimal solutions on both cases, when
considering the lower bound produced with help of SYM2. However in the
PDC-20 case, the optimal solution is found after over 3000 seconds, which
might be longer than the time we are willing to wait. Figure 15c shows
that by the usage of the SYM0 strategy, the solver is able to find the same
solution as by employing the SYM2 strategy in a short amount of time,
correctly after 3 seconds. In the largest test instance, both the usage of
SYM0 and SYM2 make the solver produce the same, non-optimal solution,
both within a short period of time.

Now comparing the solutions of the three approaches, one can see that
the number of used nodes and the average utilization, shown in Table 21, are
corresponding to the results in Table 15, in the terms of that the capacity-
lowering approach is using the fewest number of nodes, and thus also has
the highest utilization levels and the lowest cost. Furthermore, regarding
the performance of the three different strategies to reduce the number of
symmetrical solutions, one can observe that usage of the SYM0 strategy

90

7 NUMERICAL RESULTS AND DISCUSSION

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

Time

60

70

80

90

100

110

120

130

C
o
st

Best solution
Best bound

(a) Capacity-lowering approach: PDC-40 with SYM2

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

Time

108

110

112

114

116

118

120

122

124

C
o
st

Best solution
Best bound

(b) Semi-active approach: PDC-40 with SYM2

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

Time

56

57

58

59

60

61

62

C
o
st

Best solution
Best bound

(c) All-active approach: PDC-20 with SYM0

Figure 15: SDP-PDC: solution graph of the large examples

91

7.4 Scalability of the SDP models

always provides the best solution, with an exception in the PDC-40 case
for the capacity-lowering approach. This strategy consists only of a simple
predeployment of some of the replicas of a service-component pair, and one
might argue that the extra constraints in the SYM1 and SYM2 strategies
are unnecessary. Considering the complexity of the different approaches, we
observe that the semi-active and all-active approach are solved to optimal-
ity in the PDC-15 and PDC-20 test instances, while this is not true for the
capacity-lowering approach. Moreover, the capacity-lowering approach also
has the highest optimality gap in the PDC-40 test instance. The greater
difficulties in solving the capacity-lowering approach comparing to the other
approaches, might be explained by the two bottom rows in the Tables 21a
to 21c. These rows show the number of variables and constraints, after the
presolve phase in the Xpress solver, of the corresponding approaches. The
number of constraints in the formulation of the capacity-approach is higher
than in the other two approaches, especially compared to the all-active ap-
proach. The extra number of constraints in the capacity-lowering approach,
compared to the other approaches stem from the set of constraints, (29),
setting the amount of non-assignable CPU power on the nodes. Although
the semi-active approach has a greater number of variables, caused by the
usage of the variables indicating a semi-active replica, viqn, an increase in
the number of constraints often leads to higher complexity than a similar in-
crease in the number of variables. Furthermore, the low number of variables
and constraints in the all-active approach, come from the fact that neither
the viqn variables nor the variables indicating an active replica, wiqn, are
used. Thus the constraints setting these variables, (18) and (19), and the
set of constraints forcing them to be less than or equal to the deployment
variable xiqn, (20), are not present in the formulation. Lastly, note that it
is only small differences in the number of variables and constraints between
the three strategies to reduce the number of symmetrical solutions.

7.4.2 Scalability considerations of the SDP-HCE model

In the case of the SDP-HCE model, test instances, to be discussed here
include the HCE-10 and the HCE-20 test instance, consisting of 10 and

92

7 NUMERICAL RESULTS AND DISCUSSION

20 services and 12 and 25 nodes in the private cloud domain, respectively.
Likewise in the discussion of the scalability of the SDP-PDC model, all
three approaches to assignment of CPU power to the passive replicas will
be considered. The maximum running time of the Xpress solver is set to
7000 seconds and 4000 seconds for the HCE-10 and HCE-20 test instance,
respectively.

Table 22a presents an overview of the solutions produced by the capacity-
lowering approach on the HCE-10 and HCE-20 test instance, using the dif-
ferent strategies to reduce the number of symmetrical solutions. Likewise
in the discussion of the larger PDC cases, some measures of complexity are
also provided. The tests of the capacity-lowering approach, on the focused
test instances, using the SYM1 strategies, give no feasible solution at all,
but they provide relatively good lower bounds on the optimal solution, sim-
ilar to the tests in previous subsection. Regarding the HCE-10 case, it is
seen that neither using the SYM0 nor the SYM2 strategy makes the solver
able to find or prove the optimal solution, but among the two strategies,
SYM2 produces the solution with the lowest cost. In fact, the gap between
the best found solution and the best lower bound is quite high, both when
using the SYM0 strategy and when using the SYM2 strategy. However,
when taking into account the best lower bound produced with the help
of the SYM1 strategy, the gap between the optimal solution and the best
found solution when employing SYM2 is below 25 percent. Advancing to
the HCE-20 instance, it is still observed that the SYM2 strategy is supe-
rior to the other strategies, in terms of producing a low-cost solution. In
this case, the optimality gap is lower, but the time used to find the best
solution has increase from 180 seconds to 802 seconds. Figure 16a show the
evolution of the best solution during the 4000 seconds of execution time.
After only 70 seconds the solver has found a solution with an optimality
gap of 6.65 percent, but regarding the best bound, the B&B procedure is
not able to raise the lower bound within the time limit.

Likewise in the tests of the SDP-PDC models on the larger test in-
stances, the semi-active approach produces solutions with lower optimality
gap than the capacity-lowering approach. This is shown in Table 22b. Fo-
cusing on the HCE-10 case, usage of the SYM2 strategies produces the best

93

7.4 Scalability of the SDP models

Table 22: SDP-HCE: overview of solutions and complexity on the larger test instances.
In the tests on HCE-10 the maximum runtime of the solver is set to 7000 seconds, while
the maximum runtime is set to 4000 in tests on HCE-20 due to the limited memory
capacity. The row denoting the solution time presents the time used to find the best
solution in the cases where optimum are not proved, while presents the time to prove
optimum in the cases where the optimum is proved.

(a) Capacity lowering approach
HCE-10 HCE-20

SYM0 SYM1 SYM2 SYM0 SYM1 SYM2
Best solution 207.11 195.11 3084.41 2899.94
Best bound 133.14 146.58 133.14 2736.28 2738.25 2736.52
Gap 35.72% 31.76% 11.29% 5.64%
Solution time 1203 180 641 802
variables 940 948 938 3775 3812 3775
constraints 1059 1064 1058 4168 4224 4186

(b) Semi-active approach
HCE-10 HCE-20

SYM0 SYM1 SYM2 SYM0 SYM1 SYM2
Best solution 823.40 818.91 4805.69 4776.20
Best bound 805.11 805.92 805.92 4725.45 4724.58 4725.09
Gap 2.22% 1.59% 1.67% 1.07%
Solution time 3622 6041 2178 2030
variables 1341 1366 1339 5457 5524 5455
constraints 707 728 711 2609 2664 2625

(c) All-active approach
HCE-10 HCE-20

SYM0 SYM1 SYM2 SYM0 SYM1 SYM2
Best solution 942.40 1098.88 956.90 5678.62 5682.62
Best bound 934.85 934.85 934.95 5593.39 5593.76 5593.39
Gap 0.80% 14.93% 2.29% 1.50% 1.57%
Solution time 4576 6197 4 1 2
variables 479 494 477 1925 1962 1923
constraints 151 167 155 526 575 542

94

7 NUMERICAL RESULTS AND DISCUSSION

solutions, whereas the usage of SYM1 makes it too difficult for the solver
to find a feasible solution. Although Table 22b indicates that the best solu-
tion is found after more than 6000 seconds, Figure 16b shows that a good
solutions are produced early, specifically a solution with an optimality gap
of 3.20 percent is found after only 5 seconds. Proceeding to the HCE-20
test instance, still the usage of SYM2 gives the best solution. Although the
solution is not optimal, comparing with the HCE-10 case, we observe that
the optimality gap is slightly smaller. Figure 16c reveals that even thought
the B&B algorithm in the Xpress solver finds the best solution after over
2000 seconds, relatively good solutions are found within the first seconds
of the execution, in this case as well.

The results of the all-active approach, given in Table 22c, show that the
by the usage of the SYM1 strategy the solver is in fact capable of providing
a feasible solution in the HCE-10 test instance. However, with the help
of the SYM0 strategy, the solver is providing a near-optimal solution after
3600 seconds. Again, it is shown, in Figure 16d, that good solutions are
also found early in the search. The usage of the SYM2 strategy produces a
relatively good solution after only 4 seconds, but in fact, using the SYM0
strategy produces an even better solution within the same amount of time.
In the largest HCE test instance, both the usage of the SYM0 and the
SYM2 strategy produces near-optimal solutions during the first seconds of
execution.

By comparing the three approaches, and regarding the performance of
the strategies used to reduce the number of symmetrical solutions, one
can see from Table 22 that the usage of the SYM0 strategy in the all-active
approach gives the best solutions in both the HCE-10 and the HCE-20 case,
while the usage of SYM2 is superior to SYM0 in the other two approaches.
However, the lower bounds produced by the usage of the two strategies are
almost the same. It is although noticeable that the SYM2 strategy makes
the solver finding good solution in shorter or the same amount of time,
compared to SYM0, since it uses a set of constraints to sort the nodes in
the private cloud domain, according to whether they are turned off or not,
while indeed, all nodes are used and turned on. As a matter of fact, the
constraints in SYM2 are removed in the presolve phase of the Xpress solver.

95

7.4 Scalability of the SDP models

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

Time

2700

2800

2900

3000

3100

3200

3300

3400
C

o
st

Best solution
Best bound

(a) Capacity-lowering approach: HCE-20 with SYM2

0 1000 2000 3000 4000 5000 6000 7000

Time

800

820

840

860

880

900

920

940

C
o
st

Best solution
Best bound

(b) Semi-active approach: HCE-10 with SYM2

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

Time

4700

4800

4900

5000

5100

C
o
st

Best solution
Best bound

(c) Semi-active approach: HCE-20 with SYM2

0 1000 2000 3000 4000 5000 6000 7000

Time

920

940

960

980

1000

1020

1040

1060

1080

C
o
st

Best solution
Best bound

(d) All-active approach: HCE-10 with SYM0

Figure 16: SDP-HCE: solution graph of the large examples

96

7 NUMERICAL RESULTS AND DISCUSSION

Considering the complexity in solving the test instances, it is observed
that none test instances is solved to optimality, but the models of the
semi-active and all-active approach give near-optimal solutions in both test
instances. Likewise from the results of the larger PDC test instances, one
can observe that the capacity-lowering approach has the highest number of
constraints compared to the other two approaches, which might explain why
this approach is the most complex to solve, in terms of the optimality gap.
Comparing with the PDC examples, we also see that all approaches have
a higher number of constraints relative to the number of variables. This is
caused by the set of constraints, (52), setting the fraction of demand which
is handled from the private cloud domain. This set of constraints is done
for each replication pattern of each service, and hence, since the number
of replication patterns can be large in some cases, this set of constraints
might seriously affect the scalability of the model. The replication pattern
generation will be commented next.

7.4.3 Scalability of the replication pattern generation

If one does not take any measures to limit the number of replication pat-
terns, this number might be enormous. In principle, the number of repli-
cation patterns of a service grow exponentially with the number of compo-
nents constituting the service. Assume that one is to enumerate all possible
combinations of the number of active and passive replicas for single com-
ponent. With the limit that the total number of replicas of this component
is below ten, the total number of combinations is 10 · 10+1

2 = 55. Thus if
a service consists of Q such components, the total number of replication
patterns for this service is given by 55Q. Even supposing that we eliminate
the replication patterns which not satisfy the response time and availability
requirements, we might still get a very high number of replication patterns,
making the proposed MILP models difficult to solve. In order to limit the
cardinality of the set of replication patterns even further, without affecting
the optimal solution, I have implemented the two additional tests, shown
in Algorithm 6.1 and described in Section 6.5. These tests seem to work
fairly well, and the average number of replication patterns for services with

97

7.4 Scalability of the SDP models

two, three, four and five components is given in Table 23, where the aver-
age values are calculated over the events in the PDC test instances. The
first data row in the table shows the total number of services that have the
different number of components, over all PDC cases. The PDC-15 is the
only test instance that contains services with five components, and hence
the corresponding average value is based on a lower number of events. Al-
though, Table 23 shows that the average number of replication patterns
of a service is far lower than the theoretical values, this average tends to
be increasing exponentially with the number of components of the service,
and thus might be regarded as a limitation of the model. Besides, a simple
test on the PDC instances shows that an increase in the number of com-
ponents have larger effect on the time used by the algorithm to generate
the replication patterns than an increase in the number of services. It is
observed that the time to generate the replication patterns in the PDC-20
case and PDC-40 case is approximately 2 seconds and 8 seconds, while in
the PDC-15 case, where three services have five components, the time spent
is approximately 45 seconds. This can be explained by that, even though
the generation algorithm does not updates the sets , Ri, with patterns not
satisfying the SLA requirements, the loops are still iterating all possible
combinations. This must be said to be the most prominent deficiency of
the algorithm, and thus if the algorithm should be tested on services with a
larger number of components, there is a need for developing new stopping
criteria in the loops.

Table 23: The average number of replication patterns for services with 2,3,4 and 5
components in test instances PDC-5, PDC-15, PDC-20 and PDC-40

Number of components
2 3 4 5

services 26 33 28 3
Avg. # replication patterns 1.3 1.4 4.1 19.0

98

7 NUMERICAL RESULTS AND DISCUSSION

7.5 Performance and dependability concerns

Adequacy of the approaches for CPU assignment to passive repli-
cas

In the development of the models it became apparent that several modelling
approaches could to be taken regarding the CPU assignment to passive
replicas. In the previous sections three approaches related to this have
been tested, and among them the capacity-lowering approach have shown
to give the highest utilization of the nodes. In the PDC case this means
that more nodes are turned off, whereas, in the HCE case, fewer replicas
need to be deployed in the public cloud. However in this consideration,
a question that arises relates to the dependability aspects of the various
approaches. A failure in one replica is assumed of not having an impact
on the probability of failure in other replicas. Are the three approaches
affecting this assumption? Yes, the capacity-lowering approach and semi-
active approach can be said to conflict with this assumption since it is
not completely guaranteed that the standby replicas have access to enough
CPU resources to be able to serve demand in case of failures in more than
one active replicas. In this case, the standby replicas might need to be
migrated to another node or into the public cloud, and a migration of
a replica might take longer time than is acceptable in terms of the service
quality, specified in the SLAs. As dependability and performance are tightly
coupled, long failover delays due to migration might not only lead to a less
available service, but also higher response times. Thus it can be stated that
the capacity-lowering approach and the semi-active approach trade better
power efficiency for less performance.

Adequacy of the availability model

A second question that emerge is whether the assumption about no failure
interdependency among the replicas is valid or not. Even though the vir-
tualization technology promises to isolate the software faults in a VM from
the other VMs on the same physical machine, failures in a physical node or
in the management system of a data center or cloud potentially affects all

99

7.5 Performance and dependability concerns

VMs associated with this node or data center. These failures are omitted
in the reliability block model, used to quantify the availability of the ser-
vices, and are instead covered in the MILP model through requirements for
node-disjoint and domain-disjoint deployment. By choosing to model the
problem in this manner some, aspects of the dependability is lost, and thus
it would be interesting to investigate what effect this choice of modelling
have on the availability observed from the end-users’ viewpoint.

Adequacy of the response time model

The focused performance metric in the proposed models is the response
time of the services, and in this sense, I have neglected the network de-
lay and rather only considered the sojourn time in the service components.
This is clearly a weakness of the models since the network delay might be
of importance in services requiring low response time. Solomianik (2009)
presents empirical values of the network latency inside and between Ama-
zon EC2 Availability Zones3, and the results show that the average round
trip times between VM instances inside an Availability Zone might be as
high as 400ms, whereas between Availability Zones this average is approxi-
mately 1000ms. For services requiring low latency and response time, these
concerns need to be considered in the deployment decisions, and the latter
latency component might confine deployment of collaborating components
in the same domain.

3Amazon denotes the different geographical locations of their data centres as Avail-
ability Zones. This corresponds to the different public domains in my models

100

8 CONCLUSIONS

8 Conclusions

I have presented two main MILP models designed to support service provid-
ers in their decisions related to provisioning of their distributed services.
The focused decisions regarded the choice of replication levels for the ser-
vices, in order to achieve the required QoS, and the deployment of the
resulting replicated software components. In the first MILP model, the de-
ployment decisions were limited to the virtualized private data center of the
service provider, while the second MILP expanded this environment to in-
clude the opportunities of Cloud computing, by letting the service provider
have the option deploy the replicated components in a public cloud. Hence,
the latter deployment problem was modelled in a hybrid cloud environment.

The objective in the SDP-PDC model was to promote an energy-efficient
deployment architecture, and thus the costs of energy usage was sought
minimized, simultaneously as the service provider were to deliver a service
in accordance with the SLA requirements. Energy-efficient deployment was
mainly achieved by consolidating the software components on the smallest
subset of nodes, bounded by the nodes’ CPU capacity, and thus be able to
turn off unused nodes. There was questioned if it would have been more
reasonable to simplify the current objective function to only be minimizing
the number of turned-on nodes since this number was the determining factor
in the energy usage.

With the advent of the public clouds in the SDP-HCE model, the ob-
jective was extended to include the cost of deploying the services in these
clouds. Consequently, the total costs were sought minimized, while still
ensuring that the services satisfied the QoS requirements. Since the cost of
deployment in the public clouds dominated the cost of energy usage, there
was argued that in order to make it useful to minimize the total cost, more
operational costs of the private cloud need to be taken into account.

The focused QoS parameters were response time and availability, and
queueing theory and reliability block diagrams were used to relate the repli-
cation level decisions with these parameters. If directly included in the
optimization model, the usage of these methods would have given a non-
linear programming model, so instead an algorithm, generating feasible

101

replication patterns of a service, was constructed. A replication pattern of
a given service consists of a number of active and passive replicas for each
component of the service, and due to the complex nature of dependability
modelling, the number of SLA-satisfying replication patterns grow expo-
nentially with the number of components. Although there have been im-
plemented successful measures to limit the number of generated replication
patterns, some simple tests showed that the time spent on this generation
increases severely with the number of components.

It is important to guarantee that a passive replica needs short time to
become active and serve demand in case of a failure in one of the active
replicas, and in order to ensure this, three different approaches for assign-
ment of CPU resources to the passive replicas were tested. Firstly, the
all-active approach considered all replicas as active, and hence all replicas
were assigned enough CPU power to serve demand. Secondly, a more re-
source friendly approach were taken, where only a subset of the passive
replicas were assigned the same amount of CPU power as the active repli-
cas. These replicas were termed semi-active, and thereof the approach was
named the semi-active approach. The last, approach considered to lower
the assignable CPU power on a node in order to let at least one passive
replica deployed on this node be able to turn active. It was seen that the
capacity-lowering approach achieved the best results in terms of energy ef-
ficiency, but simultaneously it was argued that this approach challenged
the assumption about no interdependence in replica failures. On the other
hand, the all-active approach consumed the most energy, and was also said
to agree with the assumption. These considerations illustrate the trade-off
between energy efficiency and performance.

The MILP models were tested on test instances of varying size, and
there was seen that when the problem scale grew, the optimal solution
could not always be guaranteed. Since the nodes was assumed homoge-
neous, there were implemented strategies to remove symmetrical solutions,
and the results of the SDP-PDC showed that a simple strategy, based on
predeployment of some replicas, gave good solutions, some optimal, in a
short amount of time. On the other hand, the results of the SDP-HCE de-
picted that this problem was harder to solve, but however, the optimality

102

8 CONCLUSIONS

gaps in the semi-active and all-active approach were below 2 percent. The
reason behind the higher gaps in the HCE model, compared the PDC model,
was argued to stem from the higher number of constraints. Furthermore,
there was seen that the capacity-lowering approach was generally harder
to solve compared to the other approaches, which, also in this case, was
caused by the higher number of constraints in the former.

Lastly, it was illustrated that, in the cases where an optimal solution
was not found, the solver found good solutions during the first seconds of
execution. In tactical planning problems, like the ones that are presented
in this thesis, it might be of greater importance to find good solutions
quickly, rather than waiting a long time for obtaining the optimal solution.
With this in mind, the proposed models can be said to perform well on the
provided test instances.

103

9 Future work

In this last section some possible directions in the future work and exten-
sion of the current models will be outlined. Some of the aspects mentioned
below has already received a notice earlier in this thesis, like introduction
of communication costs in the cost model of the public clouds and consid-
eration of network delay.

Communication

The current models acknowledge that a service consists of a set of collabo-
ration software components, but, apart from that, the generation of repli-
cation patterns considers these components as chains of servers, the collab-
orations are not modelled explicitly. As identified earlier, the providers of a
public IaaS cloud charges a significant cost per gigabyte of data transferred
in and out of the VM instances, and furthermore, it is stated that the in-
tradomain and interdomain network latency are substantial. These aspects
are sought included in further models. The latter raise a question about
whether the network delay should be included directly in the response time
calculation of the algorithm or if the delay should be modelled as a explicit
set of constraints in the MILP model. Moreover, in a real system, load-
balancers are used to split the demand between several active replicas, and
one must consider if it is expedient to include the modelling of these.

Generation of replication patterns

The performance tests done on the algorithm generating the replication
patterns have been few and simple, but they show that, even though the
number of generated replication patterns are limited compared to the the-
oretical values, the time it spends on the generation grow sharply with the
number of components. In order to improve the performance of the algo-
rithm, it is necessary to test it more thoroughly. However, at this moment
of writing, developing new stopping criteria might be considered as a means
to increase the performance.

104

9 FUTURE WORK

Availability analysis

In this thesis, I have implemented three approaches for assignment of CPU
power to passive replicas, and as already elaborated, one can question the
observed response time and availability in the capacity-lowering and the
semi-active approach. Hence, future work might include developing a sim-
ulation model used to examine the effects these approaches have on the
service quality. Besides, the node failures, link failures and failures in the
management system of a data center or cloud are handled through explicit
constraints ensuring node-disjoint deployment and, to a certain degree,
domain-disjoint deployment. The effects of these constraints, especially
the latter, would be interesting to investigate in future work.

Test instances

The proposed models have been tested on more or less realistic data, but in
order to achieve realistic solutions the models need to be tested on larger
and more realistic test instances. To incorporate even more realism in the
parameter settings, there might be necessary to study Internet services and
cloud systems in detail, including, but not restricted to demand, capacities
and availability and response time of components. Hence it is essential to
include a such study in future work.

Time periods

In order to introduce more dynamics in the models it could be possible
to expand the models to include two or more time periods. As stated in
Section 3, there is a certain switching cost of turning servers on and off, in
terms of delays in turning the servers on and additional power draw. Hence,
a periodic model can take into account these switching costs and also, for
example, varying demand in the periods. In such a way, the replication
levels might change between periods and migration of the virtual machines
holding the replicas might be modelled. A multi-period model can also
form the basis of a stochastic programming model.

105

Developing heuristic methods

Several articles in the literature, related to the problems modelled herein,
report difficulties of solving large test cases, and hence promote the need
for a heuristic approach. At the time of writing, the focus will not be on
developing heuristic methods, but in a longer time horizon, doing this might
be relevant.

106

REFERENCES

References

Amazon EC2 website, 2011. Amazon Elastic Compute Cloud.
http://aws.amazon.com/ec2/. Last visited 2011-05-25.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy H. Katz, Andy Konwinski, Gunho Lee, David A. Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing.
Commun. ACM, 53(4):50–58, 2010.

Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Fundamental
Concepts of Dependability, 2001.

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
Basic Concepts and Taxonomy of Dependable and Secure Computing.
IEEE Transactions on Dependable and Secure Computing, 1(1):11–33,
January 2004. ISSN 1545-5971. doi: 10.1109/TDSC.2004.2.

Luiz André Barroso and Urs Hölzle. The case for energy-proportional com-
puting. IEEE Computer, 40(12):33–37, 2007.

Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Y.
Zomaya. A taxonomy and survey of energy-efficient data centers and
cloud computing systems. Advances in Computers, 82:47–111, 2011.

Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. A survey of
design techniques for system-level dynamic power management. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, 8(3):
299 –316, june 2000. ISSN 1063-8210. doi: 10.1109/92.845896.

Richard Brown, Eric Masanet, Bruce Nordman, Bill Tschudi, Arman She-
habi, John Stanley, Jonathan Koomey, Dale Sartor, Peter Chan, Joe
Loper, Steve Capana, Bruce Hedman, Rebecca Duff, Evan Haines,
Danielle Sass, and Andrew Fanara. Report to congress on server and data
center energy efficiency: Public law 109-431. Technical report, Ernest Or-
lando Lawrence Berkeley National Laboratory, University of California,
2008.

107

REFERENCES

U.S. Energy Information Administration EIA. Average retail price
of electricity to ultimate customers by end-use sector, 2011. URL
http://www.eia.gov/cneaf/electricity/epm/table5 6 a.html.
Last visited 2011-04-30.

Peder Emstad, Poul Heegaard, Bjarne Helvik, and Laurent Paquerau. De-
pendability and performance in information and communication systems
- Fundamentals. Tapir academic publisher, 2008. Compendium in sub-
ject Dependability and Performance with Discrete Event Simulation at
NTNU.

Xiaobo Fan, Wolf-Dietrich Weber, and Luiz André Barroso. Power provi-
sioning for a warehouse-sized computer. In Dean M. Tullsen and Brad
Calder, editors, ISCA, pages 13–23. ACM, 2007. ISBN 978-1-59593-706-
3.

Felix C. Gärtner. Fundamentals of fault-tolerant distributed computing in
asynchronous environments. ACM Comput. Surv., 31(1):1–26, 1999.

GoGrid Cloud hosting website, 2011. GoGrid Cloud hosting.
http://www.gogrid.com/cloud-hosting/, Last visited 2011-05-25.

Anders N. Gullhav. Service deployment problems with replicated and non-
replicated components, Dec 2010. Specialization project at IØT, NTNU.

Bjarne Helvik. Dependable Computing Systems and Communication Net-
works; Design and Evaluation. Tapir academic publisher, 2007. Draft
lecture notes.

Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Ju-
lia L. Lawall. Entropy: a consolidation manager for clusters. In Antony L.
Hosking, David F. Bacon, and Orran Krieger, editors, VEE, pages 41–50.
ACM, 2009. ISBN 978-1-60558-375-4.

ITU-T. Terms and definitions related to quality of service and network
performance including dependability, Aug 1994. ITU-T Recommandation
E.800.

108

REFERENCES

Loir M. Kaufman. Data security in the world of cloud computing. Security
Privacy, IEEE, 7(4):61 –64, july-aug. 2009. doi: 10.1109/MSP.2009.87.

Jean-Claude Laprie, Algirdas Avizienis, and Hermann Kopetz, editors. De-
pendability: Basic Concepts and Terminology. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1992. ISBN 0387822968.

Peter Mell and Tim Grance. The NIST definition of Cloud Computing, ver-
sion 15. http://csrc.nist.gov/groups/SNS/cloud-computing/, Jul
2009. Last visited 2010-12-08.

Daniel A. Menasce and Virgilio A. F. Almeida. Capacity Planning for Web
Services: metrics, models, and methods. Prentice Hall, 2001.

Lauri Minas and Brad Ellison. Energy efficiency for information technology:
How to reduce power consumption in servers and data centers. Intel Press,
Aug 2009. Second-hand referrence.

Vinicius Petrucci, Orlando Loques, and Daniel Mossé. A dynamic opti-
mization model for power and performance management of virtualized
clusters. In Herman de Meer, Suresh Singh, and Torsten Braun, editors,
e-Energy, pages 225–233. ACM, 2010. ISBN 978-1-4503-0042-1.

Rackspace Cloud hosting website, 2011. Rackspace Cloud hosting prod-
ucts. http://www.rackspace.com/cloud/cloud hosting products/.
Last visited 2011-05-25.

Lei Rao, Xue Liu, Marija Ilic, and Jie Liu. MEC-IDC: joint load balancing
and power control for distributed Internet Data Centers. In Proceedings of
the 1st ACM/IEEE International Conference on Cyber-Physical Systems,
ICCPS ’10, pages 188–197, New York, NY, USA, 2010. ACM. ISBN 978-
1-4503-0066-7. doi: http://doi.acm.org/10.1145/1795194.1795220.

Mendel Rosenblum. The reincarnation of virtual machines. ACM Queue,
2(5):34–40, 2004.

109

REFERENCES

Oren Solomianik. Network latency inside and across Amazon EC2
Availability Zones, May 2009. URL http://orensol.com/2009/05/24/
network-latency-inside-and-across-amazon-ec2-availability-
zones/. Website last visited 2011-05-10.

Benjamin Speitkamp and Martin Bichler. A mathematical programming
approach for server consolidation problems in virtualized data centers.
IEEE T. Services Computing, 3(4):266–278, 2010.

Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. Cost-
optimal scheduling in hybrid IaaS clouds for deadline constrained work-
loads. In Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pages 228 –235, july 2010. doi: 10.1109/CLOUD.2010.58.

Jeffrey M. Voas and Jia Zhang. Cloud computing: New wine or just a new
bottle? IT Professional, 11(2):15–17, 2009.

Lizhe Wang, Jie Tao, Marcel Kunze, Alvaro Canales Castellanos, David
Kramer, and Wolfgang Karl. Scientific cloud computing: Early definition
and experience. In HPCC, pages 825–830. IEEE, 2008. ISBN 978-0-7695-
3352-0.

Simon Wardley, Etienne Goyer, and Nick Barcet. Ubuntu Enterprise Cloud
architecture. Technical report, Canonical, Aug 2009.

Kaiqi Xiong and Harry G. Perros. Computer resource optimization for
differentiated customer services. In MASCOTS, pages 226–238. IEEE
Computer Society, 2006. ISBN 0-7695-2573-3.

Moshe Zukerman. Introduction to queueing theory and stochastic teletraffic
models. http://www.ee.cityu.edu.hk/∼zukerman/classnotes.pdf,
2010.

110

A SUMMARY OF THE MILP MODELS

A Summary of the MILP models

A.1 SDP-PDC formulation

Sets

S Set of all services, indexed by i
Qi Set of components of service i, indexed by q
Ri Set of replication patterns for service i, indexed by r
N Set of nodes, indexed by n

Parameters

HRS The length of the time period, in hours
COSTPWR Cost per unit of energy used
PWRCOEFF Coefficient translating CPU utilization to power usage
PWRIDLE The power consumption of an idle node
DEMi The avg. number of request for service i per time unit
JOBLOADiq The avg. CPU power needed to handle a request in (i, q)

per time unit
CPUDEMiq The CPU power demanded by service requests for (i, q)

= DEMiJOBLOADiq
CPUASSiq The amount of CPU power assigned to an active replica

of (i, q)
VARi The parameter ensuring that a service can handle the

peaks in demand
CPUOHiq CPU power overhead for management-related tasks in

replicas
CAPCPU CPU capacity on node
NRiqr The total number of replicas of (i, q) using replication pat-

tern r
ACTRiqr The number of active replicas of (i, q) using replication

pattern r
SACOEFFiq Coefficient used to control the number of semi-active repli-

cas of (i, q)

111

A.1 SDP-PDC formulation

Varibles

xiqn =
{

1 if the a replica of (i, q) is deployed on node n
0 otherwise

wiqn =
{

1 if a replica of (i, q) deployed on node n is active
0 otherwise

viqn =
{

1 if a replica of (i, q) deployed on node n is semi-active
0 otherwise

yir =
{

1 if replication pattern r is used for service i
0 otherwise

on =
{

1 if node n is turned on
0 otherwise

mn The amount of non-assignable CPU power on node n in the
capacity-lowering approach

Objective function

min zPDC = COSTPWRHRS

(∑
n∈N

PWRIDLEon

+ PWRCOEFF

∑
i∈S

∑
q∈Qi

∑
n∈N

CPUOHiqxiqn

+ PWRCOEFF

∑
i∈S

∑
q∈Qi

CPUDEMiq

)
(A.1)

A.1.1 Constraints in the all-active approach∑
r∈Ri

yir = 1, ∀i ∈ S (A.2)

∑
n∈N

xiqn −
∑
r∈Ri

NRiqryir = 0, ∀i ∈ S, q ∈ Qi (A.3)

∑
iS

∑
q∈Qi

(CPUASSiqVARi+CPUOHiq)xiqn−CAPCPUon ≤ 0, ∀n ∈ N (A.4)

112

A SUMMARY OF THE MILP MODELS

xiqn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, n ∈ N (A.5)

yir ∈ {0, 1}, ∀i ∈ S, r ∈ Ri (A.6)

on ∈ {0, 1}, ∀n ∈ N (A.7)

A.1.2 Constraints in the semi-active approach∑
r∈Ri

yir = 1, ∀i ∈ S (A.8)

∑
n∈N

xiqn −
∑
r∈Ri

NRiqryir = 0, ∀i ∈ S, q ∈ Qi (A.9)

∑
n∈N

wiqn −
∑
r∈Ri

ACTRiqryir = 0, ∀i ∈ S, q ∈ Qi (A.10)

∑
n∈N

viqn −
∑
r∈Ri

⌈
SACOEFFiq

NRiqr −ACTRiqr
ACTRiqr

⌉
yir = 0, ∀i ∈ S, q ∈ Qi

(A.11)
wiqn + viqn − xiqn ≤ 0, ∀i ∈ S, q ∈ Qi, n ∈ N (A.12)

∑
i∈S

∑
q∈Qi

CPUASSiqVARiwiqn +
∑
i∈S

∑
q∈Qi

CPUASSiqVARiviqn+

∑
i∈S

∑
q∈Qi

CPUOHiqxiqn − CAPCPUon ≤ 0, ∀n ∈ N (A.13)

xiqn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, n ∈ N (A.14)

wiqn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, n ∈ N (A.15)

viqn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, n ∈ N (A.16)

yir ∈ {0, 1}, ∀i ∈ S, r ∈ Ri (A.17)

on ∈ {0, 1}, ∀n ∈ N (A.18)

113

A.1 SDP-PDC formulation

A.1.3 Constraints in the capacity-lowering approach

∑
r∈Ri

yir = 1, ∀i ∈ S (A.19)

∑
n∈N

xiqn −
∑
r∈Ri

NRiqryir = 0, ∀i ∈ S, q ∈ Qi (A.20)

∑
n∈N

wiqn −
∑
r∈Ri

ACTRiqryir = 0, ∀i ∈ S, q ∈ Qi (A.21)

wiqn − xiqn ≤ 0, ∀i ∈ S, q ∈ Qi, n ∈ N (A.22)

mn − CPUASSiqVARi(xiqn − wiqn) ≥ 0, ∀i ∈ S, q ∈ Qi, n ∈ N (A.23)

∑
i∈S

∑
q∈Qi

CPUASSiqVARiwiqn +

∑
i∈S

∑
q∈Qi

CPUOHiqxiqn +mn − CAPCPUon ≤ 0, ∀n ∈ N (A.24)

xiqn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, n ∈ N (A.25)

wiqn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, n ∈ N (A.26)

yir ∈ {0, 1}, ∀i ∈ S, r ∈ Ri (A.27)

on ∈ {0, 1}, ∀n ∈ N (A.28)

114

A SUMMARY OF THE MILP MODELS

A.2 SDP-HCE formulation

Sets

S Set of all services, indexed by i
Qi Set of components of service i, indexed by q
Ri Set of replication patterns for service i, indexed by r
D Set of cloud domains for deployment, indexed by d
DPR Set of private cloud domains for deployment, indexed by d
DPU Set of public cloud domains for deployment, indexed by d
Nd Set of nodes for deployment in a private cloud domain d, indexed

by n

Parameters

HRS The length of the time period, in hours
COSTPWR Cost per unit of energy usage
PWRCOEFF Coefficient translating CPU utilization to power usage
PWRIDLE The power consumption of a node in idle state
DEMi The avg. number of request for service i per time unit
JOBLOADiq The avg. CPU power needed to handle a request in (i, q)

per time unit
CPUDEMiq The CPU power demanded by service requests for (i, q)

= DEMiJOBLOADiq
CPUASSiq The amount of CPU power assigned to an active replica

of (i, q)
VARi The parameter ensuring that a service can handle the

peaks in demand
CPUOHiq CPU power overhead for management-related tasks in

replicas
CAPCPU CPU capacity on each node in a private cloud domain

115

A.2 SDP-HCE formulation

NRiqr The total number of replicas of (i, q) using replication
pattern r

NRMXiq The maximum of NRiqr over r
ACTRiqr The number of active replicas of (i, q) using replication

pattern r
ACTRMXiq The maximum of ACTRiqr over r
SACOEFFiq Coefficient used to control the number of semi-active

replicas of (i, q)
COSTVMACTiqd Cost of using a VM instance for the active replicas of

(i, q) in public cloud domain d per hour
COSTVMPASiqd Cost of using a VM instance for the passive replicas of

(i, q) in public cloud domain d per hour
SPREADiq The required number of cloud domains used for a replica

in percentage of the total number of replicas
BINDiq Equal d if pair (i, q) only can be deployed in cloud do-

main d, and equal 0 if there is no binding on the domains
used for deployment.

Variables

uiqd =
{

1 if the a replica of (i, q) is deployed in cloud domain d
0 otherwise

xDiqd The total number of replicas of the pair (i, q) that is deployed in
cloud domain d

xiqdn =

 1 if the a replica of (i, q) is deployed on node n in private
cloud domain d

0 otherwise
wDiqd The number of active replicas of (i, q) that is deployed in cloud

domain d

wiqdn =

 1 if an active replica of (i, q) is deployed on node n in
private cloud domain d

0 otherwise

116

A SUMMARY OF THE MILP MODELS

vDiqd The number of semi-active replicas of (i, q) deployed in cloud
domain d

viqdn =

 1 if a semi-active replica of (i, q) is deployed on node n in
private cloud domain d

0 otherwise

yir =
{

1 if replication pattern r is used for service i
0 otherwise

odn =
{

1 if node n in private cloud domain d is turned on
0 otherwise

mdn The amount of non-assignable CPU power on node n in private
cloud domain d ∈ DPR, in the capacity-lowering approach

fiqd The fraction of demand-service replicas of (i, q) that is deployed
in private cloud domain d

A.2.1 All-active approach

Objective function

zHCEAA = COSTPWRHRS

(∑
d∈DP R

∑
n∈Nd

PWRIDLEodn

+ PWRCOEFF

∑
i∈S

∑
q∈Qi

∑
d∈DP R

∑
n∈Nd

CPUOHiqxiqdn

+ PWRCOEFF

∑
i∈S

∑
q∈Qi

∑
d∈DP R

CPUDEMiqfiqd

)
+HRS

∑
i∈S

∑
q∈Qi

∑
d∈DP U

COSTVMACTiqdxDiqd (A.29)

Constraints ∑
r∈Ri

yir = 1, ∀i ∈ S (A.30)

∑
d∈D

xDiqd −
∑
r∈Ri

NRiqryir = 0, ∀i ∈ S, q ∈ Qi (A.31)

117

A.2 SDP-HCE formulation

∑
n∈Nd

xiqdn − xDiqd = 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR (A.32)

∑
d∈D

uiqd −
∑
r∈Ri

NRiqrSPREADiqyir ≥ 0, ∀i ∈ S, q ∈ Qi (A.33)

xDiqd − uiqd ≥ 0, ∀i ∈ S, q ∈ Qi, d ∈ D (A.34)

(CPUASSiqVARi + CPUOHiq)xiqdn −
CAPCPUodn ≤ 0, ∀d ∈ DPR, n ∈ Nd (A.35)

xDiqd
NRMXiq

− fiqd −

NRMXiq

NRiqr
(1− yir) ≤ 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR, r ∈ Ri (A.36)

xDiqd ∈ N, ∀i ∈ S, q ∈ {q′ ∈ Qi : BINDiq′ = 0}, d ∈ D (A.37)

xDiqd ≥ 1, ∀i ∈ S, q ∈ {q′ ∈ Qi : BINDiq′ 6= 0},
d ∈ {d′ ∈ D : BINDiq = d′} (A.38)

xDiqd = 0, ∀i ∈ S, q ∈ {q′ ∈ Qi : BINDiq′ 6= 0},
d ∈ {d′ ∈ D : BINDiq 6= d′} (A.39)

uiqd ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, d ∈ D (A.40)

xiqdn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, d ∈ DPR, n ∈ Nd (A.41)

yir ∈ {0, 1}, ∀i ∈ S, r ∈ Ri (A.42)

odn ∈ {0, 1}, ∀d ∈ DPR, n ∈ Nd (A.43)

118

A SUMMARY OF THE MILP MODELS

A.2.2 Semi-active approach

Objective function

zHCESA = COSTPWRHRS

(∑
d∈DP R

∑
n∈Nd

PWRIDLEodn

+ PWRCOEFF

∑
i∈S

∑
q∈Qi

∑
d∈DP R

∑
n∈Nd

CPUOHiqxiqdn

+ PWRCOEFF

∑
i∈S

∑
q∈Qi

∑
d∈DP R

CPUDEMiqfiqd

)

+HRS

(∑
i∈S

∑
q∈Qi

∑
d∈DP U

COSTVMACTiqd(wDiqd + vDiqd)

+
∑
i∈S

∑
q∈Qi

∑
d∈DP U

COSTVMPASiqd(xDiqd − (wDiqd + vDiqd))
)

(A.44)

Constraints ∑
r∈Ri

yir = 1, ∀i ∈ S (A.45)

∑
d∈D

xDiqd −
∑
r∈Ri

NRiqryir = 0, ∀i ∈ S, q ∈ Qi (A.46)

∑
n∈Nd

xiqdn − xDiqd = 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR (A.47)

∑
d∈D

wDiqd −
∑
r∈Ri

ACTRiqryir = 0, ∀i ∈ S, q ∈ Qi (A.48)

∑
n∈Nd

wiqdn − wDiqd = 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR (A.49)

119

A.2 SDP-HCE formulation

∑
d∈D

vDiqd −

∑
r∈Ri

⌈
SACOEFFiq

NRiqr −ACTRiqr
ACTRiqr

⌉
yir = 0, ∀i ∈ S, q ∈ Qi (A.50)

∑
n∈Nd

viqdn − vDiqd = 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR (A.51)

wDiqd + vDiqd − xDiqd ≤ 0, ∀i ∈ S, q ∈ Qi, d ∈ DPU (A.52)
wiqdn + viqdn − xiqdn ≤ 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR, n ∈ Nd (A.53)∑

d∈D
uiqd −

∑
r∈Ri

NRiqrSPREADiqyir ≥ 0, ∀i ∈ S, q ∈ Qi (A.54)

xDiqd − uiqd ≥ 0, ∀i ∈ S, q ∈ Qi, d ∈ D (A.55)∑
i∈S

∑
q∈Qi

CPUASSiqVARiwiqdn +

∑
i∈S

∑
q∈Qi

CPUASSiqVARiviqdn +

∑
i∈S

∑
q∈Qi

CPUOHiqxiqdn − CAPCPUodn ≤ 0, ∀d ∈ DPR, n ∈ Nd (A.56)

wDiqd
ACTRiqr

− fiqd −

ACTRMXiq

ACTRiqr
(1− yir) ≤ 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR, r ∈ Ri (A.57)

xDiqd ∈ N, ∀i ∈ S, q ∈ {q′ ∈ Qi : BINDiq′ = 0}, d ∈ D (A.58)

xDiqd ≥ 1, ∀i ∈ S, q ∈ {q′ ∈ Qi : BINDiq′ 6= 0},
d ∈ {d′ ∈ D : BINDiq = d′} (A.59)

xDiqd = 0, ∀i ∈ S, q ∈ {q′ ∈ Qi : BINDiq′ 6= 0},
d ∈ {d′ ∈ D : BINDiq 6= d′} (A.60)

120

A SUMMARY OF THE MILP MODELS

wDiqd ∈ N, ∀i ∈ S, q ∈ Qi, d ∈ D (A.61)

vDiqd ∈ N, ∀i ∈ S, q ∈ Qi, d ∈ D (A.62)

uiqd ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, d ∈ D (A.63)

xiqdn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, d ∈ DPR, n ∈ Nd (A.64)

wiqdn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, d ∈ DPR, n ∈ Nd (A.65)

viqdn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, d ∈ DPR, n ∈ Nd (A.66)

yir ∈ {0, 1}, ∀i ∈ S, r ∈ Ri (A.67)

odn ∈ {0, 1}, ∀d ∈ DPR, n ∈ Nd (A.68)

A.2.3 Capacity-lowering approach

Objective function

zHCECL = COSTPWRHRS

(∑
d∈DP R

∑
n∈Nd

PWRIDLEodn

+ PWRCOEFF

∑
i∈S

∑
q∈Qi

∑
d∈DP R

∑
n∈Nd

CPUOHiqxiqdn

+ PWRCOEFF

∑
i∈S

∑
q∈Qi

∑
d∈DP R

CPUDEMiqfiqd

)

+HRS

(∑
i∈S

∑
q∈Qi

∑
d∈DP U

COSTVMACTiqdwDiqd

+
∑
i∈S

∑
q∈Qi

∑
d∈DP U

COSTVMPASiqd(xDiqd − wDiqd)
)

(A.69)

121

A.2 SDP-HCE formulation

Constraints ∑
r∈Ri

yir = 1, ∀i ∈ S (A.70)

∑
d∈D

xDiqd −
∑
r∈Ri

NRiqryir = 0, ∀i ∈ S, q ∈ Qi (A.71)

∑
n∈Nd

xiqdn − xDiqd = 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR (A.72)

∑
d∈D

wDiqd −
∑
r∈Ri

ACTRiqryir = 0, ∀i ∈ S, q ∈ Qi (A.73)

∑
n∈Nd

wiqdn − wDiqd = 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR (A.74)

wDiqd − xDiqd ≤ 0, ∀i ∈ S, q ∈ Qi, d ∈ DPU (A.75)
wiqdn − xiqdn ≤ 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR, n ∈ Nd (A.76)∑

d∈D
uiqd −

∑
r∈Ri

NRiqrSPREADiqyir ≥ 0, ∀i ∈ S, q ∈ Qi (A.77)

xDiqd − uiqd ≥ 0, ∀i ∈ S, q ∈ Qi, d ∈ D (A.78)

mdn−
CPUASSiqVARi(xiqdn − wiqdn) ≥ 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR, n ∈ Nd

(A.79)

∑
i∈S

∑
q∈Qi

CPUASSiqVARiwiqdn +

∑
i∈S

∑
q∈Qi

CPUOHiqxiqdn − CAPCPUodn ≤ 0, ∀d ∈ DPR, n ∈ Nd (A.80)

wDiqd
ACTRiqr

− fiqd −

ACTRMXiq

ACTRiqr
(1− yir) ≤ 0, ∀i ∈ S, q ∈ Qi, d ∈ DPR, r ∈ Ri (A.81)

122

A SUMMARY OF THE MILP MODELS

xDiqd ∈ N, ∀i ∈ S, q ∈ {q′ ∈ Qi : BINDiq′ = 0}, d ∈ D (A.82)

xDiqd ≥ 1, ∀i ∈ S, q ∈ {q′ ∈ Qi : BINDiq′ 6= 0},
d ∈ {d′ ∈ D : BINDiq = d′} (A.83)

xDiqd = 0, ∀i ∈ S, q ∈ {q′ ∈ Qi : BINDiq′ 6= 0},
d ∈ {d′ ∈ D : BINDiq 6= d′} (A.84)

wDiqd ∈ N, ∀i ∈ S, q ∈ Qi, d ∈ D (A.85)

uiqd ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, d ∈ D (A.86)

xiqdn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, d ∈ DPR, n ∈ Nd (A.87)

wiqdn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, d ∈ DPR, n ∈ Nd (A.88)

yir ∈ {0, 1}, ∀i ∈ S, r ∈ Ri (A.89)

odn ∈ {0, 1}, ∀d ∈ DPR, n ∈ Nd (A.90)

123

B Mosel code

124

125

!***!
!*---*!
!*------------------------------------SERVICE DEPLOYMENT MODEL---*!
!*------------------------------------IN A PRIVATE DATA CENTER---*!
!*---*!
!***!

model sdppdc
uses "mmxprs"; !gain access to the Xpress-Optimizer solver

parameters
 !Data file
 ! Used data files are pdc5.dat, pdc15.dat, pdc20.dat and pdc40.dat
 DATA = 'pdc40.dat'
end-parameters

!--*
! DECLARATIONS
!--*
declarations
 !--*
 !SETS
 !--*
 !Set of services, indexed by i
 SERV: set of integer
 !Set of components of service i, indexed by q
 COMP: array(SERV) of range
 !Set of replication patterns for service i, indexed by r
 RSET: array(SERV) of set of integer
 !Set of nodes, index by n
 NODES: set of integer

 !--*
 !PARAMETERS READ FROM DATA
 !--*
 !MODE corresponds to the different approaches
 !MODE = 0 -> Capacity-lowering
 !MODE = 1 -> Semi-active
 !MODE = 2 -> All-active
 MODE: integer
 !SYM corresponds to the strategies used to reduce the number of symmetrical solutions
 !SYM = 0 -> SYM0: only predeployment
 !SYM = 1 -> SYM1: sort nodes according to the amount of CPU power assigned to replicas
 !SYM = 2 -> SYM2: sort nodes according to whether they are turned on or not
 SYM: integer
 !Number of services
 NOS: integer
 !Number of nodes
 NON: integer
 !Number of components for each service
 NOC: array(SERV) of integer
 !Maximum number of replicas of each component
 MAXREP: dynamic array(SERV, range) of integer
 !Maximum number of active replicas of each component
 MAXACT: dynamic array(SERV, range) of integer
 !CPU capacity for the nodes
 CAPCPU: integer
 !CPU power overhead for all replicas of (i,q)
 CPUOH: dynamic array(SERV, range) of real
 !Cost of energy usage per hour
 CPWR: real
 !Length of the time period
 HRS: real
 !Converting CPU power to power usage
 PWRCOEFF: real
 !Minimum power needed for operation of a node
 PWRIDLE: real
 !Stationary availability of each component with no replication
 AVAILCOMP: dynamic array(SERV, range) of real
 !Required availability for each service
 REQAVAIL: array(SERV) of real
 !Required response time for each service
 REQRESPT: array(SERV) of integer
 !The avg. CPU power needed to handle a request for service i
 JOBLOAD: dynamic array(SERV, range) of real
 !The avg. number of request for service i per time unit
 DEM: array(SERV) of integer
 !The parameter ensuring that a service the peaks in demand
 VAR: array(SERV) of real
 !The amount of CPU power assigned to an active (or semiactive) replica
 CPUASS: dynamic array(SERV, range) of real
 !Parameter for controlling the number of semi-active replicas
 SACOEFF: dynamic array(SERV, range) of real

 !--*

126

 ! PARAMETERS TO CALCULATE
 !--*
 !The number of replication settings for each service
 RMAX: array(SERV) of integer
 !Stationary availability of each component using replication pattern r
 AVCOMPREAL: dynamic array(SERV, range, range) of real
 !Stationary availability of a service given a replication pattern r
 AVAIL: array(SERV, range) of real
 !Number of replicas of a comp given a replication setting
 NR: dynamic array(SERV, range, range) of integer
 !Number of active replicas of a comp given a rep setting
 ACTR: dynamic array(SERV, range, range) of integer
 !The minimum number of active replicas for a (i,q)
 ACTRMN: dynamic array(SERV, range) of integer
 !Response time for each component of each service
 RESPT: dynamic array(SERV, range) of integer
 RTTOT: dynamic array(SERV, range) of real
 !The demanded CPU power from requests
 CPUDEM: dynamic array(SERV, range) of real
 !Data structure used to predeploy the components which has the highest value of ACTRMN
 PREDEP: record
 i,q,a: integer
 end-record

 !--*
 !VARIABLES
 !--*
 != 1 if a replica of (i,q) is deployed on node n, = 0 otherwise, cf. x_iqn
 mapping: dynamic array(SERV, range, NODES) of mpvar
 != 1 if a replica of (i,q) is active on node n, = 0 otherwise, cf. w_iqn
 active: dynamic array(SERV, range, NODES) of mpvar
 != 1 if a replica of (i,q) is semi-active on node n, = 0 otherwise, cf. v_iqn
 semiact: dynamic array(SERV, range, NODES) of mpvar
 != 1 if replication pattern r is used for service i, = 0 otherwise, cf. y_ir
 repset: dynamic array(SERV, range) of mpvar
 != 1 if node n is turned on, = 0 otherwise, cf. o_n
 used: array(NODES) of mpvar
 !The amount of non-assignable amount of CPU power on node n, cf. m_n
 maxrepcap: array(NODES) of mpvar
 !The amount of CPU power assigned to the replicas of a node, cf. s_n (used for sorting in SYM1)
 assignedc: array(NODES) of mpvar

 !--*
 !CONSTRAINTS
 !--*
 !Ensure that one and only one replication pattern is used for each service
 Repsetsum: array(SERV) of linctr
 !Ensure that all replicas are deployed
 Allreps: dynamic array(SERV, range) of linctr
 !Ensure that there are enough active replicas
 Allactive: dynamic array(SERV, range) of linctr
 !Ensure that there are enough semi-active replicas
 Allsemiact: dynamic array(SERV, range) of linctr
 !Ensure that a if a replica is active (or semi-active) it has to be deployed on that node
 Activeif: dynamic array(SERV, range, NODES) of linctr
 !Set the non-assignable amount of CPU power on each node
 Setmxrepcap:dynamic array(SERV, range, NODES) of linctr
 !CPU capacity constraint on all nodes
 Cpucap: array(NODES) of linctr
 !Set the amount of CPU power assigned to the replicas on a node
 Setass: array(NODES) of linctr
 !Sort the nodes according to assignedc
 Sortass: array(NODES) of linctr
 !Sort the nodes according to used
 Sortused: array(NODES) of linctr
 !--*
 !OBJECTIVE
 !--*
 !Objective function: cost of energy usage
 Objective: linctr

end-declarations

!--*
! Initializations
!--*
writeln("Datafile = ",DATA)
initializations from DATA
 NOS NON CPWR HRS MODE SYM
end-initializations

!Initialize set of services and set of nodes
SERV := 1..NOS
NODES := 1..NON

initializations from DATA
 NOC CAPCPU REQAVAIL REQRESPT PWRCOEFF PWRIDLE DEM VAR
end-initializations

127

!Initialize the set of components of each service
forall(i in SERV) COMP(i) := 1..NOC(i)

initializations from DATA
 [MAXREP, MAXACT, AVAILCOMP, SACOEFF] AS "REPDATA"
 [JOBLOAD, CPUASS, CPUOH] AS "LOADDATA"
end-initializations

!Calculate CPUDEM(i,q)
forall(i in SERV, q in COMP(i)) do
 CPUDEM(i,q) := DEM(i)*JOBLOAD(i,q)
end-do

!--*
! PROCEDURES
!--*
forward function doFactorial(x:integer):integer
forward procedure createReplicationPatterns
forward function calcAvail(N:array(SERV, range) of integer, A:array(SERV, range) of integer, i:integer):real
forward function calcRespt(A:array(SERV, range) of integer, i:integer):real
forward function checkStp(TMP:array(SERV, range) of integer, UP:array(SERV,range) of integer, i:integer):boolean
forward function checkAllGeqA(TMPA:array(SERV, range) of integer, i:integer):boolean
forward function checkAllGeqN(TMPN:array(SERV, range) of integer, TMPA:array(SERV, range) of integer, i:integer):boolean

!--*
! PROCEDURE TO GENERATE REPLICATION PATTERNS
!--*
procedure createReplicationPatterns
 declarations
 !Temporary total number of replicas
 TMPN: array(SERV, range) of integer
 !Temporary number of active replicas
 TMPA: array(SERV, range) of integer
 !Temporary upper bound on the number of active replicas
 AUP: array(SERV, range) of integer
 !Temporary upper bound on the total number of replicas
 NUP: array(SERV, range) of integer
 !Temporary lower bound on the number of active replicas
 ALW: array(SERV, range) of integer
 !Temporary lower bound on the total number of replicas
 NLW: array(SERV, range) of integer
 !Current replication pattern
 r: integer
 end-declarations
 !Do forall services
 forall(i in SERV) do
 !Initialize r = 1
 r := 1
 !Initialize the number of active replicas
 forall(q in COMP(i)) do
 TMPA(i,q) := 1
 AUP(i,q) := MAXACT(i,q)
 ALW(i,q) := 1
 end-do
 !FRISTCHCKA used to stop the loop if one needs only 1 active replica of each component
 FIRSTCHCKA := true
 !Outer loop
 while(checkStp(TMPA,AUP,i)) do
 !Check response time requirement and if there exists a clearly better AC already
 if(calcRespt(TMPA,i) <= REQRESPT(i) and checkAllGeqA(TMPA,i)) then
 !Initialize the total number of replicas
 forall(q in COMP(i)) do
 TMPN(i,q) := TMPA(i,q)
 NUP(i,q) := MAXREP(i,q)
 NLW(i,q) := TMPA(i,q)
 end-do
 !Lower temporary upper bound if only one component have another number of active replicas than 1
 AUPCHCK := 0
 forall(q in COMP(i) | TMPA(i,q) <> 1) AUPCHCK += 1
 if(AUPCHCK = 1) then
 forall(q in COMP(i) | TMPA(i,q) <> 1) AUP(i,q) := TMPA(i,q)
 end-if
 !FRISTCHCKN used to stop the loop if one needs no passive replicas of a component
 FIRSTCHCKN := true
 !Inner loop
 while(checkStp(TMPN,NUP,i)) do
 !Check availability requirement and if there exists a clearly better TC, based on the same AC
 if(calcAvail(TMPN,TMPA,i) >= REQAVAIL(i) and checkAllGeqN(TMPN, TMPA, i)) then
 !Update NR, ACTR, the availabilies, the response time and RSET
 forall(q in COMP(i)) do
 NR(i,q,r) := TMPN(i,q)
 ACTR(i,q,r) := TMPA(i,q)
 end-do
 AVAIL(i,r) := calcAvail(TMPN,TMPA,i)
 RTTOT(i,r) := calcRespt(TMPA,i)
 RSET(i) += {r}

128

 RMAX(i) := r
 !Increment r
 r += 1
 !Break loop if FRISTCHCKN is true
 if(FIRSTCHCKN) then
 break
 else
 !Lower temporary upper bound if only one component have another # passive replicas than 1
 NUPCHCK := 0
 forall(q in COMP(i) | TMPN(i,q) <> TMPA(i,q)) NUPCHCK += 1
 if(NUPCHCK = 1) then
 forall(q in COMP(i) | TMPN(i,q) <> TMPA(i,q)) NUP(i,q) := TMPN(i,q)
 end-if
 end-if
 end-if !REQAVAIL
 FIRSTCHCKN := false
 !Find new TMPN(i)
 q := NOC(i)
 while(q > 1) do
 qq := NOC(i)
 while(qq > 0) do
 if(TMPN(i,qq) < NUP(i,qq)) then
 TMPN(i,qq) += 1
 break 2
 else
 TMPN(i,qq) := NLW(i,qq)
 if(qq = 1) then
 NLW(i,q) += 1
 TMPN(i,q) := NLW(i,q)
 if(q = 1) then
 break 2
 else
 qq := NOC(i) - q
 q -= 1
 end-if
 else
 qq -= 1
 end-if
 end-if
 !qq -= 1
 end-do !qq
 end-do !q
 end-do !checkStp(TMPN,NUP,i)
 if(FIRSTCHCKA) then
 break
 end-if
 end-if !REQRESPT
 FIRSTCHCKA := false
 !Find new TMPA(i)
 q := NOC(i)
 while(q > 1) do
 qq := NOC(i)
 while(qq > 0) do
 if(TMPA(i,qq) < AUP(i,qq)) then
 TMPA(i,qq) += 1
 break 2
 else
 TMPA(i,qq) := ALW(i,qq)
 if(qq = 1) then
 !NLW(i,qq) += 1
 ALW(i,q) += 1
 TMPA(i,q) := ALW(i,q)

 if(q = 1) then
 break 2
 else
 qq := NOC(i) - q
 q -= 1
 end-if
 else
 qq -= 1
 end-if
 end-if
 end-do !qq
 end-do !q
 end-do !checkStp(TMPA,AUP,i)
 end-do !forall i
end-procedure

!Calculates the response time based on TMPA for i
function calcRespt(A:array(SERV, range) of integer, i:integer):real
 !Check if stable queue
 INF := false
 forall(q in COMP(i)) do
 if(CPUASS(i,q)/JOBLOAD(i,q) - DEM(i)/A(i,q) <= 0) then
 INF := true
 end-if
 end-do

129

 if(INF = false) then
 !Multiply be 1000 to get milliseconds
 returned := sum(q in COMP(i)) 1000/(CPUASS(i,q)/JOBLOAD(i,q) - DEM(i)/A(i,q))
 else
 !Else return a very high number
 returned := 1000000000
 end-if
end-function

!Calculate the service availability based on TMPA and TMPN for i
function calcAvail(N:array(SERV, range) of integer, A:array(SERV, range) of integer, i:integer):real
 returned := prod(q in COMP(i)) sum(k in A(i,q)..N(i,q))(doFactorial(N(i,q))/(doFactorial(k)*doFactorial(N(i,q)-k)))*
 AVAILCOMP(i,q)^k*(1-AVAILCOMP(i,q))^(N(i,q)-k)
end-function

!Chech if loop should stop
function checkStp(TMP:array(SERV, range) of integer, UP:array(SERV,range) of integer, i:integer):boolean
 retval := false
 forall(q in COMP(i) | TMP(i,q) <> UP(i,q)) retval := true
 returned := retval
end-function

!Check if there exists a clearly better AC already
function checkAllGeqA(TMPA:array(SERV, range) of integer, i:integer):boolean
 retval := true
 forall(r in RSET(i)) do
 check := 0
 forall(q in COMP(i)) do
 if(TMPA(i,q) >= ACTR(i,q,r)) then
 check += 1
 end-if
 end-do
 if(check = NOC(i)) then
 retval := false
 break
 end-if
 end-do
 returned := retval
end-function

!Check if there exists a clearly better TC, based on the same AC
function checkAllGeqN(TMPN:array(SERV, range) of integer, TMPA:array(SERV, range) of integer, i:integer):boolean
 declarations
 !Set of replication patterns that is based on the same AC, cf. R*
 TMPRSET:set of integer
 end-declarations
 retval := true
 !Calculate R*
 forall(r in RSET(i)) do
 checkr := 0
 forall(q in COMP(i)) do
 if(TMPA(i,q) = ACTR(i,q,r)) then
 checkr += 1
 end-if
 end-do
 if(checkr = NOC(i)) then
 TMPRSET += {r}
 end-if
 end-do
 forall(r in TMPRSET) do
 checkn := 0
 forall(q in COMP(i)) do
 if(TMPN(i,q) >= NR(i,q,r)) then
 checkn += 1
 end-if
 end-do
 if(checkn = NOC(i)) then
 retval := false
 break
 end-if
 end-do
 returned := retval
end-function

!doFacorial - Function which computes the factorial of an integer
function doFactorial(x:integer):integer
 if (x <= 1) then
 returned:=1;
 else
 returned:=(x * doFactorial(x-1));
 end-if
end-function

writeln("createReplicationPatterns BEGIN")
createReplicationPatterns
writeln("createReplicationPatterns DONE")

130

!Calculate ACTRMN(i,q)
forall(i in SERV, q in COMP(i)) do
 ACTRMN(i,q) := MAXACT(i,q)
 forall(r in RSET(i)) do
 if(ACTR(i,q,r) < ACTRMN(i,q)) then
 ACTRMN(i,q) := ACTR(i,q,r)
 end-if
 end-do
end-do

!Print out replication settings
forall(i in SERV) do
 writeln("--------SERVICE ",i," -------------")
 write("r ")
 forall(q in COMP(i))do
 write("a_",q," n_",q," ")
 end-do
 writeln("AVAIL(",i,",r) RTTOT(",i,",r)")
 forall(r in RSET(i)) do
 write(r," ")
 forall(q in COMP(i)) do
 write(" ",ACTR(i,q,r)," ",NR(i,q,r)," ")
 end-do
 writeln(AVAIL(i,r)," >= ",REQAVAIL(i)," ",RTTOT(i,r)," <= ",REQRESPT(i))
 end-do
end-do

!--*
!CREATE VARIABLES
!--*

forall(i in SERV, q in COMP(i), n in NODES) do
 !mapping(i,q,n)
 create(mapping(i,q,n))
 mapping(i,q,n) is_binary
 if(MODE <> 2) then
 !active(i,q,n)
 create(active(i,q,n))
 active(i,q,n) is_binary
 if(MODE = 1) then
 !semiact(i,q,n)
 create(semiact(i,q,n))
 semiact(i,q,n) is_binary
 end-if
 end-if
end-do

!repset(i,r)
forall(i in SERV, r in RSET(i)) do
 create(repset(i,r))
 repset(i,r) is_binary
end-do

forall(n in NODES) do
 !used(n)
 create(used(n))
 used(n) is_binary
 if(MODE = 0) then
 !maxrepcap(n)
 create(maxrepcap(n))
 end-if
 if(SYM = 1) then
 !assignedc(n)
 create(assignedc(n))
 end-if
end-do

!--*
! DEFINE OBJECTIVE FUNCTION
!--*
Objective := CPWR * HRS*(sum(i in SERV, q in COMP(i))PWRCOEFF*CPUDEM(i,q) +
 sum(i in SERV, q in COMP(i), n in NODES)PWRCOEFF*CPUOH(i,q) * mapping(i,q,n) +
 sum(n in NODES)PWRIDLE * used(n))

!--*
! CONSTRAINTS
!--*

if(MODE = 0) then
 !***
 !BEGIN CAPACITY LOWERING APPROACH
 !***
 !Choose one and only one replication pattern for each service
 forall(i in SERV) Repsetsum(i) := sum(r in RSET(i)) repset(i,r) = 1

131

 !Distribute the replica to the nodes
 forall(i in SERV, q in COMP(i)) Allreps(i,q) := sum(n in NODES) mapping(i,q,n) -
 sum(r in RSET(i)) NR(i,q,r) * repset(i,r) = 0

 !Set ACTR replicas to be active
 forall(i in SERV, q in COMP(i)) Allact(i,q) := sum(n in NODES) active(i,q,n) -
 sum(r in RSET(i)) ACTR(i,q,r) * repset(i,r) = 0

 !Ensure that a replica of (i,q) only can be active on a node if there is a replica of (i,q) deployed there
 forall(i in SERV, q in COMP(i), n in NODES) Activeif(i,q,n) := active(i,q,n) -
 mapping(i,q,n) <= 0

 !Set non-assignable CPU power on the nodes
 forall(n in NODES, i in SERV, q in COMP(i)) do
 Setmxrepcap(i,q,n) := maxrepcap(n) -
 CPUASS(i,q)*VAR(i) * (mapping(i,q,n) - active(i,q,n)) >= 0

 end-do

 if(SYM = 1) then
 !Calculate assingedc(n)
 forall(n in NODES) do
 Setass(n) := sum(i in SERV, q in COMP(i))(CPUASS(i,q)*VAR(i)) * active(i,q,n) +
 sum(i in SERV, q in COMP(i))CPUOH(i,q) * mapping(i,q,n) -
 assignedc(n) = 0
 end-do

 !Capacity constraints on the nodes
 forall(n in NODES) do
 Cpucap(n) := assignedc(n) +
 maxrepcap(n) -
 CAPCPU * used(n) <= 0
 end-do
 else
 !Capacity constraints on the nodes
 forall(n in NODES) do
 Cpucap(n) := sum(i in SERV, q in COMP(i))(CPUASS(i,q)*VAR(i)) * active(i,q,n) +
 sum(i in SERV, q in COMP(i))CPUOH(i,q) * mapping(i,q,n) +
 maxrepcap(n) -
 CAPCPU * used(n) <= 0
 end-do
 end-if
 !***
 !END CAPACITY LOWERING APPROACH
 !***

elif(MODE = 1) then
 !***
 !BEGIN SEMI-ACTIVE APPROACH
 !***

 !Choose one and only one replication pattern for each service
 forall(i in SERV) Repsetsum(i) := sum(r in RSET(i)) repset(i,r) = 1

 !Distribute the replica to the nodes
 forall(i in SERV, q in COMP(i)) Allreps(i,q) := sum(n in NODES) mapping(i,q,n) -
 sum(r in RSET(i)) NR(i,q,r) * repset(i,r) = 0

 !Set ACTR replicas to be active
 forall(i in SERV, q in COMP(i)) Allact(i,q) := sum(n in NODES) active(i,q,n) -
 sum(r in RSET(i)) ACTR(i,q,r) * repset(i,r) = 0

 !Set the right number of replicas to be semi-active
 forall(i in SERV, q in COMP(i)) do
 Allsemiact(i,q) := sum(n in NODES) semiact(i,q,n)-
 sum(r in RSET(i))ceil(SACOEFF(i,q)*(NR(i,q,r)-ACTR(i,q,r))/ACTR(i,q,r)) * repset(i,r) = 0
 end-do

 !Ensure that a replica of (i,q) only can be active or semi-active on a node
 !if there is a replica of (i,q) deployed there
 forall(i in SERV, q in COMP(i), n in NODES) Activeif(i,q,n) := active(i,q,n) +
 semiact(i,q,n) -
 mapping(i,q,n) <= 0

 if(SYM = 1) then
 !Calculate assingedc(n)
 forall(n in NODES) do
 Setass(n) := sum(i in SERV, q in COMP(i))CPUASS(i,q)*VAR(i) * active(i,q,n) +
 sum(i in SERV, q in COMP(i))CPUASS(i,q)*VAR(i) * semiact(i,q,n) +
 sum(i in SERV, q in COMP(i))CPUOH(i,q) * mapping(i,q,n) -
 assignedc(n) = 0
 end-do
 !Capacity constraints on the nodes
 forall(n in NODES) do
 Cpucap(n) := assignedc(n) -
 CAPCPU * used(n) <= 0
 end-do

132

 else
 !Capacity constraints on the nodes
 forall(n in NODES) do
 Cpucap(n) := sum(i in SERV, q in COMP(i))CPUASS(i,q)*VAR(i) * active(i,q,n) +
 sum(i in SERV, q in COMP(i))CPUASS(i,q)*VAR(i) * semiact(i,q,n) +
 sum(i in SERV, q in COMP(i))CPUOH(i,q) * mapping(i,q,n) -
 CAPCPU * used(n) <= 0
 end-do
 end-if

 !***
 !END SEMI-ACTIVE APPROACH
 !***
elif(MODE = 2) then
 !***
 !BEGIN ALL-ACTIVE APPROACH
 !***

 !Choose one and only one replication pattern for each service
 forall(i in SERV) Repsetsum(i) := sum(r in RSET(i)) repset(i,r) = 1

 !Distribute the replica to the nodes
 forall(i in SERV, q in COMP(i)) Allreps(i,q) := sum(n in NODES) mapping(i,q,n) -
 sum(r in RSET(i)) NR(i,q,r) * repset(i,r) = 0

 if(SYM = 1) then
 !Set assignedc(n)
 forall(n in NODES) do
 Setass(n) := sum(i in SERV, q in COMP(i))(CPUASS(i,q)*VAR(i) + CPUOH(i,q)) * mapping(i,q,n) -
 assignedc(n) = 0
 end-do

 !Capacity constraints on the nodes
 forall(n in NODES) do
 Cpucap(n) := assignedc(n) -
 CAPCPU * used(n) <= 0
 end-do
 else

!Capacity constraints on the nodes
 forall(n in NODES) do
 Cpucap(n) := sum(i in SERV, q in COMP(i))(CPUASS(i,q)*VAR(i) + CPUOH(i,q)) * mapping(i,q,n) -
 CAPCPU * used(n) <= 0
 end-do
 end-if

 !***
 !END ALL-ACTIVE APPROACH
 !***
end-if

!--*
!Doing some predefined decisions in order to lower the number of symmetrical solutions
!--*

!Sort nodes in order to avoid symmetrical solutions
if(SYM = 1) then
 forall(n in NODES | n < NON) Sortass(n) := assignedc(n) - assignedc(n+1) >= 0
elif(SYM = 2) then
 forall(n in NODES | n < NON) Sortused(n) := used(n) - used(n+1) >= 0
end-if

if(SYM <> 1) then
 !The component with the highest ACTRMN is deployed on the nodes with the lowest index
 PREDEP.i := 1
 PREDEP.q := 1
 PREDEP.a := ACTRMN(1,1)
 forall(i in SERV, q in COMP(i) | PREDEP.a < ACTRMN(i,q)) do
 PREDEP.i := i
 PREDEP.q := q
 PREDEP.a := ACTRMN(i,q)
 end-do
 writeln("(",PREDEP.i,",",PREDEP.q,") is active on nodes 1..",PREDEP.a)
 forall(n in NODES | n <= PREDEP.a) do
 if(MODE <> 2) then
 active(PREDEP.i, PREDEP.q, n) = 1
 else
 mapping(PREDEP.i, PREDEP.q, n) = 1
 end-if
 end-do
end-if

writeln("")
writeln("Begin running model")

133

!--*
!MINIMIZE OBJECTIVE
!--*
!setparam('XPRS_TREEMEMORYLIMIT',1000)
setparam('xprs_verbose',true)
setparam('xprs_miplog', -1000)
setparam('xprs_maxtime',-4000)

minimize(Objective)
writeln("Objective = ",getobjval)
writeln(CPWR*HRS*(sum(i in SERV, q in COMP(i))PWRCOEFF*CPUDEM(i,q)))
writeln(CPWR*HRS*sum(i in SERV, q in COMP(i), n in NODES)PWRCOEFF*CPUOH(i,q) * mapping(i,q,n).sol)
writeln(CPWR*HRS*sum(n in NODES)PWRIDLE * used(n).sol)

!Print out the number of replciations settings for each service
forall(i in SERV) do
 if(RMAX(i) > 0) then
 writeln("Service ",i," has ",RMAX(i)," replication settings that confins with the SLA requirements")
 else
 writeln("Service ",i," has none replication settings: THE MODEL IS INFEASIBLE!")
 end-if
end-do

!Print out information about availability
writeln("")
writeln("Availability print out")
forall(i in SERV, r in RSET(i) | repset(i,r).sol > 0.1) do
 writeln("-------- SERVICE ",i,"----------")
 writeln("Replication setting ",r," is used")
 writeln("AVAIL(",i,",",r,") = ",AVAIL(i,r)," >= ",REQAVAIL(i)," = REQAVAIL(",i,")")
 forall(q in COMP(i)) do
 writeln("NR(",i,",",q,",",r,") = ",NR(i,q,r))
 writeln("ACTR(",i,",",q,",",r,") = ",ACTR(i,q,r))
 end-do
end-do

!Print out Demand and CPU data
writeln("")
writeln("Demand and CPU data print out")
forall(i in SERV) do
 writeln("-------- SERVICE ",i,"----------")
 writeln("Demand for service ",i,": ",DEM(i), " req/sec")
 writeln("VAR(",i,") = ",VAR(i))
 forall(q in COMP(i)) do
 writeln("*Component ",q,"*")
 writeln("JOBLOAD(",i,",",q,") = ",JOBLOAD(i,q))
 writeln("CPUDEM(",i,",",q,") = ",CPUDEM(i,q))
 writeln("CPUASS(",i,",",q,") = ",CPUASS(i,q))
 writeln("Assigned CPU power including VAR(",i,") to each active replica: ",CPUASS(i,q)*VAR(i))
 writeln("CPUASS(",i,",",q,") * Active reps = ",CPUASS(i,q)," * ",sum(r in RSET(i))ACTR(i,q,r)*repset(i,r).sol,
 " = ",CPUASS(i,q) * sum(r in RSET(i))ACTR(i,q,r)*repset(i,r).sol)
 writeln("This gives a component response time of ",
 1000/(CPUASS(i,q)/JOBLOAD(i,q) - DEM(i)/(sum(r in RSET(i))ACTR(i,q,r)*repset(i,r).sol))," ms")
 end-do
end-do

!Print out information about deployment decisions
writeln("")
writeln("Deployment variables, mapping(i,q,n) and active(i,q,n) print out")
forall(i in SERV, q in COMP(i), n in NODES | mapping(i,q,n).sol > 0 or active(i,q,n).sol > 0) do
 write("mapping(",i,",",q,",",n,") = ",mapping(i,q,n).sol," ")
 if(active(i,q,n).sol > 0.5) then
 write("(active)")
 end-if
 if(semiact(i,q,n).sol > 0.5 and MODE = 1) then
 write("(semiactive)")
 end-if
 writeln("")
end-do

!Print out information about CPU capacity and power usage on the nodes
if(MODE <> 2) then
 writeln("")
 writeln("Node capacity print out")
 forall(n in NODES) do
 write("--------- NODE ",n," ")
 if (used(n).sol > 0.5) then
 write("(ON) ")
 else
 write("(OFF) ")
 end-if
 writeln("---------")
 forall(i in SERV, q in COMP(i) | mapping(i,q,n).sol>0.5) do
 write("(",i,",",q,") with CPU load ",(CPUASS(i,q)*VAR(i))*active(i,q,n).sol +
 (CPUASS(i,q)*VAR(i))*semiact(i,q,n).sol + CPUOH(i,q)*mapping(i,q,n).sol," ")
 if(active(i,q,n).sol > 0.5) then
 write("(active)")
 end-if

134

 if(semiact(i,q,n).sol > 0.5) then
 write("(semiactive)")
 end-if
 writeln("")
 end-do
 write("Total load on node ",n," = ",sum(i in SERV, q in COMP(i))(CPUASS(i,q)*VAR(i))*active(i,q,n).sol+
 sum(i in SERV, q in COMP(i))(CPUASS(i,q)*VAR(i))*semiact(i,q,n).sol+
 sum(i in SERV, q in COMP(i))CPUOH(i,q)*mapping(i,q,n).sol)
 if(MODE = 0) then
 writeln(" <= CAPCPU - maxrepcap(",n,") = ",CAPCPU," - ",maxrepcap(n).sol," = ",CAPCPU - maxrepcap(n).sol)
 elif(MODE = 1) then
 writeln(" <= CAPCPU = ",CAPCPU)
 end-if
 writeln("assignedc(",n,") = ",assignedc(n).sol)
 end-do
else
 writeln("")
 writeln("Node capacity print out")
 forall(n in NODES) do
 write("--------- NODE ",n," ")
 if (used(n).sol > 0.5) then
 write("(ON) ")
 else
 write("(OFF) ")
 end-if
 writeln("---------")
 forall(i in SERV, q in COMP(i) | mapping(i,q,n).sol>0.5) do
 writeln("(",i,",",q,") with CPU load ",(CPUASS(i,q)*VAR(i)+CPUOH(i,q))*mapping(i,q,n).sol)
 end-do
 writeln("Total load on node ",n," = ",sum(i in SERV, q in COMP(i))(CPUASS(i,q)*VAR(i)+
 CPUOH(i,q))*mapping(i,q,n).sol," <= CAPCPU = ",CAPCPU)
 writeln("assignedc(",n,") = ",assignedc(n).sol)
 end-do
end-if
!Print out information about utilization
if(MODE = 0 or MODE = 1) then
 writeln("")
 forall(n in NODES) do
 writeln("")
 forall(i in SERV, q in COMP(i) | mapping(i,q,n).sol > 0.1) do
 writeln("(",i,",",q,")'s contribution to the utilization on node ",n," is: ",CPUOH(i,q)*mapping(i,q,n).sol +
 CPUDEM(i,q)*sum(r in RSET(i))active(i,q,n).sol/ACTR(i,q,r)*repset(i,r).sol)
 end-do
 writeln("The total utilization on node ",n," is: ",
 sum(i in SERV, q in COMP(i))CPUDEM(i,q)*sum(r in RSET(i))active(i,q,n).sol/ACTR(i,q,r)*repset(i,r).sol +
 sum(i in SERV, q in COMP(i))CPUOH(i,q)*mapping(i,q,n).sol)
 end-do
 writeln("The average utilization on turned on nodes = ",(sum(i in SERV, q in COMP(i), n in NODES)CPUDEM(i,q)*
 sum(r in RSET(i))active(i,q,n).sol/ACTR(i,q,r)*repset(i,r).sol +
 sum(i in SERV, q in COMP(i), n in NODES)CPUOH(i,q)*mapping(i,q,n).sol)/(sum(n in NODES)used(n).sol))
elif(MODE = 2) then
 writeln("")
 forall(n in NODES) do
 writeln("")
 forall(i in SERV, q in COMP(i) | mapping(i,q,n).sol > 0.1) do
 writeln("(",i,",",q,")'s contribution to the utilization on node ",n," is: ",
 (CPUOH(i,q))*mapping(i,q,n).sol +
 CPUDEM(i,q)*sum(r in RSET(i))mapping(i,q,n).sol/NR(i,q,r)*repset(i,r).sol)
 end-do
 writeln("The total utilization on node ",n," is: ",
 sum(i in SERV, q in COMP(i))CPUDEM(i,q)*sum(r in RSET(i))mapping(i,q,n).sol/NR(i,q,r)*repset(i,r).sol +
 sum(i in SERV, q in COMP(i))(CPUOH(i,q))*mapping(i,q,n).sol)
 end-do
 writeln("The average utilization on turned on nodes = ",(sum(i in SERV, q in COMP(i), n in NODES)CPUDEM(i,q)*
 sum(r in RSET(i))mapping(i,q,n).sol/NR(i,q,r)*repset(i,r).sol +
 sum(i in SERV, q in COMP(i), n in NODES)(CPUOH(i,q))*mapping(i,q,n).sol)/
 (sum(n in NODES)used(n).sol))
end-if
!exportprob(EP_MIN, '../lp-files/minpower_fixedrespt.lp',Minpower)

writeln("End running model")

end-model

135

!***!
!*---*!
!*------------------------------------SERVICE DEPLOYMENT MODEL---*!
!*---------------------------------IN A HYBRID CLOUD ENVIRONMENT---*!
!*---*!
!***!

model sdphce
uses "mmxprs"; !gain access to the Xpress-Optimizer solver

parameters
 !Data file
 ! Used data files are hce5.dat, hce10.dat and hce20.dat
 DATA = 'hce20.dat'
end-parameters

!--*
! DECLARATIONS
!--*
Declarations

 !--*
 !SETS
 !--*
 !Set of services, indexed by i
 SERV: set of integer
 !Set of components of service i, indexed by q
 COMP: array(SERV) of range
 !Set of replication patterns for service i, indexed by r
 RSET: array(SERV) of set of integer
 !Set of cloud domains for service deployment, indexed by d
 DOM: set of integer
 !Set of private cloud domains, indexed by d
 DOMPR: set of integer
 !Set of public cloud domain, indexed by d
 DOMPU: set of integer
 !Set of VM types in public cloud domains, indexed by v
 VMS: array(DOMPU) of set of integer
 !Set of nodes in private cloud domains, indexed by n
 NODES: array(DOMPR) of set of integer

 !--*
 !PARAMETERS READ FROM DATA
 !--*

 !MODE corresponds to the different approaches
 !MODE = 0 -> Capacity-lowering
 !MODE = 1 -> Semi-active
 !MODE = 2 -> All-active
 MODE: integer
 !SYM corresponds to the strategies used to reduce the number of symmetrical solutions
 !SYM = 0 -> SYM0: only predeployment
 !SYM = 1 -> SYM1: sort nodes according to the amount of CPU power assigned to replicas
 !SYM = 2 -> SYM2: sort nodes according to whether they are turned on or not
 SYM: integer
 !Number of services
 NOS: integer
 !Number of private cloud domains
 NOCLPR: integer
 !Number of public cloud domains
 NOCLPU: integer
 !Number of components for each service
 NOC: array(SERV) of integer
 !Number of different VM types in a public cloud domain
 NOVM: array(DOMPU) of integer
 !Number of nodes in each private cloud domain
 NON: array(DOMPR) of integer
 !Maximum number of replicas of each component
 MAXREP: dynamic array(SERV, range) of integer
 !Maximum number of active replicas of each component
 MAXACT: dynamic array(SERV, range) of integer
 !Stationary availability of each component with no replication
 AVAILCOMP: dynamic array(SERV, range) of real
 !Required availability for each service
 REQAVAIL: array(SERV) of real
 !Required response time for each service
 REQRESPT: array(SERV) of integer
 !Parameter for controlling the number of semi-active replicas
 SACOEFF: dynamic array(SERV, range) of real
 !The required number of domains used by a replica in percentage of the total nnumber of replicas
 SPREAD: dynamic array(SERV, range) of real
 !=d, if (i,q) is bound to be deployed in cloud domain d, =0 if no restriction
 BINDING: dynamic array(SERV, range) of integer
 !Length of time period
 HRS: real
 !Cost of energy usage per time unit
 CPWR: real

136

 !Converting CPU power to power usage
 PWRCOEFF: real
 !Minimum power needed for operation of a node
 PWRIDLE: real
 !CPU capacity for the nodes in the private cloud domains
 CAPCPU: integer
 !CPU-power overhead for replicas
 CPUOH: dynamic array(SERV, range) of real
 !The fixed amount of CPU power assigned to an active (or semiactive) replica
 CPUASS: dynamic array(SERV, range) of real
 !The avg. CPU power needed to handle a request for service i
 JOBLOAD: dynamic array(SERV, range) of real
 !The avg. number of request for service i per time unit
 DEM: array(SERV) of real
 !The parameter ensuring that a service handles the peaks in demand
 VAR: array(SERV) of real
 !Cost of deploying a replica in a public cloud domain per hour, using a given VM
 COSTVM: dynamic array(DOMPU, range) of real
 !The size of VM in terms of CPU power
 VMCSIZE: dynamic array(DOMPU, range) of real

 !--*
 !PARAMETERS TO CALCULATE
 !--*

 !The number of replication settings for each service
 RMAX: array(SERV) of integer
 !Stationary availability of each component using replication pattern r
 AVCOMPREAL: dynamic array(SERV, range, range) of real
 !Stationary availability of a service given a replication pattern r
 AVAIL: array(SERV, range) of real
 !Number of replicas of a comp given a replication pattern r
 NR: dynamic array(SERV, range, range) of integer
 !The maximum number of NR(i,q,r) over r
 NRMX: dynamic array(SERV, range) of integer
 !Number of active replicas of a comp given a replication pattern r
 ACTR: dynamic array(SERV, range, range) of integer
 !The maximum number of ACTR(i,q,r) over r
 ACTRMX: dynamic array(SERV, range) of integer
 !The minimum number of ACTR(i,q,r) over r for components bind to private cloud domain
 ACTRMNB: dynamic array(SERV, range) of integer
 !The total response time of a service given a replication pattern r
 RTTOT: dynamic array(SERV, range) of real
 !The demanded CPU power from requests
 CPUDEM: dynamic array(SERV, range) of real
 !The cost of deploying an active or semi-active replica in a public cloud
 COSTVMACT: dynamic array(SERV, range, DOMPU) of real
 !The cost of deploying a passive replica of (i,q) in a public cloud
 COSTVMPAS: dynamic array(SERV, range, DOMPU) of real

 !Data structure used to predeploy the component which has the highest value of ACTRMN
 PREDEP= record
 i,q,a: integer
 end-record
 PREDEPARR: array(DOMPR) of PREDEP

 !--*
 !VARIABLES
 !--*

 != 1 if a replica (i,q) is deployed in cloud domain, = 0 otherwise, cf. u_iqd
 repincl: dynamic array(SERV, range, DOM) of mpvar
 !The number of replicas of (i,q) that is deployed in a cloud domain, cf. x_Diqd
 mappingcl: dynamic array(SERV, range, DOM) of mpvar
 != 1 if a replica of (i,q) is deployed on node n in a private cloud domain d, = 0 otherwise, cf x_iqdn
 mapping: dynamic array(SERV, range, DOMPR, range)of mpvar
 !The number of active replicas of (i,q) that is deployed in a cloud domain d, cf. w_Diqd
 activecl: dynamic array(SERV, range, DOM) of mpvar
 != 1 if an active replica of (i,q) is deployed on node n in private cloud domain d, = 0 otherwise, cf. w_iqdn
 active: dynamic array(SERV, range, DOMPR, range)of mpvar
 !The number of semi-active replicas of (i,q) deployed in cloud domain d, cf. v_Diqd
 semiactcl: dynamic array(SERV, range, DOM) of mpvar
 != 1 if a semi-active replicas of (i,q) is deployed on node n in private cloud domain d, = 0 otherwise, cf. v_iqdn
 semiact: dynamic array(SERV, range, DOMPR, range)of mpvar
 !The fraction of demand-service replicas of (i,q) that is deployed in private cloud domain d, cf f_iqd
 fracact: dynamic array(SERV, range, DOMPR) of mpvar
 != 1 if replication pattern r is used for service i, = 0 otherwise, cf. y_ir
 repset: dynamic array(SERV, range) of mpvar
 != 1 if node n in a private cloud domain is turned on, = 0 otherwise, cf. o_dn
 used: dynamic array(DOMPR, range) of mpvar
 !Amount of non-assignable CPU power on node n in private cloud domain d, cf. m_dn
 maxrepcap: dynamic array(DOMPR, range) of mpvar
 !Amount of CPU power assigned to the replicas on node n in private cloud domain d (used in SYM1), cf. s_dn
 assignedc: dynamic array(DOMPR, range) of mpvar

137

 !--*
 !CONSTRAINTS
 !--*

 !Ensure that one and only on replication pattern is used for service i
 Repsetsum: array(SERV) of linctr
 !Distribute the number of replicas to the domains
 Allreps: dynamic array(SERV, range) of linctr
 !Further map the replicas deployed in private cloud domain d to the nodes
 Allrepsnod: dynamic array(SERV, range, DOMPR) of linctr
 !Distribute the number of active replicas to the domains
 Allact: dynamic array(SERV, range) of linctr
 !Further map the active replicas deployed in private cloud domain d to the nodes
 Allactnod: dynamic array(SERV, range, DOMPR) of linctr
 !Distribute the number of semi-active replicas to the domains
 Allsemiact: dynamic array(SERV, range) of linctr
 !Further map the semi-active replicas deployed in private cloud domain d to the nodes
 Allsactnod: dynamic array(SERV, range, DOMPR) of linctr
 !Ensure that there are not more active and semi-active replicas than the total number of replicas in a public cloud
 Actif: dynamic array(SERV, range, DOMPU) of linctr
 !Ensure that if a replica is active or semi-active in the private cloud it has to be deployed on that node
 Actifnod: dynamic array(SERV, range, DOMPR, range) of linctr
 !Ensure the required number of used clouds by the replicas of (i,q)
 Reqspread: dynamic array(SERV, range) of linctr
 !Force repincl to 0 if no replicas in the cloud
 Repinclif: dynamic array(SERV, range, DOM) of linctr
 !Set fracact variable
 Setfracact: dynamic array(SERV, range, DOMPR, range) of linctr
 !Set the assignedc variables
 Setass: dynamic array(DOMPR, range) of linctr
 !Set the non-assignable amount of CPU power on the nodes
 Setmxrepcap:dynamic array(SERV, range, DOMPR, range) of linctr
 !CPU capacity constraint on all nodes in private cloud
 Cpucap: dynamic array(DOMPR, range) of linctr
 !Sort the nodes according to assignedc
 Sortass: array(DOMPR, range) of linctr
 !Sort the nodes according to used
 Sortused: array(DOMPR, range) of linctr
 !--*
 !OBJECTIVE
 !--*
 !Minimize energy costs and public cloud deployment costs
 Obj: linctr

end-declarations

!--*
! Initializations
!--*
initializations from DATA
 HRS NOS NOCLPR NOCLPU CPWR MODE SYM
end-initializations

SERV := 1..NOS
DOMPR := 1..NOCLPR
DOMPU := (NOCLPR+1)..(NOCLPR+NOCLPU)
DOM := DOMPR + DOMPU

initializations from DATA
 NOC CAPCPU REQAVAIL REQRESPT PWRCOEFF PWRIDLE DEM VAR NOVM NON
end-initializations

forall(i in SERV) COMP(i) := 1..NOC(i)
forall(d in DOMPU) VMS(d) := 1..NOVM(d)
forall(d in DOMPR) NODES(d) := 1..NON(d)

initializations from DATA
 [MAXREP, MAXACT, AVAILCOMP, SACOEFF, SPREAD, BINDING] AS "REPDATA"
 [JOBLOAD, CPUASS, CPUOH] AS "LOADDATA"
 [COSTVM, VMCSIZE] AS "VMDATA"
end-initializations

!Calculate CPUDEM(i,q)
forall(i in SERV, q in COMP(i)) do
 CPUDEM(i,q) := DEM(i)*JOBLOAD(i,q)
end-do

!Calculate VM cost of stand-by replicas (choose the cheapest one in each cloud)
forall(i in SERV, q in COMP(i), d in DOMPU) do
 COSTVMPAS(i,q,d) := COSTVM(d,1)
end-do

138

!Calculate VM cost of active and "semi-active" replicas in each cloud
forall(i in SERV, q in COMP(i), d in DOMPU) do
 !Initialize COSTVMACT(i,q,d) to a large number (larger than the cost of any VM)
 COSTVMACT(i,q,d) := 10000
 CONF := false
 forall(v in VMS(d) | CPUASS(i,q)*VAR(i)+CPUOH(i,q) < VMCSIZE(d,v)) do
 if(COSTVM(d,v) < COSTVMACT(i,q,d)) then
 COSTVMACT(i,q,d) := COSTVM(d,v)
 CONF := true
 end-if
 end-do
 if(not CONF) then
 writeln("Could not find any large enough VMs to fit (",i,",",q,") in ",d)
 end-if
 COSTVMACT(i,q,d) := COSTVMACT(i,q,d)
end-do

!--*
! PROCEDURES
!--*
forward function doFactorial(x:integer):integer
forward procedure createReplicationPatterns
forward function calcAvail(N:array(SERV, range) of integer, A:array(SERV, range) of integer, i:integer):real
forward function calcRespt(A:array(SERV, range) of integer, i:integer):real
forward function checkStp(TMP:array(SERV, range) of integer, UP:array(SERV,range) of integer, i:integer):boolean
forward function checkAllGeqA(TMPA:array(SERV, range) of integer, i:integer):boolean
forward function checkAllGeqN(TMPN:array(SERV, range) of integer, TMPA:array(SERV, range) of integer, i:integer):boolean

!--*
! PROCEDURE TO GENERATE REPLICATION PATTERNS
!--*
procedure createReplicationPatterns
 declarations
 !Temporary total number of replicas
 TMPN: array(SERV, range) of integer
 !Temporary number of active replicas
 TMPA: array(SERV, range) of integer
 !Temporary upper bound on the number of active replicas
 AUP: array(SERV, range) of integer
 !Temporary upper bound on the total number of replicas
 NUP: array(SERV, range) of integer
 !Temporary lower bound on the number of active replicas
 ALW: array(SERV, range) of integer
 !Temporary lower bound on the total number of replicas
 NLW: array(SERV, range) of integer
 !Current replication pattern
 r: integer
 end-declarations
 !Do forall services
 forall(i in SERV) do
 !Initialize r = 1
 r := 1
 !Initialize the number of active replicas
 forall(q in COMP(i)) do
 TMPA(i,q) := 1
 AUP(i,q) := MAXACT(i,q)
 ALW(i,q) := 1
 end-do
 !FRISTCHCKA used to stop the loop if one needs only 1 active replica of each component
 FIRSTCHCKA := true
 !Outer loop
 while(checkStp(TMPA,AUP,i)) do
 !Check response time requirement and if there exists a clearly better AC already
 if(calcRespt(TMPA,i) <= REQRESPT(i) and checkAllGeqA(TMPA,i)) then
 !Initialize the total number of replicas
 forall(q in COMP(i)) do
 TMPN(i,q) := TMPA(i,q)
 NUP(i,q) := MAXREP(i,q)
 NLW(i,q) := TMPA(i,q)
 end-do
 !Lower temporary upper bound if only one component have another number of active replicas than 1
 AUPCHCK := 0
 forall(q in COMP(i) | TMPA(i,q) <> 1) AUPCHCK += 1
 if(AUPCHCK = 1) then
 forall(q in COMP(i) | TMPA(i,q) <> 1) AUP(i,q) := TMPA(i,q)
 end-if
 !FRISTCHCKN used to stop the loop if one needs no passive replicas of a component
 FIRSTCHCKN := true
 !Inner loop
 while(checkStp(TMPN,NUP,i)) do
 !Check availability requirement and if there exists a clearly better TC, based on the same AC
 if(calcAvail(TMPN,TMPA,i) >= REQAVAIL(i) and checkAllGeqN(TMPN, TMPA, i)) then
 !Update NR, ACTR, the availabilies, the response time and RSET
 forall(q in COMP(i)) do
 NR(i,q,r) := TMPN(i,q)
 ACTR(i,q,r) := TMPA(i,q)
 end-do

139

 AVAIL(i,r) := calcAvail(TMPN,TMPA,i)
 RTTOT(i,r) := calcRespt(TMPA,i)
 RSET(i) += {r}
 RMAX(i) := r
 !Increment r
 r += 1
 !Break loop if FRISTCHCKN is true
 if(FIRSTCHCKN) then
 break
 else
 !Lower temporary upper bound if only one component have another # passive replicas than 1
 NUPCHCK := 0
 forall(q in COMP(i) | TMPN(i,q) <> TMPA(i,q)) NUPCHCK += 1
 if(NUPCHCK = 1) then
 forall(q in COMP(i) | TMPN(i,q) <> TMPA(i,q)) NUP(i,q) := TMPN(i,q)
 end-if
 end-if
 end-if !REQAVAIL
 FIRSTCHCKN := false
 !Find new TMPN(i)
 q := NOC(i)
 while(q > 1) do
 qq := NOC(i)
 while(qq > 0) do
 if(TMPN(i,qq) < NUP(i,qq)) then
 TMPN(i,qq) += 1
 break 2
 else
 TMPN(i,qq) := NLW(i,qq)
 if(qq = 1) then
 NLW(i,q) += 1
 TMPN(i,q) := NLW(i,q)
 if(q = 1) then
 break 2
 else
 qq := NOC(i) - q
 q -= 1
 end-if
 else
 qq -= 1
 end-if
 end-if
 !qq -= 1
 end-do !qq
 end-do !q
 end-do !checkStp(TMPN,NUP,i)
 if(FIRSTCHCKA) then
 break
 end-if
 end-if !REQRESPT
 FIRSTCHCKA := false

 !Find new TMPA(i)
 q := NOC(i)
 while(q > 1) do
 qq := NOC(i)
 while(qq > 0) do
 if(TMPA(i,qq) < AUP(i,qq)) then
 TMPA(i,qq) += 1
 break 2
 else
 TMPA(i,qq) := ALW(i,qq)
 if(qq = 1) then
 !NLW(i,qq) += 1
 ALW(i,q) += 1
 TMPA(i,q) := ALW(i,q)
 if(q = 1) then
 break 2
 else
 qq := NOC(i) - q
 q -= 1
 end-if
 else
 qq -= 1
 end-if
 end-if
 end-do !qq
 end-do !q
 end-do !checkStp(TMPA,AUP,i)
 end-do !forall i
end-procedure

140

!Calculates the response time based on TMPA for i
function calcRespt(A:array(SERV, range) of integer, i:integer):real
 !Check if stable queue
 INF := false
 forall(q in COMP(i)) do
 if(CPUASS(i,q)/JOBLOAD(i,q) - DEM(i)/A(i,q) <= 0) then
 INF := true
 end-if
 end-do
 if(INF = false) then
 !Multiply be 1000 to get milliseconds
 returned := sum(q in COMP(i)) 1000/(CPUASS(i,q)/JOBLOAD(i,q) - DEM(i)/A(i,q))
 else
 !Else return a very high number
 returned := 1000000000
 end-if
end-function

!Calculate the service availability based on TMPA and TMPN for i
function calcAvail(N:array(SERV, range) of integer, A:array(SERV, range) of integer, i:integer):real
 returned := prod(q in COMP(i)) sum(k in A(i,q)..N(i,q))(doFactorial(N(i,q))/(doFactorial(k)*doFactorial(N(i,q)-k)))*
 AVAILCOMP(i,q)^k*(1-AVAILCOMP(i,q))^(N(i,q)-k)
end-function

!Chech if loop should stop
function checkStp(TMP:array(SERV, range) of integer, UP:array(SERV,range) of integer, i:integer):boolean
 retval := false
 forall(q in COMP(i) | TMP(i,q) <> UP(i,q)) retval := true
 returned := retval
end-function

!Check if there exists a clearly better AC already
function checkAllGeqA(TMPA:array(SERV, range) of integer, i:integer):boolean
 retval := true
 forall(r in RSET(i)) do
 check := 0
 forall(q in COMP(i)) do
 if(TMPA(i,q) >= ACTR(i,q,r)) then
 check += 1
 end-if
 end-do
 if(check = NOC(i)) then
 retval := false
 break
 end-if
 end-do
 returned := retval
end-function

!Check if there exists a clearly better TC, based on the same AC
function checkAllGeqN(TMPN:array(SERV, range) of integer, TMPA:array(SERV, range) of integer, i:integer):boolean
 declarations
 !Set of replication patterns that is based on the same AC, cf. R*
 TMPRSET:set of integer
 end-declarations
 retval := true
 !Calculate R*
 forall(r in RSET(i)) do
 checkr := 0
 forall(q in COMP(i)) do
 if(TMPA(i,q) = ACTR(i,q,r)) then
 checkr += 1
 end-if
 end-do
 if(checkr = NOC(i)) then
 TMPRSET += {r}
 end-if
 end-do
 forall(r in TMPRSET) do
 checkn := 0
 forall(q in COMP(i)) do
 if(TMPN(i,q) >= NR(i,q,r)) then
 checkn += 1
 end-if
 end-do
 if(checkn = NOC(i)) then
 retval := false
 break
 end-if
 end-do
 returned := retval
end-function

141

!doFacorial - Function which computes the factorial of an integer
function doFactorial(x:integer):integer
 if (x <= 1) then
 returned:=1;
 else
 returned:=(x * doFactorial(x-1));
 end-if
end-function

writeln("createReplicationPatterns BEGIN")
createReplicationPatterns
writeln("createReplicationPatterns DONE")

!Calculate ACTRMX(i,q)
forall(i in SERV, q in COMP(i)) do
 ACTRMX(i,q) := 1
 forall(r in RSET(i) | ACTR(i,q,r) > ACTRMX(i,q)) ACTRMX(i,q) := ACTR(i,q,r)
end-do

!Calculate ACTRMNB(i,q)
forall(i in SERV, q in COMP(i) | BINDING(i,q) in DOMPR) do
 ACTRMNB(i,q) := MAXACT(i,q)
 forall(r in RSET(i) | ACTR(i,q,r) < ACTRMNB(i,q)) ACTRMNB(i,q) := ACTR(i,q,r)
end-do

!Calculate NRMX(i,q)
forall(i in SERV, q in COMP(i)) do
 NRMX(i,q) := 1
 forall(r in RSET(i) | NR(i,q,r) > NRMX(i,q)) NRMX(i,q) := NR(i,q,r)
end-do

!Print out replication settings
forall(i in SERV) do
 writeln("--------SERVICE ",i," -------------")
 write("r ")
 forall(q in COMP(i))do
 write("a_",q," n_",q," ")
 end-do
 writeln("AVAIL(",i,",r) RTTOT(",i,",r)")
 forall(r in RSET(i)) do
 write(r," ")
 forall(q in COMP(i)) do
 write(" ",ACTR(i,q,r)," ",NR(i,q,r)," ")
 end-do
 writeln(AVAIL(i,r)," >= ",REQAVAIL(i)," ",RTTOT(i,r)," <= ",REQRESPT(i))
 end-do
end-do

!--*
!CREATE VARIABLES
!--*
forall(i in SERV, q in COMP(i)) do
 if(BINDING(i,q)=0) then
 forall(d in DOM) do
 !mappingcl(i,q,d)
 create(mappingcl(i,q,d))
 mappingcl(i,q,d) is_integer
 !activecl(i,q,d)
 create(activecl(i,q,d))
 activecl(i,q,d) is_integer
 if(MODE = 1) then
 !semiactcl(i,q,d)
 create(semiactcl(i,q,d))
 semiactcl(i,q,d) is_integer
 end-if
 !repincl(i,q,d)
 create(repincl(i,q,d))
 repincl(i,q,d) is_binary
 if(d in DOMPR) then
 !fracact(i,q,d)
 create(fracact(i,q,d))
 end-if
 end-do
 else
 !mappingcl(i,q,BINDING(i,q))
 create(mappingcl(i,q,BINDING(i,q)))
 mappingcl(i,q,BINDING(i,q)) is_integer
 !activecl(i,q,BINDING(i,q))
 create(activecl(i,q,BINDING(i,q)))
 activecl(i,q,BINDING(i,q)) is_integer
 if(MODE = 1) then
 !semiactcl(i,q,BINDING(i,q))
 create(semiactcl(i,q,BINDING(i,q)))
 semiactcl(i,q,BINDING(i,q)) is_integer
 end-if

142

 !repincl(i,q,BINDING(i,q))
 create(repincl(i,q,BINDING(i,q)))
 repincl(i,q,BINDING(i,q)) is_binary
 if(BINDING(i,q) in DOMPR) then
 !fracact(i,q,BINDING(i,q))
 create(fracact(i,q,BINDING(i,q)))
 end-if
 end-if
end-do

forall(i in SERV, q in COMP(i)) do!, d in DOMPR, n in NODES(d) | BINDING(i,q) = 0 or BINDING(i,q) = d) do
 if(BINDING(i,q) = 0) then
 forall(d in DOMPR, n in NODES(d)) do
 !mapping(i,q,d,n)
 create(mapping(i,q,d,n))
 mapping(i,q,d,n) is_binary
 if(MODE <> 2) then
 !active(i,q,d,n)
 create(active(i,q,d,n))
 active(i,q,d,n) is_binary
 if(MODE = 1) then
 !semiact(i,q,d,n)
 create(semiact(i,q,d,n))
 semiact(i,q,d,n) is_binary
 end-if
 end-if
 end-do
 else
 if(BINDING(i,q) in DOMPR) then
 forall(n in NODES(BINDING(i,q))) do
 !mapping(i,q,BINDING(i,q),n)
 create(mapping(i,q,BINDING(i,q),n))
 mapping(i,q,BINDING(i,q),n) is_binary
 if(MODE <> 2) then
 !active(i,q,BINDING(i,q),n)
 create(active(i,q,BINDING(i,q),n))
 active(i,q,BINDING(i,q),n) is_binary
 if(MODE = 1) then
 !semiact(i,q,BINDING(i,q),n)
 create(semiact(i,q,BINDING(i,q),n))
 semiact(i,q,BINDING(i,q),n) is_binary
 end-if
 end-if
 end-do
 end-if
 end-if
end-do

!repset(i,r)
forall(i in SERV, r in RSET(i)) do
 create(repset(i,r))
 repset(i,r) is_binary
end-do

forall(d in DOMPR, n in NODES(d)) do
 !used(d,n)
 create(used(d,n))
 used(d,n) is_binary
 !assignedc(d,n)
 create(assignedc(d,n))
 if(MODE = 0) then
 !maxrepcap(d,n)
 create(maxrepcap(d,n))
 end-if
end-do

if(MODE = 0) then
 !***
 !BEGIN CAPACITY LOWERING APPROACH
 !***

 !--*
 ! DEFINE OBJECTIVE FUNCTION
 !--*

 Obj := CPWR*HRS*(sum(i in SERV, q in COMP(i), d in DOMPR)PWRCOEFF*CPUDEM(i,q) * fracact(i,q,d) +
 sum(i in SERV, q in COMP(i), d in DOMPR, n in NODES(d))PWRCOEFF*CPUOH(i,q) * mapping(i,q,d,n) +
 sum(d in DOMPR, n in NODES(d))PWRIDLE * used(d,n)) +
 HRS*sum(i in SERV, q in COMP(i), d in DOMPU)COSTVMACT(i,q,d) * activecl(i,q,d) +
 HRS*sum(i in SERV, q in COMP(i), d in DOMPU)COSTVMPAS(i,q,d) * (mappingcl(i,q,d)-
activecl(i,q,d))

143

 !--*
 ! CONSTRAINTS
 !--*

 !Choose one and only one replication pattern for each service
 forall(i in SERV) Repsetsum(i) := sum(r in RSET(i)) repset(i,r) = 1

 !Distribute the replicas to the domains
 forall(i in SERV, q in COMP(i)) Allreps(i,q) := sum(d in DOM) mappingcl(i,q,d) -
 sum(r in RSET(i)) NR(i,q,r) * repset(i,r) = 0

 !Further map replicas in the private domains to the nodes
 forall(i in SERV, q in COMP(i), d in DOMPR) do
 Allrepsnod(i,q,d) := sum(n in NODES(d)) mapping(i,q,d,n) -
 mappingcl(i,q,d) = 0
 end-do

 !Distribute the active replicas to the domains
 forall(i in SERV, q in COMP(i)) Allact(i,q) := sum(d in DOM) activecl(i,q,d) -
 sum(r in RSET(i)) ACTR(i,q,r) * repset(i,r) = 0

 !Further map replicas in the private domains to the nodes
 forall(i in SERV, q in COMP(i), d in DOMPR) do
 Allactnod(i,q,d) := sum(n in NODES(d)) active(i,q,d,n) -
 activecl(i,q,d) = 0
 end-do

 !Set the fraction of demand-serving replicas in the private cloud
 forall(i in SERV, q in COMP(i), d in DOMPR, r in RSET(i)) do
 Setfracact(i,q,d,r) := 1/ACTR(i,q,r) * activecl(i,q,d) -
 fracact(i,q,d) +
 ACTRMX(i,q)/ACTR(i,q,r) * repset(i,r) <= ACTRMX(i,q)/ACTR(i,q,r)
 end-do

 !Ensure that the number of activated replicas are less than or equal to the total number of replicas
 forall(i in SERV, q in COMP(i), d in DOMPU) Actif(i,q,d) := activecl(i,q,d) -
 mappingcl(i,q,d) <= 0

 !Ensure that if a replica is activated on a node it has to be deployed there
 forall(i in SERV, q in COMP(i), d in DOMPR, n in NODES(d)) Actifnod(i,q,d,n) := active(i,q,d,n) -
 mapping(i,q,d,n) <= 0

 !Ensure the minimum number of domains used
 forall(i in SERV, q in COMP(i) | BINDING(i,q) = 0) do
 Reqspread(i,q) := sum(d in DOM) repincl(i,q,d) -
 sum(r in RSET(i)) NR(i,q,r)*SPREAD(i,q) * repset(i,r) >= 0
 end-do

 !Force repincl to be 0 if there is not deployed any replicas in the domain
 forall(i in SERV, q in COMP(i), d in DOM) Repinclif(i,q,d) := mappingcl(i,q,d) -
 repincl(i,q,d) >= 0

 !Set the non-assignable amount of CPU power on the nodes in the private cloud domains
 forall(d in DOMPR, n in NODES(d), i in SERV, q in COMP(i)) do
 Setmxrepcap(i,q,d,n) := maxrepcap(d,n) -
 (CPUASS(i,q)*VAR(i)) * (mapping(i,q,d,n) - active(i,q,d,n)) >= 0
 end-do

 if(SYM = 1) then
 !Set the amount of CPU power assigned to the replicas on the nodes in the private domains
 forall(d in DOMPR, n in NODES(d)) do
 Setass(d,n) := sum(i in SERV, q in COMP(i))(CPUASS(i,q)*VAR(i)) * active(i,q,d,n) +
 sum(i in SERV, q in COMP(i))CPUOH(i,q) * mapping(i,q,d,n) -
 assignedc(d,n) = 0
 end-do

 !Capacity constraints on the nodes in the private domains
 forall(d in DOMPR, n in NODES(d)) do
 Cpucap(d,n) := assignedc(d,n) +
 maxrepcap(d,n) -
 CAPCPU * used(d,n) <= 0
 end-do
 else
 !Capacity constraints on the nodes in the private domains
 forall(d in DOMPR, n in NODES(d)) do
 Cpucap(d,n) := sum(i in SERV, q in COMP(i))(CPUASS(i,q)*VAR(i)) * active(i,q,d,n) +
 sum(i in SERV, q in COMP(i))CPUOH(i,q) * mapping(i,q,d,n) +
 maxrepcap(d,n) -
 CAPCPU * used(d,n) <= 0
 end-do
 end-if

 !***
 !END CAPACITY LOWERING APPROACH
 !***

144

elif(MODE = 1) then
 !***
 !BEGIN SEMI-ACTIVE APPROACH
 !***

 !--*
 ! DEFINE OBJECTIVE FUNCTION
 !--*

 Obj := CPWR*HRS*(sum(i in SERV, q in COMP(i), d in DOMPR)PWRCOEFF*CPUDEM(i,q) * fracact(i,q,d) +
 sum(i in SERV, q in COMP(i), d in DOMPR, n in NODES(d))PWRCOEFF*CPUOH(i,q) * mapping(i,q,d,n) +
 sum(d in DOMPR, n in NODES(d))PWRIDLE * used(d,n)) +
 HRS*sum(i in SERV, q in COMP(i), d in DOMPU)COSTVMACT(i,q,d) * activecl(i,q,d) +
 HRS*sum(i in SERV, q in COMP(i), d in DOMPU)COSTVMACT(i,q,d) * semiactcl(i,q,d) +
 HRS*sum(i in SERV, q in COMP(i), d in DOMPU)COSTVMPAS(i,q,d) * (mappingcl(i,q,d)-
 (activecl(i,q,d)+
 semiactcl(i,q,d)))

 !--*
 ! CONSTRAINTS
 !--*

 !Choose one and only one replication pattern for each service
 forall(i in SERV) Repsetsum(i) := sum(r in RSET(i)) repset(i,r) = 1

 !Distribute the replicas to the domains
 forall(i in SERV, q in COMP(i)) Allreps(i,q) := sum(d in DOM) mappingcl(i,q,d) -
 sum(r in RSET(i)) NR(i,q,r) * repset(i,r) = 0

 !Further map replicas in the private domains to the nodes
 forall(i in SERV, q in COMP(i), d in DOMPR) do
 Allrepsnod(i,q,d) := sum(n in NODES(d)) mapping(i,q,d,n) -
 mappingcl(i,q,d) = 0
 end-do

 !Distribute the active replicas to the domains
 forall(i in SERV, q in COMP(i)) Allact(i,q) := sum(d in DOM) activecl(i,q,d) -
 sum(r in RSET(i)) ACTR(i,q,r) * repset(i,r) = 0

 !Further map active replicas in the private domains to the nodes
 forall(i in SERV, q in COMP(i), d in DOMPR) do
 Allactnod(i,q,d) := sum(n in NODES(d)) active(i,q,d,n) -
 activecl(i,q,d) = 0
 end-do

 !Distribute the semi-active replicas to the domains
 forall(i in SERV, q in COMP(i)) do
 Allsemiact(i,q) := sum(d in DOM) semiactcl(i,q,d) -
 sum(r in RSET(i))ceil((NR(i,q,r)-ACTR(i,q,r))/ACTR(i,q,r)) * repset(i,r) = 0
 end-do

 !Further map semi-active replicas in the private domains to the nodes
 forall(i in SERV, q in COMP(i), d in DOMPR) do
 Allsactnod(i,q,d) := sum(n in NODES(d)) semiact(i,q,d,n) -
 semiactcl(i,q,d) = 0
 end-do

 !Ensure that the number of activated and semi-active replicas are less than or equal to the total number of replicas
 forall(i in SERV, q in COMP(i), d in DOMPU) Actif(i,q,d) := activecl(i,q,d) +
 semiactcl(i,q,d) -
 mappingcl(i,q,d) <= 0

 !Ensure that if a replica is activated or semi-active on a node it has to be deployed there
 forall(i in SERV, q in COMP(i), d in DOMPR, n in NODES(d)) Actifnod(i,q,d,n) := active(i,q,d,n) +
 semiact(i,q,d,n) -
 mapping(i,q,d,n) <= 0

 !Set the fraction of demand-serving replicas in the private domain
 forall(i in SERV, q in COMP(i), d in DOMPR, r in RSET(i)) do
 Setfracact(i,q,d,r) := 1/ACTR(i,q,r) * activecl(i,q,d) -
 fracact(i,q,d) +
 ACTRMX(i,q)/ACTR(i,q,r) * repset(i,r) <= ACTRMX(i,q)/ACTR(i,q,r)
 end-do

 !Ensure the minimum number of domains used
 forall(i in SERV, q in COMP(i) | BINDING(i,q) = 0) do
 Reqspread(i,q) := sum(d in DOM) repincl(i,q,d) -
 sum(r in RSET(i)) NR(i,q,r)*SPREAD(i,q) * repset(i,r) >= 0
 end-do

 !Force repincl to be 0 if there is not deployed any replicas in the domain
 forall(i in SERV, q in COMP(i), d in DOM) Repinclif(i,q,d) := mappingcl(i,q,d) -
 repincl(i,q,d) >= 0

145

 if(SYM = 1) then
 !Set the amount of CPU power assigned to the replicas on the nodes in the private domains
 forall(d in DOMPR, n in NODES(d)) do
 Setass(d,n) := sum(i in SERV, q in COMP(i))(CPUASS(i,q)*VAR(i)) * active(i,q,d,n) +
 sum(i in SERV, q in COMP(i))CPUASS(i,q)*VAR(i) * semiact(i,q,d,n) +
 sum(i in SERV, q in COMP(i))CPUOH(i,q) * mapping(i,q,d,n) -
 assignedc(d,n) = 0
 end-do

 !Capacity constraint on the nodes in the private domains
 forall(d in DOMPR, n in NODES(d)) do
 Cpucap(d,n) := assignedc(d,n) -
 CAPCPU * used(d,n) <= 0
 end-do
 else
 !Capacity constraint on the nodes in the private domains
 forall(d in DOMPR, n in NODES(d)) do
 Cpucap(d,n) := sum(i in SERV, q in COMP(i))(CPUASS(i,q)*VAR(i)) * active(i,q,d,n) +
 sum(i in SERV, q in COMP(i))CPUASS(i,q)*VAR(i) * semiact(i,q,d,n) +
 sum(i in SERV, q in COMP(i))CPUOH(i,q) * mapping(i,q,d,n) -
 CAPCPU * used(d,n) <= 0
 end-do
 end-if

 !***
 !END SEMI-ACTIVE APPROACH
 !***

elif(MODE = 2) then

 !***
 !BEGIN ALL-ACTIVE APPROACH
 !***

 !--*
 ! DEFINE OBJECTIVE FUNCTION
 !--*

 Obj := CPWR*HRS*(sum(i in SERV, q in COMP(i), d in DOMPR)PWRCOEFF*CPUDEM(i,q) * fracact(i,q,d) +
 sum(i in SERV, q in COMP(i), d in DOMPR, n in NODES(d))PWRCOEFF*CPUOH(i,q) * mapping(i,q,d,n) +
 sum(d in DOMPR, n in NODES(d))PWRIDLE * used(d,n)) +
 HRS*sum(i in SERV, q in COMP(i), d in DOMPU)COSTVMACT(i,q,d) * mappingcl(i,q,d)

 !--*
 ! CONSTRAINTS
 !--*

 !Choose one and only one replication pattern for each service
 forall(i in SERV) Repsetsum(i) := sum(r in RSET(i)) repset(i,r) = 1

 !Distribute the replicas to the domains
 forall(i in SERV, q in COMP(i)) Allreps(i,q) := sum(d in DOM) mappingcl(i,q,d) -
 sum(r in RSET(i)) NR(i,q,r) * repset(i,r) = 0

 !Further map replicas in the private domains to the nodes
 forall(i in SERV, q in COMP(i), d in DOMPR) do
 Allrepsnod(i,q,d) := sum(n in NODES(d)) mapping(i,q,d,n) -
 mappingcl(i,q,d) = 0
 end-do

 !Set the fraction of demand-serving replicas in the private domain
 forall(i in SERV, q in COMP(i), d in DOMPR, r in RSET(i)) do
 Setfracact(i,q,d,r) := 1/NR(i,q,r) * mappingcl(i,q,d) -
 fracact(i,q,d) +
 NRMX(i,q)/NR(i,q,r) * repset(i,r) <= NRMX(i,q)/NR(i,q,r)
 end-do

 !Ensure the minimum number of domains used
 forall(i in SERV, q in COMP(i) | BINDING(i,q) = 0) do
 Reqspread(i,q) := sum(d in DOM) repincl(i,q,d) -
 sum(r in RSET(i)) NR(i,q,r)*SPREAD(i,q) * repset(i,r) >= 0
 end-do

 !Force repincl to be 0 if there is not deployed any replicas in the domain
 forall(i in SERV, q in COMP(i), d in DOM) Repinclif(i,q,d) := mappingcl(i,q,d) -
 repincl(i,q,d) >= 0

 if(SYM = 1) then
 !Set the amount of CPU power assigned to the replicas on the nodes in the private domains
 forall(d in DOMPR, n in NODES(d)) do
 Setass(d,n) := sum(i in SERV, q in COMP(i))(CPUASS(i,q)*VAR(i)+CPUOH(i,q)) * mapping(i,q,d,n) -
 assignedc(d,n) = 0
 end-do

146

 !Capacity constraints on the nodes in the private domain
 forall(d in DOMPR, n in NODES(d)) do
 Cpucap(d,n) := assignedc(d,n) -
 CAPCPU * used(d,n) <= 0
 end-do
 else
 !Capacity constraints on the nodes in the private domain
 forall(d in DOMPR, n in NODES(d)) do
 Cpucap(d,n) := sum(i in SERV, q in COMP(i))(CPUASS(i,q)*VAR(i)+CPUOH(i,q)) * mapping(i,q,d,n) -
 CAPCPU * used(d,n) <= 0
 end-do
 end-if

 !***
 !END ALL-ACTIVE APPROACH
 !***
end-if

!Doing some predefined decisions in order to lower the number of symmetrical solutions
!The component with the highest ACTRMN is deployed on the nodes with the lowest index

if(SYM = 1) then
 forall(d in DOMPR, n in NODES(d) | n < NON(d)) Sortass(d,n) := assignedc(d,n) - assignedc(d,n+1) >= 0
elif(SYM = 2) then
 forall(d in DOMPR, n in NODES(d) | n < NON(d)) Sortused(d,n) := used(d,n) - used(d,n+1) >= 0
end-if

if(SYM <> 1) then
 !Initialize PREDEPARR(d) for each private cloud domain
 forall(d in DOMPR) do
 forall(i in SERV, q in COMP(i) | BINDING(i,q) = d) do
 PREDEPARR(d).i := i
 PREDEPARR(d).q := q
 PREDEPARR(d).a := ACTRMNB(i,q)
 break
 end-do
 end-do

 !For each private cloud domain: find the component with the highest ACTRMNB that is bound to the cloud domain
 forall(d in DOMPR) do
 forall(i in SERV, q in COMP(i) | PREDEPARR(d).a < ACTRMNB(i,q)) do
 PREDEPARR(d).i := i
 PREDEPARR(d).q := q
 PREDEPARR(d).a := ACTRMNB(i,q)
 end-do
 end-do

 forall(d in DOMPR, n in NODES(d) | n <= PREDEPARR(d).a) do
 if(MODE <> 2) then
 active(PREDEPARR(d).i, PREDEPARR(d).q, d, n) = 1
 writeln("an active replica of (",PREDEPARR(d).i,",",PREDEPARR(d).q,") is predeployed to (",d,",",n,")")
 else
 mapping(PREDEPARR(d).i, PREDEPARR(d).q, d, n) = 1
 writeln("an active replica of (",PREDEPARR(d).i,",",PREDEPARR(d).q,") is predeployed to (",d,",",n,")")
 end-if
 end-do
end-if

writeln("Begin running model")
!--*
!MINIMIZE OBJECTIVE
!--*
setparam('xprs_verbose',true)
setparam('xprs_miplog', -1000)
setparam('xprs_maxtime',-7000)

minimize(Obj)
writeln("Objective = ",getobjval)
writeln(sum(i in SERV, q in COMP(i), d in DOMPR)CPWR*PWRCOEFF*CPUDEM(i,q) * fracact(i,q,d).sol)
writeln(sum(i in SERV, q in COMP(i), d in DOMPR, n in NODES(d))CPWR*PWRCOEFF*CPUOH(i,q) * mapping(i,q,d,n).sol)
writeln(sum(d in DOMPR, n in NODES(d))CPWR*PWRIDLE * used(d,n).sol)
writeln(sum(i in SERV, q in COMP(i), d in DOMPU)COSTVMACT(i,q,d) * activecl(i,q,d).sol)
writeln(sum(i in SERV, q in COMP(i), d in DOMPU)COSTVMACT(i,q,d) * semiactcl(i,q,d).sol)
writeln(sum(i in SERV, q in COMP(i), d in DOMPU) COSTVMPAS(i,q,d) * (mappingcl(i,q,d).sol-activecl(i,q,d).sol -
semiactcl(i,q,d).sol))

!Print out the number of replciations settings for each service
forall(i in SERV) do
 if(RMAX(i) > 0) then
 writeln("Service ",i," has ",RMAX(i)," replication settings that confins with the SLA requirements")
 else
 writeln("Service ",i," has none replication settings: THE MODEL IS INFEASIBLE!")
 end-if
end-do

!Print out information about availability
writeln("")
writeln("Availability print out")

147

forall(i in SERV, r in RSET(i) | repset(i,r).sol > 0.1) do
 writeln("-------- SERVICE ",i,"----------")
 writeln("Replication setting ",r," is used")
 writeln("AVAIL(",i,",",r,") = ",AVAIL(i,r)," >= ",REQAVAIL(i)," = REQAVAIL(",i,")")
 forall(q in COMP(i)) do
 writeln("NR(",i,",",q,",",r,") = ",NR(i,q,r))
 writeln("ACTR(",i,",",q,",",r,") = ",ACTR(i,q,r))
 end-do
end-do

!Print out CPULOAD data
writeln("")
writeln("CPULOAD(i,q) and VAR(i) print out")
forall(i in SERV) do
 writeln("-------- SERVICE ",i,"----------")
 writeln("Demand for service ",i,": ",DEM(i), " req/sec")
 writeln("VAR(",i,") = ",VAR(i))
 forall(q in COMP(i)) do
 writeln("*Component ",q,"*")
 writeln("JOBLOAD(",i,",",q,") = ",JOBLOAD(i,q))
 writeln("CPUDEM(",i,",",q,") = ",CPUDEM(i,q))
 writeln("CPUASS(",i,",",q,") = ",CPUASS(i,q))
 writeln("Assigned CPU power including VAR(",i,") to each active replica: ",CPUASS(i,q)*VAR(i))
 writeln("CPUASS(",i,",",q,") * Active reps = ",CPUASS(i,q)," * ",sum(r in RSET(i))ACTR(i,q,r)*repset(i,r).sol,
 " = ",CPUASS(i,q) * sum(r in RSET(i))ACTR(i,q,r)*repset(i,r).sol)
 writeln("This gives a component response time of ",
 1000/(CPUASS(i,q)/JOBLOAD(i,q) - DEM(i)/(sum(r in RSET(i))ACTR(i,q,r)*repset(i,r).sol))," ms")
 end-do
end-do

!Print out information about deployment decisions
writeln("")
writeln("Deployment variables on DOMAIN LEVEL, mappingcl(i,q,d), active(i,q,d) and semiactcl(i,q,d) print out")
forall(i in SERV, q in COMP(i), d in DOM | mappingcl(i,q,d).sol > 0.1) do
 write("# replicas for (",i,",",q,") in cloud ",d," = ",mappingcl(i,q,d).sol," ")
 if(activecl(i,q,d).sol > 0) then
 write("(# active = ",activecl(i,q,d).sol,") ")
 end-if
 if(semiactcl(i,q,d).sol > 0) then
 write("(# semi-active = ",semiactcl(i,q,d).sol,") ")
 end-if
 writeln("")
end-do
writeln("")
writeln("Deployment variables on NODE LEVEL, mapping(i,q,d,n), active(i,q,d,n) and semiact(i,q,d,n) print out")
forall(i in SERV, q in COMP(i), d in DOMPR, n in NODES(d) | mapping(i,q,d,n).sol > 0.1) do
 write("mapping(",i,",",q,",",d,",",n,") = ",mapping(i,q,d,n).sol," ")
 if(active(i,q,d,n).sol > 0.5) then
 write("(active)")
 end-if
 if(semiact(i,q,d,n).sol > 0.5) then
 write("(semiactive)")
 end-if
 writeln("")
end-do

if(MODE <> 2) then
 !Print out information about CPU capacity and power usage on the nodes
 writeln("")
 writeln("Capacity and power usage print out")
 forall(d in DOMPR) do
 writeln("-------------DOMAIN ",d," -------------")
 forall(n in NODES(d)) do
 write("--------- NODE ",n," ")
 if (used(d,n).sol > 0.5) then
 write("(ON) ")
 else
 write("(OFF) ")
 end-if
 writeln("---------")
 forall(i in SERV, q in COMP(i) | mapping(i,q,d,n).sol>0.5) do
 write("(",i,",",q,") with CPU load ",CPUASS(i,q)*VAR(i)*(active(i,q,d,n).sol + semiact(i,q,d,n).sol) +
 CPUOH(i,q)*mapping(i,q,d,n).sol," ")
 if(active(i,q,d,n).sol > 0.5) then
 write("(active)")
 end-if
 if(semiact(i,q,d,n).sol > 0.5) then
 write("(semiactive)")
 end-if
 writeln("")
 end-do
 write("Total load on node ",n,": ",
 sum(i in SERV, q in COMP(i))(CPUASS(i,q)*VAR(i)*(active(i,q,d,n).sol + semiact(i,q,d,n).sol) +
 CPUOH(i,q)*mapping(i,q,d,n).sol))
 if(MODE = 0) then
 writeln(" <= CAPCPU - maxrepcap(",n,") = ",CAPCPU,"-",maxrepcap(d,n).sol," = ",CAPCPU-maxrepcap(d,n).sol)
 elif(MODE = 1) then
 writeln(" <= CAPCPU = ",CAPCPU)

148

 end-if
 end-do
 writeln("Total cost of power usage in private cloud = ",
 CPWR*(sum(i in SERV, q in COMP(i))PWRCOEFF*CPUDEM(i,q)*fracact(i,q,d).sol +
 sum(i in SERV, q in COMP(i), n in NODES(d))PWRCOEFF*CPUOH(i,q)*mapping(i,q,d,n).sol +
 sum(n in NODES(d))PWRIDLE*used(d,n).sol))
 end-do
else
 !Print out information about CPU capacity and power usage on the nodes
 writeln("")
 writeln("Capacity and power usage print out")
 forall(d in DOMPR) do
 writeln("------------- DOMAIN ",d," -------------")
 forall(n in NODES(d)) do
 write("--------- NODE ",n," ")
 if (used(d,n).sol > 0.5) then
 write("(ON) ")
 else
 write("(OFF) ")
 end-if
 writeln("---------")
 forall(i in SERV, q in COMP(i) | mapping(i,q,d,n).sol>0.5) do
 writeln("(",i,",",q,") with CPU load ",(CPUASS(i,q)*VAR(i)+CPUOH(i,q))*mapping(i,q,d,n).sol)
 end-do
 writeln("Total load on node ",n,": ",
 sum(i in SERV, q in COMP(i))(CPUASS(i,q)*VAR(i)+CPUOH(i,q))*mapping(i,q,d,n).sol," <= ",CAPCPU)
 end-do
 writeln("Total cost of power usage in private cloud = ",
 CPWR*(sum(i in SERV, q in COMP(i))PWRCOEFF*CPUDEM(i,q)*fracact(i,q,d).sol +
 sum(i in SERV, q in COMP(i), n in NODES(d))PWRCOEFF*CPUOH(i,q)*mapping(i,q,d,n).sol +
 sum(n in NODES(d))PWRIDLE*used(d,n).sol))
 end-do
end-if

!Print out information about utilization of the nodes in the private cloud
if(MODE <> 2) then
 writeln("")
 forall(d in DOMPR, n in NODES(d)) do
 writeln("")
 forall(i in SERV, q in COMP(i) | mapping(i,q,d,n).sol > 0.1) do
 writeln("(",i,",",q,")'s contribution to the utilization on node ",n," (in ",d,") is: ",
 CPUOH(i,q)*mapping(i,q,d,n).sol +
 CPUDEM(i,q)*sum(r in RSET(i))active(i,q,d,n).sol/ACTR(i,q,r)*repset(i,r).sol)
 end-do
 writeln("The total utilization on node ",n," is: ",
 sum(i in SERV, q in COMP(i))CPUDEM(i,q)*sum(r in RSET(i))active(i,q,d,n).sol/ACTR(i,q,r)*repset(i,r).sol +
 sum(i in SERV, q in COMP(i))CPUOH(i,q)*mapping(i,q,d,n).sol)
 end-do
 writeln("The average utilization on turned on nodes = ",(sum(i in SERV,q in COMP(i),d in DOMPR,n in NODES(d))
 CPUDEM(i,q)*sum(r in RSET(i))active(i,q,d,n).sol/ACTR(i,q,r)*repset(i,r).sol +
 sum(i in SERV, q in COMP(i), d in DOMPR, n in NODES(d))CPUOH(i,q)*mapping(i,q,d,n).sol)/
 (sum(d in DOMPR, n in NODES(d))used(d,n).sol))
else
 writeln("")
 forall(d in DOMPR, n in NODES(d)) do
 writeln("")
 forall(i in SERV, q in COMP(i) | mapping(i,q,d,n).sol > 0.1) do
 writeln("(",i,",",q,")'s contribution to the utilization on node ",n," (in ",d,") is: ",
 (CPUOH(i,q))*mapping(i,q,d,n).sol +
 CPUDEM(i,q)*sum(r in RSET(i))mapping(i,q,d,n).sol/NR(i,q,r)*repset(i,r).sol)
 end-do
 writeln("The total utilization on node ",n," is: ",
 sum(i in SERV, q in COMP(i))CPUDEM(i,q)*sum(r in RSET(i))mapping(i,q,d,n).sol/NR(i,q,r)*repset(i,r).sol +
 sum(i in SERV, q in COMP(i))(CPUOH(i,q))*mapping(i,q,d,n).sol)
 end-do
 writeln("The average utilization on turned on nodes = ",(sum(i in SERV,q in COMP(i),d in DOMPR,n in NODES(d))
 CPUDEM(i,q)*sum(r in RSET(i))mapping(i,q,d,n).sol/NR(i,q,r)*repset(i,r).sol +
 sum(i in SERV, q in COMP(i), d in DOMPR, n in NODES(d))(CPUOH(i,q))*mapping(i,q,d,n).sol)/
 (sum(d in DOMPR, n in NODES(d))used(d,n).sol))
end-if
!Print out information about usage costs in the public clouds
if(MODE <> 2) then
 writeln("")
 writeln("Usage costs of public clouds print out")
 forall(d in DOMPU) do
 writeln("------------- DOMAIN ",d," -------------")
 forall(i in SERV, q in COMP(i) | mappingcl(i,q,d).sol > 0.1) do
 write("Usage costs of (",i,",",q,") = ",COSTVMACT(i,q,d)*(activecl(i,q,d).sol+semiactcl(i,q,d).sol) +
 COSTVMPAS(i,q,d)*(mappingcl(i,q,d).sol-(activecl(i,q,d).sol+semiactcl(i,q,d).sol))," ")
 if(activecl(i,q,d).sol > 0.1) then
 write("(",activecl(i,q,d).sol," active) ")
 end-if
 if(semiactcl(i,q,d).sol > 0.1) then
 write("(",semiactcl(i,q,d).sol," semiactive) ")
 end-if
 if(mappingcl(i,q,d).sol - (activecl(i,q,d).sol + semiactcl(i,q,d).sol) > 0.1) then
 write("(",mappingcl(i,q,d).sol - (activecl(i,q,d).sol + semiactcl(i,q,d).sol)," passive) ")
 end-if

149

 writeln("")
 end-do
 writeln("Total cost of usage of public cloud = ",
 sum(i in SERV, q in COMP(i))COSTVMACT(i,q,d)*(activecl(i,q,d).sol + semiactcl(i,q,d).sol) +
 sum(i in SERV, q in COMP(i))COSTVMPAS(i,q,d)*(mappingcl(i,q,d).sol-
 (activecl(i,q,d).sol+semiactcl(i,q,d).sol)))
 end-do
else
 writeln("")
 writeln("Usage costs of public clouds print out")
 forall(d in DOMPU) do
 writeln("------------- DOMAIN ",d," -------------")
 forall(i in SERV, q in COMP(i) | mappingcl(i,q,d).sol > 0.1) do
 writeln("Usage costs of (",i,",",q,") = ",COSTVMACT(i,q,d)*mappingcl(i,q,d).sol)
 end-do
 writeln("Total cost of usage of public cloud = ",
 sum(i in SERV, q in COMP(i))COSTVMACT(i,q,d)*mappingcl(i,q,d).sol)
 end-do

end-if
writeln("End running model")

end-model

	Title Page
	masteroppgave.pdf

